1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET3 Protocol independent device support routines.
5 * Derived from the non IP parts of dev.c 1.0.19
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
47 * Rudi Cilibrasi : Pass the right thing to
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
146 #include "net-sysfs.h"
148 #define MAX_GRO_SKBS 8
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153 static DEFINE_SPINLOCK(ptype_lock
);
154 static DEFINE_SPINLOCK(offload_lock
);
155 struct list_head ptype_base
[PTYPE_HASH_SIZE
] __read_mostly
;
156 struct list_head ptype_all __read_mostly
; /* Taps */
157 static struct list_head offload_base __read_mostly
;
159 static int netif_rx_internal(struct sk_buff
*skb
);
160 static int call_netdevice_notifiers_info(unsigned long val
,
161 struct netdev_notifier_info
*info
);
162 static int call_netdevice_notifiers_extack(unsigned long val
,
163 struct net_device
*dev
,
164 struct netlink_ext_ack
*extack
);
165 static struct napi_struct
*napi_by_id(unsigned int napi_id
);
168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173 * Writers must hold the rtnl semaphore while they loop through the
174 * dev_base_head list, and hold dev_base_lock for writing when they do the
175 * actual updates. This allows pure readers to access the list even
176 * while a writer is preparing to update it.
178 * To put it another way, dev_base_lock is held for writing only to
179 * protect against pure readers; the rtnl semaphore provides the
180 * protection against other writers.
182 * See, for example usages, register_netdevice() and
183 * unregister_netdevice(), which must be called with the rtnl
186 DEFINE_RWLOCK(dev_base_lock
);
187 EXPORT_SYMBOL(dev_base_lock
);
189 static DEFINE_MUTEX(ifalias_mutex
);
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock
);
194 static unsigned int napi_gen_id
= NR_CPUS
;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash
, 8);
197 static seqcount_t devnet_rename_seq
;
199 static inline void dev_base_seq_inc(struct net
*net
)
201 while (++net
->dev_base_seq
== 0)
205 static inline struct hlist_head
*dev_name_hash(struct net
*net
, const char *name
)
207 unsigned int hash
= full_name_hash(net
, name
, strnlen(name
, IFNAMSIZ
));
209 return &net
->dev_name_head
[hash_32(hash
, NETDEV_HASHBITS
)];
212 static inline struct hlist_head
*dev_index_hash(struct net
*net
, int ifindex
)
214 return &net
->dev_index_head
[ifindex
& (NETDEV_HASHENTRIES
- 1)];
217 static inline void rps_lock(struct softnet_data
*sd
)
220 spin_lock(&sd
->input_pkt_queue
.lock
);
224 static inline void rps_unlock(struct softnet_data
*sd
)
227 spin_unlock(&sd
->input_pkt_queue
.lock
);
231 static struct netdev_name_node
*netdev_name_node_alloc(struct net_device
*dev
,
234 struct netdev_name_node
*name_node
;
236 name_node
= kmalloc(sizeof(*name_node
), GFP_KERNEL
);
239 INIT_HLIST_NODE(&name_node
->hlist
);
240 name_node
->dev
= dev
;
241 name_node
->name
= name
;
245 static struct netdev_name_node
*
246 netdev_name_node_head_alloc(struct net_device
*dev
)
248 struct netdev_name_node
*name_node
;
250 name_node
= netdev_name_node_alloc(dev
, dev
->name
);
253 INIT_LIST_HEAD(&name_node
->list
);
257 static void netdev_name_node_free(struct netdev_name_node
*name_node
)
262 static void netdev_name_node_add(struct net
*net
,
263 struct netdev_name_node
*name_node
)
265 hlist_add_head_rcu(&name_node
->hlist
,
266 dev_name_hash(net
, name_node
->name
));
269 static void netdev_name_node_del(struct netdev_name_node
*name_node
)
271 hlist_del_rcu(&name_node
->hlist
);
274 static struct netdev_name_node
*netdev_name_node_lookup(struct net
*net
,
277 struct hlist_head
*head
= dev_name_hash(net
, name
);
278 struct netdev_name_node
*name_node
;
280 hlist_for_each_entry(name_node
, head
, hlist
)
281 if (!strcmp(name_node
->name
, name
))
286 static struct netdev_name_node
*netdev_name_node_lookup_rcu(struct net
*net
,
289 struct hlist_head
*head
= dev_name_hash(net
, name
);
290 struct netdev_name_node
*name_node
;
292 hlist_for_each_entry_rcu(name_node
, head
, hlist
)
293 if (!strcmp(name_node
->name
, name
))
298 int netdev_name_node_alt_create(struct net_device
*dev
, const char *name
)
300 struct netdev_name_node
*name_node
;
301 struct net
*net
= dev_net(dev
);
303 name_node
= netdev_name_node_lookup(net
, name
);
306 name_node
= netdev_name_node_alloc(dev
, name
);
309 netdev_name_node_add(net
, name_node
);
310 /* The node that holds dev->name acts as a head of per-device list. */
311 list_add_tail(&name_node
->list
, &dev
->name_node
->list
);
315 EXPORT_SYMBOL(netdev_name_node_alt_create
);
317 static void __netdev_name_node_alt_destroy(struct netdev_name_node
*name_node
)
319 list_del(&name_node
->list
);
320 netdev_name_node_del(name_node
);
321 kfree(name_node
->name
);
322 netdev_name_node_free(name_node
);
325 int netdev_name_node_alt_destroy(struct net_device
*dev
, const char *name
)
327 struct netdev_name_node
*name_node
;
328 struct net
*net
= dev_net(dev
);
330 name_node
= netdev_name_node_lookup(net
, name
);
333 /* lookup might have found our primary name or a name belonging
336 if (name_node
== dev
->name_node
|| name_node
->dev
!= dev
)
339 __netdev_name_node_alt_destroy(name_node
);
343 EXPORT_SYMBOL(netdev_name_node_alt_destroy
);
345 static void netdev_name_node_alt_flush(struct net_device
*dev
)
347 struct netdev_name_node
*name_node
, *tmp
;
349 list_for_each_entry_safe(name_node
, tmp
, &dev
->name_node
->list
, list
)
350 __netdev_name_node_alt_destroy(name_node
);
353 /* Device list insertion */
354 static void list_netdevice(struct net_device
*dev
)
356 struct net
*net
= dev_net(dev
);
360 write_lock_bh(&dev_base_lock
);
361 list_add_tail_rcu(&dev
->dev_list
, &net
->dev_base_head
);
362 netdev_name_node_add(net
, dev
->name_node
);
363 hlist_add_head_rcu(&dev
->index_hlist
,
364 dev_index_hash(net
, dev
->ifindex
));
365 write_unlock_bh(&dev_base_lock
);
367 dev_base_seq_inc(net
);
370 /* Device list removal
371 * caller must respect a RCU grace period before freeing/reusing dev
373 static void unlist_netdevice(struct net_device
*dev
)
377 /* Unlink dev from the device chain */
378 write_lock_bh(&dev_base_lock
);
379 list_del_rcu(&dev
->dev_list
);
380 netdev_name_node_del(dev
->name_node
);
381 hlist_del_rcu(&dev
->index_hlist
);
382 write_unlock_bh(&dev_base_lock
);
384 dev_base_seq_inc(dev_net(dev
));
391 static RAW_NOTIFIER_HEAD(netdev_chain
);
394 * Device drivers call our routines to queue packets here. We empty the
395 * queue in the local softnet handler.
398 DEFINE_PER_CPU_ALIGNED(struct softnet_data
, softnet_data
);
399 EXPORT_PER_CPU_SYMBOL(softnet_data
);
401 /*******************************************************************************
403 * Protocol management and registration routines
405 *******************************************************************************/
409 * Add a protocol ID to the list. Now that the input handler is
410 * smarter we can dispense with all the messy stuff that used to be
413 * BEWARE!!! Protocol handlers, mangling input packets,
414 * MUST BE last in hash buckets and checking protocol handlers
415 * MUST start from promiscuous ptype_all chain in net_bh.
416 * It is true now, do not change it.
417 * Explanation follows: if protocol handler, mangling packet, will
418 * be the first on list, it is not able to sense, that packet
419 * is cloned and should be copied-on-write, so that it will
420 * change it and subsequent readers will get broken packet.
424 static inline struct list_head
*ptype_head(const struct packet_type
*pt
)
426 if (pt
->type
== htons(ETH_P_ALL
))
427 return pt
->dev
? &pt
->dev
->ptype_all
: &ptype_all
;
429 return pt
->dev
? &pt
->dev
->ptype_specific
:
430 &ptype_base
[ntohs(pt
->type
) & PTYPE_HASH_MASK
];
434 * dev_add_pack - add packet handler
435 * @pt: packet type declaration
437 * Add a protocol handler to the networking stack. The passed &packet_type
438 * is linked into kernel lists and may not be freed until it has been
439 * removed from the kernel lists.
441 * This call does not sleep therefore it can not
442 * guarantee all CPU's that are in middle of receiving packets
443 * will see the new packet type (until the next received packet).
446 void dev_add_pack(struct packet_type
*pt
)
448 struct list_head
*head
= ptype_head(pt
);
450 spin_lock(&ptype_lock
);
451 list_add_rcu(&pt
->list
, head
);
452 spin_unlock(&ptype_lock
);
454 EXPORT_SYMBOL(dev_add_pack
);
457 * __dev_remove_pack - remove packet handler
458 * @pt: packet type declaration
460 * Remove a protocol handler that was previously added to the kernel
461 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
462 * from the kernel lists and can be freed or reused once this function
465 * The packet type might still be in use by receivers
466 * and must not be freed until after all the CPU's have gone
467 * through a quiescent state.
469 void __dev_remove_pack(struct packet_type
*pt
)
471 struct list_head
*head
= ptype_head(pt
);
472 struct packet_type
*pt1
;
474 spin_lock(&ptype_lock
);
476 list_for_each_entry(pt1
, head
, list
) {
478 list_del_rcu(&pt
->list
);
483 pr_warn("dev_remove_pack: %p not found\n", pt
);
485 spin_unlock(&ptype_lock
);
487 EXPORT_SYMBOL(__dev_remove_pack
);
490 * dev_remove_pack - remove packet handler
491 * @pt: packet type declaration
493 * Remove a protocol handler that was previously added to the kernel
494 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
495 * from the kernel lists and can be freed or reused once this function
498 * This call sleeps to guarantee that no CPU is looking at the packet
501 void dev_remove_pack(struct packet_type
*pt
)
503 __dev_remove_pack(pt
);
507 EXPORT_SYMBOL(dev_remove_pack
);
511 * dev_add_offload - register offload handlers
512 * @po: protocol offload declaration
514 * Add protocol offload handlers to the networking stack. The passed
515 * &proto_offload is linked into kernel lists and may not be freed until
516 * it has been removed from the kernel lists.
518 * This call does not sleep therefore it can not
519 * guarantee all CPU's that are in middle of receiving packets
520 * will see the new offload handlers (until the next received packet).
522 void dev_add_offload(struct packet_offload
*po
)
524 struct packet_offload
*elem
;
526 spin_lock(&offload_lock
);
527 list_for_each_entry(elem
, &offload_base
, list
) {
528 if (po
->priority
< elem
->priority
)
531 list_add_rcu(&po
->list
, elem
->list
.prev
);
532 spin_unlock(&offload_lock
);
534 EXPORT_SYMBOL(dev_add_offload
);
537 * __dev_remove_offload - remove offload handler
538 * @po: packet offload declaration
540 * Remove a protocol offload handler that was previously added to the
541 * kernel offload handlers by dev_add_offload(). The passed &offload_type
542 * is removed from the kernel lists and can be freed or reused once this
545 * The packet type might still be in use by receivers
546 * and must not be freed until after all the CPU's have gone
547 * through a quiescent state.
549 static void __dev_remove_offload(struct packet_offload
*po
)
551 struct list_head
*head
= &offload_base
;
552 struct packet_offload
*po1
;
554 spin_lock(&offload_lock
);
556 list_for_each_entry(po1
, head
, list
) {
558 list_del_rcu(&po
->list
);
563 pr_warn("dev_remove_offload: %p not found\n", po
);
565 spin_unlock(&offload_lock
);
569 * dev_remove_offload - remove packet offload handler
570 * @po: packet offload declaration
572 * Remove a packet offload handler that was previously added to the kernel
573 * offload handlers by dev_add_offload(). The passed &offload_type is
574 * removed from the kernel lists and can be freed or reused once this
577 * This call sleeps to guarantee that no CPU is looking at the packet
580 void dev_remove_offload(struct packet_offload
*po
)
582 __dev_remove_offload(po
);
586 EXPORT_SYMBOL(dev_remove_offload
);
588 /******************************************************************************
590 * Device Boot-time Settings Routines
592 ******************************************************************************/
594 /* Boot time configuration table */
595 static struct netdev_boot_setup dev_boot_setup
[NETDEV_BOOT_SETUP_MAX
];
598 * netdev_boot_setup_add - add new setup entry
599 * @name: name of the device
600 * @map: configured settings for the device
602 * Adds new setup entry to the dev_boot_setup list. The function
603 * returns 0 on error and 1 on success. This is a generic routine to
606 static int netdev_boot_setup_add(char *name
, struct ifmap
*map
)
608 struct netdev_boot_setup
*s
;
612 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++) {
613 if (s
[i
].name
[0] == '\0' || s
[i
].name
[0] == ' ') {
614 memset(s
[i
].name
, 0, sizeof(s
[i
].name
));
615 strlcpy(s
[i
].name
, name
, IFNAMSIZ
);
616 memcpy(&s
[i
].map
, map
, sizeof(s
[i
].map
));
621 return i
>= NETDEV_BOOT_SETUP_MAX
? 0 : 1;
625 * netdev_boot_setup_check - check boot time settings
626 * @dev: the netdevice
628 * Check boot time settings for the device.
629 * The found settings are set for the device to be used
630 * later in the device probing.
631 * Returns 0 if no settings found, 1 if they are.
633 int netdev_boot_setup_check(struct net_device
*dev
)
635 struct netdev_boot_setup
*s
= dev_boot_setup
;
638 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++) {
639 if (s
[i
].name
[0] != '\0' && s
[i
].name
[0] != ' ' &&
640 !strcmp(dev
->name
, s
[i
].name
)) {
641 dev
->irq
= s
[i
].map
.irq
;
642 dev
->base_addr
= s
[i
].map
.base_addr
;
643 dev
->mem_start
= s
[i
].map
.mem_start
;
644 dev
->mem_end
= s
[i
].map
.mem_end
;
650 EXPORT_SYMBOL(netdev_boot_setup_check
);
654 * netdev_boot_base - get address from boot time settings
655 * @prefix: prefix for network device
656 * @unit: id for network device
658 * Check boot time settings for the base address of device.
659 * The found settings are set for the device to be used
660 * later in the device probing.
661 * Returns 0 if no settings found.
663 unsigned long netdev_boot_base(const char *prefix
, int unit
)
665 const struct netdev_boot_setup
*s
= dev_boot_setup
;
669 sprintf(name
, "%s%d", prefix
, unit
);
672 * If device already registered then return base of 1
673 * to indicate not to probe for this interface
675 if (__dev_get_by_name(&init_net
, name
))
678 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++)
679 if (!strcmp(name
, s
[i
].name
))
680 return s
[i
].map
.base_addr
;
685 * Saves at boot time configured settings for any netdevice.
687 int __init
netdev_boot_setup(char *str
)
692 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
697 memset(&map
, 0, sizeof(map
));
701 map
.base_addr
= ints
[2];
703 map
.mem_start
= ints
[3];
705 map
.mem_end
= ints
[4];
707 /* Add new entry to the list */
708 return netdev_boot_setup_add(str
, &map
);
711 __setup("netdev=", netdev_boot_setup
);
713 /*******************************************************************************
715 * Device Interface Subroutines
717 *******************************************************************************/
720 * dev_get_iflink - get 'iflink' value of a interface
721 * @dev: targeted interface
723 * Indicates the ifindex the interface is linked to.
724 * Physical interfaces have the same 'ifindex' and 'iflink' values.
727 int dev_get_iflink(const struct net_device
*dev
)
729 if (dev
->netdev_ops
&& dev
->netdev_ops
->ndo_get_iflink
)
730 return dev
->netdev_ops
->ndo_get_iflink(dev
);
734 EXPORT_SYMBOL(dev_get_iflink
);
737 * dev_fill_metadata_dst - Retrieve tunnel egress information.
738 * @dev: targeted interface
741 * For better visibility of tunnel traffic OVS needs to retrieve
742 * egress tunnel information for a packet. Following API allows
743 * user to get this info.
745 int dev_fill_metadata_dst(struct net_device
*dev
, struct sk_buff
*skb
)
747 struct ip_tunnel_info
*info
;
749 if (!dev
->netdev_ops
|| !dev
->netdev_ops
->ndo_fill_metadata_dst
)
752 info
= skb_tunnel_info_unclone(skb
);
755 if (unlikely(!(info
->mode
& IP_TUNNEL_INFO_TX
)))
758 return dev
->netdev_ops
->ndo_fill_metadata_dst(dev
, skb
);
760 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst
);
763 * __dev_get_by_name - find a device by its name
764 * @net: the applicable net namespace
765 * @name: name to find
767 * Find an interface by name. Must be called under RTNL semaphore
768 * or @dev_base_lock. If the name is found a pointer to the device
769 * is returned. If the name is not found then %NULL is returned. The
770 * reference counters are not incremented so the caller must be
771 * careful with locks.
774 struct net_device
*__dev_get_by_name(struct net
*net
, const char *name
)
776 struct netdev_name_node
*node_name
;
778 node_name
= netdev_name_node_lookup(net
, name
);
779 return node_name
? node_name
->dev
: NULL
;
781 EXPORT_SYMBOL(__dev_get_by_name
);
784 * dev_get_by_name_rcu - find a device by its name
785 * @net: the applicable net namespace
786 * @name: name to find
788 * Find an interface by name.
789 * If the name is found a pointer to the device is returned.
790 * If the name is not found then %NULL is returned.
791 * The reference counters are not incremented so the caller must be
792 * careful with locks. The caller must hold RCU lock.
795 struct net_device
*dev_get_by_name_rcu(struct net
*net
, const char *name
)
797 struct netdev_name_node
*node_name
;
799 node_name
= netdev_name_node_lookup_rcu(net
, name
);
800 return node_name
? node_name
->dev
: NULL
;
802 EXPORT_SYMBOL(dev_get_by_name_rcu
);
805 * dev_get_by_name - find a device by its name
806 * @net: the applicable net namespace
807 * @name: name to find
809 * Find an interface by name. This can be called from any
810 * context and does its own locking. The returned handle has
811 * the usage count incremented and the caller must use dev_put() to
812 * release it when it is no longer needed. %NULL is returned if no
813 * matching device is found.
816 struct net_device
*dev_get_by_name(struct net
*net
, const char *name
)
818 struct net_device
*dev
;
821 dev
= dev_get_by_name_rcu(net
, name
);
827 EXPORT_SYMBOL(dev_get_by_name
);
830 * __dev_get_by_index - find a device by its ifindex
831 * @net: the applicable net namespace
832 * @ifindex: index of device
834 * Search for an interface by index. Returns %NULL if the device
835 * is not found or a pointer to the device. The device has not
836 * had its reference counter increased so the caller must be careful
837 * about locking. The caller must hold either the RTNL semaphore
841 struct net_device
*__dev_get_by_index(struct net
*net
, int ifindex
)
843 struct net_device
*dev
;
844 struct hlist_head
*head
= dev_index_hash(net
, ifindex
);
846 hlist_for_each_entry(dev
, head
, index_hlist
)
847 if (dev
->ifindex
== ifindex
)
852 EXPORT_SYMBOL(__dev_get_by_index
);
855 * dev_get_by_index_rcu - find a device by its ifindex
856 * @net: the applicable net namespace
857 * @ifindex: index of device
859 * Search for an interface by index. Returns %NULL if the device
860 * is not found or a pointer to the device. The device has not
861 * had its reference counter increased so the caller must be careful
862 * about locking. The caller must hold RCU lock.
865 struct net_device
*dev_get_by_index_rcu(struct net
*net
, int ifindex
)
867 struct net_device
*dev
;
868 struct hlist_head
*head
= dev_index_hash(net
, ifindex
);
870 hlist_for_each_entry_rcu(dev
, head
, index_hlist
)
871 if (dev
->ifindex
== ifindex
)
876 EXPORT_SYMBOL(dev_get_by_index_rcu
);
880 * dev_get_by_index - find a device by its ifindex
881 * @net: the applicable net namespace
882 * @ifindex: index of device
884 * Search for an interface by index. Returns NULL if the device
885 * is not found or a pointer to the device. The device returned has
886 * had a reference added and the pointer is safe until the user calls
887 * dev_put to indicate they have finished with it.
890 struct net_device
*dev_get_by_index(struct net
*net
, int ifindex
)
892 struct net_device
*dev
;
895 dev
= dev_get_by_index_rcu(net
, ifindex
);
901 EXPORT_SYMBOL(dev_get_by_index
);
904 * dev_get_by_napi_id - find a device by napi_id
905 * @napi_id: ID of the NAPI struct
907 * Search for an interface by NAPI ID. Returns %NULL if the device
908 * is not found or a pointer to the device. The device has not had
909 * its reference counter increased so the caller must be careful
910 * about locking. The caller must hold RCU lock.
913 struct net_device
*dev_get_by_napi_id(unsigned int napi_id
)
915 struct napi_struct
*napi
;
917 WARN_ON_ONCE(!rcu_read_lock_held());
919 if (napi_id
< MIN_NAPI_ID
)
922 napi
= napi_by_id(napi_id
);
924 return napi
? napi
->dev
: NULL
;
926 EXPORT_SYMBOL(dev_get_by_napi_id
);
929 * netdev_get_name - get a netdevice name, knowing its ifindex.
930 * @net: network namespace
931 * @name: a pointer to the buffer where the name will be stored.
932 * @ifindex: the ifindex of the interface to get the name from.
934 * The use of raw_seqcount_begin() and cond_resched() before
935 * retrying is required as we want to give the writers a chance
936 * to complete when CONFIG_PREEMPTION is not set.
938 int netdev_get_name(struct net
*net
, char *name
, int ifindex
)
940 struct net_device
*dev
;
944 seq
= raw_seqcount_begin(&devnet_rename_seq
);
946 dev
= dev_get_by_index_rcu(net
, ifindex
);
952 strcpy(name
, dev
->name
);
954 if (read_seqcount_retry(&devnet_rename_seq
, seq
)) {
963 * dev_getbyhwaddr_rcu - find a device by its hardware address
964 * @net: the applicable net namespace
965 * @type: media type of device
966 * @ha: hardware address
968 * Search for an interface by MAC address. Returns NULL if the device
969 * is not found or a pointer to the device.
970 * The caller must hold RCU or RTNL.
971 * The returned device has not had its ref count increased
972 * and the caller must therefore be careful about locking
976 struct net_device
*dev_getbyhwaddr_rcu(struct net
*net
, unsigned short type
,
979 struct net_device
*dev
;
981 for_each_netdev_rcu(net
, dev
)
982 if (dev
->type
== type
&&
983 !memcmp(dev
->dev_addr
, ha
, dev
->addr_len
))
988 EXPORT_SYMBOL(dev_getbyhwaddr_rcu
);
990 struct net_device
*__dev_getfirstbyhwtype(struct net
*net
, unsigned short type
)
992 struct net_device
*dev
;
995 for_each_netdev(net
, dev
)
996 if (dev
->type
== type
)
1001 EXPORT_SYMBOL(__dev_getfirstbyhwtype
);
1003 struct net_device
*dev_getfirstbyhwtype(struct net
*net
, unsigned short type
)
1005 struct net_device
*dev
, *ret
= NULL
;
1008 for_each_netdev_rcu(net
, dev
)
1009 if (dev
->type
== type
) {
1017 EXPORT_SYMBOL(dev_getfirstbyhwtype
);
1020 * __dev_get_by_flags - find any device with given flags
1021 * @net: the applicable net namespace
1022 * @if_flags: IFF_* values
1023 * @mask: bitmask of bits in if_flags to check
1025 * Search for any interface with the given flags. Returns NULL if a device
1026 * is not found or a pointer to the device. Must be called inside
1027 * rtnl_lock(), and result refcount is unchanged.
1030 struct net_device
*__dev_get_by_flags(struct net
*net
, unsigned short if_flags
,
1031 unsigned short mask
)
1033 struct net_device
*dev
, *ret
;
1038 for_each_netdev(net
, dev
) {
1039 if (((dev
->flags
^ if_flags
) & mask
) == 0) {
1046 EXPORT_SYMBOL(__dev_get_by_flags
);
1049 * dev_valid_name - check if name is okay for network device
1050 * @name: name string
1052 * Network device names need to be valid file names to
1053 * to allow sysfs to work. We also disallow any kind of
1056 bool dev_valid_name(const char *name
)
1060 if (strnlen(name
, IFNAMSIZ
) == IFNAMSIZ
)
1062 if (!strcmp(name
, ".") || !strcmp(name
, ".."))
1066 if (*name
== '/' || *name
== ':' || isspace(*name
))
1072 EXPORT_SYMBOL(dev_valid_name
);
1075 * __dev_alloc_name - allocate a name for a device
1076 * @net: network namespace to allocate the device name in
1077 * @name: name format string
1078 * @buf: scratch buffer and result name string
1080 * Passed a format string - eg "lt%d" it will try and find a suitable
1081 * id. It scans list of devices to build up a free map, then chooses
1082 * the first empty slot. The caller must hold the dev_base or rtnl lock
1083 * while allocating the name and adding the device in order to avoid
1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086 * Returns the number of the unit assigned or a negative errno code.
1089 static int __dev_alloc_name(struct net
*net
, const char *name
, char *buf
)
1093 const int max_netdevices
= 8*PAGE_SIZE
;
1094 unsigned long *inuse
;
1095 struct net_device
*d
;
1097 if (!dev_valid_name(name
))
1100 p
= strchr(name
, '%');
1103 * Verify the string as this thing may have come from
1104 * the user. There must be either one "%d" and no other "%"
1107 if (p
[1] != 'd' || strchr(p
+ 2, '%'))
1110 /* Use one page as a bit array of possible slots */
1111 inuse
= (unsigned long *) get_zeroed_page(GFP_ATOMIC
);
1115 for_each_netdev(net
, d
) {
1116 if (!sscanf(d
->name
, name
, &i
))
1118 if (i
< 0 || i
>= max_netdevices
)
1121 /* avoid cases where sscanf is not exact inverse of printf */
1122 snprintf(buf
, IFNAMSIZ
, name
, i
);
1123 if (!strncmp(buf
, d
->name
, IFNAMSIZ
))
1127 i
= find_first_zero_bit(inuse
, max_netdevices
);
1128 free_page((unsigned long) inuse
);
1131 snprintf(buf
, IFNAMSIZ
, name
, i
);
1132 if (!__dev_get_by_name(net
, buf
))
1135 /* It is possible to run out of possible slots
1136 * when the name is long and there isn't enough space left
1137 * for the digits, or if all bits are used.
1142 static int dev_alloc_name_ns(struct net
*net
,
1143 struct net_device
*dev
,
1150 ret
= __dev_alloc_name(net
, name
, buf
);
1152 strlcpy(dev
->name
, buf
, IFNAMSIZ
);
1157 * dev_alloc_name - allocate a name for a device
1159 * @name: name format string
1161 * Passed a format string - eg "lt%d" it will try and find a suitable
1162 * id. It scans list of devices to build up a free map, then chooses
1163 * the first empty slot. The caller must hold the dev_base or rtnl lock
1164 * while allocating the name and adding the device in order to avoid
1166 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1167 * Returns the number of the unit assigned or a negative errno code.
1170 int dev_alloc_name(struct net_device
*dev
, const char *name
)
1172 return dev_alloc_name_ns(dev_net(dev
), dev
, name
);
1174 EXPORT_SYMBOL(dev_alloc_name
);
1176 static int dev_get_valid_name(struct net
*net
, struct net_device
*dev
,
1181 if (!dev_valid_name(name
))
1184 if (strchr(name
, '%'))
1185 return dev_alloc_name_ns(net
, dev
, name
);
1186 else if (__dev_get_by_name(net
, name
))
1188 else if (dev
->name
!= name
)
1189 strlcpy(dev
->name
, name
, IFNAMSIZ
);
1195 * dev_change_name - change name of a device
1197 * @newname: name (or format string) must be at least IFNAMSIZ
1199 * Change name of a device, can pass format strings "eth%d".
1202 int dev_change_name(struct net_device
*dev
, const char *newname
)
1204 unsigned char old_assign_type
;
1205 char oldname
[IFNAMSIZ
];
1211 BUG_ON(!dev_net(dev
));
1215 /* Some auto-enslaved devices e.g. failover slaves are
1216 * special, as userspace might rename the device after
1217 * the interface had been brought up and running since
1218 * the point kernel initiated auto-enslavement. Allow
1219 * live name change even when these slave devices are
1222 * Typically, users of these auto-enslaving devices
1223 * don't actually care about slave name change, as
1224 * they are supposed to operate on master interface
1227 if (dev
->flags
& IFF_UP
&&
1228 likely(!(dev
->priv_flags
& IFF_LIVE_RENAME_OK
)))
1231 write_seqcount_begin(&devnet_rename_seq
);
1233 if (strncmp(newname
, dev
->name
, IFNAMSIZ
) == 0) {
1234 write_seqcount_end(&devnet_rename_seq
);
1238 memcpy(oldname
, dev
->name
, IFNAMSIZ
);
1240 err
= dev_get_valid_name(net
, dev
, newname
);
1242 write_seqcount_end(&devnet_rename_seq
);
1246 if (oldname
[0] && !strchr(oldname
, '%'))
1247 netdev_info(dev
, "renamed from %s\n", oldname
);
1249 old_assign_type
= dev
->name_assign_type
;
1250 dev
->name_assign_type
= NET_NAME_RENAMED
;
1253 ret
= device_rename(&dev
->dev
, dev
->name
);
1255 memcpy(dev
->name
, oldname
, IFNAMSIZ
);
1256 dev
->name_assign_type
= old_assign_type
;
1257 write_seqcount_end(&devnet_rename_seq
);
1261 write_seqcount_end(&devnet_rename_seq
);
1263 netdev_adjacent_rename_links(dev
, oldname
);
1265 write_lock_bh(&dev_base_lock
);
1266 netdev_name_node_del(dev
->name_node
);
1267 write_unlock_bh(&dev_base_lock
);
1271 write_lock_bh(&dev_base_lock
);
1272 netdev_name_node_add(net
, dev
->name_node
);
1273 write_unlock_bh(&dev_base_lock
);
1275 ret
= call_netdevice_notifiers(NETDEV_CHANGENAME
, dev
);
1276 ret
= notifier_to_errno(ret
);
1279 /* err >= 0 after dev_alloc_name() or stores the first errno */
1282 write_seqcount_begin(&devnet_rename_seq
);
1283 memcpy(dev
->name
, oldname
, IFNAMSIZ
);
1284 memcpy(oldname
, newname
, IFNAMSIZ
);
1285 dev
->name_assign_type
= old_assign_type
;
1286 old_assign_type
= NET_NAME_RENAMED
;
1289 pr_err("%s: name change rollback failed: %d\n",
1298 * dev_set_alias - change ifalias of a device
1300 * @alias: name up to IFALIASZ
1301 * @len: limit of bytes to copy from info
1303 * Set ifalias for a device,
1305 int dev_set_alias(struct net_device
*dev
, const char *alias
, size_t len
)
1307 struct dev_ifalias
*new_alias
= NULL
;
1309 if (len
>= IFALIASZ
)
1313 new_alias
= kmalloc(sizeof(*new_alias
) + len
+ 1, GFP_KERNEL
);
1317 memcpy(new_alias
->ifalias
, alias
, len
);
1318 new_alias
->ifalias
[len
] = 0;
1321 mutex_lock(&ifalias_mutex
);
1322 new_alias
= rcu_replace_pointer(dev
->ifalias
, new_alias
,
1323 mutex_is_locked(&ifalias_mutex
));
1324 mutex_unlock(&ifalias_mutex
);
1327 kfree_rcu(new_alias
, rcuhead
);
1331 EXPORT_SYMBOL(dev_set_alias
);
1334 * dev_get_alias - get ifalias of a device
1336 * @name: buffer to store name of ifalias
1337 * @len: size of buffer
1339 * get ifalias for a device. Caller must make sure dev cannot go
1340 * away, e.g. rcu read lock or own a reference count to device.
1342 int dev_get_alias(const struct net_device
*dev
, char *name
, size_t len
)
1344 const struct dev_ifalias
*alias
;
1348 alias
= rcu_dereference(dev
->ifalias
);
1350 ret
= snprintf(name
, len
, "%s", alias
->ifalias
);
1357 * netdev_features_change - device changes features
1358 * @dev: device to cause notification
1360 * Called to indicate a device has changed features.
1362 void netdev_features_change(struct net_device
*dev
)
1364 call_netdevice_notifiers(NETDEV_FEAT_CHANGE
, dev
);
1366 EXPORT_SYMBOL(netdev_features_change
);
1369 * netdev_state_change - device changes state
1370 * @dev: device to cause notification
1372 * Called to indicate a device has changed state. This function calls
1373 * the notifier chains for netdev_chain and sends a NEWLINK message
1374 * to the routing socket.
1376 void netdev_state_change(struct net_device
*dev
)
1378 if (dev
->flags
& IFF_UP
) {
1379 struct netdev_notifier_change_info change_info
= {
1383 call_netdevice_notifiers_info(NETDEV_CHANGE
,
1385 rtmsg_ifinfo(RTM_NEWLINK
, dev
, 0, GFP_KERNEL
);
1388 EXPORT_SYMBOL(netdev_state_change
);
1391 * netdev_notify_peers - notify network peers about existence of @dev
1392 * @dev: network device
1394 * Generate traffic such that interested network peers are aware of
1395 * @dev, such as by generating a gratuitous ARP. This may be used when
1396 * a device wants to inform the rest of the network about some sort of
1397 * reconfiguration such as a failover event or virtual machine
1400 void netdev_notify_peers(struct net_device
*dev
)
1403 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS
, dev
);
1404 call_netdevice_notifiers(NETDEV_RESEND_IGMP
, dev
);
1407 EXPORT_SYMBOL(netdev_notify_peers
);
1409 static int __dev_open(struct net_device
*dev
, struct netlink_ext_ack
*extack
)
1411 const struct net_device_ops
*ops
= dev
->netdev_ops
;
1416 if (!netif_device_present(dev
))
1419 /* Block netpoll from trying to do any rx path servicing.
1420 * If we don't do this there is a chance ndo_poll_controller
1421 * or ndo_poll may be running while we open the device
1423 netpoll_poll_disable(dev
);
1425 ret
= call_netdevice_notifiers_extack(NETDEV_PRE_UP
, dev
, extack
);
1426 ret
= notifier_to_errno(ret
);
1430 set_bit(__LINK_STATE_START
, &dev
->state
);
1432 if (ops
->ndo_validate_addr
)
1433 ret
= ops
->ndo_validate_addr(dev
);
1435 if (!ret
&& ops
->ndo_open
)
1436 ret
= ops
->ndo_open(dev
);
1438 netpoll_poll_enable(dev
);
1441 clear_bit(__LINK_STATE_START
, &dev
->state
);
1443 dev
->flags
|= IFF_UP
;
1444 dev_set_rx_mode(dev
);
1446 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
1453 * dev_open - prepare an interface for use.
1454 * @dev: device to open
1455 * @extack: netlink extended ack
1457 * Takes a device from down to up state. The device's private open
1458 * function is invoked and then the multicast lists are loaded. Finally
1459 * the device is moved into the up state and a %NETDEV_UP message is
1460 * sent to the netdev notifier chain.
1462 * Calling this function on an active interface is a nop. On a failure
1463 * a negative errno code is returned.
1465 int dev_open(struct net_device
*dev
, struct netlink_ext_ack
*extack
)
1469 if (dev
->flags
& IFF_UP
)
1472 ret
= __dev_open(dev
, extack
);
1476 rtmsg_ifinfo(RTM_NEWLINK
, dev
, IFF_UP
|IFF_RUNNING
, GFP_KERNEL
);
1477 call_netdevice_notifiers(NETDEV_UP
, dev
);
1481 EXPORT_SYMBOL(dev_open
);
1483 static void __dev_close_many(struct list_head
*head
)
1485 struct net_device
*dev
;
1490 list_for_each_entry(dev
, head
, close_list
) {
1491 /* Temporarily disable netpoll until the interface is down */
1492 netpoll_poll_disable(dev
);
1494 call_netdevice_notifiers(NETDEV_GOING_DOWN
, dev
);
1496 clear_bit(__LINK_STATE_START
, &dev
->state
);
1498 /* Synchronize to scheduled poll. We cannot touch poll list, it
1499 * can be even on different cpu. So just clear netif_running().
1501 * dev->stop() will invoke napi_disable() on all of it's
1502 * napi_struct instances on this device.
1504 smp_mb__after_atomic(); /* Commit netif_running(). */
1507 dev_deactivate_many(head
);
1509 list_for_each_entry(dev
, head
, close_list
) {
1510 const struct net_device_ops
*ops
= dev
->netdev_ops
;
1513 * Call the device specific close. This cannot fail.
1514 * Only if device is UP
1516 * We allow it to be called even after a DETACH hot-plug
1522 dev
->flags
&= ~IFF_UP
;
1523 netpoll_poll_enable(dev
);
1527 static void __dev_close(struct net_device
*dev
)
1531 list_add(&dev
->close_list
, &single
);
1532 __dev_close_many(&single
);
1536 void dev_close_many(struct list_head
*head
, bool unlink
)
1538 struct net_device
*dev
, *tmp
;
1540 /* Remove the devices that don't need to be closed */
1541 list_for_each_entry_safe(dev
, tmp
, head
, close_list
)
1542 if (!(dev
->flags
& IFF_UP
))
1543 list_del_init(&dev
->close_list
);
1545 __dev_close_many(head
);
1547 list_for_each_entry_safe(dev
, tmp
, head
, close_list
) {
1548 rtmsg_ifinfo(RTM_NEWLINK
, dev
, IFF_UP
|IFF_RUNNING
, GFP_KERNEL
);
1549 call_netdevice_notifiers(NETDEV_DOWN
, dev
);
1551 list_del_init(&dev
->close_list
);
1554 EXPORT_SYMBOL(dev_close_many
);
1557 * dev_close - shutdown an interface.
1558 * @dev: device to shutdown
1560 * This function moves an active device into down state. A
1561 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1562 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1565 void dev_close(struct net_device
*dev
)
1567 if (dev
->flags
& IFF_UP
) {
1570 list_add(&dev
->close_list
, &single
);
1571 dev_close_many(&single
, true);
1575 EXPORT_SYMBOL(dev_close
);
1579 * dev_disable_lro - disable Large Receive Offload on a device
1582 * Disable Large Receive Offload (LRO) on a net device. Must be
1583 * called under RTNL. This is needed if received packets may be
1584 * forwarded to another interface.
1586 void dev_disable_lro(struct net_device
*dev
)
1588 struct net_device
*lower_dev
;
1589 struct list_head
*iter
;
1591 dev
->wanted_features
&= ~NETIF_F_LRO
;
1592 netdev_update_features(dev
);
1594 if (unlikely(dev
->features
& NETIF_F_LRO
))
1595 netdev_WARN(dev
, "failed to disable LRO!\n");
1597 netdev_for_each_lower_dev(dev
, lower_dev
, iter
)
1598 dev_disable_lro(lower_dev
);
1600 EXPORT_SYMBOL(dev_disable_lro
);
1603 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1606 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1607 * called under RTNL. This is needed if Generic XDP is installed on
1610 static void dev_disable_gro_hw(struct net_device
*dev
)
1612 dev
->wanted_features
&= ~NETIF_F_GRO_HW
;
1613 netdev_update_features(dev
);
1615 if (unlikely(dev
->features
& NETIF_F_GRO_HW
))
1616 netdev_WARN(dev
, "failed to disable GRO_HW!\n");
1619 const char *netdev_cmd_to_name(enum netdev_cmd cmd
)
1622 case NETDEV_##val: \
1623 return "NETDEV_" __stringify(val);
1625 N(UP
) N(DOWN
) N(REBOOT
) N(CHANGE
) N(REGISTER
) N(UNREGISTER
)
1626 N(CHANGEMTU
) N(CHANGEADDR
) N(GOING_DOWN
) N(CHANGENAME
) N(FEAT_CHANGE
)
1627 N(BONDING_FAILOVER
) N(PRE_UP
) N(PRE_TYPE_CHANGE
) N(POST_TYPE_CHANGE
)
1628 N(POST_INIT
) N(RELEASE
) N(NOTIFY_PEERS
) N(JOIN
) N(CHANGEUPPER
)
1629 N(RESEND_IGMP
) N(PRECHANGEMTU
) N(CHANGEINFODATA
) N(BONDING_INFO
)
1630 N(PRECHANGEUPPER
) N(CHANGELOWERSTATE
) N(UDP_TUNNEL_PUSH_INFO
)
1631 N(UDP_TUNNEL_DROP_INFO
) N(CHANGE_TX_QUEUE_LEN
)
1632 N(CVLAN_FILTER_PUSH_INFO
) N(CVLAN_FILTER_DROP_INFO
)
1633 N(SVLAN_FILTER_PUSH_INFO
) N(SVLAN_FILTER_DROP_INFO
)
1637 return "UNKNOWN_NETDEV_EVENT";
1639 EXPORT_SYMBOL_GPL(netdev_cmd_to_name
);
1641 static int call_netdevice_notifier(struct notifier_block
*nb
, unsigned long val
,
1642 struct net_device
*dev
)
1644 struct netdev_notifier_info info
= {
1648 return nb
->notifier_call(nb
, val
, &info
);
1651 static int call_netdevice_register_notifiers(struct notifier_block
*nb
,
1652 struct net_device
*dev
)
1656 err
= call_netdevice_notifier(nb
, NETDEV_REGISTER
, dev
);
1657 err
= notifier_to_errno(err
);
1661 if (!(dev
->flags
& IFF_UP
))
1664 call_netdevice_notifier(nb
, NETDEV_UP
, dev
);
1668 static void call_netdevice_unregister_notifiers(struct notifier_block
*nb
,
1669 struct net_device
*dev
)
1671 if (dev
->flags
& IFF_UP
) {
1672 call_netdevice_notifier(nb
, NETDEV_GOING_DOWN
,
1674 call_netdevice_notifier(nb
, NETDEV_DOWN
, dev
);
1676 call_netdevice_notifier(nb
, NETDEV_UNREGISTER
, dev
);
1679 static int call_netdevice_register_net_notifiers(struct notifier_block
*nb
,
1682 struct net_device
*dev
;
1685 for_each_netdev(net
, dev
) {
1686 err
= call_netdevice_register_notifiers(nb
, dev
);
1693 for_each_netdev_continue_reverse(net
, dev
)
1694 call_netdevice_unregister_notifiers(nb
, dev
);
1698 static void call_netdevice_unregister_net_notifiers(struct notifier_block
*nb
,
1701 struct net_device
*dev
;
1703 for_each_netdev(net
, dev
)
1704 call_netdevice_unregister_notifiers(nb
, dev
);
1707 static int dev_boot_phase
= 1;
1710 * register_netdevice_notifier - register a network notifier block
1713 * Register a notifier to be called when network device events occur.
1714 * The notifier passed is linked into the kernel structures and must
1715 * not be reused until it has been unregistered. A negative errno code
1716 * is returned on a failure.
1718 * When registered all registration and up events are replayed
1719 * to the new notifier to allow device to have a race free
1720 * view of the network device list.
1723 int register_netdevice_notifier(struct notifier_block
*nb
)
1728 /* Close race with setup_net() and cleanup_net() */
1729 down_write(&pernet_ops_rwsem
);
1731 err
= raw_notifier_chain_register(&netdev_chain
, nb
);
1737 err
= call_netdevice_register_net_notifiers(nb
, net
);
1744 up_write(&pernet_ops_rwsem
);
1748 for_each_net_continue_reverse(net
)
1749 call_netdevice_unregister_net_notifiers(nb
, net
);
1751 raw_notifier_chain_unregister(&netdev_chain
, nb
);
1754 EXPORT_SYMBOL(register_netdevice_notifier
);
1757 * unregister_netdevice_notifier - unregister a network notifier block
1760 * Unregister a notifier previously registered by
1761 * register_netdevice_notifier(). The notifier is unlinked into the
1762 * kernel structures and may then be reused. A negative errno code
1763 * is returned on a failure.
1765 * After unregistering unregister and down device events are synthesized
1766 * for all devices on the device list to the removed notifier to remove
1767 * the need for special case cleanup code.
1770 int unregister_netdevice_notifier(struct notifier_block
*nb
)
1775 /* Close race with setup_net() and cleanup_net() */
1776 down_write(&pernet_ops_rwsem
);
1778 err
= raw_notifier_chain_unregister(&netdev_chain
, nb
);
1783 call_netdevice_unregister_net_notifiers(nb
, net
);
1787 up_write(&pernet_ops_rwsem
);
1790 EXPORT_SYMBOL(unregister_netdevice_notifier
);
1792 static int __register_netdevice_notifier_net(struct net
*net
,
1793 struct notifier_block
*nb
,
1794 bool ignore_call_fail
)
1798 err
= raw_notifier_chain_register(&net
->netdev_chain
, nb
);
1804 err
= call_netdevice_register_net_notifiers(nb
, net
);
1805 if (err
&& !ignore_call_fail
)
1806 goto chain_unregister
;
1811 raw_notifier_chain_unregister(&net
->netdev_chain
, nb
);
1815 static int __unregister_netdevice_notifier_net(struct net
*net
,
1816 struct notifier_block
*nb
)
1820 err
= raw_notifier_chain_unregister(&net
->netdev_chain
, nb
);
1824 call_netdevice_unregister_net_notifiers(nb
, net
);
1829 * register_netdevice_notifier_net - register a per-netns network notifier block
1830 * @net: network namespace
1833 * Register a notifier to be called when network device events occur.
1834 * The notifier passed is linked into the kernel structures and must
1835 * not be reused until it has been unregistered. A negative errno code
1836 * is returned on a failure.
1838 * When registered all registration and up events are replayed
1839 * to the new notifier to allow device to have a race free
1840 * view of the network device list.
1843 int register_netdevice_notifier_net(struct net
*net
, struct notifier_block
*nb
)
1848 err
= __register_netdevice_notifier_net(net
, nb
, false);
1852 EXPORT_SYMBOL(register_netdevice_notifier_net
);
1855 * unregister_netdevice_notifier_net - unregister a per-netns
1856 * network notifier block
1857 * @net: network namespace
1860 * Unregister a notifier previously registered by
1861 * register_netdevice_notifier(). The notifier is unlinked into the
1862 * kernel structures and may then be reused. A negative errno code
1863 * is returned on a failure.
1865 * After unregistering unregister and down device events are synthesized
1866 * for all devices on the device list to the removed notifier to remove
1867 * the need for special case cleanup code.
1870 int unregister_netdevice_notifier_net(struct net
*net
,
1871 struct notifier_block
*nb
)
1876 err
= __unregister_netdevice_notifier_net(net
, nb
);
1880 EXPORT_SYMBOL(unregister_netdevice_notifier_net
);
1882 int register_netdevice_notifier_dev_net(struct net_device
*dev
,
1883 struct notifier_block
*nb
,
1884 struct netdev_net_notifier
*nn
)
1889 err
= __register_netdevice_notifier_net(dev_net(dev
), nb
, false);
1892 list_add(&nn
->list
, &dev
->net_notifier_list
);
1897 EXPORT_SYMBOL(register_netdevice_notifier_dev_net
);
1899 int unregister_netdevice_notifier_dev_net(struct net_device
*dev
,
1900 struct notifier_block
*nb
,
1901 struct netdev_net_notifier
*nn
)
1906 list_del(&nn
->list
);
1907 err
= __unregister_netdevice_notifier_net(dev_net(dev
), nb
);
1911 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net
);
1913 static void move_netdevice_notifiers_dev_net(struct net_device
*dev
,
1916 struct netdev_net_notifier
*nn
;
1918 list_for_each_entry(nn
, &dev
->net_notifier_list
, list
) {
1919 __unregister_netdevice_notifier_net(dev_net(dev
), nn
->nb
);
1920 __register_netdevice_notifier_net(net
, nn
->nb
, true);
1925 * call_netdevice_notifiers_info - call all network notifier blocks
1926 * @val: value passed unmodified to notifier function
1927 * @info: notifier information data
1929 * Call all network notifier blocks. Parameters and return value
1930 * are as for raw_notifier_call_chain().
1933 static int call_netdevice_notifiers_info(unsigned long val
,
1934 struct netdev_notifier_info
*info
)
1936 struct net
*net
= dev_net(info
->dev
);
1941 /* Run per-netns notifier block chain first, then run the global one.
1942 * Hopefully, one day, the global one is going to be removed after
1943 * all notifier block registrators get converted to be per-netns.
1945 ret
= raw_notifier_call_chain(&net
->netdev_chain
, val
, info
);
1946 if (ret
& NOTIFY_STOP_MASK
)
1948 return raw_notifier_call_chain(&netdev_chain
, val
, info
);
1951 static int call_netdevice_notifiers_extack(unsigned long val
,
1952 struct net_device
*dev
,
1953 struct netlink_ext_ack
*extack
)
1955 struct netdev_notifier_info info
= {
1960 return call_netdevice_notifiers_info(val
, &info
);
1964 * call_netdevice_notifiers - call all network notifier blocks
1965 * @val: value passed unmodified to notifier function
1966 * @dev: net_device pointer passed unmodified to notifier function
1968 * Call all network notifier blocks. Parameters and return value
1969 * are as for raw_notifier_call_chain().
1972 int call_netdevice_notifiers(unsigned long val
, struct net_device
*dev
)
1974 return call_netdevice_notifiers_extack(val
, dev
, NULL
);
1976 EXPORT_SYMBOL(call_netdevice_notifiers
);
1979 * call_netdevice_notifiers_mtu - call all network notifier blocks
1980 * @val: value passed unmodified to notifier function
1981 * @dev: net_device pointer passed unmodified to notifier function
1982 * @arg: additional u32 argument passed to the notifier function
1984 * Call all network notifier blocks. Parameters and return value
1985 * are as for raw_notifier_call_chain().
1987 static int call_netdevice_notifiers_mtu(unsigned long val
,
1988 struct net_device
*dev
, u32 arg
)
1990 struct netdev_notifier_info_ext info
= {
1995 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext
, info
) != 0);
1997 return call_netdevice_notifiers_info(val
, &info
.info
);
2000 #ifdef CONFIG_NET_INGRESS
2001 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key
);
2003 void net_inc_ingress_queue(void)
2005 static_branch_inc(&ingress_needed_key
);
2007 EXPORT_SYMBOL_GPL(net_inc_ingress_queue
);
2009 void net_dec_ingress_queue(void)
2011 static_branch_dec(&ingress_needed_key
);
2013 EXPORT_SYMBOL_GPL(net_dec_ingress_queue
);
2016 #ifdef CONFIG_NET_EGRESS
2017 static DEFINE_STATIC_KEY_FALSE(egress_needed_key
);
2019 void net_inc_egress_queue(void)
2021 static_branch_inc(&egress_needed_key
);
2023 EXPORT_SYMBOL_GPL(net_inc_egress_queue
);
2025 void net_dec_egress_queue(void)
2027 static_branch_dec(&egress_needed_key
);
2029 EXPORT_SYMBOL_GPL(net_dec_egress_queue
);
2032 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key
);
2033 #ifdef CONFIG_JUMP_LABEL
2034 static atomic_t netstamp_needed_deferred
;
2035 static atomic_t netstamp_wanted
;
2036 static void netstamp_clear(struct work_struct
*work
)
2038 int deferred
= atomic_xchg(&netstamp_needed_deferred
, 0);
2041 wanted
= atomic_add_return(deferred
, &netstamp_wanted
);
2043 static_branch_enable(&netstamp_needed_key
);
2045 static_branch_disable(&netstamp_needed_key
);
2047 static DECLARE_WORK(netstamp_work
, netstamp_clear
);
2050 void net_enable_timestamp(void)
2052 #ifdef CONFIG_JUMP_LABEL
2056 wanted
= atomic_read(&netstamp_wanted
);
2059 if (atomic_cmpxchg(&netstamp_wanted
, wanted
, wanted
+ 1) == wanted
)
2062 atomic_inc(&netstamp_needed_deferred
);
2063 schedule_work(&netstamp_work
);
2065 static_branch_inc(&netstamp_needed_key
);
2068 EXPORT_SYMBOL(net_enable_timestamp
);
2070 void net_disable_timestamp(void)
2072 #ifdef CONFIG_JUMP_LABEL
2076 wanted
= atomic_read(&netstamp_wanted
);
2079 if (atomic_cmpxchg(&netstamp_wanted
, wanted
, wanted
- 1) == wanted
)
2082 atomic_dec(&netstamp_needed_deferred
);
2083 schedule_work(&netstamp_work
);
2085 static_branch_dec(&netstamp_needed_key
);
2088 EXPORT_SYMBOL(net_disable_timestamp
);
2090 static inline void net_timestamp_set(struct sk_buff
*skb
)
2093 if (static_branch_unlikely(&netstamp_needed_key
))
2094 __net_timestamp(skb
);
2097 #define net_timestamp_check(COND, SKB) \
2098 if (static_branch_unlikely(&netstamp_needed_key)) { \
2099 if ((COND) && !(SKB)->tstamp) \
2100 __net_timestamp(SKB); \
2103 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2107 if (!(dev
->flags
& IFF_UP
))
2110 len
= dev
->mtu
+ dev
->hard_header_len
+ VLAN_HLEN
;
2111 if (skb
->len
<= len
)
2114 /* if TSO is enabled, we don't care about the length as the packet
2115 * could be forwarded without being segmented before
2117 if (skb_is_gso(skb
))
2122 EXPORT_SYMBOL_GPL(is_skb_forwardable
);
2124 int __dev_forward_skb(struct net_device
*dev
, struct sk_buff
*skb
)
2126 int ret
= ____dev_forward_skb(dev
, skb
);
2129 skb
->protocol
= eth_type_trans(skb
, dev
);
2130 skb_postpull_rcsum(skb
, eth_hdr(skb
), ETH_HLEN
);
2135 EXPORT_SYMBOL_GPL(__dev_forward_skb
);
2138 * dev_forward_skb - loopback an skb to another netif
2140 * @dev: destination network device
2141 * @skb: buffer to forward
2144 * NET_RX_SUCCESS (no congestion)
2145 * NET_RX_DROP (packet was dropped, but freed)
2147 * dev_forward_skb can be used for injecting an skb from the
2148 * start_xmit function of one device into the receive queue
2149 * of another device.
2151 * The receiving device may be in another namespace, so
2152 * we have to clear all information in the skb that could
2153 * impact namespace isolation.
2155 int dev_forward_skb(struct net_device
*dev
, struct sk_buff
*skb
)
2157 return __dev_forward_skb(dev
, skb
) ?: netif_rx_internal(skb
);
2159 EXPORT_SYMBOL_GPL(dev_forward_skb
);
2161 static inline int deliver_skb(struct sk_buff
*skb
,
2162 struct packet_type
*pt_prev
,
2163 struct net_device
*orig_dev
)
2165 if (unlikely(skb_orphan_frags_rx(skb
, GFP_ATOMIC
)))
2167 refcount_inc(&skb
->users
);
2168 return pt_prev
->func(skb
, skb
->dev
, pt_prev
, orig_dev
);
2171 static inline void deliver_ptype_list_skb(struct sk_buff
*skb
,
2172 struct packet_type
**pt
,
2173 struct net_device
*orig_dev
,
2175 struct list_head
*ptype_list
)
2177 struct packet_type
*ptype
, *pt_prev
= *pt
;
2179 list_for_each_entry_rcu(ptype
, ptype_list
, list
) {
2180 if (ptype
->type
!= type
)
2183 deliver_skb(skb
, pt_prev
, orig_dev
);
2189 static inline bool skb_loop_sk(struct packet_type
*ptype
, struct sk_buff
*skb
)
2191 if (!ptype
->af_packet_priv
|| !skb
->sk
)
2194 if (ptype
->id_match
)
2195 return ptype
->id_match(ptype
, skb
->sk
);
2196 else if ((struct sock
*)ptype
->af_packet_priv
== skb
->sk
)
2203 * dev_nit_active - return true if any network interface taps are in use
2205 * @dev: network device to check for the presence of taps
2207 bool dev_nit_active(struct net_device
*dev
)
2209 return !list_empty(&ptype_all
) || !list_empty(&dev
->ptype_all
);
2211 EXPORT_SYMBOL_GPL(dev_nit_active
);
2214 * Support routine. Sends outgoing frames to any network
2215 * taps currently in use.
2218 void dev_queue_xmit_nit(struct sk_buff
*skb
, struct net_device
*dev
)
2220 struct packet_type
*ptype
;
2221 struct sk_buff
*skb2
= NULL
;
2222 struct packet_type
*pt_prev
= NULL
;
2223 struct list_head
*ptype_list
= &ptype_all
;
2227 list_for_each_entry_rcu(ptype
, ptype_list
, list
) {
2228 if (ptype
->ignore_outgoing
)
2231 /* Never send packets back to the socket
2232 * they originated from - MvS (miquels@drinkel.ow.org)
2234 if (skb_loop_sk(ptype
, skb
))
2238 deliver_skb(skb2
, pt_prev
, skb
->dev
);
2243 /* need to clone skb, done only once */
2244 skb2
= skb_clone(skb
, GFP_ATOMIC
);
2248 net_timestamp_set(skb2
);
2250 /* skb->nh should be correctly
2251 * set by sender, so that the second statement is
2252 * just protection against buggy protocols.
2254 skb_reset_mac_header(skb2
);
2256 if (skb_network_header(skb2
) < skb2
->data
||
2257 skb_network_header(skb2
) > skb_tail_pointer(skb2
)) {
2258 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2259 ntohs(skb2
->protocol
),
2261 skb_reset_network_header(skb2
);
2264 skb2
->transport_header
= skb2
->network_header
;
2265 skb2
->pkt_type
= PACKET_OUTGOING
;
2269 if (ptype_list
== &ptype_all
) {
2270 ptype_list
= &dev
->ptype_all
;
2275 if (!skb_orphan_frags_rx(skb2
, GFP_ATOMIC
))
2276 pt_prev
->func(skb2
, skb
->dev
, pt_prev
, skb
->dev
);
2282 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit
);
2285 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2286 * @dev: Network device
2287 * @txq: number of queues available
2289 * If real_num_tx_queues is changed the tc mappings may no longer be
2290 * valid. To resolve this verify the tc mapping remains valid and if
2291 * not NULL the mapping. With no priorities mapping to this
2292 * offset/count pair it will no longer be used. In the worst case TC0
2293 * is invalid nothing can be done so disable priority mappings. If is
2294 * expected that drivers will fix this mapping if they can before
2295 * calling netif_set_real_num_tx_queues.
2297 static void netif_setup_tc(struct net_device
*dev
, unsigned int txq
)
2300 struct netdev_tc_txq
*tc
= &dev
->tc_to_txq
[0];
2302 /* If TC0 is invalidated disable TC mapping */
2303 if (tc
->offset
+ tc
->count
> txq
) {
2304 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2309 /* Invalidated prio to tc mappings set to TC0 */
2310 for (i
= 1; i
< TC_BITMASK
+ 1; i
++) {
2311 int q
= netdev_get_prio_tc_map(dev
, i
);
2313 tc
= &dev
->tc_to_txq
[q
];
2314 if (tc
->offset
+ tc
->count
> txq
) {
2315 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2317 netdev_set_prio_tc_map(dev
, i
, 0);
2322 int netdev_txq_to_tc(struct net_device
*dev
, unsigned int txq
)
2325 struct netdev_tc_txq
*tc
= &dev
->tc_to_txq
[0];
2328 /* walk through the TCs and see if it falls into any of them */
2329 for (i
= 0; i
< TC_MAX_QUEUE
; i
++, tc
++) {
2330 if ((txq
- tc
->offset
) < tc
->count
)
2334 /* didn't find it, just return -1 to indicate no match */
2340 EXPORT_SYMBOL(netdev_txq_to_tc
);
2343 struct static_key xps_needed __read_mostly
;
2344 EXPORT_SYMBOL(xps_needed
);
2345 struct static_key xps_rxqs_needed __read_mostly
;
2346 EXPORT_SYMBOL(xps_rxqs_needed
);
2347 static DEFINE_MUTEX(xps_map_mutex
);
2348 #define xmap_dereference(P) \
2349 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2351 static bool remove_xps_queue(struct xps_dev_maps
*dev_maps
,
2354 struct xps_map
*map
= NULL
;
2358 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2362 for (pos
= map
->len
; pos
--;) {
2363 if (map
->queues
[pos
] != index
)
2367 map
->queues
[pos
] = map
->queues
[--map
->len
];
2371 RCU_INIT_POINTER(dev_maps
->attr_map
[tci
], NULL
);
2372 kfree_rcu(map
, rcu
);
2379 static bool remove_xps_queue_cpu(struct net_device
*dev
,
2380 struct xps_dev_maps
*dev_maps
,
2381 int cpu
, u16 offset
, u16 count
)
2383 int num_tc
= dev
->num_tc
? : 1;
2384 bool active
= false;
2387 for (tci
= cpu
* num_tc
; num_tc
--; tci
++) {
2390 for (i
= count
, j
= offset
; i
--; j
++) {
2391 if (!remove_xps_queue(dev_maps
, tci
, j
))
2401 static void reset_xps_maps(struct net_device
*dev
,
2402 struct xps_dev_maps
*dev_maps
,
2406 static_key_slow_dec_cpuslocked(&xps_rxqs_needed
);
2407 RCU_INIT_POINTER(dev
->xps_rxqs_map
, NULL
);
2409 RCU_INIT_POINTER(dev
->xps_cpus_map
, NULL
);
2411 static_key_slow_dec_cpuslocked(&xps_needed
);
2412 kfree_rcu(dev_maps
, rcu
);
2415 static void clean_xps_maps(struct net_device
*dev
, const unsigned long *mask
,
2416 struct xps_dev_maps
*dev_maps
, unsigned int nr_ids
,
2417 u16 offset
, u16 count
, bool is_rxqs_map
)
2419 bool active
= false;
2422 for (j
= -1; j
= netif_attrmask_next(j
, mask
, nr_ids
),
2424 active
|= remove_xps_queue_cpu(dev
, dev_maps
, j
, offset
,
2427 reset_xps_maps(dev
, dev_maps
, is_rxqs_map
);
2430 for (i
= offset
+ (count
- 1); count
--; i
--) {
2431 netdev_queue_numa_node_write(
2432 netdev_get_tx_queue(dev
, i
),
2438 static void netif_reset_xps_queues(struct net_device
*dev
, u16 offset
,
2441 const unsigned long *possible_mask
= NULL
;
2442 struct xps_dev_maps
*dev_maps
;
2443 unsigned int nr_ids
;
2445 if (!static_key_false(&xps_needed
))
2449 mutex_lock(&xps_map_mutex
);
2451 if (static_key_false(&xps_rxqs_needed
)) {
2452 dev_maps
= xmap_dereference(dev
->xps_rxqs_map
);
2454 nr_ids
= dev
->num_rx_queues
;
2455 clean_xps_maps(dev
, possible_mask
, dev_maps
, nr_ids
,
2456 offset
, count
, true);
2460 dev_maps
= xmap_dereference(dev
->xps_cpus_map
);
2464 if (num_possible_cpus() > 1)
2465 possible_mask
= cpumask_bits(cpu_possible_mask
);
2466 nr_ids
= nr_cpu_ids
;
2467 clean_xps_maps(dev
, possible_mask
, dev_maps
, nr_ids
, offset
, count
,
2471 mutex_unlock(&xps_map_mutex
);
2475 static void netif_reset_xps_queues_gt(struct net_device
*dev
, u16 index
)
2477 netif_reset_xps_queues(dev
, index
, dev
->num_tx_queues
- index
);
2480 static struct xps_map
*expand_xps_map(struct xps_map
*map
, int attr_index
,
2481 u16 index
, bool is_rxqs_map
)
2483 struct xps_map
*new_map
;
2484 int alloc_len
= XPS_MIN_MAP_ALLOC
;
2487 for (pos
= 0; map
&& pos
< map
->len
; pos
++) {
2488 if (map
->queues
[pos
] != index
)
2493 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2495 if (pos
< map
->alloc_len
)
2498 alloc_len
= map
->alloc_len
* 2;
2501 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2505 new_map
= kzalloc(XPS_MAP_SIZE(alloc_len
), GFP_KERNEL
);
2507 new_map
= kzalloc_node(XPS_MAP_SIZE(alloc_len
), GFP_KERNEL
,
2508 cpu_to_node(attr_index
));
2512 for (i
= 0; i
< pos
; i
++)
2513 new_map
->queues
[i
] = map
->queues
[i
];
2514 new_map
->alloc_len
= alloc_len
;
2520 /* Must be called under cpus_read_lock */
2521 int __netif_set_xps_queue(struct net_device
*dev
, const unsigned long *mask
,
2522 u16 index
, bool is_rxqs_map
)
2524 const unsigned long *online_mask
= NULL
, *possible_mask
= NULL
;
2525 struct xps_dev_maps
*dev_maps
, *new_dev_maps
= NULL
;
2526 int i
, j
, tci
, numa_node_id
= -2;
2527 int maps_sz
, num_tc
= 1, tc
= 0;
2528 struct xps_map
*map
, *new_map
;
2529 bool active
= false;
2530 unsigned int nr_ids
;
2533 /* Do not allow XPS on subordinate device directly */
2534 num_tc
= dev
->num_tc
;
2538 /* If queue belongs to subordinate dev use its map */
2539 dev
= netdev_get_tx_queue(dev
, index
)->sb_dev
? : dev
;
2541 tc
= netdev_txq_to_tc(dev
, index
);
2546 mutex_lock(&xps_map_mutex
);
2548 maps_sz
= XPS_RXQ_DEV_MAPS_SIZE(num_tc
, dev
->num_rx_queues
);
2549 dev_maps
= xmap_dereference(dev
->xps_rxqs_map
);
2550 nr_ids
= dev
->num_rx_queues
;
2552 maps_sz
= XPS_CPU_DEV_MAPS_SIZE(num_tc
);
2553 if (num_possible_cpus() > 1) {
2554 online_mask
= cpumask_bits(cpu_online_mask
);
2555 possible_mask
= cpumask_bits(cpu_possible_mask
);
2557 dev_maps
= xmap_dereference(dev
->xps_cpus_map
);
2558 nr_ids
= nr_cpu_ids
;
2561 if (maps_sz
< L1_CACHE_BYTES
)
2562 maps_sz
= L1_CACHE_BYTES
;
2564 /* allocate memory for queue storage */
2565 for (j
= -1; j
= netif_attrmask_next_and(j
, online_mask
, mask
, nr_ids
),
2568 new_dev_maps
= kzalloc(maps_sz
, GFP_KERNEL
);
2569 if (!new_dev_maps
) {
2570 mutex_unlock(&xps_map_mutex
);
2574 tci
= j
* num_tc
+ tc
;
2575 map
= dev_maps
? xmap_dereference(dev_maps
->attr_map
[tci
]) :
2578 map
= expand_xps_map(map
, j
, index
, is_rxqs_map
);
2582 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2586 goto out_no_new_maps
;
2589 /* Increment static keys at most once per type */
2590 static_key_slow_inc_cpuslocked(&xps_needed
);
2592 static_key_slow_inc_cpuslocked(&xps_rxqs_needed
);
2595 for (j
= -1; j
= netif_attrmask_next(j
, possible_mask
, nr_ids
),
2597 /* copy maps belonging to foreign traffic classes */
2598 for (i
= tc
, tci
= j
* num_tc
; dev_maps
&& i
--; tci
++) {
2599 /* fill in the new device map from the old device map */
2600 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2601 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2604 /* We need to explicitly update tci as prevous loop
2605 * could break out early if dev_maps is NULL.
2607 tci
= j
* num_tc
+ tc
;
2609 if (netif_attr_test_mask(j
, mask
, nr_ids
) &&
2610 netif_attr_test_online(j
, online_mask
, nr_ids
)) {
2611 /* add tx-queue to CPU/rx-queue maps */
2614 map
= xmap_dereference(new_dev_maps
->attr_map
[tci
]);
2615 while ((pos
< map
->len
) && (map
->queues
[pos
] != index
))
2618 if (pos
== map
->len
)
2619 map
->queues
[map
->len
++] = index
;
2622 if (numa_node_id
== -2)
2623 numa_node_id
= cpu_to_node(j
);
2624 else if (numa_node_id
!= cpu_to_node(j
))
2628 } else if (dev_maps
) {
2629 /* fill in the new device map from the old device map */
2630 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2631 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2634 /* copy maps belonging to foreign traffic classes */
2635 for (i
= num_tc
- tc
, tci
++; dev_maps
&& --i
; tci
++) {
2636 /* fill in the new device map from the old device map */
2637 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2638 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2643 rcu_assign_pointer(dev
->xps_rxqs_map
, new_dev_maps
);
2645 rcu_assign_pointer(dev
->xps_cpus_map
, new_dev_maps
);
2647 /* Cleanup old maps */
2649 goto out_no_old_maps
;
2651 for (j
= -1; j
= netif_attrmask_next(j
, possible_mask
, nr_ids
),
2653 for (i
= num_tc
, tci
= j
* num_tc
; i
--; tci
++) {
2654 new_map
= xmap_dereference(new_dev_maps
->attr_map
[tci
]);
2655 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2656 if (map
&& map
!= new_map
)
2657 kfree_rcu(map
, rcu
);
2661 kfree_rcu(dev_maps
, rcu
);
2664 dev_maps
= new_dev_maps
;
2669 /* update Tx queue numa node */
2670 netdev_queue_numa_node_write(netdev_get_tx_queue(dev
, index
),
2671 (numa_node_id
>= 0) ?
2672 numa_node_id
: NUMA_NO_NODE
);
2678 /* removes tx-queue from unused CPUs/rx-queues */
2679 for (j
= -1; j
= netif_attrmask_next(j
, possible_mask
, nr_ids
),
2681 for (i
= tc
, tci
= j
* num_tc
; i
--; tci
++)
2682 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2683 if (!netif_attr_test_mask(j
, mask
, nr_ids
) ||
2684 !netif_attr_test_online(j
, online_mask
, nr_ids
))
2685 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2686 for (i
= num_tc
- tc
, tci
++; --i
; tci
++)
2687 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2690 /* free map if not active */
2692 reset_xps_maps(dev
, dev_maps
, is_rxqs_map
);
2695 mutex_unlock(&xps_map_mutex
);
2699 /* remove any maps that we added */
2700 for (j
= -1; j
= netif_attrmask_next(j
, possible_mask
, nr_ids
),
2702 for (i
= num_tc
, tci
= j
* num_tc
; i
--; tci
++) {
2703 new_map
= xmap_dereference(new_dev_maps
->attr_map
[tci
]);
2705 xmap_dereference(dev_maps
->attr_map
[tci
]) :
2707 if (new_map
&& new_map
!= map
)
2712 mutex_unlock(&xps_map_mutex
);
2714 kfree(new_dev_maps
);
2717 EXPORT_SYMBOL_GPL(__netif_set_xps_queue
);
2719 int netif_set_xps_queue(struct net_device
*dev
, const struct cpumask
*mask
,
2725 ret
= __netif_set_xps_queue(dev
, cpumask_bits(mask
), index
, false);
2730 EXPORT_SYMBOL(netif_set_xps_queue
);
2733 static void netdev_unbind_all_sb_channels(struct net_device
*dev
)
2735 struct netdev_queue
*txq
= &dev
->_tx
[dev
->num_tx_queues
];
2737 /* Unbind any subordinate channels */
2738 while (txq
-- != &dev
->_tx
[0]) {
2740 netdev_unbind_sb_channel(dev
, txq
->sb_dev
);
2744 void netdev_reset_tc(struct net_device
*dev
)
2747 netif_reset_xps_queues_gt(dev
, 0);
2749 netdev_unbind_all_sb_channels(dev
);
2751 /* Reset TC configuration of device */
2753 memset(dev
->tc_to_txq
, 0, sizeof(dev
->tc_to_txq
));
2754 memset(dev
->prio_tc_map
, 0, sizeof(dev
->prio_tc_map
));
2756 EXPORT_SYMBOL(netdev_reset_tc
);
2758 int netdev_set_tc_queue(struct net_device
*dev
, u8 tc
, u16 count
, u16 offset
)
2760 if (tc
>= dev
->num_tc
)
2764 netif_reset_xps_queues(dev
, offset
, count
);
2766 dev
->tc_to_txq
[tc
].count
= count
;
2767 dev
->tc_to_txq
[tc
].offset
= offset
;
2770 EXPORT_SYMBOL(netdev_set_tc_queue
);
2772 int netdev_set_num_tc(struct net_device
*dev
, u8 num_tc
)
2774 if (num_tc
> TC_MAX_QUEUE
)
2778 netif_reset_xps_queues_gt(dev
, 0);
2780 netdev_unbind_all_sb_channels(dev
);
2782 dev
->num_tc
= num_tc
;
2785 EXPORT_SYMBOL(netdev_set_num_tc
);
2787 void netdev_unbind_sb_channel(struct net_device
*dev
,
2788 struct net_device
*sb_dev
)
2790 struct netdev_queue
*txq
= &dev
->_tx
[dev
->num_tx_queues
];
2793 netif_reset_xps_queues_gt(sb_dev
, 0);
2795 memset(sb_dev
->tc_to_txq
, 0, sizeof(sb_dev
->tc_to_txq
));
2796 memset(sb_dev
->prio_tc_map
, 0, sizeof(sb_dev
->prio_tc_map
));
2798 while (txq
-- != &dev
->_tx
[0]) {
2799 if (txq
->sb_dev
== sb_dev
)
2803 EXPORT_SYMBOL(netdev_unbind_sb_channel
);
2805 int netdev_bind_sb_channel_queue(struct net_device
*dev
,
2806 struct net_device
*sb_dev
,
2807 u8 tc
, u16 count
, u16 offset
)
2809 /* Make certain the sb_dev and dev are already configured */
2810 if (sb_dev
->num_tc
>= 0 || tc
>= dev
->num_tc
)
2813 /* We cannot hand out queues we don't have */
2814 if ((offset
+ count
) > dev
->real_num_tx_queues
)
2817 /* Record the mapping */
2818 sb_dev
->tc_to_txq
[tc
].count
= count
;
2819 sb_dev
->tc_to_txq
[tc
].offset
= offset
;
2821 /* Provide a way for Tx queue to find the tc_to_txq map or
2822 * XPS map for itself.
2825 netdev_get_tx_queue(dev
, count
+ offset
)->sb_dev
= sb_dev
;
2829 EXPORT_SYMBOL(netdev_bind_sb_channel_queue
);
2831 int netdev_set_sb_channel(struct net_device
*dev
, u16 channel
)
2833 /* Do not use a multiqueue device to represent a subordinate channel */
2834 if (netif_is_multiqueue(dev
))
2837 /* We allow channels 1 - 32767 to be used for subordinate channels.
2838 * Channel 0 is meant to be "native" mode and used only to represent
2839 * the main root device. We allow writing 0 to reset the device back
2840 * to normal mode after being used as a subordinate channel.
2842 if (channel
> S16_MAX
)
2845 dev
->num_tc
= -channel
;
2849 EXPORT_SYMBOL(netdev_set_sb_channel
);
2852 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2853 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2855 int netif_set_real_num_tx_queues(struct net_device
*dev
, unsigned int txq
)
2860 disabling
= txq
< dev
->real_num_tx_queues
;
2862 if (txq
< 1 || txq
> dev
->num_tx_queues
)
2865 if (dev
->reg_state
== NETREG_REGISTERED
||
2866 dev
->reg_state
== NETREG_UNREGISTERING
) {
2869 rc
= netdev_queue_update_kobjects(dev
, dev
->real_num_tx_queues
,
2875 netif_setup_tc(dev
, txq
);
2877 dev
->real_num_tx_queues
= txq
;
2881 qdisc_reset_all_tx_gt(dev
, txq
);
2883 netif_reset_xps_queues_gt(dev
, txq
);
2887 dev
->real_num_tx_queues
= txq
;
2892 EXPORT_SYMBOL(netif_set_real_num_tx_queues
);
2896 * netif_set_real_num_rx_queues - set actual number of RX queues used
2897 * @dev: Network device
2898 * @rxq: Actual number of RX queues
2900 * This must be called either with the rtnl_lock held or before
2901 * registration of the net device. Returns 0 on success, or a
2902 * negative error code. If called before registration, it always
2905 int netif_set_real_num_rx_queues(struct net_device
*dev
, unsigned int rxq
)
2909 if (rxq
< 1 || rxq
> dev
->num_rx_queues
)
2912 if (dev
->reg_state
== NETREG_REGISTERED
) {
2915 rc
= net_rx_queue_update_kobjects(dev
, dev
->real_num_rx_queues
,
2921 dev
->real_num_rx_queues
= rxq
;
2924 EXPORT_SYMBOL(netif_set_real_num_rx_queues
);
2928 * netif_get_num_default_rss_queues - default number of RSS queues
2930 * This routine should set an upper limit on the number of RSS queues
2931 * used by default by multiqueue devices.
2933 int netif_get_num_default_rss_queues(void)
2935 return is_kdump_kernel() ?
2936 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES
, num_online_cpus());
2938 EXPORT_SYMBOL(netif_get_num_default_rss_queues
);
2940 static void __netif_reschedule(struct Qdisc
*q
)
2942 struct softnet_data
*sd
;
2943 unsigned long flags
;
2945 local_irq_save(flags
);
2946 sd
= this_cpu_ptr(&softnet_data
);
2947 q
->next_sched
= NULL
;
2948 *sd
->output_queue_tailp
= q
;
2949 sd
->output_queue_tailp
= &q
->next_sched
;
2950 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
2951 local_irq_restore(flags
);
2954 void __netif_schedule(struct Qdisc
*q
)
2956 if (!test_and_set_bit(__QDISC_STATE_SCHED
, &q
->state
))
2957 __netif_reschedule(q
);
2959 EXPORT_SYMBOL(__netif_schedule
);
2961 struct dev_kfree_skb_cb
{
2962 enum skb_free_reason reason
;
2965 static struct dev_kfree_skb_cb
*get_kfree_skb_cb(const struct sk_buff
*skb
)
2967 return (struct dev_kfree_skb_cb
*)skb
->cb
;
2970 void netif_schedule_queue(struct netdev_queue
*txq
)
2973 if (!netif_xmit_stopped(txq
)) {
2974 struct Qdisc
*q
= rcu_dereference(txq
->qdisc
);
2976 __netif_schedule(q
);
2980 EXPORT_SYMBOL(netif_schedule_queue
);
2982 void netif_tx_wake_queue(struct netdev_queue
*dev_queue
)
2984 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF
, &dev_queue
->state
)) {
2988 q
= rcu_dereference(dev_queue
->qdisc
);
2989 __netif_schedule(q
);
2993 EXPORT_SYMBOL(netif_tx_wake_queue
);
2995 void __dev_kfree_skb_irq(struct sk_buff
*skb
, enum skb_free_reason reason
)
2997 unsigned long flags
;
3002 if (likely(refcount_read(&skb
->users
) == 1)) {
3004 refcount_set(&skb
->users
, 0);
3005 } else if (likely(!refcount_dec_and_test(&skb
->users
))) {
3008 get_kfree_skb_cb(skb
)->reason
= reason
;
3009 local_irq_save(flags
);
3010 skb
->next
= __this_cpu_read(softnet_data
.completion_queue
);
3011 __this_cpu_write(softnet_data
.completion_queue
, skb
);
3012 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
3013 local_irq_restore(flags
);
3015 EXPORT_SYMBOL(__dev_kfree_skb_irq
);
3017 void __dev_kfree_skb_any(struct sk_buff
*skb
, enum skb_free_reason reason
)
3019 if (in_irq() || irqs_disabled())
3020 __dev_kfree_skb_irq(skb
, reason
);
3024 EXPORT_SYMBOL(__dev_kfree_skb_any
);
3028 * netif_device_detach - mark device as removed
3029 * @dev: network device
3031 * Mark device as removed from system and therefore no longer available.
3033 void netif_device_detach(struct net_device
*dev
)
3035 if (test_and_clear_bit(__LINK_STATE_PRESENT
, &dev
->state
) &&
3036 netif_running(dev
)) {
3037 netif_tx_stop_all_queues(dev
);
3040 EXPORT_SYMBOL(netif_device_detach
);
3043 * netif_device_attach - mark device as attached
3044 * @dev: network device
3046 * Mark device as attached from system and restart if needed.
3048 void netif_device_attach(struct net_device
*dev
)
3050 if (!test_and_set_bit(__LINK_STATE_PRESENT
, &dev
->state
) &&
3051 netif_running(dev
)) {
3052 netif_tx_wake_all_queues(dev
);
3053 __netdev_watchdog_up(dev
);
3056 EXPORT_SYMBOL(netif_device_attach
);
3059 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3060 * to be used as a distribution range.
3062 static u16
skb_tx_hash(const struct net_device
*dev
,
3063 const struct net_device
*sb_dev
,
3064 struct sk_buff
*skb
)
3068 u16 qcount
= dev
->real_num_tx_queues
;
3071 u8 tc
= netdev_get_prio_tc_map(dev
, skb
->priority
);
3073 qoffset
= sb_dev
->tc_to_txq
[tc
].offset
;
3074 qcount
= sb_dev
->tc_to_txq
[tc
].count
;
3077 if (skb_rx_queue_recorded(skb
)) {
3078 hash
= skb_get_rx_queue(skb
);
3079 if (hash
>= qoffset
)
3081 while (unlikely(hash
>= qcount
))
3083 return hash
+ qoffset
;
3086 return (u16
) reciprocal_scale(skb_get_hash(skb
), qcount
) + qoffset
;
3089 static void skb_warn_bad_offload(const struct sk_buff
*skb
)
3091 static const netdev_features_t null_features
;
3092 struct net_device
*dev
= skb
->dev
;
3093 const char *name
= "";
3095 if (!net_ratelimit())
3099 if (dev
->dev
.parent
)
3100 name
= dev_driver_string(dev
->dev
.parent
);
3102 name
= netdev_name(dev
);
3104 skb_dump(KERN_WARNING
, skb
, false);
3105 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3106 name
, dev
? &dev
->features
: &null_features
,
3107 skb
->sk
? &skb
->sk
->sk_route_caps
: &null_features
);
3111 * Invalidate hardware checksum when packet is to be mangled, and
3112 * complete checksum manually on outgoing path.
3114 int skb_checksum_help(struct sk_buff
*skb
)
3117 int ret
= 0, offset
;
3119 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
3120 goto out_set_summed
;
3122 if (unlikely(skb_shinfo(skb
)->gso_size
)) {
3123 skb_warn_bad_offload(skb
);
3127 /* Before computing a checksum, we should make sure no frag could
3128 * be modified by an external entity : checksum could be wrong.
3130 if (skb_has_shared_frag(skb
)) {
3131 ret
= __skb_linearize(skb
);
3136 offset
= skb_checksum_start_offset(skb
);
3137 BUG_ON(offset
>= skb_headlen(skb
));
3138 csum
= skb_checksum(skb
, offset
, skb
->len
- offset
, 0);
3140 offset
+= skb
->csum_offset
;
3141 BUG_ON(offset
+ sizeof(__sum16
) > skb_headlen(skb
));
3143 ret
= skb_ensure_writable(skb
, offset
+ sizeof(__sum16
));
3147 *(__sum16
*)(skb
->data
+ offset
) = csum_fold(csum
) ?: CSUM_MANGLED_0
;
3149 skb
->ip_summed
= CHECKSUM_NONE
;
3153 EXPORT_SYMBOL(skb_checksum_help
);
3155 int skb_crc32c_csum_help(struct sk_buff
*skb
)
3158 int ret
= 0, offset
, start
;
3160 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
3163 if (unlikely(skb_is_gso(skb
)))
3166 /* Before computing a checksum, we should make sure no frag could
3167 * be modified by an external entity : checksum could be wrong.
3169 if (unlikely(skb_has_shared_frag(skb
))) {
3170 ret
= __skb_linearize(skb
);
3174 start
= skb_checksum_start_offset(skb
);
3175 offset
= start
+ offsetof(struct sctphdr
, checksum
);
3176 if (WARN_ON_ONCE(offset
>= skb_headlen(skb
))) {
3181 ret
= skb_ensure_writable(skb
, offset
+ sizeof(__le32
));
3185 crc32c_csum
= cpu_to_le32(~__skb_checksum(skb
, start
,
3186 skb
->len
- start
, ~(__u32
)0,
3188 *(__le32
*)(skb
->data
+ offset
) = crc32c_csum
;
3189 skb
->ip_summed
= CHECKSUM_NONE
;
3190 skb
->csum_not_inet
= 0;
3195 __be16
skb_network_protocol(struct sk_buff
*skb
, int *depth
)
3197 __be16 type
= skb
->protocol
;
3199 /* Tunnel gso handlers can set protocol to ethernet. */
3200 if (type
== htons(ETH_P_TEB
)) {
3203 if (unlikely(!pskb_may_pull(skb
, sizeof(struct ethhdr
))))
3206 eth
= (struct ethhdr
*)skb
->data
;
3207 type
= eth
->h_proto
;
3210 return __vlan_get_protocol(skb
, type
, depth
);
3214 * skb_mac_gso_segment - mac layer segmentation handler.
3215 * @skb: buffer to segment
3216 * @features: features for the output path (see dev->features)
3218 struct sk_buff
*skb_mac_gso_segment(struct sk_buff
*skb
,
3219 netdev_features_t features
)
3221 struct sk_buff
*segs
= ERR_PTR(-EPROTONOSUPPORT
);
3222 struct packet_offload
*ptype
;
3223 int vlan_depth
= skb
->mac_len
;
3224 __be16 type
= skb_network_protocol(skb
, &vlan_depth
);
3226 if (unlikely(!type
))
3227 return ERR_PTR(-EINVAL
);
3229 __skb_pull(skb
, vlan_depth
);
3232 list_for_each_entry_rcu(ptype
, &offload_base
, list
) {
3233 if (ptype
->type
== type
&& ptype
->callbacks
.gso_segment
) {
3234 segs
= ptype
->callbacks
.gso_segment(skb
, features
);
3240 __skb_push(skb
, skb
->data
- skb_mac_header(skb
));
3244 EXPORT_SYMBOL(skb_mac_gso_segment
);
3247 /* openvswitch calls this on rx path, so we need a different check.
3249 static inline bool skb_needs_check(struct sk_buff
*skb
, bool tx_path
)
3252 return skb
->ip_summed
!= CHECKSUM_PARTIAL
&&
3253 skb
->ip_summed
!= CHECKSUM_UNNECESSARY
;
3255 return skb
->ip_summed
== CHECKSUM_NONE
;
3259 * __skb_gso_segment - Perform segmentation on skb.
3260 * @skb: buffer to segment
3261 * @features: features for the output path (see dev->features)
3262 * @tx_path: whether it is called in TX path
3264 * This function segments the given skb and returns a list of segments.
3266 * It may return NULL if the skb requires no segmentation. This is
3267 * only possible when GSO is used for verifying header integrity.
3269 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3271 struct sk_buff
*__skb_gso_segment(struct sk_buff
*skb
,
3272 netdev_features_t features
, bool tx_path
)
3274 struct sk_buff
*segs
;
3276 if (unlikely(skb_needs_check(skb
, tx_path
))) {
3279 /* We're going to init ->check field in TCP or UDP header */
3280 err
= skb_cow_head(skb
, 0);
3282 return ERR_PTR(err
);
3285 /* Only report GSO partial support if it will enable us to
3286 * support segmentation on this frame without needing additional
3289 if (features
& NETIF_F_GSO_PARTIAL
) {
3290 netdev_features_t partial_features
= NETIF_F_GSO_ROBUST
;
3291 struct net_device
*dev
= skb
->dev
;
3293 partial_features
|= dev
->features
& dev
->gso_partial_features
;
3294 if (!skb_gso_ok(skb
, features
| partial_features
))
3295 features
&= ~NETIF_F_GSO_PARTIAL
;
3298 BUILD_BUG_ON(SKB_GSO_CB_OFFSET
+
3299 sizeof(*SKB_GSO_CB(skb
)) > sizeof(skb
->cb
));
3301 SKB_GSO_CB(skb
)->mac_offset
= skb_headroom(skb
);
3302 SKB_GSO_CB(skb
)->encap_level
= 0;
3304 skb_reset_mac_header(skb
);
3305 skb_reset_mac_len(skb
);
3307 segs
= skb_mac_gso_segment(skb
, features
);
3309 if (segs
!= skb
&& unlikely(skb_needs_check(skb
, tx_path
) && !IS_ERR(segs
)))
3310 skb_warn_bad_offload(skb
);
3314 EXPORT_SYMBOL(__skb_gso_segment
);
3316 /* Take action when hardware reception checksum errors are detected. */
3318 void netdev_rx_csum_fault(struct net_device
*dev
, struct sk_buff
*skb
)
3320 if (net_ratelimit()) {
3321 pr_err("%s: hw csum failure\n", dev
? dev
->name
: "<unknown>");
3322 skb_dump(KERN_ERR
, skb
, true);
3326 EXPORT_SYMBOL(netdev_rx_csum_fault
);
3329 /* XXX: check that highmem exists at all on the given machine. */
3330 static int illegal_highdma(struct net_device
*dev
, struct sk_buff
*skb
)
3332 #ifdef CONFIG_HIGHMEM
3335 if (!(dev
->features
& NETIF_F_HIGHDMA
)) {
3336 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
3337 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
3339 if (PageHighMem(skb_frag_page(frag
)))
3347 /* If MPLS offload request, verify we are testing hardware MPLS features
3348 * instead of standard features for the netdev.
3350 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3351 static netdev_features_t
net_mpls_features(struct sk_buff
*skb
,
3352 netdev_features_t features
,
3355 if (eth_p_mpls(type
))
3356 features
&= skb
->dev
->mpls_features
;
3361 static netdev_features_t
net_mpls_features(struct sk_buff
*skb
,
3362 netdev_features_t features
,
3369 static netdev_features_t
harmonize_features(struct sk_buff
*skb
,
3370 netdev_features_t features
)
3375 type
= skb_network_protocol(skb
, &tmp
);
3376 features
= net_mpls_features(skb
, features
, type
);
3378 if (skb
->ip_summed
!= CHECKSUM_NONE
&&
3379 !can_checksum_protocol(features
, type
)) {
3380 features
&= ~(NETIF_F_CSUM_MASK
| NETIF_F_GSO_MASK
);
3382 if (illegal_highdma(skb
->dev
, skb
))
3383 features
&= ~NETIF_F_SG
;
3388 netdev_features_t
passthru_features_check(struct sk_buff
*skb
,
3389 struct net_device
*dev
,
3390 netdev_features_t features
)
3394 EXPORT_SYMBOL(passthru_features_check
);
3396 static netdev_features_t
dflt_features_check(struct sk_buff
*skb
,
3397 struct net_device
*dev
,
3398 netdev_features_t features
)
3400 return vlan_features_check(skb
, features
);
3403 static netdev_features_t
gso_features_check(const struct sk_buff
*skb
,
3404 struct net_device
*dev
,
3405 netdev_features_t features
)
3407 u16 gso_segs
= skb_shinfo(skb
)->gso_segs
;
3409 if (gso_segs
> dev
->gso_max_segs
)
3410 return features
& ~NETIF_F_GSO_MASK
;
3412 /* Support for GSO partial features requires software
3413 * intervention before we can actually process the packets
3414 * so we need to strip support for any partial features now
3415 * and we can pull them back in after we have partially
3416 * segmented the frame.
3418 if (!(skb_shinfo(skb
)->gso_type
& SKB_GSO_PARTIAL
))
3419 features
&= ~dev
->gso_partial_features
;
3421 /* Make sure to clear the IPv4 ID mangling feature if the
3422 * IPv4 header has the potential to be fragmented.
3424 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV4
) {
3425 struct iphdr
*iph
= skb
->encapsulation
?
3426 inner_ip_hdr(skb
) : ip_hdr(skb
);
3428 if (!(iph
->frag_off
& htons(IP_DF
)))
3429 features
&= ~NETIF_F_TSO_MANGLEID
;
3435 netdev_features_t
netif_skb_features(struct sk_buff
*skb
)
3437 struct net_device
*dev
= skb
->dev
;
3438 netdev_features_t features
= dev
->features
;
3440 if (skb_is_gso(skb
))
3441 features
= gso_features_check(skb
, dev
, features
);
3443 /* If encapsulation offload request, verify we are testing
3444 * hardware encapsulation features instead of standard
3445 * features for the netdev
3447 if (skb
->encapsulation
)
3448 features
&= dev
->hw_enc_features
;
3450 if (skb_vlan_tagged(skb
))
3451 features
= netdev_intersect_features(features
,
3452 dev
->vlan_features
|
3453 NETIF_F_HW_VLAN_CTAG_TX
|
3454 NETIF_F_HW_VLAN_STAG_TX
);
3456 if (dev
->netdev_ops
->ndo_features_check
)
3457 features
&= dev
->netdev_ops
->ndo_features_check(skb
, dev
,
3460 features
&= dflt_features_check(skb
, dev
, features
);
3462 return harmonize_features(skb
, features
);
3464 EXPORT_SYMBOL(netif_skb_features
);
3466 static int xmit_one(struct sk_buff
*skb
, struct net_device
*dev
,
3467 struct netdev_queue
*txq
, bool more
)
3472 if (dev_nit_active(dev
))
3473 dev_queue_xmit_nit(skb
, dev
);
3476 trace_net_dev_start_xmit(skb
, dev
);
3477 rc
= netdev_start_xmit(skb
, dev
, txq
, more
);
3478 trace_net_dev_xmit(skb
, rc
, dev
, len
);
3483 struct sk_buff
*dev_hard_start_xmit(struct sk_buff
*first
, struct net_device
*dev
,
3484 struct netdev_queue
*txq
, int *ret
)
3486 struct sk_buff
*skb
= first
;
3487 int rc
= NETDEV_TX_OK
;
3490 struct sk_buff
*next
= skb
->next
;
3492 skb_mark_not_on_list(skb
);
3493 rc
= xmit_one(skb
, dev
, txq
, next
!= NULL
);
3494 if (unlikely(!dev_xmit_complete(rc
))) {
3500 if (netif_tx_queue_stopped(txq
) && skb
) {
3501 rc
= NETDEV_TX_BUSY
;
3511 static struct sk_buff
*validate_xmit_vlan(struct sk_buff
*skb
,
3512 netdev_features_t features
)
3514 if (skb_vlan_tag_present(skb
) &&
3515 !vlan_hw_offload_capable(features
, skb
->vlan_proto
))
3516 skb
= __vlan_hwaccel_push_inside(skb
);
3520 int skb_csum_hwoffload_help(struct sk_buff
*skb
,
3521 const netdev_features_t features
)
3523 if (unlikely(skb
->csum_not_inet
))
3524 return !!(features
& NETIF_F_SCTP_CRC
) ? 0 :
3525 skb_crc32c_csum_help(skb
);
3527 return !!(features
& NETIF_F_CSUM_MASK
) ? 0 : skb_checksum_help(skb
);
3529 EXPORT_SYMBOL(skb_csum_hwoffload_help
);
3531 static struct sk_buff
*validate_xmit_skb(struct sk_buff
*skb
, struct net_device
*dev
, bool *again
)
3533 netdev_features_t features
;
3535 features
= netif_skb_features(skb
);
3536 skb
= validate_xmit_vlan(skb
, features
);
3540 skb
= sk_validate_xmit_skb(skb
, dev
);
3544 if (netif_needs_gso(skb
, features
)) {
3545 struct sk_buff
*segs
;
3547 segs
= skb_gso_segment(skb
, features
);
3555 if (skb_needs_linearize(skb
, features
) &&
3556 __skb_linearize(skb
))
3559 /* If packet is not checksummed and device does not
3560 * support checksumming for this protocol, complete
3561 * checksumming here.
3563 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
3564 if (skb
->encapsulation
)
3565 skb_set_inner_transport_header(skb
,
3566 skb_checksum_start_offset(skb
));
3568 skb_set_transport_header(skb
,
3569 skb_checksum_start_offset(skb
));
3570 if (skb_csum_hwoffload_help(skb
, features
))
3575 skb
= validate_xmit_xfrm(skb
, features
, again
);
3582 atomic_long_inc(&dev
->tx_dropped
);
3586 struct sk_buff
*validate_xmit_skb_list(struct sk_buff
*skb
, struct net_device
*dev
, bool *again
)
3588 struct sk_buff
*next
, *head
= NULL
, *tail
;
3590 for (; skb
!= NULL
; skb
= next
) {
3592 skb_mark_not_on_list(skb
);
3594 /* in case skb wont be segmented, point to itself */
3597 skb
= validate_xmit_skb(skb
, dev
, again
);
3605 /* If skb was segmented, skb->prev points to
3606 * the last segment. If not, it still contains skb.
3612 EXPORT_SYMBOL_GPL(validate_xmit_skb_list
);
3614 static void qdisc_pkt_len_init(struct sk_buff
*skb
)
3616 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
3618 qdisc_skb_cb(skb
)->pkt_len
= skb
->len
;
3620 /* To get more precise estimation of bytes sent on wire,
3621 * we add to pkt_len the headers size of all segments
3623 if (shinfo
->gso_size
&& skb_transport_header_was_set(skb
)) {
3624 unsigned int hdr_len
;
3625 u16 gso_segs
= shinfo
->gso_segs
;
3627 /* mac layer + network layer */
3628 hdr_len
= skb_transport_header(skb
) - skb_mac_header(skb
);
3630 /* + transport layer */
3631 if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
))) {
3632 const struct tcphdr
*th
;
3633 struct tcphdr _tcphdr
;
3635 th
= skb_header_pointer(skb
, skb_transport_offset(skb
),
3636 sizeof(_tcphdr
), &_tcphdr
);
3638 hdr_len
+= __tcp_hdrlen(th
);
3640 struct udphdr _udphdr
;
3642 if (skb_header_pointer(skb
, skb_transport_offset(skb
),
3643 sizeof(_udphdr
), &_udphdr
))
3644 hdr_len
+= sizeof(struct udphdr
);
3647 if (shinfo
->gso_type
& SKB_GSO_DODGY
)
3648 gso_segs
= DIV_ROUND_UP(skb
->len
- hdr_len
,
3651 qdisc_skb_cb(skb
)->pkt_len
+= (gso_segs
- 1) * hdr_len
;
3655 static inline int __dev_xmit_skb(struct sk_buff
*skb
, struct Qdisc
*q
,
3656 struct net_device
*dev
,
3657 struct netdev_queue
*txq
)
3659 spinlock_t
*root_lock
= qdisc_lock(q
);
3660 struct sk_buff
*to_free
= NULL
;
3664 qdisc_calculate_pkt_len(skb
, q
);
3666 if (q
->flags
& TCQ_F_NOLOCK
) {
3667 rc
= q
->enqueue(skb
, q
, &to_free
) & NET_XMIT_MASK
;
3670 if (unlikely(to_free
))
3671 kfree_skb_list(to_free
);
3676 * Heuristic to force contended enqueues to serialize on a
3677 * separate lock before trying to get qdisc main lock.
3678 * This permits qdisc->running owner to get the lock more
3679 * often and dequeue packets faster.
3681 contended
= qdisc_is_running(q
);
3682 if (unlikely(contended
))
3683 spin_lock(&q
->busylock
);
3685 spin_lock(root_lock
);
3686 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED
, &q
->state
))) {
3687 __qdisc_drop(skb
, &to_free
);
3689 } else if ((q
->flags
& TCQ_F_CAN_BYPASS
) && !qdisc_qlen(q
) &&
3690 qdisc_run_begin(q
)) {
3692 * This is a work-conserving queue; there are no old skbs
3693 * waiting to be sent out; and the qdisc is not running -
3694 * xmit the skb directly.
3697 qdisc_bstats_update(q
, skb
);
3699 if (sch_direct_xmit(skb
, q
, dev
, txq
, root_lock
, true)) {
3700 if (unlikely(contended
)) {
3701 spin_unlock(&q
->busylock
);
3708 rc
= NET_XMIT_SUCCESS
;
3710 rc
= q
->enqueue(skb
, q
, &to_free
) & NET_XMIT_MASK
;
3711 if (qdisc_run_begin(q
)) {
3712 if (unlikely(contended
)) {
3713 spin_unlock(&q
->busylock
);
3720 spin_unlock(root_lock
);
3721 if (unlikely(to_free
))
3722 kfree_skb_list(to_free
);
3723 if (unlikely(contended
))
3724 spin_unlock(&q
->busylock
);
3728 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3729 static void skb_update_prio(struct sk_buff
*skb
)
3731 const struct netprio_map
*map
;
3732 const struct sock
*sk
;
3733 unsigned int prioidx
;
3737 map
= rcu_dereference_bh(skb
->dev
->priomap
);
3740 sk
= skb_to_full_sk(skb
);
3744 prioidx
= sock_cgroup_prioidx(&sk
->sk_cgrp_data
);
3746 if (prioidx
< map
->priomap_len
)
3747 skb
->priority
= map
->priomap
[prioidx
];
3750 #define skb_update_prio(skb)
3754 * dev_loopback_xmit - loop back @skb
3755 * @net: network namespace this loopback is happening in
3756 * @sk: sk needed to be a netfilter okfn
3757 * @skb: buffer to transmit
3759 int dev_loopback_xmit(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
3761 skb_reset_mac_header(skb
);
3762 __skb_pull(skb
, skb_network_offset(skb
));
3763 skb
->pkt_type
= PACKET_LOOPBACK
;
3764 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3765 WARN_ON(!skb_dst(skb
));
3770 EXPORT_SYMBOL(dev_loopback_xmit
);
3772 #ifdef CONFIG_NET_EGRESS
3773 static struct sk_buff
*
3774 sch_handle_egress(struct sk_buff
*skb
, int *ret
, struct net_device
*dev
)
3776 struct mini_Qdisc
*miniq
= rcu_dereference_bh(dev
->miniq_egress
);
3777 struct tcf_result cl_res
;
3782 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3783 mini_qdisc_bstats_cpu_update(miniq
, skb
);
3785 switch (tcf_classify(skb
, miniq
->filter_list
, &cl_res
, false)) {
3787 case TC_ACT_RECLASSIFY
:
3788 skb
->tc_index
= TC_H_MIN(cl_res
.classid
);
3791 mini_qdisc_qstats_cpu_drop(miniq
);
3792 *ret
= NET_XMIT_DROP
;
3798 *ret
= NET_XMIT_SUCCESS
;
3801 case TC_ACT_REDIRECT
:
3802 /* No need to push/pop skb's mac_header here on egress! */
3803 skb_do_redirect(skb
);
3804 *ret
= NET_XMIT_SUCCESS
;
3812 #endif /* CONFIG_NET_EGRESS */
3815 static int __get_xps_queue_idx(struct net_device
*dev
, struct sk_buff
*skb
,
3816 struct xps_dev_maps
*dev_maps
, unsigned int tci
)
3818 struct xps_map
*map
;
3819 int queue_index
= -1;
3823 tci
+= netdev_get_prio_tc_map(dev
, skb
->priority
);
3826 map
= rcu_dereference(dev_maps
->attr_map
[tci
]);
3829 queue_index
= map
->queues
[0];
3831 queue_index
= map
->queues
[reciprocal_scale(
3832 skb_get_hash(skb
), map
->len
)];
3833 if (unlikely(queue_index
>= dev
->real_num_tx_queues
))
3840 static int get_xps_queue(struct net_device
*dev
, struct net_device
*sb_dev
,
3841 struct sk_buff
*skb
)
3844 struct xps_dev_maps
*dev_maps
;
3845 struct sock
*sk
= skb
->sk
;
3846 int queue_index
= -1;
3848 if (!static_key_false(&xps_needed
))
3852 if (!static_key_false(&xps_rxqs_needed
))
3855 dev_maps
= rcu_dereference(sb_dev
->xps_rxqs_map
);
3857 int tci
= sk_rx_queue_get(sk
);
3859 if (tci
>= 0 && tci
< dev
->num_rx_queues
)
3860 queue_index
= __get_xps_queue_idx(dev
, skb
, dev_maps
,
3865 if (queue_index
< 0) {
3866 dev_maps
= rcu_dereference(sb_dev
->xps_cpus_map
);
3868 unsigned int tci
= skb
->sender_cpu
- 1;
3870 queue_index
= __get_xps_queue_idx(dev
, skb
, dev_maps
,
3882 u16
dev_pick_tx_zero(struct net_device
*dev
, struct sk_buff
*skb
,
3883 struct net_device
*sb_dev
)
3887 EXPORT_SYMBOL(dev_pick_tx_zero
);
3889 u16
dev_pick_tx_cpu_id(struct net_device
*dev
, struct sk_buff
*skb
,
3890 struct net_device
*sb_dev
)
3892 return (u16
)raw_smp_processor_id() % dev
->real_num_tx_queues
;
3894 EXPORT_SYMBOL(dev_pick_tx_cpu_id
);
3896 u16
netdev_pick_tx(struct net_device
*dev
, struct sk_buff
*skb
,
3897 struct net_device
*sb_dev
)
3899 struct sock
*sk
= skb
->sk
;
3900 int queue_index
= sk_tx_queue_get(sk
);
3902 sb_dev
= sb_dev
? : dev
;
3904 if (queue_index
< 0 || skb
->ooo_okay
||
3905 queue_index
>= dev
->real_num_tx_queues
) {
3906 int new_index
= get_xps_queue(dev
, sb_dev
, skb
);
3909 new_index
= skb_tx_hash(dev
, sb_dev
, skb
);
3911 if (queue_index
!= new_index
&& sk
&&
3913 rcu_access_pointer(sk
->sk_dst_cache
))
3914 sk_tx_queue_set(sk
, new_index
);
3916 queue_index
= new_index
;
3921 EXPORT_SYMBOL(netdev_pick_tx
);
3923 struct netdev_queue
*netdev_core_pick_tx(struct net_device
*dev
,
3924 struct sk_buff
*skb
,
3925 struct net_device
*sb_dev
)
3927 int queue_index
= 0;
3930 u32 sender_cpu
= skb
->sender_cpu
- 1;
3932 if (sender_cpu
>= (u32
)NR_CPUS
)
3933 skb
->sender_cpu
= raw_smp_processor_id() + 1;
3936 if (dev
->real_num_tx_queues
!= 1) {
3937 const struct net_device_ops
*ops
= dev
->netdev_ops
;
3939 if (ops
->ndo_select_queue
)
3940 queue_index
= ops
->ndo_select_queue(dev
, skb
, sb_dev
);
3942 queue_index
= netdev_pick_tx(dev
, skb
, sb_dev
);
3944 queue_index
= netdev_cap_txqueue(dev
, queue_index
);
3947 skb_set_queue_mapping(skb
, queue_index
);
3948 return netdev_get_tx_queue(dev
, queue_index
);
3952 * __dev_queue_xmit - transmit a buffer
3953 * @skb: buffer to transmit
3954 * @sb_dev: suboordinate device used for L2 forwarding offload
3956 * Queue a buffer for transmission to a network device. The caller must
3957 * have set the device and priority and built the buffer before calling
3958 * this function. The function can be called from an interrupt.
3960 * A negative errno code is returned on a failure. A success does not
3961 * guarantee the frame will be transmitted as it may be dropped due
3962 * to congestion or traffic shaping.
3964 * -----------------------------------------------------------------------------------
3965 * I notice this method can also return errors from the queue disciplines,
3966 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3969 * Regardless of the return value, the skb is consumed, so it is currently
3970 * difficult to retry a send to this method. (You can bump the ref count
3971 * before sending to hold a reference for retry if you are careful.)
3973 * When calling this method, interrupts MUST be enabled. This is because
3974 * the BH enable code must have IRQs enabled so that it will not deadlock.
3977 static int __dev_queue_xmit(struct sk_buff
*skb
, struct net_device
*sb_dev
)
3979 struct net_device
*dev
= skb
->dev
;
3980 struct netdev_queue
*txq
;
3985 skb_reset_mac_header(skb
);
3987 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_SCHED_TSTAMP
))
3988 __skb_tstamp_tx(skb
, NULL
, skb
->sk
, SCM_TSTAMP_SCHED
);
3990 /* Disable soft irqs for various locks below. Also
3991 * stops preemption for RCU.
3995 skb_update_prio(skb
);
3997 qdisc_pkt_len_init(skb
);
3998 #ifdef CONFIG_NET_CLS_ACT
3999 skb
->tc_at_ingress
= 0;
4000 # ifdef CONFIG_NET_EGRESS
4001 if (static_branch_unlikely(&egress_needed_key
)) {
4002 skb
= sch_handle_egress(skb
, &rc
, dev
);
4008 /* If device/qdisc don't need skb->dst, release it right now while
4009 * its hot in this cpu cache.
4011 if (dev
->priv_flags
& IFF_XMIT_DST_RELEASE
)
4016 txq
= netdev_core_pick_tx(dev
, skb
, sb_dev
);
4017 q
= rcu_dereference_bh(txq
->qdisc
);
4019 trace_net_dev_queue(skb
);
4021 rc
= __dev_xmit_skb(skb
, q
, dev
, txq
);
4025 /* The device has no queue. Common case for software devices:
4026 * loopback, all the sorts of tunnels...
4028 * Really, it is unlikely that netif_tx_lock protection is necessary
4029 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4031 * However, it is possible, that they rely on protection
4034 * Check this and shot the lock. It is not prone from deadlocks.
4035 *Either shot noqueue qdisc, it is even simpler 8)
4037 if (dev
->flags
& IFF_UP
) {
4038 int cpu
= smp_processor_id(); /* ok because BHs are off */
4040 if (txq
->xmit_lock_owner
!= cpu
) {
4041 if (dev_xmit_recursion())
4042 goto recursion_alert
;
4044 skb
= validate_xmit_skb(skb
, dev
, &again
);
4048 HARD_TX_LOCK(dev
, txq
, cpu
);
4050 if (!netif_xmit_stopped(txq
)) {
4051 dev_xmit_recursion_inc();
4052 skb
= dev_hard_start_xmit(skb
, dev
, txq
, &rc
);
4053 dev_xmit_recursion_dec();
4054 if (dev_xmit_complete(rc
)) {
4055 HARD_TX_UNLOCK(dev
, txq
);
4059 HARD_TX_UNLOCK(dev
, txq
);
4060 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4063 /* Recursion is detected! It is possible,
4067 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4073 rcu_read_unlock_bh();
4075 atomic_long_inc(&dev
->tx_dropped
);
4076 kfree_skb_list(skb
);
4079 rcu_read_unlock_bh();
4083 int dev_queue_xmit(struct sk_buff
*skb
)
4085 return __dev_queue_xmit(skb
, NULL
);
4087 EXPORT_SYMBOL(dev_queue_xmit
);
4089 int dev_queue_xmit_accel(struct sk_buff
*skb
, struct net_device
*sb_dev
)
4091 return __dev_queue_xmit(skb
, sb_dev
);
4093 EXPORT_SYMBOL(dev_queue_xmit_accel
);
4095 int dev_direct_xmit(struct sk_buff
*skb
, u16 queue_id
)
4097 struct net_device
*dev
= skb
->dev
;
4098 struct sk_buff
*orig_skb
= skb
;
4099 struct netdev_queue
*txq
;
4100 int ret
= NETDEV_TX_BUSY
;
4103 if (unlikely(!netif_running(dev
) ||
4104 !netif_carrier_ok(dev
)))
4107 skb
= validate_xmit_skb_list(skb
, dev
, &again
);
4108 if (skb
!= orig_skb
)
4111 skb_set_queue_mapping(skb
, queue_id
);
4112 txq
= skb_get_tx_queue(dev
, skb
);
4116 HARD_TX_LOCK(dev
, txq
, smp_processor_id());
4117 if (!netif_xmit_frozen_or_drv_stopped(txq
))
4118 ret
= netdev_start_xmit(skb
, dev
, txq
, false);
4119 HARD_TX_UNLOCK(dev
, txq
);
4123 if (!dev_xmit_complete(ret
))
4128 atomic_long_inc(&dev
->tx_dropped
);
4129 kfree_skb_list(skb
);
4130 return NET_XMIT_DROP
;
4132 EXPORT_SYMBOL(dev_direct_xmit
);
4134 /*************************************************************************
4136 *************************************************************************/
4138 int netdev_max_backlog __read_mostly
= 1000;
4139 EXPORT_SYMBOL(netdev_max_backlog
);
4141 int netdev_tstamp_prequeue __read_mostly
= 1;
4142 int netdev_budget __read_mostly
= 300;
4143 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4144 unsigned int __read_mostly netdev_budget_usecs
= 2 * USEC_PER_SEC
/ HZ
;
4145 int weight_p __read_mostly
= 64; /* old backlog weight */
4146 int dev_weight_rx_bias __read_mostly
= 1; /* bias for backlog weight */
4147 int dev_weight_tx_bias __read_mostly
= 1; /* bias for output_queue quota */
4148 int dev_rx_weight __read_mostly
= 64;
4149 int dev_tx_weight __read_mostly
= 64;
4150 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4151 int gro_normal_batch __read_mostly
= 8;
4153 /* Called with irq disabled */
4154 static inline void ____napi_schedule(struct softnet_data
*sd
,
4155 struct napi_struct
*napi
)
4157 list_add_tail(&napi
->poll_list
, &sd
->poll_list
);
4158 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
4163 /* One global table that all flow-based protocols share. */
4164 struct rps_sock_flow_table __rcu
*rps_sock_flow_table __read_mostly
;
4165 EXPORT_SYMBOL(rps_sock_flow_table
);
4166 u32 rps_cpu_mask __read_mostly
;
4167 EXPORT_SYMBOL(rps_cpu_mask
);
4169 struct static_key_false rps_needed __read_mostly
;
4170 EXPORT_SYMBOL(rps_needed
);
4171 struct static_key_false rfs_needed __read_mostly
;
4172 EXPORT_SYMBOL(rfs_needed
);
4174 static struct rps_dev_flow
*
4175 set_rps_cpu(struct net_device
*dev
, struct sk_buff
*skb
,
4176 struct rps_dev_flow
*rflow
, u16 next_cpu
)
4178 if (next_cpu
< nr_cpu_ids
) {
4179 #ifdef CONFIG_RFS_ACCEL
4180 struct netdev_rx_queue
*rxqueue
;
4181 struct rps_dev_flow_table
*flow_table
;
4182 struct rps_dev_flow
*old_rflow
;
4187 /* Should we steer this flow to a different hardware queue? */
4188 if (!skb_rx_queue_recorded(skb
) || !dev
->rx_cpu_rmap
||
4189 !(dev
->features
& NETIF_F_NTUPLE
))
4191 rxq_index
= cpu_rmap_lookup_index(dev
->rx_cpu_rmap
, next_cpu
);
4192 if (rxq_index
== skb_get_rx_queue(skb
))
4195 rxqueue
= dev
->_rx
+ rxq_index
;
4196 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
4199 flow_id
= skb_get_hash(skb
) & flow_table
->mask
;
4200 rc
= dev
->netdev_ops
->ndo_rx_flow_steer(dev
, skb
,
4201 rxq_index
, flow_id
);
4205 rflow
= &flow_table
->flows
[flow_id
];
4207 if (old_rflow
->filter
== rflow
->filter
)
4208 old_rflow
->filter
= RPS_NO_FILTER
;
4212 per_cpu(softnet_data
, next_cpu
).input_queue_head
;
4215 rflow
->cpu
= next_cpu
;
4220 * get_rps_cpu is called from netif_receive_skb and returns the target
4221 * CPU from the RPS map of the receiving queue for a given skb.
4222 * rcu_read_lock must be held on entry.
4224 static int get_rps_cpu(struct net_device
*dev
, struct sk_buff
*skb
,
4225 struct rps_dev_flow
**rflowp
)
4227 const struct rps_sock_flow_table
*sock_flow_table
;
4228 struct netdev_rx_queue
*rxqueue
= dev
->_rx
;
4229 struct rps_dev_flow_table
*flow_table
;
4230 struct rps_map
*map
;
4235 if (skb_rx_queue_recorded(skb
)) {
4236 u16 index
= skb_get_rx_queue(skb
);
4238 if (unlikely(index
>= dev
->real_num_rx_queues
)) {
4239 WARN_ONCE(dev
->real_num_rx_queues
> 1,
4240 "%s received packet on queue %u, but number "
4241 "of RX queues is %u\n",
4242 dev
->name
, index
, dev
->real_num_rx_queues
);
4248 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4250 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
4251 map
= rcu_dereference(rxqueue
->rps_map
);
4252 if (!flow_table
&& !map
)
4255 skb_reset_network_header(skb
);
4256 hash
= skb_get_hash(skb
);
4260 sock_flow_table
= rcu_dereference(rps_sock_flow_table
);
4261 if (flow_table
&& sock_flow_table
) {
4262 struct rps_dev_flow
*rflow
;
4266 /* First check into global flow table if there is a match */
4267 ident
= sock_flow_table
->ents
[hash
& sock_flow_table
->mask
];
4268 if ((ident
^ hash
) & ~rps_cpu_mask
)
4271 next_cpu
= ident
& rps_cpu_mask
;
4273 /* OK, now we know there is a match,
4274 * we can look at the local (per receive queue) flow table
4276 rflow
= &flow_table
->flows
[hash
& flow_table
->mask
];
4280 * If the desired CPU (where last recvmsg was done) is
4281 * different from current CPU (one in the rx-queue flow
4282 * table entry), switch if one of the following holds:
4283 * - Current CPU is unset (>= nr_cpu_ids).
4284 * - Current CPU is offline.
4285 * - The current CPU's queue tail has advanced beyond the
4286 * last packet that was enqueued using this table entry.
4287 * This guarantees that all previous packets for the flow
4288 * have been dequeued, thus preserving in order delivery.
4290 if (unlikely(tcpu
!= next_cpu
) &&
4291 (tcpu
>= nr_cpu_ids
|| !cpu_online(tcpu
) ||
4292 ((int)(per_cpu(softnet_data
, tcpu
).input_queue_head
-
4293 rflow
->last_qtail
)) >= 0)) {
4295 rflow
= set_rps_cpu(dev
, skb
, rflow
, next_cpu
);
4298 if (tcpu
< nr_cpu_ids
&& cpu_online(tcpu
)) {
4308 tcpu
= map
->cpus
[reciprocal_scale(hash
, map
->len
)];
4309 if (cpu_online(tcpu
)) {
4319 #ifdef CONFIG_RFS_ACCEL
4322 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4323 * @dev: Device on which the filter was set
4324 * @rxq_index: RX queue index
4325 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4326 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4328 * Drivers that implement ndo_rx_flow_steer() should periodically call
4329 * this function for each installed filter and remove the filters for
4330 * which it returns %true.
4332 bool rps_may_expire_flow(struct net_device
*dev
, u16 rxq_index
,
4333 u32 flow_id
, u16 filter_id
)
4335 struct netdev_rx_queue
*rxqueue
= dev
->_rx
+ rxq_index
;
4336 struct rps_dev_flow_table
*flow_table
;
4337 struct rps_dev_flow
*rflow
;
4342 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
4343 if (flow_table
&& flow_id
<= flow_table
->mask
) {
4344 rflow
= &flow_table
->flows
[flow_id
];
4345 cpu
= READ_ONCE(rflow
->cpu
);
4346 if (rflow
->filter
== filter_id
&& cpu
< nr_cpu_ids
&&
4347 ((int)(per_cpu(softnet_data
, cpu
).input_queue_head
-
4348 rflow
->last_qtail
) <
4349 (int)(10 * flow_table
->mask
)))
4355 EXPORT_SYMBOL(rps_may_expire_flow
);
4357 #endif /* CONFIG_RFS_ACCEL */
4359 /* Called from hardirq (IPI) context */
4360 static void rps_trigger_softirq(void *data
)
4362 struct softnet_data
*sd
= data
;
4364 ____napi_schedule(sd
, &sd
->backlog
);
4368 #endif /* CONFIG_RPS */
4371 * Check if this softnet_data structure is another cpu one
4372 * If yes, queue it to our IPI list and return 1
4375 static int rps_ipi_queued(struct softnet_data
*sd
)
4378 struct softnet_data
*mysd
= this_cpu_ptr(&softnet_data
);
4381 sd
->rps_ipi_next
= mysd
->rps_ipi_list
;
4382 mysd
->rps_ipi_list
= sd
;
4384 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
4387 #endif /* CONFIG_RPS */
4391 #ifdef CONFIG_NET_FLOW_LIMIT
4392 int netdev_flow_limit_table_len __read_mostly
= (1 << 12);
4395 static bool skb_flow_limit(struct sk_buff
*skb
, unsigned int qlen
)
4397 #ifdef CONFIG_NET_FLOW_LIMIT
4398 struct sd_flow_limit
*fl
;
4399 struct softnet_data
*sd
;
4400 unsigned int old_flow
, new_flow
;
4402 if (qlen
< (netdev_max_backlog
>> 1))
4405 sd
= this_cpu_ptr(&softnet_data
);
4408 fl
= rcu_dereference(sd
->flow_limit
);
4410 new_flow
= skb_get_hash(skb
) & (fl
->num_buckets
- 1);
4411 old_flow
= fl
->history
[fl
->history_head
];
4412 fl
->history
[fl
->history_head
] = new_flow
;
4415 fl
->history_head
&= FLOW_LIMIT_HISTORY
- 1;
4417 if (likely(fl
->buckets
[old_flow
]))
4418 fl
->buckets
[old_flow
]--;
4420 if (++fl
->buckets
[new_flow
] > (FLOW_LIMIT_HISTORY
>> 1)) {
4432 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4433 * queue (may be a remote CPU queue).
4435 static int enqueue_to_backlog(struct sk_buff
*skb
, int cpu
,
4436 unsigned int *qtail
)
4438 struct softnet_data
*sd
;
4439 unsigned long flags
;
4442 sd
= &per_cpu(softnet_data
, cpu
);
4444 local_irq_save(flags
);
4447 if (!netif_running(skb
->dev
))
4449 qlen
= skb_queue_len(&sd
->input_pkt_queue
);
4450 if (qlen
<= netdev_max_backlog
&& !skb_flow_limit(skb
, qlen
)) {
4453 __skb_queue_tail(&sd
->input_pkt_queue
, skb
);
4454 input_queue_tail_incr_save(sd
, qtail
);
4456 local_irq_restore(flags
);
4457 return NET_RX_SUCCESS
;
4460 /* Schedule NAPI for backlog device
4461 * We can use non atomic operation since we own the queue lock
4463 if (!__test_and_set_bit(NAPI_STATE_SCHED
, &sd
->backlog
.state
)) {
4464 if (!rps_ipi_queued(sd
))
4465 ____napi_schedule(sd
, &sd
->backlog
);
4474 local_irq_restore(flags
);
4476 atomic_long_inc(&skb
->dev
->rx_dropped
);
4481 static struct netdev_rx_queue
*netif_get_rxqueue(struct sk_buff
*skb
)
4483 struct net_device
*dev
= skb
->dev
;
4484 struct netdev_rx_queue
*rxqueue
;
4488 if (skb_rx_queue_recorded(skb
)) {
4489 u16 index
= skb_get_rx_queue(skb
);
4491 if (unlikely(index
>= dev
->real_num_rx_queues
)) {
4492 WARN_ONCE(dev
->real_num_rx_queues
> 1,
4493 "%s received packet on queue %u, but number "
4494 "of RX queues is %u\n",
4495 dev
->name
, index
, dev
->real_num_rx_queues
);
4497 return rxqueue
; /* Return first rxqueue */
4504 static u32
netif_receive_generic_xdp(struct sk_buff
*skb
,
4505 struct xdp_buff
*xdp
,
4506 struct bpf_prog
*xdp_prog
)
4508 struct netdev_rx_queue
*rxqueue
;
4509 void *orig_data
, *orig_data_end
;
4510 u32 metalen
, act
= XDP_DROP
;
4511 __be16 orig_eth_type
;
4517 /* Reinjected packets coming from act_mirred or similar should
4518 * not get XDP generic processing.
4520 if (skb_is_redirected(skb
))
4523 /* XDP packets must be linear and must have sufficient headroom
4524 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4525 * native XDP provides, thus we need to do it here as well.
4527 if (skb_cloned(skb
) || skb_is_nonlinear(skb
) ||
4528 skb_headroom(skb
) < XDP_PACKET_HEADROOM
) {
4529 int hroom
= XDP_PACKET_HEADROOM
- skb_headroom(skb
);
4530 int troom
= skb
->tail
+ skb
->data_len
- skb
->end
;
4532 /* In case we have to go down the path and also linearize,
4533 * then lets do the pskb_expand_head() work just once here.
4535 if (pskb_expand_head(skb
,
4536 hroom
> 0 ? ALIGN(hroom
, NET_SKB_PAD
) : 0,
4537 troom
> 0 ? troom
+ 128 : 0, GFP_ATOMIC
))
4539 if (skb_linearize(skb
))
4543 /* The XDP program wants to see the packet starting at the MAC
4546 mac_len
= skb
->data
- skb_mac_header(skb
);
4547 hlen
= skb_headlen(skb
) + mac_len
;
4548 xdp
->data
= skb
->data
- mac_len
;
4549 xdp
->data_meta
= xdp
->data
;
4550 xdp
->data_end
= xdp
->data
+ hlen
;
4551 xdp
->data_hard_start
= skb
->data
- skb_headroom(skb
);
4552 orig_data_end
= xdp
->data_end
;
4553 orig_data
= xdp
->data
;
4554 eth
= (struct ethhdr
*)xdp
->data
;
4555 orig_bcast
= is_multicast_ether_addr_64bits(eth
->h_dest
);
4556 orig_eth_type
= eth
->h_proto
;
4558 rxqueue
= netif_get_rxqueue(skb
);
4559 xdp
->rxq
= &rxqueue
->xdp_rxq
;
4561 act
= bpf_prog_run_xdp(xdp_prog
, xdp
);
4563 /* check if bpf_xdp_adjust_head was used */
4564 off
= xdp
->data
- orig_data
;
4567 __skb_pull(skb
, off
);
4569 __skb_push(skb
, -off
);
4571 skb
->mac_header
+= off
;
4572 skb_reset_network_header(skb
);
4575 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4578 off
= orig_data_end
- xdp
->data_end
;
4580 skb_set_tail_pointer(skb
, xdp
->data_end
- xdp
->data
);
4585 /* check if XDP changed eth hdr such SKB needs update */
4586 eth
= (struct ethhdr
*)xdp
->data
;
4587 if ((orig_eth_type
!= eth
->h_proto
) ||
4588 (orig_bcast
!= is_multicast_ether_addr_64bits(eth
->h_dest
))) {
4589 __skb_push(skb
, ETH_HLEN
);
4590 skb
->protocol
= eth_type_trans(skb
, skb
->dev
);
4596 __skb_push(skb
, mac_len
);
4599 metalen
= xdp
->data
- xdp
->data_meta
;
4601 skb_metadata_set(skb
, metalen
);
4604 bpf_warn_invalid_xdp_action(act
);
4607 trace_xdp_exception(skb
->dev
, xdp_prog
, act
);
4618 /* When doing generic XDP we have to bypass the qdisc layer and the
4619 * network taps in order to match in-driver-XDP behavior.
4621 void generic_xdp_tx(struct sk_buff
*skb
, struct bpf_prog
*xdp_prog
)
4623 struct net_device
*dev
= skb
->dev
;
4624 struct netdev_queue
*txq
;
4625 bool free_skb
= true;
4628 txq
= netdev_core_pick_tx(dev
, skb
, NULL
);
4629 cpu
= smp_processor_id();
4630 HARD_TX_LOCK(dev
, txq
, cpu
);
4631 if (!netif_xmit_stopped(txq
)) {
4632 rc
= netdev_start_xmit(skb
, dev
, txq
, 0);
4633 if (dev_xmit_complete(rc
))
4636 HARD_TX_UNLOCK(dev
, txq
);
4638 trace_xdp_exception(dev
, xdp_prog
, XDP_TX
);
4643 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key
);
4645 int do_xdp_generic(struct bpf_prog
*xdp_prog
, struct sk_buff
*skb
)
4648 struct xdp_buff xdp
;
4652 act
= netif_receive_generic_xdp(skb
, &xdp
, xdp_prog
);
4653 if (act
!= XDP_PASS
) {
4656 err
= xdp_do_generic_redirect(skb
->dev
, skb
,
4662 generic_xdp_tx(skb
, xdp_prog
);
4673 EXPORT_SYMBOL_GPL(do_xdp_generic
);
4675 static int netif_rx_internal(struct sk_buff
*skb
)
4679 net_timestamp_check(netdev_tstamp_prequeue
, skb
);
4681 trace_netif_rx(skb
);
4684 if (static_branch_unlikely(&rps_needed
)) {
4685 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
4691 cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
4693 cpu
= smp_processor_id();
4695 ret
= enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
4704 ret
= enqueue_to_backlog(skb
, get_cpu(), &qtail
);
4711 * netif_rx - post buffer to the network code
4712 * @skb: buffer to post
4714 * This function receives a packet from a device driver and queues it for
4715 * the upper (protocol) levels to process. It always succeeds. The buffer
4716 * may be dropped during processing for congestion control or by the
4720 * NET_RX_SUCCESS (no congestion)
4721 * NET_RX_DROP (packet was dropped)
4725 int netif_rx(struct sk_buff
*skb
)
4729 trace_netif_rx_entry(skb
);
4731 ret
= netif_rx_internal(skb
);
4732 trace_netif_rx_exit(ret
);
4736 EXPORT_SYMBOL(netif_rx
);
4738 int netif_rx_ni(struct sk_buff
*skb
)
4742 trace_netif_rx_ni_entry(skb
);
4745 err
= netif_rx_internal(skb
);
4746 if (local_softirq_pending())
4749 trace_netif_rx_ni_exit(err
);
4753 EXPORT_SYMBOL(netif_rx_ni
);
4755 static __latent_entropy
void net_tx_action(struct softirq_action
*h
)
4757 struct softnet_data
*sd
= this_cpu_ptr(&softnet_data
);
4759 if (sd
->completion_queue
) {
4760 struct sk_buff
*clist
;
4762 local_irq_disable();
4763 clist
= sd
->completion_queue
;
4764 sd
->completion_queue
= NULL
;
4768 struct sk_buff
*skb
= clist
;
4770 clist
= clist
->next
;
4772 WARN_ON(refcount_read(&skb
->users
));
4773 if (likely(get_kfree_skb_cb(skb
)->reason
== SKB_REASON_CONSUMED
))
4774 trace_consume_skb(skb
);
4776 trace_kfree_skb(skb
, net_tx_action
);
4778 if (skb
->fclone
!= SKB_FCLONE_UNAVAILABLE
)
4781 __kfree_skb_defer(skb
);
4784 __kfree_skb_flush();
4787 if (sd
->output_queue
) {
4790 local_irq_disable();
4791 head
= sd
->output_queue
;
4792 sd
->output_queue
= NULL
;
4793 sd
->output_queue_tailp
= &sd
->output_queue
;
4797 struct Qdisc
*q
= head
;
4798 spinlock_t
*root_lock
= NULL
;
4800 head
= head
->next_sched
;
4802 if (!(q
->flags
& TCQ_F_NOLOCK
)) {
4803 root_lock
= qdisc_lock(q
);
4804 spin_lock(root_lock
);
4806 /* We need to make sure head->next_sched is read
4807 * before clearing __QDISC_STATE_SCHED
4809 smp_mb__before_atomic();
4810 clear_bit(__QDISC_STATE_SCHED
, &q
->state
);
4813 spin_unlock(root_lock
);
4817 xfrm_dev_backlog(sd
);
4820 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4821 /* This hook is defined here for ATM LANE */
4822 int (*br_fdb_test_addr_hook
)(struct net_device
*dev
,
4823 unsigned char *addr
) __read_mostly
;
4824 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook
);
4827 static inline struct sk_buff
*
4828 sch_handle_ingress(struct sk_buff
*skb
, struct packet_type
**pt_prev
, int *ret
,
4829 struct net_device
*orig_dev
)
4831 #ifdef CONFIG_NET_CLS_ACT
4832 struct mini_Qdisc
*miniq
= rcu_dereference_bh(skb
->dev
->miniq_ingress
);
4833 struct tcf_result cl_res
;
4835 /* If there's at least one ingress present somewhere (so
4836 * we get here via enabled static key), remaining devices
4837 * that are not configured with an ingress qdisc will bail
4844 *ret
= deliver_skb(skb
, *pt_prev
, orig_dev
);
4848 qdisc_skb_cb(skb
)->pkt_len
= skb
->len
;
4849 skb
->tc_at_ingress
= 1;
4850 mini_qdisc_bstats_cpu_update(miniq
, skb
);
4852 switch (tcf_classify_ingress(skb
, miniq
->block
, miniq
->filter_list
,
4855 case TC_ACT_RECLASSIFY
:
4856 skb
->tc_index
= TC_H_MIN(cl_res
.classid
);
4859 mini_qdisc_qstats_cpu_drop(miniq
);
4867 case TC_ACT_REDIRECT
:
4868 /* skb_mac_header check was done by cls/act_bpf, so
4869 * we can safely push the L2 header back before
4870 * redirecting to another netdev
4872 __skb_push(skb
, skb
->mac_len
);
4873 skb_do_redirect(skb
);
4875 case TC_ACT_CONSUMED
:
4880 #endif /* CONFIG_NET_CLS_ACT */
4885 * netdev_is_rx_handler_busy - check if receive handler is registered
4886 * @dev: device to check
4888 * Check if a receive handler is already registered for a given device.
4889 * Return true if there one.
4891 * The caller must hold the rtnl_mutex.
4893 bool netdev_is_rx_handler_busy(struct net_device
*dev
)
4896 return dev
&& rtnl_dereference(dev
->rx_handler
);
4898 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy
);
4901 * netdev_rx_handler_register - register receive handler
4902 * @dev: device to register a handler for
4903 * @rx_handler: receive handler to register
4904 * @rx_handler_data: data pointer that is used by rx handler
4906 * Register a receive handler for a device. This handler will then be
4907 * called from __netif_receive_skb. A negative errno code is returned
4910 * The caller must hold the rtnl_mutex.
4912 * For a general description of rx_handler, see enum rx_handler_result.
4914 int netdev_rx_handler_register(struct net_device
*dev
,
4915 rx_handler_func_t
*rx_handler
,
4916 void *rx_handler_data
)
4918 if (netdev_is_rx_handler_busy(dev
))
4921 if (dev
->priv_flags
& IFF_NO_RX_HANDLER
)
4924 /* Note: rx_handler_data must be set before rx_handler */
4925 rcu_assign_pointer(dev
->rx_handler_data
, rx_handler_data
);
4926 rcu_assign_pointer(dev
->rx_handler
, rx_handler
);
4930 EXPORT_SYMBOL_GPL(netdev_rx_handler_register
);
4933 * netdev_rx_handler_unregister - unregister receive handler
4934 * @dev: device to unregister a handler from
4936 * Unregister a receive handler from a device.
4938 * The caller must hold the rtnl_mutex.
4940 void netdev_rx_handler_unregister(struct net_device
*dev
)
4944 RCU_INIT_POINTER(dev
->rx_handler
, NULL
);
4945 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4946 * section has a guarantee to see a non NULL rx_handler_data
4950 RCU_INIT_POINTER(dev
->rx_handler_data
, NULL
);
4952 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister
);
4955 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4956 * the special handling of PFMEMALLOC skbs.
4958 static bool skb_pfmemalloc_protocol(struct sk_buff
*skb
)
4960 switch (skb
->protocol
) {
4961 case htons(ETH_P_ARP
):
4962 case htons(ETH_P_IP
):
4963 case htons(ETH_P_IPV6
):
4964 case htons(ETH_P_8021Q
):
4965 case htons(ETH_P_8021AD
):
4972 static inline int nf_ingress(struct sk_buff
*skb
, struct packet_type
**pt_prev
,
4973 int *ret
, struct net_device
*orig_dev
)
4975 if (nf_hook_ingress_active(skb
)) {
4979 *ret
= deliver_skb(skb
, *pt_prev
, orig_dev
);
4984 ingress_retval
= nf_hook_ingress(skb
);
4986 return ingress_retval
;
4991 static int __netif_receive_skb_core(struct sk_buff
*skb
, bool pfmemalloc
,
4992 struct packet_type
**ppt_prev
)
4994 struct packet_type
*ptype
, *pt_prev
;
4995 rx_handler_func_t
*rx_handler
;
4996 struct net_device
*orig_dev
;
4997 bool deliver_exact
= false;
4998 int ret
= NET_RX_DROP
;
5001 net_timestamp_check(!netdev_tstamp_prequeue
, skb
);
5003 trace_netif_receive_skb(skb
);
5005 orig_dev
= skb
->dev
;
5007 skb_reset_network_header(skb
);
5008 if (!skb_transport_header_was_set(skb
))
5009 skb_reset_transport_header(skb
);
5010 skb_reset_mac_len(skb
);
5015 skb
->skb_iif
= skb
->dev
->ifindex
;
5017 __this_cpu_inc(softnet_data
.processed
);
5019 if (static_branch_unlikely(&generic_xdp_needed_key
)) {
5023 ret2
= do_xdp_generic(rcu_dereference(skb
->dev
->xdp_prog
), skb
);
5026 if (ret2
!= XDP_PASS
)
5028 skb_reset_mac_len(skb
);
5031 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
) ||
5032 skb
->protocol
== cpu_to_be16(ETH_P_8021AD
)) {
5033 skb
= skb_vlan_untag(skb
);
5038 if (skb_skip_tc_classify(skb
))
5044 list_for_each_entry_rcu(ptype
, &ptype_all
, list
) {
5046 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
5050 list_for_each_entry_rcu(ptype
, &skb
->dev
->ptype_all
, list
) {
5052 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
5057 #ifdef CONFIG_NET_INGRESS
5058 if (static_branch_unlikely(&ingress_needed_key
)) {
5059 skb
= sch_handle_ingress(skb
, &pt_prev
, &ret
, orig_dev
);
5063 if (nf_ingress(skb
, &pt_prev
, &ret
, orig_dev
) < 0)
5067 skb_reset_redirect(skb
);
5069 if (pfmemalloc
&& !skb_pfmemalloc_protocol(skb
))
5072 if (skb_vlan_tag_present(skb
)) {
5074 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
5077 if (vlan_do_receive(&skb
))
5079 else if (unlikely(!skb
))
5083 rx_handler
= rcu_dereference(skb
->dev
->rx_handler
);
5086 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
5089 switch (rx_handler(&skb
)) {
5090 case RX_HANDLER_CONSUMED
:
5091 ret
= NET_RX_SUCCESS
;
5093 case RX_HANDLER_ANOTHER
:
5095 case RX_HANDLER_EXACT
:
5096 deliver_exact
= true;
5097 case RX_HANDLER_PASS
:
5104 if (unlikely(skb_vlan_tag_present(skb
))) {
5106 if (skb_vlan_tag_get_id(skb
)) {
5107 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5110 skb
->pkt_type
= PACKET_OTHERHOST
;
5111 } else if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
) ||
5112 skb
->protocol
== cpu_to_be16(ETH_P_8021AD
)) {
5113 /* Outer header is 802.1P with vlan 0, inner header is
5114 * 802.1Q or 802.1AD and vlan_do_receive() above could
5115 * not find vlan dev for vlan id 0.
5117 __vlan_hwaccel_clear_tag(skb
);
5118 skb
= skb_vlan_untag(skb
);
5121 if (vlan_do_receive(&skb
))
5122 /* After stripping off 802.1P header with vlan 0
5123 * vlan dev is found for inner header.
5126 else if (unlikely(!skb
))
5129 /* We have stripped outer 802.1P vlan 0 header.
5130 * But could not find vlan dev.
5131 * check again for vlan id to set OTHERHOST.
5135 /* Note: we might in the future use prio bits
5136 * and set skb->priority like in vlan_do_receive()
5137 * For the time being, just ignore Priority Code Point
5139 __vlan_hwaccel_clear_tag(skb
);
5142 type
= skb
->protocol
;
5144 /* deliver only exact match when indicated */
5145 if (likely(!deliver_exact
)) {
5146 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
5147 &ptype_base
[ntohs(type
) &
5151 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
5152 &orig_dev
->ptype_specific
);
5154 if (unlikely(skb
->dev
!= orig_dev
)) {
5155 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
5156 &skb
->dev
->ptype_specific
);
5160 if (unlikely(skb_orphan_frags_rx(skb
, GFP_ATOMIC
)))
5162 *ppt_prev
= pt_prev
;
5166 atomic_long_inc(&skb
->dev
->rx_dropped
);
5168 atomic_long_inc(&skb
->dev
->rx_nohandler
);
5170 /* Jamal, now you will not able to escape explaining
5171 * me how you were going to use this. :-)
5180 static int __netif_receive_skb_one_core(struct sk_buff
*skb
, bool pfmemalloc
)
5182 struct net_device
*orig_dev
= skb
->dev
;
5183 struct packet_type
*pt_prev
= NULL
;
5186 ret
= __netif_receive_skb_core(skb
, pfmemalloc
, &pt_prev
);
5188 ret
= INDIRECT_CALL_INET(pt_prev
->func
, ipv6_rcv
, ip_rcv
, skb
,
5189 skb
->dev
, pt_prev
, orig_dev
);
5194 * netif_receive_skb_core - special purpose version of netif_receive_skb
5195 * @skb: buffer to process
5197 * More direct receive version of netif_receive_skb(). It should
5198 * only be used by callers that have a need to skip RPS and Generic XDP.
5199 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5201 * This function may only be called from softirq context and interrupts
5202 * should be enabled.
5204 * Return values (usually ignored):
5205 * NET_RX_SUCCESS: no congestion
5206 * NET_RX_DROP: packet was dropped
5208 int netif_receive_skb_core(struct sk_buff
*skb
)
5213 ret
= __netif_receive_skb_one_core(skb
, false);
5218 EXPORT_SYMBOL(netif_receive_skb_core
);
5220 static inline void __netif_receive_skb_list_ptype(struct list_head
*head
,
5221 struct packet_type
*pt_prev
,
5222 struct net_device
*orig_dev
)
5224 struct sk_buff
*skb
, *next
;
5228 if (list_empty(head
))
5230 if (pt_prev
->list_func
!= NULL
)
5231 INDIRECT_CALL_INET(pt_prev
->list_func
, ipv6_list_rcv
,
5232 ip_list_rcv
, head
, pt_prev
, orig_dev
);
5234 list_for_each_entry_safe(skb
, next
, head
, list
) {
5235 skb_list_del_init(skb
);
5236 pt_prev
->func(skb
, skb
->dev
, pt_prev
, orig_dev
);
5240 static void __netif_receive_skb_list_core(struct list_head
*head
, bool pfmemalloc
)
5242 /* Fast-path assumptions:
5243 * - There is no RX handler.
5244 * - Only one packet_type matches.
5245 * If either of these fails, we will end up doing some per-packet
5246 * processing in-line, then handling the 'last ptype' for the whole
5247 * sublist. This can't cause out-of-order delivery to any single ptype,
5248 * because the 'last ptype' must be constant across the sublist, and all
5249 * other ptypes are handled per-packet.
5251 /* Current (common) ptype of sublist */
5252 struct packet_type
*pt_curr
= NULL
;
5253 /* Current (common) orig_dev of sublist */
5254 struct net_device
*od_curr
= NULL
;
5255 struct list_head sublist
;
5256 struct sk_buff
*skb
, *next
;
5258 INIT_LIST_HEAD(&sublist
);
5259 list_for_each_entry_safe(skb
, next
, head
, list
) {
5260 struct net_device
*orig_dev
= skb
->dev
;
5261 struct packet_type
*pt_prev
= NULL
;
5263 skb_list_del_init(skb
);
5264 __netif_receive_skb_core(skb
, pfmemalloc
, &pt_prev
);
5267 if (pt_curr
!= pt_prev
|| od_curr
!= orig_dev
) {
5268 /* dispatch old sublist */
5269 __netif_receive_skb_list_ptype(&sublist
, pt_curr
, od_curr
);
5270 /* start new sublist */
5271 INIT_LIST_HEAD(&sublist
);
5275 list_add_tail(&skb
->list
, &sublist
);
5278 /* dispatch final sublist */
5279 __netif_receive_skb_list_ptype(&sublist
, pt_curr
, od_curr
);
5282 static int __netif_receive_skb(struct sk_buff
*skb
)
5286 if (sk_memalloc_socks() && skb_pfmemalloc(skb
)) {
5287 unsigned int noreclaim_flag
;
5290 * PFMEMALLOC skbs are special, they should
5291 * - be delivered to SOCK_MEMALLOC sockets only
5292 * - stay away from userspace
5293 * - have bounded memory usage
5295 * Use PF_MEMALLOC as this saves us from propagating the allocation
5296 * context down to all allocation sites.
5298 noreclaim_flag
= memalloc_noreclaim_save();
5299 ret
= __netif_receive_skb_one_core(skb
, true);
5300 memalloc_noreclaim_restore(noreclaim_flag
);
5302 ret
= __netif_receive_skb_one_core(skb
, false);
5307 static void __netif_receive_skb_list(struct list_head
*head
)
5309 unsigned long noreclaim_flag
= 0;
5310 struct sk_buff
*skb
, *next
;
5311 bool pfmemalloc
= false; /* Is current sublist PF_MEMALLOC? */
5313 list_for_each_entry_safe(skb
, next
, head
, list
) {
5314 if ((sk_memalloc_socks() && skb_pfmemalloc(skb
)) != pfmemalloc
) {
5315 struct list_head sublist
;
5317 /* Handle the previous sublist */
5318 list_cut_before(&sublist
, head
, &skb
->list
);
5319 if (!list_empty(&sublist
))
5320 __netif_receive_skb_list_core(&sublist
, pfmemalloc
);
5321 pfmemalloc
= !pfmemalloc
;
5322 /* See comments in __netif_receive_skb */
5324 noreclaim_flag
= memalloc_noreclaim_save();
5326 memalloc_noreclaim_restore(noreclaim_flag
);
5329 /* Handle the remaining sublist */
5330 if (!list_empty(head
))
5331 __netif_receive_skb_list_core(head
, pfmemalloc
);
5332 /* Restore pflags */
5334 memalloc_noreclaim_restore(noreclaim_flag
);
5337 static int generic_xdp_install(struct net_device
*dev
, struct netdev_bpf
*xdp
)
5339 struct bpf_prog
*old
= rtnl_dereference(dev
->xdp_prog
);
5340 struct bpf_prog
*new = xdp
->prog
;
5343 switch (xdp
->command
) {
5344 case XDP_SETUP_PROG
:
5345 rcu_assign_pointer(dev
->xdp_prog
, new);
5350 static_branch_dec(&generic_xdp_needed_key
);
5351 } else if (new && !old
) {
5352 static_branch_inc(&generic_xdp_needed_key
);
5353 dev_disable_lro(dev
);
5354 dev_disable_gro_hw(dev
);
5358 case XDP_QUERY_PROG
:
5359 xdp
->prog_id
= old
? old
->aux
->id
: 0;
5370 static int netif_receive_skb_internal(struct sk_buff
*skb
)
5374 net_timestamp_check(netdev_tstamp_prequeue
, skb
);
5376 if (skb_defer_rx_timestamp(skb
))
5377 return NET_RX_SUCCESS
;
5381 if (static_branch_unlikely(&rps_needed
)) {
5382 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
5383 int cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
5386 ret
= enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
5392 ret
= __netif_receive_skb(skb
);
5397 static void netif_receive_skb_list_internal(struct list_head
*head
)
5399 struct sk_buff
*skb
, *next
;
5400 struct list_head sublist
;
5402 INIT_LIST_HEAD(&sublist
);
5403 list_for_each_entry_safe(skb
, next
, head
, list
) {
5404 net_timestamp_check(netdev_tstamp_prequeue
, skb
);
5405 skb_list_del_init(skb
);
5406 if (!skb_defer_rx_timestamp(skb
))
5407 list_add_tail(&skb
->list
, &sublist
);
5409 list_splice_init(&sublist
, head
);
5413 if (static_branch_unlikely(&rps_needed
)) {
5414 list_for_each_entry_safe(skb
, next
, head
, list
) {
5415 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
5416 int cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
5419 /* Will be handled, remove from list */
5420 skb_list_del_init(skb
);
5421 enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
5426 __netif_receive_skb_list(head
);
5431 * netif_receive_skb - process receive buffer from network
5432 * @skb: buffer to process
5434 * netif_receive_skb() is the main receive data processing function.
5435 * It always succeeds. The buffer may be dropped during processing
5436 * for congestion control or by the protocol layers.
5438 * This function may only be called from softirq context and interrupts
5439 * should be enabled.
5441 * Return values (usually ignored):
5442 * NET_RX_SUCCESS: no congestion
5443 * NET_RX_DROP: packet was dropped
5445 int netif_receive_skb(struct sk_buff
*skb
)
5449 trace_netif_receive_skb_entry(skb
);
5451 ret
= netif_receive_skb_internal(skb
);
5452 trace_netif_receive_skb_exit(ret
);
5456 EXPORT_SYMBOL(netif_receive_skb
);
5459 * netif_receive_skb_list - process many receive buffers from network
5460 * @head: list of skbs to process.
5462 * Since return value of netif_receive_skb() is normally ignored, and
5463 * wouldn't be meaningful for a list, this function returns void.
5465 * This function may only be called from softirq context and interrupts
5466 * should be enabled.
5468 void netif_receive_skb_list(struct list_head
*head
)
5470 struct sk_buff
*skb
;
5472 if (list_empty(head
))
5474 if (trace_netif_receive_skb_list_entry_enabled()) {
5475 list_for_each_entry(skb
, head
, list
)
5476 trace_netif_receive_skb_list_entry(skb
);
5478 netif_receive_skb_list_internal(head
);
5479 trace_netif_receive_skb_list_exit(0);
5481 EXPORT_SYMBOL(netif_receive_skb_list
);
5483 DEFINE_PER_CPU(struct work_struct
, flush_works
);
5485 /* Network device is going away, flush any packets still pending */
5486 static void flush_backlog(struct work_struct
*work
)
5488 struct sk_buff
*skb
, *tmp
;
5489 struct softnet_data
*sd
;
5492 sd
= this_cpu_ptr(&softnet_data
);
5494 local_irq_disable();
5496 skb_queue_walk_safe(&sd
->input_pkt_queue
, skb
, tmp
) {
5497 if (skb
->dev
->reg_state
== NETREG_UNREGISTERING
) {
5498 __skb_unlink(skb
, &sd
->input_pkt_queue
);
5500 input_queue_head_incr(sd
);
5506 skb_queue_walk_safe(&sd
->process_queue
, skb
, tmp
) {
5507 if (skb
->dev
->reg_state
== NETREG_UNREGISTERING
) {
5508 __skb_unlink(skb
, &sd
->process_queue
);
5510 input_queue_head_incr(sd
);
5516 static void flush_all_backlogs(void)
5522 for_each_online_cpu(cpu
)
5523 queue_work_on(cpu
, system_highpri_wq
,
5524 per_cpu_ptr(&flush_works
, cpu
));
5526 for_each_online_cpu(cpu
)
5527 flush_work(per_cpu_ptr(&flush_works
, cpu
));
5532 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5533 static void gro_normal_list(struct napi_struct
*napi
)
5535 if (!napi
->rx_count
)
5537 netif_receive_skb_list_internal(&napi
->rx_list
);
5538 INIT_LIST_HEAD(&napi
->rx_list
);
5542 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5543 * pass the whole batch up to the stack.
5545 static void gro_normal_one(struct napi_struct
*napi
, struct sk_buff
*skb
)
5547 list_add_tail(&skb
->list
, &napi
->rx_list
);
5548 if (++napi
->rx_count
>= gro_normal_batch
)
5549 gro_normal_list(napi
);
5552 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff
*, int));
5553 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff
*, int));
5554 static int napi_gro_complete(struct napi_struct
*napi
, struct sk_buff
*skb
)
5556 struct packet_offload
*ptype
;
5557 __be16 type
= skb
->protocol
;
5558 struct list_head
*head
= &offload_base
;
5561 BUILD_BUG_ON(sizeof(struct napi_gro_cb
) > sizeof(skb
->cb
));
5563 if (NAPI_GRO_CB(skb
)->count
== 1) {
5564 skb_shinfo(skb
)->gso_size
= 0;
5569 list_for_each_entry_rcu(ptype
, head
, list
) {
5570 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_complete
)
5573 err
= INDIRECT_CALL_INET(ptype
->callbacks
.gro_complete
,
5574 ipv6_gro_complete
, inet_gro_complete
,
5581 WARN_ON(&ptype
->list
== head
);
5583 return NET_RX_SUCCESS
;
5587 gro_normal_one(napi
, skb
);
5588 return NET_RX_SUCCESS
;
5591 static void __napi_gro_flush_chain(struct napi_struct
*napi
, u32 index
,
5594 struct list_head
*head
= &napi
->gro_hash
[index
].list
;
5595 struct sk_buff
*skb
, *p
;
5597 list_for_each_entry_safe_reverse(skb
, p
, head
, list
) {
5598 if (flush_old
&& NAPI_GRO_CB(skb
)->age
== jiffies
)
5600 skb_list_del_init(skb
);
5601 napi_gro_complete(napi
, skb
);
5602 napi
->gro_hash
[index
].count
--;
5605 if (!napi
->gro_hash
[index
].count
)
5606 __clear_bit(index
, &napi
->gro_bitmask
);
5609 /* napi->gro_hash[].list contains packets ordered by age.
5610 * youngest packets at the head of it.
5611 * Complete skbs in reverse order to reduce latencies.
5613 void napi_gro_flush(struct napi_struct
*napi
, bool flush_old
)
5615 unsigned long bitmask
= napi
->gro_bitmask
;
5616 unsigned int i
, base
= ~0U;
5618 while ((i
= ffs(bitmask
)) != 0) {
5621 __napi_gro_flush_chain(napi
, base
, flush_old
);
5624 EXPORT_SYMBOL(napi_gro_flush
);
5626 static struct list_head
*gro_list_prepare(struct napi_struct
*napi
,
5627 struct sk_buff
*skb
)
5629 unsigned int maclen
= skb
->dev
->hard_header_len
;
5630 u32 hash
= skb_get_hash_raw(skb
);
5631 struct list_head
*head
;
5634 head
= &napi
->gro_hash
[hash
& (GRO_HASH_BUCKETS
- 1)].list
;
5635 list_for_each_entry(p
, head
, list
) {
5636 unsigned long diffs
;
5638 NAPI_GRO_CB(p
)->flush
= 0;
5640 if (hash
!= skb_get_hash_raw(p
)) {
5641 NAPI_GRO_CB(p
)->same_flow
= 0;
5645 diffs
= (unsigned long)p
->dev
^ (unsigned long)skb
->dev
;
5646 diffs
|= skb_vlan_tag_present(p
) ^ skb_vlan_tag_present(skb
);
5647 if (skb_vlan_tag_present(p
))
5648 diffs
|= skb_vlan_tag_get(p
) ^ skb_vlan_tag_get(skb
);
5649 diffs
|= skb_metadata_dst_cmp(p
, skb
);
5650 diffs
|= skb_metadata_differs(p
, skb
);
5651 if (maclen
== ETH_HLEN
)
5652 diffs
|= compare_ether_header(skb_mac_header(p
),
5653 skb_mac_header(skb
));
5655 diffs
= memcmp(skb_mac_header(p
),
5656 skb_mac_header(skb
),
5658 NAPI_GRO_CB(p
)->same_flow
= !diffs
;
5664 static void skb_gro_reset_offset(struct sk_buff
*skb
)
5666 const struct skb_shared_info
*pinfo
= skb_shinfo(skb
);
5667 const skb_frag_t
*frag0
= &pinfo
->frags
[0];
5669 NAPI_GRO_CB(skb
)->data_offset
= 0;
5670 NAPI_GRO_CB(skb
)->frag0
= NULL
;
5671 NAPI_GRO_CB(skb
)->frag0_len
= 0;
5673 if (!skb_headlen(skb
) && pinfo
->nr_frags
&&
5674 !PageHighMem(skb_frag_page(frag0
))) {
5675 NAPI_GRO_CB(skb
)->frag0
= skb_frag_address(frag0
);
5676 NAPI_GRO_CB(skb
)->frag0_len
= min_t(unsigned int,
5677 skb_frag_size(frag0
),
5678 skb
->end
- skb
->tail
);
5682 static void gro_pull_from_frag0(struct sk_buff
*skb
, int grow
)
5684 struct skb_shared_info
*pinfo
= skb_shinfo(skb
);
5686 BUG_ON(skb
->end
- skb
->tail
< grow
);
5688 memcpy(skb_tail_pointer(skb
), NAPI_GRO_CB(skb
)->frag0
, grow
);
5690 skb
->data_len
-= grow
;
5693 skb_frag_off_add(&pinfo
->frags
[0], grow
);
5694 skb_frag_size_sub(&pinfo
->frags
[0], grow
);
5696 if (unlikely(!skb_frag_size(&pinfo
->frags
[0]))) {
5697 skb_frag_unref(skb
, 0);
5698 memmove(pinfo
->frags
, pinfo
->frags
+ 1,
5699 --pinfo
->nr_frags
* sizeof(pinfo
->frags
[0]));
5703 static void gro_flush_oldest(struct napi_struct
*napi
, struct list_head
*head
)
5705 struct sk_buff
*oldest
;
5707 oldest
= list_last_entry(head
, struct sk_buff
, list
);
5709 /* We are called with head length >= MAX_GRO_SKBS, so this is
5712 if (WARN_ON_ONCE(!oldest
))
5715 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5718 skb_list_del_init(oldest
);
5719 napi_gro_complete(napi
, oldest
);
5722 INDIRECT_CALLABLE_DECLARE(struct sk_buff
*inet_gro_receive(struct list_head
*,
5724 INDIRECT_CALLABLE_DECLARE(struct sk_buff
*ipv6_gro_receive(struct list_head
*,
5726 static enum gro_result
dev_gro_receive(struct napi_struct
*napi
, struct sk_buff
*skb
)
5728 u32 hash
= skb_get_hash_raw(skb
) & (GRO_HASH_BUCKETS
- 1);
5729 struct list_head
*head
= &offload_base
;
5730 struct packet_offload
*ptype
;
5731 __be16 type
= skb
->protocol
;
5732 struct list_head
*gro_head
;
5733 struct sk_buff
*pp
= NULL
;
5734 enum gro_result ret
;
5738 if (netif_elide_gro(skb
->dev
))
5741 gro_head
= gro_list_prepare(napi
, skb
);
5744 list_for_each_entry_rcu(ptype
, head
, list
) {
5745 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_receive
)
5748 skb_set_network_header(skb
, skb_gro_offset(skb
));
5749 skb_reset_mac_len(skb
);
5750 NAPI_GRO_CB(skb
)->same_flow
= 0;
5751 NAPI_GRO_CB(skb
)->flush
= skb_is_gso(skb
) || skb_has_frag_list(skb
);
5752 NAPI_GRO_CB(skb
)->free
= 0;
5753 NAPI_GRO_CB(skb
)->encap_mark
= 0;
5754 NAPI_GRO_CB(skb
)->recursion_counter
= 0;
5755 NAPI_GRO_CB(skb
)->is_fou
= 0;
5756 NAPI_GRO_CB(skb
)->is_atomic
= 1;
5757 NAPI_GRO_CB(skb
)->gro_remcsum_start
= 0;
5759 /* Setup for GRO checksum validation */
5760 switch (skb
->ip_summed
) {
5761 case CHECKSUM_COMPLETE
:
5762 NAPI_GRO_CB(skb
)->csum
= skb
->csum
;
5763 NAPI_GRO_CB(skb
)->csum_valid
= 1;
5764 NAPI_GRO_CB(skb
)->csum_cnt
= 0;
5766 case CHECKSUM_UNNECESSARY
:
5767 NAPI_GRO_CB(skb
)->csum_cnt
= skb
->csum_level
+ 1;
5768 NAPI_GRO_CB(skb
)->csum_valid
= 0;
5771 NAPI_GRO_CB(skb
)->csum_cnt
= 0;
5772 NAPI_GRO_CB(skb
)->csum_valid
= 0;
5775 pp
= INDIRECT_CALL_INET(ptype
->callbacks
.gro_receive
,
5776 ipv6_gro_receive
, inet_gro_receive
,
5782 if (&ptype
->list
== head
)
5785 if (PTR_ERR(pp
) == -EINPROGRESS
) {
5790 same_flow
= NAPI_GRO_CB(skb
)->same_flow
;
5791 ret
= NAPI_GRO_CB(skb
)->free
? GRO_MERGED_FREE
: GRO_MERGED
;
5794 skb_list_del_init(pp
);
5795 napi_gro_complete(napi
, pp
);
5796 napi
->gro_hash
[hash
].count
--;
5802 if (NAPI_GRO_CB(skb
)->flush
)
5805 if (unlikely(napi
->gro_hash
[hash
].count
>= MAX_GRO_SKBS
)) {
5806 gro_flush_oldest(napi
, gro_head
);
5808 napi
->gro_hash
[hash
].count
++;
5810 NAPI_GRO_CB(skb
)->count
= 1;
5811 NAPI_GRO_CB(skb
)->age
= jiffies
;
5812 NAPI_GRO_CB(skb
)->last
= skb
;
5813 skb_shinfo(skb
)->gso_size
= skb_gro_len(skb
);
5814 list_add(&skb
->list
, gro_head
);
5818 grow
= skb_gro_offset(skb
) - skb_headlen(skb
);
5820 gro_pull_from_frag0(skb
, grow
);
5822 if (napi
->gro_hash
[hash
].count
) {
5823 if (!test_bit(hash
, &napi
->gro_bitmask
))
5824 __set_bit(hash
, &napi
->gro_bitmask
);
5825 } else if (test_bit(hash
, &napi
->gro_bitmask
)) {
5826 __clear_bit(hash
, &napi
->gro_bitmask
);
5836 struct packet_offload
*gro_find_receive_by_type(__be16 type
)
5838 struct list_head
*offload_head
= &offload_base
;
5839 struct packet_offload
*ptype
;
5841 list_for_each_entry_rcu(ptype
, offload_head
, list
) {
5842 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_receive
)
5848 EXPORT_SYMBOL(gro_find_receive_by_type
);
5850 struct packet_offload
*gro_find_complete_by_type(__be16 type
)
5852 struct list_head
*offload_head
= &offload_base
;
5853 struct packet_offload
*ptype
;
5855 list_for_each_entry_rcu(ptype
, offload_head
, list
) {
5856 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_complete
)
5862 EXPORT_SYMBOL(gro_find_complete_by_type
);
5864 static void napi_skb_free_stolen_head(struct sk_buff
*skb
)
5868 kmem_cache_free(skbuff_head_cache
, skb
);
5871 static gro_result_t
napi_skb_finish(struct napi_struct
*napi
,
5872 struct sk_buff
*skb
,
5877 gro_normal_one(napi
, skb
);
5884 case GRO_MERGED_FREE
:
5885 if (NAPI_GRO_CB(skb
)->free
== NAPI_GRO_FREE_STOLEN_HEAD
)
5886 napi_skb_free_stolen_head(skb
);
5900 gro_result_t
napi_gro_receive(struct napi_struct
*napi
, struct sk_buff
*skb
)
5904 skb_mark_napi_id(skb
, napi
);
5905 trace_napi_gro_receive_entry(skb
);
5907 skb_gro_reset_offset(skb
);
5909 ret
= napi_skb_finish(napi
, skb
, dev_gro_receive(napi
, skb
));
5910 trace_napi_gro_receive_exit(ret
);
5914 EXPORT_SYMBOL(napi_gro_receive
);
5916 static void napi_reuse_skb(struct napi_struct
*napi
, struct sk_buff
*skb
)
5918 if (unlikely(skb
->pfmemalloc
)) {
5922 __skb_pull(skb
, skb_headlen(skb
));
5923 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5924 skb_reserve(skb
, NET_SKB_PAD
+ NET_IP_ALIGN
- skb_headroom(skb
));
5925 __vlan_hwaccel_clear_tag(skb
);
5926 skb
->dev
= napi
->dev
;
5929 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5930 skb
->pkt_type
= PACKET_HOST
;
5932 skb
->encapsulation
= 0;
5933 skb_shinfo(skb
)->gso_type
= 0;
5934 skb
->truesize
= SKB_TRUESIZE(skb_end_offset(skb
));
5940 struct sk_buff
*napi_get_frags(struct napi_struct
*napi
)
5942 struct sk_buff
*skb
= napi
->skb
;
5945 skb
= napi_alloc_skb(napi
, GRO_MAX_HEAD
);
5948 skb_mark_napi_id(skb
, napi
);
5953 EXPORT_SYMBOL(napi_get_frags
);
5955 static gro_result_t
napi_frags_finish(struct napi_struct
*napi
,
5956 struct sk_buff
*skb
,
5962 __skb_push(skb
, ETH_HLEN
);
5963 skb
->protocol
= eth_type_trans(skb
, skb
->dev
);
5964 if (ret
== GRO_NORMAL
)
5965 gro_normal_one(napi
, skb
);
5969 napi_reuse_skb(napi
, skb
);
5972 case GRO_MERGED_FREE
:
5973 if (NAPI_GRO_CB(skb
)->free
== NAPI_GRO_FREE_STOLEN_HEAD
)
5974 napi_skb_free_stolen_head(skb
);
5976 napi_reuse_skb(napi
, skb
);
5987 /* Upper GRO stack assumes network header starts at gro_offset=0
5988 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5989 * We copy ethernet header into skb->data to have a common layout.
5991 static struct sk_buff
*napi_frags_skb(struct napi_struct
*napi
)
5993 struct sk_buff
*skb
= napi
->skb
;
5994 const struct ethhdr
*eth
;
5995 unsigned int hlen
= sizeof(*eth
);
5999 skb_reset_mac_header(skb
);
6000 skb_gro_reset_offset(skb
);
6002 if (unlikely(skb_gro_header_hard(skb
, hlen
))) {
6003 eth
= skb_gro_header_slow(skb
, hlen
, 0);
6004 if (unlikely(!eth
)) {
6005 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6006 __func__
, napi
->dev
->name
);
6007 napi_reuse_skb(napi
, skb
);
6011 eth
= (const struct ethhdr
*)skb
->data
;
6012 gro_pull_from_frag0(skb
, hlen
);
6013 NAPI_GRO_CB(skb
)->frag0
+= hlen
;
6014 NAPI_GRO_CB(skb
)->frag0_len
-= hlen
;
6016 __skb_pull(skb
, hlen
);
6019 * This works because the only protocols we care about don't require
6021 * We'll fix it up properly in napi_frags_finish()
6023 skb
->protocol
= eth
->h_proto
;
6028 gro_result_t
napi_gro_frags(struct napi_struct
*napi
)
6031 struct sk_buff
*skb
= napi_frags_skb(napi
);
6036 trace_napi_gro_frags_entry(skb
);
6038 ret
= napi_frags_finish(napi
, skb
, dev_gro_receive(napi
, skb
));
6039 trace_napi_gro_frags_exit(ret
);
6043 EXPORT_SYMBOL(napi_gro_frags
);
6045 /* Compute the checksum from gro_offset and return the folded value
6046 * after adding in any pseudo checksum.
6048 __sum16
__skb_gro_checksum_complete(struct sk_buff
*skb
)
6053 wsum
= skb_checksum(skb
, skb_gro_offset(skb
), skb_gro_len(skb
), 0);
6055 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6056 sum
= csum_fold(csum_add(NAPI_GRO_CB(skb
)->csum
, wsum
));
6057 /* See comments in __skb_checksum_complete(). */
6059 if (unlikely(skb
->ip_summed
== CHECKSUM_COMPLETE
) &&
6060 !skb
->csum_complete_sw
)
6061 netdev_rx_csum_fault(skb
->dev
, skb
);
6064 NAPI_GRO_CB(skb
)->csum
= wsum
;
6065 NAPI_GRO_CB(skb
)->csum_valid
= 1;
6069 EXPORT_SYMBOL(__skb_gro_checksum_complete
);
6071 static void net_rps_send_ipi(struct softnet_data
*remsd
)
6075 struct softnet_data
*next
= remsd
->rps_ipi_next
;
6077 if (cpu_online(remsd
->cpu
))
6078 smp_call_function_single_async(remsd
->cpu
, &remsd
->csd
);
6085 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6086 * Note: called with local irq disabled, but exits with local irq enabled.
6088 static void net_rps_action_and_irq_enable(struct softnet_data
*sd
)
6091 struct softnet_data
*remsd
= sd
->rps_ipi_list
;
6094 sd
->rps_ipi_list
= NULL
;
6098 /* Send pending IPI's to kick RPS processing on remote cpus. */
6099 net_rps_send_ipi(remsd
);
6105 static bool sd_has_rps_ipi_waiting(struct softnet_data
*sd
)
6108 return sd
->rps_ipi_list
!= NULL
;
6114 static int process_backlog(struct napi_struct
*napi
, int quota
)
6116 struct softnet_data
*sd
= container_of(napi
, struct softnet_data
, backlog
);
6120 /* Check if we have pending ipi, its better to send them now,
6121 * not waiting net_rx_action() end.
6123 if (sd_has_rps_ipi_waiting(sd
)) {
6124 local_irq_disable();
6125 net_rps_action_and_irq_enable(sd
);
6128 napi
->weight
= dev_rx_weight
;
6130 struct sk_buff
*skb
;
6132 while ((skb
= __skb_dequeue(&sd
->process_queue
))) {
6134 __netif_receive_skb(skb
);
6136 input_queue_head_incr(sd
);
6137 if (++work
>= quota
)
6142 local_irq_disable();
6144 if (skb_queue_empty(&sd
->input_pkt_queue
)) {
6146 * Inline a custom version of __napi_complete().
6147 * only current cpu owns and manipulates this napi,
6148 * and NAPI_STATE_SCHED is the only possible flag set
6150 * We can use a plain write instead of clear_bit(),
6151 * and we dont need an smp_mb() memory barrier.
6156 skb_queue_splice_tail_init(&sd
->input_pkt_queue
,
6157 &sd
->process_queue
);
6167 * __napi_schedule - schedule for receive
6168 * @n: entry to schedule
6170 * The entry's receive function will be scheduled to run.
6171 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6173 void __napi_schedule(struct napi_struct
*n
)
6175 unsigned long flags
;
6177 local_irq_save(flags
);
6178 ____napi_schedule(this_cpu_ptr(&softnet_data
), n
);
6179 local_irq_restore(flags
);
6181 EXPORT_SYMBOL(__napi_schedule
);
6184 * napi_schedule_prep - check if napi can be scheduled
6187 * Test if NAPI routine is already running, and if not mark
6188 * it as running. This is used as a condition variable
6189 * insure only one NAPI poll instance runs. We also make
6190 * sure there is no pending NAPI disable.
6192 bool napi_schedule_prep(struct napi_struct
*n
)
6194 unsigned long val
, new;
6197 val
= READ_ONCE(n
->state
);
6198 if (unlikely(val
& NAPIF_STATE_DISABLE
))
6200 new = val
| NAPIF_STATE_SCHED
;
6202 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6203 * This was suggested by Alexander Duyck, as compiler
6204 * emits better code than :
6205 * if (val & NAPIF_STATE_SCHED)
6206 * new |= NAPIF_STATE_MISSED;
6208 new |= (val
& NAPIF_STATE_SCHED
) / NAPIF_STATE_SCHED
*
6210 } while (cmpxchg(&n
->state
, val
, new) != val
);
6212 return !(val
& NAPIF_STATE_SCHED
);
6214 EXPORT_SYMBOL(napi_schedule_prep
);
6217 * __napi_schedule_irqoff - schedule for receive
6218 * @n: entry to schedule
6220 * Variant of __napi_schedule() assuming hard irqs are masked
6222 void __napi_schedule_irqoff(struct napi_struct
*n
)
6224 ____napi_schedule(this_cpu_ptr(&softnet_data
), n
);
6226 EXPORT_SYMBOL(__napi_schedule_irqoff
);
6228 bool napi_complete_done(struct napi_struct
*n
, int work_done
)
6230 unsigned long flags
, val
, new;
6233 * 1) Don't let napi dequeue from the cpu poll list
6234 * just in case its running on a different cpu.
6235 * 2) If we are busy polling, do nothing here, we have
6236 * the guarantee we will be called later.
6238 if (unlikely(n
->state
& (NAPIF_STATE_NPSVC
|
6239 NAPIF_STATE_IN_BUSY_POLL
)))
6242 if (n
->gro_bitmask
) {
6243 unsigned long timeout
= 0;
6246 timeout
= n
->dev
->gro_flush_timeout
;
6248 /* When the NAPI instance uses a timeout and keeps postponing
6249 * it, we need to bound somehow the time packets are kept in
6252 napi_gro_flush(n
, !!timeout
);
6254 hrtimer_start(&n
->timer
, ns_to_ktime(timeout
),
6255 HRTIMER_MODE_REL_PINNED
);
6260 if (unlikely(!list_empty(&n
->poll_list
))) {
6261 /* If n->poll_list is not empty, we need to mask irqs */
6262 local_irq_save(flags
);
6263 list_del_init(&n
->poll_list
);
6264 local_irq_restore(flags
);
6268 val
= READ_ONCE(n
->state
);
6270 WARN_ON_ONCE(!(val
& NAPIF_STATE_SCHED
));
6272 new = val
& ~(NAPIF_STATE_MISSED
| NAPIF_STATE_SCHED
);
6274 /* If STATE_MISSED was set, leave STATE_SCHED set,
6275 * because we will call napi->poll() one more time.
6276 * This C code was suggested by Alexander Duyck to help gcc.
6278 new |= (val
& NAPIF_STATE_MISSED
) / NAPIF_STATE_MISSED
*
6280 } while (cmpxchg(&n
->state
, val
, new) != val
);
6282 if (unlikely(val
& NAPIF_STATE_MISSED
)) {
6289 EXPORT_SYMBOL(napi_complete_done
);
6291 /* must be called under rcu_read_lock(), as we dont take a reference */
6292 static struct napi_struct
*napi_by_id(unsigned int napi_id
)
6294 unsigned int hash
= napi_id
% HASH_SIZE(napi_hash
);
6295 struct napi_struct
*napi
;
6297 hlist_for_each_entry_rcu(napi
, &napi_hash
[hash
], napi_hash_node
)
6298 if (napi
->napi_id
== napi_id
)
6304 #if defined(CONFIG_NET_RX_BUSY_POLL)
6306 #define BUSY_POLL_BUDGET 8
6308 static void busy_poll_stop(struct napi_struct
*napi
, void *have_poll_lock
)
6312 /* Busy polling means there is a high chance device driver hard irq
6313 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6314 * set in napi_schedule_prep().
6315 * Since we are about to call napi->poll() once more, we can safely
6316 * clear NAPI_STATE_MISSED.
6318 * Note: x86 could use a single "lock and ..." instruction
6319 * to perform these two clear_bit()
6321 clear_bit(NAPI_STATE_MISSED
, &napi
->state
);
6322 clear_bit(NAPI_STATE_IN_BUSY_POLL
, &napi
->state
);
6326 /* All we really want here is to re-enable device interrupts.
6327 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6329 rc
= napi
->poll(napi
, BUSY_POLL_BUDGET
);
6330 /* We can't gro_normal_list() here, because napi->poll() might have
6331 * rearmed the napi (napi_complete_done()) in which case it could
6332 * already be running on another CPU.
6334 trace_napi_poll(napi
, rc
, BUSY_POLL_BUDGET
);
6335 netpoll_poll_unlock(have_poll_lock
);
6336 if (rc
== BUSY_POLL_BUDGET
) {
6337 /* As the whole budget was spent, we still own the napi so can
6338 * safely handle the rx_list.
6340 gro_normal_list(napi
);
6341 __napi_schedule(napi
);
6346 void napi_busy_loop(unsigned int napi_id
,
6347 bool (*loop_end
)(void *, unsigned long),
6350 unsigned long start_time
= loop_end
? busy_loop_current_time() : 0;
6351 int (*napi_poll
)(struct napi_struct
*napi
, int budget
);
6352 void *have_poll_lock
= NULL
;
6353 struct napi_struct
*napi
;
6360 napi
= napi_by_id(napi_id
);
6370 unsigned long val
= READ_ONCE(napi
->state
);
6372 /* If multiple threads are competing for this napi,
6373 * we avoid dirtying napi->state as much as we can.
6375 if (val
& (NAPIF_STATE_DISABLE
| NAPIF_STATE_SCHED
|
6376 NAPIF_STATE_IN_BUSY_POLL
))
6378 if (cmpxchg(&napi
->state
, val
,
6379 val
| NAPIF_STATE_IN_BUSY_POLL
|
6380 NAPIF_STATE_SCHED
) != val
)
6382 have_poll_lock
= netpoll_poll_lock(napi
);
6383 napi_poll
= napi
->poll
;
6385 work
= napi_poll(napi
, BUSY_POLL_BUDGET
);
6386 trace_napi_poll(napi
, work
, BUSY_POLL_BUDGET
);
6387 gro_normal_list(napi
);
6390 __NET_ADD_STATS(dev_net(napi
->dev
),
6391 LINUX_MIB_BUSYPOLLRXPACKETS
, work
);
6394 if (!loop_end
|| loop_end(loop_end_arg
, start_time
))
6397 if (unlikely(need_resched())) {
6399 busy_poll_stop(napi
, have_poll_lock
);
6403 if (loop_end(loop_end_arg
, start_time
))
6410 busy_poll_stop(napi
, have_poll_lock
);
6415 EXPORT_SYMBOL(napi_busy_loop
);
6417 #endif /* CONFIG_NET_RX_BUSY_POLL */
6419 static void napi_hash_add(struct napi_struct
*napi
)
6421 if (test_bit(NAPI_STATE_NO_BUSY_POLL
, &napi
->state
) ||
6422 test_and_set_bit(NAPI_STATE_HASHED
, &napi
->state
))
6425 spin_lock(&napi_hash_lock
);
6427 /* 0..NR_CPUS range is reserved for sender_cpu use */
6429 if (unlikely(++napi_gen_id
< MIN_NAPI_ID
))
6430 napi_gen_id
= MIN_NAPI_ID
;
6431 } while (napi_by_id(napi_gen_id
));
6432 napi
->napi_id
= napi_gen_id
;
6434 hlist_add_head_rcu(&napi
->napi_hash_node
,
6435 &napi_hash
[napi
->napi_id
% HASH_SIZE(napi_hash
)]);
6437 spin_unlock(&napi_hash_lock
);
6440 /* Warning : caller is responsible to make sure rcu grace period
6441 * is respected before freeing memory containing @napi
6443 bool napi_hash_del(struct napi_struct
*napi
)
6445 bool rcu_sync_needed
= false;
6447 spin_lock(&napi_hash_lock
);
6449 if (test_and_clear_bit(NAPI_STATE_HASHED
, &napi
->state
)) {
6450 rcu_sync_needed
= true;
6451 hlist_del_rcu(&napi
->napi_hash_node
);
6453 spin_unlock(&napi_hash_lock
);
6454 return rcu_sync_needed
;
6456 EXPORT_SYMBOL_GPL(napi_hash_del
);
6458 static enum hrtimer_restart
napi_watchdog(struct hrtimer
*timer
)
6460 struct napi_struct
*napi
;
6462 napi
= container_of(timer
, struct napi_struct
, timer
);
6464 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6465 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6467 if (napi
->gro_bitmask
&& !napi_disable_pending(napi
) &&
6468 !test_and_set_bit(NAPI_STATE_SCHED
, &napi
->state
))
6469 __napi_schedule_irqoff(napi
);
6471 return HRTIMER_NORESTART
;
6474 static void init_gro_hash(struct napi_struct
*napi
)
6478 for (i
= 0; i
< GRO_HASH_BUCKETS
; i
++) {
6479 INIT_LIST_HEAD(&napi
->gro_hash
[i
].list
);
6480 napi
->gro_hash
[i
].count
= 0;
6482 napi
->gro_bitmask
= 0;
6485 void netif_napi_add(struct net_device
*dev
, struct napi_struct
*napi
,
6486 int (*poll
)(struct napi_struct
*, int), int weight
)
6488 INIT_LIST_HEAD(&napi
->poll_list
);
6489 hrtimer_init(&napi
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_PINNED
);
6490 napi
->timer
.function
= napi_watchdog
;
6491 init_gro_hash(napi
);
6493 INIT_LIST_HEAD(&napi
->rx_list
);
6496 if (weight
> NAPI_POLL_WEIGHT
)
6497 netdev_err_once(dev
, "%s() called with weight %d\n", __func__
,
6499 napi
->weight
= weight
;
6500 list_add(&napi
->dev_list
, &dev
->napi_list
);
6502 #ifdef CONFIG_NETPOLL
6503 napi
->poll_owner
= -1;
6505 set_bit(NAPI_STATE_SCHED
, &napi
->state
);
6506 napi_hash_add(napi
);
6508 EXPORT_SYMBOL(netif_napi_add
);
6510 void napi_disable(struct napi_struct
*n
)
6513 set_bit(NAPI_STATE_DISABLE
, &n
->state
);
6515 while (test_and_set_bit(NAPI_STATE_SCHED
, &n
->state
))
6517 while (test_and_set_bit(NAPI_STATE_NPSVC
, &n
->state
))
6520 hrtimer_cancel(&n
->timer
);
6522 clear_bit(NAPI_STATE_DISABLE
, &n
->state
);
6524 EXPORT_SYMBOL(napi_disable
);
6526 static void flush_gro_hash(struct napi_struct
*napi
)
6530 for (i
= 0; i
< GRO_HASH_BUCKETS
; i
++) {
6531 struct sk_buff
*skb
, *n
;
6533 list_for_each_entry_safe(skb
, n
, &napi
->gro_hash
[i
].list
, list
)
6535 napi
->gro_hash
[i
].count
= 0;
6539 /* Must be called in process context */
6540 void netif_napi_del(struct napi_struct
*napi
)
6543 if (napi_hash_del(napi
))
6545 list_del_init(&napi
->dev_list
);
6546 napi_free_frags(napi
);
6548 flush_gro_hash(napi
);
6549 napi
->gro_bitmask
= 0;
6551 EXPORT_SYMBOL(netif_napi_del
);
6553 static int napi_poll(struct napi_struct
*n
, struct list_head
*repoll
)
6558 list_del_init(&n
->poll_list
);
6560 have
= netpoll_poll_lock(n
);
6564 /* This NAPI_STATE_SCHED test is for avoiding a race
6565 * with netpoll's poll_napi(). Only the entity which
6566 * obtains the lock and sees NAPI_STATE_SCHED set will
6567 * actually make the ->poll() call. Therefore we avoid
6568 * accidentally calling ->poll() when NAPI is not scheduled.
6571 if (test_bit(NAPI_STATE_SCHED
, &n
->state
)) {
6572 work
= n
->poll(n
, weight
);
6573 trace_napi_poll(n
, work
, weight
);
6576 WARN_ON_ONCE(work
> weight
);
6578 if (likely(work
< weight
))
6581 /* Drivers must not modify the NAPI state if they
6582 * consume the entire weight. In such cases this code
6583 * still "owns" the NAPI instance and therefore can
6584 * move the instance around on the list at-will.
6586 if (unlikely(napi_disable_pending(n
))) {
6591 if (n
->gro_bitmask
) {
6592 /* flush too old packets
6593 * If HZ < 1000, flush all packets.
6595 napi_gro_flush(n
, HZ
>= 1000);
6600 /* Some drivers may have called napi_schedule
6601 * prior to exhausting their budget.
6603 if (unlikely(!list_empty(&n
->poll_list
))) {
6604 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6605 n
->dev
? n
->dev
->name
: "backlog");
6609 list_add_tail(&n
->poll_list
, repoll
);
6612 netpoll_poll_unlock(have
);
6617 static __latent_entropy
void net_rx_action(struct softirq_action
*h
)
6619 struct softnet_data
*sd
= this_cpu_ptr(&softnet_data
);
6620 unsigned long time_limit
= jiffies
+
6621 usecs_to_jiffies(netdev_budget_usecs
);
6622 int budget
= netdev_budget
;
6626 local_irq_disable();
6627 list_splice_init(&sd
->poll_list
, &list
);
6631 struct napi_struct
*n
;
6633 if (list_empty(&list
)) {
6634 if (!sd_has_rps_ipi_waiting(sd
) && list_empty(&repoll
))
6639 n
= list_first_entry(&list
, struct napi_struct
, poll_list
);
6640 budget
-= napi_poll(n
, &repoll
);
6642 /* If softirq window is exhausted then punt.
6643 * Allow this to run for 2 jiffies since which will allow
6644 * an average latency of 1.5/HZ.
6646 if (unlikely(budget
<= 0 ||
6647 time_after_eq(jiffies
, time_limit
))) {
6653 local_irq_disable();
6655 list_splice_tail_init(&sd
->poll_list
, &list
);
6656 list_splice_tail(&repoll
, &list
);
6657 list_splice(&list
, &sd
->poll_list
);
6658 if (!list_empty(&sd
->poll_list
))
6659 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
6661 net_rps_action_and_irq_enable(sd
);
6663 __kfree_skb_flush();
6666 struct netdev_adjacent
{
6667 struct net_device
*dev
;
6669 /* upper master flag, there can only be one master device per list */
6672 /* lookup ignore flag */
6675 /* counter for the number of times this device was added to us */
6678 /* private field for the users */
6681 struct list_head list
;
6682 struct rcu_head rcu
;
6685 static struct netdev_adjacent
*__netdev_find_adj(struct net_device
*adj_dev
,
6686 struct list_head
*adj_list
)
6688 struct netdev_adjacent
*adj
;
6690 list_for_each_entry(adj
, adj_list
, list
) {
6691 if (adj
->dev
== adj_dev
)
6697 static int ____netdev_has_upper_dev(struct net_device
*upper_dev
, void *data
)
6699 struct net_device
*dev
= data
;
6701 return upper_dev
== dev
;
6705 * netdev_has_upper_dev - Check if device is linked to an upper device
6707 * @upper_dev: upper device to check
6709 * Find out if a device is linked to specified upper device and return true
6710 * in case it is. Note that this checks only immediate upper device,
6711 * not through a complete stack of devices. The caller must hold the RTNL lock.
6713 bool netdev_has_upper_dev(struct net_device
*dev
,
6714 struct net_device
*upper_dev
)
6718 return netdev_walk_all_upper_dev_rcu(dev
, ____netdev_has_upper_dev
,
6721 EXPORT_SYMBOL(netdev_has_upper_dev
);
6724 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6726 * @upper_dev: upper device to check
6728 * Find out if a device is linked to specified upper device and return true
6729 * in case it is. Note that this checks the entire upper device chain.
6730 * The caller must hold rcu lock.
6733 bool netdev_has_upper_dev_all_rcu(struct net_device
*dev
,
6734 struct net_device
*upper_dev
)
6736 return !!netdev_walk_all_upper_dev_rcu(dev
, ____netdev_has_upper_dev
,
6739 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu
);
6742 * netdev_has_any_upper_dev - Check if device is linked to some device
6745 * Find out if a device is linked to an upper device and return true in case
6746 * it is. The caller must hold the RTNL lock.
6748 bool netdev_has_any_upper_dev(struct net_device
*dev
)
6752 return !list_empty(&dev
->adj_list
.upper
);
6754 EXPORT_SYMBOL(netdev_has_any_upper_dev
);
6757 * netdev_master_upper_dev_get - Get master upper device
6760 * Find a master upper device and return pointer to it or NULL in case
6761 * it's not there. The caller must hold the RTNL lock.
6763 struct net_device
*netdev_master_upper_dev_get(struct net_device
*dev
)
6765 struct netdev_adjacent
*upper
;
6769 if (list_empty(&dev
->adj_list
.upper
))
6772 upper
= list_first_entry(&dev
->adj_list
.upper
,
6773 struct netdev_adjacent
, list
);
6774 if (likely(upper
->master
))
6778 EXPORT_SYMBOL(netdev_master_upper_dev_get
);
6780 static struct net_device
*__netdev_master_upper_dev_get(struct net_device
*dev
)
6782 struct netdev_adjacent
*upper
;
6786 if (list_empty(&dev
->adj_list
.upper
))
6789 upper
= list_first_entry(&dev
->adj_list
.upper
,
6790 struct netdev_adjacent
, list
);
6791 if (likely(upper
->master
) && !upper
->ignore
)
6797 * netdev_has_any_lower_dev - Check if device is linked to some device
6800 * Find out if a device is linked to a lower device and return true in case
6801 * it is. The caller must hold the RTNL lock.
6803 static bool netdev_has_any_lower_dev(struct net_device
*dev
)
6807 return !list_empty(&dev
->adj_list
.lower
);
6810 void *netdev_adjacent_get_private(struct list_head
*adj_list
)
6812 struct netdev_adjacent
*adj
;
6814 adj
= list_entry(adj_list
, struct netdev_adjacent
, list
);
6816 return adj
->private;
6818 EXPORT_SYMBOL(netdev_adjacent_get_private
);
6821 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6823 * @iter: list_head ** of the current position
6825 * Gets the next device from the dev's upper list, starting from iter
6826 * position. The caller must hold RCU read lock.
6828 struct net_device
*netdev_upper_get_next_dev_rcu(struct net_device
*dev
,
6829 struct list_head
**iter
)
6831 struct netdev_adjacent
*upper
;
6833 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6835 upper
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
6837 if (&upper
->list
== &dev
->adj_list
.upper
)
6840 *iter
= &upper
->list
;
6844 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu
);
6846 static struct net_device
*__netdev_next_upper_dev(struct net_device
*dev
,
6847 struct list_head
**iter
,
6850 struct netdev_adjacent
*upper
;
6852 upper
= list_entry((*iter
)->next
, struct netdev_adjacent
, list
);
6854 if (&upper
->list
== &dev
->adj_list
.upper
)
6857 *iter
= &upper
->list
;
6858 *ignore
= upper
->ignore
;
6863 static struct net_device
*netdev_next_upper_dev_rcu(struct net_device
*dev
,
6864 struct list_head
**iter
)
6866 struct netdev_adjacent
*upper
;
6868 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6870 upper
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
6872 if (&upper
->list
== &dev
->adj_list
.upper
)
6875 *iter
= &upper
->list
;
6880 static int __netdev_walk_all_upper_dev(struct net_device
*dev
,
6881 int (*fn
)(struct net_device
*dev
,
6885 struct net_device
*udev
, *next
, *now
, *dev_stack
[MAX_NEST_DEV
+ 1];
6886 struct list_head
*niter
, *iter
, *iter_stack
[MAX_NEST_DEV
+ 1];
6891 iter
= &dev
->adj_list
.upper
;
6895 ret
= fn(now
, data
);
6902 udev
= __netdev_next_upper_dev(now
, &iter
, &ignore
);
6909 niter
= &udev
->adj_list
.upper
;
6910 dev_stack
[cur
] = now
;
6911 iter_stack
[cur
++] = iter
;
6918 next
= dev_stack
[--cur
];
6919 niter
= iter_stack
[cur
];
6929 int netdev_walk_all_upper_dev_rcu(struct net_device
*dev
,
6930 int (*fn
)(struct net_device
*dev
,
6934 struct net_device
*udev
, *next
, *now
, *dev_stack
[MAX_NEST_DEV
+ 1];
6935 struct list_head
*niter
, *iter
, *iter_stack
[MAX_NEST_DEV
+ 1];
6939 iter
= &dev
->adj_list
.upper
;
6943 ret
= fn(now
, data
);
6950 udev
= netdev_next_upper_dev_rcu(now
, &iter
);
6955 niter
= &udev
->adj_list
.upper
;
6956 dev_stack
[cur
] = now
;
6957 iter_stack
[cur
++] = iter
;
6964 next
= dev_stack
[--cur
];
6965 niter
= iter_stack
[cur
];
6974 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu
);
6976 static bool __netdev_has_upper_dev(struct net_device
*dev
,
6977 struct net_device
*upper_dev
)
6981 return __netdev_walk_all_upper_dev(dev
, ____netdev_has_upper_dev
,
6986 * netdev_lower_get_next_private - Get the next ->private from the
6987 * lower neighbour list
6989 * @iter: list_head ** of the current position
6991 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6992 * list, starting from iter position. The caller must hold either hold the
6993 * RTNL lock or its own locking that guarantees that the neighbour lower
6994 * list will remain unchanged.
6996 void *netdev_lower_get_next_private(struct net_device
*dev
,
6997 struct list_head
**iter
)
6999 struct netdev_adjacent
*lower
;
7001 lower
= list_entry(*iter
, struct netdev_adjacent
, list
);
7003 if (&lower
->list
== &dev
->adj_list
.lower
)
7006 *iter
= lower
->list
.next
;
7008 return lower
->private;
7010 EXPORT_SYMBOL(netdev_lower_get_next_private
);
7013 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7014 * lower neighbour list, RCU
7017 * @iter: list_head ** of the current position
7019 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7020 * list, starting from iter position. The caller must hold RCU read lock.
7022 void *netdev_lower_get_next_private_rcu(struct net_device
*dev
,
7023 struct list_head
**iter
)
7025 struct netdev_adjacent
*lower
;
7027 WARN_ON_ONCE(!rcu_read_lock_held());
7029 lower
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
7031 if (&lower
->list
== &dev
->adj_list
.lower
)
7034 *iter
= &lower
->list
;
7036 return lower
->private;
7038 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu
);
7041 * netdev_lower_get_next - Get the next device from the lower neighbour
7044 * @iter: list_head ** of the current position
7046 * Gets the next netdev_adjacent from the dev's lower neighbour
7047 * list, starting from iter position. The caller must hold RTNL lock or
7048 * its own locking that guarantees that the neighbour lower
7049 * list will remain unchanged.
7051 void *netdev_lower_get_next(struct net_device
*dev
, struct list_head
**iter
)
7053 struct netdev_adjacent
*lower
;
7055 lower
= list_entry(*iter
, struct netdev_adjacent
, list
);
7057 if (&lower
->list
== &dev
->adj_list
.lower
)
7060 *iter
= lower
->list
.next
;
7064 EXPORT_SYMBOL(netdev_lower_get_next
);
7066 static struct net_device
*netdev_next_lower_dev(struct net_device
*dev
,
7067 struct list_head
**iter
)
7069 struct netdev_adjacent
*lower
;
7071 lower
= list_entry((*iter
)->next
, struct netdev_adjacent
, list
);
7073 if (&lower
->list
== &dev
->adj_list
.lower
)
7076 *iter
= &lower
->list
;
7081 static struct net_device
*__netdev_next_lower_dev(struct net_device
*dev
,
7082 struct list_head
**iter
,
7085 struct netdev_adjacent
*lower
;
7087 lower
= list_entry((*iter
)->next
, struct netdev_adjacent
, list
);
7089 if (&lower
->list
== &dev
->adj_list
.lower
)
7092 *iter
= &lower
->list
;
7093 *ignore
= lower
->ignore
;
7098 int netdev_walk_all_lower_dev(struct net_device
*dev
,
7099 int (*fn
)(struct net_device
*dev
,
7103 struct net_device
*ldev
, *next
, *now
, *dev_stack
[MAX_NEST_DEV
+ 1];
7104 struct list_head
*niter
, *iter
, *iter_stack
[MAX_NEST_DEV
+ 1];
7108 iter
= &dev
->adj_list
.lower
;
7112 ret
= fn(now
, data
);
7119 ldev
= netdev_next_lower_dev(now
, &iter
);
7124 niter
= &ldev
->adj_list
.lower
;
7125 dev_stack
[cur
] = now
;
7126 iter_stack
[cur
++] = iter
;
7133 next
= dev_stack
[--cur
];
7134 niter
= iter_stack
[cur
];
7143 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev
);
7145 static int __netdev_walk_all_lower_dev(struct net_device
*dev
,
7146 int (*fn
)(struct net_device
*dev
,
7150 struct net_device
*ldev
, *next
, *now
, *dev_stack
[MAX_NEST_DEV
+ 1];
7151 struct list_head
*niter
, *iter
, *iter_stack
[MAX_NEST_DEV
+ 1];
7156 iter
= &dev
->adj_list
.lower
;
7160 ret
= fn(now
, data
);
7167 ldev
= __netdev_next_lower_dev(now
, &iter
, &ignore
);
7174 niter
= &ldev
->adj_list
.lower
;
7175 dev_stack
[cur
] = now
;
7176 iter_stack
[cur
++] = iter
;
7183 next
= dev_stack
[--cur
];
7184 niter
= iter_stack
[cur
];
7194 struct net_device
*netdev_next_lower_dev_rcu(struct net_device
*dev
,
7195 struct list_head
**iter
)
7197 struct netdev_adjacent
*lower
;
7199 lower
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
7200 if (&lower
->list
== &dev
->adj_list
.lower
)
7203 *iter
= &lower
->list
;
7207 EXPORT_SYMBOL(netdev_next_lower_dev_rcu
);
7209 static u8
__netdev_upper_depth(struct net_device
*dev
)
7211 struct net_device
*udev
;
7212 struct list_head
*iter
;
7216 for (iter
= &dev
->adj_list
.upper
,
7217 udev
= __netdev_next_upper_dev(dev
, &iter
, &ignore
);
7219 udev
= __netdev_next_upper_dev(dev
, &iter
, &ignore
)) {
7222 if (max_depth
< udev
->upper_level
)
7223 max_depth
= udev
->upper_level
;
7229 static u8
__netdev_lower_depth(struct net_device
*dev
)
7231 struct net_device
*ldev
;
7232 struct list_head
*iter
;
7236 for (iter
= &dev
->adj_list
.lower
,
7237 ldev
= __netdev_next_lower_dev(dev
, &iter
, &ignore
);
7239 ldev
= __netdev_next_lower_dev(dev
, &iter
, &ignore
)) {
7242 if (max_depth
< ldev
->lower_level
)
7243 max_depth
= ldev
->lower_level
;
7249 static int __netdev_update_upper_level(struct net_device
*dev
, void *data
)
7251 dev
->upper_level
= __netdev_upper_depth(dev
) + 1;
7255 static int __netdev_update_lower_level(struct net_device
*dev
, void *data
)
7257 dev
->lower_level
= __netdev_lower_depth(dev
) + 1;
7261 int netdev_walk_all_lower_dev_rcu(struct net_device
*dev
,
7262 int (*fn
)(struct net_device
*dev
,
7266 struct net_device
*ldev
, *next
, *now
, *dev_stack
[MAX_NEST_DEV
+ 1];
7267 struct list_head
*niter
, *iter
, *iter_stack
[MAX_NEST_DEV
+ 1];
7271 iter
= &dev
->adj_list
.lower
;
7275 ret
= fn(now
, data
);
7282 ldev
= netdev_next_lower_dev_rcu(now
, &iter
);
7287 niter
= &ldev
->adj_list
.lower
;
7288 dev_stack
[cur
] = now
;
7289 iter_stack
[cur
++] = iter
;
7296 next
= dev_stack
[--cur
];
7297 niter
= iter_stack
[cur
];
7306 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu
);
7309 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7310 * lower neighbour list, RCU
7314 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7315 * list. The caller must hold RCU read lock.
7317 void *netdev_lower_get_first_private_rcu(struct net_device
*dev
)
7319 struct netdev_adjacent
*lower
;
7321 lower
= list_first_or_null_rcu(&dev
->adj_list
.lower
,
7322 struct netdev_adjacent
, list
);
7324 return lower
->private;
7327 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu
);
7330 * netdev_master_upper_dev_get_rcu - Get master upper device
7333 * Find a master upper device and return pointer to it or NULL in case
7334 * it's not there. The caller must hold the RCU read lock.
7336 struct net_device
*netdev_master_upper_dev_get_rcu(struct net_device
*dev
)
7338 struct netdev_adjacent
*upper
;
7340 upper
= list_first_or_null_rcu(&dev
->adj_list
.upper
,
7341 struct netdev_adjacent
, list
);
7342 if (upper
&& likely(upper
->master
))
7346 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu
);
7348 static int netdev_adjacent_sysfs_add(struct net_device
*dev
,
7349 struct net_device
*adj_dev
,
7350 struct list_head
*dev_list
)
7352 char linkname
[IFNAMSIZ
+7];
7354 sprintf(linkname
, dev_list
== &dev
->adj_list
.upper
?
7355 "upper_%s" : "lower_%s", adj_dev
->name
);
7356 return sysfs_create_link(&(dev
->dev
.kobj
), &(adj_dev
->dev
.kobj
),
7359 static void netdev_adjacent_sysfs_del(struct net_device
*dev
,
7361 struct list_head
*dev_list
)
7363 char linkname
[IFNAMSIZ
+7];
7365 sprintf(linkname
, dev_list
== &dev
->adj_list
.upper
?
7366 "upper_%s" : "lower_%s", name
);
7367 sysfs_remove_link(&(dev
->dev
.kobj
), linkname
);
7370 static inline bool netdev_adjacent_is_neigh_list(struct net_device
*dev
,
7371 struct net_device
*adj_dev
,
7372 struct list_head
*dev_list
)
7374 return (dev_list
== &dev
->adj_list
.upper
||
7375 dev_list
== &dev
->adj_list
.lower
) &&
7376 net_eq(dev_net(dev
), dev_net(adj_dev
));
7379 static int __netdev_adjacent_dev_insert(struct net_device
*dev
,
7380 struct net_device
*adj_dev
,
7381 struct list_head
*dev_list
,
7382 void *private, bool master
)
7384 struct netdev_adjacent
*adj
;
7387 adj
= __netdev_find_adj(adj_dev
, dev_list
);
7391 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7392 dev
->name
, adj_dev
->name
, adj
->ref_nr
);
7397 adj
= kmalloc(sizeof(*adj
), GFP_KERNEL
);
7402 adj
->master
= master
;
7404 adj
->private = private;
7405 adj
->ignore
= false;
7408 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7409 dev
->name
, adj_dev
->name
, adj
->ref_nr
, adj_dev
->name
);
7411 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
)) {
7412 ret
= netdev_adjacent_sysfs_add(dev
, adj_dev
, dev_list
);
7417 /* Ensure that master link is always the first item in list. */
7419 ret
= sysfs_create_link(&(dev
->dev
.kobj
),
7420 &(adj_dev
->dev
.kobj
), "master");
7422 goto remove_symlinks
;
7424 list_add_rcu(&adj
->list
, dev_list
);
7426 list_add_tail_rcu(&adj
->list
, dev_list
);
7432 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
))
7433 netdev_adjacent_sysfs_del(dev
, adj_dev
->name
, dev_list
);
7441 static void __netdev_adjacent_dev_remove(struct net_device
*dev
,
7442 struct net_device
*adj_dev
,
7444 struct list_head
*dev_list
)
7446 struct netdev_adjacent
*adj
;
7448 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7449 dev
->name
, adj_dev
->name
, ref_nr
);
7451 adj
= __netdev_find_adj(adj_dev
, dev_list
);
7454 pr_err("Adjacency does not exist for device %s from %s\n",
7455 dev
->name
, adj_dev
->name
);
7460 if (adj
->ref_nr
> ref_nr
) {
7461 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7462 dev
->name
, adj_dev
->name
, ref_nr
,
7463 adj
->ref_nr
- ref_nr
);
7464 adj
->ref_nr
-= ref_nr
;
7469 sysfs_remove_link(&(dev
->dev
.kobj
), "master");
7471 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
))
7472 netdev_adjacent_sysfs_del(dev
, adj_dev
->name
, dev_list
);
7474 list_del_rcu(&adj
->list
);
7475 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7476 adj_dev
->name
, dev
->name
, adj_dev
->name
);
7478 kfree_rcu(adj
, rcu
);
7481 static int __netdev_adjacent_dev_link_lists(struct net_device
*dev
,
7482 struct net_device
*upper_dev
,
7483 struct list_head
*up_list
,
7484 struct list_head
*down_list
,
7485 void *private, bool master
)
7489 ret
= __netdev_adjacent_dev_insert(dev
, upper_dev
, up_list
,
7494 ret
= __netdev_adjacent_dev_insert(upper_dev
, dev
, down_list
,
7497 __netdev_adjacent_dev_remove(dev
, upper_dev
, 1, up_list
);
7504 static void __netdev_adjacent_dev_unlink_lists(struct net_device
*dev
,
7505 struct net_device
*upper_dev
,
7507 struct list_head
*up_list
,
7508 struct list_head
*down_list
)
7510 __netdev_adjacent_dev_remove(dev
, upper_dev
, ref_nr
, up_list
);
7511 __netdev_adjacent_dev_remove(upper_dev
, dev
, ref_nr
, down_list
);
7514 static int __netdev_adjacent_dev_link_neighbour(struct net_device
*dev
,
7515 struct net_device
*upper_dev
,
7516 void *private, bool master
)
7518 return __netdev_adjacent_dev_link_lists(dev
, upper_dev
,
7519 &dev
->adj_list
.upper
,
7520 &upper_dev
->adj_list
.lower
,
7524 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device
*dev
,
7525 struct net_device
*upper_dev
)
7527 __netdev_adjacent_dev_unlink_lists(dev
, upper_dev
, 1,
7528 &dev
->adj_list
.upper
,
7529 &upper_dev
->adj_list
.lower
);
7532 static int __netdev_upper_dev_link(struct net_device
*dev
,
7533 struct net_device
*upper_dev
, bool master
,
7534 void *upper_priv
, void *upper_info
,
7535 struct netlink_ext_ack
*extack
)
7537 struct netdev_notifier_changeupper_info changeupper_info
= {
7542 .upper_dev
= upper_dev
,
7545 .upper_info
= upper_info
,
7547 struct net_device
*master_dev
;
7552 if (dev
== upper_dev
)
7555 /* To prevent loops, check if dev is not upper device to upper_dev. */
7556 if (__netdev_has_upper_dev(upper_dev
, dev
))
7559 if ((dev
->lower_level
+ upper_dev
->upper_level
) > MAX_NEST_DEV
)
7563 if (__netdev_has_upper_dev(dev
, upper_dev
))
7566 master_dev
= __netdev_master_upper_dev_get(dev
);
7568 return master_dev
== upper_dev
? -EEXIST
: -EBUSY
;
7571 ret
= call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER
,
7572 &changeupper_info
.info
);
7573 ret
= notifier_to_errno(ret
);
7577 ret
= __netdev_adjacent_dev_link_neighbour(dev
, upper_dev
, upper_priv
,
7582 ret
= call_netdevice_notifiers_info(NETDEV_CHANGEUPPER
,
7583 &changeupper_info
.info
);
7584 ret
= notifier_to_errno(ret
);
7588 __netdev_update_upper_level(dev
, NULL
);
7589 __netdev_walk_all_lower_dev(dev
, __netdev_update_upper_level
, NULL
);
7591 __netdev_update_lower_level(upper_dev
, NULL
);
7592 __netdev_walk_all_upper_dev(upper_dev
, __netdev_update_lower_level
,
7598 __netdev_adjacent_dev_unlink_neighbour(dev
, upper_dev
);
7604 * netdev_upper_dev_link - Add a link to the upper device
7606 * @upper_dev: new upper device
7607 * @extack: netlink extended ack
7609 * Adds a link to device which is upper to this one. The caller must hold
7610 * the RTNL lock. On a failure a negative errno code is returned.
7611 * On success the reference counts are adjusted and the function
7614 int netdev_upper_dev_link(struct net_device
*dev
,
7615 struct net_device
*upper_dev
,
7616 struct netlink_ext_ack
*extack
)
7618 return __netdev_upper_dev_link(dev
, upper_dev
, false,
7619 NULL
, NULL
, extack
);
7621 EXPORT_SYMBOL(netdev_upper_dev_link
);
7624 * netdev_master_upper_dev_link - Add a master link to the upper device
7626 * @upper_dev: new upper device
7627 * @upper_priv: upper device private
7628 * @upper_info: upper info to be passed down via notifier
7629 * @extack: netlink extended ack
7631 * Adds a link to device which is upper to this one. In this case, only
7632 * one master upper device can be linked, although other non-master devices
7633 * might be linked as well. The caller must hold the RTNL lock.
7634 * On a failure a negative errno code is returned. On success the reference
7635 * counts are adjusted and the function returns zero.
7637 int netdev_master_upper_dev_link(struct net_device
*dev
,
7638 struct net_device
*upper_dev
,
7639 void *upper_priv
, void *upper_info
,
7640 struct netlink_ext_ack
*extack
)
7642 return __netdev_upper_dev_link(dev
, upper_dev
, true,
7643 upper_priv
, upper_info
, extack
);
7645 EXPORT_SYMBOL(netdev_master_upper_dev_link
);
7648 * netdev_upper_dev_unlink - Removes a link to upper device
7650 * @upper_dev: new upper device
7652 * Removes a link to device which is upper to this one. The caller must hold
7655 void netdev_upper_dev_unlink(struct net_device
*dev
,
7656 struct net_device
*upper_dev
)
7658 struct netdev_notifier_changeupper_info changeupper_info
= {
7662 .upper_dev
= upper_dev
,
7668 changeupper_info
.master
= netdev_master_upper_dev_get(dev
) == upper_dev
;
7670 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER
,
7671 &changeupper_info
.info
);
7673 __netdev_adjacent_dev_unlink_neighbour(dev
, upper_dev
);
7675 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER
,
7676 &changeupper_info
.info
);
7678 __netdev_update_upper_level(dev
, NULL
);
7679 __netdev_walk_all_lower_dev(dev
, __netdev_update_upper_level
, NULL
);
7681 __netdev_update_lower_level(upper_dev
, NULL
);
7682 __netdev_walk_all_upper_dev(upper_dev
, __netdev_update_lower_level
,
7685 EXPORT_SYMBOL(netdev_upper_dev_unlink
);
7687 static void __netdev_adjacent_dev_set(struct net_device
*upper_dev
,
7688 struct net_device
*lower_dev
,
7691 struct netdev_adjacent
*adj
;
7693 adj
= __netdev_find_adj(lower_dev
, &upper_dev
->adj_list
.lower
);
7697 adj
= __netdev_find_adj(upper_dev
, &lower_dev
->adj_list
.upper
);
7702 static void netdev_adjacent_dev_disable(struct net_device
*upper_dev
,
7703 struct net_device
*lower_dev
)
7705 __netdev_adjacent_dev_set(upper_dev
, lower_dev
, true);
7708 static void netdev_adjacent_dev_enable(struct net_device
*upper_dev
,
7709 struct net_device
*lower_dev
)
7711 __netdev_adjacent_dev_set(upper_dev
, lower_dev
, false);
7714 int netdev_adjacent_change_prepare(struct net_device
*old_dev
,
7715 struct net_device
*new_dev
,
7716 struct net_device
*dev
,
7717 struct netlink_ext_ack
*extack
)
7724 if (old_dev
&& new_dev
!= old_dev
)
7725 netdev_adjacent_dev_disable(dev
, old_dev
);
7727 err
= netdev_upper_dev_link(new_dev
, dev
, extack
);
7729 if (old_dev
&& new_dev
!= old_dev
)
7730 netdev_adjacent_dev_enable(dev
, old_dev
);
7736 EXPORT_SYMBOL(netdev_adjacent_change_prepare
);
7738 void netdev_adjacent_change_commit(struct net_device
*old_dev
,
7739 struct net_device
*new_dev
,
7740 struct net_device
*dev
)
7742 if (!new_dev
|| !old_dev
)
7745 if (new_dev
== old_dev
)
7748 netdev_adjacent_dev_enable(dev
, old_dev
);
7749 netdev_upper_dev_unlink(old_dev
, dev
);
7751 EXPORT_SYMBOL(netdev_adjacent_change_commit
);
7753 void netdev_adjacent_change_abort(struct net_device
*old_dev
,
7754 struct net_device
*new_dev
,
7755 struct net_device
*dev
)
7760 if (old_dev
&& new_dev
!= old_dev
)
7761 netdev_adjacent_dev_enable(dev
, old_dev
);
7763 netdev_upper_dev_unlink(new_dev
, dev
);
7765 EXPORT_SYMBOL(netdev_adjacent_change_abort
);
7768 * netdev_bonding_info_change - Dispatch event about slave change
7770 * @bonding_info: info to dispatch
7772 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7773 * The caller must hold the RTNL lock.
7775 void netdev_bonding_info_change(struct net_device
*dev
,
7776 struct netdev_bonding_info
*bonding_info
)
7778 struct netdev_notifier_bonding_info info
= {
7782 memcpy(&info
.bonding_info
, bonding_info
,
7783 sizeof(struct netdev_bonding_info
));
7784 call_netdevice_notifiers_info(NETDEV_BONDING_INFO
,
7787 EXPORT_SYMBOL(netdev_bonding_info_change
);
7789 static void netdev_adjacent_add_links(struct net_device
*dev
)
7791 struct netdev_adjacent
*iter
;
7793 struct net
*net
= dev_net(dev
);
7795 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
7796 if (!net_eq(net
, dev_net(iter
->dev
)))
7798 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
7799 &iter
->dev
->adj_list
.lower
);
7800 netdev_adjacent_sysfs_add(dev
, iter
->dev
,
7801 &dev
->adj_list
.upper
);
7804 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
7805 if (!net_eq(net
, dev_net(iter
->dev
)))
7807 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
7808 &iter
->dev
->adj_list
.upper
);
7809 netdev_adjacent_sysfs_add(dev
, iter
->dev
,
7810 &dev
->adj_list
.lower
);
7814 static void netdev_adjacent_del_links(struct net_device
*dev
)
7816 struct netdev_adjacent
*iter
;
7818 struct net
*net
= dev_net(dev
);
7820 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
7821 if (!net_eq(net
, dev_net(iter
->dev
)))
7823 netdev_adjacent_sysfs_del(iter
->dev
, dev
->name
,
7824 &iter
->dev
->adj_list
.lower
);
7825 netdev_adjacent_sysfs_del(dev
, iter
->dev
->name
,
7826 &dev
->adj_list
.upper
);
7829 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
7830 if (!net_eq(net
, dev_net(iter
->dev
)))
7832 netdev_adjacent_sysfs_del(iter
->dev
, dev
->name
,
7833 &iter
->dev
->adj_list
.upper
);
7834 netdev_adjacent_sysfs_del(dev
, iter
->dev
->name
,
7835 &dev
->adj_list
.lower
);
7839 void netdev_adjacent_rename_links(struct net_device
*dev
, char *oldname
)
7841 struct netdev_adjacent
*iter
;
7843 struct net
*net
= dev_net(dev
);
7845 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
7846 if (!net_eq(net
, dev_net(iter
->dev
)))
7848 netdev_adjacent_sysfs_del(iter
->dev
, oldname
,
7849 &iter
->dev
->adj_list
.lower
);
7850 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
7851 &iter
->dev
->adj_list
.lower
);
7854 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
7855 if (!net_eq(net
, dev_net(iter
->dev
)))
7857 netdev_adjacent_sysfs_del(iter
->dev
, oldname
,
7858 &iter
->dev
->adj_list
.upper
);
7859 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
7860 &iter
->dev
->adj_list
.upper
);
7864 void *netdev_lower_dev_get_private(struct net_device
*dev
,
7865 struct net_device
*lower_dev
)
7867 struct netdev_adjacent
*lower
;
7871 lower
= __netdev_find_adj(lower_dev
, &dev
->adj_list
.lower
);
7875 return lower
->private;
7877 EXPORT_SYMBOL(netdev_lower_dev_get_private
);
7881 * netdev_lower_change - Dispatch event about lower device state change
7882 * @lower_dev: device
7883 * @lower_state_info: state to dispatch
7885 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7886 * The caller must hold the RTNL lock.
7888 void netdev_lower_state_changed(struct net_device
*lower_dev
,
7889 void *lower_state_info
)
7891 struct netdev_notifier_changelowerstate_info changelowerstate_info
= {
7892 .info
.dev
= lower_dev
,
7896 changelowerstate_info
.lower_state_info
= lower_state_info
;
7897 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE
,
7898 &changelowerstate_info
.info
);
7900 EXPORT_SYMBOL(netdev_lower_state_changed
);
7902 static void dev_change_rx_flags(struct net_device
*dev
, int flags
)
7904 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7906 if (ops
->ndo_change_rx_flags
)
7907 ops
->ndo_change_rx_flags(dev
, flags
);
7910 static int __dev_set_promiscuity(struct net_device
*dev
, int inc
, bool notify
)
7912 unsigned int old_flags
= dev
->flags
;
7918 dev
->flags
|= IFF_PROMISC
;
7919 dev
->promiscuity
+= inc
;
7920 if (dev
->promiscuity
== 0) {
7923 * If inc causes overflow, untouch promisc and return error.
7926 dev
->flags
&= ~IFF_PROMISC
;
7928 dev
->promiscuity
-= inc
;
7929 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7934 if (dev
->flags
!= old_flags
) {
7935 pr_info("device %s %s promiscuous mode\n",
7937 dev
->flags
& IFF_PROMISC
? "entered" : "left");
7938 if (audit_enabled
) {
7939 current_uid_gid(&uid
, &gid
);
7940 audit_log(audit_context(), GFP_ATOMIC
,
7941 AUDIT_ANOM_PROMISCUOUS
,
7942 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7943 dev
->name
, (dev
->flags
& IFF_PROMISC
),
7944 (old_flags
& IFF_PROMISC
),
7945 from_kuid(&init_user_ns
, audit_get_loginuid(current
)),
7946 from_kuid(&init_user_ns
, uid
),
7947 from_kgid(&init_user_ns
, gid
),
7948 audit_get_sessionid(current
));
7951 dev_change_rx_flags(dev
, IFF_PROMISC
);
7954 __dev_notify_flags(dev
, old_flags
, IFF_PROMISC
);
7959 * dev_set_promiscuity - update promiscuity count on a device
7963 * Add or remove promiscuity from a device. While the count in the device
7964 * remains above zero the interface remains promiscuous. Once it hits zero
7965 * the device reverts back to normal filtering operation. A negative inc
7966 * value is used to drop promiscuity on the device.
7967 * Return 0 if successful or a negative errno code on error.
7969 int dev_set_promiscuity(struct net_device
*dev
, int inc
)
7971 unsigned int old_flags
= dev
->flags
;
7974 err
= __dev_set_promiscuity(dev
, inc
, true);
7977 if (dev
->flags
!= old_flags
)
7978 dev_set_rx_mode(dev
);
7981 EXPORT_SYMBOL(dev_set_promiscuity
);
7983 static int __dev_set_allmulti(struct net_device
*dev
, int inc
, bool notify
)
7985 unsigned int old_flags
= dev
->flags
, old_gflags
= dev
->gflags
;
7989 dev
->flags
|= IFF_ALLMULTI
;
7990 dev
->allmulti
+= inc
;
7991 if (dev
->allmulti
== 0) {
7994 * If inc causes overflow, untouch allmulti and return error.
7997 dev
->flags
&= ~IFF_ALLMULTI
;
7999 dev
->allmulti
-= inc
;
8000 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8005 if (dev
->flags
^ old_flags
) {
8006 dev_change_rx_flags(dev
, IFF_ALLMULTI
);
8007 dev_set_rx_mode(dev
);
8009 __dev_notify_flags(dev
, old_flags
,
8010 dev
->gflags
^ old_gflags
);
8016 * dev_set_allmulti - update allmulti count on a device
8020 * Add or remove reception of all multicast frames to a device. While the
8021 * count in the device remains above zero the interface remains listening
8022 * to all interfaces. Once it hits zero the device reverts back to normal
8023 * filtering operation. A negative @inc value is used to drop the counter
8024 * when releasing a resource needing all multicasts.
8025 * Return 0 if successful or a negative errno code on error.
8028 int dev_set_allmulti(struct net_device
*dev
, int inc
)
8030 return __dev_set_allmulti(dev
, inc
, true);
8032 EXPORT_SYMBOL(dev_set_allmulti
);
8035 * Upload unicast and multicast address lists to device and
8036 * configure RX filtering. When the device doesn't support unicast
8037 * filtering it is put in promiscuous mode while unicast addresses
8040 void __dev_set_rx_mode(struct net_device
*dev
)
8042 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8044 /* dev_open will call this function so the list will stay sane. */
8045 if (!(dev
->flags
&IFF_UP
))
8048 if (!netif_device_present(dev
))
8051 if (!(dev
->priv_flags
& IFF_UNICAST_FLT
)) {
8052 /* Unicast addresses changes may only happen under the rtnl,
8053 * therefore calling __dev_set_promiscuity here is safe.
8055 if (!netdev_uc_empty(dev
) && !dev
->uc_promisc
) {
8056 __dev_set_promiscuity(dev
, 1, false);
8057 dev
->uc_promisc
= true;
8058 } else if (netdev_uc_empty(dev
) && dev
->uc_promisc
) {
8059 __dev_set_promiscuity(dev
, -1, false);
8060 dev
->uc_promisc
= false;
8064 if (ops
->ndo_set_rx_mode
)
8065 ops
->ndo_set_rx_mode(dev
);
8068 void dev_set_rx_mode(struct net_device
*dev
)
8070 netif_addr_lock_bh(dev
);
8071 __dev_set_rx_mode(dev
);
8072 netif_addr_unlock_bh(dev
);
8076 * dev_get_flags - get flags reported to userspace
8079 * Get the combination of flag bits exported through APIs to userspace.
8081 unsigned int dev_get_flags(const struct net_device
*dev
)
8085 flags
= (dev
->flags
& ~(IFF_PROMISC
|
8090 (dev
->gflags
& (IFF_PROMISC
|
8093 if (netif_running(dev
)) {
8094 if (netif_oper_up(dev
))
8095 flags
|= IFF_RUNNING
;
8096 if (netif_carrier_ok(dev
))
8097 flags
|= IFF_LOWER_UP
;
8098 if (netif_dormant(dev
))
8099 flags
|= IFF_DORMANT
;
8104 EXPORT_SYMBOL(dev_get_flags
);
8106 int __dev_change_flags(struct net_device
*dev
, unsigned int flags
,
8107 struct netlink_ext_ack
*extack
)
8109 unsigned int old_flags
= dev
->flags
;
8115 * Set the flags on our device.
8118 dev
->flags
= (flags
& (IFF_DEBUG
| IFF_NOTRAILERS
| IFF_NOARP
|
8119 IFF_DYNAMIC
| IFF_MULTICAST
| IFF_PORTSEL
|
8121 (dev
->flags
& (IFF_UP
| IFF_VOLATILE
| IFF_PROMISC
|
8125 * Load in the correct multicast list now the flags have changed.
8128 if ((old_flags
^ flags
) & IFF_MULTICAST
)
8129 dev_change_rx_flags(dev
, IFF_MULTICAST
);
8131 dev_set_rx_mode(dev
);
8134 * Have we downed the interface. We handle IFF_UP ourselves
8135 * according to user attempts to set it, rather than blindly
8140 if ((old_flags
^ flags
) & IFF_UP
) {
8141 if (old_flags
& IFF_UP
)
8144 ret
= __dev_open(dev
, extack
);
8147 if ((flags
^ dev
->gflags
) & IFF_PROMISC
) {
8148 int inc
= (flags
& IFF_PROMISC
) ? 1 : -1;
8149 unsigned int old_flags
= dev
->flags
;
8151 dev
->gflags
^= IFF_PROMISC
;
8153 if (__dev_set_promiscuity(dev
, inc
, false) >= 0)
8154 if (dev
->flags
!= old_flags
)
8155 dev_set_rx_mode(dev
);
8158 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8159 * is important. Some (broken) drivers set IFF_PROMISC, when
8160 * IFF_ALLMULTI is requested not asking us and not reporting.
8162 if ((flags
^ dev
->gflags
) & IFF_ALLMULTI
) {
8163 int inc
= (flags
& IFF_ALLMULTI
) ? 1 : -1;
8165 dev
->gflags
^= IFF_ALLMULTI
;
8166 __dev_set_allmulti(dev
, inc
, false);
8172 void __dev_notify_flags(struct net_device
*dev
, unsigned int old_flags
,
8173 unsigned int gchanges
)
8175 unsigned int changes
= dev
->flags
^ old_flags
;
8178 rtmsg_ifinfo(RTM_NEWLINK
, dev
, gchanges
, GFP_ATOMIC
);
8180 if (changes
& IFF_UP
) {
8181 if (dev
->flags
& IFF_UP
)
8182 call_netdevice_notifiers(NETDEV_UP
, dev
);
8184 call_netdevice_notifiers(NETDEV_DOWN
, dev
);
8187 if (dev
->flags
& IFF_UP
&&
8188 (changes
& ~(IFF_UP
| IFF_PROMISC
| IFF_ALLMULTI
| IFF_VOLATILE
))) {
8189 struct netdev_notifier_change_info change_info
= {
8193 .flags_changed
= changes
,
8196 call_netdevice_notifiers_info(NETDEV_CHANGE
, &change_info
.info
);
8201 * dev_change_flags - change device settings
8203 * @flags: device state flags
8204 * @extack: netlink extended ack
8206 * Change settings on device based state flags. The flags are
8207 * in the userspace exported format.
8209 int dev_change_flags(struct net_device
*dev
, unsigned int flags
,
8210 struct netlink_ext_ack
*extack
)
8213 unsigned int changes
, old_flags
= dev
->flags
, old_gflags
= dev
->gflags
;
8215 ret
= __dev_change_flags(dev
, flags
, extack
);
8219 changes
= (old_flags
^ dev
->flags
) | (old_gflags
^ dev
->gflags
);
8220 __dev_notify_flags(dev
, old_flags
, changes
);
8223 EXPORT_SYMBOL(dev_change_flags
);
8225 int __dev_set_mtu(struct net_device
*dev
, int new_mtu
)
8227 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8229 if (ops
->ndo_change_mtu
)
8230 return ops
->ndo_change_mtu(dev
, new_mtu
);
8232 /* Pairs with all the lockless reads of dev->mtu in the stack */
8233 WRITE_ONCE(dev
->mtu
, new_mtu
);
8236 EXPORT_SYMBOL(__dev_set_mtu
);
8238 int dev_validate_mtu(struct net_device
*dev
, int new_mtu
,
8239 struct netlink_ext_ack
*extack
)
8241 /* MTU must be positive, and in range */
8242 if (new_mtu
< 0 || new_mtu
< dev
->min_mtu
) {
8243 NL_SET_ERR_MSG(extack
, "mtu less than device minimum");
8247 if (dev
->max_mtu
> 0 && new_mtu
> dev
->max_mtu
) {
8248 NL_SET_ERR_MSG(extack
, "mtu greater than device maximum");
8255 * dev_set_mtu_ext - Change maximum transfer unit
8257 * @new_mtu: new transfer unit
8258 * @extack: netlink extended ack
8260 * Change the maximum transfer size of the network device.
8262 int dev_set_mtu_ext(struct net_device
*dev
, int new_mtu
,
8263 struct netlink_ext_ack
*extack
)
8267 if (new_mtu
== dev
->mtu
)
8270 err
= dev_validate_mtu(dev
, new_mtu
, extack
);
8274 if (!netif_device_present(dev
))
8277 err
= call_netdevice_notifiers(NETDEV_PRECHANGEMTU
, dev
);
8278 err
= notifier_to_errno(err
);
8282 orig_mtu
= dev
->mtu
;
8283 err
= __dev_set_mtu(dev
, new_mtu
);
8286 err
= call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU
, dev
,
8288 err
= notifier_to_errno(err
);
8290 /* setting mtu back and notifying everyone again,
8291 * so that they have a chance to revert changes.
8293 __dev_set_mtu(dev
, orig_mtu
);
8294 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU
, dev
,
8301 int dev_set_mtu(struct net_device
*dev
, int new_mtu
)
8303 struct netlink_ext_ack extack
;
8306 memset(&extack
, 0, sizeof(extack
));
8307 err
= dev_set_mtu_ext(dev
, new_mtu
, &extack
);
8308 if (err
&& extack
._msg
)
8309 net_err_ratelimited("%s: %s\n", dev
->name
, extack
._msg
);
8312 EXPORT_SYMBOL(dev_set_mtu
);
8315 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8317 * @new_len: new tx queue length
8319 int dev_change_tx_queue_len(struct net_device
*dev
, unsigned long new_len
)
8321 unsigned int orig_len
= dev
->tx_queue_len
;
8324 if (new_len
!= (unsigned int)new_len
)
8327 if (new_len
!= orig_len
) {
8328 dev
->tx_queue_len
= new_len
;
8329 res
= call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN
, dev
);
8330 res
= notifier_to_errno(res
);
8333 res
= dev_qdisc_change_tx_queue_len(dev
);
8341 netdev_err(dev
, "refused to change device tx_queue_len\n");
8342 dev
->tx_queue_len
= orig_len
;
8347 * dev_set_group - Change group this device belongs to
8349 * @new_group: group this device should belong to
8351 void dev_set_group(struct net_device
*dev
, int new_group
)
8353 dev
->group
= new_group
;
8355 EXPORT_SYMBOL(dev_set_group
);
8358 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8360 * @addr: new address
8361 * @extack: netlink extended ack
8363 int dev_pre_changeaddr_notify(struct net_device
*dev
, const char *addr
,
8364 struct netlink_ext_ack
*extack
)
8366 struct netdev_notifier_pre_changeaddr_info info
= {
8368 .info
.extack
= extack
,
8373 rc
= call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR
, &info
.info
);
8374 return notifier_to_errno(rc
);
8376 EXPORT_SYMBOL(dev_pre_changeaddr_notify
);
8379 * dev_set_mac_address - Change Media Access Control Address
8382 * @extack: netlink extended ack
8384 * Change the hardware (MAC) address of the device
8386 int dev_set_mac_address(struct net_device
*dev
, struct sockaddr
*sa
,
8387 struct netlink_ext_ack
*extack
)
8389 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8392 if (!ops
->ndo_set_mac_address
)
8394 if (sa
->sa_family
!= dev
->type
)
8396 if (!netif_device_present(dev
))
8398 err
= dev_pre_changeaddr_notify(dev
, sa
->sa_data
, extack
);
8401 err
= ops
->ndo_set_mac_address(dev
, sa
);
8404 dev
->addr_assign_type
= NET_ADDR_SET
;
8405 call_netdevice_notifiers(NETDEV_CHANGEADDR
, dev
);
8406 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
8409 EXPORT_SYMBOL(dev_set_mac_address
);
8412 * dev_change_carrier - Change device carrier
8414 * @new_carrier: new value
8416 * Change device carrier
8418 int dev_change_carrier(struct net_device
*dev
, bool new_carrier
)
8420 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8422 if (!ops
->ndo_change_carrier
)
8424 if (!netif_device_present(dev
))
8426 return ops
->ndo_change_carrier(dev
, new_carrier
);
8428 EXPORT_SYMBOL(dev_change_carrier
);
8431 * dev_get_phys_port_id - Get device physical port ID
8435 * Get device physical port ID
8437 int dev_get_phys_port_id(struct net_device
*dev
,
8438 struct netdev_phys_item_id
*ppid
)
8440 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8442 if (!ops
->ndo_get_phys_port_id
)
8444 return ops
->ndo_get_phys_port_id(dev
, ppid
);
8446 EXPORT_SYMBOL(dev_get_phys_port_id
);
8449 * dev_get_phys_port_name - Get device physical port name
8452 * @len: limit of bytes to copy to name
8454 * Get device physical port name
8456 int dev_get_phys_port_name(struct net_device
*dev
,
8457 char *name
, size_t len
)
8459 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8462 if (ops
->ndo_get_phys_port_name
) {
8463 err
= ops
->ndo_get_phys_port_name(dev
, name
, len
);
8464 if (err
!= -EOPNOTSUPP
)
8467 return devlink_compat_phys_port_name_get(dev
, name
, len
);
8469 EXPORT_SYMBOL(dev_get_phys_port_name
);
8472 * dev_get_port_parent_id - Get the device's port parent identifier
8473 * @dev: network device
8474 * @ppid: pointer to a storage for the port's parent identifier
8475 * @recurse: allow/disallow recursion to lower devices
8477 * Get the devices's port parent identifier
8479 int dev_get_port_parent_id(struct net_device
*dev
,
8480 struct netdev_phys_item_id
*ppid
,
8483 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8484 struct netdev_phys_item_id first
= { };
8485 struct net_device
*lower_dev
;
8486 struct list_head
*iter
;
8489 if (ops
->ndo_get_port_parent_id
) {
8490 err
= ops
->ndo_get_port_parent_id(dev
, ppid
);
8491 if (err
!= -EOPNOTSUPP
)
8495 err
= devlink_compat_switch_id_get(dev
, ppid
);
8496 if (!err
|| err
!= -EOPNOTSUPP
)
8502 netdev_for_each_lower_dev(dev
, lower_dev
, iter
) {
8503 err
= dev_get_port_parent_id(lower_dev
, ppid
, recurse
);
8508 else if (memcmp(&first
, ppid
, sizeof(*ppid
)))
8514 EXPORT_SYMBOL(dev_get_port_parent_id
);
8517 * netdev_port_same_parent_id - Indicate if two network devices have
8518 * the same port parent identifier
8519 * @a: first network device
8520 * @b: second network device
8522 bool netdev_port_same_parent_id(struct net_device
*a
, struct net_device
*b
)
8524 struct netdev_phys_item_id a_id
= { };
8525 struct netdev_phys_item_id b_id
= { };
8527 if (dev_get_port_parent_id(a
, &a_id
, true) ||
8528 dev_get_port_parent_id(b
, &b_id
, true))
8531 return netdev_phys_item_id_same(&a_id
, &b_id
);
8533 EXPORT_SYMBOL(netdev_port_same_parent_id
);
8536 * dev_change_proto_down - update protocol port state information
8538 * @proto_down: new value
8540 * This info can be used by switch drivers to set the phys state of the
8543 int dev_change_proto_down(struct net_device
*dev
, bool proto_down
)
8545 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8547 if (!ops
->ndo_change_proto_down
)
8549 if (!netif_device_present(dev
))
8551 return ops
->ndo_change_proto_down(dev
, proto_down
);
8553 EXPORT_SYMBOL(dev_change_proto_down
);
8556 * dev_change_proto_down_generic - generic implementation for
8557 * ndo_change_proto_down that sets carrier according to
8561 * @proto_down: new value
8563 int dev_change_proto_down_generic(struct net_device
*dev
, bool proto_down
)
8566 netif_carrier_off(dev
);
8568 netif_carrier_on(dev
);
8569 dev
->proto_down
= proto_down
;
8572 EXPORT_SYMBOL(dev_change_proto_down_generic
);
8574 u32
__dev_xdp_query(struct net_device
*dev
, bpf_op_t bpf_op
,
8575 enum bpf_netdev_command cmd
)
8577 struct netdev_bpf xdp
;
8582 memset(&xdp
, 0, sizeof(xdp
));
8585 /* Query must always succeed. */
8586 WARN_ON(bpf_op(dev
, &xdp
) < 0 && cmd
== XDP_QUERY_PROG
);
8591 static int dev_xdp_install(struct net_device
*dev
, bpf_op_t bpf_op
,
8592 struct netlink_ext_ack
*extack
, u32 flags
,
8593 struct bpf_prog
*prog
)
8595 bool non_hw
= !(flags
& XDP_FLAGS_HW_MODE
);
8596 struct bpf_prog
*prev_prog
= NULL
;
8597 struct netdev_bpf xdp
;
8601 prev_prog
= bpf_prog_by_id(__dev_xdp_query(dev
, bpf_op
,
8603 if (IS_ERR(prev_prog
))
8607 memset(&xdp
, 0, sizeof(xdp
));
8608 if (flags
& XDP_FLAGS_HW_MODE
)
8609 xdp
.command
= XDP_SETUP_PROG_HW
;
8611 xdp
.command
= XDP_SETUP_PROG
;
8612 xdp
.extack
= extack
;
8616 err
= bpf_op(dev
, &xdp
);
8618 bpf_prog_change_xdp(prev_prog
, prog
);
8621 bpf_prog_put(prev_prog
);
8626 static void dev_xdp_uninstall(struct net_device
*dev
)
8628 struct netdev_bpf xdp
;
8631 /* Remove generic XDP */
8632 WARN_ON(dev_xdp_install(dev
, generic_xdp_install
, NULL
, 0, NULL
));
8634 /* Remove from the driver */
8635 ndo_bpf
= dev
->netdev_ops
->ndo_bpf
;
8639 memset(&xdp
, 0, sizeof(xdp
));
8640 xdp
.command
= XDP_QUERY_PROG
;
8641 WARN_ON(ndo_bpf(dev
, &xdp
));
8643 WARN_ON(dev_xdp_install(dev
, ndo_bpf
, NULL
, xdp
.prog_flags
,
8646 /* Remove HW offload */
8647 memset(&xdp
, 0, sizeof(xdp
));
8648 xdp
.command
= XDP_QUERY_PROG_HW
;
8649 if (!ndo_bpf(dev
, &xdp
) && xdp
.prog_id
)
8650 WARN_ON(dev_xdp_install(dev
, ndo_bpf
, NULL
, xdp
.prog_flags
,
8655 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8657 * @extack: netlink extended ack
8658 * @fd: new program fd or negative value to clear
8659 * @expected_fd: old program fd that userspace expects to replace or clear
8660 * @flags: xdp-related flags
8662 * Set or clear a bpf program for a device
8664 int dev_change_xdp_fd(struct net_device
*dev
, struct netlink_ext_ack
*extack
,
8665 int fd
, int expected_fd
, u32 flags
)
8667 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8668 enum bpf_netdev_command query
;
8669 u32 prog_id
, expected_id
= 0;
8670 bpf_op_t bpf_op
, bpf_chk
;
8671 struct bpf_prog
*prog
;
8677 offload
= flags
& XDP_FLAGS_HW_MODE
;
8678 query
= offload
? XDP_QUERY_PROG_HW
: XDP_QUERY_PROG
;
8680 bpf_op
= bpf_chk
= ops
->ndo_bpf
;
8681 if (!bpf_op
&& (flags
& (XDP_FLAGS_DRV_MODE
| XDP_FLAGS_HW_MODE
))) {
8682 NL_SET_ERR_MSG(extack
, "underlying driver does not support XDP in native mode");
8685 if (!bpf_op
|| (flags
& XDP_FLAGS_SKB_MODE
))
8686 bpf_op
= generic_xdp_install
;
8687 if (bpf_op
== bpf_chk
)
8688 bpf_chk
= generic_xdp_install
;
8690 prog_id
= __dev_xdp_query(dev
, bpf_op
, query
);
8691 if (flags
& XDP_FLAGS_REPLACE
) {
8692 if (expected_fd
>= 0) {
8693 prog
= bpf_prog_get_type_dev(expected_fd
,
8695 bpf_op
== ops
->ndo_bpf
);
8697 return PTR_ERR(prog
);
8698 expected_id
= prog
->aux
->id
;
8702 if (prog_id
!= expected_id
) {
8703 NL_SET_ERR_MSG(extack
, "Active program does not match expected");
8708 if (!offload
&& __dev_xdp_query(dev
, bpf_chk
, XDP_QUERY_PROG
)) {
8709 NL_SET_ERR_MSG(extack
, "native and generic XDP can't be active at the same time");
8713 if ((flags
& XDP_FLAGS_UPDATE_IF_NOEXIST
) && prog_id
) {
8714 NL_SET_ERR_MSG(extack
, "XDP program already attached");
8718 prog
= bpf_prog_get_type_dev(fd
, BPF_PROG_TYPE_XDP
,
8719 bpf_op
== ops
->ndo_bpf
);
8721 return PTR_ERR(prog
);
8723 if (!offload
&& bpf_prog_is_dev_bound(prog
->aux
)) {
8724 NL_SET_ERR_MSG(extack
, "using device-bound program without HW_MODE flag is not supported");
8729 /* prog->aux->id may be 0 for orphaned device-bound progs */
8730 if (prog
->aux
->id
&& prog
->aux
->id
== prog_id
) {
8740 err
= dev_xdp_install(dev
, bpf_op
, extack
, flags
, prog
);
8741 if (err
< 0 && prog
)
8748 * dev_new_index - allocate an ifindex
8749 * @net: the applicable net namespace
8751 * Returns a suitable unique value for a new device interface
8752 * number. The caller must hold the rtnl semaphore or the
8753 * dev_base_lock to be sure it remains unique.
8755 static int dev_new_index(struct net
*net
)
8757 int ifindex
= net
->ifindex
;
8762 if (!__dev_get_by_index(net
, ifindex
))
8763 return net
->ifindex
= ifindex
;
8767 /* Delayed registration/unregisteration */
8768 static LIST_HEAD(net_todo_list
);
8769 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq
);
8771 static void net_set_todo(struct net_device
*dev
)
8773 list_add_tail(&dev
->todo_list
, &net_todo_list
);
8774 dev_net(dev
)->dev_unreg_count
++;
8777 static void rollback_registered_many(struct list_head
*head
)
8779 struct net_device
*dev
, *tmp
;
8780 LIST_HEAD(close_head
);
8782 BUG_ON(dev_boot_phase
);
8785 list_for_each_entry_safe(dev
, tmp
, head
, unreg_list
) {
8786 /* Some devices call without registering
8787 * for initialization unwind. Remove those
8788 * devices and proceed with the remaining.
8790 if (dev
->reg_state
== NETREG_UNINITIALIZED
) {
8791 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8795 list_del(&dev
->unreg_list
);
8798 dev
->dismantle
= true;
8799 BUG_ON(dev
->reg_state
!= NETREG_REGISTERED
);
8802 /* If device is running, close it first. */
8803 list_for_each_entry(dev
, head
, unreg_list
)
8804 list_add_tail(&dev
->close_list
, &close_head
);
8805 dev_close_many(&close_head
, true);
8807 list_for_each_entry(dev
, head
, unreg_list
) {
8808 /* And unlink it from device chain. */
8809 unlist_netdevice(dev
);
8811 dev
->reg_state
= NETREG_UNREGISTERING
;
8813 flush_all_backlogs();
8817 list_for_each_entry(dev
, head
, unreg_list
) {
8818 struct sk_buff
*skb
= NULL
;
8820 /* Shutdown queueing discipline. */
8823 dev_xdp_uninstall(dev
);
8825 /* Notify protocols, that we are about to destroy
8826 * this device. They should clean all the things.
8828 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
8830 if (!dev
->rtnl_link_ops
||
8831 dev
->rtnl_link_state
== RTNL_LINK_INITIALIZED
)
8832 skb
= rtmsg_ifinfo_build_skb(RTM_DELLINK
, dev
, ~0U, 0,
8833 GFP_KERNEL
, NULL
, 0);
8836 * Flush the unicast and multicast chains
8841 netdev_name_node_alt_flush(dev
);
8842 netdev_name_node_free(dev
->name_node
);
8844 if (dev
->netdev_ops
->ndo_uninit
)
8845 dev
->netdev_ops
->ndo_uninit(dev
);
8848 rtmsg_ifinfo_send(skb
, dev
, GFP_KERNEL
);
8850 /* Notifier chain MUST detach us all upper devices. */
8851 WARN_ON(netdev_has_any_upper_dev(dev
));
8852 WARN_ON(netdev_has_any_lower_dev(dev
));
8854 /* Remove entries from kobject tree */
8855 netdev_unregister_kobject(dev
);
8857 /* Remove XPS queueing entries */
8858 netif_reset_xps_queues_gt(dev
, 0);
8864 list_for_each_entry(dev
, head
, unreg_list
)
8868 static void rollback_registered(struct net_device
*dev
)
8872 list_add(&dev
->unreg_list
, &single
);
8873 rollback_registered_many(&single
);
8877 static netdev_features_t
netdev_sync_upper_features(struct net_device
*lower
,
8878 struct net_device
*upper
, netdev_features_t features
)
8880 netdev_features_t upper_disables
= NETIF_F_UPPER_DISABLES
;
8881 netdev_features_t feature
;
8884 for_each_netdev_feature(upper_disables
, feature_bit
) {
8885 feature
= __NETIF_F_BIT(feature_bit
);
8886 if (!(upper
->wanted_features
& feature
)
8887 && (features
& feature
)) {
8888 netdev_dbg(lower
, "Dropping feature %pNF, upper dev %s has it off.\n",
8889 &feature
, upper
->name
);
8890 features
&= ~feature
;
8897 static void netdev_sync_lower_features(struct net_device
*upper
,
8898 struct net_device
*lower
, netdev_features_t features
)
8900 netdev_features_t upper_disables
= NETIF_F_UPPER_DISABLES
;
8901 netdev_features_t feature
;
8904 for_each_netdev_feature(upper_disables
, feature_bit
) {
8905 feature
= __NETIF_F_BIT(feature_bit
);
8906 if (!(features
& feature
) && (lower
->features
& feature
)) {
8907 netdev_dbg(upper
, "Disabling feature %pNF on lower dev %s.\n",
8908 &feature
, lower
->name
);
8909 lower
->wanted_features
&= ~feature
;
8910 __netdev_update_features(lower
);
8912 if (unlikely(lower
->features
& feature
))
8913 netdev_WARN(upper
, "failed to disable %pNF on %s!\n",
8914 &feature
, lower
->name
);
8916 netdev_features_change(lower
);
8921 static netdev_features_t
netdev_fix_features(struct net_device
*dev
,
8922 netdev_features_t features
)
8924 /* Fix illegal checksum combinations */
8925 if ((features
& NETIF_F_HW_CSUM
) &&
8926 (features
& (NETIF_F_IP_CSUM
|NETIF_F_IPV6_CSUM
))) {
8927 netdev_warn(dev
, "mixed HW and IP checksum settings.\n");
8928 features
&= ~(NETIF_F_IP_CSUM
|NETIF_F_IPV6_CSUM
);
8931 /* TSO requires that SG is present as well. */
8932 if ((features
& NETIF_F_ALL_TSO
) && !(features
& NETIF_F_SG
)) {
8933 netdev_dbg(dev
, "Dropping TSO features since no SG feature.\n");
8934 features
&= ~NETIF_F_ALL_TSO
;
8937 if ((features
& NETIF_F_TSO
) && !(features
& NETIF_F_HW_CSUM
) &&
8938 !(features
& NETIF_F_IP_CSUM
)) {
8939 netdev_dbg(dev
, "Dropping TSO features since no CSUM feature.\n");
8940 features
&= ~NETIF_F_TSO
;
8941 features
&= ~NETIF_F_TSO_ECN
;
8944 if ((features
& NETIF_F_TSO6
) && !(features
& NETIF_F_HW_CSUM
) &&
8945 !(features
& NETIF_F_IPV6_CSUM
)) {
8946 netdev_dbg(dev
, "Dropping TSO6 features since no CSUM feature.\n");
8947 features
&= ~NETIF_F_TSO6
;
8950 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8951 if ((features
& NETIF_F_TSO_MANGLEID
) && !(features
& NETIF_F_TSO
))
8952 features
&= ~NETIF_F_TSO_MANGLEID
;
8954 /* TSO ECN requires that TSO is present as well. */
8955 if ((features
& NETIF_F_ALL_TSO
) == NETIF_F_TSO_ECN
)
8956 features
&= ~NETIF_F_TSO_ECN
;
8958 /* Software GSO depends on SG. */
8959 if ((features
& NETIF_F_GSO
) && !(features
& NETIF_F_SG
)) {
8960 netdev_dbg(dev
, "Dropping NETIF_F_GSO since no SG feature.\n");
8961 features
&= ~NETIF_F_GSO
;
8964 /* GSO partial features require GSO partial be set */
8965 if ((features
& dev
->gso_partial_features
) &&
8966 !(features
& NETIF_F_GSO_PARTIAL
)) {
8968 "Dropping partially supported GSO features since no GSO partial.\n");
8969 features
&= ~dev
->gso_partial_features
;
8972 if (!(features
& NETIF_F_RXCSUM
)) {
8973 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8974 * successfully merged by hardware must also have the
8975 * checksum verified by hardware. If the user does not
8976 * want to enable RXCSUM, logically, we should disable GRO_HW.
8978 if (features
& NETIF_F_GRO_HW
) {
8979 netdev_dbg(dev
, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8980 features
&= ~NETIF_F_GRO_HW
;
8984 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8985 if (features
& NETIF_F_RXFCS
) {
8986 if (features
& NETIF_F_LRO
) {
8987 netdev_dbg(dev
, "Dropping LRO feature since RX-FCS is requested.\n");
8988 features
&= ~NETIF_F_LRO
;
8991 if (features
& NETIF_F_GRO_HW
) {
8992 netdev_dbg(dev
, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8993 features
&= ~NETIF_F_GRO_HW
;
9000 int __netdev_update_features(struct net_device
*dev
)
9002 struct net_device
*upper
, *lower
;
9003 netdev_features_t features
;
9004 struct list_head
*iter
;
9009 features
= netdev_get_wanted_features(dev
);
9011 if (dev
->netdev_ops
->ndo_fix_features
)
9012 features
= dev
->netdev_ops
->ndo_fix_features(dev
, features
);
9014 /* driver might be less strict about feature dependencies */
9015 features
= netdev_fix_features(dev
, features
);
9017 /* some features can't be enabled if they're off an an upper device */
9018 netdev_for_each_upper_dev_rcu(dev
, upper
, iter
)
9019 features
= netdev_sync_upper_features(dev
, upper
, features
);
9021 if (dev
->features
== features
)
9024 netdev_dbg(dev
, "Features changed: %pNF -> %pNF\n",
9025 &dev
->features
, &features
);
9027 if (dev
->netdev_ops
->ndo_set_features
)
9028 err
= dev
->netdev_ops
->ndo_set_features(dev
, features
);
9032 if (unlikely(err
< 0)) {
9034 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9035 err
, &features
, &dev
->features
);
9036 /* return non-0 since some features might have changed and
9037 * it's better to fire a spurious notification than miss it
9043 /* some features must be disabled on lower devices when disabled
9044 * on an upper device (think: bonding master or bridge)
9046 netdev_for_each_lower_dev(dev
, lower
, iter
)
9047 netdev_sync_lower_features(dev
, lower
, features
);
9050 netdev_features_t diff
= features
^ dev
->features
;
9052 if (diff
& NETIF_F_RX_UDP_TUNNEL_PORT
) {
9053 /* udp_tunnel_{get,drop}_rx_info both need
9054 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9055 * device, or they won't do anything.
9056 * Thus we need to update dev->features
9057 * *before* calling udp_tunnel_get_rx_info,
9058 * but *after* calling udp_tunnel_drop_rx_info.
9060 if (features
& NETIF_F_RX_UDP_TUNNEL_PORT
) {
9061 dev
->features
= features
;
9062 udp_tunnel_get_rx_info(dev
);
9064 udp_tunnel_drop_rx_info(dev
);
9068 if (diff
& NETIF_F_HW_VLAN_CTAG_FILTER
) {
9069 if (features
& NETIF_F_HW_VLAN_CTAG_FILTER
) {
9070 dev
->features
= features
;
9071 err
|= vlan_get_rx_ctag_filter_info(dev
);
9073 vlan_drop_rx_ctag_filter_info(dev
);
9077 if (diff
& NETIF_F_HW_VLAN_STAG_FILTER
) {
9078 if (features
& NETIF_F_HW_VLAN_STAG_FILTER
) {
9079 dev
->features
= features
;
9080 err
|= vlan_get_rx_stag_filter_info(dev
);
9082 vlan_drop_rx_stag_filter_info(dev
);
9086 dev
->features
= features
;
9089 return err
< 0 ? 0 : 1;
9093 * netdev_update_features - recalculate device features
9094 * @dev: the device to check
9096 * Recalculate dev->features set and send notifications if it
9097 * has changed. Should be called after driver or hardware dependent
9098 * conditions might have changed that influence the features.
9100 void netdev_update_features(struct net_device
*dev
)
9102 if (__netdev_update_features(dev
))
9103 netdev_features_change(dev
);
9105 EXPORT_SYMBOL(netdev_update_features
);
9108 * netdev_change_features - recalculate device features
9109 * @dev: the device to check
9111 * Recalculate dev->features set and send notifications even
9112 * if they have not changed. Should be called instead of
9113 * netdev_update_features() if also dev->vlan_features might
9114 * have changed to allow the changes to be propagated to stacked
9117 void netdev_change_features(struct net_device
*dev
)
9119 __netdev_update_features(dev
);
9120 netdev_features_change(dev
);
9122 EXPORT_SYMBOL(netdev_change_features
);
9125 * netif_stacked_transfer_operstate - transfer operstate
9126 * @rootdev: the root or lower level device to transfer state from
9127 * @dev: the device to transfer operstate to
9129 * Transfer operational state from root to device. This is normally
9130 * called when a stacking relationship exists between the root
9131 * device and the device(a leaf device).
9133 void netif_stacked_transfer_operstate(const struct net_device
*rootdev
,
9134 struct net_device
*dev
)
9136 if (rootdev
->operstate
== IF_OPER_DORMANT
)
9137 netif_dormant_on(dev
);
9139 netif_dormant_off(dev
);
9141 if (netif_carrier_ok(rootdev
))
9142 netif_carrier_on(dev
);
9144 netif_carrier_off(dev
);
9146 EXPORT_SYMBOL(netif_stacked_transfer_operstate
);
9148 static int netif_alloc_rx_queues(struct net_device
*dev
)
9150 unsigned int i
, count
= dev
->num_rx_queues
;
9151 struct netdev_rx_queue
*rx
;
9152 size_t sz
= count
* sizeof(*rx
);
9157 rx
= kvzalloc(sz
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
9163 for (i
= 0; i
< count
; i
++) {
9166 /* XDP RX-queue setup */
9167 err
= xdp_rxq_info_reg(&rx
[i
].xdp_rxq
, dev
, i
);
9174 /* Rollback successful reg's and free other resources */
9176 xdp_rxq_info_unreg(&rx
[i
].xdp_rxq
);
9182 static void netif_free_rx_queues(struct net_device
*dev
)
9184 unsigned int i
, count
= dev
->num_rx_queues
;
9186 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9190 for (i
= 0; i
< count
; i
++)
9191 xdp_rxq_info_unreg(&dev
->_rx
[i
].xdp_rxq
);
9196 static void netdev_init_one_queue(struct net_device
*dev
,
9197 struct netdev_queue
*queue
, void *_unused
)
9199 /* Initialize queue lock */
9200 spin_lock_init(&queue
->_xmit_lock
);
9201 lockdep_set_class(&queue
->_xmit_lock
, &dev
->qdisc_xmit_lock_key
);
9202 queue
->xmit_lock_owner
= -1;
9203 netdev_queue_numa_node_write(queue
, NUMA_NO_NODE
);
9206 dql_init(&queue
->dql
, HZ
);
9210 static void netif_free_tx_queues(struct net_device
*dev
)
9215 static int netif_alloc_netdev_queues(struct net_device
*dev
)
9217 unsigned int count
= dev
->num_tx_queues
;
9218 struct netdev_queue
*tx
;
9219 size_t sz
= count
* sizeof(*tx
);
9221 if (count
< 1 || count
> 0xffff)
9224 tx
= kvzalloc(sz
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
9230 netdev_for_each_tx_queue(dev
, netdev_init_one_queue
, NULL
);
9231 spin_lock_init(&dev
->tx_global_lock
);
9236 void netif_tx_stop_all_queues(struct net_device
*dev
)
9240 for (i
= 0; i
< dev
->num_tx_queues
; i
++) {
9241 struct netdev_queue
*txq
= netdev_get_tx_queue(dev
, i
);
9243 netif_tx_stop_queue(txq
);
9246 EXPORT_SYMBOL(netif_tx_stop_all_queues
);
9248 static void netdev_register_lockdep_key(struct net_device
*dev
)
9250 lockdep_register_key(&dev
->qdisc_tx_busylock_key
);
9251 lockdep_register_key(&dev
->qdisc_running_key
);
9252 lockdep_register_key(&dev
->qdisc_xmit_lock_key
);
9253 lockdep_register_key(&dev
->addr_list_lock_key
);
9256 static void netdev_unregister_lockdep_key(struct net_device
*dev
)
9258 lockdep_unregister_key(&dev
->qdisc_tx_busylock_key
);
9259 lockdep_unregister_key(&dev
->qdisc_running_key
);
9260 lockdep_unregister_key(&dev
->qdisc_xmit_lock_key
);
9261 lockdep_unregister_key(&dev
->addr_list_lock_key
);
9264 void netdev_update_lockdep_key(struct net_device
*dev
)
9266 lockdep_unregister_key(&dev
->addr_list_lock_key
);
9267 lockdep_register_key(&dev
->addr_list_lock_key
);
9269 lockdep_set_class(&dev
->addr_list_lock
, &dev
->addr_list_lock_key
);
9271 EXPORT_SYMBOL(netdev_update_lockdep_key
);
9274 * register_netdevice - register a network device
9275 * @dev: device to register
9277 * Take a completed network device structure and add it to the kernel
9278 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9279 * chain. 0 is returned on success. A negative errno code is returned
9280 * on a failure to set up the device, or if the name is a duplicate.
9282 * Callers must hold the rtnl semaphore. You may want
9283 * register_netdev() instead of this.
9286 * The locking appears insufficient to guarantee two parallel registers
9287 * will not get the same name.
9290 int register_netdevice(struct net_device
*dev
)
9293 struct net
*net
= dev_net(dev
);
9295 BUILD_BUG_ON(sizeof(netdev_features_t
) * BITS_PER_BYTE
<
9296 NETDEV_FEATURE_COUNT
);
9297 BUG_ON(dev_boot_phase
);
9302 /* When net_device's are persistent, this will be fatal. */
9303 BUG_ON(dev
->reg_state
!= NETREG_UNINITIALIZED
);
9306 ret
= ethtool_check_ops(dev
->ethtool_ops
);
9310 spin_lock_init(&dev
->addr_list_lock
);
9311 lockdep_set_class(&dev
->addr_list_lock
, &dev
->addr_list_lock_key
);
9313 ret
= dev_get_valid_name(net
, dev
, dev
->name
);
9318 dev
->name_node
= netdev_name_node_head_alloc(dev
);
9319 if (!dev
->name_node
)
9322 /* Init, if this function is available */
9323 if (dev
->netdev_ops
->ndo_init
) {
9324 ret
= dev
->netdev_ops
->ndo_init(dev
);
9332 if (((dev
->hw_features
| dev
->features
) &
9333 NETIF_F_HW_VLAN_CTAG_FILTER
) &&
9334 (!dev
->netdev_ops
->ndo_vlan_rx_add_vid
||
9335 !dev
->netdev_ops
->ndo_vlan_rx_kill_vid
)) {
9336 netdev_WARN(dev
, "Buggy VLAN acceleration in driver!\n");
9343 dev
->ifindex
= dev_new_index(net
);
9344 else if (__dev_get_by_index(net
, dev
->ifindex
))
9347 /* Transfer changeable features to wanted_features and enable
9348 * software offloads (GSO and GRO).
9350 dev
->hw_features
|= (NETIF_F_SOFT_FEATURES
| NETIF_F_SOFT_FEATURES_OFF
);
9351 dev
->features
|= NETIF_F_SOFT_FEATURES
;
9353 if (dev
->netdev_ops
->ndo_udp_tunnel_add
) {
9354 dev
->features
|= NETIF_F_RX_UDP_TUNNEL_PORT
;
9355 dev
->hw_features
|= NETIF_F_RX_UDP_TUNNEL_PORT
;
9358 dev
->wanted_features
= dev
->features
& dev
->hw_features
;
9360 if (!(dev
->flags
& IFF_LOOPBACK
))
9361 dev
->hw_features
|= NETIF_F_NOCACHE_COPY
;
9363 /* If IPv4 TCP segmentation offload is supported we should also
9364 * allow the device to enable segmenting the frame with the option
9365 * of ignoring a static IP ID value. This doesn't enable the
9366 * feature itself but allows the user to enable it later.
9368 if (dev
->hw_features
& NETIF_F_TSO
)
9369 dev
->hw_features
|= NETIF_F_TSO_MANGLEID
;
9370 if (dev
->vlan_features
& NETIF_F_TSO
)
9371 dev
->vlan_features
|= NETIF_F_TSO_MANGLEID
;
9372 if (dev
->mpls_features
& NETIF_F_TSO
)
9373 dev
->mpls_features
|= NETIF_F_TSO_MANGLEID
;
9374 if (dev
->hw_enc_features
& NETIF_F_TSO
)
9375 dev
->hw_enc_features
|= NETIF_F_TSO_MANGLEID
;
9377 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9379 dev
->vlan_features
|= NETIF_F_HIGHDMA
;
9381 /* Make NETIF_F_SG inheritable to tunnel devices.
9383 dev
->hw_enc_features
|= NETIF_F_SG
| NETIF_F_GSO_PARTIAL
;
9385 /* Make NETIF_F_SG inheritable to MPLS.
9387 dev
->mpls_features
|= NETIF_F_SG
;
9389 ret
= call_netdevice_notifiers(NETDEV_POST_INIT
, dev
);
9390 ret
= notifier_to_errno(ret
);
9394 ret
= netdev_register_kobject(dev
);
9396 dev
->reg_state
= NETREG_UNREGISTERED
;
9399 dev
->reg_state
= NETREG_REGISTERED
;
9401 __netdev_update_features(dev
);
9404 * Default initial state at registry is that the
9405 * device is present.
9408 set_bit(__LINK_STATE_PRESENT
, &dev
->state
);
9410 linkwatch_init_dev(dev
);
9412 dev_init_scheduler(dev
);
9414 list_netdevice(dev
);
9415 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
9417 /* If the device has permanent device address, driver should
9418 * set dev_addr and also addr_assign_type should be set to
9419 * NET_ADDR_PERM (default value).
9421 if (dev
->addr_assign_type
== NET_ADDR_PERM
)
9422 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
9424 /* Notify protocols, that a new device appeared. */
9425 ret
= call_netdevice_notifiers(NETDEV_REGISTER
, dev
);
9426 ret
= notifier_to_errno(ret
);
9428 rollback_registered(dev
);
9431 dev
->reg_state
= NETREG_UNREGISTERED
;
9434 * Prevent userspace races by waiting until the network
9435 * device is fully setup before sending notifications.
9437 if (!dev
->rtnl_link_ops
||
9438 dev
->rtnl_link_state
== RTNL_LINK_INITIALIZED
)
9439 rtmsg_ifinfo(RTM_NEWLINK
, dev
, ~0U, GFP_KERNEL
);
9445 if (dev
->netdev_ops
->ndo_uninit
)
9446 dev
->netdev_ops
->ndo_uninit(dev
);
9447 if (dev
->priv_destructor
)
9448 dev
->priv_destructor(dev
);
9450 netdev_name_node_free(dev
->name_node
);
9453 EXPORT_SYMBOL(register_netdevice
);
9456 * init_dummy_netdev - init a dummy network device for NAPI
9457 * @dev: device to init
9459 * This takes a network device structure and initialize the minimum
9460 * amount of fields so it can be used to schedule NAPI polls without
9461 * registering a full blown interface. This is to be used by drivers
9462 * that need to tie several hardware interfaces to a single NAPI
9463 * poll scheduler due to HW limitations.
9465 int init_dummy_netdev(struct net_device
*dev
)
9467 /* Clear everything. Note we don't initialize spinlocks
9468 * are they aren't supposed to be taken by any of the
9469 * NAPI code and this dummy netdev is supposed to be
9470 * only ever used for NAPI polls
9472 memset(dev
, 0, sizeof(struct net_device
));
9474 /* make sure we BUG if trying to hit standard
9475 * register/unregister code path
9477 dev
->reg_state
= NETREG_DUMMY
;
9479 /* NAPI wants this */
9480 INIT_LIST_HEAD(&dev
->napi_list
);
9482 /* a dummy interface is started by default */
9483 set_bit(__LINK_STATE_PRESENT
, &dev
->state
);
9484 set_bit(__LINK_STATE_START
, &dev
->state
);
9486 /* napi_busy_loop stats accounting wants this */
9487 dev_net_set(dev
, &init_net
);
9489 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9490 * because users of this 'device' dont need to change
9496 EXPORT_SYMBOL_GPL(init_dummy_netdev
);
9500 * register_netdev - register a network device
9501 * @dev: device to register
9503 * Take a completed network device structure and add it to the kernel
9504 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9505 * chain. 0 is returned on success. A negative errno code is returned
9506 * on a failure to set up the device, or if the name is a duplicate.
9508 * This is a wrapper around register_netdevice that takes the rtnl semaphore
9509 * and expands the device name if you passed a format string to
9512 int register_netdev(struct net_device
*dev
)
9516 if (rtnl_lock_killable())
9518 err
= register_netdevice(dev
);
9522 EXPORT_SYMBOL(register_netdev
);
9524 int netdev_refcnt_read(const struct net_device
*dev
)
9528 for_each_possible_cpu(i
)
9529 refcnt
+= *per_cpu_ptr(dev
->pcpu_refcnt
, i
);
9532 EXPORT_SYMBOL(netdev_refcnt_read
);
9535 * netdev_wait_allrefs - wait until all references are gone.
9536 * @dev: target net_device
9538 * This is called when unregistering network devices.
9540 * Any protocol or device that holds a reference should register
9541 * for netdevice notification, and cleanup and put back the
9542 * reference if they receive an UNREGISTER event.
9543 * We can get stuck here if buggy protocols don't correctly
9546 static void netdev_wait_allrefs(struct net_device
*dev
)
9548 unsigned long rebroadcast_time
, warning_time
;
9551 linkwatch_forget_dev(dev
);
9553 rebroadcast_time
= warning_time
= jiffies
;
9554 refcnt
= netdev_refcnt_read(dev
);
9556 while (refcnt
!= 0) {
9557 if (time_after(jiffies
, rebroadcast_time
+ 1 * HZ
)) {
9560 /* Rebroadcast unregister notification */
9561 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
9567 if (test_bit(__LINK_STATE_LINKWATCH_PENDING
,
9569 /* We must not have linkwatch events
9570 * pending on unregister. If this
9571 * happens, we simply run the queue
9572 * unscheduled, resulting in a noop
9575 linkwatch_run_queue();
9580 rebroadcast_time
= jiffies
;
9585 refcnt
= netdev_refcnt_read(dev
);
9587 if (refcnt
&& time_after(jiffies
, warning_time
+ 10 * HZ
)) {
9588 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9590 warning_time
= jiffies
;
9599 * register_netdevice(x1);
9600 * register_netdevice(x2);
9602 * unregister_netdevice(y1);
9603 * unregister_netdevice(y2);
9609 * We are invoked by rtnl_unlock().
9610 * This allows us to deal with problems:
9611 * 1) We can delete sysfs objects which invoke hotplug
9612 * without deadlocking with linkwatch via keventd.
9613 * 2) Since we run with the RTNL semaphore not held, we can sleep
9614 * safely in order to wait for the netdev refcnt to drop to zero.
9616 * We must not return until all unregister events added during
9617 * the interval the lock was held have been completed.
9619 void netdev_run_todo(void)
9621 struct list_head list
;
9623 /* Snapshot list, allow later requests */
9624 list_replace_init(&net_todo_list
, &list
);
9629 /* Wait for rcu callbacks to finish before next phase */
9630 if (!list_empty(&list
))
9633 while (!list_empty(&list
)) {
9634 struct net_device
*dev
9635 = list_first_entry(&list
, struct net_device
, todo_list
);
9636 list_del(&dev
->todo_list
);
9638 if (unlikely(dev
->reg_state
!= NETREG_UNREGISTERING
)) {
9639 pr_err("network todo '%s' but state %d\n",
9640 dev
->name
, dev
->reg_state
);
9645 dev
->reg_state
= NETREG_UNREGISTERED
;
9647 netdev_wait_allrefs(dev
);
9650 BUG_ON(netdev_refcnt_read(dev
));
9651 BUG_ON(!list_empty(&dev
->ptype_all
));
9652 BUG_ON(!list_empty(&dev
->ptype_specific
));
9653 WARN_ON(rcu_access_pointer(dev
->ip_ptr
));
9654 WARN_ON(rcu_access_pointer(dev
->ip6_ptr
));
9655 #if IS_ENABLED(CONFIG_DECNET)
9656 WARN_ON(dev
->dn_ptr
);
9658 if (dev
->priv_destructor
)
9659 dev
->priv_destructor(dev
);
9660 if (dev
->needs_free_netdev
)
9663 /* Report a network device has been unregistered */
9665 dev_net(dev
)->dev_unreg_count
--;
9667 wake_up(&netdev_unregistering_wq
);
9669 /* Free network device */
9670 kobject_put(&dev
->dev
.kobj
);
9674 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9675 * all the same fields in the same order as net_device_stats, with only
9676 * the type differing, but rtnl_link_stats64 may have additional fields
9677 * at the end for newer counters.
9679 void netdev_stats_to_stats64(struct rtnl_link_stats64
*stats64
,
9680 const struct net_device_stats
*netdev_stats
)
9682 #if BITS_PER_LONG == 64
9683 BUILD_BUG_ON(sizeof(*stats64
) < sizeof(*netdev_stats
));
9684 memcpy(stats64
, netdev_stats
, sizeof(*netdev_stats
));
9685 /* zero out counters that only exist in rtnl_link_stats64 */
9686 memset((char *)stats64
+ sizeof(*netdev_stats
), 0,
9687 sizeof(*stats64
) - sizeof(*netdev_stats
));
9689 size_t i
, n
= sizeof(*netdev_stats
) / sizeof(unsigned long);
9690 const unsigned long *src
= (const unsigned long *)netdev_stats
;
9691 u64
*dst
= (u64
*)stats64
;
9693 BUILD_BUG_ON(n
> sizeof(*stats64
) / sizeof(u64
));
9694 for (i
= 0; i
< n
; i
++)
9696 /* zero out counters that only exist in rtnl_link_stats64 */
9697 memset((char *)stats64
+ n
* sizeof(u64
), 0,
9698 sizeof(*stats64
) - n
* sizeof(u64
));
9701 EXPORT_SYMBOL(netdev_stats_to_stats64
);
9704 * dev_get_stats - get network device statistics
9705 * @dev: device to get statistics from
9706 * @storage: place to store stats
9708 * Get network statistics from device. Return @storage.
9709 * The device driver may provide its own method by setting
9710 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9711 * otherwise the internal statistics structure is used.
9713 struct rtnl_link_stats64
*dev_get_stats(struct net_device
*dev
,
9714 struct rtnl_link_stats64
*storage
)
9716 const struct net_device_ops
*ops
= dev
->netdev_ops
;
9718 if (ops
->ndo_get_stats64
) {
9719 memset(storage
, 0, sizeof(*storage
));
9720 ops
->ndo_get_stats64(dev
, storage
);
9721 } else if (ops
->ndo_get_stats
) {
9722 netdev_stats_to_stats64(storage
, ops
->ndo_get_stats(dev
));
9724 netdev_stats_to_stats64(storage
, &dev
->stats
);
9726 storage
->rx_dropped
+= (unsigned long)atomic_long_read(&dev
->rx_dropped
);
9727 storage
->tx_dropped
+= (unsigned long)atomic_long_read(&dev
->tx_dropped
);
9728 storage
->rx_nohandler
+= (unsigned long)atomic_long_read(&dev
->rx_nohandler
);
9731 EXPORT_SYMBOL(dev_get_stats
);
9733 struct netdev_queue
*dev_ingress_queue_create(struct net_device
*dev
)
9735 struct netdev_queue
*queue
= dev_ingress_queue(dev
);
9737 #ifdef CONFIG_NET_CLS_ACT
9740 queue
= kzalloc(sizeof(*queue
), GFP_KERNEL
);
9743 netdev_init_one_queue(dev
, queue
, NULL
);
9744 RCU_INIT_POINTER(queue
->qdisc
, &noop_qdisc
);
9745 queue
->qdisc_sleeping
= &noop_qdisc
;
9746 rcu_assign_pointer(dev
->ingress_queue
, queue
);
9751 static const struct ethtool_ops default_ethtool_ops
;
9753 void netdev_set_default_ethtool_ops(struct net_device
*dev
,
9754 const struct ethtool_ops
*ops
)
9756 if (dev
->ethtool_ops
== &default_ethtool_ops
)
9757 dev
->ethtool_ops
= ops
;
9759 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops
);
9761 void netdev_freemem(struct net_device
*dev
)
9763 char *addr
= (char *)dev
- dev
->padded
;
9769 * alloc_netdev_mqs - allocate network device
9770 * @sizeof_priv: size of private data to allocate space for
9771 * @name: device name format string
9772 * @name_assign_type: origin of device name
9773 * @setup: callback to initialize device
9774 * @txqs: the number of TX subqueues to allocate
9775 * @rxqs: the number of RX subqueues to allocate
9777 * Allocates a struct net_device with private data area for driver use
9778 * and performs basic initialization. Also allocates subqueue structs
9779 * for each queue on the device.
9781 struct net_device
*alloc_netdev_mqs(int sizeof_priv
, const char *name
,
9782 unsigned char name_assign_type
,
9783 void (*setup
)(struct net_device
*),
9784 unsigned int txqs
, unsigned int rxqs
)
9786 struct net_device
*dev
;
9787 unsigned int alloc_size
;
9788 struct net_device
*p
;
9790 BUG_ON(strlen(name
) >= sizeof(dev
->name
));
9793 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9798 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9802 alloc_size
= sizeof(struct net_device
);
9804 /* ensure 32-byte alignment of private area */
9805 alloc_size
= ALIGN(alloc_size
, NETDEV_ALIGN
);
9806 alloc_size
+= sizeof_priv
;
9808 /* ensure 32-byte alignment of whole construct */
9809 alloc_size
+= NETDEV_ALIGN
- 1;
9811 p
= kvzalloc(alloc_size
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
9815 dev
= PTR_ALIGN(p
, NETDEV_ALIGN
);
9816 dev
->padded
= (char *)dev
- (char *)p
;
9818 dev
->pcpu_refcnt
= alloc_percpu(int);
9819 if (!dev
->pcpu_refcnt
)
9822 if (dev_addr_init(dev
))
9828 dev_net_set(dev
, &init_net
);
9830 netdev_register_lockdep_key(dev
);
9832 dev
->gso_max_size
= GSO_MAX_SIZE
;
9833 dev
->gso_max_segs
= GSO_MAX_SEGS
;
9834 dev
->upper_level
= 1;
9835 dev
->lower_level
= 1;
9837 INIT_LIST_HEAD(&dev
->napi_list
);
9838 INIT_LIST_HEAD(&dev
->unreg_list
);
9839 INIT_LIST_HEAD(&dev
->close_list
);
9840 INIT_LIST_HEAD(&dev
->link_watch_list
);
9841 INIT_LIST_HEAD(&dev
->adj_list
.upper
);
9842 INIT_LIST_HEAD(&dev
->adj_list
.lower
);
9843 INIT_LIST_HEAD(&dev
->ptype_all
);
9844 INIT_LIST_HEAD(&dev
->ptype_specific
);
9845 INIT_LIST_HEAD(&dev
->net_notifier_list
);
9846 #ifdef CONFIG_NET_SCHED
9847 hash_init(dev
->qdisc_hash
);
9849 dev
->priv_flags
= IFF_XMIT_DST_RELEASE
| IFF_XMIT_DST_RELEASE_PERM
;
9852 if (!dev
->tx_queue_len
) {
9853 dev
->priv_flags
|= IFF_NO_QUEUE
;
9854 dev
->tx_queue_len
= DEFAULT_TX_QUEUE_LEN
;
9857 dev
->num_tx_queues
= txqs
;
9858 dev
->real_num_tx_queues
= txqs
;
9859 if (netif_alloc_netdev_queues(dev
))
9862 dev
->num_rx_queues
= rxqs
;
9863 dev
->real_num_rx_queues
= rxqs
;
9864 if (netif_alloc_rx_queues(dev
))
9867 strcpy(dev
->name
, name
);
9868 dev
->name_assign_type
= name_assign_type
;
9869 dev
->group
= INIT_NETDEV_GROUP
;
9870 if (!dev
->ethtool_ops
)
9871 dev
->ethtool_ops
= &default_ethtool_ops
;
9873 nf_hook_ingress_init(dev
);
9882 free_percpu(dev
->pcpu_refcnt
);
9884 netdev_freemem(dev
);
9887 EXPORT_SYMBOL(alloc_netdev_mqs
);
9890 * free_netdev - free network device
9893 * This function does the last stage of destroying an allocated device
9894 * interface. The reference to the device object is released. If this
9895 * is the last reference then it will be freed.Must be called in process
9898 void free_netdev(struct net_device
*dev
)
9900 struct napi_struct
*p
, *n
;
9903 netif_free_tx_queues(dev
);
9904 netif_free_rx_queues(dev
);
9906 kfree(rcu_dereference_protected(dev
->ingress_queue
, 1));
9908 /* Flush device addresses */
9909 dev_addr_flush(dev
);
9911 list_for_each_entry_safe(p
, n
, &dev
->napi_list
, dev_list
)
9914 free_percpu(dev
->pcpu_refcnt
);
9915 dev
->pcpu_refcnt
= NULL
;
9916 free_percpu(dev
->xdp_bulkq
);
9917 dev
->xdp_bulkq
= NULL
;
9919 netdev_unregister_lockdep_key(dev
);
9921 /* Compatibility with error handling in drivers */
9922 if (dev
->reg_state
== NETREG_UNINITIALIZED
) {
9923 netdev_freemem(dev
);
9927 BUG_ON(dev
->reg_state
!= NETREG_UNREGISTERED
);
9928 dev
->reg_state
= NETREG_RELEASED
;
9930 /* will free via device release */
9931 put_device(&dev
->dev
);
9933 EXPORT_SYMBOL(free_netdev
);
9936 * synchronize_net - Synchronize with packet receive processing
9938 * Wait for packets currently being received to be done.
9939 * Does not block later packets from starting.
9941 void synchronize_net(void)
9944 if (rtnl_is_locked())
9945 synchronize_rcu_expedited();
9949 EXPORT_SYMBOL(synchronize_net
);
9952 * unregister_netdevice_queue - remove device from the kernel
9956 * This function shuts down a device interface and removes it
9957 * from the kernel tables.
9958 * If head not NULL, device is queued to be unregistered later.
9960 * Callers must hold the rtnl semaphore. You may want
9961 * unregister_netdev() instead of this.
9964 void unregister_netdevice_queue(struct net_device
*dev
, struct list_head
*head
)
9969 list_move_tail(&dev
->unreg_list
, head
);
9971 rollback_registered(dev
);
9972 /* Finish processing unregister after unlock */
9976 EXPORT_SYMBOL(unregister_netdevice_queue
);
9979 * unregister_netdevice_many - unregister many devices
9980 * @head: list of devices
9982 * Note: As most callers use a stack allocated list_head,
9983 * we force a list_del() to make sure stack wont be corrupted later.
9985 void unregister_netdevice_many(struct list_head
*head
)
9987 struct net_device
*dev
;
9989 if (!list_empty(head
)) {
9990 rollback_registered_many(head
);
9991 list_for_each_entry(dev
, head
, unreg_list
)
9996 EXPORT_SYMBOL(unregister_netdevice_many
);
9999 * unregister_netdev - remove device from the kernel
10002 * This function shuts down a device interface and removes it
10003 * from the kernel tables.
10005 * This is just a wrapper for unregister_netdevice that takes
10006 * the rtnl semaphore. In general you want to use this and not
10007 * unregister_netdevice.
10009 void unregister_netdev(struct net_device
*dev
)
10012 unregister_netdevice(dev
);
10015 EXPORT_SYMBOL(unregister_netdev
);
10018 * dev_change_net_namespace - move device to different nethost namespace
10020 * @net: network namespace
10021 * @pat: If not NULL name pattern to try if the current device name
10022 * is already taken in the destination network namespace.
10024 * This function shuts down a device interface and moves it
10025 * to a new network namespace. On success 0 is returned, on
10026 * a failure a netagive errno code is returned.
10028 * Callers must hold the rtnl semaphore.
10031 int dev_change_net_namespace(struct net_device
*dev
, struct net
*net
, const char *pat
)
10033 struct net
*net_old
= dev_net(dev
);
10034 int err
, new_nsid
, new_ifindex
;
10038 /* Don't allow namespace local devices to be moved. */
10040 if (dev
->features
& NETIF_F_NETNS_LOCAL
)
10043 /* Ensure the device has been registrered */
10044 if (dev
->reg_state
!= NETREG_REGISTERED
)
10047 /* Get out if there is nothing todo */
10049 if (net_eq(net_old
, net
))
10052 /* Pick the destination device name, and ensure
10053 * we can use it in the destination network namespace.
10056 if (__dev_get_by_name(net
, dev
->name
)) {
10057 /* We get here if we can't use the current device name */
10060 err
= dev_get_valid_name(net
, dev
, pat
);
10066 * And now a mini version of register_netdevice unregister_netdevice.
10069 /* If device is running close it first. */
10072 /* And unlink it from device chain */
10073 unlist_netdevice(dev
);
10077 /* Shutdown queueing discipline. */
10080 /* Notify protocols, that we are about to destroy
10081 * this device. They should clean all the things.
10083 * Note that dev->reg_state stays at NETREG_REGISTERED.
10084 * This is wanted because this way 8021q and macvlan know
10085 * the device is just moving and can keep their slaves up.
10087 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
10090 new_nsid
= peernet2id_alloc(dev_net(dev
), net
, GFP_KERNEL
);
10091 /* If there is an ifindex conflict assign a new one */
10092 if (__dev_get_by_index(net
, dev
->ifindex
))
10093 new_ifindex
= dev_new_index(net
);
10095 new_ifindex
= dev
->ifindex
;
10097 rtmsg_ifinfo_newnet(RTM_DELLINK
, dev
, ~0U, GFP_KERNEL
, &new_nsid
,
10101 * Flush the unicast and multicast chains
10106 /* Send a netdev-removed uevent to the old namespace */
10107 kobject_uevent(&dev
->dev
.kobj
, KOBJ_REMOVE
);
10108 netdev_adjacent_del_links(dev
);
10110 /* Move per-net netdevice notifiers that are following the netdevice */
10111 move_netdevice_notifiers_dev_net(dev
, net
);
10113 /* Actually switch the network namespace */
10114 dev_net_set(dev
, net
);
10115 dev
->ifindex
= new_ifindex
;
10117 /* Send a netdev-add uevent to the new namespace */
10118 kobject_uevent(&dev
->dev
.kobj
, KOBJ_ADD
);
10119 netdev_adjacent_add_links(dev
);
10121 /* Fixup kobjects */
10122 err
= device_rename(&dev
->dev
, dev
->name
);
10125 /* Adapt owner in case owning user namespace of target network
10126 * namespace is different from the original one.
10128 err
= netdev_change_owner(dev
, net_old
, net
);
10131 /* Add the device back in the hashes */
10132 list_netdevice(dev
);
10134 /* Notify protocols, that a new device appeared. */
10135 call_netdevice_notifiers(NETDEV_REGISTER
, dev
);
10138 * Prevent userspace races by waiting until the network
10139 * device is fully setup before sending notifications.
10141 rtmsg_ifinfo(RTM_NEWLINK
, dev
, ~0U, GFP_KERNEL
);
10148 EXPORT_SYMBOL_GPL(dev_change_net_namespace
);
10150 static int dev_cpu_dead(unsigned int oldcpu
)
10152 struct sk_buff
**list_skb
;
10153 struct sk_buff
*skb
;
10155 struct softnet_data
*sd
, *oldsd
, *remsd
= NULL
;
10157 local_irq_disable();
10158 cpu
= smp_processor_id();
10159 sd
= &per_cpu(softnet_data
, cpu
);
10160 oldsd
= &per_cpu(softnet_data
, oldcpu
);
10162 /* Find end of our completion_queue. */
10163 list_skb
= &sd
->completion_queue
;
10165 list_skb
= &(*list_skb
)->next
;
10166 /* Append completion queue from offline CPU. */
10167 *list_skb
= oldsd
->completion_queue
;
10168 oldsd
->completion_queue
= NULL
;
10170 /* Append output queue from offline CPU. */
10171 if (oldsd
->output_queue
) {
10172 *sd
->output_queue_tailp
= oldsd
->output_queue
;
10173 sd
->output_queue_tailp
= oldsd
->output_queue_tailp
;
10174 oldsd
->output_queue
= NULL
;
10175 oldsd
->output_queue_tailp
= &oldsd
->output_queue
;
10177 /* Append NAPI poll list from offline CPU, with one exception :
10178 * process_backlog() must be called by cpu owning percpu backlog.
10179 * We properly handle process_queue & input_pkt_queue later.
10181 while (!list_empty(&oldsd
->poll_list
)) {
10182 struct napi_struct
*napi
= list_first_entry(&oldsd
->poll_list
,
10183 struct napi_struct
,
10186 list_del_init(&napi
->poll_list
);
10187 if (napi
->poll
== process_backlog
)
10190 ____napi_schedule(sd
, napi
);
10193 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
10194 local_irq_enable();
10197 remsd
= oldsd
->rps_ipi_list
;
10198 oldsd
->rps_ipi_list
= NULL
;
10200 /* send out pending IPI's on offline CPU */
10201 net_rps_send_ipi(remsd
);
10203 /* Process offline CPU's input_pkt_queue */
10204 while ((skb
= __skb_dequeue(&oldsd
->process_queue
))) {
10206 input_queue_head_incr(oldsd
);
10208 while ((skb
= skb_dequeue(&oldsd
->input_pkt_queue
))) {
10210 input_queue_head_incr(oldsd
);
10217 * netdev_increment_features - increment feature set by one
10218 * @all: current feature set
10219 * @one: new feature set
10220 * @mask: mask feature set
10222 * Computes a new feature set after adding a device with feature set
10223 * @one to the master device with current feature set @all. Will not
10224 * enable anything that is off in @mask. Returns the new feature set.
10226 netdev_features_t
netdev_increment_features(netdev_features_t all
,
10227 netdev_features_t one
, netdev_features_t mask
)
10229 if (mask
& NETIF_F_HW_CSUM
)
10230 mask
|= NETIF_F_CSUM_MASK
;
10231 mask
|= NETIF_F_VLAN_CHALLENGED
;
10233 all
|= one
& (NETIF_F_ONE_FOR_ALL
| NETIF_F_CSUM_MASK
) & mask
;
10234 all
&= one
| ~NETIF_F_ALL_FOR_ALL
;
10236 /* If one device supports hw checksumming, set for all. */
10237 if (all
& NETIF_F_HW_CSUM
)
10238 all
&= ~(NETIF_F_CSUM_MASK
& ~NETIF_F_HW_CSUM
);
10242 EXPORT_SYMBOL(netdev_increment_features
);
10244 static struct hlist_head
* __net_init
netdev_create_hash(void)
10247 struct hlist_head
*hash
;
10249 hash
= kmalloc_array(NETDEV_HASHENTRIES
, sizeof(*hash
), GFP_KERNEL
);
10251 for (i
= 0; i
< NETDEV_HASHENTRIES
; i
++)
10252 INIT_HLIST_HEAD(&hash
[i
]);
10257 /* Initialize per network namespace state */
10258 static int __net_init
netdev_init(struct net
*net
)
10260 BUILD_BUG_ON(GRO_HASH_BUCKETS
>
10261 8 * sizeof_field(struct napi_struct
, gro_bitmask
));
10263 if (net
!= &init_net
)
10264 INIT_LIST_HEAD(&net
->dev_base_head
);
10266 net
->dev_name_head
= netdev_create_hash();
10267 if (net
->dev_name_head
== NULL
)
10270 net
->dev_index_head
= netdev_create_hash();
10271 if (net
->dev_index_head
== NULL
)
10274 RAW_INIT_NOTIFIER_HEAD(&net
->netdev_chain
);
10279 kfree(net
->dev_name_head
);
10285 * netdev_drivername - network driver for the device
10286 * @dev: network device
10288 * Determine network driver for device.
10290 const char *netdev_drivername(const struct net_device
*dev
)
10292 const struct device_driver
*driver
;
10293 const struct device
*parent
;
10294 const char *empty
= "";
10296 parent
= dev
->dev
.parent
;
10300 driver
= parent
->driver
;
10301 if (driver
&& driver
->name
)
10302 return driver
->name
;
10306 static void __netdev_printk(const char *level
, const struct net_device
*dev
,
10307 struct va_format
*vaf
)
10309 if (dev
&& dev
->dev
.parent
) {
10310 dev_printk_emit(level
[1] - '0',
10313 dev_driver_string(dev
->dev
.parent
),
10314 dev_name(dev
->dev
.parent
),
10315 netdev_name(dev
), netdev_reg_state(dev
),
10318 printk("%s%s%s: %pV",
10319 level
, netdev_name(dev
), netdev_reg_state(dev
), vaf
);
10321 printk("%s(NULL net_device): %pV", level
, vaf
);
10325 void netdev_printk(const char *level
, const struct net_device
*dev
,
10326 const char *format
, ...)
10328 struct va_format vaf
;
10331 va_start(args
, format
);
10336 __netdev_printk(level
, dev
, &vaf
);
10340 EXPORT_SYMBOL(netdev_printk
);
10342 #define define_netdev_printk_level(func, level) \
10343 void func(const struct net_device *dev, const char *fmt, ...) \
10345 struct va_format vaf; \
10348 va_start(args, fmt); \
10353 __netdev_printk(level, dev, &vaf); \
10357 EXPORT_SYMBOL(func);
10359 define_netdev_printk_level(netdev_emerg
, KERN_EMERG
);
10360 define_netdev_printk_level(netdev_alert
, KERN_ALERT
);
10361 define_netdev_printk_level(netdev_crit
, KERN_CRIT
);
10362 define_netdev_printk_level(netdev_err
, KERN_ERR
);
10363 define_netdev_printk_level(netdev_warn
, KERN_WARNING
);
10364 define_netdev_printk_level(netdev_notice
, KERN_NOTICE
);
10365 define_netdev_printk_level(netdev_info
, KERN_INFO
);
10367 static void __net_exit
netdev_exit(struct net
*net
)
10369 kfree(net
->dev_name_head
);
10370 kfree(net
->dev_index_head
);
10371 if (net
!= &init_net
)
10372 WARN_ON_ONCE(!list_empty(&net
->dev_base_head
));
10375 static struct pernet_operations __net_initdata netdev_net_ops
= {
10376 .init
= netdev_init
,
10377 .exit
= netdev_exit
,
10380 static void __net_exit
default_device_exit(struct net
*net
)
10382 struct net_device
*dev
, *aux
;
10384 * Push all migratable network devices back to the
10385 * initial network namespace
10388 for_each_netdev_safe(net
, dev
, aux
) {
10390 char fb_name
[IFNAMSIZ
];
10392 /* Ignore unmoveable devices (i.e. loopback) */
10393 if (dev
->features
& NETIF_F_NETNS_LOCAL
)
10396 /* Leave virtual devices for the generic cleanup */
10397 if (dev
->rtnl_link_ops
)
10400 /* Push remaining network devices to init_net */
10401 snprintf(fb_name
, IFNAMSIZ
, "dev%d", dev
->ifindex
);
10402 if (__dev_get_by_name(&init_net
, fb_name
))
10403 snprintf(fb_name
, IFNAMSIZ
, "dev%%d");
10404 err
= dev_change_net_namespace(dev
, &init_net
, fb_name
);
10406 pr_emerg("%s: failed to move %s to init_net: %d\n",
10407 __func__
, dev
->name
, err
);
10414 static void __net_exit
rtnl_lock_unregistering(struct list_head
*net_list
)
10416 /* Return with the rtnl_lock held when there are no network
10417 * devices unregistering in any network namespace in net_list.
10420 bool unregistering
;
10421 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
10423 add_wait_queue(&netdev_unregistering_wq
, &wait
);
10425 unregistering
= false;
10427 list_for_each_entry(net
, net_list
, exit_list
) {
10428 if (net
->dev_unreg_count
> 0) {
10429 unregistering
= true;
10433 if (!unregistering
)
10437 wait_woken(&wait
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
10439 remove_wait_queue(&netdev_unregistering_wq
, &wait
);
10442 static void __net_exit
default_device_exit_batch(struct list_head
*net_list
)
10444 /* At exit all network devices most be removed from a network
10445 * namespace. Do this in the reverse order of registration.
10446 * Do this across as many network namespaces as possible to
10447 * improve batching efficiency.
10449 struct net_device
*dev
;
10451 LIST_HEAD(dev_kill_list
);
10453 /* To prevent network device cleanup code from dereferencing
10454 * loopback devices or network devices that have been freed
10455 * wait here for all pending unregistrations to complete,
10456 * before unregistring the loopback device and allowing the
10457 * network namespace be freed.
10459 * The netdev todo list containing all network devices
10460 * unregistrations that happen in default_device_exit_batch
10461 * will run in the rtnl_unlock() at the end of
10462 * default_device_exit_batch.
10464 rtnl_lock_unregistering(net_list
);
10465 list_for_each_entry(net
, net_list
, exit_list
) {
10466 for_each_netdev_reverse(net
, dev
) {
10467 if (dev
->rtnl_link_ops
&& dev
->rtnl_link_ops
->dellink
)
10468 dev
->rtnl_link_ops
->dellink(dev
, &dev_kill_list
);
10470 unregister_netdevice_queue(dev
, &dev_kill_list
);
10473 unregister_netdevice_many(&dev_kill_list
);
10477 static struct pernet_operations __net_initdata default_device_ops
= {
10478 .exit
= default_device_exit
,
10479 .exit_batch
= default_device_exit_batch
,
10483 * Initialize the DEV module. At boot time this walks the device list and
10484 * unhooks any devices that fail to initialise (normally hardware not
10485 * present) and leaves us with a valid list of present and active devices.
10490 * This is called single threaded during boot, so no need
10491 * to take the rtnl semaphore.
10493 static int __init
net_dev_init(void)
10495 int i
, rc
= -ENOMEM
;
10497 BUG_ON(!dev_boot_phase
);
10499 if (dev_proc_init())
10502 if (netdev_kobject_init())
10505 INIT_LIST_HEAD(&ptype_all
);
10506 for (i
= 0; i
< PTYPE_HASH_SIZE
; i
++)
10507 INIT_LIST_HEAD(&ptype_base
[i
]);
10509 INIT_LIST_HEAD(&offload_base
);
10511 if (register_pernet_subsys(&netdev_net_ops
))
10515 * Initialise the packet receive queues.
10518 for_each_possible_cpu(i
) {
10519 struct work_struct
*flush
= per_cpu_ptr(&flush_works
, i
);
10520 struct softnet_data
*sd
= &per_cpu(softnet_data
, i
);
10522 INIT_WORK(flush
, flush_backlog
);
10524 skb_queue_head_init(&sd
->input_pkt_queue
);
10525 skb_queue_head_init(&sd
->process_queue
);
10526 #ifdef CONFIG_XFRM_OFFLOAD
10527 skb_queue_head_init(&sd
->xfrm_backlog
);
10529 INIT_LIST_HEAD(&sd
->poll_list
);
10530 sd
->output_queue_tailp
= &sd
->output_queue
;
10532 sd
->csd
.func
= rps_trigger_softirq
;
10537 init_gro_hash(&sd
->backlog
);
10538 sd
->backlog
.poll
= process_backlog
;
10539 sd
->backlog
.weight
= weight_p
;
10542 dev_boot_phase
= 0;
10544 /* The loopback device is special if any other network devices
10545 * is present in a network namespace the loopback device must
10546 * be present. Since we now dynamically allocate and free the
10547 * loopback device ensure this invariant is maintained by
10548 * keeping the loopback device as the first device on the
10549 * list of network devices. Ensuring the loopback devices
10550 * is the first device that appears and the last network device
10553 if (register_pernet_device(&loopback_net_ops
))
10556 if (register_pernet_device(&default_device_ops
))
10559 open_softirq(NET_TX_SOFTIRQ
, net_tx_action
);
10560 open_softirq(NET_RX_SOFTIRQ
, net_rx_action
);
10562 rc
= cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD
, "net/dev:dead",
10563 NULL
, dev_cpu_dead
);
10570 subsys_initcall(net_dev_init
);