]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - net/core/dev.c
Merge tag 'kvm-x86-mmu-6.7' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/kernel/stable.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156
157 #include "dev.h"
158 #include "net-sysfs.h"
159
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly; /* Taps */
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 struct net_device *dev,
167 struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172 * semaphore.
173 *
174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175 *
176 * Writers must hold the rtnl semaphore while they loop through the
177 * dev_base_head list, and hold dev_base_lock for writing when they do the
178 * actual updates. This allows pure readers to access the list even
179 * while a writer is preparing to update it.
180 *
181 * To put it another way, dev_base_lock is held for writing only to
182 * protect against pure readers; the rtnl semaphore provides the
183 * protection against other writers.
184 *
185 * See, for example usages, register_netdevice() and
186 * unregister_netdevice(), which must be called with the rtnl
187 * semaphore held.
188 */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 static DEFINE_MUTEX(ifalias_mutex);
193
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200 static DECLARE_RWSEM(devnet_rename_sem);
201
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 while (++net->dev_base_seq == 0)
205 ;
206 }
207
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 unsigned long *flags)
222 {
223 if (IS_ENABLED(CONFIG_RPS))
224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 local_irq_save(*flags);
227 }
228
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231 if (IS_ENABLED(CONFIG_RPS))
232 spin_lock_irq(&sd->input_pkt_queue.lock);
233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 local_irq_disable();
235 }
236
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 unsigned long *flags)
239 {
240 if (IS_ENABLED(CONFIG_RPS))
241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 local_irq_restore(*flags);
244 }
245
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248 if (IS_ENABLED(CONFIG_RPS))
249 spin_unlock_irq(&sd->input_pkt_queue.lock);
250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 local_irq_enable();
252 }
253
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 const char *name)
256 {
257 struct netdev_name_node *name_node;
258
259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 if (!name_node)
261 return NULL;
262 INIT_HLIST_NODE(&name_node->hlist);
263 name_node->dev = dev;
264 name_node->name = name;
265 return name_node;
266 }
267
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271 struct netdev_name_node *name_node;
272
273 name_node = netdev_name_node_alloc(dev, dev->name);
274 if (!name_node)
275 return NULL;
276 INIT_LIST_HEAD(&name_node->list);
277 return name_node;
278 }
279
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282 kfree(name_node);
283 }
284
285 static void netdev_name_node_add(struct net *net,
286 struct netdev_name_node *name_node)
287 {
288 hlist_add_head_rcu(&name_node->hlist,
289 dev_name_hash(net, name_node->name));
290 }
291
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294 hlist_del_rcu(&name_node->hlist);
295 }
296
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 const char *name)
299 {
300 struct hlist_head *head = dev_name_hash(net, name);
301 struct netdev_name_node *name_node;
302
303 hlist_for_each_entry(name_node, head, hlist)
304 if (!strcmp(name_node->name, name))
305 return name_node;
306 return NULL;
307 }
308
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 const char *name)
311 {
312 struct hlist_head *head = dev_name_hash(net, name);
313 struct netdev_name_node *name_node;
314
315 hlist_for_each_entry_rcu(name_node, head, hlist)
316 if (!strcmp(name_node->name, name))
317 return name_node;
318 return NULL;
319 }
320
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323 return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
331
332 name_node = netdev_name_node_lookup(net, name);
333 if (name_node)
334 return -EEXIST;
335 name_node = netdev_name_node_alloc(dev, name);
336 if (!name_node)
337 return -ENOMEM;
338 netdev_name_node_add(net, name_node);
339 /* The node that holds dev->name acts as a head of per-device list. */
340 list_add_tail(&name_node->list, &dev->name_node->list);
341
342 return 0;
343 }
344
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 list_del(&name_node->list);
348 kfree(name_node->name);
349 netdev_name_node_free(name_node);
350 }
351
352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
353 {
354 struct netdev_name_node *name_node;
355 struct net *net = dev_net(dev);
356
357 name_node = netdev_name_node_lookup(net, name);
358 if (!name_node)
359 return -ENOENT;
360 /* lookup might have found our primary name or a name belonging
361 * to another device.
362 */
363 if (name_node == dev->name_node || name_node->dev != dev)
364 return -EINVAL;
365
366 netdev_name_node_del(name_node);
367 synchronize_rcu();
368 __netdev_name_node_alt_destroy(name_node);
369
370 return 0;
371 }
372
373 static void netdev_name_node_alt_flush(struct net_device *dev)
374 {
375 struct netdev_name_node *name_node, *tmp;
376
377 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378 __netdev_name_node_alt_destroy(name_node);
379 }
380
381 /* Device list insertion */
382 static void list_netdevice(struct net_device *dev)
383 {
384 struct netdev_name_node *name_node;
385 struct net *net = dev_net(dev);
386
387 ASSERT_RTNL();
388
389 write_lock(&dev_base_lock);
390 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
391 netdev_name_node_add(net, dev->name_node);
392 hlist_add_head_rcu(&dev->index_hlist,
393 dev_index_hash(net, dev->ifindex));
394 write_unlock(&dev_base_lock);
395
396 netdev_for_each_altname(dev, name_node)
397 netdev_name_node_add(net, name_node);
398
399 /* We reserved the ifindex, this can't fail */
400 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
401
402 dev_base_seq_inc(net);
403 }
404
405 /* Device list removal
406 * caller must respect a RCU grace period before freeing/reusing dev
407 */
408 static void unlist_netdevice(struct net_device *dev, bool lock)
409 {
410 struct netdev_name_node *name_node;
411 struct net *net = dev_net(dev);
412
413 ASSERT_RTNL();
414
415 xa_erase(&net->dev_by_index, dev->ifindex);
416
417 netdev_for_each_altname(dev, name_node)
418 netdev_name_node_del(name_node);
419
420 /* Unlink dev from the device chain */
421 if (lock)
422 write_lock(&dev_base_lock);
423 list_del_rcu(&dev->dev_list);
424 netdev_name_node_del(dev->name_node);
425 hlist_del_rcu(&dev->index_hlist);
426 if (lock)
427 write_unlock(&dev_base_lock);
428
429 dev_base_seq_inc(dev_net(dev));
430 }
431
432 /*
433 * Our notifier list
434 */
435
436 static RAW_NOTIFIER_HEAD(netdev_chain);
437
438 /*
439 * Device drivers call our routines to queue packets here. We empty the
440 * queue in the local softnet handler.
441 */
442
443 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
444 EXPORT_PER_CPU_SYMBOL(softnet_data);
445
446 #ifdef CONFIG_LOCKDEP
447 /*
448 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
449 * according to dev->type
450 */
451 static const unsigned short netdev_lock_type[] = {
452 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
453 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
454 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
455 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
456 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
457 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
458 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
459 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
460 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
461 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
462 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
463 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
464 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
465 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
466 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
467
468 static const char *const netdev_lock_name[] = {
469 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
470 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
471 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
472 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
473 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
474 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
475 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
476 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
477 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
478 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
479 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
480 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
481 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
482 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
483 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
484
485 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
486 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
487
488 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
489 {
490 int i;
491
492 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
493 if (netdev_lock_type[i] == dev_type)
494 return i;
495 /* the last key is used by default */
496 return ARRAY_SIZE(netdev_lock_type) - 1;
497 }
498
499 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
500 unsigned short dev_type)
501 {
502 int i;
503
504 i = netdev_lock_pos(dev_type);
505 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
506 netdev_lock_name[i]);
507 }
508
509 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
510 {
511 int i;
512
513 i = netdev_lock_pos(dev->type);
514 lockdep_set_class_and_name(&dev->addr_list_lock,
515 &netdev_addr_lock_key[i],
516 netdev_lock_name[i]);
517 }
518 #else
519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520 unsigned short dev_type)
521 {
522 }
523
524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
525 {
526 }
527 #endif
528
529 /*******************************************************************************
530 *
531 * Protocol management and registration routines
532 *
533 *******************************************************************************/
534
535
536 /*
537 * Add a protocol ID to the list. Now that the input handler is
538 * smarter we can dispense with all the messy stuff that used to be
539 * here.
540 *
541 * BEWARE!!! Protocol handlers, mangling input packets,
542 * MUST BE last in hash buckets and checking protocol handlers
543 * MUST start from promiscuous ptype_all chain in net_bh.
544 * It is true now, do not change it.
545 * Explanation follows: if protocol handler, mangling packet, will
546 * be the first on list, it is not able to sense, that packet
547 * is cloned and should be copied-on-write, so that it will
548 * change it and subsequent readers will get broken packet.
549 * --ANK (980803)
550 */
551
552 static inline struct list_head *ptype_head(const struct packet_type *pt)
553 {
554 if (pt->type == htons(ETH_P_ALL))
555 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
556 else
557 return pt->dev ? &pt->dev->ptype_specific :
558 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
559 }
560
561 /**
562 * dev_add_pack - add packet handler
563 * @pt: packet type declaration
564 *
565 * Add a protocol handler to the networking stack. The passed &packet_type
566 * is linked into kernel lists and may not be freed until it has been
567 * removed from the kernel lists.
568 *
569 * This call does not sleep therefore it can not
570 * guarantee all CPU's that are in middle of receiving packets
571 * will see the new packet type (until the next received packet).
572 */
573
574 void dev_add_pack(struct packet_type *pt)
575 {
576 struct list_head *head = ptype_head(pt);
577
578 spin_lock(&ptype_lock);
579 list_add_rcu(&pt->list, head);
580 spin_unlock(&ptype_lock);
581 }
582 EXPORT_SYMBOL(dev_add_pack);
583
584 /**
585 * __dev_remove_pack - remove packet handler
586 * @pt: packet type declaration
587 *
588 * Remove a protocol handler that was previously added to the kernel
589 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
590 * from the kernel lists and can be freed or reused once this function
591 * returns.
592 *
593 * The packet type might still be in use by receivers
594 * and must not be freed until after all the CPU's have gone
595 * through a quiescent state.
596 */
597 void __dev_remove_pack(struct packet_type *pt)
598 {
599 struct list_head *head = ptype_head(pt);
600 struct packet_type *pt1;
601
602 spin_lock(&ptype_lock);
603
604 list_for_each_entry(pt1, head, list) {
605 if (pt == pt1) {
606 list_del_rcu(&pt->list);
607 goto out;
608 }
609 }
610
611 pr_warn("dev_remove_pack: %p not found\n", pt);
612 out:
613 spin_unlock(&ptype_lock);
614 }
615 EXPORT_SYMBOL(__dev_remove_pack);
616
617 /**
618 * dev_remove_pack - remove packet handler
619 * @pt: packet type declaration
620 *
621 * Remove a protocol handler that was previously added to the kernel
622 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
623 * from the kernel lists and can be freed or reused once this function
624 * returns.
625 *
626 * This call sleeps to guarantee that no CPU is looking at the packet
627 * type after return.
628 */
629 void dev_remove_pack(struct packet_type *pt)
630 {
631 __dev_remove_pack(pt);
632
633 synchronize_net();
634 }
635 EXPORT_SYMBOL(dev_remove_pack);
636
637
638 /*******************************************************************************
639 *
640 * Device Interface Subroutines
641 *
642 *******************************************************************************/
643
644 /**
645 * dev_get_iflink - get 'iflink' value of a interface
646 * @dev: targeted interface
647 *
648 * Indicates the ifindex the interface is linked to.
649 * Physical interfaces have the same 'ifindex' and 'iflink' values.
650 */
651
652 int dev_get_iflink(const struct net_device *dev)
653 {
654 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
655 return dev->netdev_ops->ndo_get_iflink(dev);
656
657 return dev->ifindex;
658 }
659 EXPORT_SYMBOL(dev_get_iflink);
660
661 /**
662 * dev_fill_metadata_dst - Retrieve tunnel egress information.
663 * @dev: targeted interface
664 * @skb: The packet.
665 *
666 * For better visibility of tunnel traffic OVS needs to retrieve
667 * egress tunnel information for a packet. Following API allows
668 * user to get this info.
669 */
670 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
671 {
672 struct ip_tunnel_info *info;
673
674 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
675 return -EINVAL;
676
677 info = skb_tunnel_info_unclone(skb);
678 if (!info)
679 return -ENOMEM;
680 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
681 return -EINVAL;
682
683 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
684 }
685 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
686
687 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
688 {
689 int k = stack->num_paths++;
690
691 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
692 return NULL;
693
694 return &stack->path[k];
695 }
696
697 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
698 struct net_device_path_stack *stack)
699 {
700 const struct net_device *last_dev;
701 struct net_device_path_ctx ctx = {
702 .dev = dev,
703 };
704 struct net_device_path *path;
705 int ret = 0;
706
707 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
708 stack->num_paths = 0;
709 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
710 last_dev = ctx.dev;
711 path = dev_fwd_path(stack);
712 if (!path)
713 return -1;
714
715 memset(path, 0, sizeof(struct net_device_path));
716 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
717 if (ret < 0)
718 return -1;
719
720 if (WARN_ON_ONCE(last_dev == ctx.dev))
721 return -1;
722 }
723
724 if (!ctx.dev)
725 return ret;
726
727 path = dev_fwd_path(stack);
728 if (!path)
729 return -1;
730 path->type = DEV_PATH_ETHERNET;
731 path->dev = ctx.dev;
732
733 return ret;
734 }
735 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
736
737 /**
738 * __dev_get_by_name - find a device by its name
739 * @net: the applicable net namespace
740 * @name: name to find
741 *
742 * Find an interface by name. Must be called under RTNL semaphore
743 * or @dev_base_lock. If the name is found a pointer to the device
744 * is returned. If the name is not found then %NULL is returned. The
745 * reference counters are not incremented so the caller must be
746 * careful with locks.
747 */
748
749 struct net_device *__dev_get_by_name(struct net *net, const char *name)
750 {
751 struct netdev_name_node *node_name;
752
753 node_name = netdev_name_node_lookup(net, name);
754 return node_name ? node_name->dev : NULL;
755 }
756 EXPORT_SYMBOL(__dev_get_by_name);
757
758 /**
759 * dev_get_by_name_rcu - find a device by its name
760 * @net: the applicable net namespace
761 * @name: name to find
762 *
763 * Find an interface by name.
764 * If the name is found a pointer to the device is returned.
765 * If the name is not found then %NULL is returned.
766 * The reference counters are not incremented so the caller must be
767 * careful with locks. The caller must hold RCU lock.
768 */
769
770 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
771 {
772 struct netdev_name_node *node_name;
773
774 node_name = netdev_name_node_lookup_rcu(net, name);
775 return node_name ? node_name->dev : NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_name_rcu);
778
779 /* Deprecated for new users, call netdev_get_by_name() instead */
780 struct net_device *dev_get_by_name(struct net *net, const char *name)
781 {
782 struct net_device *dev;
783
784 rcu_read_lock();
785 dev = dev_get_by_name_rcu(net, name);
786 dev_hold(dev);
787 rcu_read_unlock();
788 return dev;
789 }
790 EXPORT_SYMBOL(dev_get_by_name);
791
792 /**
793 * netdev_get_by_name() - find a device by its name
794 * @net: the applicable net namespace
795 * @name: name to find
796 * @tracker: tracking object for the acquired reference
797 * @gfp: allocation flags for the tracker
798 *
799 * Find an interface by name. This can be called from any
800 * context and does its own locking. The returned handle has
801 * the usage count incremented and the caller must use netdev_put() to
802 * release it when it is no longer needed. %NULL is returned if no
803 * matching device is found.
804 */
805 struct net_device *netdev_get_by_name(struct net *net, const char *name,
806 netdevice_tracker *tracker, gfp_t gfp)
807 {
808 struct net_device *dev;
809
810 dev = dev_get_by_name(net, name);
811 if (dev)
812 netdev_tracker_alloc(dev, tracker, gfp);
813 return dev;
814 }
815 EXPORT_SYMBOL(netdev_get_by_name);
816
817 /**
818 * __dev_get_by_index - find a device by its ifindex
819 * @net: the applicable net namespace
820 * @ifindex: index of device
821 *
822 * Search for an interface by index. Returns %NULL if the device
823 * is not found or a pointer to the device. The device has not
824 * had its reference counter increased so the caller must be careful
825 * about locking. The caller must hold either the RTNL semaphore
826 * or @dev_base_lock.
827 */
828
829 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
830 {
831 struct net_device *dev;
832 struct hlist_head *head = dev_index_hash(net, ifindex);
833
834 hlist_for_each_entry(dev, head, index_hlist)
835 if (dev->ifindex == ifindex)
836 return dev;
837
838 return NULL;
839 }
840 EXPORT_SYMBOL(__dev_get_by_index);
841
842 /**
843 * dev_get_by_index_rcu - find a device by its ifindex
844 * @net: the applicable net namespace
845 * @ifindex: index of device
846 *
847 * Search for an interface by index. Returns %NULL if the device
848 * is not found or a pointer to the device. The device has not
849 * had its reference counter increased so the caller must be careful
850 * about locking. The caller must hold RCU lock.
851 */
852
853 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
854 {
855 struct net_device *dev;
856 struct hlist_head *head = dev_index_hash(net, ifindex);
857
858 hlist_for_each_entry_rcu(dev, head, index_hlist)
859 if (dev->ifindex == ifindex)
860 return dev;
861
862 return NULL;
863 }
864 EXPORT_SYMBOL(dev_get_by_index_rcu);
865
866 /* Deprecated for new users, call netdev_get_by_index() instead */
867 struct net_device *dev_get_by_index(struct net *net, int ifindex)
868 {
869 struct net_device *dev;
870
871 rcu_read_lock();
872 dev = dev_get_by_index_rcu(net, ifindex);
873 dev_hold(dev);
874 rcu_read_unlock();
875 return dev;
876 }
877 EXPORT_SYMBOL(dev_get_by_index);
878
879 /**
880 * netdev_get_by_index() - find a device by its ifindex
881 * @net: the applicable net namespace
882 * @ifindex: index of device
883 * @tracker: tracking object for the acquired reference
884 * @gfp: allocation flags for the tracker
885 *
886 * Search for an interface by index. Returns NULL if the device
887 * is not found or a pointer to the device. The device returned has
888 * had a reference added and the pointer is safe until the user calls
889 * netdev_put() to indicate they have finished with it.
890 */
891 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
892 netdevice_tracker *tracker, gfp_t gfp)
893 {
894 struct net_device *dev;
895
896 dev = dev_get_by_index(net, ifindex);
897 if (dev)
898 netdev_tracker_alloc(dev, tracker, gfp);
899 return dev;
900 }
901 EXPORT_SYMBOL(netdev_get_by_index);
902
903 /**
904 * dev_get_by_napi_id - find a device by napi_id
905 * @napi_id: ID of the NAPI struct
906 *
907 * Search for an interface by NAPI ID. Returns %NULL if the device
908 * is not found or a pointer to the device. The device has not had
909 * its reference counter increased so the caller must be careful
910 * about locking. The caller must hold RCU lock.
911 */
912
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915 struct napi_struct *napi;
916
917 WARN_ON_ONCE(!rcu_read_lock_held());
918
919 if (napi_id < MIN_NAPI_ID)
920 return NULL;
921
922 napi = napi_by_id(napi_id);
923
924 return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927
928 /**
929 * netdev_get_name - get a netdevice name, knowing its ifindex.
930 * @net: network namespace
931 * @name: a pointer to the buffer where the name will be stored.
932 * @ifindex: the ifindex of the interface to get the name from.
933 */
934 int netdev_get_name(struct net *net, char *name, int ifindex)
935 {
936 struct net_device *dev;
937 int ret;
938
939 down_read(&devnet_rename_sem);
940 rcu_read_lock();
941
942 dev = dev_get_by_index_rcu(net, ifindex);
943 if (!dev) {
944 ret = -ENODEV;
945 goto out;
946 }
947
948 strcpy(name, dev->name);
949
950 ret = 0;
951 out:
952 rcu_read_unlock();
953 up_read(&devnet_rename_sem);
954 return ret;
955 }
956
957 /**
958 * dev_getbyhwaddr_rcu - find a device by its hardware address
959 * @net: the applicable net namespace
960 * @type: media type of device
961 * @ha: hardware address
962 *
963 * Search for an interface by MAC address. Returns NULL if the device
964 * is not found or a pointer to the device.
965 * The caller must hold RCU or RTNL.
966 * The returned device has not had its ref count increased
967 * and the caller must therefore be careful about locking
968 *
969 */
970
971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972 const char *ha)
973 {
974 struct net_device *dev;
975
976 for_each_netdev_rcu(net, dev)
977 if (dev->type == type &&
978 !memcmp(dev->dev_addr, ha, dev->addr_len))
979 return dev;
980
981 return NULL;
982 }
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
984
985 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
986 {
987 struct net_device *dev, *ret = NULL;
988
989 rcu_read_lock();
990 for_each_netdev_rcu(net, dev)
991 if (dev->type == type) {
992 dev_hold(dev);
993 ret = dev;
994 break;
995 }
996 rcu_read_unlock();
997 return ret;
998 }
999 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1000
1001 /**
1002 * __dev_get_by_flags - find any device with given flags
1003 * @net: the applicable net namespace
1004 * @if_flags: IFF_* values
1005 * @mask: bitmask of bits in if_flags to check
1006 *
1007 * Search for any interface with the given flags. Returns NULL if a device
1008 * is not found or a pointer to the device. Must be called inside
1009 * rtnl_lock(), and result refcount is unchanged.
1010 */
1011
1012 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1013 unsigned short mask)
1014 {
1015 struct net_device *dev, *ret;
1016
1017 ASSERT_RTNL();
1018
1019 ret = NULL;
1020 for_each_netdev(net, dev) {
1021 if (((dev->flags ^ if_flags) & mask) == 0) {
1022 ret = dev;
1023 break;
1024 }
1025 }
1026 return ret;
1027 }
1028 EXPORT_SYMBOL(__dev_get_by_flags);
1029
1030 /**
1031 * dev_valid_name - check if name is okay for network device
1032 * @name: name string
1033 *
1034 * Network device names need to be valid file names to
1035 * allow sysfs to work. We also disallow any kind of
1036 * whitespace.
1037 */
1038 bool dev_valid_name(const char *name)
1039 {
1040 if (*name == '\0')
1041 return false;
1042 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1043 return false;
1044 if (!strcmp(name, ".") || !strcmp(name, ".."))
1045 return false;
1046
1047 while (*name) {
1048 if (*name == '/' || *name == ':' || isspace(*name))
1049 return false;
1050 name++;
1051 }
1052 return true;
1053 }
1054 EXPORT_SYMBOL(dev_valid_name);
1055
1056 /**
1057 * __dev_alloc_name - allocate a name for a device
1058 * @net: network namespace to allocate the device name in
1059 * @name: name format string
1060 * @buf: scratch buffer and result name string
1061 *
1062 * Passed a format string - eg "lt%d" it will try and find a suitable
1063 * id. It scans list of devices to build up a free map, then chooses
1064 * the first empty slot. The caller must hold the dev_base or rtnl lock
1065 * while allocating the name and adding the device in order to avoid
1066 * duplicates.
1067 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1068 * Returns the number of the unit assigned or a negative errno code.
1069 */
1070
1071 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1072 {
1073 int i = 0;
1074 const char *p;
1075 const int max_netdevices = 8*PAGE_SIZE;
1076 unsigned long *inuse;
1077 struct net_device *d;
1078
1079 if (!dev_valid_name(name))
1080 return -EINVAL;
1081
1082 p = strchr(name, '%');
1083 if (p) {
1084 /*
1085 * Verify the string as this thing may have come from
1086 * the user. There must be either one "%d" and no other "%"
1087 * characters.
1088 */
1089 if (p[1] != 'd' || strchr(p + 2, '%'))
1090 return -EINVAL;
1091
1092 /* Use one page as a bit array of possible slots */
1093 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1094 if (!inuse)
1095 return -ENOMEM;
1096
1097 for_each_netdev(net, d) {
1098 struct netdev_name_node *name_node;
1099
1100 netdev_for_each_altname(d, name_node) {
1101 if (!sscanf(name_node->name, name, &i))
1102 continue;
1103 if (i < 0 || i >= max_netdevices)
1104 continue;
1105
1106 /* avoid cases where sscanf is not exact inverse of printf */
1107 snprintf(buf, IFNAMSIZ, name, i);
1108 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1109 __set_bit(i, inuse);
1110 }
1111 if (!sscanf(d->name, name, &i))
1112 continue;
1113 if (i < 0 || i >= max_netdevices)
1114 continue;
1115
1116 /* avoid cases where sscanf is not exact inverse of printf */
1117 snprintf(buf, IFNAMSIZ, name, i);
1118 if (!strncmp(buf, d->name, IFNAMSIZ))
1119 __set_bit(i, inuse);
1120 }
1121
1122 i = find_first_zero_bit(inuse, max_netdevices);
1123 bitmap_free(inuse);
1124 }
1125
1126 snprintf(buf, IFNAMSIZ, name, i);
1127 if (!netdev_name_in_use(net, buf))
1128 return i;
1129
1130 /* It is possible to run out of possible slots
1131 * when the name is long and there isn't enough space left
1132 * for the digits, or if all bits are used.
1133 */
1134 return -ENFILE;
1135 }
1136
1137 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1138 const char *want_name, char *out_name)
1139 {
1140 int ret;
1141
1142 if (!dev_valid_name(want_name))
1143 return -EINVAL;
1144
1145 if (strchr(want_name, '%')) {
1146 ret = __dev_alloc_name(net, want_name, out_name);
1147 return ret < 0 ? ret : 0;
1148 } else if (netdev_name_in_use(net, want_name)) {
1149 return -EEXIST;
1150 } else if (out_name != want_name) {
1151 strscpy(out_name, want_name, IFNAMSIZ);
1152 }
1153
1154 return 0;
1155 }
1156
1157 static int dev_alloc_name_ns(struct net *net,
1158 struct net_device *dev,
1159 const char *name)
1160 {
1161 char buf[IFNAMSIZ];
1162 int ret;
1163
1164 BUG_ON(!net);
1165 ret = __dev_alloc_name(net, name, buf);
1166 if (ret >= 0)
1167 strscpy(dev->name, buf, IFNAMSIZ);
1168 return ret;
1169 }
1170
1171 /**
1172 * dev_alloc_name - allocate a name for a device
1173 * @dev: device
1174 * @name: name format string
1175 *
1176 * Passed a format string - eg "lt%d" it will try and find a suitable
1177 * id. It scans list of devices to build up a free map, then chooses
1178 * the first empty slot. The caller must hold the dev_base or rtnl lock
1179 * while allocating the name and adding the device in order to avoid
1180 * duplicates.
1181 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1182 * Returns the number of the unit assigned or a negative errno code.
1183 */
1184
1185 int dev_alloc_name(struct net_device *dev, const char *name)
1186 {
1187 return dev_alloc_name_ns(dev_net(dev), dev, name);
1188 }
1189 EXPORT_SYMBOL(dev_alloc_name);
1190
1191 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1192 const char *name)
1193 {
1194 char buf[IFNAMSIZ];
1195 int ret;
1196
1197 ret = dev_prep_valid_name(net, dev, name, buf);
1198 if (ret >= 0)
1199 strscpy(dev->name, buf, IFNAMSIZ);
1200 return ret;
1201 }
1202
1203 /**
1204 * dev_change_name - change name of a device
1205 * @dev: device
1206 * @newname: name (or format string) must be at least IFNAMSIZ
1207 *
1208 * Change name of a device, can pass format strings "eth%d".
1209 * for wildcarding.
1210 */
1211 int dev_change_name(struct net_device *dev, const char *newname)
1212 {
1213 unsigned char old_assign_type;
1214 char oldname[IFNAMSIZ];
1215 int err = 0;
1216 int ret;
1217 struct net *net;
1218
1219 ASSERT_RTNL();
1220 BUG_ON(!dev_net(dev));
1221
1222 net = dev_net(dev);
1223
1224 down_write(&devnet_rename_sem);
1225
1226 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1227 up_write(&devnet_rename_sem);
1228 return 0;
1229 }
1230
1231 memcpy(oldname, dev->name, IFNAMSIZ);
1232
1233 err = dev_get_valid_name(net, dev, newname);
1234 if (err < 0) {
1235 up_write(&devnet_rename_sem);
1236 return err;
1237 }
1238
1239 if (oldname[0] && !strchr(oldname, '%'))
1240 netdev_info(dev, "renamed from %s%s\n", oldname,
1241 dev->flags & IFF_UP ? " (while UP)" : "");
1242
1243 old_assign_type = dev->name_assign_type;
1244 dev->name_assign_type = NET_NAME_RENAMED;
1245
1246 rollback:
1247 ret = device_rename(&dev->dev, dev->name);
1248 if (ret) {
1249 memcpy(dev->name, oldname, IFNAMSIZ);
1250 dev->name_assign_type = old_assign_type;
1251 up_write(&devnet_rename_sem);
1252 return ret;
1253 }
1254
1255 up_write(&devnet_rename_sem);
1256
1257 netdev_adjacent_rename_links(dev, oldname);
1258
1259 write_lock(&dev_base_lock);
1260 netdev_name_node_del(dev->name_node);
1261 write_unlock(&dev_base_lock);
1262
1263 synchronize_rcu();
1264
1265 write_lock(&dev_base_lock);
1266 netdev_name_node_add(net, dev->name_node);
1267 write_unlock(&dev_base_lock);
1268
1269 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1270 ret = notifier_to_errno(ret);
1271
1272 if (ret) {
1273 /* err >= 0 after dev_alloc_name() or stores the first errno */
1274 if (err >= 0) {
1275 err = ret;
1276 down_write(&devnet_rename_sem);
1277 memcpy(dev->name, oldname, IFNAMSIZ);
1278 memcpy(oldname, newname, IFNAMSIZ);
1279 dev->name_assign_type = old_assign_type;
1280 old_assign_type = NET_NAME_RENAMED;
1281 goto rollback;
1282 } else {
1283 netdev_err(dev, "name change rollback failed: %d\n",
1284 ret);
1285 }
1286 }
1287
1288 return err;
1289 }
1290
1291 /**
1292 * dev_set_alias - change ifalias of a device
1293 * @dev: device
1294 * @alias: name up to IFALIASZ
1295 * @len: limit of bytes to copy from info
1296 *
1297 * Set ifalias for a device,
1298 */
1299 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1300 {
1301 struct dev_ifalias *new_alias = NULL;
1302
1303 if (len >= IFALIASZ)
1304 return -EINVAL;
1305
1306 if (len) {
1307 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1308 if (!new_alias)
1309 return -ENOMEM;
1310
1311 memcpy(new_alias->ifalias, alias, len);
1312 new_alias->ifalias[len] = 0;
1313 }
1314
1315 mutex_lock(&ifalias_mutex);
1316 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1317 mutex_is_locked(&ifalias_mutex));
1318 mutex_unlock(&ifalias_mutex);
1319
1320 if (new_alias)
1321 kfree_rcu(new_alias, rcuhead);
1322
1323 return len;
1324 }
1325 EXPORT_SYMBOL(dev_set_alias);
1326
1327 /**
1328 * dev_get_alias - get ifalias of a device
1329 * @dev: device
1330 * @name: buffer to store name of ifalias
1331 * @len: size of buffer
1332 *
1333 * get ifalias for a device. Caller must make sure dev cannot go
1334 * away, e.g. rcu read lock or own a reference count to device.
1335 */
1336 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1337 {
1338 const struct dev_ifalias *alias;
1339 int ret = 0;
1340
1341 rcu_read_lock();
1342 alias = rcu_dereference(dev->ifalias);
1343 if (alias)
1344 ret = snprintf(name, len, "%s", alias->ifalias);
1345 rcu_read_unlock();
1346
1347 return ret;
1348 }
1349
1350 /**
1351 * netdev_features_change - device changes features
1352 * @dev: device to cause notification
1353 *
1354 * Called to indicate a device has changed features.
1355 */
1356 void netdev_features_change(struct net_device *dev)
1357 {
1358 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1359 }
1360 EXPORT_SYMBOL(netdev_features_change);
1361
1362 /**
1363 * netdev_state_change - device changes state
1364 * @dev: device to cause notification
1365 *
1366 * Called to indicate a device has changed state. This function calls
1367 * the notifier chains for netdev_chain and sends a NEWLINK message
1368 * to the routing socket.
1369 */
1370 void netdev_state_change(struct net_device *dev)
1371 {
1372 if (dev->flags & IFF_UP) {
1373 struct netdev_notifier_change_info change_info = {
1374 .info.dev = dev,
1375 };
1376
1377 call_netdevice_notifiers_info(NETDEV_CHANGE,
1378 &change_info.info);
1379 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1380 }
1381 }
1382 EXPORT_SYMBOL(netdev_state_change);
1383
1384 /**
1385 * __netdev_notify_peers - notify network peers about existence of @dev,
1386 * to be called when rtnl lock is already held.
1387 * @dev: network device
1388 *
1389 * Generate traffic such that interested network peers are aware of
1390 * @dev, such as by generating a gratuitous ARP. This may be used when
1391 * a device wants to inform the rest of the network about some sort of
1392 * reconfiguration such as a failover event or virtual machine
1393 * migration.
1394 */
1395 void __netdev_notify_peers(struct net_device *dev)
1396 {
1397 ASSERT_RTNL();
1398 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1399 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1400 }
1401 EXPORT_SYMBOL(__netdev_notify_peers);
1402
1403 /**
1404 * netdev_notify_peers - notify network peers about existence of @dev
1405 * @dev: network device
1406 *
1407 * Generate traffic such that interested network peers are aware of
1408 * @dev, such as by generating a gratuitous ARP. This may be used when
1409 * a device wants to inform the rest of the network about some sort of
1410 * reconfiguration such as a failover event or virtual machine
1411 * migration.
1412 */
1413 void netdev_notify_peers(struct net_device *dev)
1414 {
1415 rtnl_lock();
1416 __netdev_notify_peers(dev);
1417 rtnl_unlock();
1418 }
1419 EXPORT_SYMBOL(netdev_notify_peers);
1420
1421 static int napi_threaded_poll(void *data);
1422
1423 static int napi_kthread_create(struct napi_struct *n)
1424 {
1425 int err = 0;
1426
1427 /* Create and wake up the kthread once to put it in
1428 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1429 * warning and work with loadavg.
1430 */
1431 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1432 n->dev->name, n->napi_id);
1433 if (IS_ERR(n->thread)) {
1434 err = PTR_ERR(n->thread);
1435 pr_err("kthread_run failed with err %d\n", err);
1436 n->thread = NULL;
1437 }
1438
1439 return err;
1440 }
1441
1442 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1443 {
1444 const struct net_device_ops *ops = dev->netdev_ops;
1445 int ret;
1446
1447 ASSERT_RTNL();
1448 dev_addr_check(dev);
1449
1450 if (!netif_device_present(dev)) {
1451 /* may be detached because parent is runtime-suspended */
1452 if (dev->dev.parent)
1453 pm_runtime_resume(dev->dev.parent);
1454 if (!netif_device_present(dev))
1455 return -ENODEV;
1456 }
1457
1458 /* Block netpoll from trying to do any rx path servicing.
1459 * If we don't do this there is a chance ndo_poll_controller
1460 * or ndo_poll may be running while we open the device
1461 */
1462 netpoll_poll_disable(dev);
1463
1464 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1465 ret = notifier_to_errno(ret);
1466 if (ret)
1467 return ret;
1468
1469 set_bit(__LINK_STATE_START, &dev->state);
1470
1471 if (ops->ndo_validate_addr)
1472 ret = ops->ndo_validate_addr(dev);
1473
1474 if (!ret && ops->ndo_open)
1475 ret = ops->ndo_open(dev);
1476
1477 netpoll_poll_enable(dev);
1478
1479 if (ret)
1480 clear_bit(__LINK_STATE_START, &dev->state);
1481 else {
1482 dev->flags |= IFF_UP;
1483 dev_set_rx_mode(dev);
1484 dev_activate(dev);
1485 add_device_randomness(dev->dev_addr, dev->addr_len);
1486 }
1487
1488 return ret;
1489 }
1490
1491 /**
1492 * dev_open - prepare an interface for use.
1493 * @dev: device to open
1494 * @extack: netlink extended ack
1495 *
1496 * Takes a device from down to up state. The device's private open
1497 * function is invoked and then the multicast lists are loaded. Finally
1498 * the device is moved into the up state and a %NETDEV_UP message is
1499 * sent to the netdev notifier chain.
1500 *
1501 * Calling this function on an active interface is a nop. On a failure
1502 * a negative errno code is returned.
1503 */
1504 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1505 {
1506 int ret;
1507
1508 if (dev->flags & IFF_UP)
1509 return 0;
1510
1511 ret = __dev_open(dev, extack);
1512 if (ret < 0)
1513 return ret;
1514
1515 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1516 call_netdevice_notifiers(NETDEV_UP, dev);
1517
1518 return ret;
1519 }
1520 EXPORT_SYMBOL(dev_open);
1521
1522 static void __dev_close_many(struct list_head *head)
1523 {
1524 struct net_device *dev;
1525
1526 ASSERT_RTNL();
1527 might_sleep();
1528
1529 list_for_each_entry(dev, head, close_list) {
1530 /* Temporarily disable netpoll until the interface is down */
1531 netpoll_poll_disable(dev);
1532
1533 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1534
1535 clear_bit(__LINK_STATE_START, &dev->state);
1536
1537 /* Synchronize to scheduled poll. We cannot touch poll list, it
1538 * can be even on different cpu. So just clear netif_running().
1539 *
1540 * dev->stop() will invoke napi_disable() on all of it's
1541 * napi_struct instances on this device.
1542 */
1543 smp_mb__after_atomic(); /* Commit netif_running(). */
1544 }
1545
1546 dev_deactivate_many(head);
1547
1548 list_for_each_entry(dev, head, close_list) {
1549 const struct net_device_ops *ops = dev->netdev_ops;
1550
1551 /*
1552 * Call the device specific close. This cannot fail.
1553 * Only if device is UP
1554 *
1555 * We allow it to be called even after a DETACH hot-plug
1556 * event.
1557 */
1558 if (ops->ndo_stop)
1559 ops->ndo_stop(dev);
1560
1561 dev->flags &= ~IFF_UP;
1562 netpoll_poll_enable(dev);
1563 }
1564 }
1565
1566 static void __dev_close(struct net_device *dev)
1567 {
1568 LIST_HEAD(single);
1569
1570 list_add(&dev->close_list, &single);
1571 __dev_close_many(&single);
1572 list_del(&single);
1573 }
1574
1575 void dev_close_many(struct list_head *head, bool unlink)
1576 {
1577 struct net_device *dev, *tmp;
1578
1579 /* Remove the devices that don't need to be closed */
1580 list_for_each_entry_safe(dev, tmp, head, close_list)
1581 if (!(dev->flags & IFF_UP))
1582 list_del_init(&dev->close_list);
1583
1584 __dev_close_many(head);
1585
1586 list_for_each_entry_safe(dev, tmp, head, close_list) {
1587 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1588 call_netdevice_notifiers(NETDEV_DOWN, dev);
1589 if (unlink)
1590 list_del_init(&dev->close_list);
1591 }
1592 }
1593 EXPORT_SYMBOL(dev_close_many);
1594
1595 /**
1596 * dev_close - shutdown an interface.
1597 * @dev: device to shutdown
1598 *
1599 * This function moves an active device into down state. A
1600 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1601 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1602 * chain.
1603 */
1604 void dev_close(struct net_device *dev)
1605 {
1606 if (dev->flags & IFF_UP) {
1607 LIST_HEAD(single);
1608
1609 list_add(&dev->close_list, &single);
1610 dev_close_many(&single, true);
1611 list_del(&single);
1612 }
1613 }
1614 EXPORT_SYMBOL(dev_close);
1615
1616
1617 /**
1618 * dev_disable_lro - disable Large Receive Offload on a device
1619 * @dev: device
1620 *
1621 * Disable Large Receive Offload (LRO) on a net device. Must be
1622 * called under RTNL. This is needed if received packets may be
1623 * forwarded to another interface.
1624 */
1625 void dev_disable_lro(struct net_device *dev)
1626 {
1627 struct net_device *lower_dev;
1628 struct list_head *iter;
1629
1630 dev->wanted_features &= ~NETIF_F_LRO;
1631 netdev_update_features(dev);
1632
1633 if (unlikely(dev->features & NETIF_F_LRO))
1634 netdev_WARN(dev, "failed to disable LRO!\n");
1635
1636 netdev_for_each_lower_dev(dev, lower_dev, iter)
1637 dev_disable_lro(lower_dev);
1638 }
1639 EXPORT_SYMBOL(dev_disable_lro);
1640
1641 /**
1642 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1643 * @dev: device
1644 *
1645 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1646 * called under RTNL. This is needed if Generic XDP is installed on
1647 * the device.
1648 */
1649 static void dev_disable_gro_hw(struct net_device *dev)
1650 {
1651 dev->wanted_features &= ~NETIF_F_GRO_HW;
1652 netdev_update_features(dev);
1653
1654 if (unlikely(dev->features & NETIF_F_GRO_HW))
1655 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1656 }
1657
1658 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1659 {
1660 #define N(val) \
1661 case NETDEV_##val: \
1662 return "NETDEV_" __stringify(val);
1663 switch (cmd) {
1664 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1665 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1666 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1667 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1668 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1669 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1670 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1671 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1672 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1673 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1674 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1675 N(XDP_FEAT_CHANGE)
1676 }
1677 #undef N
1678 return "UNKNOWN_NETDEV_EVENT";
1679 }
1680 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1681
1682 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1683 struct net_device *dev)
1684 {
1685 struct netdev_notifier_info info = {
1686 .dev = dev,
1687 };
1688
1689 return nb->notifier_call(nb, val, &info);
1690 }
1691
1692 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1693 struct net_device *dev)
1694 {
1695 int err;
1696
1697 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1698 err = notifier_to_errno(err);
1699 if (err)
1700 return err;
1701
1702 if (!(dev->flags & IFF_UP))
1703 return 0;
1704
1705 call_netdevice_notifier(nb, NETDEV_UP, dev);
1706 return 0;
1707 }
1708
1709 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1710 struct net_device *dev)
1711 {
1712 if (dev->flags & IFF_UP) {
1713 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1714 dev);
1715 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1716 }
1717 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1718 }
1719
1720 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1721 struct net *net)
1722 {
1723 struct net_device *dev;
1724 int err;
1725
1726 for_each_netdev(net, dev) {
1727 err = call_netdevice_register_notifiers(nb, dev);
1728 if (err)
1729 goto rollback;
1730 }
1731 return 0;
1732
1733 rollback:
1734 for_each_netdev_continue_reverse(net, dev)
1735 call_netdevice_unregister_notifiers(nb, dev);
1736 return err;
1737 }
1738
1739 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1740 struct net *net)
1741 {
1742 struct net_device *dev;
1743
1744 for_each_netdev(net, dev)
1745 call_netdevice_unregister_notifiers(nb, dev);
1746 }
1747
1748 static int dev_boot_phase = 1;
1749
1750 /**
1751 * register_netdevice_notifier - register a network notifier block
1752 * @nb: notifier
1753 *
1754 * Register a notifier to be called when network device events occur.
1755 * The notifier passed is linked into the kernel structures and must
1756 * not be reused until it has been unregistered. A negative errno code
1757 * is returned on a failure.
1758 *
1759 * When registered all registration and up events are replayed
1760 * to the new notifier to allow device to have a race free
1761 * view of the network device list.
1762 */
1763
1764 int register_netdevice_notifier(struct notifier_block *nb)
1765 {
1766 struct net *net;
1767 int err;
1768
1769 /* Close race with setup_net() and cleanup_net() */
1770 down_write(&pernet_ops_rwsem);
1771 rtnl_lock();
1772 err = raw_notifier_chain_register(&netdev_chain, nb);
1773 if (err)
1774 goto unlock;
1775 if (dev_boot_phase)
1776 goto unlock;
1777 for_each_net(net) {
1778 err = call_netdevice_register_net_notifiers(nb, net);
1779 if (err)
1780 goto rollback;
1781 }
1782
1783 unlock:
1784 rtnl_unlock();
1785 up_write(&pernet_ops_rwsem);
1786 return err;
1787
1788 rollback:
1789 for_each_net_continue_reverse(net)
1790 call_netdevice_unregister_net_notifiers(nb, net);
1791
1792 raw_notifier_chain_unregister(&netdev_chain, nb);
1793 goto unlock;
1794 }
1795 EXPORT_SYMBOL(register_netdevice_notifier);
1796
1797 /**
1798 * unregister_netdevice_notifier - unregister a network notifier block
1799 * @nb: notifier
1800 *
1801 * Unregister a notifier previously registered by
1802 * register_netdevice_notifier(). The notifier is unlinked into the
1803 * kernel structures and may then be reused. A negative errno code
1804 * is returned on a failure.
1805 *
1806 * After unregistering unregister and down device events are synthesized
1807 * for all devices on the device list to the removed notifier to remove
1808 * the need for special case cleanup code.
1809 */
1810
1811 int unregister_netdevice_notifier(struct notifier_block *nb)
1812 {
1813 struct net *net;
1814 int err;
1815
1816 /* Close race with setup_net() and cleanup_net() */
1817 down_write(&pernet_ops_rwsem);
1818 rtnl_lock();
1819 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1820 if (err)
1821 goto unlock;
1822
1823 for_each_net(net)
1824 call_netdevice_unregister_net_notifiers(nb, net);
1825
1826 unlock:
1827 rtnl_unlock();
1828 up_write(&pernet_ops_rwsem);
1829 return err;
1830 }
1831 EXPORT_SYMBOL(unregister_netdevice_notifier);
1832
1833 static int __register_netdevice_notifier_net(struct net *net,
1834 struct notifier_block *nb,
1835 bool ignore_call_fail)
1836 {
1837 int err;
1838
1839 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1840 if (err)
1841 return err;
1842 if (dev_boot_phase)
1843 return 0;
1844
1845 err = call_netdevice_register_net_notifiers(nb, net);
1846 if (err && !ignore_call_fail)
1847 goto chain_unregister;
1848
1849 return 0;
1850
1851 chain_unregister:
1852 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1853 return err;
1854 }
1855
1856 static int __unregister_netdevice_notifier_net(struct net *net,
1857 struct notifier_block *nb)
1858 {
1859 int err;
1860
1861 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1862 if (err)
1863 return err;
1864
1865 call_netdevice_unregister_net_notifiers(nb, net);
1866 return 0;
1867 }
1868
1869 /**
1870 * register_netdevice_notifier_net - register a per-netns network notifier block
1871 * @net: network namespace
1872 * @nb: notifier
1873 *
1874 * Register a notifier to be called when network device events occur.
1875 * The notifier passed is linked into the kernel structures and must
1876 * not be reused until it has been unregistered. A negative errno code
1877 * is returned on a failure.
1878 *
1879 * When registered all registration and up events are replayed
1880 * to the new notifier to allow device to have a race free
1881 * view of the network device list.
1882 */
1883
1884 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1885 {
1886 int err;
1887
1888 rtnl_lock();
1889 err = __register_netdevice_notifier_net(net, nb, false);
1890 rtnl_unlock();
1891 return err;
1892 }
1893 EXPORT_SYMBOL(register_netdevice_notifier_net);
1894
1895 /**
1896 * unregister_netdevice_notifier_net - unregister a per-netns
1897 * network notifier block
1898 * @net: network namespace
1899 * @nb: notifier
1900 *
1901 * Unregister a notifier previously registered by
1902 * register_netdevice_notifier_net(). The notifier is unlinked from the
1903 * kernel structures and may then be reused. A negative errno code
1904 * is returned on a failure.
1905 *
1906 * After unregistering unregister and down device events are synthesized
1907 * for all devices on the device list to the removed notifier to remove
1908 * the need for special case cleanup code.
1909 */
1910
1911 int unregister_netdevice_notifier_net(struct net *net,
1912 struct notifier_block *nb)
1913 {
1914 int err;
1915
1916 rtnl_lock();
1917 err = __unregister_netdevice_notifier_net(net, nb);
1918 rtnl_unlock();
1919 return err;
1920 }
1921 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1922
1923 static void __move_netdevice_notifier_net(struct net *src_net,
1924 struct net *dst_net,
1925 struct notifier_block *nb)
1926 {
1927 __unregister_netdevice_notifier_net(src_net, nb);
1928 __register_netdevice_notifier_net(dst_net, nb, true);
1929 }
1930
1931 int register_netdevice_notifier_dev_net(struct net_device *dev,
1932 struct notifier_block *nb,
1933 struct netdev_net_notifier *nn)
1934 {
1935 int err;
1936
1937 rtnl_lock();
1938 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1939 if (!err) {
1940 nn->nb = nb;
1941 list_add(&nn->list, &dev->net_notifier_list);
1942 }
1943 rtnl_unlock();
1944 return err;
1945 }
1946 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1947
1948 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1949 struct notifier_block *nb,
1950 struct netdev_net_notifier *nn)
1951 {
1952 int err;
1953
1954 rtnl_lock();
1955 list_del(&nn->list);
1956 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1957 rtnl_unlock();
1958 return err;
1959 }
1960 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1961
1962 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1963 struct net *net)
1964 {
1965 struct netdev_net_notifier *nn;
1966
1967 list_for_each_entry(nn, &dev->net_notifier_list, list)
1968 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1969 }
1970
1971 /**
1972 * call_netdevice_notifiers_info - call all network notifier blocks
1973 * @val: value passed unmodified to notifier function
1974 * @info: notifier information data
1975 *
1976 * Call all network notifier blocks. Parameters and return value
1977 * are as for raw_notifier_call_chain().
1978 */
1979
1980 int call_netdevice_notifiers_info(unsigned long val,
1981 struct netdev_notifier_info *info)
1982 {
1983 struct net *net = dev_net(info->dev);
1984 int ret;
1985
1986 ASSERT_RTNL();
1987
1988 /* Run per-netns notifier block chain first, then run the global one.
1989 * Hopefully, one day, the global one is going to be removed after
1990 * all notifier block registrators get converted to be per-netns.
1991 */
1992 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1993 if (ret & NOTIFY_STOP_MASK)
1994 return ret;
1995 return raw_notifier_call_chain(&netdev_chain, val, info);
1996 }
1997
1998 /**
1999 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2000 * for and rollback on error
2001 * @val_up: value passed unmodified to notifier function
2002 * @val_down: value passed unmodified to the notifier function when
2003 * recovering from an error on @val_up
2004 * @info: notifier information data
2005 *
2006 * Call all per-netns network notifier blocks, but not notifier blocks on
2007 * the global notifier chain. Parameters and return value are as for
2008 * raw_notifier_call_chain_robust().
2009 */
2010
2011 static int
2012 call_netdevice_notifiers_info_robust(unsigned long val_up,
2013 unsigned long val_down,
2014 struct netdev_notifier_info *info)
2015 {
2016 struct net *net = dev_net(info->dev);
2017
2018 ASSERT_RTNL();
2019
2020 return raw_notifier_call_chain_robust(&net->netdev_chain,
2021 val_up, val_down, info);
2022 }
2023
2024 static int call_netdevice_notifiers_extack(unsigned long val,
2025 struct net_device *dev,
2026 struct netlink_ext_ack *extack)
2027 {
2028 struct netdev_notifier_info info = {
2029 .dev = dev,
2030 .extack = extack,
2031 };
2032
2033 return call_netdevice_notifiers_info(val, &info);
2034 }
2035
2036 /**
2037 * call_netdevice_notifiers - call all network notifier blocks
2038 * @val: value passed unmodified to notifier function
2039 * @dev: net_device pointer passed unmodified to notifier function
2040 *
2041 * Call all network notifier blocks. Parameters and return value
2042 * are as for raw_notifier_call_chain().
2043 */
2044
2045 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2046 {
2047 return call_netdevice_notifiers_extack(val, dev, NULL);
2048 }
2049 EXPORT_SYMBOL(call_netdevice_notifiers);
2050
2051 /**
2052 * call_netdevice_notifiers_mtu - call all network notifier blocks
2053 * @val: value passed unmodified to notifier function
2054 * @dev: net_device pointer passed unmodified to notifier function
2055 * @arg: additional u32 argument passed to the notifier function
2056 *
2057 * Call all network notifier blocks. Parameters and return value
2058 * are as for raw_notifier_call_chain().
2059 */
2060 static int call_netdevice_notifiers_mtu(unsigned long val,
2061 struct net_device *dev, u32 arg)
2062 {
2063 struct netdev_notifier_info_ext info = {
2064 .info.dev = dev,
2065 .ext.mtu = arg,
2066 };
2067
2068 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2069
2070 return call_netdevice_notifiers_info(val, &info.info);
2071 }
2072
2073 #ifdef CONFIG_NET_INGRESS
2074 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2075
2076 void net_inc_ingress_queue(void)
2077 {
2078 static_branch_inc(&ingress_needed_key);
2079 }
2080 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2081
2082 void net_dec_ingress_queue(void)
2083 {
2084 static_branch_dec(&ingress_needed_key);
2085 }
2086 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2087 #endif
2088
2089 #ifdef CONFIG_NET_EGRESS
2090 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2091
2092 void net_inc_egress_queue(void)
2093 {
2094 static_branch_inc(&egress_needed_key);
2095 }
2096 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2097
2098 void net_dec_egress_queue(void)
2099 {
2100 static_branch_dec(&egress_needed_key);
2101 }
2102 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2103 #endif
2104
2105 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2106 EXPORT_SYMBOL(netstamp_needed_key);
2107 #ifdef CONFIG_JUMP_LABEL
2108 static atomic_t netstamp_needed_deferred;
2109 static atomic_t netstamp_wanted;
2110 static void netstamp_clear(struct work_struct *work)
2111 {
2112 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2113 int wanted;
2114
2115 wanted = atomic_add_return(deferred, &netstamp_wanted);
2116 if (wanted > 0)
2117 static_branch_enable(&netstamp_needed_key);
2118 else
2119 static_branch_disable(&netstamp_needed_key);
2120 }
2121 static DECLARE_WORK(netstamp_work, netstamp_clear);
2122 #endif
2123
2124 void net_enable_timestamp(void)
2125 {
2126 #ifdef CONFIG_JUMP_LABEL
2127 int wanted = atomic_read(&netstamp_wanted);
2128
2129 while (wanted > 0) {
2130 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2131 return;
2132 }
2133 atomic_inc(&netstamp_needed_deferred);
2134 schedule_work(&netstamp_work);
2135 #else
2136 static_branch_inc(&netstamp_needed_key);
2137 #endif
2138 }
2139 EXPORT_SYMBOL(net_enable_timestamp);
2140
2141 void net_disable_timestamp(void)
2142 {
2143 #ifdef CONFIG_JUMP_LABEL
2144 int wanted = atomic_read(&netstamp_wanted);
2145
2146 while (wanted > 1) {
2147 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2148 return;
2149 }
2150 atomic_dec(&netstamp_needed_deferred);
2151 schedule_work(&netstamp_work);
2152 #else
2153 static_branch_dec(&netstamp_needed_key);
2154 #endif
2155 }
2156 EXPORT_SYMBOL(net_disable_timestamp);
2157
2158 static inline void net_timestamp_set(struct sk_buff *skb)
2159 {
2160 skb->tstamp = 0;
2161 skb->mono_delivery_time = 0;
2162 if (static_branch_unlikely(&netstamp_needed_key))
2163 skb->tstamp = ktime_get_real();
2164 }
2165
2166 #define net_timestamp_check(COND, SKB) \
2167 if (static_branch_unlikely(&netstamp_needed_key)) { \
2168 if ((COND) && !(SKB)->tstamp) \
2169 (SKB)->tstamp = ktime_get_real(); \
2170 } \
2171
2172 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2173 {
2174 return __is_skb_forwardable(dev, skb, true);
2175 }
2176 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2177
2178 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2179 bool check_mtu)
2180 {
2181 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2182
2183 if (likely(!ret)) {
2184 skb->protocol = eth_type_trans(skb, dev);
2185 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2186 }
2187
2188 return ret;
2189 }
2190
2191 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2192 {
2193 return __dev_forward_skb2(dev, skb, true);
2194 }
2195 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2196
2197 /**
2198 * dev_forward_skb - loopback an skb to another netif
2199 *
2200 * @dev: destination network device
2201 * @skb: buffer to forward
2202 *
2203 * return values:
2204 * NET_RX_SUCCESS (no congestion)
2205 * NET_RX_DROP (packet was dropped, but freed)
2206 *
2207 * dev_forward_skb can be used for injecting an skb from the
2208 * start_xmit function of one device into the receive queue
2209 * of another device.
2210 *
2211 * The receiving device may be in another namespace, so
2212 * we have to clear all information in the skb that could
2213 * impact namespace isolation.
2214 */
2215 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2216 {
2217 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2218 }
2219 EXPORT_SYMBOL_GPL(dev_forward_skb);
2220
2221 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2222 {
2223 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2224 }
2225
2226 static inline int deliver_skb(struct sk_buff *skb,
2227 struct packet_type *pt_prev,
2228 struct net_device *orig_dev)
2229 {
2230 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2231 return -ENOMEM;
2232 refcount_inc(&skb->users);
2233 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2234 }
2235
2236 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2237 struct packet_type **pt,
2238 struct net_device *orig_dev,
2239 __be16 type,
2240 struct list_head *ptype_list)
2241 {
2242 struct packet_type *ptype, *pt_prev = *pt;
2243
2244 list_for_each_entry_rcu(ptype, ptype_list, list) {
2245 if (ptype->type != type)
2246 continue;
2247 if (pt_prev)
2248 deliver_skb(skb, pt_prev, orig_dev);
2249 pt_prev = ptype;
2250 }
2251 *pt = pt_prev;
2252 }
2253
2254 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2255 {
2256 if (!ptype->af_packet_priv || !skb->sk)
2257 return false;
2258
2259 if (ptype->id_match)
2260 return ptype->id_match(ptype, skb->sk);
2261 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2262 return true;
2263
2264 return false;
2265 }
2266
2267 /**
2268 * dev_nit_active - return true if any network interface taps are in use
2269 *
2270 * @dev: network device to check for the presence of taps
2271 */
2272 bool dev_nit_active(struct net_device *dev)
2273 {
2274 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2275 }
2276 EXPORT_SYMBOL_GPL(dev_nit_active);
2277
2278 /*
2279 * Support routine. Sends outgoing frames to any network
2280 * taps currently in use.
2281 */
2282
2283 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2284 {
2285 struct packet_type *ptype;
2286 struct sk_buff *skb2 = NULL;
2287 struct packet_type *pt_prev = NULL;
2288 struct list_head *ptype_list = &ptype_all;
2289
2290 rcu_read_lock();
2291 again:
2292 list_for_each_entry_rcu(ptype, ptype_list, list) {
2293 if (ptype->ignore_outgoing)
2294 continue;
2295
2296 /* Never send packets back to the socket
2297 * they originated from - MvS (miquels@drinkel.ow.org)
2298 */
2299 if (skb_loop_sk(ptype, skb))
2300 continue;
2301
2302 if (pt_prev) {
2303 deliver_skb(skb2, pt_prev, skb->dev);
2304 pt_prev = ptype;
2305 continue;
2306 }
2307
2308 /* need to clone skb, done only once */
2309 skb2 = skb_clone(skb, GFP_ATOMIC);
2310 if (!skb2)
2311 goto out_unlock;
2312
2313 net_timestamp_set(skb2);
2314
2315 /* skb->nh should be correctly
2316 * set by sender, so that the second statement is
2317 * just protection against buggy protocols.
2318 */
2319 skb_reset_mac_header(skb2);
2320
2321 if (skb_network_header(skb2) < skb2->data ||
2322 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2323 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2324 ntohs(skb2->protocol),
2325 dev->name);
2326 skb_reset_network_header(skb2);
2327 }
2328
2329 skb2->transport_header = skb2->network_header;
2330 skb2->pkt_type = PACKET_OUTGOING;
2331 pt_prev = ptype;
2332 }
2333
2334 if (ptype_list == &ptype_all) {
2335 ptype_list = &dev->ptype_all;
2336 goto again;
2337 }
2338 out_unlock:
2339 if (pt_prev) {
2340 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2341 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2342 else
2343 kfree_skb(skb2);
2344 }
2345 rcu_read_unlock();
2346 }
2347 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2348
2349 /**
2350 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2351 * @dev: Network device
2352 * @txq: number of queues available
2353 *
2354 * If real_num_tx_queues is changed the tc mappings may no longer be
2355 * valid. To resolve this verify the tc mapping remains valid and if
2356 * not NULL the mapping. With no priorities mapping to this
2357 * offset/count pair it will no longer be used. In the worst case TC0
2358 * is invalid nothing can be done so disable priority mappings. If is
2359 * expected that drivers will fix this mapping if they can before
2360 * calling netif_set_real_num_tx_queues.
2361 */
2362 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2363 {
2364 int i;
2365 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2366
2367 /* If TC0 is invalidated disable TC mapping */
2368 if (tc->offset + tc->count > txq) {
2369 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2370 dev->num_tc = 0;
2371 return;
2372 }
2373
2374 /* Invalidated prio to tc mappings set to TC0 */
2375 for (i = 1; i < TC_BITMASK + 1; i++) {
2376 int q = netdev_get_prio_tc_map(dev, i);
2377
2378 tc = &dev->tc_to_txq[q];
2379 if (tc->offset + tc->count > txq) {
2380 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2381 i, q);
2382 netdev_set_prio_tc_map(dev, i, 0);
2383 }
2384 }
2385 }
2386
2387 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2388 {
2389 if (dev->num_tc) {
2390 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2391 int i;
2392
2393 /* walk through the TCs and see if it falls into any of them */
2394 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2395 if ((txq - tc->offset) < tc->count)
2396 return i;
2397 }
2398
2399 /* didn't find it, just return -1 to indicate no match */
2400 return -1;
2401 }
2402
2403 return 0;
2404 }
2405 EXPORT_SYMBOL(netdev_txq_to_tc);
2406
2407 #ifdef CONFIG_XPS
2408 static struct static_key xps_needed __read_mostly;
2409 static struct static_key xps_rxqs_needed __read_mostly;
2410 static DEFINE_MUTEX(xps_map_mutex);
2411 #define xmap_dereference(P) \
2412 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2413
2414 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2415 struct xps_dev_maps *old_maps, int tci, u16 index)
2416 {
2417 struct xps_map *map = NULL;
2418 int pos;
2419
2420 map = xmap_dereference(dev_maps->attr_map[tci]);
2421 if (!map)
2422 return false;
2423
2424 for (pos = map->len; pos--;) {
2425 if (map->queues[pos] != index)
2426 continue;
2427
2428 if (map->len > 1) {
2429 map->queues[pos] = map->queues[--map->len];
2430 break;
2431 }
2432
2433 if (old_maps)
2434 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2435 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2436 kfree_rcu(map, rcu);
2437 return false;
2438 }
2439
2440 return true;
2441 }
2442
2443 static bool remove_xps_queue_cpu(struct net_device *dev,
2444 struct xps_dev_maps *dev_maps,
2445 int cpu, u16 offset, u16 count)
2446 {
2447 int num_tc = dev_maps->num_tc;
2448 bool active = false;
2449 int tci;
2450
2451 for (tci = cpu * num_tc; num_tc--; tci++) {
2452 int i, j;
2453
2454 for (i = count, j = offset; i--; j++) {
2455 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2456 break;
2457 }
2458
2459 active |= i < 0;
2460 }
2461
2462 return active;
2463 }
2464
2465 static void reset_xps_maps(struct net_device *dev,
2466 struct xps_dev_maps *dev_maps,
2467 enum xps_map_type type)
2468 {
2469 static_key_slow_dec_cpuslocked(&xps_needed);
2470 if (type == XPS_RXQS)
2471 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2472
2473 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2474
2475 kfree_rcu(dev_maps, rcu);
2476 }
2477
2478 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2479 u16 offset, u16 count)
2480 {
2481 struct xps_dev_maps *dev_maps;
2482 bool active = false;
2483 int i, j;
2484
2485 dev_maps = xmap_dereference(dev->xps_maps[type]);
2486 if (!dev_maps)
2487 return;
2488
2489 for (j = 0; j < dev_maps->nr_ids; j++)
2490 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2491 if (!active)
2492 reset_xps_maps(dev, dev_maps, type);
2493
2494 if (type == XPS_CPUS) {
2495 for (i = offset + (count - 1); count--; i--)
2496 netdev_queue_numa_node_write(
2497 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2498 }
2499 }
2500
2501 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2502 u16 count)
2503 {
2504 if (!static_key_false(&xps_needed))
2505 return;
2506
2507 cpus_read_lock();
2508 mutex_lock(&xps_map_mutex);
2509
2510 if (static_key_false(&xps_rxqs_needed))
2511 clean_xps_maps(dev, XPS_RXQS, offset, count);
2512
2513 clean_xps_maps(dev, XPS_CPUS, offset, count);
2514
2515 mutex_unlock(&xps_map_mutex);
2516 cpus_read_unlock();
2517 }
2518
2519 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2520 {
2521 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2522 }
2523
2524 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2525 u16 index, bool is_rxqs_map)
2526 {
2527 struct xps_map *new_map;
2528 int alloc_len = XPS_MIN_MAP_ALLOC;
2529 int i, pos;
2530
2531 for (pos = 0; map && pos < map->len; pos++) {
2532 if (map->queues[pos] != index)
2533 continue;
2534 return map;
2535 }
2536
2537 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2538 if (map) {
2539 if (pos < map->alloc_len)
2540 return map;
2541
2542 alloc_len = map->alloc_len * 2;
2543 }
2544
2545 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2546 * map
2547 */
2548 if (is_rxqs_map)
2549 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2550 else
2551 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2552 cpu_to_node(attr_index));
2553 if (!new_map)
2554 return NULL;
2555
2556 for (i = 0; i < pos; i++)
2557 new_map->queues[i] = map->queues[i];
2558 new_map->alloc_len = alloc_len;
2559 new_map->len = pos;
2560
2561 return new_map;
2562 }
2563
2564 /* Copy xps maps at a given index */
2565 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2566 struct xps_dev_maps *new_dev_maps, int index,
2567 int tc, bool skip_tc)
2568 {
2569 int i, tci = index * dev_maps->num_tc;
2570 struct xps_map *map;
2571
2572 /* copy maps belonging to foreign traffic classes */
2573 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2574 if (i == tc && skip_tc)
2575 continue;
2576
2577 /* fill in the new device map from the old device map */
2578 map = xmap_dereference(dev_maps->attr_map[tci]);
2579 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2580 }
2581 }
2582
2583 /* Must be called under cpus_read_lock */
2584 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2585 u16 index, enum xps_map_type type)
2586 {
2587 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2588 const unsigned long *online_mask = NULL;
2589 bool active = false, copy = false;
2590 int i, j, tci, numa_node_id = -2;
2591 int maps_sz, num_tc = 1, tc = 0;
2592 struct xps_map *map, *new_map;
2593 unsigned int nr_ids;
2594
2595 WARN_ON_ONCE(index >= dev->num_tx_queues);
2596
2597 if (dev->num_tc) {
2598 /* Do not allow XPS on subordinate device directly */
2599 num_tc = dev->num_tc;
2600 if (num_tc < 0)
2601 return -EINVAL;
2602
2603 /* If queue belongs to subordinate dev use its map */
2604 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2605
2606 tc = netdev_txq_to_tc(dev, index);
2607 if (tc < 0)
2608 return -EINVAL;
2609 }
2610
2611 mutex_lock(&xps_map_mutex);
2612
2613 dev_maps = xmap_dereference(dev->xps_maps[type]);
2614 if (type == XPS_RXQS) {
2615 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2616 nr_ids = dev->num_rx_queues;
2617 } else {
2618 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2619 if (num_possible_cpus() > 1)
2620 online_mask = cpumask_bits(cpu_online_mask);
2621 nr_ids = nr_cpu_ids;
2622 }
2623
2624 if (maps_sz < L1_CACHE_BYTES)
2625 maps_sz = L1_CACHE_BYTES;
2626
2627 /* The old dev_maps could be larger or smaller than the one we're
2628 * setting up now, as dev->num_tc or nr_ids could have been updated in
2629 * between. We could try to be smart, but let's be safe instead and only
2630 * copy foreign traffic classes if the two map sizes match.
2631 */
2632 if (dev_maps &&
2633 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2634 copy = true;
2635
2636 /* allocate memory for queue storage */
2637 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2638 j < nr_ids;) {
2639 if (!new_dev_maps) {
2640 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2641 if (!new_dev_maps) {
2642 mutex_unlock(&xps_map_mutex);
2643 return -ENOMEM;
2644 }
2645
2646 new_dev_maps->nr_ids = nr_ids;
2647 new_dev_maps->num_tc = num_tc;
2648 }
2649
2650 tci = j * num_tc + tc;
2651 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2652
2653 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2654 if (!map)
2655 goto error;
2656
2657 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2658 }
2659
2660 if (!new_dev_maps)
2661 goto out_no_new_maps;
2662
2663 if (!dev_maps) {
2664 /* Increment static keys at most once per type */
2665 static_key_slow_inc_cpuslocked(&xps_needed);
2666 if (type == XPS_RXQS)
2667 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2668 }
2669
2670 for (j = 0; j < nr_ids; j++) {
2671 bool skip_tc = false;
2672
2673 tci = j * num_tc + tc;
2674 if (netif_attr_test_mask(j, mask, nr_ids) &&
2675 netif_attr_test_online(j, online_mask, nr_ids)) {
2676 /* add tx-queue to CPU/rx-queue maps */
2677 int pos = 0;
2678
2679 skip_tc = true;
2680
2681 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2682 while ((pos < map->len) && (map->queues[pos] != index))
2683 pos++;
2684
2685 if (pos == map->len)
2686 map->queues[map->len++] = index;
2687 #ifdef CONFIG_NUMA
2688 if (type == XPS_CPUS) {
2689 if (numa_node_id == -2)
2690 numa_node_id = cpu_to_node(j);
2691 else if (numa_node_id != cpu_to_node(j))
2692 numa_node_id = -1;
2693 }
2694 #endif
2695 }
2696
2697 if (copy)
2698 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2699 skip_tc);
2700 }
2701
2702 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2703
2704 /* Cleanup old maps */
2705 if (!dev_maps)
2706 goto out_no_old_maps;
2707
2708 for (j = 0; j < dev_maps->nr_ids; j++) {
2709 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2710 map = xmap_dereference(dev_maps->attr_map[tci]);
2711 if (!map)
2712 continue;
2713
2714 if (copy) {
2715 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2716 if (map == new_map)
2717 continue;
2718 }
2719
2720 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2721 kfree_rcu(map, rcu);
2722 }
2723 }
2724
2725 old_dev_maps = dev_maps;
2726
2727 out_no_old_maps:
2728 dev_maps = new_dev_maps;
2729 active = true;
2730
2731 out_no_new_maps:
2732 if (type == XPS_CPUS)
2733 /* update Tx queue numa node */
2734 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2735 (numa_node_id >= 0) ?
2736 numa_node_id : NUMA_NO_NODE);
2737
2738 if (!dev_maps)
2739 goto out_no_maps;
2740
2741 /* removes tx-queue from unused CPUs/rx-queues */
2742 for (j = 0; j < dev_maps->nr_ids; j++) {
2743 tci = j * dev_maps->num_tc;
2744
2745 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2746 if (i == tc &&
2747 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2748 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2749 continue;
2750
2751 active |= remove_xps_queue(dev_maps,
2752 copy ? old_dev_maps : NULL,
2753 tci, index);
2754 }
2755 }
2756
2757 if (old_dev_maps)
2758 kfree_rcu(old_dev_maps, rcu);
2759
2760 /* free map if not active */
2761 if (!active)
2762 reset_xps_maps(dev, dev_maps, type);
2763
2764 out_no_maps:
2765 mutex_unlock(&xps_map_mutex);
2766
2767 return 0;
2768 error:
2769 /* remove any maps that we added */
2770 for (j = 0; j < nr_ids; j++) {
2771 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2772 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2773 map = copy ?
2774 xmap_dereference(dev_maps->attr_map[tci]) :
2775 NULL;
2776 if (new_map && new_map != map)
2777 kfree(new_map);
2778 }
2779 }
2780
2781 mutex_unlock(&xps_map_mutex);
2782
2783 kfree(new_dev_maps);
2784 return -ENOMEM;
2785 }
2786 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2787
2788 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2789 u16 index)
2790 {
2791 int ret;
2792
2793 cpus_read_lock();
2794 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2795 cpus_read_unlock();
2796
2797 return ret;
2798 }
2799 EXPORT_SYMBOL(netif_set_xps_queue);
2800
2801 #endif
2802 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2803 {
2804 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2805
2806 /* Unbind any subordinate channels */
2807 while (txq-- != &dev->_tx[0]) {
2808 if (txq->sb_dev)
2809 netdev_unbind_sb_channel(dev, txq->sb_dev);
2810 }
2811 }
2812
2813 void netdev_reset_tc(struct net_device *dev)
2814 {
2815 #ifdef CONFIG_XPS
2816 netif_reset_xps_queues_gt(dev, 0);
2817 #endif
2818 netdev_unbind_all_sb_channels(dev);
2819
2820 /* Reset TC configuration of device */
2821 dev->num_tc = 0;
2822 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2823 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2824 }
2825 EXPORT_SYMBOL(netdev_reset_tc);
2826
2827 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2828 {
2829 if (tc >= dev->num_tc)
2830 return -EINVAL;
2831
2832 #ifdef CONFIG_XPS
2833 netif_reset_xps_queues(dev, offset, count);
2834 #endif
2835 dev->tc_to_txq[tc].count = count;
2836 dev->tc_to_txq[tc].offset = offset;
2837 return 0;
2838 }
2839 EXPORT_SYMBOL(netdev_set_tc_queue);
2840
2841 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2842 {
2843 if (num_tc > TC_MAX_QUEUE)
2844 return -EINVAL;
2845
2846 #ifdef CONFIG_XPS
2847 netif_reset_xps_queues_gt(dev, 0);
2848 #endif
2849 netdev_unbind_all_sb_channels(dev);
2850
2851 dev->num_tc = num_tc;
2852 return 0;
2853 }
2854 EXPORT_SYMBOL(netdev_set_num_tc);
2855
2856 void netdev_unbind_sb_channel(struct net_device *dev,
2857 struct net_device *sb_dev)
2858 {
2859 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2860
2861 #ifdef CONFIG_XPS
2862 netif_reset_xps_queues_gt(sb_dev, 0);
2863 #endif
2864 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2865 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2866
2867 while (txq-- != &dev->_tx[0]) {
2868 if (txq->sb_dev == sb_dev)
2869 txq->sb_dev = NULL;
2870 }
2871 }
2872 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2873
2874 int netdev_bind_sb_channel_queue(struct net_device *dev,
2875 struct net_device *sb_dev,
2876 u8 tc, u16 count, u16 offset)
2877 {
2878 /* Make certain the sb_dev and dev are already configured */
2879 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2880 return -EINVAL;
2881
2882 /* We cannot hand out queues we don't have */
2883 if ((offset + count) > dev->real_num_tx_queues)
2884 return -EINVAL;
2885
2886 /* Record the mapping */
2887 sb_dev->tc_to_txq[tc].count = count;
2888 sb_dev->tc_to_txq[tc].offset = offset;
2889
2890 /* Provide a way for Tx queue to find the tc_to_txq map or
2891 * XPS map for itself.
2892 */
2893 while (count--)
2894 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2895
2896 return 0;
2897 }
2898 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2899
2900 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2901 {
2902 /* Do not use a multiqueue device to represent a subordinate channel */
2903 if (netif_is_multiqueue(dev))
2904 return -ENODEV;
2905
2906 /* We allow channels 1 - 32767 to be used for subordinate channels.
2907 * Channel 0 is meant to be "native" mode and used only to represent
2908 * the main root device. We allow writing 0 to reset the device back
2909 * to normal mode after being used as a subordinate channel.
2910 */
2911 if (channel > S16_MAX)
2912 return -EINVAL;
2913
2914 dev->num_tc = -channel;
2915
2916 return 0;
2917 }
2918 EXPORT_SYMBOL(netdev_set_sb_channel);
2919
2920 /*
2921 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2922 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2923 */
2924 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2925 {
2926 bool disabling;
2927 int rc;
2928
2929 disabling = txq < dev->real_num_tx_queues;
2930
2931 if (txq < 1 || txq > dev->num_tx_queues)
2932 return -EINVAL;
2933
2934 if (dev->reg_state == NETREG_REGISTERED ||
2935 dev->reg_state == NETREG_UNREGISTERING) {
2936 ASSERT_RTNL();
2937
2938 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2939 txq);
2940 if (rc)
2941 return rc;
2942
2943 if (dev->num_tc)
2944 netif_setup_tc(dev, txq);
2945
2946 dev_qdisc_change_real_num_tx(dev, txq);
2947
2948 dev->real_num_tx_queues = txq;
2949
2950 if (disabling) {
2951 synchronize_net();
2952 qdisc_reset_all_tx_gt(dev, txq);
2953 #ifdef CONFIG_XPS
2954 netif_reset_xps_queues_gt(dev, txq);
2955 #endif
2956 }
2957 } else {
2958 dev->real_num_tx_queues = txq;
2959 }
2960
2961 return 0;
2962 }
2963 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2964
2965 #ifdef CONFIG_SYSFS
2966 /**
2967 * netif_set_real_num_rx_queues - set actual number of RX queues used
2968 * @dev: Network device
2969 * @rxq: Actual number of RX queues
2970 *
2971 * This must be called either with the rtnl_lock held or before
2972 * registration of the net device. Returns 0 on success, or a
2973 * negative error code. If called before registration, it always
2974 * succeeds.
2975 */
2976 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2977 {
2978 int rc;
2979
2980 if (rxq < 1 || rxq > dev->num_rx_queues)
2981 return -EINVAL;
2982
2983 if (dev->reg_state == NETREG_REGISTERED) {
2984 ASSERT_RTNL();
2985
2986 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2987 rxq);
2988 if (rc)
2989 return rc;
2990 }
2991
2992 dev->real_num_rx_queues = rxq;
2993 return 0;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2996 #endif
2997
2998 /**
2999 * netif_set_real_num_queues - set actual number of RX and TX queues used
3000 * @dev: Network device
3001 * @txq: Actual number of TX queues
3002 * @rxq: Actual number of RX queues
3003 *
3004 * Set the real number of both TX and RX queues.
3005 * Does nothing if the number of queues is already correct.
3006 */
3007 int netif_set_real_num_queues(struct net_device *dev,
3008 unsigned int txq, unsigned int rxq)
3009 {
3010 unsigned int old_rxq = dev->real_num_rx_queues;
3011 int err;
3012
3013 if (txq < 1 || txq > dev->num_tx_queues ||
3014 rxq < 1 || rxq > dev->num_rx_queues)
3015 return -EINVAL;
3016
3017 /* Start from increases, so the error path only does decreases -
3018 * decreases can't fail.
3019 */
3020 if (rxq > dev->real_num_rx_queues) {
3021 err = netif_set_real_num_rx_queues(dev, rxq);
3022 if (err)
3023 return err;
3024 }
3025 if (txq > dev->real_num_tx_queues) {
3026 err = netif_set_real_num_tx_queues(dev, txq);
3027 if (err)
3028 goto undo_rx;
3029 }
3030 if (rxq < dev->real_num_rx_queues)
3031 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3032 if (txq < dev->real_num_tx_queues)
3033 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3034
3035 return 0;
3036 undo_rx:
3037 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3038 return err;
3039 }
3040 EXPORT_SYMBOL(netif_set_real_num_queues);
3041
3042 /**
3043 * netif_set_tso_max_size() - set the max size of TSO frames supported
3044 * @dev: netdev to update
3045 * @size: max skb->len of a TSO frame
3046 *
3047 * Set the limit on the size of TSO super-frames the device can handle.
3048 * Unless explicitly set the stack will assume the value of
3049 * %GSO_LEGACY_MAX_SIZE.
3050 */
3051 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3052 {
3053 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3054 if (size < READ_ONCE(dev->gso_max_size))
3055 netif_set_gso_max_size(dev, size);
3056 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3057 netif_set_gso_ipv4_max_size(dev, size);
3058 }
3059 EXPORT_SYMBOL(netif_set_tso_max_size);
3060
3061 /**
3062 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3063 * @dev: netdev to update
3064 * @segs: max number of TCP segments
3065 *
3066 * Set the limit on the number of TCP segments the device can generate from
3067 * a single TSO super-frame.
3068 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3069 */
3070 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3071 {
3072 dev->tso_max_segs = segs;
3073 if (segs < READ_ONCE(dev->gso_max_segs))
3074 netif_set_gso_max_segs(dev, segs);
3075 }
3076 EXPORT_SYMBOL(netif_set_tso_max_segs);
3077
3078 /**
3079 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3080 * @to: netdev to update
3081 * @from: netdev from which to copy the limits
3082 */
3083 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3084 {
3085 netif_set_tso_max_size(to, from->tso_max_size);
3086 netif_set_tso_max_segs(to, from->tso_max_segs);
3087 }
3088 EXPORT_SYMBOL(netif_inherit_tso_max);
3089
3090 /**
3091 * netif_get_num_default_rss_queues - default number of RSS queues
3092 *
3093 * Default value is the number of physical cores if there are only 1 or 2, or
3094 * divided by 2 if there are more.
3095 */
3096 int netif_get_num_default_rss_queues(void)
3097 {
3098 cpumask_var_t cpus;
3099 int cpu, count = 0;
3100
3101 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3102 return 1;
3103
3104 cpumask_copy(cpus, cpu_online_mask);
3105 for_each_cpu(cpu, cpus) {
3106 ++count;
3107 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3108 }
3109 free_cpumask_var(cpus);
3110
3111 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3112 }
3113 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3114
3115 static void __netif_reschedule(struct Qdisc *q)
3116 {
3117 struct softnet_data *sd;
3118 unsigned long flags;
3119
3120 local_irq_save(flags);
3121 sd = this_cpu_ptr(&softnet_data);
3122 q->next_sched = NULL;
3123 *sd->output_queue_tailp = q;
3124 sd->output_queue_tailp = &q->next_sched;
3125 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3126 local_irq_restore(flags);
3127 }
3128
3129 void __netif_schedule(struct Qdisc *q)
3130 {
3131 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3132 __netif_reschedule(q);
3133 }
3134 EXPORT_SYMBOL(__netif_schedule);
3135
3136 struct dev_kfree_skb_cb {
3137 enum skb_drop_reason reason;
3138 };
3139
3140 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3141 {
3142 return (struct dev_kfree_skb_cb *)skb->cb;
3143 }
3144
3145 void netif_schedule_queue(struct netdev_queue *txq)
3146 {
3147 rcu_read_lock();
3148 if (!netif_xmit_stopped(txq)) {
3149 struct Qdisc *q = rcu_dereference(txq->qdisc);
3150
3151 __netif_schedule(q);
3152 }
3153 rcu_read_unlock();
3154 }
3155 EXPORT_SYMBOL(netif_schedule_queue);
3156
3157 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3158 {
3159 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3160 struct Qdisc *q;
3161
3162 rcu_read_lock();
3163 q = rcu_dereference(dev_queue->qdisc);
3164 __netif_schedule(q);
3165 rcu_read_unlock();
3166 }
3167 }
3168 EXPORT_SYMBOL(netif_tx_wake_queue);
3169
3170 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3171 {
3172 unsigned long flags;
3173
3174 if (unlikely(!skb))
3175 return;
3176
3177 if (likely(refcount_read(&skb->users) == 1)) {
3178 smp_rmb();
3179 refcount_set(&skb->users, 0);
3180 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3181 return;
3182 }
3183 get_kfree_skb_cb(skb)->reason = reason;
3184 local_irq_save(flags);
3185 skb->next = __this_cpu_read(softnet_data.completion_queue);
3186 __this_cpu_write(softnet_data.completion_queue, skb);
3187 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3188 local_irq_restore(flags);
3189 }
3190 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3191
3192 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3193 {
3194 if (in_hardirq() || irqs_disabled())
3195 dev_kfree_skb_irq_reason(skb, reason);
3196 else
3197 kfree_skb_reason(skb, reason);
3198 }
3199 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3200
3201
3202 /**
3203 * netif_device_detach - mark device as removed
3204 * @dev: network device
3205 *
3206 * Mark device as removed from system and therefore no longer available.
3207 */
3208 void netif_device_detach(struct net_device *dev)
3209 {
3210 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3211 netif_running(dev)) {
3212 netif_tx_stop_all_queues(dev);
3213 }
3214 }
3215 EXPORT_SYMBOL(netif_device_detach);
3216
3217 /**
3218 * netif_device_attach - mark device as attached
3219 * @dev: network device
3220 *
3221 * Mark device as attached from system and restart if needed.
3222 */
3223 void netif_device_attach(struct net_device *dev)
3224 {
3225 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3226 netif_running(dev)) {
3227 netif_tx_wake_all_queues(dev);
3228 __netdev_watchdog_up(dev);
3229 }
3230 }
3231 EXPORT_SYMBOL(netif_device_attach);
3232
3233 /*
3234 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3235 * to be used as a distribution range.
3236 */
3237 static u16 skb_tx_hash(const struct net_device *dev,
3238 const struct net_device *sb_dev,
3239 struct sk_buff *skb)
3240 {
3241 u32 hash;
3242 u16 qoffset = 0;
3243 u16 qcount = dev->real_num_tx_queues;
3244
3245 if (dev->num_tc) {
3246 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3247
3248 qoffset = sb_dev->tc_to_txq[tc].offset;
3249 qcount = sb_dev->tc_to_txq[tc].count;
3250 if (unlikely(!qcount)) {
3251 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3252 sb_dev->name, qoffset, tc);
3253 qoffset = 0;
3254 qcount = dev->real_num_tx_queues;
3255 }
3256 }
3257
3258 if (skb_rx_queue_recorded(skb)) {
3259 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3260 hash = skb_get_rx_queue(skb);
3261 if (hash >= qoffset)
3262 hash -= qoffset;
3263 while (unlikely(hash >= qcount))
3264 hash -= qcount;
3265 return hash + qoffset;
3266 }
3267
3268 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3269 }
3270
3271 void skb_warn_bad_offload(const struct sk_buff *skb)
3272 {
3273 static const netdev_features_t null_features;
3274 struct net_device *dev = skb->dev;
3275 const char *name = "";
3276
3277 if (!net_ratelimit())
3278 return;
3279
3280 if (dev) {
3281 if (dev->dev.parent)
3282 name = dev_driver_string(dev->dev.parent);
3283 else
3284 name = netdev_name(dev);
3285 }
3286 skb_dump(KERN_WARNING, skb, false);
3287 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3288 name, dev ? &dev->features : &null_features,
3289 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3290 }
3291
3292 /*
3293 * Invalidate hardware checksum when packet is to be mangled, and
3294 * complete checksum manually on outgoing path.
3295 */
3296 int skb_checksum_help(struct sk_buff *skb)
3297 {
3298 __wsum csum;
3299 int ret = 0, offset;
3300
3301 if (skb->ip_summed == CHECKSUM_COMPLETE)
3302 goto out_set_summed;
3303
3304 if (unlikely(skb_is_gso(skb))) {
3305 skb_warn_bad_offload(skb);
3306 return -EINVAL;
3307 }
3308
3309 /* Before computing a checksum, we should make sure no frag could
3310 * be modified by an external entity : checksum could be wrong.
3311 */
3312 if (skb_has_shared_frag(skb)) {
3313 ret = __skb_linearize(skb);
3314 if (ret)
3315 goto out;
3316 }
3317
3318 offset = skb_checksum_start_offset(skb);
3319 ret = -EINVAL;
3320 if (unlikely(offset >= skb_headlen(skb))) {
3321 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3322 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3323 offset, skb_headlen(skb));
3324 goto out;
3325 }
3326 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3327
3328 offset += skb->csum_offset;
3329 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3330 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3331 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3332 offset + sizeof(__sum16), skb_headlen(skb));
3333 goto out;
3334 }
3335 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3336 if (ret)
3337 goto out;
3338
3339 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3340 out_set_summed:
3341 skb->ip_summed = CHECKSUM_NONE;
3342 out:
3343 return ret;
3344 }
3345 EXPORT_SYMBOL(skb_checksum_help);
3346
3347 int skb_crc32c_csum_help(struct sk_buff *skb)
3348 {
3349 __le32 crc32c_csum;
3350 int ret = 0, offset, start;
3351
3352 if (skb->ip_summed != CHECKSUM_PARTIAL)
3353 goto out;
3354
3355 if (unlikely(skb_is_gso(skb)))
3356 goto out;
3357
3358 /* Before computing a checksum, we should make sure no frag could
3359 * be modified by an external entity : checksum could be wrong.
3360 */
3361 if (unlikely(skb_has_shared_frag(skb))) {
3362 ret = __skb_linearize(skb);
3363 if (ret)
3364 goto out;
3365 }
3366 start = skb_checksum_start_offset(skb);
3367 offset = start + offsetof(struct sctphdr, checksum);
3368 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3369 ret = -EINVAL;
3370 goto out;
3371 }
3372
3373 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3374 if (ret)
3375 goto out;
3376
3377 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3378 skb->len - start, ~(__u32)0,
3379 crc32c_csum_stub));
3380 *(__le32 *)(skb->data + offset) = crc32c_csum;
3381 skb_reset_csum_not_inet(skb);
3382 out:
3383 return ret;
3384 }
3385
3386 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3387 {
3388 __be16 type = skb->protocol;
3389
3390 /* Tunnel gso handlers can set protocol to ethernet. */
3391 if (type == htons(ETH_P_TEB)) {
3392 struct ethhdr *eth;
3393
3394 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3395 return 0;
3396
3397 eth = (struct ethhdr *)skb->data;
3398 type = eth->h_proto;
3399 }
3400
3401 return vlan_get_protocol_and_depth(skb, type, depth);
3402 }
3403
3404
3405 /* Take action when hardware reception checksum errors are detected. */
3406 #ifdef CONFIG_BUG
3407 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3408 {
3409 netdev_err(dev, "hw csum failure\n");
3410 skb_dump(KERN_ERR, skb, true);
3411 dump_stack();
3412 }
3413
3414 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3415 {
3416 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3417 }
3418 EXPORT_SYMBOL(netdev_rx_csum_fault);
3419 #endif
3420
3421 /* XXX: check that highmem exists at all on the given machine. */
3422 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3423 {
3424 #ifdef CONFIG_HIGHMEM
3425 int i;
3426
3427 if (!(dev->features & NETIF_F_HIGHDMA)) {
3428 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3429 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3430
3431 if (PageHighMem(skb_frag_page(frag)))
3432 return 1;
3433 }
3434 }
3435 #endif
3436 return 0;
3437 }
3438
3439 /* If MPLS offload request, verify we are testing hardware MPLS features
3440 * instead of standard features for the netdev.
3441 */
3442 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3443 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3444 netdev_features_t features,
3445 __be16 type)
3446 {
3447 if (eth_p_mpls(type))
3448 features &= skb->dev->mpls_features;
3449
3450 return features;
3451 }
3452 #else
3453 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454 netdev_features_t features,
3455 __be16 type)
3456 {
3457 return features;
3458 }
3459 #endif
3460
3461 static netdev_features_t harmonize_features(struct sk_buff *skb,
3462 netdev_features_t features)
3463 {
3464 __be16 type;
3465
3466 type = skb_network_protocol(skb, NULL);
3467 features = net_mpls_features(skb, features, type);
3468
3469 if (skb->ip_summed != CHECKSUM_NONE &&
3470 !can_checksum_protocol(features, type)) {
3471 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3472 }
3473 if (illegal_highdma(skb->dev, skb))
3474 features &= ~NETIF_F_SG;
3475
3476 return features;
3477 }
3478
3479 netdev_features_t passthru_features_check(struct sk_buff *skb,
3480 struct net_device *dev,
3481 netdev_features_t features)
3482 {
3483 return features;
3484 }
3485 EXPORT_SYMBOL(passthru_features_check);
3486
3487 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3488 struct net_device *dev,
3489 netdev_features_t features)
3490 {
3491 return vlan_features_check(skb, features);
3492 }
3493
3494 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3495 struct net_device *dev,
3496 netdev_features_t features)
3497 {
3498 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3499
3500 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3501 return features & ~NETIF_F_GSO_MASK;
3502
3503 if (!skb_shinfo(skb)->gso_type) {
3504 skb_warn_bad_offload(skb);
3505 return features & ~NETIF_F_GSO_MASK;
3506 }
3507
3508 /* Support for GSO partial features requires software
3509 * intervention before we can actually process the packets
3510 * so we need to strip support for any partial features now
3511 * and we can pull them back in after we have partially
3512 * segmented the frame.
3513 */
3514 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3515 features &= ~dev->gso_partial_features;
3516
3517 /* Make sure to clear the IPv4 ID mangling feature if the
3518 * IPv4 header has the potential to be fragmented.
3519 */
3520 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3521 struct iphdr *iph = skb->encapsulation ?
3522 inner_ip_hdr(skb) : ip_hdr(skb);
3523
3524 if (!(iph->frag_off & htons(IP_DF)))
3525 features &= ~NETIF_F_TSO_MANGLEID;
3526 }
3527
3528 return features;
3529 }
3530
3531 netdev_features_t netif_skb_features(struct sk_buff *skb)
3532 {
3533 struct net_device *dev = skb->dev;
3534 netdev_features_t features = dev->features;
3535
3536 if (skb_is_gso(skb))
3537 features = gso_features_check(skb, dev, features);
3538
3539 /* If encapsulation offload request, verify we are testing
3540 * hardware encapsulation features instead of standard
3541 * features for the netdev
3542 */
3543 if (skb->encapsulation)
3544 features &= dev->hw_enc_features;
3545
3546 if (skb_vlan_tagged(skb))
3547 features = netdev_intersect_features(features,
3548 dev->vlan_features |
3549 NETIF_F_HW_VLAN_CTAG_TX |
3550 NETIF_F_HW_VLAN_STAG_TX);
3551
3552 if (dev->netdev_ops->ndo_features_check)
3553 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3554 features);
3555 else
3556 features &= dflt_features_check(skb, dev, features);
3557
3558 return harmonize_features(skb, features);
3559 }
3560 EXPORT_SYMBOL(netif_skb_features);
3561
3562 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3563 struct netdev_queue *txq, bool more)
3564 {
3565 unsigned int len;
3566 int rc;
3567
3568 if (dev_nit_active(dev))
3569 dev_queue_xmit_nit(skb, dev);
3570
3571 len = skb->len;
3572 trace_net_dev_start_xmit(skb, dev);
3573 rc = netdev_start_xmit(skb, dev, txq, more);
3574 trace_net_dev_xmit(skb, rc, dev, len);
3575
3576 return rc;
3577 }
3578
3579 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3580 struct netdev_queue *txq, int *ret)
3581 {
3582 struct sk_buff *skb = first;
3583 int rc = NETDEV_TX_OK;
3584
3585 while (skb) {
3586 struct sk_buff *next = skb->next;
3587
3588 skb_mark_not_on_list(skb);
3589 rc = xmit_one(skb, dev, txq, next != NULL);
3590 if (unlikely(!dev_xmit_complete(rc))) {
3591 skb->next = next;
3592 goto out;
3593 }
3594
3595 skb = next;
3596 if (netif_tx_queue_stopped(txq) && skb) {
3597 rc = NETDEV_TX_BUSY;
3598 break;
3599 }
3600 }
3601
3602 out:
3603 *ret = rc;
3604 return skb;
3605 }
3606
3607 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3608 netdev_features_t features)
3609 {
3610 if (skb_vlan_tag_present(skb) &&
3611 !vlan_hw_offload_capable(features, skb->vlan_proto))
3612 skb = __vlan_hwaccel_push_inside(skb);
3613 return skb;
3614 }
3615
3616 int skb_csum_hwoffload_help(struct sk_buff *skb,
3617 const netdev_features_t features)
3618 {
3619 if (unlikely(skb_csum_is_sctp(skb)))
3620 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3621 skb_crc32c_csum_help(skb);
3622
3623 if (features & NETIF_F_HW_CSUM)
3624 return 0;
3625
3626 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3627 switch (skb->csum_offset) {
3628 case offsetof(struct tcphdr, check):
3629 case offsetof(struct udphdr, check):
3630 return 0;
3631 }
3632 }
3633
3634 return skb_checksum_help(skb);
3635 }
3636 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3637
3638 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3639 {
3640 netdev_features_t features;
3641
3642 features = netif_skb_features(skb);
3643 skb = validate_xmit_vlan(skb, features);
3644 if (unlikely(!skb))
3645 goto out_null;
3646
3647 skb = sk_validate_xmit_skb(skb, dev);
3648 if (unlikely(!skb))
3649 goto out_null;
3650
3651 if (netif_needs_gso(skb, features)) {
3652 struct sk_buff *segs;
3653
3654 segs = skb_gso_segment(skb, features);
3655 if (IS_ERR(segs)) {
3656 goto out_kfree_skb;
3657 } else if (segs) {
3658 consume_skb(skb);
3659 skb = segs;
3660 }
3661 } else {
3662 if (skb_needs_linearize(skb, features) &&
3663 __skb_linearize(skb))
3664 goto out_kfree_skb;
3665
3666 /* If packet is not checksummed and device does not
3667 * support checksumming for this protocol, complete
3668 * checksumming here.
3669 */
3670 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3671 if (skb->encapsulation)
3672 skb_set_inner_transport_header(skb,
3673 skb_checksum_start_offset(skb));
3674 else
3675 skb_set_transport_header(skb,
3676 skb_checksum_start_offset(skb));
3677 if (skb_csum_hwoffload_help(skb, features))
3678 goto out_kfree_skb;
3679 }
3680 }
3681
3682 skb = validate_xmit_xfrm(skb, features, again);
3683
3684 return skb;
3685
3686 out_kfree_skb:
3687 kfree_skb(skb);
3688 out_null:
3689 dev_core_stats_tx_dropped_inc(dev);
3690 return NULL;
3691 }
3692
3693 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3694 {
3695 struct sk_buff *next, *head = NULL, *tail;
3696
3697 for (; skb != NULL; skb = next) {
3698 next = skb->next;
3699 skb_mark_not_on_list(skb);
3700
3701 /* in case skb wont be segmented, point to itself */
3702 skb->prev = skb;
3703
3704 skb = validate_xmit_skb(skb, dev, again);
3705 if (!skb)
3706 continue;
3707
3708 if (!head)
3709 head = skb;
3710 else
3711 tail->next = skb;
3712 /* If skb was segmented, skb->prev points to
3713 * the last segment. If not, it still contains skb.
3714 */
3715 tail = skb->prev;
3716 }
3717 return head;
3718 }
3719 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3720
3721 static void qdisc_pkt_len_init(struct sk_buff *skb)
3722 {
3723 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3724
3725 qdisc_skb_cb(skb)->pkt_len = skb->len;
3726
3727 /* To get more precise estimation of bytes sent on wire,
3728 * we add to pkt_len the headers size of all segments
3729 */
3730 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3731 u16 gso_segs = shinfo->gso_segs;
3732 unsigned int hdr_len;
3733
3734 /* mac layer + network layer */
3735 hdr_len = skb_transport_offset(skb);
3736
3737 /* + transport layer */
3738 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3739 const struct tcphdr *th;
3740 struct tcphdr _tcphdr;
3741
3742 th = skb_header_pointer(skb, hdr_len,
3743 sizeof(_tcphdr), &_tcphdr);
3744 if (likely(th))
3745 hdr_len += __tcp_hdrlen(th);
3746 } else {
3747 struct udphdr _udphdr;
3748
3749 if (skb_header_pointer(skb, hdr_len,
3750 sizeof(_udphdr), &_udphdr))
3751 hdr_len += sizeof(struct udphdr);
3752 }
3753
3754 if (shinfo->gso_type & SKB_GSO_DODGY)
3755 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3756 shinfo->gso_size);
3757
3758 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3759 }
3760 }
3761
3762 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3763 struct sk_buff **to_free,
3764 struct netdev_queue *txq)
3765 {
3766 int rc;
3767
3768 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3769 if (rc == NET_XMIT_SUCCESS)
3770 trace_qdisc_enqueue(q, txq, skb);
3771 return rc;
3772 }
3773
3774 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3775 struct net_device *dev,
3776 struct netdev_queue *txq)
3777 {
3778 spinlock_t *root_lock = qdisc_lock(q);
3779 struct sk_buff *to_free = NULL;
3780 bool contended;
3781 int rc;
3782
3783 qdisc_calculate_pkt_len(skb, q);
3784
3785 if (q->flags & TCQ_F_NOLOCK) {
3786 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3787 qdisc_run_begin(q)) {
3788 /* Retest nolock_qdisc_is_empty() within the protection
3789 * of q->seqlock to protect from racing with requeuing.
3790 */
3791 if (unlikely(!nolock_qdisc_is_empty(q))) {
3792 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3793 __qdisc_run(q);
3794 qdisc_run_end(q);
3795
3796 goto no_lock_out;
3797 }
3798
3799 qdisc_bstats_cpu_update(q, skb);
3800 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3801 !nolock_qdisc_is_empty(q))
3802 __qdisc_run(q);
3803
3804 qdisc_run_end(q);
3805 return NET_XMIT_SUCCESS;
3806 }
3807
3808 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3809 qdisc_run(q);
3810
3811 no_lock_out:
3812 if (unlikely(to_free))
3813 kfree_skb_list_reason(to_free,
3814 SKB_DROP_REASON_QDISC_DROP);
3815 return rc;
3816 }
3817
3818 /*
3819 * Heuristic to force contended enqueues to serialize on a
3820 * separate lock before trying to get qdisc main lock.
3821 * This permits qdisc->running owner to get the lock more
3822 * often and dequeue packets faster.
3823 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3824 * and then other tasks will only enqueue packets. The packets will be
3825 * sent after the qdisc owner is scheduled again. To prevent this
3826 * scenario the task always serialize on the lock.
3827 */
3828 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3829 if (unlikely(contended))
3830 spin_lock(&q->busylock);
3831
3832 spin_lock(root_lock);
3833 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3834 __qdisc_drop(skb, &to_free);
3835 rc = NET_XMIT_DROP;
3836 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3837 qdisc_run_begin(q)) {
3838 /*
3839 * This is a work-conserving queue; there are no old skbs
3840 * waiting to be sent out; and the qdisc is not running -
3841 * xmit the skb directly.
3842 */
3843
3844 qdisc_bstats_update(q, skb);
3845
3846 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3847 if (unlikely(contended)) {
3848 spin_unlock(&q->busylock);
3849 contended = false;
3850 }
3851 __qdisc_run(q);
3852 }
3853
3854 qdisc_run_end(q);
3855 rc = NET_XMIT_SUCCESS;
3856 } else {
3857 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3858 if (qdisc_run_begin(q)) {
3859 if (unlikely(contended)) {
3860 spin_unlock(&q->busylock);
3861 contended = false;
3862 }
3863 __qdisc_run(q);
3864 qdisc_run_end(q);
3865 }
3866 }
3867 spin_unlock(root_lock);
3868 if (unlikely(to_free))
3869 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3870 if (unlikely(contended))
3871 spin_unlock(&q->busylock);
3872 return rc;
3873 }
3874
3875 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3876 static void skb_update_prio(struct sk_buff *skb)
3877 {
3878 const struct netprio_map *map;
3879 const struct sock *sk;
3880 unsigned int prioidx;
3881
3882 if (skb->priority)
3883 return;
3884 map = rcu_dereference_bh(skb->dev->priomap);
3885 if (!map)
3886 return;
3887 sk = skb_to_full_sk(skb);
3888 if (!sk)
3889 return;
3890
3891 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3892
3893 if (prioidx < map->priomap_len)
3894 skb->priority = map->priomap[prioidx];
3895 }
3896 #else
3897 #define skb_update_prio(skb)
3898 #endif
3899
3900 /**
3901 * dev_loopback_xmit - loop back @skb
3902 * @net: network namespace this loopback is happening in
3903 * @sk: sk needed to be a netfilter okfn
3904 * @skb: buffer to transmit
3905 */
3906 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3907 {
3908 skb_reset_mac_header(skb);
3909 __skb_pull(skb, skb_network_offset(skb));
3910 skb->pkt_type = PACKET_LOOPBACK;
3911 if (skb->ip_summed == CHECKSUM_NONE)
3912 skb->ip_summed = CHECKSUM_UNNECESSARY;
3913 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3914 skb_dst_force(skb);
3915 netif_rx(skb);
3916 return 0;
3917 }
3918 EXPORT_SYMBOL(dev_loopback_xmit);
3919
3920 #ifdef CONFIG_NET_EGRESS
3921 static struct netdev_queue *
3922 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3923 {
3924 int qm = skb_get_queue_mapping(skb);
3925
3926 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3927 }
3928
3929 static bool netdev_xmit_txqueue_skipped(void)
3930 {
3931 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3932 }
3933
3934 void netdev_xmit_skip_txqueue(bool skip)
3935 {
3936 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3937 }
3938 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3939 #endif /* CONFIG_NET_EGRESS */
3940
3941 #ifdef CONFIG_NET_XGRESS
3942 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb)
3943 {
3944 int ret = TC_ACT_UNSPEC;
3945 #ifdef CONFIG_NET_CLS_ACT
3946 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3947 struct tcf_result res;
3948
3949 if (!miniq)
3950 return ret;
3951
3952 tc_skb_cb(skb)->mru = 0;
3953 tc_skb_cb(skb)->post_ct = false;
3954
3955 mini_qdisc_bstats_cpu_update(miniq, skb);
3956 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3957 /* Only tcf related quirks below. */
3958 switch (ret) {
3959 case TC_ACT_SHOT:
3960 mini_qdisc_qstats_cpu_drop(miniq);
3961 break;
3962 case TC_ACT_OK:
3963 case TC_ACT_RECLASSIFY:
3964 skb->tc_index = TC_H_MIN(res.classid);
3965 break;
3966 }
3967 #endif /* CONFIG_NET_CLS_ACT */
3968 return ret;
3969 }
3970
3971 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3972
3973 void tcx_inc(void)
3974 {
3975 static_branch_inc(&tcx_needed_key);
3976 }
3977
3978 void tcx_dec(void)
3979 {
3980 static_branch_dec(&tcx_needed_key);
3981 }
3982
3983 static __always_inline enum tcx_action_base
3984 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3985 const bool needs_mac)
3986 {
3987 const struct bpf_mprog_fp *fp;
3988 const struct bpf_prog *prog;
3989 int ret = TCX_NEXT;
3990
3991 if (needs_mac)
3992 __skb_push(skb, skb->mac_len);
3993 bpf_mprog_foreach_prog(entry, fp, prog) {
3994 bpf_compute_data_pointers(skb);
3995 ret = bpf_prog_run(prog, skb);
3996 if (ret != TCX_NEXT)
3997 break;
3998 }
3999 if (needs_mac)
4000 __skb_pull(skb, skb->mac_len);
4001 return tcx_action_code(skb, ret);
4002 }
4003
4004 static __always_inline struct sk_buff *
4005 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4006 struct net_device *orig_dev, bool *another)
4007 {
4008 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4009 int sch_ret;
4010
4011 if (!entry)
4012 return skb;
4013 if (*pt_prev) {
4014 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4015 *pt_prev = NULL;
4016 }
4017
4018 qdisc_skb_cb(skb)->pkt_len = skb->len;
4019 tcx_set_ingress(skb, true);
4020
4021 if (static_branch_unlikely(&tcx_needed_key)) {
4022 sch_ret = tcx_run(entry, skb, true);
4023 if (sch_ret != TC_ACT_UNSPEC)
4024 goto ingress_verdict;
4025 }
4026 sch_ret = tc_run(tcx_entry(entry), skb);
4027 ingress_verdict:
4028 switch (sch_ret) {
4029 case TC_ACT_REDIRECT:
4030 /* skb_mac_header check was done by BPF, so we can safely
4031 * push the L2 header back before redirecting to another
4032 * netdev.
4033 */
4034 __skb_push(skb, skb->mac_len);
4035 if (skb_do_redirect(skb) == -EAGAIN) {
4036 __skb_pull(skb, skb->mac_len);
4037 *another = true;
4038 break;
4039 }
4040 *ret = NET_RX_SUCCESS;
4041 return NULL;
4042 case TC_ACT_SHOT:
4043 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
4044 *ret = NET_RX_DROP;
4045 return NULL;
4046 /* used by tc_run */
4047 case TC_ACT_STOLEN:
4048 case TC_ACT_QUEUED:
4049 case TC_ACT_TRAP:
4050 consume_skb(skb);
4051 fallthrough;
4052 case TC_ACT_CONSUMED:
4053 *ret = NET_RX_SUCCESS;
4054 return NULL;
4055 }
4056
4057 return skb;
4058 }
4059
4060 static __always_inline struct sk_buff *
4061 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4062 {
4063 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4064 int sch_ret;
4065
4066 if (!entry)
4067 return skb;
4068
4069 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4070 * already set by the caller.
4071 */
4072 if (static_branch_unlikely(&tcx_needed_key)) {
4073 sch_ret = tcx_run(entry, skb, false);
4074 if (sch_ret != TC_ACT_UNSPEC)
4075 goto egress_verdict;
4076 }
4077 sch_ret = tc_run(tcx_entry(entry), skb);
4078 egress_verdict:
4079 switch (sch_ret) {
4080 case TC_ACT_REDIRECT:
4081 /* No need to push/pop skb's mac_header here on egress! */
4082 skb_do_redirect(skb);
4083 *ret = NET_XMIT_SUCCESS;
4084 return NULL;
4085 case TC_ACT_SHOT:
4086 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
4087 *ret = NET_XMIT_DROP;
4088 return NULL;
4089 /* used by tc_run */
4090 case TC_ACT_STOLEN:
4091 case TC_ACT_QUEUED:
4092 case TC_ACT_TRAP:
4093 consume_skb(skb);
4094 fallthrough;
4095 case TC_ACT_CONSUMED:
4096 *ret = NET_XMIT_SUCCESS;
4097 return NULL;
4098 }
4099
4100 return skb;
4101 }
4102 #else
4103 static __always_inline struct sk_buff *
4104 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4105 struct net_device *orig_dev, bool *another)
4106 {
4107 return skb;
4108 }
4109
4110 static __always_inline struct sk_buff *
4111 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4112 {
4113 return skb;
4114 }
4115 #endif /* CONFIG_NET_XGRESS */
4116
4117 #ifdef CONFIG_XPS
4118 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4119 struct xps_dev_maps *dev_maps, unsigned int tci)
4120 {
4121 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4122 struct xps_map *map;
4123 int queue_index = -1;
4124
4125 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4126 return queue_index;
4127
4128 tci *= dev_maps->num_tc;
4129 tci += tc;
4130
4131 map = rcu_dereference(dev_maps->attr_map[tci]);
4132 if (map) {
4133 if (map->len == 1)
4134 queue_index = map->queues[0];
4135 else
4136 queue_index = map->queues[reciprocal_scale(
4137 skb_get_hash(skb), map->len)];
4138 if (unlikely(queue_index >= dev->real_num_tx_queues))
4139 queue_index = -1;
4140 }
4141 return queue_index;
4142 }
4143 #endif
4144
4145 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4146 struct sk_buff *skb)
4147 {
4148 #ifdef CONFIG_XPS
4149 struct xps_dev_maps *dev_maps;
4150 struct sock *sk = skb->sk;
4151 int queue_index = -1;
4152
4153 if (!static_key_false(&xps_needed))
4154 return -1;
4155
4156 rcu_read_lock();
4157 if (!static_key_false(&xps_rxqs_needed))
4158 goto get_cpus_map;
4159
4160 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4161 if (dev_maps) {
4162 int tci = sk_rx_queue_get(sk);
4163
4164 if (tci >= 0)
4165 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4166 tci);
4167 }
4168
4169 get_cpus_map:
4170 if (queue_index < 0) {
4171 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4172 if (dev_maps) {
4173 unsigned int tci = skb->sender_cpu - 1;
4174
4175 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4176 tci);
4177 }
4178 }
4179 rcu_read_unlock();
4180
4181 return queue_index;
4182 #else
4183 return -1;
4184 #endif
4185 }
4186
4187 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4188 struct net_device *sb_dev)
4189 {
4190 return 0;
4191 }
4192 EXPORT_SYMBOL(dev_pick_tx_zero);
4193
4194 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4195 struct net_device *sb_dev)
4196 {
4197 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4198 }
4199 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4200
4201 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4202 struct net_device *sb_dev)
4203 {
4204 struct sock *sk = skb->sk;
4205 int queue_index = sk_tx_queue_get(sk);
4206
4207 sb_dev = sb_dev ? : dev;
4208
4209 if (queue_index < 0 || skb->ooo_okay ||
4210 queue_index >= dev->real_num_tx_queues) {
4211 int new_index = get_xps_queue(dev, sb_dev, skb);
4212
4213 if (new_index < 0)
4214 new_index = skb_tx_hash(dev, sb_dev, skb);
4215
4216 if (queue_index != new_index && sk &&
4217 sk_fullsock(sk) &&
4218 rcu_access_pointer(sk->sk_dst_cache))
4219 sk_tx_queue_set(sk, new_index);
4220
4221 queue_index = new_index;
4222 }
4223
4224 return queue_index;
4225 }
4226 EXPORT_SYMBOL(netdev_pick_tx);
4227
4228 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4229 struct sk_buff *skb,
4230 struct net_device *sb_dev)
4231 {
4232 int queue_index = 0;
4233
4234 #ifdef CONFIG_XPS
4235 u32 sender_cpu = skb->sender_cpu - 1;
4236
4237 if (sender_cpu >= (u32)NR_CPUS)
4238 skb->sender_cpu = raw_smp_processor_id() + 1;
4239 #endif
4240
4241 if (dev->real_num_tx_queues != 1) {
4242 const struct net_device_ops *ops = dev->netdev_ops;
4243
4244 if (ops->ndo_select_queue)
4245 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4246 else
4247 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4248
4249 queue_index = netdev_cap_txqueue(dev, queue_index);
4250 }
4251
4252 skb_set_queue_mapping(skb, queue_index);
4253 return netdev_get_tx_queue(dev, queue_index);
4254 }
4255
4256 /**
4257 * __dev_queue_xmit() - transmit a buffer
4258 * @skb: buffer to transmit
4259 * @sb_dev: suboordinate device used for L2 forwarding offload
4260 *
4261 * Queue a buffer for transmission to a network device. The caller must
4262 * have set the device and priority and built the buffer before calling
4263 * this function. The function can be called from an interrupt.
4264 *
4265 * When calling this method, interrupts MUST be enabled. This is because
4266 * the BH enable code must have IRQs enabled so that it will not deadlock.
4267 *
4268 * Regardless of the return value, the skb is consumed, so it is currently
4269 * difficult to retry a send to this method. (You can bump the ref count
4270 * before sending to hold a reference for retry if you are careful.)
4271 *
4272 * Return:
4273 * * 0 - buffer successfully transmitted
4274 * * positive qdisc return code - NET_XMIT_DROP etc.
4275 * * negative errno - other errors
4276 */
4277 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4278 {
4279 struct net_device *dev = skb->dev;
4280 struct netdev_queue *txq = NULL;
4281 struct Qdisc *q;
4282 int rc = -ENOMEM;
4283 bool again = false;
4284
4285 skb_reset_mac_header(skb);
4286 skb_assert_len(skb);
4287
4288 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4289 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4290
4291 /* Disable soft irqs for various locks below. Also
4292 * stops preemption for RCU.
4293 */
4294 rcu_read_lock_bh();
4295
4296 skb_update_prio(skb);
4297
4298 qdisc_pkt_len_init(skb);
4299 tcx_set_ingress(skb, false);
4300 #ifdef CONFIG_NET_EGRESS
4301 if (static_branch_unlikely(&egress_needed_key)) {
4302 if (nf_hook_egress_active()) {
4303 skb = nf_hook_egress(skb, &rc, dev);
4304 if (!skb)
4305 goto out;
4306 }
4307
4308 netdev_xmit_skip_txqueue(false);
4309
4310 nf_skip_egress(skb, true);
4311 skb = sch_handle_egress(skb, &rc, dev);
4312 if (!skb)
4313 goto out;
4314 nf_skip_egress(skb, false);
4315
4316 if (netdev_xmit_txqueue_skipped())
4317 txq = netdev_tx_queue_mapping(dev, skb);
4318 }
4319 #endif
4320 /* If device/qdisc don't need skb->dst, release it right now while
4321 * its hot in this cpu cache.
4322 */
4323 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4324 skb_dst_drop(skb);
4325 else
4326 skb_dst_force(skb);
4327
4328 if (!txq)
4329 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4330
4331 q = rcu_dereference_bh(txq->qdisc);
4332
4333 trace_net_dev_queue(skb);
4334 if (q->enqueue) {
4335 rc = __dev_xmit_skb(skb, q, dev, txq);
4336 goto out;
4337 }
4338
4339 /* The device has no queue. Common case for software devices:
4340 * loopback, all the sorts of tunnels...
4341
4342 * Really, it is unlikely that netif_tx_lock protection is necessary
4343 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4344 * counters.)
4345 * However, it is possible, that they rely on protection
4346 * made by us here.
4347
4348 * Check this and shot the lock. It is not prone from deadlocks.
4349 *Either shot noqueue qdisc, it is even simpler 8)
4350 */
4351 if (dev->flags & IFF_UP) {
4352 int cpu = smp_processor_id(); /* ok because BHs are off */
4353
4354 /* Other cpus might concurrently change txq->xmit_lock_owner
4355 * to -1 or to their cpu id, but not to our id.
4356 */
4357 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4358 if (dev_xmit_recursion())
4359 goto recursion_alert;
4360
4361 skb = validate_xmit_skb(skb, dev, &again);
4362 if (!skb)
4363 goto out;
4364
4365 HARD_TX_LOCK(dev, txq, cpu);
4366
4367 if (!netif_xmit_stopped(txq)) {
4368 dev_xmit_recursion_inc();
4369 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4370 dev_xmit_recursion_dec();
4371 if (dev_xmit_complete(rc)) {
4372 HARD_TX_UNLOCK(dev, txq);
4373 goto out;
4374 }
4375 }
4376 HARD_TX_UNLOCK(dev, txq);
4377 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4378 dev->name);
4379 } else {
4380 /* Recursion is detected! It is possible,
4381 * unfortunately
4382 */
4383 recursion_alert:
4384 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4385 dev->name);
4386 }
4387 }
4388
4389 rc = -ENETDOWN;
4390 rcu_read_unlock_bh();
4391
4392 dev_core_stats_tx_dropped_inc(dev);
4393 kfree_skb_list(skb);
4394 return rc;
4395 out:
4396 rcu_read_unlock_bh();
4397 return rc;
4398 }
4399 EXPORT_SYMBOL(__dev_queue_xmit);
4400
4401 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4402 {
4403 struct net_device *dev = skb->dev;
4404 struct sk_buff *orig_skb = skb;
4405 struct netdev_queue *txq;
4406 int ret = NETDEV_TX_BUSY;
4407 bool again = false;
4408
4409 if (unlikely(!netif_running(dev) ||
4410 !netif_carrier_ok(dev)))
4411 goto drop;
4412
4413 skb = validate_xmit_skb_list(skb, dev, &again);
4414 if (skb != orig_skb)
4415 goto drop;
4416
4417 skb_set_queue_mapping(skb, queue_id);
4418 txq = skb_get_tx_queue(dev, skb);
4419
4420 local_bh_disable();
4421
4422 dev_xmit_recursion_inc();
4423 HARD_TX_LOCK(dev, txq, smp_processor_id());
4424 if (!netif_xmit_frozen_or_drv_stopped(txq))
4425 ret = netdev_start_xmit(skb, dev, txq, false);
4426 HARD_TX_UNLOCK(dev, txq);
4427 dev_xmit_recursion_dec();
4428
4429 local_bh_enable();
4430 return ret;
4431 drop:
4432 dev_core_stats_tx_dropped_inc(dev);
4433 kfree_skb_list(skb);
4434 return NET_XMIT_DROP;
4435 }
4436 EXPORT_SYMBOL(__dev_direct_xmit);
4437
4438 /*************************************************************************
4439 * Receiver routines
4440 *************************************************************************/
4441
4442 int netdev_max_backlog __read_mostly = 1000;
4443 EXPORT_SYMBOL(netdev_max_backlog);
4444
4445 int netdev_tstamp_prequeue __read_mostly = 1;
4446 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4447 int netdev_budget __read_mostly = 300;
4448 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4449 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4450 int weight_p __read_mostly = 64; /* old backlog weight */
4451 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4452 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4453 int dev_rx_weight __read_mostly = 64;
4454 int dev_tx_weight __read_mostly = 64;
4455
4456 /* Called with irq disabled */
4457 static inline void ____napi_schedule(struct softnet_data *sd,
4458 struct napi_struct *napi)
4459 {
4460 struct task_struct *thread;
4461
4462 lockdep_assert_irqs_disabled();
4463
4464 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4465 /* Paired with smp_mb__before_atomic() in
4466 * napi_enable()/dev_set_threaded().
4467 * Use READ_ONCE() to guarantee a complete
4468 * read on napi->thread. Only call
4469 * wake_up_process() when it's not NULL.
4470 */
4471 thread = READ_ONCE(napi->thread);
4472 if (thread) {
4473 /* Avoid doing set_bit() if the thread is in
4474 * INTERRUPTIBLE state, cause napi_thread_wait()
4475 * makes sure to proceed with napi polling
4476 * if the thread is explicitly woken from here.
4477 */
4478 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4479 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4480 wake_up_process(thread);
4481 return;
4482 }
4483 }
4484
4485 list_add_tail(&napi->poll_list, &sd->poll_list);
4486 WRITE_ONCE(napi->list_owner, smp_processor_id());
4487 /* If not called from net_rx_action()
4488 * we have to raise NET_RX_SOFTIRQ.
4489 */
4490 if (!sd->in_net_rx_action)
4491 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4492 }
4493
4494 #ifdef CONFIG_RPS
4495
4496 /* One global table that all flow-based protocols share. */
4497 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4498 EXPORT_SYMBOL(rps_sock_flow_table);
4499 u32 rps_cpu_mask __read_mostly;
4500 EXPORT_SYMBOL(rps_cpu_mask);
4501
4502 struct static_key_false rps_needed __read_mostly;
4503 EXPORT_SYMBOL(rps_needed);
4504 struct static_key_false rfs_needed __read_mostly;
4505 EXPORT_SYMBOL(rfs_needed);
4506
4507 static struct rps_dev_flow *
4508 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4509 struct rps_dev_flow *rflow, u16 next_cpu)
4510 {
4511 if (next_cpu < nr_cpu_ids) {
4512 #ifdef CONFIG_RFS_ACCEL
4513 struct netdev_rx_queue *rxqueue;
4514 struct rps_dev_flow_table *flow_table;
4515 struct rps_dev_flow *old_rflow;
4516 u32 flow_id;
4517 u16 rxq_index;
4518 int rc;
4519
4520 /* Should we steer this flow to a different hardware queue? */
4521 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4522 !(dev->features & NETIF_F_NTUPLE))
4523 goto out;
4524 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4525 if (rxq_index == skb_get_rx_queue(skb))
4526 goto out;
4527
4528 rxqueue = dev->_rx + rxq_index;
4529 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4530 if (!flow_table)
4531 goto out;
4532 flow_id = skb_get_hash(skb) & flow_table->mask;
4533 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4534 rxq_index, flow_id);
4535 if (rc < 0)
4536 goto out;
4537 old_rflow = rflow;
4538 rflow = &flow_table->flows[flow_id];
4539 rflow->filter = rc;
4540 if (old_rflow->filter == rflow->filter)
4541 old_rflow->filter = RPS_NO_FILTER;
4542 out:
4543 #endif
4544 rflow->last_qtail =
4545 per_cpu(softnet_data, next_cpu).input_queue_head;
4546 }
4547
4548 rflow->cpu = next_cpu;
4549 return rflow;
4550 }
4551
4552 /*
4553 * get_rps_cpu is called from netif_receive_skb and returns the target
4554 * CPU from the RPS map of the receiving queue for a given skb.
4555 * rcu_read_lock must be held on entry.
4556 */
4557 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4558 struct rps_dev_flow **rflowp)
4559 {
4560 const struct rps_sock_flow_table *sock_flow_table;
4561 struct netdev_rx_queue *rxqueue = dev->_rx;
4562 struct rps_dev_flow_table *flow_table;
4563 struct rps_map *map;
4564 int cpu = -1;
4565 u32 tcpu;
4566 u32 hash;
4567
4568 if (skb_rx_queue_recorded(skb)) {
4569 u16 index = skb_get_rx_queue(skb);
4570
4571 if (unlikely(index >= dev->real_num_rx_queues)) {
4572 WARN_ONCE(dev->real_num_rx_queues > 1,
4573 "%s received packet on queue %u, but number "
4574 "of RX queues is %u\n",
4575 dev->name, index, dev->real_num_rx_queues);
4576 goto done;
4577 }
4578 rxqueue += index;
4579 }
4580
4581 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4582
4583 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4584 map = rcu_dereference(rxqueue->rps_map);
4585 if (!flow_table && !map)
4586 goto done;
4587
4588 skb_reset_network_header(skb);
4589 hash = skb_get_hash(skb);
4590 if (!hash)
4591 goto done;
4592
4593 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4594 if (flow_table && sock_flow_table) {
4595 struct rps_dev_flow *rflow;
4596 u32 next_cpu;
4597 u32 ident;
4598
4599 /* First check into global flow table if there is a match.
4600 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4601 */
4602 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4603 if ((ident ^ hash) & ~rps_cpu_mask)
4604 goto try_rps;
4605
4606 next_cpu = ident & rps_cpu_mask;
4607
4608 /* OK, now we know there is a match,
4609 * we can look at the local (per receive queue) flow table
4610 */
4611 rflow = &flow_table->flows[hash & flow_table->mask];
4612 tcpu = rflow->cpu;
4613
4614 /*
4615 * If the desired CPU (where last recvmsg was done) is
4616 * different from current CPU (one in the rx-queue flow
4617 * table entry), switch if one of the following holds:
4618 * - Current CPU is unset (>= nr_cpu_ids).
4619 * - Current CPU is offline.
4620 * - The current CPU's queue tail has advanced beyond the
4621 * last packet that was enqueued using this table entry.
4622 * This guarantees that all previous packets for the flow
4623 * have been dequeued, thus preserving in order delivery.
4624 */
4625 if (unlikely(tcpu != next_cpu) &&
4626 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4627 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4628 rflow->last_qtail)) >= 0)) {
4629 tcpu = next_cpu;
4630 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4631 }
4632
4633 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4634 *rflowp = rflow;
4635 cpu = tcpu;
4636 goto done;
4637 }
4638 }
4639
4640 try_rps:
4641
4642 if (map) {
4643 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4644 if (cpu_online(tcpu)) {
4645 cpu = tcpu;
4646 goto done;
4647 }
4648 }
4649
4650 done:
4651 return cpu;
4652 }
4653
4654 #ifdef CONFIG_RFS_ACCEL
4655
4656 /**
4657 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4658 * @dev: Device on which the filter was set
4659 * @rxq_index: RX queue index
4660 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4661 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4662 *
4663 * Drivers that implement ndo_rx_flow_steer() should periodically call
4664 * this function for each installed filter and remove the filters for
4665 * which it returns %true.
4666 */
4667 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4668 u32 flow_id, u16 filter_id)
4669 {
4670 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4671 struct rps_dev_flow_table *flow_table;
4672 struct rps_dev_flow *rflow;
4673 bool expire = true;
4674 unsigned int cpu;
4675
4676 rcu_read_lock();
4677 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4678 if (flow_table && flow_id <= flow_table->mask) {
4679 rflow = &flow_table->flows[flow_id];
4680 cpu = READ_ONCE(rflow->cpu);
4681 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4682 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4683 rflow->last_qtail) <
4684 (int)(10 * flow_table->mask)))
4685 expire = false;
4686 }
4687 rcu_read_unlock();
4688 return expire;
4689 }
4690 EXPORT_SYMBOL(rps_may_expire_flow);
4691
4692 #endif /* CONFIG_RFS_ACCEL */
4693
4694 /* Called from hardirq (IPI) context */
4695 static void rps_trigger_softirq(void *data)
4696 {
4697 struct softnet_data *sd = data;
4698
4699 ____napi_schedule(sd, &sd->backlog);
4700 sd->received_rps++;
4701 }
4702
4703 #endif /* CONFIG_RPS */
4704
4705 /* Called from hardirq (IPI) context */
4706 static void trigger_rx_softirq(void *data)
4707 {
4708 struct softnet_data *sd = data;
4709
4710 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4711 smp_store_release(&sd->defer_ipi_scheduled, 0);
4712 }
4713
4714 /*
4715 * After we queued a packet into sd->input_pkt_queue,
4716 * we need to make sure this queue is serviced soon.
4717 *
4718 * - If this is another cpu queue, link it to our rps_ipi_list,
4719 * and make sure we will process rps_ipi_list from net_rx_action().
4720 *
4721 * - If this is our own queue, NAPI schedule our backlog.
4722 * Note that this also raises NET_RX_SOFTIRQ.
4723 */
4724 static void napi_schedule_rps(struct softnet_data *sd)
4725 {
4726 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4727
4728 #ifdef CONFIG_RPS
4729 if (sd != mysd) {
4730 sd->rps_ipi_next = mysd->rps_ipi_list;
4731 mysd->rps_ipi_list = sd;
4732
4733 /* If not called from net_rx_action() or napi_threaded_poll()
4734 * we have to raise NET_RX_SOFTIRQ.
4735 */
4736 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4737 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4738 return;
4739 }
4740 #endif /* CONFIG_RPS */
4741 __napi_schedule_irqoff(&mysd->backlog);
4742 }
4743
4744 #ifdef CONFIG_NET_FLOW_LIMIT
4745 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4746 #endif
4747
4748 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4749 {
4750 #ifdef CONFIG_NET_FLOW_LIMIT
4751 struct sd_flow_limit *fl;
4752 struct softnet_data *sd;
4753 unsigned int old_flow, new_flow;
4754
4755 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4756 return false;
4757
4758 sd = this_cpu_ptr(&softnet_data);
4759
4760 rcu_read_lock();
4761 fl = rcu_dereference(sd->flow_limit);
4762 if (fl) {
4763 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4764 old_flow = fl->history[fl->history_head];
4765 fl->history[fl->history_head] = new_flow;
4766
4767 fl->history_head++;
4768 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4769
4770 if (likely(fl->buckets[old_flow]))
4771 fl->buckets[old_flow]--;
4772
4773 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4774 fl->count++;
4775 rcu_read_unlock();
4776 return true;
4777 }
4778 }
4779 rcu_read_unlock();
4780 #endif
4781 return false;
4782 }
4783
4784 /*
4785 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4786 * queue (may be a remote CPU queue).
4787 */
4788 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4789 unsigned int *qtail)
4790 {
4791 enum skb_drop_reason reason;
4792 struct softnet_data *sd;
4793 unsigned long flags;
4794 unsigned int qlen;
4795
4796 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4797 sd = &per_cpu(softnet_data, cpu);
4798
4799 rps_lock_irqsave(sd, &flags);
4800 if (!netif_running(skb->dev))
4801 goto drop;
4802 qlen = skb_queue_len(&sd->input_pkt_queue);
4803 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4804 if (qlen) {
4805 enqueue:
4806 __skb_queue_tail(&sd->input_pkt_queue, skb);
4807 input_queue_tail_incr_save(sd, qtail);
4808 rps_unlock_irq_restore(sd, &flags);
4809 return NET_RX_SUCCESS;
4810 }
4811
4812 /* Schedule NAPI for backlog device
4813 * We can use non atomic operation since we own the queue lock
4814 */
4815 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4816 napi_schedule_rps(sd);
4817 goto enqueue;
4818 }
4819 reason = SKB_DROP_REASON_CPU_BACKLOG;
4820
4821 drop:
4822 sd->dropped++;
4823 rps_unlock_irq_restore(sd, &flags);
4824
4825 dev_core_stats_rx_dropped_inc(skb->dev);
4826 kfree_skb_reason(skb, reason);
4827 return NET_RX_DROP;
4828 }
4829
4830 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4831 {
4832 struct net_device *dev = skb->dev;
4833 struct netdev_rx_queue *rxqueue;
4834
4835 rxqueue = dev->_rx;
4836
4837 if (skb_rx_queue_recorded(skb)) {
4838 u16 index = skb_get_rx_queue(skb);
4839
4840 if (unlikely(index >= dev->real_num_rx_queues)) {
4841 WARN_ONCE(dev->real_num_rx_queues > 1,
4842 "%s received packet on queue %u, but number "
4843 "of RX queues is %u\n",
4844 dev->name, index, dev->real_num_rx_queues);
4845
4846 return rxqueue; /* Return first rxqueue */
4847 }
4848 rxqueue += index;
4849 }
4850 return rxqueue;
4851 }
4852
4853 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4854 struct bpf_prog *xdp_prog)
4855 {
4856 void *orig_data, *orig_data_end, *hard_start;
4857 struct netdev_rx_queue *rxqueue;
4858 bool orig_bcast, orig_host;
4859 u32 mac_len, frame_sz;
4860 __be16 orig_eth_type;
4861 struct ethhdr *eth;
4862 u32 metalen, act;
4863 int off;
4864
4865 /* The XDP program wants to see the packet starting at the MAC
4866 * header.
4867 */
4868 mac_len = skb->data - skb_mac_header(skb);
4869 hard_start = skb->data - skb_headroom(skb);
4870
4871 /* SKB "head" area always have tailroom for skb_shared_info */
4872 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4873 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4874
4875 rxqueue = netif_get_rxqueue(skb);
4876 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4877 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4878 skb_headlen(skb) + mac_len, true);
4879
4880 orig_data_end = xdp->data_end;
4881 orig_data = xdp->data;
4882 eth = (struct ethhdr *)xdp->data;
4883 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4884 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4885 orig_eth_type = eth->h_proto;
4886
4887 act = bpf_prog_run_xdp(xdp_prog, xdp);
4888
4889 /* check if bpf_xdp_adjust_head was used */
4890 off = xdp->data - orig_data;
4891 if (off) {
4892 if (off > 0)
4893 __skb_pull(skb, off);
4894 else if (off < 0)
4895 __skb_push(skb, -off);
4896
4897 skb->mac_header += off;
4898 skb_reset_network_header(skb);
4899 }
4900
4901 /* check if bpf_xdp_adjust_tail was used */
4902 off = xdp->data_end - orig_data_end;
4903 if (off != 0) {
4904 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4905 skb->len += off; /* positive on grow, negative on shrink */
4906 }
4907
4908 /* check if XDP changed eth hdr such SKB needs update */
4909 eth = (struct ethhdr *)xdp->data;
4910 if ((orig_eth_type != eth->h_proto) ||
4911 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4912 skb->dev->dev_addr)) ||
4913 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4914 __skb_push(skb, ETH_HLEN);
4915 skb->pkt_type = PACKET_HOST;
4916 skb->protocol = eth_type_trans(skb, skb->dev);
4917 }
4918
4919 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4920 * before calling us again on redirect path. We do not call do_redirect
4921 * as we leave that up to the caller.
4922 *
4923 * Caller is responsible for managing lifetime of skb (i.e. calling
4924 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4925 */
4926 switch (act) {
4927 case XDP_REDIRECT:
4928 case XDP_TX:
4929 __skb_push(skb, mac_len);
4930 break;
4931 case XDP_PASS:
4932 metalen = xdp->data - xdp->data_meta;
4933 if (metalen)
4934 skb_metadata_set(skb, metalen);
4935 break;
4936 }
4937
4938 return act;
4939 }
4940
4941 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4942 struct xdp_buff *xdp,
4943 struct bpf_prog *xdp_prog)
4944 {
4945 u32 act = XDP_DROP;
4946
4947 /* Reinjected packets coming from act_mirred or similar should
4948 * not get XDP generic processing.
4949 */
4950 if (skb_is_redirected(skb))
4951 return XDP_PASS;
4952
4953 /* XDP packets must be linear and must have sufficient headroom
4954 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4955 * native XDP provides, thus we need to do it here as well.
4956 */
4957 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4958 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4959 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4960 int troom = skb->tail + skb->data_len - skb->end;
4961
4962 /* In case we have to go down the path and also linearize,
4963 * then lets do the pskb_expand_head() work just once here.
4964 */
4965 if (pskb_expand_head(skb,
4966 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4967 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4968 goto do_drop;
4969 if (skb_linearize(skb))
4970 goto do_drop;
4971 }
4972
4973 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4974 switch (act) {
4975 case XDP_REDIRECT:
4976 case XDP_TX:
4977 case XDP_PASS:
4978 break;
4979 default:
4980 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4981 fallthrough;
4982 case XDP_ABORTED:
4983 trace_xdp_exception(skb->dev, xdp_prog, act);
4984 fallthrough;
4985 case XDP_DROP:
4986 do_drop:
4987 kfree_skb(skb);
4988 break;
4989 }
4990
4991 return act;
4992 }
4993
4994 /* When doing generic XDP we have to bypass the qdisc layer and the
4995 * network taps in order to match in-driver-XDP behavior. This also means
4996 * that XDP packets are able to starve other packets going through a qdisc,
4997 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4998 * queues, so they do not have this starvation issue.
4999 */
5000 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5001 {
5002 struct net_device *dev = skb->dev;
5003 struct netdev_queue *txq;
5004 bool free_skb = true;
5005 int cpu, rc;
5006
5007 txq = netdev_core_pick_tx(dev, skb, NULL);
5008 cpu = smp_processor_id();
5009 HARD_TX_LOCK(dev, txq, cpu);
5010 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5011 rc = netdev_start_xmit(skb, dev, txq, 0);
5012 if (dev_xmit_complete(rc))
5013 free_skb = false;
5014 }
5015 HARD_TX_UNLOCK(dev, txq);
5016 if (free_skb) {
5017 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5018 dev_core_stats_tx_dropped_inc(dev);
5019 kfree_skb(skb);
5020 }
5021 }
5022
5023 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5024
5025 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5026 {
5027 if (xdp_prog) {
5028 struct xdp_buff xdp;
5029 u32 act;
5030 int err;
5031
5032 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5033 if (act != XDP_PASS) {
5034 switch (act) {
5035 case XDP_REDIRECT:
5036 err = xdp_do_generic_redirect(skb->dev, skb,
5037 &xdp, xdp_prog);
5038 if (err)
5039 goto out_redir;
5040 break;
5041 case XDP_TX:
5042 generic_xdp_tx(skb, xdp_prog);
5043 break;
5044 }
5045 return XDP_DROP;
5046 }
5047 }
5048 return XDP_PASS;
5049 out_redir:
5050 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5051 return XDP_DROP;
5052 }
5053 EXPORT_SYMBOL_GPL(do_xdp_generic);
5054
5055 static int netif_rx_internal(struct sk_buff *skb)
5056 {
5057 int ret;
5058
5059 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5060
5061 trace_netif_rx(skb);
5062
5063 #ifdef CONFIG_RPS
5064 if (static_branch_unlikely(&rps_needed)) {
5065 struct rps_dev_flow voidflow, *rflow = &voidflow;
5066 int cpu;
5067
5068 rcu_read_lock();
5069
5070 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5071 if (cpu < 0)
5072 cpu = smp_processor_id();
5073
5074 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5075
5076 rcu_read_unlock();
5077 } else
5078 #endif
5079 {
5080 unsigned int qtail;
5081
5082 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5083 }
5084 return ret;
5085 }
5086
5087 /**
5088 * __netif_rx - Slightly optimized version of netif_rx
5089 * @skb: buffer to post
5090 *
5091 * This behaves as netif_rx except that it does not disable bottom halves.
5092 * As a result this function may only be invoked from the interrupt context
5093 * (either hard or soft interrupt).
5094 */
5095 int __netif_rx(struct sk_buff *skb)
5096 {
5097 int ret;
5098
5099 lockdep_assert_once(hardirq_count() | softirq_count());
5100
5101 trace_netif_rx_entry(skb);
5102 ret = netif_rx_internal(skb);
5103 trace_netif_rx_exit(ret);
5104 return ret;
5105 }
5106 EXPORT_SYMBOL(__netif_rx);
5107
5108 /**
5109 * netif_rx - post buffer to the network code
5110 * @skb: buffer to post
5111 *
5112 * This function receives a packet from a device driver and queues it for
5113 * the upper (protocol) levels to process via the backlog NAPI device. It
5114 * always succeeds. The buffer may be dropped during processing for
5115 * congestion control or by the protocol layers.
5116 * The network buffer is passed via the backlog NAPI device. Modern NIC
5117 * driver should use NAPI and GRO.
5118 * This function can used from interrupt and from process context. The
5119 * caller from process context must not disable interrupts before invoking
5120 * this function.
5121 *
5122 * return values:
5123 * NET_RX_SUCCESS (no congestion)
5124 * NET_RX_DROP (packet was dropped)
5125 *
5126 */
5127 int netif_rx(struct sk_buff *skb)
5128 {
5129 bool need_bh_off = !(hardirq_count() | softirq_count());
5130 int ret;
5131
5132 if (need_bh_off)
5133 local_bh_disable();
5134 trace_netif_rx_entry(skb);
5135 ret = netif_rx_internal(skb);
5136 trace_netif_rx_exit(ret);
5137 if (need_bh_off)
5138 local_bh_enable();
5139 return ret;
5140 }
5141 EXPORT_SYMBOL(netif_rx);
5142
5143 static __latent_entropy void net_tx_action(struct softirq_action *h)
5144 {
5145 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5146
5147 if (sd->completion_queue) {
5148 struct sk_buff *clist;
5149
5150 local_irq_disable();
5151 clist = sd->completion_queue;
5152 sd->completion_queue = NULL;
5153 local_irq_enable();
5154
5155 while (clist) {
5156 struct sk_buff *skb = clist;
5157
5158 clist = clist->next;
5159
5160 WARN_ON(refcount_read(&skb->users));
5161 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5162 trace_consume_skb(skb, net_tx_action);
5163 else
5164 trace_kfree_skb(skb, net_tx_action,
5165 get_kfree_skb_cb(skb)->reason);
5166
5167 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5168 __kfree_skb(skb);
5169 else
5170 __napi_kfree_skb(skb,
5171 get_kfree_skb_cb(skb)->reason);
5172 }
5173 }
5174
5175 if (sd->output_queue) {
5176 struct Qdisc *head;
5177
5178 local_irq_disable();
5179 head = sd->output_queue;
5180 sd->output_queue = NULL;
5181 sd->output_queue_tailp = &sd->output_queue;
5182 local_irq_enable();
5183
5184 rcu_read_lock();
5185
5186 while (head) {
5187 struct Qdisc *q = head;
5188 spinlock_t *root_lock = NULL;
5189
5190 head = head->next_sched;
5191
5192 /* We need to make sure head->next_sched is read
5193 * before clearing __QDISC_STATE_SCHED
5194 */
5195 smp_mb__before_atomic();
5196
5197 if (!(q->flags & TCQ_F_NOLOCK)) {
5198 root_lock = qdisc_lock(q);
5199 spin_lock(root_lock);
5200 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5201 &q->state))) {
5202 /* There is a synchronize_net() between
5203 * STATE_DEACTIVATED flag being set and
5204 * qdisc_reset()/some_qdisc_is_busy() in
5205 * dev_deactivate(), so we can safely bail out
5206 * early here to avoid data race between
5207 * qdisc_deactivate() and some_qdisc_is_busy()
5208 * for lockless qdisc.
5209 */
5210 clear_bit(__QDISC_STATE_SCHED, &q->state);
5211 continue;
5212 }
5213
5214 clear_bit(__QDISC_STATE_SCHED, &q->state);
5215 qdisc_run(q);
5216 if (root_lock)
5217 spin_unlock(root_lock);
5218 }
5219
5220 rcu_read_unlock();
5221 }
5222
5223 xfrm_dev_backlog(sd);
5224 }
5225
5226 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5227 /* This hook is defined here for ATM LANE */
5228 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5229 unsigned char *addr) __read_mostly;
5230 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5231 #endif
5232
5233 /**
5234 * netdev_is_rx_handler_busy - check if receive handler is registered
5235 * @dev: device to check
5236 *
5237 * Check if a receive handler is already registered for a given device.
5238 * Return true if there one.
5239 *
5240 * The caller must hold the rtnl_mutex.
5241 */
5242 bool netdev_is_rx_handler_busy(struct net_device *dev)
5243 {
5244 ASSERT_RTNL();
5245 return dev && rtnl_dereference(dev->rx_handler);
5246 }
5247 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5248
5249 /**
5250 * netdev_rx_handler_register - register receive handler
5251 * @dev: device to register a handler for
5252 * @rx_handler: receive handler to register
5253 * @rx_handler_data: data pointer that is used by rx handler
5254 *
5255 * Register a receive handler for a device. This handler will then be
5256 * called from __netif_receive_skb. A negative errno code is returned
5257 * on a failure.
5258 *
5259 * The caller must hold the rtnl_mutex.
5260 *
5261 * For a general description of rx_handler, see enum rx_handler_result.
5262 */
5263 int netdev_rx_handler_register(struct net_device *dev,
5264 rx_handler_func_t *rx_handler,
5265 void *rx_handler_data)
5266 {
5267 if (netdev_is_rx_handler_busy(dev))
5268 return -EBUSY;
5269
5270 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5271 return -EINVAL;
5272
5273 /* Note: rx_handler_data must be set before rx_handler */
5274 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5275 rcu_assign_pointer(dev->rx_handler, rx_handler);
5276
5277 return 0;
5278 }
5279 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5280
5281 /**
5282 * netdev_rx_handler_unregister - unregister receive handler
5283 * @dev: device to unregister a handler from
5284 *
5285 * Unregister a receive handler from a device.
5286 *
5287 * The caller must hold the rtnl_mutex.
5288 */
5289 void netdev_rx_handler_unregister(struct net_device *dev)
5290 {
5291
5292 ASSERT_RTNL();
5293 RCU_INIT_POINTER(dev->rx_handler, NULL);
5294 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5295 * section has a guarantee to see a non NULL rx_handler_data
5296 * as well.
5297 */
5298 synchronize_net();
5299 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5300 }
5301 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5302
5303 /*
5304 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5305 * the special handling of PFMEMALLOC skbs.
5306 */
5307 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5308 {
5309 switch (skb->protocol) {
5310 case htons(ETH_P_ARP):
5311 case htons(ETH_P_IP):
5312 case htons(ETH_P_IPV6):
5313 case htons(ETH_P_8021Q):
5314 case htons(ETH_P_8021AD):
5315 return true;
5316 default:
5317 return false;
5318 }
5319 }
5320
5321 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5322 int *ret, struct net_device *orig_dev)
5323 {
5324 if (nf_hook_ingress_active(skb)) {
5325 int ingress_retval;
5326
5327 if (*pt_prev) {
5328 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5329 *pt_prev = NULL;
5330 }
5331
5332 rcu_read_lock();
5333 ingress_retval = nf_hook_ingress(skb);
5334 rcu_read_unlock();
5335 return ingress_retval;
5336 }
5337 return 0;
5338 }
5339
5340 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5341 struct packet_type **ppt_prev)
5342 {
5343 struct packet_type *ptype, *pt_prev;
5344 rx_handler_func_t *rx_handler;
5345 struct sk_buff *skb = *pskb;
5346 struct net_device *orig_dev;
5347 bool deliver_exact = false;
5348 int ret = NET_RX_DROP;
5349 __be16 type;
5350
5351 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5352
5353 trace_netif_receive_skb(skb);
5354
5355 orig_dev = skb->dev;
5356
5357 skb_reset_network_header(skb);
5358 if (!skb_transport_header_was_set(skb))
5359 skb_reset_transport_header(skb);
5360 skb_reset_mac_len(skb);
5361
5362 pt_prev = NULL;
5363
5364 another_round:
5365 skb->skb_iif = skb->dev->ifindex;
5366
5367 __this_cpu_inc(softnet_data.processed);
5368
5369 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5370 int ret2;
5371
5372 migrate_disable();
5373 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5374 migrate_enable();
5375
5376 if (ret2 != XDP_PASS) {
5377 ret = NET_RX_DROP;
5378 goto out;
5379 }
5380 }
5381
5382 if (eth_type_vlan(skb->protocol)) {
5383 skb = skb_vlan_untag(skb);
5384 if (unlikely(!skb))
5385 goto out;
5386 }
5387
5388 if (skb_skip_tc_classify(skb))
5389 goto skip_classify;
5390
5391 if (pfmemalloc)
5392 goto skip_taps;
5393
5394 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5395 if (pt_prev)
5396 ret = deliver_skb(skb, pt_prev, orig_dev);
5397 pt_prev = ptype;
5398 }
5399
5400 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5401 if (pt_prev)
5402 ret = deliver_skb(skb, pt_prev, orig_dev);
5403 pt_prev = ptype;
5404 }
5405
5406 skip_taps:
5407 #ifdef CONFIG_NET_INGRESS
5408 if (static_branch_unlikely(&ingress_needed_key)) {
5409 bool another = false;
5410
5411 nf_skip_egress(skb, true);
5412 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5413 &another);
5414 if (another)
5415 goto another_round;
5416 if (!skb)
5417 goto out;
5418
5419 nf_skip_egress(skb, false);
5420 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5421 goto out;
5422 }
5423 #endif
5424 skb_reset_redirect(skb);
5425 skip_classify:
5426 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5427 goto drop;
5428
5429 if (skb_vlan_tag_present(skb)) {
5430 if (pt_prev) {
5431 ret = deliver_skb(skb, pt_prev, orig_dev);
5432 pt_prev = NULL;
5433 }
5434 if (vlan_do_receive(&skb))
5435 goto another_round;
5436 else if (unlikely(!skb))
5437 goto out;
5438 }
5439
5440 rx_handler = rcu_dereference(skb->dev->rx_handler);
5441 if (rx_handler) {
5442 if (pt_prev) {
5443 ret = deliver_skb(skb, pt_prev, orig_dev);
5444 pt_prev = NULL;
5445 }
5446 switch (rx_handler(&skb)) {
5447 case RX_HANDLER_CONSUMED:
5448 ret = NET_RX_SUCCESS;
5449 goto out;
5450 case RX_HANDLER_ANOTHER:
5451 goto another_round;
5452 case RX_HANDLER_EXACT:
5453 deliver_exact = true;
5454 break;
5455 case RX_HANDLER_PASS:
5456 break;
5457 default:
5458 BUG();
5459 }
5460 }
5461
5462 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5463 check_vlan_id:
5464 if (skb_vlan_tag_get_id(skb)) {
5465 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5466 * find vlan device.
5467 */
5468 skb->pkt_type = PACKET_OTHERHOST;
5469 } else if (eth_type_vlan(skb->protocol)) {
5470 /* Outer header is 802.1P with vlan 0, inner header is
5471 * 802.1Q or 802.1AD and vlan_do_receive() above could
5472 * not find vlan dev for vlan id 0.
5473 */
5474 __vlan_hwaccel_clear_tag(skb);
5475 skb = skb_vlan_untag(skb);
5476 if (unlikely(!skb))
5477 goto out;
5478 if (vlan_do_receive(&skb))
5479 /* After stripping off 802.1P header with vlan 0
5480 * vlan dev is found for inner header.
5481 */
5482 goto another_round;
5483 else if (unlikely(!skb))
5484 goto out;
5485 else
5486 /* We have stripped outer 802.1P vlan 0 header.
5487 * But could not find vlan dev.
5488 * check again for vlan id to set OTHERHOST.
5489 */
5490 goto check_vlan_id;
5491 }
5492 /* Note: we might in the future use prio bits
5493 * and set skb->priority like in vlan_do_receive()
5494 * For the time being, just ignore Priority Code Point
5495 */
5496 __vlan_hwaccel_clear_tag(skb);
5497 }
5498
5499 type = skb->protocol;
5500
5501 /* deliver only exact match when indicated */
5502 if (likely(!deliver_exact)) {
5503 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5504 &ptype_base[ntohs(type) &
5505 PTYPE_HASH_MASK]);
5506 }
5507
5508 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5509 &orig_dev->ptype_specific);
5510
5511 if (unlikely(skb->dev != orig_dev)) {
5512 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5513 &skb->dev->ptype_specific);
5514 }
5515
5516 if (pt_prev) {
5517 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5518 goto drop;
5519 *ppt_prev = pt_prev;
5520 } else {
5521 drop:
5522 if (!deliver_exact)
5523 dev_core_stats_rx_dropped_inc(skb->dev);
5524 else
5525 dev_core_stats_rx_nohandler_inc(skb->dev);
5526 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5527 /* Jamal, now you will not able to escape explaining
5528 * me how you were going to use this. :-)
5529 */
5530 ret = NET_RX_DROP;
5531 }
5532
5533 out:
5534 /* The invariant here is that if *ppt_prev is not NULL
5535 * then skb should also be non-NULL.
5536 *
5537 * Apparently *ppt_prev assignment above holds this invariant due to
5538 * skb dereferencing near it.
5539 */
5540 *pskb = skb;
5541 return ret;
5542 }
5543
5544 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5545 {
5546 struct net_device *orig_dev = skb->dev;
5547 struct packet_type *pt_prev = NULL;
5548 int ret;
5549
5550 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5551 if (pt_prev)
5552 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5553 skb->dev, pt_prev, orig_dev);
5554 return ret;
5555 }
5556
5557 /**
5558 * netif_receive_skb_core - special purpose version of netif_receive_skb
5559 * @skb: buffer to process
5560 *
5561 * More direct receive version of netif_receive_skb(). It should
5562 * only be used by callers that have a need to skip RPS and Generic XDP.
5563 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5564 *
5565 * This function may only be called from softirq context and interrupts
5566 * should be enabled.
5567 *
5568 * Return values (usually ignored):
5569 * NET_RX_SUCCESS: no congestion
5570 * NET_RX_DROP: packet was dropped
5571 */
5572 int netif_receive_skb_core(struct sk_buff *skb)
5573 {
5574 int ret;
5575
5576 rcu_read_lock();
5577 ret = __netif_receive_skb_one_core(skb, false);
5578 rcu_read_unlock();
5579
5580 return ret;
5581 }
5582 EXPORT_SYMBOL(netif_receive_skb_core);
5583
5584 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5585 struct packet_type *pt_prev,
5586 struct net_device *orig_dev)
5587 {
5588 struct sk_buff *skb, *next;
5589
5590 if (!pt_prev)
5591 return;
5592 if (list_empty(head))
5593 return;
5594 if (pt_prev->list_func != NULL)
5595 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5596 ip_list_rcv, head, pt_prev, orig_dev);
5597 else
5598 list_for_each_entry_safe(skb, next, head, list) {
5599 skb_list_del_init(skb);
5600 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5601 }
5602 }
5603
5604 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5605 {
5606 /* Fast-path assumptions:
5607 * - There is no RX handler.
5608 * - Only one packet_type matches.
5609 * If either of these fails, we will end up doing some per-packet
5610 * processing in-line, then handling the 'last ptype' for the whole
5611 * sublist. This can't cause out-of-order delivery to any single ptype,
5612 * because the 'last ptype' must be constant across the sublist, and all
5613 * other ptypes are handled per-packet.
5614 */
5615 /* Current (common) ptype of sublist */
5616 struct packet_type *pt_curr = NULL;
5617 /* Current (common) orig_dev of sublist */
5618 struct net_device *od_curr = NULL;
5619 struct list_head sublist;
5620 struct sk_buff *skb, *next;
5621
5622 INIT_LIST_HEAD(&sublist);
5623 list_for_each_entry_safe(skb, next, head, list) {
5624 struct net_device *orig_dev = skb->dev;
5625 struct packet_type *pt_prev = NULL;
5626
5627 skb_list_del_init(skb);
5628 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5629 if (!pt_prev)
5630 continue;
5631 if (pt_curr != pt_prev || od_curr != orig_dev) {
5632 /* dispatch old sublist */
5633 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5634 /* start new sublist */
5635 INIT_LIST_HEAD(&sublist);
5636 pt_curr = pt_prev;
5637 od_curr = orig_dev;
5638 }
5639 list_add_tail(&skb->list, &sublist);
5640 }
5641
5642 /* dispatch final sublist */
5643 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5644 }
5645
5646 static int __netif_receive_skb(struct sk_buff *skb)
5647 {
5648 int ret;
5649
5650 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5651 unsigned int noreclaim_flag;
5652
5653 /*
5654 * PFMEMALLOC skbs are special, they should
5655 * - be delivered to SOCK_MEMALLOC sockets only
5656 * - stay away from userspace
5657 * - have bounded memory usage
5658 *
5659 * Use PF_MEMALLOC as this saves us from propagating the allocation
5660 * context down to all allocation sites.
5661 */
5662 noreclaim_flag = memalloc_noreclaim_save();
5663 ret = __netif_receive_skb_one_core(skb, true);
5664 memalloc_noreclaim_restore(noreclaim_flag);
5665 } else
5666 ret = __netif_receive_skb_one_core(skb, false);
5667
5668 return ret;
5669 }
5670
5671 static void __netif_receive_skb_list(struct list_head *head)
5672 {
5673 unsigned long noreclaim_flag = 0;
5674 struct sk_buff *skb, *next;
5675 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5676
5677 list_for_each_entry_safe(skb, next, head, list) {
5678 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5679 struct list_head sublist;
5680
5681 /* Handle the previous sublist */
5682 list_cut_before(&sublist, head, &skb->list);
5683 if (!list_empty(&sublist))
5684 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5685 pfmemalloc = !pfmemalloc;
5686 /* See comments in __netif_receive_skb */
5687 if (pfmemalloc)
5688 noreclaim_flag = memalloc_noreclaim_save();
5689 else
5690 memalloc_noreclaim_restore(noreclaim_flag);
5691 }
5692 }
5693 /* Handle the remaining sublist */
5694 if (!list_empty(head))
5695 __netif_receive_skb_list_core(head, pfmemalloc);
5696 /* Restore pflags */
5697 if (pfmemalloc)
5698 memalloc_noreclaim_restore(noreclaim_flag);
5699 }
5700
5701 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5702 {
5703 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5704 struct bpf_prog *new = xdp->prog;
5705 int ret = 0;
5706
5707 switch (xdp->command) {
5708 case XDP_SETUP_PROG:
5709 rcu_assign_pointer(dev->xdp_prog, new);
5710 if (old)
5711 bpf_prog_put(old);
5712
5713 if (old && !new) {
5714 static_branch_dec(&generic_xdp_needed_key);
5715 } else if (new && !old) {
5716 static_branch_inc(&generic_xdp_needed_key);
5717 dev_disable_lro(dev);
5718 dev_disable_gro_hw(dev);
5719 }
5720 break;
5721
5722 default:
5723 ret = -EINVAL;
5724 break;
5725 }
5726
5727 return ret;
5728 }
5729
5730 static int netif_receive_skb_internal(struct sk_buff *skb)
5731 {
5732 int ret;
5733
5734 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5735
5736 if (skb_defer_rx_timestamp(skb))
5737 return NET_RX_SUCCESS;
5738
5739 rcu_read_lock();
5740 #ifdef CONFIG_RPS
5741 if (static_branch_unlikely(&rps_needed)) {
5742 struct rps_dev_flow voidflow, *rflow = &voidflow;
5743 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5744
5745 if (cpu >= 0) {
5746 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5747 rcu_read_unlock();
5748 return ret;
5749 }
5750 }
5751 #endif
5752 ret = __netif_receive_skb(skb);
5753 rcu_read_unlock();
5754 return ret;
5755 }
5756
5757 void netif_receive_skb_list_internal(struct list_head *head)
5758 {
5759 struct sk_buff *skb, *next;
5760 struct list_head sublist;
5761
5762 INIT_LIST_HEAD(&sublist);
5763 list_for_each_entry_safe(skb, next, head, list) {
5764 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5765 skb_list_del_init(skb);
5766 if (!skb_defer_rx_timestamp(skb))
5767 list_add_tail(&skb->list, &sublist);
5768 }
5769 list_splice_init(&sublist, head);
5770
5771 rcu_read_lock();
5772 #ifdef CONFIG_RPS
5773 if (static_branch_unlikely(&rps_needed)) {
5774 list_for_each_entry_safe(skb, next, head, list) {
5775 struct rps_dev_flow voidflow, *rflow = &voidflow;
5776 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5777
5778 if (cpu >= 0) {
5779 /* Will be handled, remove from list */
5780 skb_list_del_init(skb);
5781 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5782 }
5783 }
5784 }
5785 #endif
5786 __netif_receive_skb_list(head);
5787 rcu_read_unlock();
5788 }
5789
5790 /**
5791 * netif_receive_skb - process receive buffer from network
5792 * @skb: buffer to process
5793 *
5794 * netif_receive_skb() is the main receive data processing function.
5795 * It always succeeds. The buffer may be dropped during processing
5796 * for congestion control or by the protocol layers.
5797 *
5798 * This function may only be called from softirq context and interrupts
5799 * should be enabled.
5800 *
5801 * Return values (usually ignored):
5802 * NET_RX_SUCCESS: no congestion
5803 * NET_RX_DROP: packet was dropped
5804 */
5805 int netif_receive_skb(struct sk_buff *skb)
5806 {
5807 int ret;
5808
5809 trace_netif_receive_skb_entry(skb);
5810
5811 ret = netif_receive_skb_internal(skb);
5812 trace_netif_receive_skb_exit(ret);
5813
5814 return ret;
5815 }
5816 EXPORT_SYMBOL(netif_receive_skb);
5817
5818 /**
5819 * netif_receive_skb_list - process many receive buffers from network
5820 * @head: list of skbs to process.
5821 *
5822 * Since return value of netif_receive_skb() is normally ignored, and
5823 * wouldn't be meaningful for a list, this function returns void.
5824 *
5825 * This function may only be called from softirq context and interrupts
5826 * should be enabled.
5827 */
5828 void netif_receive_skb_list(struct list_head *head)
5829 {
5830 struct sk_buff *skb;
5831
5832 if (list_empty(head))
5833 return;
5834 if (trace_netif_receive_skb_list_entry_enabled()) {
5835 list_for_each_entry(skb, head, list)
5836 trace_netif_receive_skb_list_entry(skb);
5837 }
5838 netif_receive_skb_list_internal(head);
5839 trace_netif_receive_skb_list_exit(0);
5840 }
5841 EXPORT_SYMBOL(netif_receive_skb_list);
5842
5843 static DEFINE_PER_CPU(struct work_struct, flush_works);
5844
5845 /* Network device is going away, flush any packets still pending */
5846 static void flush_backlog(struct work_struct *work)
5847 {
5848 struct sk_buff *skb, *tmp;
5849 struct softnet_data *sd;
5850
5851 local_bh_disable();
5852 sd = this_cpu_ptr(&softnet_data);
5853
5854 rps_lock_irq_disable(sd);
5855 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5856 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5857 __skb_unlink(skb, &sd->input_pkt_queue);
5858 dev_kfree_skb_irq(skb);
5859 input_queue_head_incr(sd);
5860 }
5861 }
5862 rps_unlock_irq_enable(sd);
5863
5864 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5865 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5866 __skb_unlink(skb, &sd->process_queue);
5867 kfree_skb(skb);
5868 input_queue_head_incr(sd);
5869 }
5870 }
5871 local_bh_enable();
5872 }
5873
5874 static bool flush_required(int cpu)
5875 {
5876 #if IS_ENABLED(CONFIG_RPS)
5877 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5878 bool do_flush;
5879
5880 rps_lock_irq_disable(sd);
5881
5882 /* as insertion into process_queue happens with the rps lock held,
5883 * process_queue access may race only with dequeue
5884 */
5885 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5886 !skb_queue_empty_lockless(&sd->process_queue);
5887 rps_unlock_irq_enable(sd);
5888
5889 return do_flush;
5890 #endif
5891 /* without RPS we can't safely check input_pkt_queue: during a
5892 * concurrent remote skb_queue_splice() we can detect as empty both
5893 * input_pkt_queue and process_queue even if the latter could end-up
5894 * containing a lot of packets.
5895 */
5896 return true;
5897 }
5898
5899 static void flush_all_backlogs(void)
5900 {
5901 static cpumask_t flush_cpus;
5902 unsigned int cpu;
5903
5904 /* since we are under rtnl lock protection we can use static data
5905 * for the cpumask and avoid allocating on stack the possibly
5906 * large mask
5907 */
5908 ASSERT_RTNL();
5909
5910 cpus_read_lock();
5911
5912 cpumask_clear(&flush_cpus);
5913 for_each_online_cpu(cpu) {
5914 if (flush_required(cpu)) {
5915 queue_work_on(cpu, system_highpri_wq,
5916 per_cpu_ptr(&flush_works, cpu));
5917 cpumask_set_cpu(cpu, &flush_cpus);
5918 }
5919 }
5920
5921 /* we can have in flight packet[s] on the cpus we are not flushing,
5922 * synchronize_net() in unregister_netdevice_many() will take care of
5923 * them
5924 */
5925 for_each_cpu(cpu, &flush_cpus)
5926 flush_work(per_cpu_ptr(&flush_works, cpu));
5927
5928 cpus_read_unlock();
5929 }
5930
5931 static void net_rps_send_ipi(struct softnet_data *remsd)
5932 {
5933 #ifdef CONFIG_RPS
5934 while (remsd) {
5935 struct softnet_data *next = remsd->rps_ipi_next;
5936
5937 if (cpu_online(remsd->cpu))
5938 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5939 remsd = next;
5940 }
5941 #endif
5942 }
5943
5944 /*
5945 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5946 * Note: called with local irq disabled, but exits with local irq enabled.
5947 */
5948 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5949 {
5950 #ifdef CONFIG_RPS
5951 struct softnet_data *remsd = sd->rps_ipi_list;
5952
5953 if (remsd) {
5954 sd->rps_ipi_list = NULL;
5955
5956 local_irq_enable();
5957
5958 /* Send pending IPI's to kick RPS processing on remote cpus. */
5959 net_rps_send_ipi(remsd);
5960 } else
5961 #endif
5962 local_irq_enable();
5963 }
5964
5965 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5966 {
5967 #ifdef CONFIG_RPS
5968 return sd->rps_ipi_list != NULL;
5969 #else
5970 return false;
5971 #endif
5972 }
5973
5974 static int process_backlog(struct napi_struct *napi, int quota)
5975 {
5976 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5977 bool again = true;
5978 int work = 0;
5979
5980 /* Check if we have pending ipi, its better to send them now,
5981 * not waiting net_rx_action() end.
5982 */
5983 if (sd_has_rps_ipi_waiting(sd)) {
5984 local_irq_disable();
5985 net_rps_action_and_irq_enable(sd);
5986 }
5987
5988 napi->weight = READ_ONCE(dev_rx_weight);
5989 while (again) {
5990 struct sk_buff *skb;
5991
5992 while ((skb = __skb_dequeue(&sd->process_queue))) {
5993 rcu_read_lock();
5994 __netif_receive_skb(skb);
5995 rcu_read_unlock();
5996 input_queue_head_incr(sd);
5997 if (++work >= quota)
5998 return work;
5999
6000 }
6001
6002 rps_lock_irq_disable(sd);
6003 if (skb_queue_empty(&sd->input_pkt_queue)) {
6004 /*
6005 * Inline a custom version of __napi_complete().
6006 * only current cpu owns and manipulates this napi,
6007 * and NAPI_STATE_SCHED is the only possible flag set
6008 * on backlog.
6009 * We can use a plain write instead of clear_bit(),
6010 * and we dont need an smp_mb() memory barrier.
6011 */
6012 napi->state = 0;
6013 again = false;
6014 } else {
6015 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6016 &sd->process_queue);
6017 }
6018 rps_unlock_irq_enable(sd);
6019 }
6020
6021 return work;
6022 }
6023
6024 /**
6025 * __napi_schedule - schedule for receive
6026 * @n: entry to schedule
6027 *
6028 * The entry's receive function will be scheduled to run.
6029 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6030 */
6031 void __napi_schedule(struct napi_struct *n)
6032 {
6033 unsigned long flags;
6034
6035 local_irq_save(flags);
6036 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6037 local_irq_restore(flags);
6038 }
6039 EXPORT_SYMBOL(__napi_schedule);
6040
6041 /**
6042 * napi_schedule_prep - check if napi can be scheduled
6043 * @n: napi context
6044 *
6045 * Test if NAPI routine is already running, and if not mark
6046 * it as running. This is used as a condition variable to
6047 * insure only one NAPI poll instance runs. We also make
6048 * sure there is no pending NAPI disable.
6049 */
6050 bool napi_schedule_prep(struct napi_struct *n)
6051 {
6052 unsigned long new, val = READ_ONCE(n->state);
6053
6054 do {
6055 if (unlikely(val & NAPIF_STATE_DISABLE))
6056 return false;
6057 new = val | NAPIF_STATE_SCHED;
6058
6059 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6060 * This was suggested by Alexander Duyck, as compiler
6061 * emits better code than :
6062 * if (val & NAPIF_STATE_SCHED)
6063 * new |= NAPIF_STATE_MISSED;
6064 */
6065 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6066 NAPIF_STATE_MISSED;
6067 } while (!try_cmpxchg(&n->state, &val, new));
6068
6069 return !(val & NAPIF_STATE_SCHED);
6070 }
6071 EXPORT_SYMBOL(napi_schedule_prep);
6072
6073 /**
6074 * __napi_schedule_irqoff - schedule for receive
6075 * @n: entry to schedule
6076 *
6077 * Variant of __napi_schedule() assuming hard irqs are masked.
6078 *
6079 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6080 * because the interrupt disabled assumption might not be true
6081 * due to force-threaded interrupts and spinlock substitution.
6082 */
6083 void __napi_schedule_irqoff(struct napi_struct *n)
6084 {
6085 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6086 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6087 else
6088 __napi_schedule(n);
6089 }
6090 EXPORT_SYMBOL(__napi_schedule_irqoff);
6091
6092 bool napi_complete_done(struct napi_struct *n, int work_done)
6093 {
6094 unsigned long flags, val, new, timeout = 0;
6095 bool ret = true;
6096
6097 /*
6098 * 1) Don't let napi dequeue from the cpu poll list
6099 * just in case its running on a different cpu.
6100 * 2) If we are busy polling, do nothing here, we have
6101 * the guarantee we will be called later.
6102 */
6103 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6104 NAPIF_STATE_IN_BUSY_POLL)))
6105 return false;
6106
6107 if (work_done) {
6108 if (n->gro_bitmask)
6109 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6110 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6111 }
6112 if (n->defer_hard_irqs_count > 0) {
6113 n->defer_hard_irqs_count--;
6114 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6115 if (timeout)
6116 ret = false;
6117 }
6118 if (n->gro_bitmask) {
6119 /* When the NAPI instance uses a timeout and keeps postponing
6120 * it, we need to bound somehow the time packets are kept in
6121 * the GRO layer
6122 */
6123 napi_gro_flush(n, !!timeout);
6124 }
6125
6126 gro_normal_list(n);
6127
6128 if (unlikely(!list_empty(&n->poll_list))) {
6129 /* If n->poll_list is not empty, we need to mask irqs */
6130 local_irq_save(flags);
6131 list_del_init(&n->poll_list);
6132 local_irq_restore(flags);
6133 }
6134 WRITE_ONCE(n->list_owner, -1);
6135
6136 val = READ_ONCE(n->state);
6137 do {
6138 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6139
6140 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6141 NAPIF_STATE_SCHED_THREADED |
6142 NAPIF_STATE_PREFER_BUSY_POLL);
6143
6144 /* If STATE_MISSED was set, leave STATE_SCHED set,
6145 * because we will call napi->poll() one more time.
6146 * This C code was suggested by Alexander Duyck to help gcc.
6147 */
6148 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6149 NAPIF_STATE_SCHED;
6150 } while (!try_cmpxchg(&n->state, &val, new));
6151
6152 if (unlikely(val & NAPIF_STATE_MISSED)) {
6153 __napi_schedule(n);
6154 return false;
6155 }
6156
6157 if (timeout)
6158 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6159 HRTIMER_MODE_REL_PINNED);
6160 return ret;
6161 }
6162 EXPORT_SYMBOL(napi_complete_done);
6163
6164 /* must be called under rcu_read_lock(), as we dont take a reference */
6165 static struct napi_struct *napi_by_id(unsigned int napi_id)
6166 {
6167 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6168 struct napi_struct *napi;
6169
6170 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6171 if (napi->napi_id == napi_id)
6172 return napi;
6173
6174 return NULL;
6175 }
6176
6177 #if defined(CONFIG_NET_RX_BUSY_POLL)
6178
6179 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6180 {
6181 if (!skip_schedule) {
6182 gro_normal_list(napi);
6183 __napi_schedule(napi);
6184 return;
6185 }
6186
6187 if (napi->gro_bitmask) {
6188 /* flush too old packets
6189 * If HZ < 1000, flush all packets.
6190 */
6191 napi_gro_flush(napi, HZ >= 1000);
6192 }
6193
6194 gro_normal_list(napi);
6195 clear_bit(NAPI_STATE_SCHED, &napi->state);
6196 }
6197
6198 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6199 u16 budget)
6200 {
6201 bool skip_schedule = false;
6202 unsigned long timeout;
6203 int rc;
6204
6205 /* Busy polling means there is a high chance device driver hard irq
6206 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6207 * set in napi_schedule_prep().
6208 * Since we are about to call napi->poll() once more, we can safely
6209 * clear NAPI_STATE_MISSED.
6210 *
6211 * Note: x86 could use a single "lock and ..." instruction
6212 * to perform these two clear_bit()
6213 */
6214 clear_bit(NAPI_STATE_MISSED, &napi->state);
6215 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6216
6217 local_bh_disable();
6218
6219 if (prefer_busy_poll) {
6220 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6221 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6222 if (napi->defer_hard_irqs_count && timeout) {
6223 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6224 skip_schedule = true;
6225 }
6226 }
6227
6228 /* All we really want here is to re-enable device interrupts.
6229 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6230 */
6231 rc = napi->poll(napi, budget);
6232 /* We can't gro_normal_list() here, because napi->poll() might have
6233 * rearmed the napi (napi_complete_done()) in which case it could
6234 * already be running on another CPU.
6235 */
6236 trace_napi_poll(napi, rc, budget);
6237 netpoll_poll_unlock(have_poll_lock);
6238 if (rc == budget)
6239 __busy_poll_stop(napi, skip_schedule);
6240 local_bh_enable();
6241 }
6242
6243 void napi_busy_loop(unsigned int napi_id,
6244 bool (*loop_end)(void *, unsigned long),
6245 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6246 {
6247 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6248 int (*napi_poll)(struct napi_struct *napi, int budget);
6249 void *have_poll_lock = NULL;
6250 struct napi_struct *napi;
6251
6252 restart:
6253 napi_poll = NULL;
6254
6255 rcu_read_lock();
6256
6257 napi = napi_by_id(napi_id);
6258 if (!napi)
6259 goto out;
6260
6261 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6262 preempt_disable();
6263 for (;;) {
6264 int work = 0;
6265
6266 local_bh_disable();
6267 if (!napi_poll) {
6268 unsigned long val = READ_ONCE(napi->state);
6269
6270 /* If multiple threads are competing for this napi,
6271 * we avoid dirtying napi->state as much as we can.
6272 */
6273 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6274 NAPIF_STATE_IN_BUSY_POLL)) {
6275 if (prefer_busy_poll)
6276 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6277 goto count;
6278 }
6279 if (cmpxchg(&napi->state, val,
6280 val | NAPIF_STATE_IN_BUSY_POLL |
6281 NAPIF_STATE_SCHED) != val) {
6282 if (prefer_busy_poll)
6283 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6284 goto count;
6285 }
6286 have_poll_lock = netpoll_poll_lock(napi);
6287 napi_poll = napi->poll;
6288 }
6289 work = napi_poll(napi, budget);
6290 trace_napi_poll(napi, work, budget);
6291 gro_normal_list(napi);
6292 count:
6293 if (work > 0)
6294 __NET_ADD_STATS(dev_net(napi->dev),
6295 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6296 local_bh_enable();
6297
6298 if (!loop_end || loop_end(loop_end_arg, start_time))
6299 break;
6300
6301 if (unlikely(need_resched())) {
6302 if (napi_poll)
6303 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6304 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6305 preempt_enable();
6306 rcu_read_unlock();
6307 cond_resched();
6308 if (loop_end(loop_end_arg, start_time))
6309 return;
6310 goto restart;
6311 }
6312 cpu_relax();
6313 }
6314 if (napi_poll)
6315 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6316 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6317 preempt_enable();
6318 out:
6319 rcu_read_unlock();
6320 }
6321 EXPORT_SYMBOL(napi_busy_loop);
6322
6323 #endif /* CONFIG_NET_RX_BUSY_POLL */
6324
6325 static void napi_hash_add(struct napi_struct *napi)
6326 {
6327 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6328 return;
6329
6330 spin_lock(&napi_hash_lock);
6331
6332 /* 0..NR_CPUS range is reserved for sender_cpu use */
6333 do {
6334 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6335 napi_gen_id = MIN_NAPI_ID;
6336 } while (napi_by_id(napi_gen_id));
6337 napi->napi_id = napi_gen_id;
6338
6339 hlist_add_head_rcu(&napi->napi_hash_node,
6340 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6341
6342 spin_unlock(&napi_hash_lock);
6343 }
6344
6345 /* Warning : caller is responsible to make sure rcu grace period
6346 * is respected before freeing memory containing @napi
6347 */
6348 static void napi_hash_del(struct napi_struct *napi)
6349 {
6350 spin_lock(&napi_hash_lock);
6351
6352 hlist_del_init_rcu(&napi->napi_hash_node);
6353
6354 spin_unlock(&napi_hash_lock);
6355 }
6356
6357 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6358 {
6359 struct napi_struct *napi;
6360
6361 napi = container_of(timer, struct napi_struct, timer);
6362
6363 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6364 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6365 */
6366 if (!napi_disable_pending(napi) &&
6367 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6368 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6369 __napi_schedule_irqoff(napi);
6370 }
6371
6372 return HRTIMER_NORESTART;
6373 }
6374
6375 static void init_gro_hash(struct napi_struct *napi)
6376 {
6377 int i;
6378
6379 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6380 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6381 napi->gro_hash[i].count = 0;
6382 }
6383 napi->gro_bitmask = 0;
6384 }
6385
6386 int dev_set_threaded(struct net_device *dev, bool threaded)
6387 {
6388 struct napi_struct *napi;
6389 int err = 0;
6390
6391 if (dev->threaded == threaded)
6392 return 0;
6393
6394 if (threaded) {
6395 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6396 if (!napi->thread) {
6397 err = napi_kthread_create(napi);
6398 if (err) {
6399 threaded = false;
6400 break;
6401 }
6402 }
6403 }
6404 }
6405
6406 dev->threaded = threaded;
6407
6408 /* Make sure kthread is created before THREADED bit
6409 * is set.
6410 */
6411 smp_mb__before_atomic();
6412
6413 /* Setting/unsetting threaded mode on a napi might not immediately
6414 * take effect, if the current napi instance is actively being
6415 * polled. In this case, the switch between threaded mode and
6416 * softirq mode will happen in the next round of napi_schedule().
6417 * This should not cause hiccups/stalls to the live traffic.
6418 */
6419 list_for_each_entry(napi, &dev->napi_list, dev_list)
6420 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6421
6422 return err;
6423 }
6424 EXPORT_SYMBOL(dev_set_threaded);
6425
6426 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6427 int (*poll)(struct napi_struct *, int), int weight)
6428 {
6429 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6430 return;
6431
6432 INIT_LIST_HEAD(&napi->poll_list);
6433 INIT_HLIST_NODE(&napi->napi_hash_node);
6434 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6435 napi->timer.function = napi_watchdog;
6436 init_gro_hash(napi);
6437 napi->skb = NULL;
6438 INIT_LIST_HEAD(&napi->rx_list);
6439 napi->rx_count = 0;
6440 napi->poll = poll;
6441 if (weight > NAPI_POLL_WEIGHT)
6442 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6443 weight);
6444 napi->weight = weight;
6445 napi->dev = dev;
6446 #ifdef CONFIG_NETPOLL
6447 napi->poll_owner = -1;
6448 #endif
6449 napi->list_owner = -1;
6450 set_bit(NAPI_STATE_SCHED, &napi->state);
6451 set_bit(NAPI_STATE_NPSVC, &napi->state);
6452 list_add_rcu(&napi->dev_list, &dev->napi_list);
6453 napi_hash_add(napi);
6454 napi_get_frags_check(napi);
6455 /* Create kthread for this napi if dev->threaded is set.
6456 * Clear dev->threaded if kthread creation failed so that
6457 * threaded mode will not be enabled in napi_enable().
6458 */
6459 if (dev->threaded && napi_kthread_create(napi))
6460 dev->threaded = 0;
6461 }
6462 EXPORT_SYMBOL(netif_napi_add_weight);
6463
6464 void napi_disable(struct napi_struct *n)
6465 {
6466 unsigned long val, new;
6467
6468 might_sleep();
6469 set_bit(NAPI_STATE_DISABLE, &n->state);
6470
6471 val = READ_ONCE(n->state);
6472 do {
6473 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6474 usleep_range(20, 200);
6475 val = READ_ONCE(n->state);
6476 }
6477
6478 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6479 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6480 } while (!try_cmpxchg(&n->state, &val, new));
6481
6482 hrtimer_cancel(&n->timer);
6483
6484 clear_bit(NAPI_STATE_DISABLE, &n->state);
6485 }
6486 EXPORT_SYMBOL(napi_disable);
6487
6488 /**
6489 * napi_enable - enable NAPI scheduling
6490 * @n: NAPI context
6491 *
6492 * Resume NAPI from being scheduled on this context.
6493 * Must be paired with napi_disable.
6494 */
6495 void napi_enable(struct napi_struct *n)
6496 {
6497 unsigned long new, val = READ_ONCE(n->state);
6498
6499 do {
6500 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6501
6502 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6503 if (n->dev->threaded && n->thread)
6504 new |= NAPIF_STATE_THREADED;
6505 } while (!try_cmpxchg(&n->state, &val, new));
6506 }
6507 EXPORT_SYMBOL(napi_enable);
6508
6509 static void flush_gro_hash(struct napi_struct *napi)
6510 {
6511 int i;
6512
6513 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6514 struct sk_buff *skb, *n;
6515
6516 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6517 kfree_skb(skb);
6518 napi->gro_hash[i].count = 0;
6519 }
6520 }
6521
6522 /* Must be called in process context */
6523 void __netif_napi_del(struct napi_struct *napi)
6524 {
6525 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6526 return;
6527
6528 napi_hash_del(napi);
6529 list_del_rcu(&napi->dev_list);
6530 napi_free_frags(napi);
6531
6532 flush_gro_hash(napi);
6533 napi->gro_bitmask = 0;
6534
6535 if (napi->thread) {
6536 kthread_stop(napi->thread);
6537 napi->thread = NULL;
6538 }
6539 }
6540 EXPORT_SYMBOL(__netif_napi_del);
6541
6542 static int __napi_poll(struct napi_struct *n, bool *repoll)
6543 {
6544 int work, weight;
6545
6546 weight = n->weight;
6547
6548 /* This NAPI_STATE_SCHED test is for avoiding a race
6549 * with netpoll's poll_napi(). Only the entity which
6550 * obtains the lock and sees NAPI_STATE_SCHED set will
6551 * actually make the ->poll() call. Therefore we avoid
6552 * accidentally calling ->poll() when NAPI is not scheduled.
6553 */
6554 work = 0;
6555 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6556 work = n->poll(n, weight);
6557 trace_napi_poll(n, work, weight);
6558 }
6559
6560 if (unlikely(work > weight))
6561 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6562 n->poll, work, weight);
6563
6564 if (likely(work < weight))
6565 return work;
6566
6567 /* Drivers must not modify the NAPI state if they
6568 * consume the entire weight. In such cases this code
6569 * still "owns" the NAPI instance and therefore can
6570 * move the instance around on the list at-will.
6571 */
6572 if (unlikely(napi_disable_pending(n))) {
6573 napi_complete(n);
6574 return work;
6575 }
6576
6577 /* The NAPI context has more processing work, but busy-polling
6578 * is preferred. Exit early.
6579 */
6580 if (napi_prefer_busy_poll(n)) {
6581 if (napi_complete_done(n, work)) {
6582 /* If timeout is not set, we need to make sure
6583 * that the NAPI is re-scheduled.
6584 */
6585 napi_schedule(n);
6586 }
6587 return work;
6588 }
6589
6590 if (n->gro_bitmask) {
6591 /* flush too old packets
6592 * If HZ < 1000, flush all packets.
6593 */
6594 napi_gro_flush(n, HZ >= 1000);
6595 }
6596
6597 gro_normal_list(n);
6598
6599 /* Some drivers may have called napi_schedule
6600 * prior to exhausting their budget.
6601 */
6602 if (unlikely(!list_empty(&n->poll_list))) {
6603 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6604 n->dev ? n->dev->name : "backlog");
6605 return work;
6606 }
6607
6608 *repoll = true;
6609
6610 return work;
6611 }
6612
6613 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6614 {
6615 bool do_repoll = false;
6616 void *have;
6617 int work;
6618
6619 list_del_init(&n->poll_list);
6620
6621 have = netpoll_poll_lock(n);
6622
6623 work = __napi_poll(n, &do_repoll);
6624
6625 if (do_repoll)
6626 list_add_tail(&n->poll_list, repoll);
6627
6628 netpoll_poll_unlock(have);
6629
6630 return work;
6631 }
6632
6633 static int napi_thread_wait(struct napi_struct *napi)
6634 {
6635 bool woken = false;
6636
6637 set_current_state(TASK_INTERRUPTIBLE);
6638
6639 while (!kthread_should_stop()) {
6640 /* Testing SCHED_THREADED bit here to make sure the current
6641 * kthread owns this napi and could poll on this napi.
6642 * Testing SCHED bit is not enough because SCHED bit might be
6643 * set by some other busy poll thread or by napi_disable().
6644 */
6645 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6646 WARN_ON(!list_empty(&napi->poll_list));
6647 __set_current_state(TASK_RUNNING);
6648 return 0;
6649 }
6650
6651 schedule();
6652 /* woken being true indicates this thread owns this napi. */
6653 woken = true;
6654 set_current_state(TASK_INTERRUPTIBLE);
6655 }
6656 __set_current_state(TASK_RUNNING);
6657
6658 return -1;
6659 }
6660
6661 static void skb_defer_free_flush(struct softnet_data *sd)
6662 {
6663 struct sk_buff *skb, *next;
6664
6665 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6666 if (!READ_ONCE(sd->defer_list))
6667 return;
6668
6669 spin_lock(&sd->defer_lock);
6670 skb = sd->defer_list;
6671 sd->defer_list = NULL;
6672 sd->defer_count = 0;
6673 spin_unlock(&sd->defer_lock);
6674
6675 while (skb != NULL) {
6676 next = skb->next;
6677 napi_consume_skb(skb, 1);
6678 skb = next;
6679 }
6680 }
6681
6682 static int napi_threaded_poll(void *data)
6683 {
6684 struct napi_struct *napi = data;
6685 struct softnet_data *sd;
6686 void *have;
6687
6688 while (!napi_thread_wait(napi)) {
6689 for (;;) {
6690 bool repoll = false;
6691
6692 local_bh_disable();
6693 sd = this_cpu_ptr(&softnet_data);
6694 sd->in_napi_threaded_poll = true;
6695
6696 have = netpoll_poll_lock(napi);
6697 __napi_poll(napi, &repoll);
6698 netpoll_poll_unlock(have);
6699
6700 sd->in_napi_threaded_poll = false;
6701 barrier();
6702
6703 if (sd_has_rps_ipi_waiting(sd)) {
6704 local_irq_disable();
6705 net_rps_action_and_irq_enable(sd);
6706 }
6707 skb_defer_free_flush(sd);
6708 local_bh_enable();
6709
6710 if (!repoll)
6711 break;
6712
6713 cond_resched();
6714 }
6715 }
6716 return 0;
6717 }
6718
6719 static __latent_entropy void net_rx_action(struct softirq_action *h)
6720 {
6721 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6722 unsigned long time_limit = jiffies +
6723 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6724 int budget = READ_ONCE(netdev_budget);
6725 LIST_HEAD(list);
6726 LIST_HEAD(repoll);
6727
6728 start:
6729 sd->in_net_rx_action = true;
6730 local_irq_disable();
6731 list_splice_init(&sd->poll_list, &list);
6732 local_irq_enable();
6733
6734 for (;;) {
6735 struct napi_struct *n;
6736
6737 skb_defer_free_flush(sd);
6738
6739 if (list_empty(&list)) {
6740 if (list_empty(&repoll)) {
6741 sd->in_net_rx_action = false;
6742 barrier();
6743 /* We need to check if ____napi_schedule()
6744 * had refilled poll_list while
6745 * sd->in_net_rx_action was true.
6746 */
6747 if (!list_empty(&sd->poll_list))
6748 goto start;
6749 if (!sd_has_rps_ipi_waiting(sd))
6750 goto end;
6751 }
6752 break;
6753 }
6754
6755 n = list_first_entry(&list, struct napi_struct, poll_list);
6756 budget -= napi_poll(n, &repoll);
6757
6758 /* If softirq window is exhausted then punt.
6759 * Allow this to run for 2 jiffies since which will allow
6760 * an average latency of 1.5/HZ.
6761 */
6762 if (unlikely(budget <= 0 ||
6763 time_after_eq(jiffies, time_limit))) {
6764 sd->time_squeeze++;
6765 break;
6766 }
6767 }
6768
6769 local_irq_disable();
6770
6771 list_splice_tail_init(&sd->poll_list, &list);
6772 list_splice_tail(&repoll, &list);
6773 list_splice(&list, &sd->poll_list);
6774 if (!list_empty(&sd->poll_list))
6775 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6776 else
6777 sd->in_net_rx_action = false;
6778
6779 net_rps_action_and_irq_enable(sd);
6780 end:;
6781 }
6782
6783 struct netdev_adjacent {
6784 struct net_device *dev;
6785 netdevice_tracker dev_tracker;
6786
6787 /* upper master flag, there can only be one master device per list */
6788 bool master;
6789
6790 /* lookup ignore flag */
6791 bool ignore;
6792
6793 /* counter for the number of times this device was added to us */
6794 u16 ref_nr;
6795
6796 /* private field for the users */
6797 void *private;
6798
6799 struct list_head list;
6800 struct rcu_head rcu;
6801 };
6802
6803 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6804 struct list_head *adj_list)
6805 {
6806 struct netdev_adjacent *adj;
6807
6808 list_for_each_entry(adj, adj_list, list) {
6809 if (adj->dev == adj_dev)
6810 return adj;
6811 }
6812 return NULL;
6813 }
6814
6815 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6816 struct netdev_nested_priv *priv)
6817 {
6818 struct net_device *dev = (struct net_device *)priv->data;
6819
6820 return upper_dev == dev;
6821 }
6822
6823 /**
6824 * netdev_has_upper_dev - Check if device is linked to an upper device
6825 * @dev: device
6826 * @upper_dev: upper device to check
6827 *
6828 * Find out if a device is linked to specified upper device and return true
6829 * in case it is. Note that this checks only immediate upper device,
6830 * not through a complete stack of devices. The caller must hold the RTNL lock.
6831 */
6832 bool netdev_has_upper_dev(struct net_device *dev,
6833 struct net_device *upper_dev)
6834 {
6835 struct netdev_nested_priv priv = {
6836 .data = (void *)upper_dev,
6837 };
6838
6839 ASSERT_RTNL();
6840
6841 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6842 &priv);
6843 }
6844 EXPORT_SYMBOL(netdev_has_upper_dev);
6845
6846 /**
6847 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6848 * @dev: device
6849 * @upper_dev: upper device to check
6850 *
6851 * Find out if a device is linked to specified upper device and return true
6852 * in case it is. Note that this checks the entire upper device chain.
6853 * The caller must hold rcu lock.
6854 */
6855
6856 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6857 struct net_device *upper_dev)
6858 {
6859 struct netdev_nested_priv priv = {
6860 .data = (void *)upper_dev,
6861 };
6862
6863 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6864 &priv);
6865 }
6866 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6867
6868 /**
6869 * netdev_has_any_upper_dev - Check if device is linked to some device
6870 * @dev: device
6871 *
6872 * Find out if a device is linked to an upper device and return true in case
6873 * it is. The caller must hold the RTNL lock.
6874 */
6875 bool netdev_has_any_upper_dev(struct net_device *dev)
6876 {
6877 ASSERT_RTNL();
6878
6879 return !list_empty(&dev->adj_list.upper);
6880 }
6881 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6882
6883 /**
6884 * netdev_master_upper_dev_get - Get master upper device
6885 * @dev: device
6886 *
6887 * Find a master upper device and return pointer to it or NULL in case
6888 * it's not there. The caller must hold the RTNL lock.
6889 */
6890 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6891 {
6892 struct netdev_adjacent *upper;
6893
6894 ASSERT_RTNL();
6895
6896 if (list_empty(&dev->adj_list.upper))
6897 return NULL;
6898
6899 upper = list_first_entry(&dev->adj_list.upper,
6900 struct netdev_adjacent, list);
6901 if (likely(upper->master))
6902 return upper->dev;
6903 return NULL;
6904 }
6905 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6906
6907 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6908 {
6909 struct netdev_adjacent *upper;
6910
6911 ASSERT_RTNL();
6912
6913 if (list_empty(&dev->adj_list.upper))
6914 return NULL;
6915
6916 upper = list_first_entry(&dev->adj_list.upper,
6917 struct netdev_adjacent, list);
6918 if (likely(upper->master) && !upper->ignore)
6919 return upper->dev;
6920 return NULL;
6921 }
6922
6923 /**
6924 * netdev_has_any_lower_dev - Check if device is linked to some device
6925 * @dev: device
6926 *
6927 * Find out if a device is linked to a lower device and return true in case
6928 * it is. The caller must hold the RTNL lock.
6929 */
6930 static bool netdev_has_any_lower_dev(struct net_device *dev)
6931 {
6932 ASSERT_RTNL();
6933
6934 return !list_empty(&dev->adj_list.lower);
6935 }
6936
6937 void *netdev_adjacent_get_private(struct list_head *adj_list)
6938 {
6939 struct netdev_adjacent *adj;
6940
6941 adj = list_entry(adj_list, struct netdev_adjacent, list);
6942
6943 return adj->private;
6944 }
6945 EXPORT_SYMBOL(netdev_adjacent_get_private);
6946
6947 /**
6948 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6949 * @dev: device
6950 * @iter: list_head ** of the current position
6951 *
6952 * Gets the next device from the dev's upper list, starting from iter
6953 * position. The caller must hold RCU read lock.
6954 */
6955 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6956 struct list_head **iter)
6957 {
6958 struct netdev_adjacent *upper;
6959
6960 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6961
6962 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6963
6964 if (&upper->list == &dev->adj_list.upper)
6965 return NULL;
6966
6967 *iter = &upper->list;
6968
6969 return upper->dev;
6970 }
6971 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6972
6973 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6974 struct list_head **iter,
6975 bool *ignore)
6976 {
6977 struct netdev_adjacent *upper;
6978
6979 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6980
6981 if (&upper->list == &dev->adj_list.upper)
6982 return NULL;
6983
6984 *iter = &upper->list;
6985 *ignore = upper->ignore;
6986
6987 return upper->dev;
6988 }
6989
6990 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6991 struct list_head **iter)
6992 {
6993 struct netdev_adjacent *upper;
6994
6995 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6996
6997 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6998
6999 if (&upper->list == &dev->adj_list.upper)
7000 return NULL;
7001
7002 *iter = &upper->list;
7003
7004 return upper->dev;
7005 }
7006
7007 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7008 int (*fn)(struct net_device *dev,
7009 struct netdev_nested_priv *priv),
7010 struct netdev_nested_priv *priv)
7011 {
7012 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7013 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7014 int ret, cur = 0;
7015 bool ignore;
7016
7017 now = dev;
7018 iter = &dev->adj_list.upper;
7019
7020 while (1) {
7021 if (now != dev) {
7022 ret = fn(now, priv);
7023 if (ret)
7024 return ret;
7025 }
7026
7027 next = NULL;
7028 while (1) {
7029 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7030 if (!udev)
7031 break;
7032 if (ignore)
7033 continue;
7034
7035 next = udev;
7036 niter = &udev->adj_list.upper;
7037 dev_stack[cur] = now;
7038 iter_stack[cur++] = iter;
7039 break;
7040 }
7041
7042 if (!next) {
7043 if (!cur)
7044 return 0;
7045 next = dev_stack[--cur];
7046 niter = iter_stack[cur];
7047 }
7048
7049 now = next;
7050 iter = niter;
7051 }
7052
7053 return 0;
7054 }
7055
7056 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7057 int (*fn)(struct net_device *dev,
7058 struct netdev_nested_priv *priv),
7059 struct netdev_nested_priv *priv)
7060 {
7061 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7062 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7063 int ret, cur = 0;
7064
7065 now = dev;
7066 iter = &dev->adj_list.upper;
7067
7068 while (1) {
7069 if (now != dev) {
7070 ret = fn(now, priv);
7071 if (ret)
7072 return ret;
7073 }
7074
7075 next = NULL;
7076 while (1) {
7077 udev = netdev_next_upper_dev_rcu(now, &iter);
7078 if (!udev)
7079 break;
7080
7081 next = udev;
7082 niter = &udev->adj_list.upper;
7083 dev_stack[cur] = now;
7084 iter_stack[cur++] = iter;
7085 break;
7086 }
7087
7088 if (!next) {
7089 if (!cur)
7090 return 0;
7091 next = dev_stack[--cur];
7092 niter = iter_stack[cur];
7093 }
7094
7095 now = next;
7096 iter = niter;
7097 }
7098
7099 return 0;
7100 }
7101 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7102
7103 static bool __netdev_has_upper_dev(struct net_device *dev,
7104 struct net_device *upper_dev)
7105 {
7106 struct netdev_nested_priv priv = {
7107 .flags = 0,
7108 .data = (void *)upper_dev,
7109 };
7110
7111 ASSERT_RTNL();
7112
7113 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7114 &priv);
7115 }
7116
7117 /**
7118 * netdev_lower_get_next_private - Get the next ->private from the
7119 * lower neighbour list
7120 * @dev: device
7121 * @iter: list_head ** of the current position
7122 *
7123 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7124 * list, starting from iter position. The caller must hold either hold the
7125 * RTNL lock or its own locking that guarantees that the neighbour lower
7126 * list will remain unchanged.
7127 */
7128 void *netdev_lower_get_next_private(struct net_device *dev,
7129 struct list_head **iter)
7130 {
7131 struct netdev_adjacent *lower;
7132
7133 lower = list_entry(*iter, struct netdev_adjacent, list);
7134
7135 if (&lower->list == &dev->adj_list.lower)
7136 return NULL;
7137
7138 *iter = lower->list.next;
7139
7140 return lower->private;
7141 }
7142 EXPORT_SYMBOL(netdev_lower_get_next_private);
7143
7144 /**
7145 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7146 * lower neighbour list, RCU
7147 * variant
7148 * @dev: device
7149 * @iter: list_head ** of the current position
7150 *
7151 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7152 * list, starting from iter position. The caller must hold RCU read lock.
7153 */
7154 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7155 struct list_head **iter)
7156 {
7157 struct netdev_adjacent *lower;
7158
7159 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7160
7161 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7162
7163 if (&lower->list == &dev->adj_list.lower)
7164 return NULL;
7165
7166 *iter = &lower->list;
7167
7168 return lower->private;
7169 }
7170 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7171
7172 /**
7173 * netdev_lower_get_next - Get the next device from the lower neighbour
7174 * list
7175 * @dev: device
7176 * @iter: list_head ** of the current position
7177 *
7178 * Gets the next netdev_adjacent from the dev's lower neighbour
7179 * list, starting from iter position. The caller must hold RTNL lock or
7180 * its own locking that guarantees that the neighbour lower
7181 * list will remain unchanged.
7182 */
7183 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7184 {
7185 struct netdev_adjacent *lower;
7186
7187 lower = list_entry(*iter, struct netdev_adjacent, list);
7188
7189 if (&lower->list == &dev->adj_list.lower)
7190 return NULL;
7191
7192 *iter = lower->list.next;
7193
7194 return lower->dev;
7195 }
7196 EXPORT_SYMBOL(netdev_lower_get_next);
7197
7198 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7199 struct list_head **iter)
7200 {
7201 struct netdev_adjacent *lower;
7202
7203 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7204
7205 if (&lower->list == &dev->adj_list.lower)
7206 return NULL;
7207
7208 *iter = &lower->list;
7209
7210 return lower->dev;
7211 }
7212
7213 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7214 struct list_head **iter,
7215 bool *ignore)
7216 {
7217 struct netdev_adjacent *lower;
7218
7219 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7220
7221 if (&lower->list == &dev->adj_list.lower)
7222 return NULL;
7223
7224 *iter = &lower->list;
7225 *ignore = lower->ignore;
7226
7227 return lower->dev;
7228 }
7229
7230 int netdev_walk_all_lower_dev(struct net_device *dev,
7231 int (*fn)(struct net_device *dev,
7232 struct netdev_nested_priv *priv),
7233 struct netdev_nested_priv *priv)
7234 {
7235 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7236 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7237 int ret, cur = 0;
7238
7239 now = dev;
7240 iter = &dev->adj_list.lower;
7241
7242 while (1) {
7243 if (now != dev) {
7244 ret = fn(now, priv);
7245 if (ret)
7246 return ret;
7247 }
7248
7249 next = NULL;
7250 while (1) {
7251 ldev = netdev_next_lower_dev(now, &iter);
7252 if (!ldev)
7253 break;
7254
7255 next = ldev;
7256 niter = &ldev->adj_list.lower;
7257 dev_stack[cur] = now;
7258 iter_stack[cur++] = iter;
7259 break;
7260 }
7261
7262 if (!next) {
7263 if (!cur)
7264 return 0;
7265 next = dev_stack[--cur];
7266 niter = iter_stack[cur];
7267 }
7268
7269 now = next;
7270 iter = niter;
7271 }
7272
7273 return 0;
7274 }
7275 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7276
7277 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7278 int (*fn)(struct net_device *dev,
7279 struct netdev_nested_priv *priv),
7280 struct netdev_nested_priv *priv)
7281 {
7282 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7283 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7284 int ret, cur = 0;
7285 bool ignore;
7286
7287 now = dev;
7288 iter = &dev->adj_list.lower;
7289
7290 while (1) {
7291 if (now != dev) {
7292 ret = fn(now, priv);
7293 if (ret)
7294 return ret;
7295 }
7296
7297 next = NULL;
7298 while (1) {
7299 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7300 if (!ldev)
7301 break;
7302 if (ignore)
7303 continue;
7304
7305 next = ldev;
7306 niter = &ldev->adj_list.lower;
7307 dev_stack[cur] = now;
7308 iter_stack[cur++] = iter;
7309 break;
7310 }
7311
7312 if (!next) {
7313 if (!cur)
7314 return 0;
7315 next = dev_stack[--cur];
7316 niter = iter_stack[cur];
7317 }
7318
7319 now = next;
7320 iter = niter;
7321 }
7322
7323 return 0;
7324 }
7325
7326 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7327 struct list_head **iter)
7328 {
7329 struct netdev_adjacent *lower;
7330
7331 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7332 if (&lower->list == &dev->adj_list.lower)
7333 return NULL;
7334
7335 *iter = &lower->list;
7336
7337 return lower->dev;
7338 }
7339 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7340
7341 static u8 __netdev_upper_depth(struct net_device *dev)
7342 {
7343 struct net_device *udev;
7344 struct list_head *iter;
7345 u8 max_depth = 0;
7346 bool ignore;
7347
7348 for (iter = &dev->adj_list.upper,
7349 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7350 udev;
7351 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7352 if (ignore)
7353 continue;
7354 if (max_depth < udev->upper_level)
7355 max_depth = udev->upper_level;
7356 }
7357
7358 return max_depth;
7359 }
7360
7361 static u8 __netdev_lower_depth(struct net_device *dev)
7362 {
7363 struct net_device *ldev;
7364 struct list_head *iter;
7365 u8 max_depth = 0;
7366 bool ignore;
7367
7368 for (iter = &dev->adj_list.lower,
7369 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7370 ldev;
7371 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7372 if (ignore)
7373 continue;
7374 if (max_depth < ldev->lower_level)
7375 max_depth = ldev->lower_level;
7376 }
7377
7378 return max_depth;
7379 }
7380
7381 static int __netdev_update_upper_level(struct net_device *dev,
7382 struct netdev_nested_priv *__unused)
7383 {
7384 dev->upper_level = __netdev_upper_depth(dev) + 1;
7385 return 0;
7386 }
7387
7388 #ifdef CONFIG_LOCKDEP
7389 static LIST_HEAD(net_unlink_list);
7390
7391 static void net_unlink_todo(struct net_device *dev)
7392 {
7393 if (list_empty(&dev->unlink_list))
7394 list_add_tail(&dev->unlink_list, &net_unlink_list);
7395 }
7396 #endif
7397
7398 static int __netdev_update_lower_level(struct net_device *dev,
7399 struct netdev_nested_priv *priv)
7400 {
7401 dev->lower_level = __netdev_lower_depth(dev) + 1;
7402
7403 #ifdef CONFIG_LOCKDEP
7404 if (!priv)
7405 return 0;
7406
7407 if (priv->flags & NESTED_SYNC_IMM)
7408 dev->nested_level = dev->lower_level - 1;
7409 if (priv->flags & NESTED_SYNC_TODO)
7410 net_unlink_todo(dev);
7411 #endif
7412 return 0;
7413 }
7414
7415 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7416 int (*fn)(struct net_device *dev,
7417 struct netdev_nested_priv *priv),
7418 struct netdev_nested_priv *priv)
7419 {
7420 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7421 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7422 int ret, cur = 0;
7423
7424 now = dev;
7425 iter = &dev->adj_list.lower;
7426
7427 while (1) {
7428 if (now != dev) {
7429 ret = fn(now, priv);
7430 if (ret)
7431 return ret;
7432 }
7433
7434 next = NULL;
7435 while (1) {
7436 ldev = netdev_next_lower_dev_rcu(now, &iter);
7437 if (!ldev)
7438 break;
7439
7440 next = ldev;
7441 niter = &ldev->adj_list.lower;
7442 dev_stack[cur] = now;
7443 iter_stack[cur++] = iter;
7444 break;
7445 }
7446
7447 if (!next) {
7448 if (!cur)
7449 return 0;
7450 next = dev_stack[--cur];
7451 niter = iter_stack[cur];
7452 }
7453
7454 now = next;
7455 iter = niter;
7456 }
7457
7458 return 0;
7459 }
7460 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7461
7462 /**
7463 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7464 * lower neighbour list, RCU
7465 * variant
7466 * @dev: device
7467 *
7468 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7469 * list. The caller must hold RCU read lock.
7470 */
7471 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7472 {
7473 struct netdev_adjacent *lower;
7474
7475 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7476 struct netdev_adjacent, list);
7477 if (lower)
7478 return lower->private;
7479 return NULL;
7480 }
7481 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7482
7483 /**
7484 * netdev_master_upper_dev_get_rcu - Get master upper device
7485 * @dev: device
7486 *
7487 * Find a master upper device and return pointer to it or NULL in case
7488 * it's not there. The caller must hold the RCU read lock.
7489 */
7490 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7491 {
7492 struct netdev_adjacent *upper;
7493
7494 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7495 struct netdev_adjacent, list);
7496 if (upper && likely(upper->master))
7497 return upper->dev;
7498 return NULL;
7499 }
7500 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7501
7502 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7503 struct net_device *adj_dev,
7504 struct list_head *dev_list)
7505 {
7506 char linkname[IFNAMSIZ+7];
7507
7508 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7509 "upper_%s" : "lower_%s", adj_dev->name);
7510 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7511 linkname);
7512 }
7513 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7514 char *name,
7515 struct list_head *dev_list)
7516 {
7517 char linkname[IFNAMSIZ+7];
7518
7519 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7520 "upper_%s" : "lower_%s", name);
7521 sysfs_remove_link(&(dev->dev.kobj), linkname);
7522 }
7523
7524 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7525 struct net_device *adj_dev,
7526 struct list_head *dev_list)
7527 {
7528 return (dev_list == &dev->adj_list.upper ||
7529 dev_list == &dev->adj_list.lower) &&
7530 net_eq(dev_net(dev), dev_net(adj_dev));
7531 }
7532
7533 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7534 struct net_device *adj_dev,
7535 struct list_head *dev_list,
7536 void *private, bool master)
7537 {
7538 struct netdev_adjacent *adj;
7539 int ret;
7540
7541 adj = __netdev_find_adj(adj_dev, dev_list);
7542
7543 if (adj) {
7544 adj->ref_nr += 1;
7545 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7546 dev->name, adj_dev->name, adj->ref_nr);
7547
7548 return 0;
7549 }
7550
7551 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7552 if (!adj)
7553 return -ENOMEM;
7554
7555 adj->dev = adj_dev;
7556 adj->master = master;
7557 adj->ref_nr = 1;
7558 adj->private = private;
7559 adj->ignore = false;
7560 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7561
7562 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7563 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7564
7565 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7566 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7567 if (ret)
7568 goto free_adj;
7569 }
7570
7571 /* Ensure that master link is always the first item in list. */
7572 if (master) {
7573 ret = sysfs_create_link(&(dev->dev.kobj),
7574 &(adj_dev->dev.kobj), "master");
7575 if (ret)
7576 goto remove_symlinks;
7577
7578 list_add_rcu(&adj->list, dev_list);
7579 } else {
7580 list_add_tail_rcu(&adj->list, dev_list);
7581 }
7582
7583 return 0;
7584
7585 remove_symlinks:
7586 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7587 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7588 free_adj:
7589 netdev_put(adj_dev, &adj->dev_tracker);
7590 kfree(adj);
7591
7592 return ret;
7593 }
7594
7595 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7596 struct net_device *adj_dev,
7597 u16 ref_nr,
7598 struct list_head *dev_list)
7599 {
7600 struct netdev_adjacent *adj;
7601
7602 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7603 dev->name, adj_dev->name, ref_nr);
7604
7605 adj = __netdev_find_adj(adj_dev, dev_list);
7606
7607 if (!adj) {
7608 pr_err("Adjacency does not exist for device %s from %s\n",
7609 dev->name, adj_dev->name);
7610 WARN_ON(1);
7611 return;
7612 }
7613
7614 if (adj->ref_nr > ref_nr) {
7615 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7616 dev->name, adj_dev->name, ref_nr,
7617 adj->ref_nr - ref_nr);
7618 adj->ref_nr -= ref_nr;
7619 return;
7620 }
7621
7622 if (adj->master)
7623 sysfs_remove_link(&(dev->dev.kobj), "master");
7624
7625 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7626 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7627
7628 list_del_rcu(&adj->list);
7629 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7630 adj_dev->name, dev->name, adj_dev->name);
7631 netdev_put(adj_dev, &adj->dev_tracker);
7632 kfree_rcu(adj, rcu);
7633 }
7634
7635 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7636 struct net_device *upper_dev,
7637 struct list_head *up_list,
7638 struct list_head *down_list,
7639 void *private, bool master)
7640 {
7641 int ret;
7642
7643 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7644 private, master);
7645 if (ret)
7646 return ret;
7647
7648 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7649 private, false);
7650 if (ret) {
7651 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7652 return ret;
7653 }
7654
7655 return 0;
7656 }
7657
7658 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7659 struct net_device *upper_dev,
7660 u16 ref_nr,
7661 struct list_head *up_list,
7662 struct list_head *down_list)
7663 {
7664 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7665 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7666 }
7667
7668 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7669 struct net_device *upper_dev,
7670 void *private, bool master)
7671 {
7672 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7673 &dev->adj_list.upper,
7674 &upper_dev->adj_list.lower,
7675 private, master);
7676 }
7677
7678 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7679 struct net_device *upper_dev)
7680 {
7681 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7682 &dev->adj_list.upper,
7683 &upper_dev->adj_list.lower);
7684 }
7685
7686 static int __netdev_upper_dev_link(struct net_device *dev,
7687 struct net_device *upper_dev, bool master,
7688 void *upper_priv, void *upper_info,
7689 struct netdev_nested_priv *priv,
7690 struct netlink_ext_ack *extack)
7691 {
7692 struct netdev_notifier_changeupper_info changeupper_info = {
7693 .info = {
7694 .dev = dev,
7695 .extack = extack,
7696 },
7697 .upper_dev = upper_dev,
7698 .master = master,
7699 .linking = true,
7700 .upper_info = upper_info,
7701 };
7702 struct net_device *master_dev;
7703 int ret = 0;
7704
7705 ASSERT_RTNL();
7706
7707 if (dev == upper_dev)
7708 return -EBUSY;
7709
7710 /* To prevent loops, check if dev is not upper device to upper_dev. */
7711 if (__netdev_has_upper_dev(upper_dev, dev))
7712 return -EBUSY;
7713
7714 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7715 return -EMLINK;
7716
7717 if (!master) {
7718 if (__netdev_has_upper_dev(dev, upper_dev))
7719 return -EEXIST;
7720 } else {
7721 master_dev = __netdev_master_upper_dev_get(dev);
7722 if (master_dev)
7723 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7724 }
7725
7726 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7727 &changeupper_info.info);
7728 ret = notifier_to_errno(ret);
7729 if (ret)
7730 return ret;
7731
7732 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7733 master);
7734 if (ret)
7735 return ret;
7736
7737 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7738 &changeupper_info.info);
7739 ret = notifier_to_errno(ret);
7740 if (ret)
7741 goto rollback;
7742
7743 __netdev_update_upper_level(dev, NULL);
7744 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7745
7746 __netdev_update_lower_level(upper_dev, priv);
7747 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7748 priv);
7749
7750 return 0;
7751
7752 rollback:
7753 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7754
7755 return ret;
7756 }
7757
7758 /**
7759 * netdev_upper_dev_link - Add a link to the upper device
7760 * @dev: device
7761 * @upper_dev: new upper device
7762 * @extack: netlink extended ack
7763 *
7764 * Adds a link to device which is upper to this one. The caller must hold
7765 * the RTNL lock. On a failure a negative errno code is returned.
7766 * On success the reference counts are adjusted and the function
7767 * returns zero.
7768 */
7769 int netdev_upper_dev_link(struct net_device *dev,
7770 struct net_device *upper_dev,
7771 struct netlink_ext_ack *extack)
7772 {
7773 struct netdev_nested_priv priv = {
7774 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7775 .data = NULL,
7776 };
7777
7778 return __netdev_upper_dev_link(dev, upper_dev, false,
7779 NULL, NULL, &priv, extack);
7780 }
7781 EXPORT_SYMBOL(netdev_upper_dev_link);
7782
7783 /**
7784 * netdev_master_upper_dev_link - Add a master link to the upper device
7785 * @dev: device
7786 * @upper_dev: new upper device
7787 * @upper_priv: upper device private
7788 * @upper_info: upper info to be passed down via notifier
7789 * @extack: netlink extended ack
7790 *
7791 * Adds a link to device which is upper to this one. In this case, only
7792 * one master upper device can be linked, although other non-master devices
7793 * might be linked as well. The caller must hold the RTNL lock.
7794 * On a failure a negative errno code is returned. On success the reference
7795 * counts are adjusted and the function returns zero.
7796 */
7797 int netdev_master_upper_dev_link(struct net_device *dev,
7798 struct net_device *upper_dev,
7799 void *upper_priv, void *upper_info,
7800 struct netlink_ext_ack *extack)
7801 {
7802 struct netdev_nested_priv priv = {
7803 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7804 .data = NULL,
7805 };
7806
7807 return __netdev_upper_dev_link(dev, upper_dev, true,
7808 upper_priv, upper_info, &priv, extack);
7809 }
7810 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7811
7812 static void __netdev_upper_dev_unlink(struct net_device *dev,
7813 struct net_device *upper_dev,
7814 struct netdev_nested_priv *priv)
7815 {
7816 struct netdev_notifier_changeupper_info changeupper_info = {
7817 .info = {
7818 .dev = dev,
7819 },
7820 .upper_dev = upper_dev,
7821 .linking = false,
7822 };
7823
7824 ASSERT_RTNL();
7825
7826 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7827
7828 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7829 &changeupper_info.info);
7830
7831 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7832
7833 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7834 &changeupper_info.info);
7835
7836 __netdev_update_upper_level(dev, NULL);
7837 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7838
7839 __netdev_update_lower_level(upper_dev, priv);
7840 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7841 priv);
7842 }
7843
7844 /**
7845 * netdev_upper_dev_unlink - Removes a link to upper device
7846 * @dev: device
7847 * @upper_dev: new upper device
7848 *
7849 * Removes a link to device which is upper to this one. The caller must hold
7850 * the RTNL lock.
7851 */
7852 void netdev_upper_dev_unlink(struct net_device *dev,
7853 struct net_device *upper_dev)
7854 {
7855 struct netdev_nested_priv priv = {
7856 .flags = NESTED_SYNC_TODO,
7857 .data = NULL,
7858 };
7859
7860 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7861 }
7862 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7863
7864 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7865 struct net_device *lower_dev,
7866 bool val)
7867 {
7868 struct netdev_adjacent *adj;
7869
7870 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7871 if (adj)
7872 adj->ignore = val;
7873
7874 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7875 if (adj)
7876 adj->ignore = val;
7877 }
7878
7879 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7880 struct net_device *lower_dev)
7881 {
7882 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7883 }
7884
7885 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7886 struct net_device *lower_dev)
7887 {
7888 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7889 }
7890
7891 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7892 struct net_device *new_dev,
7893 struct net_device *dev,
7894 struct netlink_ext_ack *extack)
7895 {
7896 struct netdev_nested_priv priv = {
7897 .flags = 0,
7898 .data = NULL,
7899 };
7900 int err;
7901
7902 if (!new_dev)
7903 return 0;
7904
7905 if (old_dev && new_dev != old_dev)
7906 netdev_adjacent_dev_disable(dev, old_dev);
7907 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7908 extack);
7909 if (err) {
7910 if (old_dev && new_dev != old_dev)
7911 netdev_adjacent_dev_enable(dev, old_dev);
7912 return err;
7913 }
7914
7915 return 0;
7916 }
7917 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7918
7919 void netdev_adjacent_change_commit(struct net_device *old_dev,
7920 struct net_device *new_dev,
7921 struct net_device *dev)
7922 {
7923 struct netdev_nested_priv priv = {
7924 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7925 .data = NULL,
7926 };
7927
7928 if (!new_dev || !old_dev)
7929 return;
7930
7931 if (new_dev == old_dev)
7932 return;
7933
7934 netdev_adjacent_dev_enable(dev, old_dev);
7935 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7936 }
7937 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7938
7939 void netdev_adjacent_change_abort(struct net_device *old_dev,
7940 struct net_device *new_dev,
7941 struct net_device *dev)
7942 {
7943 struct netdev_nested_priv priv = {
7944 .flags = 0,
7945 .data = NULL,
7946 };
7947
7948 if (!new_dev)
7949 return;
7950
7951 if (old_dev && new_dev != old_dev)
7952 netdev_adjacent_dev_enable(dev, old_dev);
7953
7954 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7955 }
7956 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7957
7958 /**
7959 * netdev_bonding_info_change - Dispatch event about slave change
7960 * @dev: device
7961 * @bonding_info: info to dispatch
7962 *
7963 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7964 * The caller must hold the RTNL lock.
7965 */
7966 void netdev_bonding_info_change(struct net_device *dev,
7967 struct netdev_bonding_info *bonding_info)
7968 {
7969 struct netdev_notifier_bonding_info info = {
7970 .info.dev = dev,
7971 };
7972
7973 memcpy(&info.bonding_info, bonding_info,
7974 sizeof(struct netdev_bonding_info));
7975 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7976 &info.info);
7977 }
7978 EXPORT_SYMBOL(netdev_bonding_info_change);
7979
7980 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7981 struct netlink_ext_ack *extack)
7982 {
7983 struct netdev_notifier_offload_xstats_info info = {
7984 .info.dev = dev,
7985 .info.extack = extack,
7986 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7987 };
7988 int err;
7989 int rc;
7990
7991 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7992 GFP_KERNEL);
7993 if (!dev->offload_xstats_l3)
7994 return -ENOMEM;
7995
7996 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7997 NETDEV_OFFLOAD_XSTATS_DISABLE,
7998 &info.info);
7999 err = notifier_to_errno(rc);
8000 if (err)
8001 goto free_stats;
8002
8003 return 0;
8004
8005 free_stats:
8006 kfree(dev->offload_xstats_l3);
8007 dev->offload_xstats_l3 = NULL;
8008 return err;
8009 }
8010
8011 int netdev_offload_xstats_enable(struct net_device *dev,
8012 enum netdev_offload_xstats_type type,
8013 struct netlink_ext_ack *extack)
8014 {
8015 ASSERT_RTNL();
8016
8017 if (netdev_offload_xstats_enabled(dev, type))
8018 return -EALREADY;
8019
8020 switch (type) {
8021 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8022 return netdev_offload_xstats_enable_l3(dev, extack);
8023 }
8024
8025 WARN_ON(1);
8026 return -EINVAL;
8027 }
8028 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8029
8030 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8031 {
8032 struct netdev_notifier_offload_xstats_info info = {
8033 .info.dev = dev,
8034 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8035 };
8036
8037 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8038 &info.info);
8039 kfree(dev->offload_xstats_l3);
8040 dev->offload_xstats_l3 = NULL;
8041 }
8042
8043 int netdev_offload_xstats_disable(struct net_device *dev,
8044 enum netdev_offload_xstats_type type)
8045 {
8046 ASSERT_RTNL();
8047
8048 if (!netdev_offload_xstats_enabled(dev, type))
8049 return -EALREADY;
8050
8051 switch (type) {
8052 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8053 netdev_offload_xstats_disable_l3(dev);
8054 return 0;
8055 }
8056
8057 WARN_ON(1);
8058 return -EINVAL;
8059 }
8060 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8061
8062 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8063 {
8064 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8065 }
8066
8067 static struct rtnl_hw_stats64 *
8068 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8069 enum netdev_offload_xstats_type type)
8070 {
8071 switch (type) {
8072 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8073 return dev->offload_xstats_l3;
8074 }
8075
8076 WARN_ON(1);
8077 return NULL;
8078 }
8079
8080 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8081 enum netdev_offload_xstats_type type)
8082 {
8083 ASSERT_RTNL();
8084
8085 return netdev_offload_xstats_get_ptr(dev, type);
8086 }
8087 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8088
8089 struct netdev_notifier_offload_xstats_ru {
8090 bool used;
8091 };
8092
8093 struct netdev_notifier_offload_xstats_rd {
8094 struct rtnl_hw_stats64 stats;
8095 bool used;
8096 };
8097
8098 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8099 const struct rtnl_hw_stats64 *src)
8100 {
8101 dest->rx_packets += src->rx_packets;
8102 dest->tx_packets += src->tx_packets;
8103 dest->rx_bytes += src->rx_bytes;
8104 dest->tx_bytes += src->tx_bytes;
8105 dest->rx_errors += src->rx_errors;
8106 dest->tx_errors += src->tx_errors;
8107 dest->rx_dropped += src->rx_dropped;
8108 dest->tx_dropped += src->tx_dropped;
8109 dest->multicast += src->multicast;
8110 }
8111
8112 static int netdev_offload_xstats_get_used(struct net_device *dev,
8113 enum netdev_offload_xstats_type type,
8114 bool *p_used,
8115 struct netlink_ext_ack *extack)
8116 {
8117 struct netdev_notifier_offload_xstats_ru report_used = {};
8118 struct netdev_notifier_offload_xstats_info info = {
8119 .info.dev = dev,
8120 .info.extack = extack,
8121 .type = type,
8122 .report_used = &report_used,
8123 };
8124 int rc;
8125
8126 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8127 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8128 &info.info);
8129 *p_used = report_used.used;
8130 return notifier_to_errno(rc);
8131 }
8132
8133 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8134 enum netdev_offload_xstats_type type,
8135 struct rtnl_hw_stats64 *p_stats,
8136 bool *p_used,
8137 struct netlink_ext_ack *extack)
8138 {
8139 struct netdev_notifier_offload_xstats_rd report_delta = {};
8140 struct netdev_notifier_offload_xstats_info info = {
8141 .info.dev = dev,
8142 .info.extack = extack,
8143 .type = type,
8144 .report_delta = &report_delta,
8145 };
8146 struct rtnl_hw_stats64 *stats;
8147 int rc;
8148
8149 stats = netdev_offload_xstats_get_ptr(dev, type);
8150 if (WARN_ON(!stats))
8151 return -EINVAL;
8152
8153 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8154 &info.info);
8155
8156 /* Cache whatever we got, even if there was an error, otherwise the
8157 * successful stats retrievals would get lost.
8158 */
8159 netdev_hw_stats64_add(stats, &report_delta.stats);
8160
8161 if (p_stats)
8162 *p_stats = *stats;
8163 *p_used = report_delta.used;
8164
8165 return notifier_to_errno(rc);
8166 }
8167
8168 int netdev_offload_xstats_get(struct net_device *dev,
8169 enum netdev_offload_xstats_type type,
8170 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8171 struct netlink_ext_ack *extack)
8172 {
8173 ASSERT_RTNL();
8174
8175 if (p_stats)
8176 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8177 p_used, extack);
8178 else
8179 return netdev_offload_xstats_get_used(dev, type, p_used,
8180 extack);
8181 }
8182 EXPORT_SYMBOL(netdev_offload_xstats_get);
8183
8184 void
8185 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8186 const struct rtnl_hw_stats64 *stats)
8187 {
8188 report_delta->used = true;
8189 netdev_hw_stats64_add(&report_delta->stats, stats);
8190 }
8191 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8192
8193 void
8194 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8195 {
8196 report_used->used = true;
8197 }
8198 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8199
8200 void netdev_offload_xstats_push_delta(struct net_device *dev,
8201 enum netdev_offload_xstats_type type,
8202 const struct rtnl_hw_stats64 *p_stats)
8203 {
8204 struct rtnl_hw_stats64 *stats;
8205
8206 ASSERT_RTNL();
8207
8208 stats = netdev_offload_xstats_get_ptr(dev, type);
8209 if (WARN_ON(!stats))
8210 return;
8211
8212 netdev_hw_stats64_add(stats, p_stats);
8213 }
8214 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8215
8216 /**
8217 * netdev_get_xmit_slave - Get the xmit slave of master device
8218 * @dev: device
8219 * @skb: The packet
8220 * @all_slaves: assume all the slaves are active
8221 *
8222 * The reference counters are not incremented so the caller must be
8223 * careful with locks. The caller must hold RCU lock.
8224 * %NULL is returned if no slave is found.
8225 */
8226
8227 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8228 struct sk_buff *skb,
8229 bool all_slaves)
8230 {
8231 const struct net_device_ops *ops = dev->netdev_ops;
8232
8233 if (!ops->ndo_get_xmit_slave)
8234 return NULL;
8235 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8236 }
8237 EXPORT_SYMBOL(netdev_get_xmit_slave);
8238
8239 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8240 struct sock *sk)
8241 {
8242 const struct net_device_ops *ops = dev->netdev_ops;
8243
8244 if (!ops->ndo_sk_get_lower_dev)
8245 return NULL;
8246 return ops->ndo_sk_get_lower_dev(dev, sk);
8247 }
8248
8249 /**
8250 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8251 * @dev: device
8252 * @sk: the socket
8253 *
8254 * %NULL is returned if no lower device is found.
8255 */
8256
8257 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8258 struct sock *sk)
8259 {
8260 struct net_device *lower;
8261
8262 lower = netdev_sk_get_lower_dev(dev, sk);
8263 while (lower) {
8264 dev = lower;
8265 lower = netdev_sk_get_lower_dev(dev, sk);
8266 }
8267
8268 return dev;
8269 }
8270 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8271
8272 static void netdev_adjacent_add_links(struct net_device *dev)
8273 {
8274 struct netdev_adjacent *iter;
8275
8276 struct net *net = dev_net(dev);
8277
8278 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8279 if (!net_eq(net, dev_net(iter->dev)))
8280 continue;
8281 netdev_adjacent_sysfs_add(iter->dev, dev,
8282 &iter->dev->adj_list.lower);
8283 netdev_adjacent_sysfs_add(dev, iter->dev,
8284 &dev->adj_list.upper);
8285 }
8286
8287 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8288 if (!net_eq(net, dev_net(iter->dev)))
8289 continue;
8290 netdev_adjacent_sysfs_add(iter->dev, dev,
8291 &iter->dev->adj_list.upper);
8292 netdev_adjacent_sysfs_add(dev, iter->dev,
8293 &dev->adj_list.lower);
8294 }
8295 }
8296
8297 static void netdev_adjacent_del_links(struct net_device *dev)
8298 {
8299 struct netdev_adjacent *iter;
8300
8301 struct net *net = dev_net(dev);
8302
8303 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8304 if (!net_eq(net, dev_net(iter->dev)))
8305 continue;
8306 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8307 &iter->dev->adj_list.lower);
8308 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8309 &dev->adj_list.upper);
8310 }
8311
8312 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8313 if (!net_eq(net, dev_net(iter->dev)))
8314 continue;
8315 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8316 &iter->dev->adj_list.upper);
8317 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8318 &dev->adj_list.lower);
8319 }
8320 }
8321
8322 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8323 {
8324 struct netdev_adjacent *iter;
8325
8326 struct net *net = dev_net(dev);
8327
8328 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8329 if (!net_eq(net, dev_net(iter->dev)))
8330 continue;
8331 netdev_adjacent_sysfs_del(iter->dev, oldname,
8332 &iter->dev->adj_list.lower);
8333 netdev_adjacent_sysfs_add(iter->dev, dev,
8334 &iter->dev->adj_list.lower);
8335 }
8336
8337 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8338 if (!net_eq(net, dev_net(iter->dev)))
8339 continue;
8340 netdev_adjacent_sysfs_del(iter->dev, oldname,
8341 &iter->dev->adj_list.upper);
8342 netdev_adjacent_sysfs_add(iter->dev, dev,
8343 &iter->dev->adj_list.upper);
8344 }
8345 }
8346
8347 void *netdev_lower_dev_get_private(struct net_device *dev,
8348 struct net_device *lower_dev)
8349 {
8350 struct netdev_adjacent *lower;
8351
8352 if (!lower_dev)
8353 return NULL;
8354 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8355 if (!lower)
8356 return NULL;
8357
8358 return lower->private;
8359 }
8360 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8361
8362
8363 /**
8364 * netdev_lower_state_changed - Dispatch event about lower device state change
8365 * @lower_dev: device
8366 * @lower_state_info: state to dispatch
8367 *
8368 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8369 * The caller must hold the RTNL lock.
8370 */
8371 void netdev_lower_state_changed(struct net_device *lower_dev,
8372 void *lower_state_info)
8373 {
8374 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8375 .info.dev = lower_dev,
8376 };
8377
8378 ASSERT_RTNL();
8379 changelowerstate_info.lower_state_info = lower_state_info;
8380 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8381 &changelowerstate_info.info);
8382 }
8383 EXPORT_SYMBOL(netdev_lower_state_changed);
8384
8385 static void dev_change_rx_flags(struct net_device *dev, int flags)
8386 {
8387 const struct net_device_ops *ops = dev->netdev_ops;
8388
8389 if (ops->ndo_change_rx_flags)
8390 ops->ndo_change_rx_flags(dev, flags);
8391 }
8392
8393 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8394 {
8395 unsigned int old_flags = dev->flags;
8396 kuid_t uid;
8397 kgid_t gid;
8398
8399 ASSERT_RTNL();
8400
8401 dev->flags |= IFF_PROMISC;
8402 dev->promiscuity += inc;
8403 if (dev->promiscuity == 0) {
8404 /*
8405 * Avoid overflow.
8406 * If inc causes overflow, untouch promisc and return error.
8407 */
8408 if (inc < 0)
8409 dev->flags &= ~IFF_PROMISC;
8410 else {
8411 dev->promiscuity -= inc;
8412 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8413 return -EOVERFLOW;
8414 }
8415 }
8416 if (dev->flags != old_flags) {
8417 netdev_info(dev, "%s promiscuous mode\n",
8418 dev->flags & IFF_PROMISC ? "entered" : "left");
8419 if (audit_enabled) {
8420 current_uid_gid(&uid, &gid);
8421 audit_log(audit_context(), GFP_ATOMIC,
8422 AUDIT_ANOM_PROMISCUOUS,
8423 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8424 dev->name, (dev->flags & IFF_PROMISC),
8425 (old_flags & IFF_PROMISC),
8426 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8427 from_kuid(&init_user_ns, uid),
8428 from_kgid(&init_user_ns, gid),
8429 audit_get_sessionid(current));
8430 }
8431
8432 dev_change_rx_flags(dev, IFF_PROMISC);
8433 }
8434 if (notify)
8435 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8436 return 0;
8437 }
8438
8439 /**
8440 * dev_set_promiscuity - update promiscuity count on a device
8441 * @dev: device
8442 * @inc: modifier
8443 *
8444 * Add or remove promiscuity from a device. While the count in the device
8445 * remains above zero the interface remains promiscuous. Once it hits zero
8446 * the device reverts back to normal filtering operation. A negative inc
8447 * value is used to drop promiscuity on the device.
8448 * Return 0 if successful or a negative errno code on error.
8449 */
8450 int dev_set_promiscuity(struct net_device *dev, int inc)
8451 {
8452 unsigned int old_flags = dev->flags;
8453 int err;
8454
8455 err = __dev_set_promiscuity(dev, inc, true);
8456 if (err < 0)
8457 return err;
8458 if (dev->flags != old_flags)
8459 dev_set_rx_mode(dev);
8460 return err;
8461 }
8462 EXPORT_SYMBOL(dev_set_promiscuity);
8463
8464 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8465 {
8466 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8467
8468 ASSERT_RTNL();
8469
8470 dev->flags |= IFF_ALLMULTI;
8471 dev->allmulti += inc;
8472 if (dev->allmulti == 0) {
8473 /*
8474 * Avoid overflow.
8475 * If inc causes overflow, untouch allmulti and return error.
8476 */
8477 if (inc < 0)
8478 dev->flags &= ~IFF_ALLMULTI;
8479 else {
8480 dev->allmulti -= inc;
8481 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8482 return -EOVERFLOW;
8483 }
8484 }
8485 if (dev->flags ^ old_flags) {
8486 netdev_info(dev, "%s allmulticast mode\n",
8487 dev->flags & IFF_ALLMULTI ? "entered" : "left");
8488 dev_change_rx_flags(dev, IFF_ALLMULTI);
8489 dev_set_rx_mode(dev);
8490 if (notify)
8491 __dev_notify_flags(dev, old_flags,
8492 dev->gflags ^ old_gflags, 0, NULL);
8493 }
8494 return 0;
8495 }
8496
8497 /**
8498 * dev_set_allmulti - update allmulti count on a device
8499 * @dev: device
8500 * @inc: modifier
8501 *
8502 * Add or remove reception of all multicast frames to a device. While the
8503 * count in the device remains above zero the interface remains listening
8504 * to all interfaces. Once it hits zero the device reverts back to normal
8505 * filtering operation. A negative @inc value is used to drop the counter
8506 * when releasing a resource needing all multicasts.
8507 * Return 0 if successful or a negative errno code on error.
8508 */
8509
8510 int dev_set_allmulti(struct net_device *dev, int inc)
8511 {
8512 return __dev_set_allmulti(dev, inc, true);
8513 }
8514 EXPORT_SYMBOL(dev_set_allmulti);
8515
8516 /*
8517 * Upload unicast and multicast address lists to device and
8518 * configure RX filtering. When the device doesn't support unicast
8519 * filtering it is put in promiscuous mode while unicast addresses
8520 * are present.
8521 */
8522 void __dev_set_rx_mode(struct net_device *dev)
8523 {
8524 const struct net_device_ops *ops = dev->netdev_ops;
8525
8526 /* dev_open will call this function so the list will stay sane. */
8527 if (!(dev->flags&IFF_UP))
8528 return;
8529
8530 if (!netif_device_present(dev))
8531 return;
8532
8533 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8534 /* Unicast addresses changes may only happen under the rtnl,
8535 * therefore calling __dev_set_promiscuity here is safe.
8536 */
8537 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8538 __dev_set_promiscuity(dev, 1, false);
8539 dev->uc_promisc = true;
8540 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8541 __dev_set_promiscuity(dev, -1, false);
8542 dev->uc_promisc = false;
8543 }
8544 }
8545
8546 if (ops->ndo_set_rx_mode)
8547 ops->ndo_set_rx_mode(dev);
8548 }
8549
8550 void dev_set_rx_mode(struct net_device *dev)
8551 {
8552 netif_addr_lock_bh(dev);
8553 __dev_set_rx_mode(dev);
8554 netif_addr_unlock_bh(dev);
8555 }
8556
8557 /**
8558 * dev_get_flags - get flags reported to userspace
8559 * @dev: device
8560 *
8561 * Get the combination of flag bits exported through APIs to userspace.
8562 */
8563 unsigned int dev_get_flags(const struct net_device *dev)
8564 {
8565 unsigned int flags;
8566
8567 flags = (dev->flags & ~(IFF_PROMISC |
8568 IFF_ALLMULTI |
8569 IFF_RUNNING |
8570 IFF_LOWER_UP |
8571 IFF_DORMANT)) |
8572 (dev->gflags & (IFF_PROMISC |
8573 IFF_ALLMULTI));
8574
8575 if (netif_running(dev)) {
8576 if (netif_oper_up(dev))
8577 flags |= IFF_RUNNING;
8578 if (netif_carrier_ok(dev))
8579 flags |= IFF_LOWER_UP;
8580 if (netif_dormant(dev))
8581 flags |= IFF_DORMANT;
8582 }
8583
8584 return flags;
8585 }
8586 EXPORT_SYMBOL(dev_get_flags);
8587
8588 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8589 struct netlink_ext_ack *extack)
8590 {
8591 unsigned int old_flags = dev->flags;
8592 int ret;
8593
8594 ASSERT_RTNL();
8595
8596 /*
8597 * Set the flags on our device.
8598 */
8599
8600 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8601 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8602 IFF_AUTOMEDIA)) |
8603 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8604 IFF_ALLMULTI));
8605
8606 /*
8607 * Load in the correct multicast list now the flags have changed.
8608 */
8609
8610 if ((old_flags ^ flags) & IFF_MULTICAST)
8611 dev_change_rx_flags(dev, IFF_MULTICAST);
8612
8613 dev_set_rx_mode(dev);
8614
8615 /*
8616 * Have we downed the interface. We handle IFF_UP ourselves
8617 * according to user attempts to set it, rather than blindly
8618 * setting it.
8619 */
8620
8621 ret = 0;
8622 if ((old_flags ^ flags) & IFF_UP) {
8623 if (old_flags & IFF_UP)
8624 __dev_close(dev);
8625 else
8626 ret = __dev_open(dev, extack);
8627 }
8628
8629 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8630 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8631 unsigned int old_flags = dev->flags;
8632
8633 dev->gflags ^= IFF_PROMISC;
8634
8635 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8636 if (dev->flags != old_flags)
8637 dev_set_rx_mode(dev);
8638 }
8639
8640 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8641 * is important. Some (broken) drivers set IFF_PROMISC, when
8642 * IFF_ALLMULTI is requested not asking us and not reporting.
8643 */
8644 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8645 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8646
8647 dev->gflags ^= IFF_ALLMULTI;
8648 __dev_set_allmulti(dev, inc, false);
8649 }
8650
8651 return ret;
8652 }
8653
8654 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8655 unsigned int gchanges, u32 portid,
8656 const struct nlmsghdr *nlh)
8657 {
8658 unsigned int changes = dev->flags ^ old_flags;
8659
8660 if (gchanges)
8661 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8662
8663 if (changes & IFF_UP) {
8664 if (dev->flags & IFF_UP)
8665 call_netdevice_notifiers(NETDEV_UP, dev);
8666 else
8667 call_netdevice_notifiers(NETDEV_DOWN, dev);
8668 }
8669
8670 if (dev->flags & IFF_UP &&
8671 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8672 struct netdev_notifier_change_info change_info = {
8673 .info = {
8674 .dev = dev,
8675 },
8676 .flags_changed = changes,
8677 };
8678
8679 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8680 }
8681 }
8682
8683 /**
8684 * dev_change_flags - change device settings
8685 * @dev: device
8686 * @flags: device state flags
8687 * @extack: netlink extended ack
8688 *
8689 * Change settings on device based state flags. The flags are
8690 * in the userspace exported format.
8691 */
8692 int dev_change_flags(struct net_device *dev, unsigned int flags,
8693 struct netlink_ext_ack *extack)
8694 {
8695 int ret;
8696 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8697
8698 ret = __dev_change_flags(dev, flags, extack);
8699 if (ret < 0)
8700 return ret;
8701
8702 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8703 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8704 return ret;
8705 }
8706 EXPORT_SYMBOL(dev_change_flags);
8707
8708 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8709 {
8710 const struct net_device_ops *ops = dev->netdev_ops;
8711
8712 if (ops->ndo_change_mtu)
8713 return ops->ndo_change_mtu(dev, new_mtu);
8714
8715 /* Pairs with all the lockless reads of dev->mtu in the stack */
8716 WRITE_ONCE(dev->mtu, new_mtu);
8717 return 0;
8718 }
8719 EXPORT_SYMBOL(__dev_set_mtu);
8720
8721 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8722 struct netlink_ext_ack *extack)
8723 {
8724 /* MTU must be positive, and in range */
8725 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8726 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8727 return -EINVAL;
8728 }
8729
8730 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8731 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8732 return -EINVAL;
8733 }
8734 return 0;
8735 }
8736
8737 /**
8738 * dev_set_mtu_ext - Change maximum transfer unit
8739 * @dev: device
8740 * @new_mtu: new transfer unit
8741 * @extack: netlink extended ack
8742 *
8743 * Change the maximum transfer size of the network device.
8744 */
8745 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8746 struct netlink_ext_ack *extack)
8747 {
8748 int err, orig_mtu;
8749
8750 if (new_mtu == dev->mtu)
8751 return 0;
8752
8753 err = dev_validate_mtu(dev, new_mtu, extack);
8754 if (err)
8755 return err;
8756
8757 if (!netif_device_present(dev))
8758 return -ENODEV;
8759
8760 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8761 err = notifier_to_errno(err);
8762 if (err)
8763 return err;
8764
8765 orig_mtu = dev->mtu;
8766 err = __dev_set_mtu(dev, new_mtu);
8767
8768 if (!err) {
8769 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8770 orig_mtu);
8771 err = notifier_to_errno(err);
8772 if (err) {
8773 /* setting mtu back and notifying everyone again,
8774 * so that they have a chance to revert changes.
8775 */
8776 __dev_set_mtu(dev, orig_mtu);
8777 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8778 new_mtu);
8779 }
8780 }
8781 return err;
8782 }
8783
8784 int dev_set_mtu(struct net_device *dev, int new_mtu)
8785 {
8786 struct netlink_ext_ack extack;
8787 int err;
8788
8789 memset(&extack, 0, sizeof(extack));
8790 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8791 if (err && extack._msg)
8792 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8793 return err;
8794 }
8795 EXPORT_SYMBOL(dev_set_mtu);
8796
8797 /**
8798 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8799 * @dev: device
8800 * @new_len: new tx queue length
8801 */
8802 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8803 {
8804 unsigned int orig_len = dev->tx_queue_len;
8805 int res;
8806
8807 if (new_len != (unsigned int)new_len)
8808 return -ERANGE;
8809
8810 if (new_len != orig_len) {
8811 dev->tx_queue_len = new_len;
8812 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8813 res = notifier_to_errno(res);
8814 if (res)
8815 goto err_rollback;
8816 res = dev_qdisc_change_tx_queue_len(dev);
8817 if (res)
8818 goto err_rollback;
8819 }
8820
8821 return 0;
8822
8823 err_rollback:
8824 netdev_err(dev, "refused to change device tx_queue_len\n");
8825 dev->tx_queue_len = orig_len;
8826 return res;
8827 }
8828
8829 /**
8830 * dev_set_group - Change group this device belongs to
8831 * @dev: device
8832 * @new_group: group this device should belong to
8833 */
8834 void dev_set_group(struct net_device *dev, int new_group)
8835 {
8836 dev->group = new_group;
8837 }
8838
8839 /**
8840 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8841 * @dev: device
8842 * @addr: new address
8843 * @extack: netlink extended ack
8844 */
8845 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8846 struct netlink_ext_ack *extack)
8847 {
8848 struct netdev_notifier_pre_changeaddr_info info = {
8849 .info.dev = dev,
8850 .info.extack = extack,
8851 .dev_addr = addr,
8852 };
8853 int rc;
8854
8855 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8856 return notifier_to_errno(rc);
8857 }
8858 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8859
8860 /**
8861 * dev_set_mac_address - Change Media Access Control Address
8862 * @dev: device
8863 * @sa: new address
8864 * @extack: netlink extended ack
8865 *
8866 * Change the hardware (MAC) address of the device
8867 */
8868 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8869 struct netlink_ext_ack *extack)
8870 {
8871 const struct net_device_ops *ops = dev->netdev_ops;
8872 int err;
8873
8874 if (!ops->ndo_set_mac_address)
8875 return -EOPNOTSUPP;
8876 if (sa->sa_family != dev->type)
8877 return -EINVAL;
8878 if (!netif_device_present(dev))
8879 return -ENODEV;
8880 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8881 if (err)
8882 return err;
8883 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8884 err = ops->ndo_set_mac_address(dev, sa);
8885 if (err)
8886 return err;
8887 }
8888 dev->addr_assign_type = NET_ADDR_SET;
8889 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8890 add_device_randomness(dev->dev_addr, dev->addr_len);
8891 return 0;
8892 }
8893 EXPORT_SYMBOL(dev_set_mac_address);
8894
8895 static DECLARE_RWSEM(dev_addr_sem);
8896
8897 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8898 struct netlink_ext_ack *extack)
8899 {
8900 int ret;
8901
8902 down_write(&dev_addr_sem);
8903 ret = dev_set_mac_address(dev, sa, extack);
8904 up_write(&dev_addr_sem);
8905 return ret;
8906 }
8907 EXPORT_SYMBOL(dev_set_mac_address_user);
8908
8909 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8910 {
8911 size_t size = sizeof(sa->sa_data_min);
8912 struct net_device *dev;
8913 int ret = 0;
8914
8915 down_read(&dev_addr_sem);
8916 rcu_read_lock();
8917
8918 dev = dev_get_by_name_rcu(net, dev_name);
8919 if (!dev) {
8920 ret = -ENODEV;
8921 goto unlock;
8922 }
8923 if (!dev->addr_len)
8924 memset(sa->sa_data, 0, size);
8925 else
8926 memcpy(sa->sa_data, dev->dev_addr,
8927 min_t(size_t, size, dev->addr_len));
8928 sa->sa_family = dev->type;
8929
8930 unlock:
8931 rcu_read_unlock();
8932 up_read(&dev_addr_sem);
8933 return ret;
8934 }
8935 EXPORT_SYMBOL(dev_get_mac_address);
8936
8937 /**
8938 * dev_change_carrier - Change device carrier
8939 * @dev: device
8940 * @new_carrier: new value
8941 *
8942 * Change device carrier
8943 */
8944 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8945 {
8946 const struct net_device_ops *ops = dev->netdev_ops;
8947
8948 if (!ops->ndo_change_carrier)
8949 return -EOPNOTSUPP;
8950 if (!netif_device_present(dev))
8951 return -ENODEV;
8952 return ops->ndo_change_carrier(dev, new_carrier);
8953 }
8954
8955 /**
8956 * dev_get_phys_port_id - Get device physical port ID
8957 * @dev: device
8958 * @ppid: port ID
8959 *
8960 * Get device physical port ID
8961 */
8962 int dev_get_phys_port_id(struct net_device *dev,
8963 struct netdev_phys_item_id *ppid)
8964 {
8965 const struct net_device_ops *ops = dev->netdev_ops;
8966
8967 if (!ops->ndo_get_phys_port_id)
8968 return -EOPNOTSUPP;
8969 return ops->ndo_get_phys_port_id(dev, ppid);
8970 }
8971
8972 /**
8973 * dev_get_phys_port_name - Get device physical port name
8974 * @dev: device
8975 * @name: port name
8976 * @len: limit of bytes to copy to name
8977 *
8978 * Get device physical port name
8979 */
8980 int dev_get_phys_port_name(struct net_device *dev,
8981 char *name, size_t len)
8982 {
8983 const struct net_device_ops *ops = dev->netdev_ops;
8984 int err;
8985
8986 if (ops->ndo_get_phys_port_name) {
8987 err = ops->ndo_get_phys_port_name(dev, name, len);
8988 if (err != -EOPNOTSUPP)
8989 return err;
8990 }
8991 return devlink_compat_phys_port_name_get(dev, name, len);
8992 }
8993
8994 /**
8995 * dev_get_port_parent_id - Get the device's port parent identifier
8996 * @dev: network device
8997 * @ppid: pointer to a storage for the port's parent identifier
8998 * @recurse: allow/disallow recursion to lower devices
8999 *
9000 * Get the devices's port parent identifier
9001 */
9002 int dev_get_port_parent_id(struct net_device *dev,
9003 struct netdev_phys_item_id *ppid,
9004 bool recurse)
9005 {
9006 const struct net_device_ops *ops = dev->netdev_ops;
9007 struct netdev_phys_item_id first = { };
9008 struct net_device *lower_dev;
9009 struct list_head *iter;
9010 int err;
9011
9012 if (ops->ndo_get_port_parent_id) {
9013 err = ops->ndo_get_port_parent_id(dev, ppid);
9014 if (err != -EOPNOTSUPP)
9015 return err;
9016 }
9017
9018 err = devlink_compat_switch_id_get(dev, ppid);
9019 if (!recurse || err != -EOPNOTSUPP)
9020 return err;
9021
9022 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9023 err = dev_get_port_parent_id(lower_dev, ppid, true);
9024 if (err)
9025 break;
9026 if (!first.id_len)
9027 first = *ppid;
9028 else if (memcmp(&first, ppid, sizeof(*ppid)))
9029 return -EOPNOTSUPP;
9030 }
9031
9032 return err;
9033 }
9034 EXPORT_SYMBOL(dev_get_port_parent_id);
9035
9036 /**
9037 * netdev_port_same_parent_id - Indicate if two network devices have
9038 * the same port parent identifier
9039 * @a: first network device
9040 * @b: second network device
9041 */
9042 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9043 {
9044 struct netdev_phys_item_id a_id = { };
9045 struct netdev_phys_item_id b_id = { };
9046
9047 if (dev_get_port_parent_id(a, &a_id, true) ||
9048 dev_get_port_parent_id(b, &b_id, true))
9049 return false;
9050
9051 return netdev_phys_item_id_same(&a_id, &b_id);
9052 }
9053 EXPORT_SYMBOL(netdev_port_same_parent_id);
9054
9055 /**
9056 * dev_change_proto_down - set carrier according to proto_down.
9057 *
9058 * @dev: device
9059 * @proto_down: new value
9060 */
9061 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9062 {
9063 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9064 return -EOPNOTSUPP;
9065 if (!netif_device_present(dev))
9066 return -ENODEV;
9067 if (proto_down)
9068 netif_carrier_off(dev);
9069 else
9070 netif_carrier_on(dev);
9071 dev->proto_down = proto_down;
9072 return 0;
9073 }
9074
9075 /**
9076 * dev_change_proto_down_reason - proto down reason
9077 *
9078 * @dev: device
9079 * @mask: proto down mask
9080 * @value: proto down value
9081 */
9082 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9083 u32 value)
9084 {
9085 int b;
9086
9087 if (!mask) {
9088 dev->proto_down_reason = value;
9089 } else {
9090 for_each_set_bit(b, &mask, 32) {
9091 if (value & (1 << b))
9092 dev->proto_down_reason |= BIT(b);
9093 else
9094 dev->proto_down_reason &= ~BIT(b);
9095 }
9096 }
9097 }
9098
9099 struct bpf_xdp_link {
9100 struct bpf_link link;
9101 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9102 int flags;
9103 };
9104
9105 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9106 {
9107 if (flags & XDP_FLAGS_HW_MODE)
9108 return XDP_MODE_HW;
9109 if (flags & XDP_FLAGS_DRV_MODE)
9110 return XDP_MODE_DRV;
9111 if (flags & XDP_FLAGS_SKB_MODE)
9112 return XDP_MODE_SKB;
9113 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9114 }
9115
9116 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9117 {
9118 switch (mode) {
9119 case XDP_MODE_SKB:
9120 return generic_xdp_install;
9121 case XDP_MODE_DRV:
9122 case XDP_MODE_HW:
9123 return dev->netdev_ops->ndo_bpf;
9124 default:
9125 return NULL;
9126 }
9127 }
9128
9129 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9130 enum bpf_xdp_mode mode)
9131 {
9132 return dev->xdp_state[mode].link;
9133 }
9134
9135 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9136 enum bpf_xdp_mode mode)
9137 {
9138 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9139
9140 if (link)
9141 return link->link.prog;
9142 return dev->xdp_state[mode].prog;
9143 }
9144
9145 u8 dev_xdp_prog_count(struct net_device *dev)
9146 {
9147 u8 count = 0;
9148 int i;
9149
9150 for (i = 0; i < __MAX_XDP_MODE; i++)
9151 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9152 count++;
9153 return count;
9154 }
9155 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9156
9157 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9158 {
9159 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9160
9161 return prog ? prog->aux->id : 0;
9162 }
9163
9164 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9165 struct bpf_xdp_link *link)
9166 {
9167 dev->xdp_state[mode].link = link;
9168 dev->xdp_state[mode].prog = NULL;
9169 }
9170
9171 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9172 struct bpf_prog *prog)
9173 {
9174 dev->xdp_state[mode].link = NULL;
9175 dev->xdp_state[mode].prog = prog;
9176 }
9177
9178 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9179 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9180 u32 flags, struct bpf_prog *prog)
9181 {
9182 struct netdev_bpf xdp;
9183 int err;
9184
9185 memset(&xdp, 0, sizeof(xdp));
9186 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9187 xdp.extack = extack;
9188 xdp.flags = flags;
9189 xdp.prog = prog;
9190
9191 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9192 * "moved" into driver), so they don't increment it on their own, but
9193 * they do decrement refcnt when program is detached or replaced.
9194 * Given net_device also owns link/prog, we need to bump refcnt here
9195 * to prevent drivers from underflowing it.
9196 */
9197 if (prog)
9198 bpf_prog_inc(prog);
9199 err = bpf_op(dev, &xdp);
9200 if (err) {
9201 if (prog)
9202 bpf_prog_put(prog);
9203 return err;
9204 }
9205
9206 if (mode != XDP_MODE_HW)
9207 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9208
9209 return 0;
9210 }
9211
9212 static void dev_xdp_uninstall(struct net_device *dev)
9213 {
9214 struct bpf_xdp_link *link;
9215 struct bpf_prog *prog;
9216 enum bpf_xdp_mode mode;
9217 bpf_op_t bpf_op;
9218
9219 ASSERT_RTNL();
9220
9221 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9222 prog = dev_xdp_prog(dev, mode);
9223 if (!prog)
9224 continue;
9225
9226 bpf_op = dev_xdp_bpf_op(dev, mode);
9227 if (!bpf_op)
9228 continue;
9229
9230 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9231
9232 /* auto-detach link from net device */
9233 link = dev_xdp_link(dev, mode);
9234 if (link)
9235 link->dev = NULL;
9236 else
9237 bpf_prog_put(prog);
9238
9239 dev_xdp_set_link(dev, mode, NULL);
9240 }
9241 }
9242
9243 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9244 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9245 struct bpf_prog *old_prog, u32 flags)
9246 {
9247 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9248 struct bpf_prog *cur_prog;
9249 struct net_device *upper;
9250 struct list_head *iter;
9251 enum bpf_xdp_mode mode;
9252 bpf_op_t bpf_op;
9253 int err;
9254
9255 ASSERT_RTNL();
9256
9257 /* either link or prog attachment, never both */
9258 if (link && (new_prog || old_prog))
9259 return -EINVAL;
9260 /* link supports only XDP mode flags */
9261 if (link && (flags & ~XDP_FLAGS_MODES)) {
9262 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9263 return -EINVAL;
9264 }
9265 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9266 if (num_modes > 1) {
9267 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9268 return -EINVAL;
9269 }
9270 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9271 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9272 NL_SET_ERR_MSG(extack,
9273 "More than one program loaded, unset mode is ambiguous");
9274 return -EINVAL;
9275 }
9276 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9277 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9278 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9279 return -EINVAL;
9280 }
9281
9282 mode = dev_xdp_mode(dev, flags);
9283 /* can't replace attached link */
9284 if (dev_xdp_link(dev, mode)) {
9285 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9286 return -EBUSY;
9287 }
9288
9289 /* don't allow if an upper device already has a program */
9290 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9291 if (dev_xdp_prog_count(upper) > 0) {
9292 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9293 return -EEXIST;
9294 }
9295 }
9296
9297 cur_prog = dev_xdp_prog(dev, mode);
9298 /* can't replace attached prog with link */
9299 if (link && cur_prog) {
9300 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9301 return -EBUSY;
9302 }
9303 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9304 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9305 return -EEXIST;
9306 }
9307
9308 /* put effective new program into new_prog */
9309 if (link)
9310 new_prog = link->link.prog;
9311
9312 if (new_prog) {
9313 bool offload = mode == XDP_MODE_HW;
9314 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9315 ? XDP_MODE_DRV : XDP_MODE_SKB;
9316
9317 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9318 NL_SET_ERR_MSG(extack, "XDP program already attached");
9319 return -EBUSY;
9320 }
9321 if (!offload && dev_xdp_prog(dev, other_mode)) {
9322 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9323 return -EEXIST;
9324 }
9325 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9326 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9327 return -EINVAL;
9328 }
9329 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9330 NL_SET_ERR_MSG(extack, "Program bound to different device");
9331 return -EINVAL;
9332 }
9333 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9334 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9335 return -EINVAL;
9336 }
9337 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9338 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9339 return -EINVAL;
9340 }
9341 }
9342
9343 /* don't call drivers if the effective program didn't change */
9344 if (new_prog != cur_prog) {
9345 bpf_op = dev_xdp_bpf_op(dev, mode);
9346 if (!bpf_op) {
9347 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9348 return -EOPNOTSUPP;
9349 }
9350
9351 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9352 if (err)
9353 return err;
9354 }
9355
9356 if (link)
9357 dev_xdp_set_link(dev, mode, link);
9358 else
9359 dev_xdp_set_prog(dev, mode, new_prog);
9360 if (cur_prog)
9361 bpf_prog_put(cur_prog);
9362
9363 return 0;
9364 }
9365
9366 static int dev_xdp_attach_link(struct net_device *dev,
9367 struct netlink_ext_ack *extack,
9368 struct bpf_xdp_link *link)
9369 {
9370 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9371 }
9372
9373 static int dev_xdp_detach_link(struct net_device *dev,
9374 struct netlink_ext_ack *extack,
9375 struct bpf_xdp_link *link)
9376 {
9377 enum bpf_xdp_mode mode;
9378 bpf_op_t bpf_op;
9379
9380 ASSERT_RTNL();
9381
9382 mode = dev_xdp_mode(dev, link->flags);
9383 if (dev_xdp_link(dev, mode) != link)
9384 return -EINVAL;
9385
9386 bpf_op = dev_xdp_bpf_op(dev, mode);
9387 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9388 dev_xdp_set_link(dev, mode, NULL);
9389 return 0;
9390 }
9391
9392 static void bpf_xdp_link_release(struct bpf_link *link)
9393 {
9394 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9395
9396 rtnl_lock();
9397
9398 /* if racing with net_device's tear down, xdp_link->dev might be
9399 * already NULL, in which case link was already auto-detached
9400 */
9401 if (xdp_link->dev) {
9402 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9403 xdp_link->dev = NULL;
9404 }
9405
9406 rtnl_unlock();
9407 }
9408
9409 static int bpf_xdp_link_detach(struct bpf_link *link)
9410 {
9411 bpf_xdp_link_release(link);
9412 return 0;
9413 }
9414
9415 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9416 {
9417 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9418
9419 kfree(xdp_link);
9420 }
9421
9422 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9423 struct seq_file *seq)
9424 {
9425 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9426 u32 ifindex = 0;
9427
9428 rtnl_lock();
9429 if (xdp_link->dev)
9430 ifindex = xdp_link->dev->ifindex;
9431 rtnl_unlock();
9432
9433 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9434 }
9435
9436 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9437 struct bpf_link_info *info)
9438 {
9439 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9440 u32 ifindex = 0;
9441
9442 rtnl_lock();
9443 if (xdp_link->dev)
9444 ifindex = xdp_link->dev->ifindex;
9445 rtnl_unlock();
9446
9447 info->xdp.ifindex = ifindex;
9448 return 0;
9449 }
9450
9451 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9452 struct bpf_prog *old_prog)
9453 {
9454 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9455 enum bpf_xdp_mode mode;
9456 bpf_op_t bpf_op;
9457 int err = 0;
9458
9459 rtnl_lock();
9460
9461 /* link might have been auto-released already, so fail */
9462 if (!xdp_link->dev) {
9463 err = -ENOLINK;
9464 goto out_unlock;
9465 }
9466
9467 if (old_prog && link->prog != old_prog) {
9468 err = -EPERM;
9469 goto out_unlock;
9470 }
9471 old_prog = link->prog;
9472 if (old_prog->type != new_prog->type ||
9473 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9474 err = -EINVAL;
9475 goto out_unlock;
9476 }
9477
9478 if (old_prog == new_prog) {
9479 /* no-op, don't disturb drivers */
9480 bpf_prog_put(new_prog);
9481 goto out_unlock;
9482 }
9483
9484 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9485 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9486 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9487 xdp_link->flags, new_prog);
9488 if (err)
9489 goto out_unlock;
9490
9491 old_prog = xchg(&link->prog, new_prog);
9492 bpf_prog_put(old_prog);
9493
9494 out_unlock:
9495 rtnl_unlock();
9496 return err;
9497 }
9498
9499 static const struct bpf_link_ops bpf_xdp_link_lops = {
9500 .release = bpf_xdp_link_release,
9501 .dealloc = bpf_xdp_link_dealloc,
9502 .detach = bpf_xdp_link_detach,
9503 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9504 .fill_link_info = bpf_xdp_link_fill_link_info,
9505 .update_prog = bpf_xdp_link_update,
9506 };
9507
9508 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9509 {
9510 struct net *net = current->nsproxy->net_ns;
9511 struct bpf_link_primer link_primer;
9512 struct netlink_ext_ack extack = {};
9513 struct bpf_xdp_link *link;
9514 struct net_device *dev;
9515 int err, fd;
9516
9517 rtnl_lock();
9518 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9519 if (!dev) {
9520 rtnl_unlock();
9521 return -EINVAL;
9522 }
9523
9524 link = kzalloc(sizeof(*link), GFP_USER);
9525 if (!link) {
9526 err = -ENOMEM;
9527 goto unlock;
9528 }
9529
9530 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9531 link->dev = dev;
9532 link->flags = attr->link_create.flags;
9533
9534 err = bpf_link_prime(&link->link, &link_primer);
9535 if (err) {
9536 kfree(link);
9537 goto unlock;
9538 }
9539
9540 err = dev_xdp_attach_link(dev, &extack, link);
9541 rtnl_unlock();
9542
9543 if (err) {
9544 link->dev = NULL;
9545 bpf_link_cleanup(&link_primer);
9546 trace_bpf_xdp_link_attach_failed(extack._msg);
9547 goto out_put_dev;
9548 }
9549
9550 fd = bpf_link_settle(&link_primer);
9551 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9552 dev_put(dev);
9553 return fd;
9554
9555 unlock:
9556 rtnl_unlock();
9557
9558 out_put_dev:
9559 dev_put(dev);
9560 return err;
9561 }
9562
9563 /**
9564 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9565 * @dev: device
9566 * @extack: netlink extended ack
9567 * @fd: new program fd or negative value to clear
9568 * @expected_fd: old program fd that userspace expects to replace or clear
9569 * @flags: xdp-related flags
9570 *
9571 * Set or clear a bpf program for a device
9572 */
9573 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9574 int fd, int expected_fd, u32 flags)
9575 {
9576 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9577 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9578 int err;
9579
9580 ASSERT_RTNL();
9581
9582 if (fd >= 0) {
9583 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9584 mode != XDP_MODE_SKB);
9585 if (IS_ERR(new_prog))
9586 return PTR_ERR(new_prog);
9587 }
9588
9589 if (expected_fd >= 0) {
9590 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9591 mode != XDP_MODE_SKB);
9592 if (IS_ERR(old_prog)) {
9593 err = PTR_ERR(old_prog);
9594 old_prog = NULL;
9595 goto err_out;
9596 }
9597 }
9598
9599 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9600
9601 err_out:
9602 if (err && new_prog)
9603 bpf_prog_put(new_prog);
9604 if (old_prog)
9605 bpf_prog_put(old_prog);
9606 return err;
9607 }
9608
9609 /**
9610 * dev_index_reserve() - allocate an ifindex in a namespace
9611 * @net: the applicable net namespace
9612 * @ifindex: requested ifindex, pass %0 to get one allocated
9613 *
9614 * Allocate a ifindex for a new device. Caller must either use the ifindex
9615 * to store the device (via list_netdevice()) or call dev_index_release()
9616 * to give the index up.
9617 *
9618 * Return: a suitable unique value for a new device interface number or -errno.
9619 */
9620 static int dev_index_reserve(struct net *net, u32 ifindex)
9621 {
9622 int err;
9623
9624 if (ifindex > INT_MAX) {
9625 DEBUG_NET_WARN_ON_ONCE(1);
9626 return -EINVAL;
9627 }
9628
9629 if (!ifindex)
9630 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9631 xa_limit_31b, &net->ifindex, GFP_KERNEL);
9632 else
9633 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9634 if (err < 0)
9635 return err;
9636
9637 return ifindex;
9638 }
9639
9640 static void dev_index_release(struct net *net, int ifindex)
9641 {
9642 /* Expect only unused indexes, unlist_netdevice() removes the used */
9643 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9644 }
9645
9646 /* Delayed registration/unregisteration */
9647 LIST_HEAD(net_todo_list);
9648 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9649
9650 static void net_set_todo(struct net_device *dev)
9651 {
9652 list_add_tail(&dev->todo_list, &net_todo_list);
9653 atomic_inc(&dev_net(dev)->dev_unreg_count);
9654 }
9655
9656 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9657 struct net_device *upper, netdev_features_t features)
9658 {
9659 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9660 netdev_features_t feature;
9661 int feature_bit;
9662
9663 for_each_netdev_feature(upper_disables, feature_bit) {
9664 feature = __NETIF_F_BIT(feature_bit);
9665 if (!(upper->wanted_features & feature)
9666 && (features & feature)) {
9667 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9668 &feature, upper->name);
9669 features &= ~feature;
9670 }
9671 }
9672
9673 return features;
9674 }
9675
9676 static void netdev_sync_lower_features(struct net_device *upper,
9677 struct net_device *lower, netdev_features_t features)
9678 {
9679 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9680 netdev_features_t feature;
9681 int feature_bit;
9682
9683 for_each_netdev_feature(upper_disables, feature_bit) {
9684 feature = __NETIF_F_BIT(feature_bit);
9685 if (!(features & feature) && (lower->features & feature)) {
9686 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9687 &feature, lower->name);
9688 lower->wanted_features &= ~feature;
9689 __netdev_update_features(lower);
9690
9691 if (unlikely(lower->features & feature))
9692 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9693 &feature, lower->name);
9694 else
9695 netdev_features_change(lower);
9696 }
9697 }
9698 }
9699
9700 static netdev_features_t netdev_fix_features(struct net_device *dev,
9701 netdev_features_t features)
9702 {
9703 /* Fix illegal checksum combinations */
9704 if ((features & NETIF_F_HW_CSUM) &&
9705 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9706 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9707 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9708 }
9709
9710 /* TSO requires that SG is present as well. */
9711 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9712 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9713 features &= ~NETIF_F_ALL_TSO;
9714 }
9715
9716 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9717 !(features & NETIF_F_IP_CSUM)) {
9718 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9719 features &= ~NETIF_F_TSO;
9720 features &= ~NETIF_F_TSO_ECN;
9721 }
9722
9723 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9724 !(features & NETIF_F_IPV6_CSUM)) {
9725 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9726 features &= ~NETIF_F_TSO6;
9727 }
9728
9729 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9730 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9731 features &= ~NETIF_F_TSO_MANGLEID;
9732
9733 /* TSO ECN requires that TSO is present as well. */
9734 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9735 features &= ~NETIF_F_TSO_ECN;
9736
9737 /* Software GSO depends on SG. */
9738 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9739 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9740 features &= ~NETIF_F_GSO;
9741 }
9742
9743 /* GSO partial features require GSO partial be set */
9744 if ((features & dev->gso_partial_features) &&
9745 !(features & NETIF_F_GSO_PARTIAL)) {
9746 netdev_dbg(dev,
9747 "Dropping partially supported GSO features since no GSO partial.\n");
9748 features &= ~dev->gso_partial_features;
9749 }
9750
9751 if (!(features & NETIF_F_RXCSUM)) {
9752 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9753 * successfully merged by hardware must also have the
9754 * checksum verified by hardware. If the user does not
9755 * want to enable RXCSUM, logically, we should disable GRO_HW.
9756 */
9757 if (features & NETIF_F_GRO_HW) {
9758 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9759 features &= ~NETIF_F_GRO_HW;
9760 }
9761 }
9762
9763 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9764 if (features & NETIF_F_RXFCS) {
9765 if (features & NETIF_F_LRO) {
9766 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9767 features &= ~NETIF_F_LRO;
9768 }
9769
9770 if (features & NETIF_F_GRO_HW) {
9771 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9772 features &= ~NETIF_F_GRO_HW;
9773 }
9774 }
9775
9776 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9777 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9778 features &= ~NETIF_F_LRO;
9779 }
9780
9781 if (features & NETIF_F_HW_TLS_TX) {
9782 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9783 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9784 bool hw_csum = features & NETIF_F_HW_CSUM;
9785
9786 if (!ip_csum && !hw_csum) {
9787 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9788 features &= ~NETIF_F_HW_TLS_TX;
9789 }
9790 }
9791
9792 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9793 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9794 features &= ~NETIF_F_HW_TLS_RX;
9795 }
9796
9797 return features;
9798 }
9799
9800 int __netdev_update_features(struct net_device *dev)
9801 {
9802 struct net_device *upper, *lower;
9803 netdev_features_t features;
9804 struct list_head *iter;
9805 int err = -1;
9806
9807 ASSERT_RTNL();
9808
9809 features = netdev_get_wanted_features(dev);
9810
9811 if (dev->netdev_ops->ndo_fix_features)
9812 features = dev->netdev_ops->ndo_fix_features(dev, features);
9813
9814 /* driver might be less strict about feature dependencies */
9815 features = netdev_fix_features(dev, features);
9816
9817 /* some features can't be enabled if they're off on an upper device */
9818 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9819 features = netdev_sync_upper_features(dev, upper, features);
9820
9821 if (dev->features == features)
9822 goto sync_lower;
9823
9824 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9825 &dev->features, &features);
9826
9827 if (dev->netdev_ops->ndo_set_features)
9828 err = dev->netdev_ops->ndo_set_features(dev, features);
9829 else
9830 err = 0;
9831
9832 if (unlikely(err < 0)) {
9833 netdev_err(dev,
9834 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9835 err, &features, &dev->features);
9836 /* return non-0 since some features might have changed and
9837 * it's better to fire a spurious notification than miss it
9838 */
9839 return -1;
9840 }
9841
9842 sync_lower:
9843 /* some features must be disabled on lower devices when disabled
9844 * on an upper device (think: bonding master or bridge)
9845 */
9846 netdev_for_each_lower_dev(dev, lower, iter)
9847 netdev_sync_lower_features(dev, lower, features);
9848
9849 if (!err) {
9850 netdev_features_t diff = features ^ dev->features;
9851
9852 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9853 /* udp_tunnel_{get,drop}_rx_info both need
9854 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9855 * device, or they won't do anything.
9856 * Thus we need to update dev->features
9857 * *before* calling udp_tunnel_get_rx_info,
9858 * but *after* calling udp_tunnel_drop_rx_info.
9859 */
9860 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9861 dev->features = features;
9862 udp_tunnel_get_rx_info(dev);
9863 } else {
9864 udp_tunnel_drop_rx_info(dev);
9865 }
9866 }
9867
9868 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9869 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9870 dev->features = features;
9871 err |= vlan_get_rx_ctag_filter_info(dev);
9872 } else {
9873 vlan_drop_rx_ctag_filter_info(dev);
9874 }
9875 }
9876
9877 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9878 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9879 dev->features = features;
9880 err |= vlan_get_rx_stag_filter_info(dev);
9881 } else {
9882 vlan_drop_rx_stag_filter_info(dev);
9883 }
9884 }
9885
9886 dev->features = features;
9887 }
9888
9889 return err < 0 ? 0 : 1;
9890 }
9891
9892 /**
9893 * netdev_update_features - recalculate device features
9894 * @dev: the device to check
9895 *
9896 * Recalculate dev->features set and send notifications if it
9897 * has changed. Should be called after driver or hardware dependent
9898 * conditions might have changed that influence the features.
9899 */
9900 void netdev_update_features(struct net_device *dev)
9901 {
9902 if (__netdev_update_features(dev))
9903 netdev_features_change(dev);
9904 }
9905 EXPORT_SYMBOL(netdev_update_features);
9906
9907 /**
9908 * netdev_change_features - recalculate device features
9909 * @dev: the device to check
9910 *
9911 * Recalculate dev->features set and send notifications even
9912 * if they have not changed. Should be called instead of
9913 * netdev_update_features() if also dev->vlan_features might
9914 * have changed to allow the changes to be propagated to stacked
9915 * VLAN devices.
9916 */
9917 void netdev_change_features(struct net_device *dev)
9918 {
9919 __netdev_update_features(dev);
9920 netdev_features_change(dev);
9921 }
9922 EXPORT_SYMBOL(netdev_change_features);
9923
9924 /**
9925 * netif_stacked_transfer_operstate - transfer operstate
9926 * @rootdev: the root or lower level device to transfer state from
9927 * @dev: the device to transfer operstate to
9928 *
9929 * Transfer operational state from root to device. This is normally
9930 * called when a stacking relationship exists between the root
9931 * device and the device(a leaf device).
9932 */
9933 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9934 struct net_device *dev)
9935 {
9936 if (rootdev->operstate == IF_OPER_DORMANT)
9937 netif_dormant_on(dev);
9938 else
9939 netif_dormant_off(dev);
9940
9941 if (rootdev->operstate == IF_OPER_TESTING)
9942 netif_testing_on(dev);
9943 else
9944 netif_testing_off(dev);
9945
9946 if (netif_carrier_ok(rootdev))
9947 netif_carrier_on(dev);
9948 else
9949 netif_carrier_off(dev);
9950 }
9951 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9952
9953 static int netif_alloc_rx_queues(struct net_device *dev)
9954 {
9955 unsigned int i, count = dev->num_rx_queues;
9956 struct netdev_rx_queue *rx;
9957 size_t sz = count * sizeof(*rx);
9958 int err = 0;
9959
9960 BUG_ON(count < 1);
9961
9962 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9963 if (!rx)
9964 return -ENOMEM;
9965
9966 dev->_rx = rx;
9967
9968 for (i = 0; i < count; i++) {
9969 rx[i].dev = dev;
9970
9971 /* XDP RX-queue setup */
9972 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9973 if (err < 0)
9974 goto err_rxq_info;
9975 }
9976 return 0;
9977
9978 err_rxq_info:
9979 /* Rollback successful reg's and free other resources */
9980 while (i--)
9981 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9982 kvfree(dev->_rx);
9983 dev->_rx = NULL;
9984 return err;
9985 }
9986
9987 static void netif_free_rx_queues(struct net_device *dev)
9988 {
9989 unsigned int i, count = dev->num_rx_queues;
9990
9991 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9992 if (!dev->_rx)
9993 return;
9994
9995 for (i = 0; i < count; i++)
9996 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9997
9998 kvfree(dev->_rx);
9999 }
10000
10001 static void netdev_init_one_queue(struct net_device *dev,
10002 struct netdev_queue *queue, void *_unused)
10003 {
10004 /* Initialize queue lock */
10005 spin_lock_init(&queue->_xmit_lock);
10006 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10007 queue->xmit_lock_owner = -1;
10008 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10009 queue->dev = dev;
10010 #ifdef CONFIG_BQL
10011 dql_init(&queue->dql, HZ);
10012 #endif
10013 }
10014
10015 static void netif_free_tx_queues(struct net_device *dev)
10016 {
10017 kvfree(dev->_tx);
10018 }
10019
10020 static int netif_alloc_netdev_queues(struct net_device *dev)
10021 {
10022 unsigned int count = dev->num_tx_queues;
10023 struct netdev_queue *tx;
10024 size_t sz = count * sizeof(*tx);
10025
10026 if (count < 1 || count > 0xffff)
10027 return -EINVAL;
10028
10029 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10030 if (!tx)
10031 return -ENOMEM;
10032
10033 dev->_tx = tx;
10034
10035 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10036 spin_lock_init(&dev->tx_global_lock);
10037
10038 return 0;
10039 }
10040
10041 void netif_tx_stop_all_queues(struct net_device *dev)
10042 {
10043 unsigned int i;
10044
10045 for (i = 0; i < dev->num_tx_queues; i++) {
10046 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10047
10048 netif_tx_stop_queue(txq);
10049 }
10050 }
10051 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10052
10053 /**
10054 * register_netdevice() - register a network device
10055 * @dev: device to register
10056 *
10057 * Take a prepared network device structure and make it externally accessible.
10058 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10059 * Callers must hold the rtnl lock - you may want register_netdev()
10060 * instead of this.
10061 */
10062 int register_netdevice(struct net_device *dev)
10063 {
10064 int ret;
10065 struct net *net = dev_net(dev);
10066
10067 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10068 NETDEV_FEATURE_COUNT);
10069 BUG_ON(dev_boot_phase);
10070 ASSERT_RTNL();
10071
10072 might_sleep();
10073
10074 /* When net_device's are persistent, this will be fatal. */
10075 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10076 BUG_ON(!net);
10077
10078 ret = ethtool_check_ops(dev->ethtool_ops);
10079 if (ret)
10080 return ret;
10081
10082 spin_lock_init(&dev->addr_list_lock);
10083 netdev_set_addr_lockdep_class(dev);
10084
10085 ret = dev_get_valid_name(net, dev, dev->name);
10086 if (ret < 0)
10087 goto out;
10088
10089 ret = -ENOMEM;
10090 dev->name_node = netdev_name_node_head_alloc(dev);
10091 if (!dev->name_node)
10092 goto out;
10093
10094 /* Init, if this function is available */
10095 if (dev->netdev_ops->ndo_init) {
10096 ret = dev->netdev_ops->ndo_init(dev);
10097 if (ret) {
10098 if (ret > 0)
10099 ret = -EIO;
10100 goto err_free_name;
10101 }
10102 }
10103
10104 if (((dev->hw_features | dev->features) &
10105 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10106 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10107 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10108 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10109 ret = -EINVAL;
10110 goto err_uninit;
10111 }
10112
10113 ret = dev_index_reserve(net, dev->ifindex);
10114 if (ret < 0)
10115 goto err_uninit;
10116 dev->ifindex = ret;
10117
10118 /* Transfer changeable features to wanted_features and enable
10119 * software offloads (GSO and GRO).
10120 */
10121 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10122 dev->features |= NETIF_F_SOFT_FEATURES;
10123
10124 if (dev->udp_tunnel_nic_info) {
10125 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10126 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10127 }
10128
10129 dev->wanted_features = dev->features & dev->hw_features;
10130
10131 if (!(dev->flags & IFF_LOOPBACK))
10132 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10133
10134 /* If IPv4 TCP segmentation offload is supported we should also
10135 * allow the device to enable segmenting the frame with the option
10136 * of ignoring a static IP ID value. This doesn't enable the
10137 * feature itself but allows the user to enable it later.
10138 */
10139 if (dev->hw_features & NETIF_F_TSO)
10140 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10141 if (dev->vlan_features & NETIF_F_TSO)
10142 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10143 if (dev->mpls_features & NETIF_F_TSO)
10144 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10145 if (dev->hw_enc_features & NETIF_F_TSO)
10146 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10147
10148 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10149 */
10150 dev->vlan_features |= NETIF_F_HIGHDMA;
10151
10152 /* Make NETIF_F_SG inheritable to tunnel devices.
10153 */
10154 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10155
10156 /* Make NETIF_F_SG inheritable to MPLS.
10157 */
10158 dev->mpls_features |= NETIF_F_SG;
10159
10160 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10161 ret = notifier_to_errno(ret);
10162 if (ret)
10163 goto err_ifindex_release;
10164
10165 ret = netdev_register_kobject(dev);
10166 write_lock(&dev_base_lock);
10167 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10168 write_unlock(&dev_base_lock);
10169 if (ret)
10170 goto err_uninit_notify;
10171
10172 __netdev_update_features(dev);
10173
10174 /*
10175 * Default initial state at registry is that the
10176 * device is present.
10177 */
10178
10179 set_bit(__LINK_STATE_PRESENT, &dev->state);
10180
10181 linkwatch_init_dev(dev);
10182
10183 dev_init_scheduler(dev);
10184
10185 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10186 list_netdevice(dev);
10187
10188 add_device_randomness(dev->dev_addr, dev->addr_len);
10189
10190 /* If the device has permanent device address, driver should
10191 * set dev_addr and also addr_assign_type should be set to
10192 * NET_ADDR_PERM (default value).
10193 */
10194 if (dev->addr_assign_type == NET_ADDR_PERM)
10195 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10196
10197 /* Notify protocols, that a new device appeared. */
10198 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10199 ret = notifier_to_errno(ret);
10200 if (ret) {
10201 /* Expect explicit free_netdev() on failure */
10202 dev->needs_free_netdev = false;
10203 unregister_netdevice_queue(dev, NULL);
10204 goto out;
10205 }
10206 /*
10207 * Prevent userspace races by waiting until the network
10208 * device is fully setup before sending notifications.
10209 */
10210 if (!dev->rtnl_link_ops ||
10211 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10212 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10213
10214 out:
10215 return ret;
10216
10217 err_uninit_notify:
10218 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10219 err_ifindex_release:
10220 dev_index_release(net, dev->ifindex);
10221 err_uninit:
10222 if (dev->netdev_ops->ndo_uninit)
10223 dev->netdev_ops->ndo_uninit(dev);
10224 if (dev->priv_destructor)
10225 dev->priv_destructor(dev);
10226 err_free_name:
10227 netdev_name_node_free(dev->name_node);
10228 goto out;
10229 }
10230 EXPORT_SYMBOL(register_netdevice);
10231
10232 /**
10233 * init_dummy_netdev - init a dummy network device for NAPI
10234 * @dev: device to init
10235 *
10236 * This takes a network device structure and initialize the minimum
10237 * amount of fields so it can be used to schedule NAPI polls without
10238 * registering a full blown interface. This is to be used by drivers
10239 * that need to tie several hardware interfaces to a single NAPI
10240 * poll scheduler due to HW limitations.
10241 */
10242 int init_dummy_netdev(struct net_device *dev)
10243 {
10244 /* Clear everything. Note we don't initialize spinlocks
10245 * are they aren't supposed to be taken by any of the
10246 * NAPI code and this dummy netdev is supposed to be
10247 * only ever used for NAPI polls
10248 */
10249 memset(dev, 0, sizeof(struct net_device));
10250
10251 /* make sure we BUG if trying to hit standard
10252 * register/unregister code path
10253 */
10254 dev->reg_state = NETREG_DUMMY;
10255
10256 /* NAPI wants this */
10257 INIT_LIST_HEAD(&dev->napi_list);
10258
10259 /* a dummy interface is started by default */
10260 set_bit(__LINK_STATE_PRESENT, &dev->state);
10261 set_bit(__LINK_STATE_START, &dev->state);
10262
10263 /* napi_busy_loop stats accounting wants this */
10264 dev_net_set(dev, &init_net);
10265
10266 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10267 * because users of this 'device' dont need to change
10268 * its refcount.
10269 */
10270
10271 return 0;
10272 }
10273 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10274
10275
10276 /**
10277 * register_netdev - register a network device
10278 * @dev: device to register
10279 *
10280 * Take a completed network device structure and add it to the kernel
10281 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10282 * chain. 0 is returned on success. A negative errno code is returned
10283 * on a failure to set up the device, or if the name is a duplicate.
10284 *
10285 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10286 * and expands the device name if you passed a format string to
10287 * alloc_netdev.
10288 */
10289 int register_netdev(struct net_device *dev)
10290 {
10291 int err;
10292
10293 if (rtnl_lock_killable())
10294 return -EINTR;
10295 err = register_netdevice(dev);
10296 rtnl_unlock();
10297 return err;
10298 }
10299 EXPORT_SYMBOL(register_netdev);
10300
10301 int netdev_refcnt_read(const struct net_device *dev)
10302 {
10303 #ifdef CONFIG_PCPU_DEV_REFCNT
10304 int i, refcnt = 0;
10305
10306 for_each_possible_cpu(i)
10307 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10308 return refcnt;
10309 #else
10310 return refcount_read(&dev->dev_refcnt);
10311 #endif
10312 }
10313 EXPORT_SYMBOL(netdev_refcnt_read);
10314
10315 int netdev_unregister_timeout_secs __read_mostly = 10;
10316
10317 #define WAIT_REFS_MIN_MSECS 1
10318 #define WAIT_REFS_MAX_MSECS 250
10319 /**
10320 * netdev_wait_allrefs_any - wait until all references are gone.
10321 * @list: list of net_devices to wait on
10322 *
10323 * This is called when unregistering network devices.
10324 *
10325 * Any protocol or device that holds a reference should register
10326 * for netdevice notification, and cleanup and put back the
10327 * reference if they receive an UNREGISTER event.
10328 * We can get stuck here if buggy protocols don't correctly
10329 * call dev_put.
10330 */
10331 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10332 {
10333 unsigned long rebroadcast_time, warning_time;
10334 struct net_device *dev;
10335 int wait = 0;
10336
10337 rebroadcast_time = warning_time = jiffies;
10338
10339 list_for_each_entry(dev, list, todo_list)
10340 if (netdev_refcnt_read(dev) == 1)
10341 return dev;
10342
10343 while (true) {
10344 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10345 rtnl_lock();
10346
10347 /* Rebroadcast unregister notification */
10348 list_for_each_entry(dev, list, todo_list)
10349 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10350
10351 __rtnl_unlock();
10352 rcu_barrier();
10353 rtnl_lock();
10354
10355 list_for_each_entry(dev, list, todo_list)
10356 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10357 &dev->state)) {
10358 /* We must not have linkwatch events
10359 * pending on unregister. If this
10360 * happens, we simply run the queue
10361 * unscheduled, resulting in a noop
10362 * for this device.
10363 */
10364 linkwatch_run_queue();
10365 break;
10366 }
10367
10368 __rtnl_unlock();
10369
10370 rebroadcast_time = jiffies;
10371 }
10372
10373 if (!wait) {
10374 rcu_barrier();
10375 wait = WAIT_REFS_MIN_MSECS;
10376 } else {
10377 msleep(wait);
10378 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10379 }
10380
10381 list_for_each_entry(dev, list, todo_list)
10382 if (netdev_refcnt_read(dev) == 1)
10383 return dev;
10384
10385 if (time_after(jiffies, warning_time +
10386 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10387 list_for_each_entry(dev, list, todo_list) {
10388 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10389 dev->name, netdev_refcnt_read(dev));
10390 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10391 }
10392
10393 warning_time = jiffies;
10394 }
10395 }
10396 }
10397
10398 /* The sequence is:
10399 *
10400 * rtnl_lock();
10401 * ...
10402 * register_netdevice(x1);
10403 * register_netdevice(x2);
10404 * ...
10405 * unregister_netdevice(y1);
10406 * unregister_netdevice(y2);
10407 * ...
10408 * rtnl_unlock();
10409 * free_netdev(y1);
10410 * free_netdev(y2);
10411 *
10412 * We are invoked by rtnl_unlock().
10413 * This allows us to deal with problems:
10414 * 1) We can delete sysfs objects which invoke hotplug
10415 * without deadlocking with linkwatch via keventd.
10416 * 2) Since we run with the RTNL semaphore not held, we can sleep
10417 * safely in order to wait for the netdev refcnt to drop to zero.
10418 *
10419 * We must not return until all unregister events added during
10420 * the interval the lock was held have been completed.
10421 */
10422 void netdev_run_todo(void)
10423 {
10424 struct net_device *dev, *tmp;
10425 struct list_head list;
10426 #ifdef CONFIG_LOCKDEP
10427 struct list_head unlink_list;
10428
10429 list_replace_init(&net_unlink_list, &unlink_list);
10430
10431 while (!list_empty(&unlink_list)) {
10432 struct net_device *dev = list_first_entry(&unlink_list,
10433 struct net_device,
10434 unlink_list);
10435 list_del_init(&dev->unlink_list);
10436 dev->nested_level = dev->lower_level - 1;
10437 }
10438 #endif
10439
10440 /* Snapshot list, allow later requests */
10441 list_replace_init(&net_todo_list, &list);
10442
10443 __rtnl_unlock();
10444
10445 /* Wait for rcu callbacks to finish before next phase */
10446 if (!list_empty(&list))
10447 rcu_barrier();
10448
10449 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10450 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10451 netdev_WARN(dev, "run_todo but not unregistering\n");
10452 list_del(&dev->todo_list);
10453 continue;
10454 }
10455
10456 write_lock(&dev_base_lock);
10457 dev->reg_state = NETREG_UNREGISTERED;
10458 write_unlock(&dev_base_lock);
10459 linkwatch_forget_dev(dev);
10460 }
10461
10462 while (!list_empty(&list)) {
10463 dev = netdev_wait_allrefs_any(&list);
10464 list_del(&dev->todo_list);
10465
10466 /* paranoia */
10467 BUG_ON(netdev_refcnt_read(dev) != 1);
10468 BUG_ON(!list_empty(&dev->ptype_all));
10469 BUG_ON(!list_empty(&dev->ptype_specific));
10470 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10471 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10472
10473 if (dev->priv_destructor)
10474 dev->priv_destructor(dev);
10475 if (dev->needs_free_netdev)
10476 free_netdev(dev);
10477
10478 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10479 wake_up(&netdev_unregistering_wq);
10480
10481 /* Free network device */
10482 kobject_put(&dev->dev.kobj);
10483 }
10484 }
10485
10486 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10487 * all the same fields in the same order as net_device_stats, with only
10488 * the type differing, but rtnl_link_stats64 may have additional fields
10489 * at the end for newer counters.
10490 */
10491 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10492 const struct net_device_stats *netdev_stats)
10493 {
10494 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10495 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10496 u64 *dst = (u64 *)stats64;
10497
10498 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10499 for (i = 0; i < n; i++)
10500 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10501 /* zero out counters that only exist in rtnl_link_stats64 */
10502 memset((char *)stats64 + n * sizeof(u64), 0,
10503 sizeof(*stats64) - n * sizeof(u64));
10504 }
10505 EXPORT_SYMBOL(netdev_stats_to_stats64);
10506
10507 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10508 {
10509 struct net_device_core_stats __percpu *p;
10510
10511 p = alloc_percpu_gfp(struct net_device_core_stats,
10512 GFP_ATOMIC | __GFP_NOWARN);
10513
10514 if (p && cmpxchg(&dev->core_stats, NULL, p))
10515 free_percpu(p);
10516
10517 /* This READ_ONCE() pairs with the cmpxchg() above */
10518 return READ_ONCE(dev->core_stats);
10519 }
10520 EXPORT_SYMBOL(netdev_core_stats_alloc);
10521
10522 /**
10523 * dev_get_stats - get network device statistics
10524 * @dev: device to get statistics from
10525 * @storage: place to store stats
10526 *
10527 * Get network statistics from device. Return @storage.
10528 * The device driver may provide its own method by setting
10529 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10530 * otherwise the internal statistics structure is used.
10531 */
10532 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10533 struct rtnl_link_stats64 *storage)
10534 {
10535 const struct net_device_ops *ops = dev->netdev_ops;
10536 const struct net_device_core_stats __percpu *p;
10537
10538 if (ops->ndo_get_stats64) {
10539 memset(storage, 0, sizeof(*storage));
10540 ops->ndo_get_stats64(dev, storage);
10541 } else if (ops->ndo_get_stats) {
10542 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10543 } else {
10544 netdev_stats_to_stats64(storage, &dev->stats);
10545 }
10546
10547 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10548 p = READ_ONCE(dev->core_stats);
10549 if (p) {
10550 const struct net_device_core_stats *core_stats;
10551 int i;
10552
10553 for_each_possible_cpu(i) {
10554 core_stats = per_cpu_ptr(p, i);
10555 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10556 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10557 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10558 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10559 }
10560 }
10561 return storage;
10562 }
10563 EXPORT_SYMBOL(dev_get_stats);
10564
10565 /**
10566 * dev_fetch_sw_netstats - get per-cpu network device statistics
10567 * @s: place to store stats
10568 * @netstats: per-cpu network stats to read from
10569 *
10570 * Read per-cpu network statistics and populate the related fields in @s.
10571 */
10572 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10573 const struct pcpu_sw_netstats __percpu *netstats)
10574 {
10575 int cpu;
10576
10577 for_each_possible_cpu(cpu) {
10578 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10579 const struct pcpu_sw_netstats *stats;
10580 unsigned int start;
10581
10582 stats = per_cpu_ptr(netstats, cpu);
10583 do {
10584 start = u64_stats_fetch_begin(&stats->syncp);
10585 rx_packets = u64_stats_read(&stats->rx_packets);
10586 rx_bytes = u64_stats_read(&stats->rx_bytes);
10587 tx_packets = u64_stats_read(&stats->tx_packets);
10588 tx_bytes = u64_stats_read(&stats->tx_bytes);
10589 } while (u64_stats_fetch_retry(&stats->syncp, start));
10590
10591 s->rx_packets += rx_packets;
10592 s->rx_bytes += rx_bytes;
10593 s->tx_packets += tx_packets;
10594 s->tx_bytes += tx_bytes;
10595 }
10596 }
10597 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10598
10599 /**
10600 * dev_get_tstats64 - ndo_get_stats64 implementation
10601 * @dev: device to get statistics from
10602 * @s: place to store stats
10603 *
10604 * Populate @s from dev->stats and dev->tstats. Can be used as
10605 * ndo_get_stats64() callback.
10606 */
10607 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10608 {
10609 netdev_stats_to_stats64(s, &dev->stats);
10610 dev_fetch_sw_netstats(s, dev->tstats);
10611 }
10612 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10613
10614 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10615 {
10616 struct netdev_queue *queue = dev_ingress_queue(dev);
10617
10618 #ifdef CONFIG_NET_CLS_ACT
10619 if (queue)
10620 return queue;
10621 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10622 if (!queue)
10623 return NULL;
10624 netdev_init_one_queue(dev, queue, NULL);
10625 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10626 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10627 rcu_assign_pointer(dev->ingress_queue, queue);
10628 #endif
10629 return queue;
10630 }
10631
10632 static const struct ethtool_ops default_ethtool_ops;
10633
10634 void netdev_set_default_ethtool_ops(struct net_device *dev,
10635 const struct ethtool_ops *ops)
10636 {
10637 if (dev->ethtool_ops == &default_ethtool_ops)
10638 dev->ethtool_ops = ops;
10639 }
10640 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10641
10642 /**
10643 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10644 * @dev: netdev to enable the IRQ coalescing on
10645 *
10646 * Sets a conservative default for SW IRQ coalescing. Users can use
10647 * sysfs attributes to override the default values.
10648 */
10649 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10650 {
10651 WARN_ON(dev->reg_state == NETREG_REGISTERED);
10652
10653 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10654 dev->gro_flush_timeout = 20000;
10655 dev->napi_defer_hard_irqs = 1;
10656 }
10657 }
10658 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10659
10660 void netdev_freemem(struct net_device *dev)
10661 {
10662 char *addr = (char *)dev - dev->padded;
10663
10664 kvfree(addr);
10665 }
10666
10667 /**
10668 * alloc_netdev_mqs - allocate network device
10669 * @sizeof_priv: size of private data to allocate space for
10670 * @name: device name format string
10671 * @name_assign_type: origin of device name
10672 * @setup: callback to initialize device
10673 * @txqs: the number of TX subqueues to allocate
10674 * @rxqs: the number of RX subqueues to allocate
10675 *
10676 * Allocates a struct net_device with private data area for driver use
10677 * and performs basic initialization. Also allocates subqueue structs
10678 * for each queue on the device.
10679 */
10680 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10681 unsigned char name_assign_type,
10682 void (*setup)(struct net_device *),
10683 unsigned int txqs, unsigned int rxqs)
10684 {
10685 struct net_device *dev;
10686 unsigned int alloc_size;
10687 struct net_device *p;
10688
10689 BUG_ON(strlen(name) >= sizeof(dev->name));
10690
10691 if (txqs < 1) {
10692 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10693 return NULL;
10694 }
10695
10696 if (rxqs < 1) {
10697 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10698 return NULL;
10699 }
10700
10701 alloc_size = sizeof(struct net_device);
10702 if (sizeof_priv) {
10703 /* ensure 32-byte alignment of private area */
10704 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10705 alloc_size += sizeof_priv;
10706 }
10707 /* ensure 32-byte alignment of whole construct */
10708 alloc_size += NETDEV_ALIGN - 1;
10709
10710 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10711 if (!p)
10712 return NULL;
10713
10714 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10715 dev->padded = (char *)dev - (char *)p;
10716
10717 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10718 #ifdef CONFIG_PCPU_DEV_REFCNT
10719 dev->pcpu_refcnt = alloc_percpu(int);
10720 if (!dev->pcpu_refcnt)
10721 goto free_dev;
10722 __dev_hold(dev);
10723 #else
10724 refcount_set(&dev->dev_refcnt, 1);
10725 #endif
10726
10727 if (dev_addr_init(dev))
10728 goto free_pcpu;
10729
10730 dev_mc_init(dev);
10731 dev_uc_init(dev);
10732
10733 dev_net_set(dev, &init_net);
10734
10735 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10736 dev->xdp_zc_max_segs = 1;
10737 dev->gso_max_segs = GSO_MAX_SEGS;
10738 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10739 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10740 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10741 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10742 dev->tso_max_segs = TSO_MAX_SEGS;
10743 dev->upper_level = 1;
10744 dev->lower_level = 1;
10745 #ifdef CONFIG_LOCKDEP
10746 dev->nested_level = 0;
10747 INIT_LIST_HEAD(&dev->unlink_list);
10748 #endif
10749
10750 INIT_LIST_HEAD(&dev->napi_list);
10751 INIT_LIST_HEAD(&dev->unreg_list);
10752 INIT_LIST_HEAD(&dev->close_list);
10753 INIT_LIST_HEAD(&dev->link_watch_list);
10754 INIT_LIST_HEAD(&dev->adj_list.upper);
10755 INIT_LIST_HEAD(&dev->adj_list.lower);
10756 INIT_LIST_HEAD(&dev->ptype_all);
10757 INIT_LIST_HEAD(&dev->ptype_specific);
10758 INIT_LIST_HEAD(&dev->net_notifier_list);
10759 #ifdef CONFIG_NET_SCHED
10760 hash_init(dev->qdisc_hash);
10761 #endif
10762 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10763 setup(dev);
10764
10765 if (!dev->tx_queue_len) {
10766 dev->priv_flags |= IFF_NO_QUEUE;
10767 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10768 }
10769
10770 dev->num_tx_queues = txqs;
10771 dev->real_num_tx_queues = txqs;
10772 if (netif_alloc_netdev_queues(dev))
10773 goto free_all;
10774
10775 dev->num_rx_queues = rxqs;
10776 dev->real_num_rx_queues = rxqs;
10777 if (netif_alloc_rx_queues(dev))
10778 goto free_all;
10779
10780 strcpy(dev->name, name);
10781 dev->name_assign_type = name_assign_type;
10782 dev->group = INIT_NETDEV_GROUP;
10783 if (!dev->ethtool_ops)
10784 dev->ethtool_ops = &default_ethtool_ops;
10785
10786 nf_hook_netdev_init(dev);
10787
10788 return dev;
10789
10790 free_all:
10791 free_netdev(dev);
10792 return NULL;
10793
10794 free_pcpu:
10795 #ifdef CONFIG_PCPU_DEV_REFCNT
10796 free_percpu(dev->pcpu_refcnt);
10797 free_dev:
10798 #endif
10799 netdev_freemem(dev);
10800 return NULL;
10801 }
10802 EXPORT_SYMBOL(alloc_netdev_mqs);
10803
10804 /**
10805 * free_netdev - free network device
10806 * @dev: device
10807 *
10808 * This function does the last stage of destroying an allocated device
10809 * interface. The reference to the device object is released. If this
10810 * is the last reference then it will be freed.Must be called in process
10811 * context.
10812 */
10813 void free_netdev(struct net_device *dev)
10814 {
10815 struct napi_struct *p, *n;
10816
10817 might_sleep();
10818
10819 /* When called immediately after register_netdevice() failed the unwind
10820 * handling may still be dismantling the device. Handle that case by
10821 * deferring the free.
10822 */
10823 if (dev->reg_state == NETREG_UNREGISTERING) {
10824 ASSERT_RTNL();
10825 dev->needs_free_netdev = true;
10826 return;
10827 }
10828
10829 netif_free_tx_queues(dev);
10830 netif_free_rx_queues(dev);
10831
10832 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10833
10834 /* Flush device addresses */
10835 dev_addr_flush(dev);
10836
10837 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10838 netif_napi_del(p);
10839
10840 ref_tracker_dir_exit(&dev->refcnt_tracker);
10841 #ifdef CONFIG_PCPU_DEV_REFCNT
10842 free_percpu(dev->pcpu_refcnt);
10843 dev->pcpu_refcnt = NULL;
10844 #endif
10845 free_percpu(dev->core_stats);
10846 dev->core_stats = NULL;
10847 free_percpu(dev->xdp_bulkq);
10848 dev->xdp_bulkq = NULL;
10849
10850 /* Compatibility with error handling in drivers */
10851 if (dev->reg_state == NETREG_UNINITIALIZED) {
10852 netdev_freemem(dev);
10853 return;
10854 }
10855
10856 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10857 dev->reg_state = NETREG_RELEASED;
10858
10859 /* will free via device release */
10860 put_device(&dev->dev);
10861 }
10862 EXPORT_SYMBOL(free_netdev);
10863
10864 /**
10865 * synchronize_net - Synchronize with packet receive processing
10866 *
10867 * Wait for packets currently being received to be done.
10868 * Does not block later packets from starting.
10869 */
10870 void synchronize_net(void)
10871 {
10872 might_sleep();
10873 if (rtnl_is_locked())
10874 synchronize_rcu_expedited();
10875 else
10876 synchronize_rcu();
10877 }
10878 EXPORT_SYMBOL(synchronize_net);
10879
10880 /**
10881 * unregister_netdevice_queue - remove device from the kernel
10882 * @dev: device
10883 * @head: list
10884 *
10885 * This function shuts down a device interface and removes it
10886 * from the kernel tables.
10887 * If head not NULL, device is queued to be unregistered later.
10888 *
10889 * Callers must hold the rtnl semaphore. You may want
10890 * unregister_netdev() instead of this.
10891 */
10892
10893 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10894 {
10895 ASSERT_RTNL();
10896
10897 if (head) {
10898 list_move_tail(&dev->unreg_list, head);
10899 } else {
10900 LIST_HEAD(single);
10901
10902 list_add(&dev->unreg_list, &single);
10903 unregister_netdevice_many(&single);
10904 }
10905 }
10906 EXPORT_SYMBOL(unregister_netdevice_queue);
10907
10908 void unregister_netdevice_many_notify(struct list_head *head,
10909 u32 portid, const struct nlmsghdr *nlh)
10910 {
10911 struct net_device *dev, *tmp;
10912 LIST_HEAD(close_head);
10913
10914 BUG_ON(dev_boot_phase);
10915 ASSERT_RTNL();
10916
10917 if (list_empty(head))
10918 return;
10919
10920 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10921 /* Some devices call without registering
10922 * for initialization unwind. Remove those
10923 * devices and proceed with the remaining.
10924 */
10925 if (dev->reg_state == NETREG_UNINITIALIZED) {
10926 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10927 dev->name, dev);
10928
10929 WARN_ON(1);
10930 list_del(&dev->unreg_list);
10931 continue;
10932 }
10933 dev->dismantle = true;
10934 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10935 }
10936
10937 /* If device is running, close it first. */
10938 list_for_each_entry(dev, head, unreg_list)
10939 list_add_tail(&dev->close_list, &close_head);
10940 dev_close_many(&close_head, true);
10941
10942 list_for_each_entry(dev, head, unreg_list) {
10943 /* And unlink it from device chain. */
10944 write_lock(&dev_base_lock);
10945 unlist_netdevice(dev, false);
10946 dev->reg_state = NETREG_UNREGISTERING;
10947 write_unlock(&dev_base_lock);
10948 }
10949 flush_all_backlogs();
10950
10951 synchronize_net();
10952
10953 list_for_each_entry(dev, head, unreg_list) {
10954 struct sk_buff *skb = NULL;
10955
10956 /* Shutdown queueing discipline. */
10957 dev_shutdown(dev);
10958 dev_tcx_uninstall(dev);
10959 dev_xdp_uninstall(dev);
10960 bpf_dev_bound_netdev_unregister(dev);
10961
10962 netdev_offload_xstats_disable_all(dev);
10963
10964 /* Notify protocols, that we are about to destroy
10965 * this device. They should clean all the things.
10966 */
10967 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10968
10969 if (!dev->rtnl_link_ops ||
10970 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10971 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10972 GFP_KERNEL, NULL, 0,
10973 portid, nlh);
10974
10975 /*
10976 * Flush the unicast and multicast chains
10977 */
10978 dev_uc_flush(dev);
10979 dev_mc_flush(dev);
10980
10981 netdev_name_node_alt_flush(dev);
10982 netdev_name_node_free(dev->name_node);
10983
10984 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10985
10986 if (dev->netdev_ops->ndo_uninit)
10987 dev->netdev_ops->ndo_uninit(dev);
10988
10989 if (skb)
10990 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10991
10992 /* Notifier chain MUST detach us all upper devices. */
10993 WARN_ON(netdev_has_any_upper_dev(dev));
10994 WARN_ON(netdev_has_any_lower_dev(dev));
10995
10996 /* Remove entries from kobject tree */
10997 netdev_unregister_kobject(dev);
10998 #ifdef CONFIG_XPS
10999 /* Remove XPS queueing entries */
11000 netif_reset_xps_queues_gt(dev, 0);
11001 #endif
11002 }
11003
11004 synchronize_net();
11005
11006 list_for_each_entry(dev, head, unreg_list) {
11007 netdev_put(dev, &dev->dev_registered_tracker);
11008 net_set_todo(dev);
11009 }
11010
11011 list_del(head);
11012 }
11013
11014 /**
11015 * unregister_netdevice_many - unregister many devices
11016 * @head: list of devices
11017 *
11018 * Note: As most callers use a stack allocated list_head,
11019 * we force a list_del() to make sure stack wont be corrupted later.
11020 */
11021 void unregister_netdevice_many(struct list_head *head)
11022 {
11023 unregister_netdevice_many_notify(head, 0, NULL);
11024 }
11025 EXPORT_SYMBOL(unregister_netdevice_many);
11026
11027 /**
11028 * unregister_netdev - remove device from the kernel
11029 * @dev: device
11030 *
11031 * This function shuts down a device interface and removes it
11032 * from the kernel tables.
11033 *
11034 * This is just a wrapper for unregister_netdevice that takes
11035 * the rtnl semaphore. In general you want to use this and not
11036 * unregister_netdevice.
11037 */
11038 void unregister_netdev(struct net_device *dev)
11039 {
11040 rtnl_lock();
11041 unregister_netdevice(dev);
11042 rtnl_unlock();
11043 }
11044 EXPORT_SYMBOL(unregister_netdev);
11045
11046 /**
11047 * __dev_change_net_namespace - move device to different nethost namespace
11048 * @dev: device
11049 * @net: network namespace
11050 * @pat: If not NULL name pattern to try if the current device name
11051 * is already taken in the destination network namespace.
11052 * @new_ifindex: If not zero, specifies device index in the target
11053 * namespace.
11054 *
11055 * This function shuts down a device interface and moves it
11056 * to a new network namespace. On success 0 is returned, on
11057 * a failure a netagive errno code is returned.
11058 *
11059 * Callers must hold the rtnl semaphore.
11060 */
11061
11062 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11063 const char *pat, int new_ifindex)
11064 {
11065 struct netdev_name_node *name_node;
11066 struct net *net_old = dev_net(dev);
11067 char new_name[IFNAMSIZ] = {};
11068 int err, new_nsid;
11069
11070 ASSERT_RTNL();
11071
11072 /* Don't allow namespace local devices to be moved. */
11073 err = -EINVAL;
11074 if (dev->features & NETIF_F_NETNS_LOCAL)
11075 goto out;
11076
11077 /* Ensure the device has been registrered */
11078 if (dev->reg_state != NETREG_REGISTERED)
11079 goto out;
11080
11081 /* Get out if there is nothing todo */
11082 err = 0;
11083 if (net_eq(net_old, net))
11084 goto out;
11085
11086 /* Pick the destination device name, and ensure
11087 * we can use it in the destination network namespace.
11088 */
11089 err = -EEXIST;
11090 if (netdev_name_in_use(net, dev->name)) {
11091 /* We get here if we can't use the current device name */
11092 if (!pat)
11093 goto out;
11094 err = dev_prep_valid_name(net, dev, pat, new_name);
11095 if (err < 0)
11096 goto out;
11097 }
11098 /* Check that none of the altnames conflicts. */
11099 err = -EEXIST;
11100 netdev_for_each_altname(dev, name_node)
11101 if (netdev_name_in_use(net, name_node->name))
11102 goto out;
11103
11104 /* Check that new_ifindex isn't used yet. */
11105 if (new_ifindex) {
11106 err = dev_index_reserve(net, new_ifindex);
11107 if (err < 0)
11108 goto out;
11109 } else {
11110 /* If there is an ifindex conflict assign a new one */
11111 err = dev_index_reserve(net, dev->ifindex);
11112 if (err == -EBUSY)
11113 err = dev_index_reserve(net, 0);
11114 if (err < 0)
11115 goto out;
11116 new_ifindex = err;
11117 }
11118
11119 /*
11120 * And now a mini version of register_netdevice unregister_netdevice.
11121 */
11122
11123 /* If device is running close it first. */
11124 dev_close(dev);
11125
11126 /* And unlink it from device chain */
11127 unlist_netdevice(dev, true);
11128
11129 synchronize_net();
11130
11131 /* Shutdown queueing discipline. */
11132 dev_shutdown(dev);
11133
11134 /* Notify protocols, that we are about to destroy
11135 * this device. They should clean all the things.
11136 *
11137 * Note that dev->reg_state stays at NETREG_REGISTERED.
11138 * This is wanted because this way 8021q and macvlan know
11139 * the device is just moving and can keep their slaves up.
11140 */
11141 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11142 rcu_barrier();
11143
11144 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11145
11146 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11147 new_ifindex);
11148
11149 /*
11150 * Flush the unicast and multicast chains
11151 */
11152 dev_uc_flush(dev);
11153 dev_mc_flush(dev);
11154
11155 /* Send a netdev-removed uevent to the old namespace */
11156 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11157 netdev_adjacent_del_links(dev);
11158
11159 /* Move per-net netdevice notifiers that are following the netdevice */
11160 move_netdevice_notifiers_dev_net(dev, net);
11161
11162 /* Actually switch the network namespace */
11163 dev_net_set(dev, net);
11164 dev->ifindex = new_ifindex;
11165
11166 /* Send a netdev-add uevent to the new namespace */
11167 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11168 netdev_adjacent_add_links(dev);
11169
11170 if (new_name[0]) /* Rename the netdev to prepared name */
11171 strscpy(dev->name, new_name, IFNAMSIZ);
11172
11173 /* Fixup kobjects */
11174 err = device_rename(&dev->dev, dev->name);
11175 WARN_ON(err);
11176
11177 /* Adapt owner in case owning user namespace of target network
11178 * namespace is different from the original one.
11179 */
11180 err = netdev_change_owner(dev, net_old, net);
11181 WARN_ON(err);
11182
11183 /* Add the device back in the hashes */
11184 list_netdevice(dev);
11185
11186 /* Notify protocols, that a new device appeared. */
11187 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11188
11189 /*
11190 * Prevent userspace races by waiting until the network
11191 * device is fully setup before sending notifications.
11192 */
11193 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11194
11195 synchronize_net();
11196 err = 0;
11197 out:
11198 return err;
11199 }
11200 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11201
11202 static int dev_cpu_dead(unsigned int oldcpu)
11203 {
11204 struct sk_buff **list_skb;
11205 struct sk_buff *skb;
11206 unsigned int cpu;
11207 struct softnet_data *sd, *oldsd, *remsd = NULL;
11208
11209 local_irq_disable();
11210 cpu = smp_processor_id();
11211 sd = &per_cpu(softnet_data, cpu);
11212 oldsd = &per_cpu(softnet_data, oldcpu);
11213
11214 /* Find end of our completion_queue. */
11215 list_skb = &sd->completion_queue;
11216 while (*list_skb)
11217 list_skb = &(*list_skb)->next;
11218 /* Append completion queue from offline CPU. */
11219 *list_skb = oldsd->completion_queue;
11220 oldsd->completion_queue = NULL;
11221
11222 /* Append output queue from offline CPU. */
11223 if (oldsd->output_queue) {
11224 *sd->output_queue_tailp = oldsd->output_queue;
11225 sd->output_queue_tailp = oldsd->output_queue_tailp;
11226 oldsd->output_queue = NULL;
11227 oldsd->output_queue_tailp = &oldsd->output_queue;
11228 }
11229 /* Append NAPI poll list from offline CPU, with one exception :
11230 * process_backlog() must be called by cpu owning percpu backlog.
11231 * We properly handle process_queue & input_pkt_queue later.
11232 */
11233 while (!list_empty(&oldsd->poll_list)) {
11234 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11235 struct napi_struct,
11236 poll_list);
11237
11238 list_del_init(&napi->poll_list);
11239 if (napi->poll == process_backlog)
11240 napi->state = 0;
11241 else
11242 ____napi_schedule(sd, napi);
11243 }
11244
11245 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11246 local_irq_enable();
11247
11248 #ifdef CONFIG_RPS
11249 remsd = oldsd->rps_ipi_list;
11250 oldsd->rps_ipi_list = NULL;
11251 #endif
11252 /* send out pending IPI's on offline CPU */
11253 net_rps_send_ipi(remsd);
11254
11255 /* Process offline CPU's input_pkt_queue */
11256 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11257 netif_rx(skb);
11258 input_queue_head_incr(oldsd);
11259 }
11260 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11261 netif_rx(skb);
11262 input_queue_head_incr(oldsd);
11263 }
11264
11265 return 0;
11266 }
11267
11268 /**
11269 * netdev_increment_features - increment feature set by one
11270 * @all: current feature set
11271 * @one: new feature set
11272 * @mask: mask feature set
11273 *
11274 * Computes a new feature set after adding a device with feature set
11275 * @one to the master device with current feature set @all. Will not
11276 * enable anything that is off in @mask. Returns the new feature set.
11277 */
11278 netdev_features_t netdev_increment_features(netdev_features_t all,
11279 netdev_features_t one, netdev_features_t mask)
11280 {
11281 if (mask & NETIF_F_HW_CSUM)
11282 mask |= NETIF_F_CSUM_MASK;
11283 mask |= NETIF_F_VLAN_CHALLENGED;
11284
11285 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11286 all &= one | ~NETIF_F_ALL_FOR_ALL;
11287
11288 /* If one device supports hw checksumming, set for all. */
11289 if (all & NETIF_F_HW_CSUM)
11290 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11291
11292 return all;
11293 }
11294 EXPORT_SYMBOL(netdev_increment_features);
11295
11296 static struct hlist_head * __net_init netdev_create_hash(void)
11297 {
11298 int i;
11299 struct hlist_head *hash;
11300
11301 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11302 if (hash != NULL)
11303 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11304 INIT_HLIST_HEAD(&hash[i]);
11305
11306 return hash;
11307 }
11308
11309 /* Initialize per network namespace state */
11310 static int __net_init netdev_init(struct net *net)
11311 {
11312 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11313 8 * sizeof_field(struct napi_struct, gro_bitmask));
11314
11315 INIT_LIST_HEAD(&net->dev_base_head);
11316
11317 net->dev_name_head = netdev_create_hash();
11318 if (net->dev_name_head == NULL)
11319 goto err_name;
11320
11321 net->dev_index_head = netdev_create_hash();
11322 if (net->dev_index_head == NULL)
11323 goto err_idx;
11324
11325 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11326
11327 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11328
11329 return 0;
11330
11331 err_idx:
11332 kfree(net->dev_name_head);
11333 err_name:
11334 return -ENOMEM;
11335 }
11336
11337 /**
11338 * netdev_drivername - network driver for the device
11339 * @dev: network device
11340 *
11341 * Determine network driver for device.
11342 */
11343 const char *netdev_drivername(const struct net_device *dev)
11344 {
11345 const struct device_driver *driver;
11346 const struct device *parent;
11347 const char *empty = "";
11348
11349 parent = dev->dev.parent;
11350 if (!parent)
11351 return empty;
11352
11353 driver = parent->driver;
11354 if (driver && driver->name)
11355 return driver->name;
11356 return empty;
11357 }
11358
11359 static void __netdev_printk(const char *level, const struct net_device *dev,
11360 struct va_format *vaf)
11361 {
11362 if (dev && dev->dev.parent) {
11363 dev_printk_emit(level[1] - '0',
11364 dev->dev.parent,
11365 "%s %s %s%s: %pV",
11366 dev_driver_string(dev->dev.parent),
11367 dev_name(dev->dev.parent),
11368 netdev_name(dev), netdev_reg_state(dev),
11369 vaf);
11370 } else if (dev) {
11371 printk("%s%s%s: %pV",
11372 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11373 } else {
11374 printk("%s(NULL net_device): %pV", level, vaf);
11375 }
11376 }
11377
11378 void netdev_printk(const char *level, const struct net_device *dev,
11379 const char *format, ...)
11380 {
11381 struct va_format vaf;
11382 va_list args;
11383
11384 va_start(args, format);
11385
11386 vaf.fmt = format;
11387 vaf.va = &args;
11388
11389 __netdev_printk(level, dev, &vaf);
11390
11391 va_end(args);
11392 }
11393 EXPORT_SYMBOL(netdev_printk);
11394
11395 #define define_netdev_printk_level(func, level) \
11396 void func(const struct net_device *dev, const char *fmt, ...) \
11397 { \
11398 struct va_format vaf; \
11399 va_list args; \
11400 \
11401 va_start(args, fmt); \
11402 \
11403 vaf.fmt = fmt; \
11404 vaf.va = &args; \
11405 \
11406 __netdev_printk(level, dev, &vaf); \
11407 \
11408 va_end(args); \
11409 } \
11410 EXPORT_SYMBOL(func);
11411
11412 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11413 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11414 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11415 define_netdev_printk_level(netdev_err, KERN_ERR);
11416 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11417 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11418 define_netdev_printk_level(netdev_info, KERN_INFO);
11419
11420 static void __net_exit netdev_exit(struct net *net)
11421 {
11422 kfree(net->dev_name_head);
11423 kfree(net->dev_index_head);
11424 xa_destroy(&net->dev_by_index);
11425 if (net != &init_net)
11426 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11427 }
11428
11429 static struct pernet_operations __net_initdata netdev_net_ops = {
11430 .init = netdev_init,
11431 .exit = netdev_exit,
11432 };
11433
11434 static void __net_exit default_device_exit_net(struct net *net)
11435 {
11436 struct net_device *dev, *aux;
11437 /*
11438 * Push all migratable network devices back to the
11439 * initial network namespace
11440 */
11441 ASSERT_RTNL();
11442 for_each_netdev_safe(net, dev, aux) {
11443 int err;
11444 char fb_name[IFNAMSIZ];
11445
11446 /* Ignore unmoveable devices (i.e. loopback) */
11447 if (dev->features & NETIF_F_NETNS_LOCAL)
11448 continue;
11449
11450 /* Leave virtual devices for the generic cleanup */
11451 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11452 continue;
11453
11454 /* Push remaining network devices to init_net */
11455 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11456 if (netdev_name_in_use(&init_net, fb_name))
11457 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11458 err = dev_change_net_namespace(dev, &init_net, fb_name);
11459 if (err) {
11460 pr_emerg("%s: failed to move %s to init_net: %d\n",
11461 __func__, dev->name, err);
11462 BUG();
11463 }
11464 }
11465 }
11466
11467 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11468 {
11469 /* At exit all network devices most be removed from a network
11470 * namespace. Do this in the reverse order of registration.
11471 * Do this across as many network namespaces as possible to
11472 * improve batching efficiency.
11473 */
11474 struct net_device *dev;
11475 struct net *net;
11476 LIST_HEAD(dev_kill_list);
11477
11478 rtnl_lock();
11479 list_for_each_entry(net, net_list, exit_list) {
11480 default_device_exit_net(net);
11481 cond_resched();
11482 }
11483
11484 list_for_each_entry(net, net_list, exit_list) {
11485 for_each_netdev_reverse(net, dev) {
11486 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11487 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11488 else
11489 unregister_netdevice_queue(dev, &dev_kill_list);
11490 }
11491 }
11492 unregister_netdevice_many(&dev_kill_list);
11493 rtnl_unlock();
11494 }
11495
11496 static struct pernet_operations __net_initdata default_device_ops = {
11497 .exit_batch = default_device_exit_batch,
11498 };
11499
11500 /*
11501 * Initialize the DEV module. At boot time this walks the device list and
11502 * unhooks any devices that fail to initialise (normally hardware not
11503 * present) and leaves us with a valid list of present and active devices.
11504 *
11505 */
11506
11507 /*
11508 * This is called single threaded during boot, so no need
11509 * to take the rtnl semaphore.
11510 */
11511 static int __init net_dev_init(void)
11512 {
11513 int i, rc = -ENOMEM;
11514
11515 BUG_ON(!dev_boot_phase);
11516
11517 if (dev_proc_init())
11518 goto out;
11519
11520 if (netdev_kobject_init())
11521 goto out;
11522
11523 INIT_LIST_HEAD(&ptype_all);
11524 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11525 INIT_LIST_HEAD(&ptype_base[i]);
11526
11527 if (register_pernet_subsys(&netdev_net_ops))
11528 goto out;
11529
11530 /*
11531 * Initialise the packet receive queues.
11532 */
11533
11534 for_each_possible_cpu(i) {
11535 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11536 struct softnet_data *sd = &per_cpu(softnet_data, i);
11537
11538 INIT_WORK(flush, flush_backlog);
11539
11540 skb_queue_head_init(&sd->input_pkt_queue);
11541 skb_queue_head_init(&sd->process_queue);
11542 #ifdef CONFIG_XFRM_OFFLOAD
11543 skb_queue_head_init(&sd->xfrm_backlog);
11544 #endif
11545 INIT_LIST_HEAD(&sd->poll_list);
11546 sd->output_queue_tailp = &sd->output_queue;
11547 #ifdef CONFIG_RPS
11548 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11549 sd->cpu = i;
11550 #endif
11551 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11552 spin_lock_init(&sd->defer_lock);
11553
11554 init_gro_hash(&sd->backlog);
11555 sd->backlog.poll = process_backlog;
11556 sd->backlog.weight = weight_p;
11557 }
11558
11559 dev_boot_phase = 0;
11560
11561 /* The loopback device is special if any other network devices
11562 * is present in a network namespace the loopback device must
11563 * be present. Since we now dynamically allocate and free the
11564 * loopback device ensure this invariant is maintained by
11565 * keeping the loopback device as the first device on the
11566 * list of network devices. Ensuring the loopback devices
11567 * is the first device that appears and the last network device
11568 * that disappears.
11569 */
11570 if (register_pernet_device(&loopback_net_ops))
11571 goto out;
11572
11573 if (register_pernet_device(&default_device_ops))
11574 goto out;
11575
11576 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11577 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11578
11579 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11580 NULL, dev_cpu_dead);
11581 WARN_ON(rc < 0);
11582 rc = 0;
11583 out:
11584 return rc;
11585 }
11586
11587 subsys_initcall(net_dev_init);