]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - net/core/dev.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[thirdparty/kernel/stable.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135 #include <linux/errqueue.h>
136
137 #include "net-sysfs.h"
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 static DEFINE_SPINLOCK(ptype_lock);
146 static DEFINE_SPINLOCK(offload_lock);
147 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
148 struct list_head ptype_all __read_mostly; /* Taps */
149 static struct list_head offload_base __read_mostly;
150
151 static int netif_rx_internal(struct sk_buff *skb);
152 static int call_netdevice_notifiers_info(unsigned long val,
153 struct net_device *dev,
154 struct netdev_notifier_info *info);
155
156 /*
157 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
158 * semaphore.
159 *
160 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
161 *
162 * Writers must hold the rtnl semaphore while they loop through the
163 * dev_base_head list, and hold dev_base_lock for writing when they do the
164 * actual updates. This allows pure readers to access the list even
165 * while a writer is preparing to update it.
166 *
167 * To put it another way, dev_base_lock is held for writing only to
168 * protect against pure readers; the rtnl semaphore provides the
169 * protection against other writers.
170 *
171 * See, for example usages, register_netdevice() and
172 * unregister_netdevice(), which must be called with the rtnl
173 * semaphore held.
174 */
175 DEFINE_RWLOCK(dev_base_lock);
176 EXPORT_SYMBOL(dev_base_lock);
177
178 /* protects napi_hash addition/deletion and napi_gen_id */
179 static DEFINE_SPINLOCK(napi_hash_lock);
180
181 static unsigned int napi_gen_id;
182 static DEFINE_HASHTABLE(napi_hash, 8);
183
184 static seqcount_t devnet_rename_seq;
185
186 static inline void dev_base_seq_inc(struct net *net)
187 {
188 while (++net->dev_base_seq == 0);
189 }
190
191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
192 {
193 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
194
195 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
196 }
197
198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
199 {
200 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
201 }
202
203 static inline void rps_lock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206 spin_lock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209
210 static inline void rps_unlock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 spin_unlock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 /* Device list insertion */
218 static void list_netdevice(struct net_device *dev)
219 {
220 struct net *net = dev_net(dev);
221
222 ASSERT_RTNL();
223
224 write_lock_bh(&dev_base_lock);
225 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
226 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
227 hlist_add_head_rcu(&dev->index_hlist,
228 dev_index_hash(net, dev->ifindex));
229 write_unlock_bh(&dev_base_lock);
230
231 dev_base_seq_inc(net);
232 }
233
234 /* Device list removal
235 * caller must respect a RCU grace period before freeing/reusing dev
236 */
237 static void unlist_netdevice(struct net_device *dev)
238 {
239 ASSERT_RTNL();
240
241 /* Unlink dev from the device chain */
242 write_lock_bh(&dev_base_lock);
243 list_del_rcu(&dev->dev_list);
244 hlist_del_rcu(&dev->name_hlist);
245 hlist_del_rcu(&dev->index_hlist);
246 write_unlock_bh(&dev_base_lock);
247
248 dev_base_seq_inc(dev_net(dev));
249 }
250
251 /*
252 * Our notifier list
253 */
254
255 static RAW_NOTIFIER_HEAD(netdev_chain);
256
257 /*
258 * Device drivers call our routines to queue packets here. We empty the
259 * queue in the local softnet handler.
260 */
261
262 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
263 EXPORT_PER_CPU_SYMBOL(softnet_data);
264
265 #ifdef CONFIG_LOCKDEP
266 /*
267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268 * according to dev->type
269 */
270 static const unsigned short netdev_lock_type[] =
271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
284 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
285 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
286
287 static const char *const netdev_lock_name[] =
288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
301 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
302 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
303
304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
306
307 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308 {
309 int i;
310
311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 if (netdev_lock_type[i] == dev_type)
313 return i;
314 /* the last key is used by default */
315 return ARRAY_SIZE(netdev_lock_type) - 1;
316 }
317
318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 unsigned short dev_type)
320 {
321 int i;
322
323 i = netdev_lock_pos(dev_type);
324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 netdev_lock_name[i]);
326 }
327
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 int i;
331
332 i = netdev_lock_pos(dev->type);
333 lockdep_set_class_and_name(&dev->addr_list_lock,
334 &netdev_addr_lock_key[i],
335 netdev_lock_name[i]);
336 }
337 #else
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 }
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 }
345 #endif
346
347 /*******************************************************************************
348
349 Protocol management and registration routines
350
351 *******************************************************************************/
352
353 /*
354 * Add a protocol ID to the list. Now that the input handler is
355 * smarter we can dispense with all the messy stuff that used to be
356 * here.
357 *
358 * BEWARE!!! Protocol handlers, mangling input packets,
359 * MUST BE last in hash buckets and checking protocol handlers
360 * MUST start from promiscuous ptype_all chain in net_bh.
361 * It is true now, do not change it.
362 * Explanation follows: if protocol handler, mangling packet, will
363 * be the first on list, it is not able to sense, that packet
364 * is cloned and should be copied-on-write, so that it will
365 * change it and subsequent readers will get broken packet.
366 * --ANK (980803)
367 */
368
369 static inline struct list_head *ptype_head(const struct packet_type *pt)
370 {
371 if (pt->type == htons(ETH_P_ALL))
372 return &ptype_all;
373 else
374 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
375 }
376
377 /**
378 * dev_add_pack - add packet handler
379 * @pt: packet type declaration
380 *
381 * Add a protocol handler to the networking stack. The passed &packet_type
382 * is linked into kernel lists and may not be freed until it has been
383 * removed from the kernel lists.
384 *
385 * This call does not sleep therefore it can not
386 * guarantee all CPU's that are in middle of receiving packets
387 * will see the new packet type (until the next received packet).
388 */
389
390 void dev_add_pack(struct packet_type *pt)
391 {
392 struct list_head *head = ptype_head(pt);
393
394 spin_lock(&ptype_lock);
395 list_add_rcu(&pt->list, head);
396 spin_unlock(&ptype_lock);
397 }
398 EXPORT_SYMBOL(dev_add_pack);
399
400 /**
401 * __dev_remove_pack - remove packet handler
402 * @pt: packet type declaration
403 *
404 * Remove a protocol handler that was previously added to the kernel
405 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
406 * from the kernel lists and can be freed or reused once this function
407 * returns.
408 *
409 * The packet type might still be in use by receivers
410 * and must not be freed until after all the CPU's have gone
411 * through a quiescent state.
412 */
413 void __dev_remove_pack(struct packet_type *pt)
414 {
415 struct list_head *head = ptype_head(pt);
416 struct packet_type *pt1;
417
418 spin_lock(&ptype_lock);
419
420 list_for_each_entry(pt1, head, list) {
421 if (pt == pt1) {
422 list_del_rcu(&pt->list);
423 goto out;
424 }
425 }
426
427 pr_warn("dev_remove_pack: %p not found\n", pt);
428 out:
429 spin_unlock(&ptype_lock);
430 }
431 EXPORT_SYMBOL(__dev_remove_pack);
432
433 /**
434 * dev_remove_pack - remove packet handler
435 * @pt: packet type declaration
436 *
437 * Remove a protocol handler that was previously added to the kernel
438 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
439 * from the kernel lists and can be freed or reused once this function
440 * returns.
441 *
442 * This call sleeps to guarantee that no CPU is looking at the packet
443 * type after return.
444 */
445 void dev_remove_pack(struct packet_type *pt)
446 {
447 __dev_remove_pack(pt);
448
449 synchronize_net();
450 }
451 EXPORT_SYMBOL(dev_remove_pack);
452
453
454 /**
455 * dev_add_offload - register offload handlers
456 * @po: protocol offload declaration
457 *
458 * Add protocol offload handlers to the networking stack. The passed
459 * &proto_offload is linked into kernel lists and may not be freed until
460 * it has been removed from the kernel lists.
461 *
462 * This call does not sleep therefore it can not
463 * guarantee all CPU's that are in middle of receiving packets
464 * will see the new offload handlers (until the next received packet).
465 */
466 void dev_add_offload(struct packet_offload *po)
467 {
468 struct list_head *head = &offload_base;
469
470 spin_lock(&offload_lock);
471 list_add_rcu(&po->list, head);
472 spin_unlock(&offload_lock);
473 }
474 EXPORT_SYMBOL(dev_add_offload);
475
476 /**
477 * __dev_remove_offload - remove offload handler
478 * @po: packet offload declaration
479 *
480 * Remove a protocol offload handler that was previously added to the
481 * kernel offload handlers by dev_add_offload(). The passed &offload_type
482 * is removed from the kernel lists and can be freed or reused once this
483 * function returns.
484 *
485 * The packet type might still be in use by receivers
486 * and must not be freed until after all the CPU's have gone
487 * through a quiescent state.
488 */
489 static void __dev_remove_offload(struct packet_offload *po)
490 {
491 struct list_head *head = &offload_base;
492 struct packet_offload *po1;
493
494 spin_lock(&offload_lock);
495
496 list_for_each_entry(po1, head, list) {
497 if (po == po1) {
498 list_del_rcu(&po->list);
499 goto out;
500 }
501 }
502
503 pr_warn("dev_remove_offload: %p not found\n", po);
504 out:
505 spin_unlock(&offload_lock);
506 }
507
508 /**
509 * dev_remove_offload - remove packet offload handler
510 * @po: packet offload declaration
511 *
512 * Remove a packet offload handler that was previously added to the kernel
513 * offload handlers by dev_add_offload(). The passed &offload_type is
514 * removed from the kernel lists and can be freed or reused once this
515 * function returns.
516 *
517 * This call sleeps to guarantee that no CPU is looking at the packet
518 * type after return.
519 */
520 void dev_remove_offload(struct packet_offload *po)
521 {
522 __dev_remove_offload(po);
523
524 synchronize_net();
525 }
526 EXPORT_SYMBOL(dev_remove_offload);
527
528 /******************************************************************************
529
530 Device Boot-time Settings Routines
531
532 *******************************************************************************/
533
534 /* Boot time configuration table */
535 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
536
537 /**
538 * netdev_boot_setup_add - add new setup entry
539 * @name: name of the device
540 * @map: configured settings for the device
541 *
542 * Adds new setup entry to the dev_boot_setup list. The function
543 * returns 0 on error and 1 on success. This is a generic routine to
544 * all netdevices.
545 */
546 static int netdev_boot_setup_add(char *name, struct ifmap *map)
547 {
548 struct netdev_boot_setup *s;
549 int i;
550
551 s = dev_boot_setup;
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
553 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
554 memset(s[i].name, 0, sizeof(s[i].name));
555 strlcpy(s[i].name, name, IFNAMSIZ);
556 memcpy(&s[i].map, map, sizeof(s[i].map));
557 break;
558 }
559 }
560
561 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
562 }
563
564 /**
565 * netdev_boot_setup_check - check boot time settings
566 * @dev: the netdevice
567 *
568 * Check boot time settings for the device.
569 * The found settings are set for the device to be used
570 * later in the device probing.
571 * Returns 0 if no settings found, 1 if they are.
572 */
573 int netdev_boot_setup_check(struct net_device *dev)
574 {
575 struct netdev_boot_setup *s = dev_boot_setup;
576 int i;
577
578 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
579 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
580 !strcmp(dev->name, s[i].name)) {
581 dev->irq = s[i].map.irq;
582 dev->base_addr = s[i].map.base_addr;
583 dev->mem_start = s[i].map.mem_start;
584 dev->mem_end = s[i].map.mem_end;
585 return 1;
586 }
587 }
588 return 0;
589 }
590 EXPORT_SYMBOL(netdev_boot_setup_check);
591
592
593 /**
594 * netdev_boot_base - get address from boot time settings
595 * @prefix: prefix for network device
596 * @unit: id for network device
597 *
598 * Check boot time settings for the base address of device.
599 * The found settings are set for the device to be used
600 * later in the device probing.
601 * Returns 0 if no settings found.
602 */
603 unsigned long netdev_boot_base(const char *prefix, int unit)
604 {
605 const struct netdev_boot_setup *s = dev_boot_setup;
606 char name[IFNAMSIZ];
607 int i;
608
609 sprintf(name, "%s%d", prefix, unit);
610
611 /*
612 * If device already registered then return base of 1
613 * to indicate not to probe for this interface
614 */
615 if (__dev_get_by_name(&init_net, name))
616 return 1;
617
618 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
619 if (!strcmp(name, s[i].name))
620 return s[i].map.base_addr;
621 return 0;
622 }
623
624 /*
625 * Saves at boot time configured settings for any netdevice.
626 */
627 int __init netdev_boot_setup(char *str)
628 {
629 int ints[5];
630 struct ifmap map;
631
632 str = get_options(str, ARRAY_SIZE(ints), ints);
633 if (!str || !*str)
634 return 0;
635
636 /* Save settings */
637 memset(&map, 0, sizeof(map));
638 if (ints[0] > 0)
639 map.irq = ints[1];
640 if (ints[0] > 1)
641 map.base_addr = ints[2];
642 if (ints[0] > 2)
643 map.mem_start = ints[3];
644 if (ints[0] > 3)
645 map.mem_end = ints[4];
646
647 /* Add new entry to the list */
648 return netdev_boot_setup_add(str, &map);
649 }
650
651 __setup("netdev=", netdev_boot_setup);
652
653 /*******************************************************************************
654
655 Device Interface Subroutines
656
657 *******************************************************************************/
658
659 /**
660 * __dev_get_by_name - find a device by its name
661 * @net: the applicable net namespace
662 * @name: name to find
663 *
664 * Find an interface by name. Must be called under RTNL semaphore
665 * or @dev_base_lock. If the name is found a pointer to the device
666 * is returned. If the name is not found then %NULL is returned. The
667 * reference counters are not incremented so the caller must be
668 * careful with locks.
669 */
670
671 struct net_device *__dev_get_by_name(struct net *net, const char *name)
672 {
673 struct net_device *dev;
674 struct hlist_head *head = dev_name_hash(net, name);
675
676 hlist_for_each_entry(dev, head, name_hlist)
677 if (!strncmp(dev->name, name, IFNAMSIZ))
678 return dev;
679
680 return NULL;
681 }
682 EXPORT_SYMBOL(__dev_get_by_name);
683
684 /**
685 * dev_get_by_name_rcu - find a device by its name
686 * @net: the applicable net namespace
687 * @name: name to find
688 *
689 * Find an interface by name.
690 * If the name is found a pointer to the device is returned.
691 * If the name is not found then %NULL is returned.
692 * The reference counters are not incremented so the caller must be
693 * careful with locks. The caller must hold RCU lock.
694 */
695
696 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
697 {
698 struct net_device *dev;
699 struct hlist_head *head = dev_name_hash(net, name);
700
701 hlist_for_each_entry_rcu(dev, head, name_hlist)
702 if (!strncmp(dev->name, name, IFNAMSIZ))
703 return dev;
704
705 return NULL;
706 }
707 EXPORT_SYMBOL(dev_get_by_name_rcu);
708
709 /**
710 * dev_get_by_name - find a device by its name
711 * @net: the applicable net namespace
712 * @name: name to find
713 *
714 * Find an interface by name. This can be called from any
715 * context and does its own locking. The returned handle has
716 * the usage count incremented and the caller must use dev_put() to
717 * release it when it is no longer needed. %NULL is returned if no
718 * matching device is found.
719 */
720
721 struct net_device *dev_get_by_name(struct net *net, const char *name)
722 {
723 struct net_device *dev;
724
725 rcu_read_lock();
726 dev = dev_get_by_name_rcu(net, name);
727 if (dev)
728 dev_hold(dev);
729 rcu_read_unlock();
730 return dev;
731 }
732 EXPORT_SYMBOL(dev_get_by_name);
733
734 /**
735 * __dev_get_by_index - find a device by its ifindex
736 * @net: the applicable net namespace
737 * @ifindex: index of device
738 *
739 * Search for an interface by index. Returns %NULL if the device
740 * is not found or a pointer to the device. The device has not
741 * had its reference counter increased so the caller must be careful
742 * about locking. The caller must hold either the RTNL semaphore
743 * or @dev_base_lock.
744 */
745
746 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
747 {
748 struct net_device *dev;
749 struct hlist_head *head = dev_index_hash(net, ifindex);
750
751 hlist_for_each_entry(dev, head, index_hlist)
752 if (dev->ifindex == ifindex)
753 return dev;
754
755 return NULL;
756 }
757 EXPORT_SYMBOL(__dev_get_by_index);
758
759 /**
760 * dev_get_by_index_rcu - find a device by its ifindex
761 * @net: the applicable net namespace
762 * @ifindex: index of device
763 *
764 * Search for an interface by index. Returns %NULL if the device
765 * is not found or a pointer to the device. The device has not
766 * had its reference counter increased so the caller must be careful
767 * about locking. The caller must hold RCU lock.
768 */
769
770 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
771 {
772 struct net_device *dev;
773 struct hlist_head *head = dev_index_hash(net, ifindex);
774
775 hlist_for_each_entry_rcu(dev, head, index_hlist)
776 if (dev->ifindex == ifindex)
777 return dev;
778
779 return NULL;
780 }
781 EXPORT_SYMBOL(dev_get_by_index_rcu);
782
783
784 /**
785 * dev_get_by_index - find a device by its ifindex
786 * @net: the applicable net namespace
787 * @ifindex: index of device
788 *
789 * Search for an interface by index. Returns NULL if the device
790 * is not found or a pointer to the device. The device returned has
791 * had a reference added and the pointer is safe until the user calls
792 * dev_put to indicate they have finished with it.
793 */
794
795 struct net_device *dev_get_by_index(struct net *net, int ifindex)
796 {
797 struct net_device *dev;
798
799 rcu_read_lock();
800 dev = dev_get_by_index_rcu(net, ifindex);
801 if (dev)
802 dev_hold(dev);
803 rcu_read_unlock();
804 return dev;
805 }
806 EXPORT_SYMBOL(dev_get_by_index);
807
808 /**
809 * netdev_get_name - get a netdevice name, knowing its ifindex.
810 * @net: network namespace
811 * @name: a pointer to the buffer where the name will be stored.
812 * @ifindex: the ifindex of the interface to get the name from.
813 *
814 * The use of raw_seqcount_begin() and cond_resched() before
815 * retrying is required as we want to give the writers a chance
816 * to complete when CONFIG_PREEMPT is not set.
817 */
818 int netdev_get_name(struct net *net, char *name, int ifindex)
819 {
820 struct net_device *dev;
821 unsigned int seq;
822
823 retry:
824 seq = raw_seqcount_begin(&devnet_rename_seq);
825 rcu_read_lock();
826 dev = dev_get_by_index_rcu(net, ifindex);
827 if (!dev) {
828 rcu_read_unlock();
829 return -ENODEV;
830 }
831
832 strcpy(name, dev->name);
833 rcu_read_unlock();
834 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
835 cond_resched();
836 goto retry;
837 }
838
839 return 0;
840 }
841
842 /**
843 * dev_getbyhwaddr_rcu - find a device by its hardware address
844 * @net: the applicable net namespace
845 * @type: media type of device
846 * @ha: hardware address
847 *
848 * Search for an interface by MAC address. Returns NULL if the device
849 * is not found or a pointer to the device.
850 * The caller must hold RCU or RTNL.
851 * The returned device has not had its ref count increased
852 * and the caller must therefore be careful about locking
853 *
854 */
855
856 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
857 const char *ha)
858 {
859 struct net_device *dev;
860
861 for_each_netdev_rcu(net, dev)
862 if (dev->type == type &&
863 !memcmp(dev->dev_addr, ha, dev->addr_len))
864 return dev;
865
866 return NULL;
867 }
868 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
869
870 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
871 {
872 struct net_device *dev;
873
874 ASSERT_RTNL();
875 for_each_netdev(net, dev)
876 if (dev->type == type)
877 return dev;
878
879 return NULL;
880 }
881 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
882
883 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
884 {
885 struct net_device *dev, *ret = NULL;
886
887 rcu_read_lock();
888 for_each_netdev_rcu(net, dev)
889 if (dev->type == type) {
890 dev_hold(dev);
891 ret = dev;
892 break;
893 }
894 rcu_read_unlock();
895 return ret;
896 }
897 EXPORT_SYMBOL(dev_getfirstbyhwtype);
898
899 /**
900 * __dev_get_by_flags - find any device with given flags
901 * @net: the applicable net namespace
902 * @if_flags: IFF_* values
903 * @mask: bitmask of bits in if_flags to check
904 *
905 * Search for any interface with the given flags. Returns NULL if a device
906 * is not found or a pointer to the device. Must be called inside
907 * rtnl_lock(), and result refcount is unchanged.
908 */
909
910 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
911 unsigned short mask)
912 {
913 struct net_device *dev, *ret;
914
915 ASSERT_RTNL();
916
917 ret = NULL;
918 for_each_netdev(net, dev) {
919 if (((dev->flags ^ if_flags) & mask) == 0) {
920 ret = dev;
921 break;
922 }
923 }
924 return ret;
925 }
926 EXPORT_SYMBOL(__dev_get_by_flags);
927
928 /**
929 * dev_valid_name - check if name is okay for network device
930 * @name: name string
931 *
932 * Network device names need to be valid file names to
933 * to allow sysfs to work. We also disallow any kind of
934 * whitespace.
935 */
936 bool dev_valid_name(const char *name)
937 {
938 if (*name == '\0')
939 return false;
940 if (strlen(name) >= IFNAMSIZ)
941 return false;
942 if (!strcmp(name, ".") || !strcmp(name, ".."))
943 return false;
944
945 while (*name) {
946 if (*name == '/' || isspace(*name))
947 return false;
948 name++;
949 }
950 return true;
951 }
952 EXPORT_SYMBOL(dev_valid_name);
953
954 /**
955 * __dev_alloc_name - allocate a name for a device
956 * @net: network namespace to allocate the device name in
957 * @name: name format string
958 * @buf: scratch buffer and result name string
959 *
960 * Passed a format string - eg "lt%d" it will try and find a suitable
961 * id. It scans list of devices to build up a free map, then chooses
962 * the first empty slot. The caller must hold the dev_base or rtnl lock
963 * while allocating the name and adding the device in order to avoid
964 * duplicates.
965 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
966 * Returns the number of the unit assigned or a negative errno code.
967 */
968
969 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
970 {
971 int i = 0;
972 const char *p;
973 const int max_netdevices = 8*PAGE_SIZE;
974 unsigned long *inuse;
975 struct net_device *d;
976
977 p = strnchr(name, IFNAMSIZ-1, '%');
978 if (p) {
979 /*
980 * Verify the string as this thing may have come from
981 * the user. There must be either one "%d" and no other "%"
982 * characters.
983 */
984 if (p[1] != 'd' || strchr(p + 2, '%'))
985 return -EINVAL;
986
987 /* Use one page as a bit array of possible slots */
988 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
989 if (!inuse)
990 return -ENOMEM;
991
992 for_each_netdev(net, d) {
993 if (!sscanf(d->name, name, &i))
994 continue;
995 if (i < 0 || i >= max_netdevices)
996 continue;
997
998 /* avoid cases where sscanf is not exact inverse of printf */
999 snprintf(buf, IFNAMSIZ, name, i);
1000 if (!strncmp(buf, d->name, IFNAMSIZ))
1001 set_bit(i, inuse);
1002 }
1003
1004 i = find_first_zero_bit(inuse, max_netdevices);
1005 free_page((unsigned long) inuse);
1006 }
1007
1008 if (buf != name)
1009 snprintf(buf, IFNAMSIZ, name, i);
1010 if (!__dev_get_by_name(net, buf))
1011 return i;
1012
1013 /* It is possible to run out of possible slots
1014 * when the name is long and there isn't enough space left
1015 * for the digits, or if all bits are used.
1016 */
1017 return -ENFILE;
1018 }
1019
1020 /**
1021 * dev_alloc_name - allocate a name for a device
1022 * @dev: device
1023 * @name: name format string
1024 *
1025 * Passed a format string - eg "lt%d" it will try and find a suitable
1026 * id. It scans list of devices to build up a free map, then chooses
1027 * the first empty slot. The caller must hold the dev_base or rtnl lock
1028 * while allocating the name and adding the device in order to avoid
1029 * duplicates.
1030 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1031 * Returns the number of the unit assigned or a negative errno code.
1032 */
1033
1034 int dev_alloc_name(struct net_device *dev, const char *name)
1035 {
1036 char buf[IFNAMSIZ];
1037 struct net *net;
1038 int ret;
1039
1040 BUG_ON(!dev_net(dev));
1041 net = dev_net(dev);
1042 ret = __dev_alloc_name(net, name, buf);
1043 if (ret >= 0)
1044 strlcpy(dev->name, buf, IFNAMSIZ);
1045 return ret;
1046 }
1047 EXPORT_SYMBOL(dev_alloc_name);
1048
1049 static int dev_alloc_name_ns(struct net *net,
1050 struct net_device *dev,
1051 const char *name)
1052 {
1053 char buf[IFNAMSIZ];
1054 int ret;
1055
1056 ret = __dev_alloc_name(net, name, buf);
1057 if (ret >= 0)
1058 strlcpy(dev->name, buf, IFNAMSIZ);
1059 return ret;
1060 }
1061
1062 static int dev_get_valid_name(struct net *net,
1063 struct net_device *dev,
1064 const char *name)
1065 {
1066 BUG_ON(!net);
1067
1068 if (!dev_valid_name(name))
1069 return -EINVAL;
1070
1071 if (strchr(name, '%'))
1072 return dev_alloc_name_ns(net, dev, name);
1073 else if (__dev_get_by_name(net, name))
1074 return -EEXIST;
1075 else if (dev->name != name)
1076 strlcpy(dev->name, name, IFNAMSIZ);
1077
1078 return 0;
1079 }
1080
1081 /**
1082 * dev_change_name - change name of a device
1083 * @dev: device
1084 * @newname: name (or format string) must be at least IFNAMSIZ
1085 *
1086 * Change name of a device, can pass format strings "eth%d".
1087 * for wildcarding.
1088 */
1089 int dev_change_name(struct net_device *dev, const char *newname)
1090 {
1091 unsigned char old_assign_type;
1092 char oldname[IFNAMSIZ];
1093 int err = 0;
1094 int ret;
1095 struct net *net;
1096
1097 ASSERT_RTNL();
1098 BUG_ON(!dev_net(dev));
1099
1100 net = dev_net(dev);
1101 if (dev->flags & IFF_UP)
1102 return -EBUSY;
1103
1104 write_seqcount_begin(&devnet_rename_seq);
1105
1106 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1107 write_seqcount_end(&devnet_rename_seq);
1108 return 0;
1109 }
1110
1111 memcpy(oldname, dev->name, IFNAMSIZ);
1112
1113 err = dev_get_valid_name(net, dev, newname);
1114 if (err < 0) {
1115 write_seqcount_end(&devnet_rename_seq);
1116 return err;
1117 }
1118
1119 if (oldname[0] && !strchr(oldname, '%'))
1120 netdev_info(dev, "renamed from %s\n", oldname);
1121
1122 old_assign_type = dev->name_assign_type;
1123 dev->name_assign_type = NET_NAME_RENAMED;
1124
1125 rollback:
1126 ret = device_rename(&dev->dev, dev->name);
1127 if (ret) {
1128 memcpy(dev->name, oldname, IFNAMSIZ);
1129 dev->name_assign_type = old_assign_type;
1130 write_seqcount_end(&devnet_rename_seq);
1131 return ret;
1132 }
1133
1134 write_seqcount_end(&devnet_rename_seq);
1135
1136 netdev_adjacent_rename_links(dev, oldname);
1137
1138 write_lock_bh(&dev_base_lock);
1139 hlist_del_rcu(&dev->name_hlist);
1140 write_unlock_bh(&dev_base_lock);
1141
1142 synchronize_rcu();
1143
1144 write_lock_bh(&dev_base_lock);
1145 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1146 write_unlock_bh(&dev_base_lock);
1147
1148 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1149 ret = notifier_to_errno(ret);
1150
1151 if (ret) {
1152 /* err >= 0 after dev_alloc_name() or stores the first errno */
1153 if (err >= 0) {
1154 err = ret;
1155 write_seqcount_begin(&devnet_rename_seq);
1156 memcpy(dev->name, oldname, IFNAMSIZ);
1157 memcpy(oldname, newname, IFNAMSIZ);
1158 dev->name_assign_type = old_assign_type;
1159 old_assign_type = NET_NAME_RENAMED;
1160 goto rollback;
1161 } else {
1162 pr_err("%s: name change rollback failed: %d\n",
1163 dev->name, ret);
1164 }
1165 }
1166
1167 return err;
1168 }
1169
1170 /**
1171 * dev_set_alias - change ifalias of a device
1172 * @dev: device
1173 * @alias: name up to IFALIASZ
1174 * @len: limit of bytes to copy from info
1175 *
1176 * Set ifalias for a device,
1177 */
1178 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1179 {
1180 char *new_ifalias;
1181
1182 ASSERT_RTNL();
1183
1184 if (len >= IFALIASZ)
1185 return -EINVAL;
1186
1187 if (!len) {
1188 kfree(dev->ifalias);
1189 dev->ifalias = NULL;
1190 return 0;
1191 }
1192
1193 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1194 if (!new_ifalias)
1195 return -ENOMEM;
1196 dev->ifalias = new_ifalias;
1197
1198 strlcpy(dev->ifalias, alias, len+1);
1199 return len;
1200 }
1201
1202
1203 /**
1204 * netdev_features_change - device changes features
1205 * @dev: device to cause notification
1206 *
1207 * Called to indicate a device has changed features.
1208 */
1209 void netdev_features_change(struct net_device *dev)
1210 {
1211 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1212 }
1213 EXPORT_SYMBOL(netdev_features_change);
1214
1215 /**
1216 * netdev_state_change - device changes state
1217 * @dev: device to cause notification
1218 *
1219 * Called to indicate a device has changed state. This function calls
1220 * the notifier chains for netdev_chain and sends a NEWLINK message
1221 * to the routing socket.
1222 */
1223 void netdev_state_change(struct net_device *dev)
1224 {
1225 if (dev->flags & IFF_UP) {
1226 struct netdev_notifier_change_info change_info;
1227
1228 change_info.flags_changed = 0;
1229 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1230 &change_info.info);
1231 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1232 }
1233 }
1234 EXPORT_SYMBOL(netdev_state_change);
1235
1236 /**
1237 * netdev_notify_peers - notify network peers about existence of @dev
1238 * @dev: network device
1239 *
1240 * Generate traffic such that interested network peers are aware of
1241 * @dev, such as by generating a gratuitous ARP. This may be used when
1242 * a device wants to inform the rest of the network about some sort of
1243 * reconfiguration such as a failover event or virtual machine
1244 * migration.
1245 */
1246 void netdev_notify_peers(struct net_device *dev)
1247 {
1248 rtnl_lock();
1249 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1250 rtnl_unlock();
1251 }
1252 EXPORT_SYMBOL(netdev_notify_peers);
1253
1254 static int __dev_open(struct net_device *dev)
1255 {
1256 const struct net_device_ops *ops = dev->netdev_ops;
1257 int ret;
1258
1259 ASSERT_RTNL();
1260
1261 if (!netif_device_present(dev))
1262 return -ENODEV;
1263
1264 /* Block netpoll from trying to do any rx path servicing.
1265 * If we don't do this there is a chance ndo_poll_controller
1266 * or ndo_poll may be running while we open the device
1267 */
1268 netpoll_poll_disable(dev);
1269
1270 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1271 ret = notifier_to_errno(ret);
1272 if (ret)
1273 return ret;
1274
1275 set_bit(__LINK_STATE_START, &dev->state);
1276
1277 if (ops->ndo_validate_addr)
1278 ret = ops->ndo_validate_addr(dev);
1279
1280 if (!ret && ops->ndo_open)
1281 ret = ops->ndo_open(dev);
1282
1283 netpoll_poll_enable(dev);
1284
1285 if (ret)
1286 clear_bit(__LINK_STATE_START, &dev->state);
1287 else {
1288 dev->flags |= IFF_UP;
1289 dev_set_rx_mode(dev);
1290 dev_activate(dev);
1291 add_device_randomness(dev->dev_addr, dev->addr_len);
1292 }
1293
1294 return ret;
1295 }
1296
1297 /**
1298 * dev_open - prepare an interface for use.
1299 * @dev: device to open
1300 *
1301 * Takes a device from down to up state. The device's private open
1302 * function is invoked and then the multicast lists are loaded. Finally
1303 * the device is moved into the up state and a %NETDEV_UP message is
1304 * sent to the netdev notifier chain.
1305 *
1306 * Calling this function on an active interface is a nop. On a failure
1307 * a negative errno code is returned.
1308 */
1309 int dev_open(struct net_device *dev)
1310 {
1311 int ret;
1312
1313 if (dev->flags & IFF_UP)
1314 return 0;
1315
1316 ret = __dev_open(dev);
1317 if (ret < 0)
1318 return ret;
1319
1320 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1321 call_netdevice_notifiers(NETDEV_UP, dev);
1322
1323 return ret;
1324 }
1325 EXPORT_SYMBOL(dev_open);
1326
1327 static int __dev_close_many(struct list_head *head)
1328 {
1329 struct net_device *dev;
1330
1331 ASSERT_RTNL();
1332 might_sleep();
1333
1334 list_for_each_entry(dev, head, close_list) {
1335 /* Temporarily disable netpoll until the interface is down */
1336 netpoll_poll_disable(dev);
1337
1338 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1339
1340 clear_bit(__LINK_STATE_START, &dev->state);
1341
1342 /* Synchronize to scheduled poll. We cannot touch poll list, it
1343 * can be even on different cpu. So just clear netif_running().
1344 *
1345 * dev->stop() will invoke napi_disable() on all of it's
1346 * napi_struct instances on this device.
1347 */
1348 smp_mb__after_atomic(); /* Commit netif_running(). */
1349 }
1350
1351 dev_deactivate_many(head);
1352
1353 list_for_each_entry(dev, head, close_list) {
1354 const struct net_device_ops *ops = dev->netdev_ops;
1355
1356 /*
1357 * Call the device specific close. This cannot fail.
1358 * Only if device is UP
1359 *
1360 * We allow it to be called even after a DETACH hot-plug
1361 * event.
1362 */
1363 if (ops->ndo_stop)
1364 ops->ndo_stop(dev);
1365
1366 dev->flags &= ~IFF_UP;
1367 netpoll_poll_enable(dev);
1368 }
1369
1370 return 0;
1371 }
1372
1373 static int __dev_close(struct net_device *dev)
1374 {
1375 int retval;
1376 LIST_HEAD(single);
1377
1378 list_add(&dev->close_list, &single);
1379 retval = __dev_close_many(&single);
1380 list_del(&single);
1381
1382 return retval;
1383 }
1384
1385 static int dev_close_many(struct list_head *head)
1386 {
1387 struct net_device *dev, *tmp;
1388
1389 /* Remove the devices that don't need to be closed */
1390 list_for_each_entry_safe(dev, tmp, head, close_list)
1391 if (!(dev->flags & IFF_UP))
1392 list_del_init(&dev->close_list);
1393
1394 __dev_close_many(head);
1395
1396 list_for_each_entry_safe(dev, tmp, head, close_list) {
1397 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1398 call_netdevice_notifiers(NETDEV_DOWN, dev);
1399 list_del_init(&dev->close_list);
1400 }
1401
1402 return 0;
1403 }
1404
1405 /**
1406 * dev_close - shutdown an interface.
1407 * @dev: device to shutdown
1408 *
1409 * This function moves an active device into down state. A
1410 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1411 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1412 * chain.
1413 */
1414 int dev_close(struct net_device *dev)
1415 {
1416 if (dev->flags & IFF_UP) {
1417 LIST_HEAD(single);
1418
1419 list_add(&dev->close_list, &single);
1420 dev_close_many(&single);
1421 list_del(&single);
1422 }
1423 return 0;
1424 }
1425 EXPORT_SYMBOL(dev_close);
1426
1427
1428 /**
1429 * dev_disable_lro - disable Large Receive Offload on a device
1430 * @dev: device
1431 *
1432 * Disable Large Receive Offload (LRO) on a net device. Must be
1433 * called under RTNL. This is needed if received packets may be
1434 * forwarded to another interface.
1435 */
1436 void dev_disable_lro(struct net_device *dev)
1437 {
1438 /*
1439 * If we're trying to disable lro on a vlan device
1440 * use the underlying physical device instead
1441 */
1442 if (is_vlan_dev(dev))
1443 dev = vlan_dev_real_dev(dev);
1444
1445 /* the same for macvlan devices */
1446 if (netif_is_macvlan(dev))
1447 dev = macvlan_dev_real_dev(dev);
1448
1449 dev->wanted_features &= ~NETIF_F_LRO;
1450 netdev_update_features(dev);
1451
1452 if (unlikely(dev->features & NETIF_F_LRO))
1453 netdev_WARN(dev, "failed to disable LRO!\n");
1454 }
1455 EXPORT_SYMBOL(dev_disable_lro);
1456
1457 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1458 struct net_device *dev)
1459 {
1460 struct netdev_notifier_info info;
1461
1462 netdev_notifier_info_init(&info, dev);
1463 return nb->notifier_call(nb, val, &info);
1464 }
1465
1466 static int dev_boot_phase = 1;
1467
1468 /**
1469 * register_netdevice_notifier - register a network notifier block
1470 * @nb: notifier
1471 *
1472 * Register a notifier to be called when network device events occur.
1473 * The notifier passed is linked into the kernel structures and must
1474 * not be reused until it has been unregistered. A negative errno code
1475 * is returned on a failure.
1476 *
1477 * When registered all registration and up events are replayed
1478 * to the new notifier to allow device to have a race free
1479 * view of the network device list.
1480 */
1481
1482 int register_netdevice_notifier(struct notifier_block *nb)
1483 {
1484 struct net_device *dev;
1485 struct net_device *last;
1486 struct net *net;
1487 int err;
1488
1489 rtnl_lock();
1490 err = raw_notifier_chain_register(&netdev_chain, nb);
1491 if (err)
1492 goto unlock;
1493 if (dev_boot_phase)
1494 goto unlock;
1495 for_each_net(net) {
1496 for_each_netdev(net, dev) {
1497 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1498 err = notifier_to_errno(err);
1499 if (err)
1500 goto rollback;
1501
1502 if (!(dev->flags & IFF_UP))
1503 continue;
1504
1505 call_netdevice_notifier(nb, NETDEV_UP, dev);
1506 }
1507 }
1508
1509 unlock:
1510 rtnl_unlock();
1511 return err;
1512
1513 rollback:
1514 last = dev;
1515 for_each_net(net) {
1516 for_each_netdev(net, dev) {
1517 if (dev == last)
1518 goto outroll;
1519
1520 if (dev->flags & IFF_UP) {
1521 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1522 dev);
1523 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1524 }
1525 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1526 }
1527 }
1528
1529 outroll:
1530 raw_notifier_chain_unregister(&netdev_chain, nb);
1531 goto unlock;
1532 }
1533 EXPORT_SYMBOL(register_netdevice_notifier);
1534
1535 /**
1536 * unregister_netdevice_notifier - unregister a network notifier block
1537 * @nb: notifier
1538 *
1539 * Unregister a notifier previously registered by
1540 * register_netdevice_notifier(). The notifier is unlinked into the
1541 * kernel structures and may then be reused. A negative errno code
1542 * is returned on a failure.
1543 *
1544 * After unregistering unregister and down device events are synthesized
1545 * for all devices on the device list to the removed notifier to remove
1546 * the need for special case cleanup code.
1547 */
1548
1549 int unregister_netdevice_notifier(struct notifier_block *nb)
1550 {
1551 struct net_device *dev;
1552 struct net *net;
1553 int err;
1554
1555 rtnl_lock();
1556 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1557 if (err)
1558 goto unlock;
1559
1560 for_each_net(net) {
1561 for_each_netdev(net, dev) {
1562 if (dev->flags & IFF_UP) {
1563 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1564 dev);
1565 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1566 }
1567 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1568 }
1569 }
1570 unlock:
1571 rtnl_unlock();
1572 return err;
1573 }
1574 EXPORT_SYMBOL(unregister_netdevice_notifier);
1575
1576 /**
1577 * call_netdevice_notifiers_info - call all network notifier blocks
1578 * @val: value passed unmodified to notifier function
1579 * @dev: net_device pointer passed unmodified to notifier function
1580 * @info: notifier information data
1581 *
1582 * Call all network notifier blocks. Parameters and return value
1583 * are as for raw_notifier_call_chain().
1584 */
1585
1586 static int call_netdevice_notifiers_info(unsigned long val,
1587 struct net_device *dev,
1588 struct netdev_notifier_info *info)
1589 {
1590 ASSERT_RTNL();
1591 netdev_notifier_info_init(info, dev);
1592 return raw_notifier_call_chain(&netdev_chain, val, info);
1593 }
1594
1595 /**
1596 * call_netdevice_notifiers - call all network notifier blocks
1597 * @val: value passed unmodified to notifier function
1598 * @dev: net_device pointer passed unmodified to notifier function
1599 *
1600 * Call all network notifier blocks. Parameters and return value
1601 * are as for raw_notifier_call_chain().
1602 */
1603
1604 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1605 {
1606 struct netdev_notifier_info info;
1607
1608 return call_netdevice_notifiers_info(val, dev, &info);
1609 }
1610 EXPORT_SYMBOL(call_netdevice_notifiers);
1611
1612 static struct static_key netstamp_needed __read_mostly;
1613 #ifdef HAVE_JUMP_LABEL
1614 /* We are not allowed to call static_key_slow_dec() from irq context
1615 * If net_disable_timestamp() is called from irq context, defer the
1616 * static_key_slow_dec() calls.
1617 */
1618 static atomic_t netstamp_needed_deferred;
1619 #endif
1620
1621 void net_enable_timestamp(void)
1622 {
1623 #ifdef HAVE_JUMP_LABEL
1624 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1625
1626 if (deferred) {
1627 while (--deferred)
1628 static_key_slow_dec(&netstamp_needed);
1629 return;
1630 }
1631 #endif
1632 static_key_slow_inc(&netstamp_needed);
1633 }
1634 EXPORT_SYMBOL(net_enable_timestamp);
1635
1636 void net_disable_timestamp(void)
1637 {
1638 #ifdef HAVE_JUMP_LABEL
1639 if (in_interrupt()) {
1640 atomic_inc(&netstamp_needed_deferred);
1641 return;
1642 }
1643 #endif
1644 static_key_slow_dec(&netstamp_needed);
1645 }
1646 EXPORT_SYMBOL(net_disable_timestamp);
1647
1648 static inline void net_timestamp_set(struct sk_buff *skb)
1649 {
1650 skb->tstamp.tv64 = 0;
1651 if (static_key_false(&netstamp_needed))
1652 __net_timestamp(skb);
1653 }
1654
1655 #define net_timestamp_check(COND, SKB) \
1656 if (static_key_false(&netstamp_needed)) { \
1657 if ((COND) && !(SKB)->tstamp.tv64) \
1658 __net_timestamp(SKB); \
1659 } \
1660
1661 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1662 {
1663 unsigned int len;
1664
1665 if (!(dev->flags & IFF_UP))
1666 return false;
1667
1668 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1669 if (skb->len <= len)
1670 return true;
1671
1672 /* if TSO is enabled, we don't care about the length as the packet
1673 * could be forwarded without being segmented before
1674 */
1675 if (skb_is_gso(skb))
1676 return true;
1677
1678 return false;
1679 }
1680 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1681
1682 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683 {
1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 atomic_long_inc(&dev->rx_dropped);
1687 kfree_skb(skb);
1688 return NET_RX_DROP;
1689 }
1690 }
1691
1692 if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 atomic_long_inc(&dev->rx_dropped);
1694 kfree_skb(skb);
1695 return NET_RX_DROP;
1696 }
1697
1698 skb_scrub_packet(skb, true);
1699 skb->protocol = eth_type_trans(skb, dev);
1700
1701 return 0;
1702 }
1703 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1704
1705 /**
1706 * dev_forward_skb - loopback an skb to another netif
1707 *
1708 * @dev: destination network device
1709 * @skb: buffer to forward
1710 *
1711 * return values:
1712 * NET_RX_SUCCESS (no congestion)
1713 * NET_RX_DROP (packet was dropped, but freed)
1714 *
1715 * dev_forward_skb can be used for injecting an skb from the
1716 * start_xmit function of one device into the receive queue
1717 * of another device.
1718 *
1719 * The receiving device may be in another namespace, so
1720 * we have to clear all information in the skb that could
1721 * impact namespace isolation.
1722 */
1723 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1724 {
1725 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1726 }
1727 EXPORT_SYMBOL_GPL(dev_forward_skb);
1728
1729 static inline int deliver_skb(struct sk_buff *skb,
1730 struct packet_type *pt_prev,
1731 struct net_device *orig_dev)
1732 {
1733 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1734 return -ENOMEM;
1735 atomic_inc(&skb->users);
1736 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1737 }
1738
1739 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1740 {
1741 if (!ptype->af_packet_priv || !skb->sk)
1742 return false;
1743
1744 if (ptype->id_match)
1745 return ptype->id_match(ptype, skb->sk);
1746 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1747 return true;
1748
1749 return false;
1750 }
1751
1752 /*
1753 * Support routine. Sends outgoing frames to any network
1754 * taps currently in use.
1755 */
1756
1757 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1758 {
1759 struct packet_type *ptype;
1760 struct sk_buff *skb2 = NULL;
1761 struct packet_type *pt_prev = NULL;
1762
1763 rcu_read_lock();
1764 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1765 /* Never send packets back to the socket
1766 * they originated from - MvS (miquels@drinkel.ow.org)
1767 */
1768 if ((ptype->dev == dev || !ptype->dev) &&
1769 (!skb_loop_sk(ptype, skb))) {
1770 if (pt_prev) {
1771 deliver_skb(skb2, pt_prev, skb->dev);
1772 pt_prev = ptype;
1773 continue;
1774 }
1775
1776 skb2 = skb_clone(skb, GFP_ATOMIC);
1777 if (!skb2)
1778 break;
1779
1780 net_timestamp_set(skb2);
1781
1782 /* skb->nh should be correctly
1783 set by sender, so that the second statement is
1784 just protection against buggy protocols.
1785 */
1786 skb_reset_mac_header(skb2);
1787
1788 if (skb_network_header(skb2) < skb2->data ||
1789 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1790 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1791 ntohs(skb2->protocol),
1792 dev->name);
1793 skb_reset_network_header(skb2);
1794 }
1795
1796 skb2->transport_header = skb2->network_header;
1797 skb2->pkt_type = PACKET_OUTGOING;
1798 pt_prev = ptype;
1799 }
1800 }
1801 if (pt_prev)
1802 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1803 rcu_read_unlock();
1804 }
1805
1806 /**
1807 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1808 * @dev: Network device
1809 * @txq: number of queues available
1810 *
1811 * If real_num_tx_queues is changed the tc mappings may no longer be
1812 * valid. To resolve this verify the tc mapping remains valid and if
1813 * not NULL the mapping. With no priorities mapping to this
1814 * offset/count pair it will no longer be used. In the worst case TC0
1815 * is invalid nothing can be done so disable priority mappings. If is
1816 * expected that drivers will fix this mapping if they can before
1817 * calling netif_set_real_num_tx_queues.
1818 */
1819 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1820 {
1821 int i;
1822 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1823
1824 /* If TC0 is invalidated disable TC mapping */
1825 if (tc->offset + tc->count > txq) {
1826 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1827 dev->num_tc = 0;
1828 return;
1829 }
1830
1831 /* Invalidated prio to tc mappings set to TC0 */
1832 for (i = 1; i < TC_BITMASK + 1; i++) {
1833 int q = netdev_get_prio_tc_map(dev, i);
1834
1835 tc = &dev->tc_to_txq[q];
1836 if (tc->offset + tc->count > txq) {
1837 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1838 i, q);
1839 netdev_set_prio_tc_map(dev, i, 0);
1840 }
1841 }
1842 }
1843
1844 #ifdef CONFIG_XPS
1845 static DEFINE_MUTEX(xps_map_mutex);
1846 #define xmap_dereference(P) \
1847 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1848
1849 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1850 int cpu, u16 index)
1851 {
1852 struct xps_map *map = NULL;
1853 int pos;
1854
1855 if (dev_maps)
1856 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1857
1858 for (pos = 0; map && pos < map->len; pos++) {
1859 if (map->queues[pos] == index) {
1860 if (map->len > 1) {
1861 map->queues[pos] = map->queues[--map->len];
1862 } else {
1863 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1864 kfree_rcu(map, rcu);
1865 map = NULL;
1866 }
1867 break;
1868 }
1869 }
1870
1871 return map;
1872 }
1873
1874 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1875 {
1876 struct xps_dev_maps *dev_maps;
1877 int cpu, i;
1878 bool active = false;
1879
1880 mutex_lock(&xps_map_mutex);
1881 dev_maps = xmap_dereference(dev->xps_maps);
1882
1883 if (!dev_maps)
1884 goto out_no_maps;
1885
1886 for_each_possible_cpu(cpu) {
1887 for (i = index; i < dev->num_tx_queues; i++) {
1888 if (!remove_xps_queue(dev_maps, cpu, i))
1889 break;
1890 }
1891 if (i == dev->num_tx_queues)
1892 active = true;
1893 }
1894
1895 if (!active) {
1896 RCU_INIT_POINTER(dev->xps_maps, NULL);
1897 kfree_rcu(dev_maps, rcu);
1898 }
1899
1900 for (i = index; i < dev->num_tx_queues; i++)
1901 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1902 NUMA_NO_NODE);
1903
1904 out_no_maps:
1905 mutex_unlock(&xps_map_mutex);
1906 }
1907
1908 static struct xps_map *expand_xps_map(struct xps_map *map,
1909 int cpu, u16 index)
1910 {
1911 struct xps_map *new_map;
1912 int alloc_len = XPS_MIN_MAP_ALLOC;
1913 int i, pos;
1914
1915 for (pos = 0; map && pos < map->len; pos++) {
1916 if (map->queues[pos] != index)
1917 continue;
1918 return map;
1919 }
1920
1921 /* Need to add queue to this CPU's existing map */
1922 if (map) {
1923 if (pos < map->alloc_len)
1924 return map;
1925
1926 alloc_len = map->alloc_len * 2;
1927 }
1928
1929 /* Need to allocate new map to store queue on this CPU's map */
1930 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1931 cpu_to_node(cpu));
1932 if (!new_map)
1933 return NULL;
1934
1935 for (i = 0; i < pos; i++)
1936 new_map->queues[i] = map->queues[i];
1937 new_map->alloc_len = alloc_len;
1938 new_map->len = pos;
1939
1940 return new_map;
1941 }
1942
1943 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1944 u16 index)
1945 {
1946 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1947 struct xps_map *map, *new_map;
1948 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1949 int cpu, numa_node_id = -2;
1950 bool active = false;
1951
1952 mutex_lock(&xps_map_mutex);
1953
1954 dev_maps = xmap_dereference(dev->xps_maps);
1955
1956 /* allocate memory for queue storage */
1957 for_each_online_cpu(cpu) {
1958 if (!cpumask_test_cpu(cpu, mask))
1959 continue;
1960
1961 if (!new_dev_maps)
1962 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1963 if (!new_dev_maps) {
1964 mutex_unlock(&xps_map_mutex);
1965 return -ENOMEM;
1966 }
1967
1968 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1969 NULL;
1970
1971 map = expand_xps_map(map, cpu, index);
1972 if (!map)
1973 goto error;
1974
1975 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1976 }
1977
1978 if (!new_dev_maps)
1979 goto out_no_new_maps;
1980
1981 for_each_possible_cpu(cpu) {
1982 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1983 /* add queue to CPU maps */
1984 int pos = 0;
1985
1986 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1987 while ((pos < map->len) && (map->queues[pos] != index))
1988 pos++;
1989
1990 if (pos == map->len)
1991 map->queues[map->len++] = index;
1992 #ifdef CONFIG_NUMA
1993 if (numa_node_id == -2)
1994 numa_node_id = cpu_to_node(cpu);
1995 else if (numa_node_id != cpu_to_node(cpu))
1996 numa_node_id = -1;
1997 #endif
1998 } else if (dev_maps) {
1999 /* fill in the new device map from the old device map */
2000 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2001 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2002 }
2003
2004 }
2005
2006 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2007
2008 /* Cleanup old maps */
2009 if (dev_maps) {
2010 for_each_possible_cpu(cpu) {
2011 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2012 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2013 if (map && map != new_map)
2014 kfree_rcu(map, rcu);
2015 }
2016
2017 kfree_rcu(dev_maps, rcu);
2018 }
2019
2020 dev_maps = new_dev_maps;
2021 active = true;
2022
2023 out_no_new_maps:
2024 /* update Tx queue numa node */
2025 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2026 (numa_node_id >= 0) ? numa_node_id :
2027 NUMA_NO_NODE);
2028
2029 if (!dev_maps)
2030 goto out_no_maps;
2031
2032 /* removes queue from unused CPUs */
2033 for_each_possible_cpu(cpu) {
2034 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2035 continue;
2036
2037 if (remove_xps_queue(dev_maps, cpu, index))
2038 active = true;
2039 }
2040
2041 /* free map if not active */
2042 if (!active) {
2043 RCU_INIT_POINTER(dev->xps_maps, NULL);
2044 kfree_rcu(dev_maps, rcu);
2045 }
2046
2047 out_no_maps:
2048 mutex_unlock(&xps_map_mutex);
2049
2050 return 0;
2051 error:
2052 /* remove any maps that we added */
2053 for_each_possible_cpu(cpu) {
2054 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2055 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056 NULL;
2057 if (new_map && new_map != map)
2058 kfree(new_map);
2059 }
2060
2061 mutex_unlock(&xps_map_mutex);
2062
2063 kfree(new_dev_maps);
2064 return -ENOMEM;
2065 }
2066 EXPORT_SYMBOL(netif_set_xps_queue);
2067
2068 #endif
2069 /*
2070 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2071 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2072 */
2073 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2074 {
2075 int rc;
2076
2077 if (txq < 1 || txq > dev->num_tx_queues)
2078 return -EINVAL;
2079
2080 if (dev->reg_state == NETREG_REGISTERED ||
2081 dev->reg_state == NETREG_UNREGISTERING) {
2082 ASSERT_RTNL();
2083
2084 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2085 txq);
2086 if (rc)
2087 return rc;
2088
2089 if (dev->num_tc)
2090 netif_setup_tc(dev, txq);
2091
2092 if (txq < dev->real_num_tx_queues) {
2093 qdisc_reset_all_tx_gt(dev, txq);
2094 #ifdef CONFIG_XPS
2095 netif_reset_xps_queues_gt(dev, txq);
2096 #endif
2097 }
2098 }
2099
2100 dev->real_num_tx_queues = txq;
2101 return 0;
2102 }
2103 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2104
2105 #ifdef CONFIG_SYSFS
2106 /**
2107 * netif_set_real_num_rx_queues - set actual number of RX queues used
2108 * @dev: Network device
2109 * @rxq: Actual number of RX queues
2110 *
2111 * This must be called either with the rtnl_lock held or before
2112 * registration of the net device. Returns 0 on success, or a
2113 * negative error code. If called before registration, it always
2114 * succeeds.
2115 */
2116 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2117 {
2118 int rc;
2119
2120 if (rxq < 1 || rxq > dev->num_rx_queues)
2121 return -EINVAL;
2122
2123 if (dev->reg_state == NETREG_REGISTERED) {
2124 ASSERT_RTNL();
2125
2126 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2127 rxq);
2128 if (rc)
2129 return rc;
2130 }
2131
2132 dev->real_num_rx_queues = rxq;
2133 return 0;
2134 }
2135 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2136 #endif
2137
2138 /**
2139 * netif_get_num_default_rss_queues - default number of RSS queues
2140 *
2141 * This routine should set an upper limit on the number of RSS queues
2142 * used by default by multiqueue devices.
2143 */
2144 int netif_get_num_default_rss_queues(void)
2145 {
2146 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2147 }
2148 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2149
2150 static inline void __netif_reschedule(struct Qdisc *q)
2151 {
2152 struct softnet_data *sd;
2153 unsigned long flags;
2154
2155 local_irq_save(flags);
2156 sd = this_cpu_ptr(&softnet_data);
2157 q->next_sched = NULL;
2158 *sd->output_queue_tailp = q;
2159 sd->output_queue_tailp = &q->next_sched;
2160 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2161 local_irq_restore(flags);
2162 }
2163
2164 void __netif_schedule(struct Qdisc *q)
2165 {
2166 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2167 __netif_reschedule(q);
2168 }
2169 EXPORT_SYMBOL(__netif_schedule);
2170
2171 struct dev_kfree_skb_cb {
2172 enum skb_free_reason reason;
2173 };
2174
2175 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2176 {
2177 return (struct dev_kfree_skb_cb *)skb->cb;
2178 }
2179
2180 void netif_schedule_queue(struct netdev_queue *txq)
2181 {
2182 rcu_read_lock();
2183 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2184 struct Qdisc *q = rcu_dereference(txq->qdisc);
2185
2186 __netif_schedule(q);
2187 }
2188 rcu_read_unlock();
2189 }
2190 EXPORT_SYMBOL(netif_schedule_queue);
2191
2192 /**
2193 * netif_wake_subqueue - allow sending packets on subqueue
2194 * @dev: network device
2195 * @queue_index: sub queue index
2196 *
2197 * Resume individual transmit queue of a device with multiple transmit queues.
2198 */
2199 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2200 {
2201 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2202
2203 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2204 struct Qdisc *q;
2205
2206 rcu_read_lock();
2207 q = rcu_dereference(txq->qdisc);
2208 __netif_schedule(q);
2209 rcu_read_unlock();
2210 }
2211 }
2212 EXPORT_SYMBOL(netif_wake_subqueue);
2213
2214 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2215 {
2216 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2217 struct Qdisc *q;
2218
2219 rcu_read_lock();
2220 q = rcu_dereference(dev_queue->qdisc);
2221 __netif_schedule(q);
2222 rcu_read_unlock();
2223 }
2224 }
2225 EXPORT_SYMBOL(netif_tx_wake_queue);
2226
2227 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2228 {
2229 unsigned long flags;
2230
2231 if (likely(atomic_read(&skb->users) == 1)) {
2232 smp_rmb();
2233 atomic_set(&skb->users, 0);
2234 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2235 return;
2236 }
2237 get_kfree_skb_cb(skb)->reason = reason;
2238 local_irq_save(flags);
2239 skb->next = __this_cpu_read(softnet_data.completion_queue);
2240 __this_cpu_write(softnet_data.completion_queue, skb);
2241 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2242 local_irq_restore(flags);
2243 }
2244 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2245
2246 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2247 {
2248 if (in_irq() || irqs_disabled())
2249 __dev_kfree_skb_irq(skb, reason);
2250 else
2251 dev_kfree_skb(skb);
2252 }
2253 EXPORT_SYMBOL(__dev_kfree_skb_any);
2254
2255
2256 /**
2257 * netif_device_detach - mark device as removed
2258 * @dev: network device
2259 *
2260 * Mark device as removed from system and therefore no longer available.
2261 */
2262 void netif_device_detach(struct net_device *dev)
2263 {
2264 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2265 netif_running(dev)) {
2266 netif_tx_stop_all_queues(dev);
2267 }
2268 }
2269 EXPORT_SYMBOL(netif_device_detach);
2270
2271 /**
2272 * netif_device_attach - mark device as attached
2273 * @dev: network device
2274 *
2275 * Mark device as attached from system and restart if needed.
2276 */
2277 void netif_device_attach(struct net_device *dev)
2278 {
2279 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2280 netif_running(dev)) {
2281 netif_tx_wake_all_queues(dev);
2282 __netdev_watchdog_up(dev);
2283 }
2284 }
2285 EXPORT_SYMBOL(netif_device_attach);
2286
2287 static void skb_warn_bad_offload(const struct sk_buff *skb)
2288 {
2289 static const netdev_features_t null_features = 0;
2290 struct net_device *dev = skb->dev;
2291 const char *driver = "";
2292
2293 if (!net_ratelimit())
2294 return;
2295
2296 if (dev && dev->dev.parent)
2297 driver = dev_driver_string(dev->dev.parent);
2298
2299 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2300 "gso_type=%d ip_summed=%d\n",
2301 driver, dev ? &dev->features : &null_features,
2302 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2303 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2304 skb_shinfo(skb)->gso_type, skb->ip_summed);
2305 }
2306
2307 /*
2308 * Invalidate hardware checksum when packet is to be mangled, and
2309 * complete checksum manually on outgoing path.
2310 */
2311 int skb_checksum_help(struct sk_buff *skb)
2312 {
2313 __wsum csum;
2314 int ret = 0, offset;
2315
2316 if (skb->ip_summed == CHECKSUM_COMPLETE)
2317 goto out_set_summed;
2318
2319 if (unlikely(skb_shinfo(skb)->gso_size)) {
2320 skb_warn_bad_offload(skb);
2321 return -EINVAL;
2322 }
2323
2324 /* Before computing a checksum, we should make sure no frag could
2325 * be modified by an external entity : checksum could be wrong.
2326 */
2327 if (skb_has_shared_frag(skb)) {
2328 ret = __skb_linearize(skb);
2329 if (ret)
2330 goto out;
2331 }
2332
2333 offset = skb_checksum_start_offset(skb);
2334 BUG_ON(offset >= skb_headlen(skb));
2335 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2336
2337 offset += skb->csum_offset;
2338 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2339
2340 if (skb_cloned(skb) &&
2341 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2342 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2343 if (ret)
2344 goto out;
2345 }
2346
2347 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2348 out_set_summed:
2349 skb->ip_summed = CHECKSUM_NONE;
2350 out:
2351 return ret;
2352 }
2353 EXPORT_SYMBOL(skb_checksum_help);
2354
2355 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2356 {
2357 unsigned int vlan_depth = skb->mac_len;
2358 __be16 type = skb->protocol;
2359
2360 /* Tunnel gso handlers can set protocol to ethernet. */
2361 if (type == htons(ETH_P_TEB)) {
2362 struct ethhdr *eth;
2363
2364 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2365 return 0;
2366
2367 eth = (struct ethhdr *)skb_mac_header(skb);
2368 type = eth->h_proto;
2369 }
2370
2371 /* if skb->protocol is 802.1Q/AD then the header should already be
2372 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2373 * ETH_HLEN otherwise
2374 */
2375 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2376 if (vlan_depth) {
2377 if (WARN_ON(vlan_depth < VLAN_HLEN))
2378 return 0;
2379 vlan_depth -= VLAN_HLEN;
2380 } else {
2381 vlan_depth = ETH_HLEN;
2382 }
2383 do {
2384 struct vlan_hdr *vh;
2385
2386 if (unlikely(!pskb_may_pull(skb,
2387 vlan_depth + VLAN_HLEN)))
2388 return 0;
2389
2390 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2391 type = vh->h_vlan_encapsulated_proto;
2392 vlan_depth += VLAN_HLEN;
2393 } while (type == htons(ETH_P_8021Q) ||
2394 type == htons(ETH_P_8021AD));
2395 }
2396
2397 *depth = vlan_depth;
2398
2399 return type;
2400 }
2401
2402 /**
2403 * skb_mac_gso_segment - mac layer segmentation handler.
2404 * @skb: buffer to segment
2405 * @features: features for the output path (see dev->features)
2406 */
2407 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2408 netdev_features_t features)
2409 {
2410 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2411 struct packet_offload *ptype;
2412 int vlan_depth = skb->mac_len;
2413 __be16 type = skb_network_protocol(skb, &vlan_depth);
2414
2415 if (unlikely(!type))
2416 return ERR_PTR(-EINVAL);
2417
2418 __skb_pull(skb, vlan_depth);
2419
2420 rcu_read_lock();
2421 list_for_each_entry_rcu(ptype, &offload_base, list) {
2422 if (ptype->type == type && ptype->callbacks.gso_segment) {
2423 segs = ptype->callbacks.gso_segment(skb, features);
2424 break;
2425 }
2426 }
2427 rcu_read_unlock();
2428
2429 __skb_push(skb, skb->data - skb_mac_header(skb));
2430
2431 return segs;
2432 }
2433 EXPORT_SYMBOL(skb_mac_gso_segment);
2434
2435
2436 /* openvswitch calls this on rx path, so we need a different check.
2437 */
2438 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2439 {
2440 if (tx_path)
2441 return skb->ip_summed != CHECKSUM_PARTIAL;
2442 else
2443 return skb->ip_summed == CHECKSUM_NONE;
2444 }
2445
2446 /**
2447 * __skb_gso_segment - Perform segmentation on skb.
2448 * @skb: buffer to segment
2449 * @features: features for the output path (see dev->features)
2450 * @tx_path: whether it is called in TX path
2451 *
2452 * This function segments the given skb and returns a list of segments.
2453 *
2454 * It may return NULL if the skb requires no segmentation. This is
2455 * only possible when GSO is used for verifying header integrity.
2456 */
2457 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2458 netdev_features_t features, bool tx_path)
2459 {
2460 if (unlikely(skb_needs_check(skb, tx_path))) {
2461 int err;
2462
2463 skb_warn_bad_offload(skb);
2464
2465 err = skb_cow_head(skb, 0);
2466 if (err < 0)
2467 return ERR_PTR(err);
2468 }
2469
2470 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2471 SKB_GSO_CB(skb)->encap_level = 0;
2472
2473 skb_reset_mac_header(skb);
2474 skb_reset_mac_len(skb);
2475
2476 return skb_mac_gso_segment(skb, features);
2477 }
2478 EXPORT_SYMBOL(__skb_gso_segment);
2479
2480 /* Take action when hardware reception checksum errors are detected. */
2481 #ifdef CONFIG_BUG
2482 void netdev_rx_csum_fault(struct net_device *dev)
2483 {
2484 if (net_ratelimit()) {
2485 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2486 dump_stack();
2487 }
2488 }
2489 EXPORT_SYMBOL(netdev_rx_csum_fault);
2490 #endif
2491
2492 /* Actually, we should eliminate this check as soon as we know, that:
2493 * 1. IOMMU is present and allows to map all the memory.
2494 * 2. No high memory really exists on this machine.
2495 */
2496
2497 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2498 {
2499 #ifdef CONFIG_HIGHMEM
2500 int i;
2501 if (!(dev->features & NETIF_F_HIGHDMA)) {
2502 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2503 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2504 if (PageHighMem(skb_frag_page(frag)))
2505 return 1;
2506 }
2507 }
2508
2509 if (PCI_DMA_BUS_IS_PHYS) {
2510 struct device *pdev = dev->dev.parent;
2511
2512 if (!pdev)
2513 return 0;
2514 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2516 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2517 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2518 return 1;
2519 }
2520 }
2521 #endif
2522 return 0;
2523 }
2524
2525 /* If MPLS offload request, verify we are testing hardware MPLS features
2526 * instead of standard features for the netdev.
2527 */
2528 #ifdef CONFIG_NET_MPLS_GSO
2529 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2530 netdev_features_t features,
2531 __be16 type)
2532 {
2533 if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2534 features &= skb->dev->mpls_features;
2535
2536 return features;
2537 }
2538 #else
2539 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2540 netdev_features_t features,
2541 __be16 type)
2542 {
2543 return features;
2544 }
2545 #endif
2546
2547 static netdev_features_t harmonize_features(struct sk_buff *skb,
2548 netdev_features_t features)
2549 {
2550 int tmp;
2551 __be16 type;
2552
2553 type = skb_network_protocol(skb, &tmp);
2554 features = net_mpls_features(skb, features, type);
2555
2556 if (skb->ip_summed != CHECKSUM_NONE &&
2557 !can_checksum_protocol(features, type)) {
2558 features &= ~NETIF_F_ALL_CSUM;
2559 } else if (illegal_highdma(skb->dev, skb)) {
2560 features &= ~NETIF_F_SG;
2561 }
2562
2563 return features;
2564 }
2565
2566 netdev_features_t netif_skb_features(struct sk_buff *skb)
2567 {
2568 const struct net_device *dev = skb->dev;
2569 netdev_features_t features = dev->features;
2570 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2571 __be16 protocol = skb->protocol;
2572
2573 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2574 features &= ~NETIF_F_GSO_MASK;
2575
2576 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2577 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2578 protocol = veh->h_vlan_encapsulated_proto;
2579 } else if (!vlan_tx_tag_present(skb)) {
2580 return harmonize_features(skb, features);
2581 }
2582
2583 features = netdev_intersect_features(features,
2584 dev->vlan_features |
2585 NETIF_F_HW_VLAN_CTAG_TX |
2586 NETIF_F_HW_VLAN_STAG_TX);
2587
2588 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2589 features = netdev_intersect_features(features,
2590 NETIF_F_SG |
2591 NETIF_F_HIGHDMA |
2592 NETIF_F_FRAGLIST |
2593 NETIF_F_GEN_CSUM |
2594 NETIF_F_HW_VLAN_CTAG_TX |
2595 NETIF_F_HW_VLAN_STAG_TX);
2596
2597 return harmonize_features(skb, features);
2598 }
2599 EXPORT_SYMBOL(netif_skb_features);
2600
2601 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2602 struct netdev_queue *txq, bool more)
2603 {
2604 unsigned int len;
2605 int rc;
2606
2607 if (!list_empty(&ptype_all))
2608 dev_queue_xmit_nit(skb, dev);
2609
2610 len = skb->len;
2611 trace_net_dev_start_xmit(skb, dev);
2612 rc = netdev_start_xmit(skb, dev, txq, more);
2613 trace_net_dev_xmit(skb, rc, dev, len);
2614
2615 return rc;
2616 }
2617
2618 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2619 struct netdev_queue *txq, int *ret)
2620 {
2621 struct sk_buff *skb = first;
2622 int rc = NETDEV_TX_OK;
2623
2624 while (skb) {
2625 struct sk_buff *next = skb->next;
2626
2627 skb->next = NULL;
2628 rc = xmit_one(skb, dev, txq, next != NULL);
2629 if (unlikely(!dev_xmit_complete(rc))) {
2630 skb->next = next;
2631 goto out;
2632 }
2633
2634 skb = next;
2635 if (netif_xmit_stopped(txq) && skb) {
2636 rc = NETDEV_TX_BUSY;
2637 break;
2638 }
2639 }
2640
2641 out:
2642 *ret = rc;
2643 return skb;
2644 }
2645
2646 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2647 netdev_features_t features)
2648 {
2649 if (vlan_tx_tag_present(skb) &&
2650 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2651 skb = __vlan_put_tag(skb, skb->vlan_proto,
2652 vlan_tx_tag_get(skb));
2653 if (skb)
2654 skb->vlan_tci = 0;
2655 }
2656 return skb;
2657 }
2658
2659 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2660 {
2661 netdev_features_t features;
2662
2663 if (skb->next)
2664 return skb;
2665
2666 features = netif_skb_features(skb);
2667 skb = validate_xmit_vlan(skb, features);
2668 if (unlikely(!skb))
2669 goto out_null;
2670
2671 /* If encapsulation offload request, verify we are testing
2672 * hardware encapsulation features instead of standard
2673 * features for the netdev
2674 */
2675 if (skb->encapsulation)
2676 features &= dev->hw_enc_features;
2677
2678 if (netif_needs_gso(dev, skb, features)) {
2679 struct sk_buff *segs;
2680
2681 segs = skb_gso_segment(skb, features);
2682 if (IS_ERR(segs)) {
2683 segs = NULL;
2684 } else if (segs) {
2685 consume_skb(skb);
2686 skb = segs;
2687 }
2688 } else {
2689 if (skb_needs_linearize(skb, features) &&
2690 __skb_linearize(skb))
2691 goto out_kfree_skb;
2692
2693 /* If packet is not checksummed and device does not
2694 * support checksumming for this protocol, complete
2695 * checksumming here.
2696 */
2697 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2698 if (skb->encapsulation)
2699 skb_set_inner_transport_header(skb,
2700 skb_checksum_start_offset(skb));
2701 else
2702 skb_set_transport_header(skb,
2703 skb_checksum_start_offset(skb));
2704 if (!(features & NETIF_F_ALL_CSUM) &&
2705 skb_checksum_help(skb))
2706 goto out_kfree_skb;
2707 }
2708 }
2709
2710 return skb;
2711
2712 out_kfree_skb:
2713 kfree_skb(skb);
2714 out_null:
2715 return NULL;
2716 }
2717
2718 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2719 {
2720 struct sk_buff *next, *head = NULL, *tail;
2721
2722 for (; skb != NULL; skb = next) {
2723 next = skb->next;
2724 skb->next = NULL;
2725
2726 /* in case skb wont be segmented, point to itself */
2727 skb->prev = skb;
2728
2729 skb = validate_xmit_skb(skb, dev);
2730 if (!skb)
2731 continue;
2732
2733 if (!head)
2734 head = skb;
2735 else
2736 tail->next = skb;
2737 /* If skb was segmented, skb->prev points to
2738 * the last segment. If not, it still contains skb.
2739 */
2740 tail = skb->prev;
2741 }
2742 return head;
2743 }
2744
2745 static void qdisc_pkt_len_init(struct sk_buff *skb)
2746 {
2747 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2748
2749 qdisc_skb_cb(skb)->pkt_len = skb->len;
2750
2751 /* To get more precise estimation of bytes sent on wire,
2752 * we add to pkt_len the headers size of all segments
2753 */
2754 if (shinfo->gso_size) {
2755 unsigned int hdr_len;
2756 u16 gso_segs = shinfo->gso_segs;
2757
2758 /* mac layer + network layer */
2759 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2760
2761 /* + transport layer */
2762 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2763 hdr_len += tcp_hdrlen(skb);
2764 else
2765 hdr_len += sizeof(struct udphdr);
2766
2767 if (shinfo->gso_type & SKB_GSO_DODGY)
2768 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2769 shinfo->gso_size);
2770
2771 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2772 }
2773 }
2774
2775 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2776 struct net_device *dev,
2777 struct netdev_queue *txq)
2778 {
2779 spinlock_t *root_lock = qdisc_lock(q);
2780 bool contended;
2781 int rc;
2782
2783 qdisc_pkt_len_init(skb);
2784 qdisc_calculate_pkt_len(skb, q);
2785 /*
2786 * Heuristic to force contended enqueues to serialize on a
2787 * separate lock before trying to get qdisc main lock.
2788 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2789 * often and dequeue packets faster.
2790 */
2791 contended = qdisc_is_running(q);
2792 if (unlikely(contended))
2793 spin_lock(&q->busylock);
2794
2795 spin_lock(root_lock);
2796 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2797 kfree_skb(skb);
2798 rc = NET_XMIT_DROP;
2799 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2800 qdisc_run_begin(q)) {
2801 /*
2802 * This is a work-conserving queue; there are no old skbs
2803 * waiting to be sent out; and the qdisc is not running -
2804 * xmit the skb directly.
2805 */
2806
2807 qdisc_bstats_update(q, skb);
2808
2809 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2810 if (unlikely(contended)) {
2811 spin_unlock(&q->busylock);
2812 contended = false;
2813 }
2814 __qdisc_run(q);
2815 } else
2816 qdisc_run_end(q);
2817
2818 rc = NET_XMIT_SUCCESS;
2819 } else {
2820 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2821 if (qdisc_run_begin(q)) {
2822 if (unlikely(contended)) {
2823 spin_unlock(&q->busylock);
2824 contended = false;
2825 }
2826 __qdisc_run(q);
2827 }
2828 }
2829 spin_unlock(root_lock);
2830 if (unlikely(contended))
2831 spin_unlock(&q->busylock);
2832 return rc;
2833 }
2834
2835 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2836 static void skb_update_prio(struct sk_buff *skb)
2837 {
2838 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2839
2840 if (!skb->priority && skb->sk && map) {
2841 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2842
2843 if (prioidx < map->priomap_len)
2844 skb->priority = map->priomap[prioidx];
2845 }
2846 }
2847 #else
2848 #define skb_update_prio(skb)
2849 #endif
2850
2851 static DEFINE_PER_CPU(int, xmit_recursion);
2852 #define RECURSION_LIMIT 10
2853
2854 /**
2855 * dev_loopback_xmit - loop back @skb
2856 * @skb: buffer to transmit
2857 */
2858 int dev_loopback_xmit(struct sk_buff *skb)
2859 {
2860 skb_reset_mac_header(skb);
2861 __skb_pull(skb, skb_network_offset(skb));
2862 skb->pkt_type = PACKET_LOOPBACK;
2863 skb->ip_summed = CHECKSUM_UNNECESSARY;
2864 WARN_ON(!skb_dst(skb));
2865 skb_dst_force(skb);
2866 netif_rx_ni(skb);
2867 return 0;
2868 }
2869 EXPORT_SYMBOL(dev_loopback_xmit);
2870
2871 /**
2872 * __dev_queue_xmit - transmit a buffer
2873 * @skb: buffer to transmit
2874 * @accel_priv: private data used for L2 forwarding offload
2875 *
2876 * Queue a buffer for transmission to a network device. The caller must
2877 * have set the device and priority and built the buffer before calling
2878 * this function. The function can be called from an interrupt.
2879 *
2880 * A negative errno code is returned on a failure. A success does not
2881 * guarantee the frame will be transmitted as it may be dropped due
2882 * to congestion or traffic shaping.
2883 *
2884 * -----------------------------------------------------------------------------------
2885 * I notice this method can also return errors from the queue disciplines,
2886 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2887 * be positive.
2888 *
2889 * Regardless of the return value, the skb is consumed, so it is currently
2890 * difficult to retry a send to this method. (You can bump the ref count
2891 * before sending to hold a reference for retry if you are careful.)
2892 *
2893 * When calling this method, interrupts MUST be enabled. This is because
2894 * the BH enable code must have IRQs enabled so that it will not deadlock.
2895 * --BLG
2896 */
2897 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2898 {
2899 struct net_device *dev = skb->dev;
2900 struct netdev_queue *txq;
2901 struct Qdisc *q;
2902 int rc = -ENOMEM;
2903
2904 skb_reset_mac_header(skb);
2905
2906 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2907 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2908
2909 /* Disable soft irqs for various locks below. Also
2910 * stops preemption for RCU.
2911 */
2912 rcu_read_lock_bh();
2913
2914 skb_update_prio(skb);
2915
2916 /* If device/qdisc don't need skb->dst, release it right now while
2917 * its hot in this cpu cache.
2918 */
2919 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2920 skb_dst_drop(skb);
2921 else
2922 skb_dst_force(skb);
2923
2924 txq = netdev_pick_tx(dev, skb, accel_priv);
2925 q = rcu_dereference_bh(txq->qdisc);
2926
2927 #ifdef CONFIG_NET_CLS_ACT
2928 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2929 #endif
2930 trace_net_dev_queue(skb);
2931 if (q->enqueue) {
2932 rc = __dev_xmit_skb(skb, q, dev, txq);
2933 goto out;
2934 }
2935
2936 /* The device has no queue. Common case for software devices:
2937 loopback, all the sorts of tunnels...
2938
2939 Really, it is unlikely that netif_tx_lock protection is necessary
2940 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2941 counters.)
2942 However, it is possible, that they rely on protection
2943 made by us here.
2944
2945 Check this and shot the lock. It is not prone from deadlocks.
2946 Either shot noqueue qdisc, it is even simpler 8)
2947 */
2948 if (dev->flags & IFF_UP) {
2949 int cpu = smp_processor_id(); /* ok because BHs are off */
2950
2951 if (txq->xmit_lock_owner != cpu) {
2952
2953 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2954 goto recursion_alert;
2955
2956 skb = validate_xmit_skb(skb, dev);
2957 if (!skb)
2958 goto drop;
2959
2960 HARD_TX_LOCK(dev, txq, cpu);
2961
2962 if (!netif_xmit_stopped(txq)) {
2963 __this_cpu_inc(xmit_recursion);
2964 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2965 __this_cpu_dec(xmit_recursion);
2966 if (dev_xmit_complete(rc)) {
2967 HARD_TX_UNLOCK(dev, txq);
2968 goto out;
2969 }
2970 }
2971 HARD_TX_UNLOCK(dev, txq);
2972 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2973 dev->name);
2974 } else {
2975 /* Recursion is detected! It is possible,
2976 * unfortunately
2977 */
2978 recursion_alert:
2979 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2980 dev->name);
2981 }
2982 }
2983
2984 rc = -ENETDOWN;
2985 drop:
2986 rcu_read_unlock_bh();
2987
2988 atomic_long_inc(&dev->tx_dropped);
2989 kfree_skb_list(skb);
2990 return rc;
2991 out:
2992 rcu_read_unlock_bh();
2993 return rc;
2994 }
2995
2996 int dev_queue_xmit(struct sk_buff *skb)
2997 {
2998 return __dev_queue_xmit(skb, NULL);
2999 }
3000 EXPORT_SYMBOL(dev_queue_xmit);
3001
3002 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3003 {
3004 return __dev_queue_xmit(skb, accel_priv);
3005 }
3006 EXPORT_SYMBOL(dev_queue_xmit_accel);
3007
3008
3009 /*=======================================================================
3010 Receiver routines
3011 =======================================================================*/
3012
3013 int netdev_max_backlog __read_mostly = 1000;
3014 EXPORT_SYMBOL(netdev_max_backlog);
3015
3016 int netdev_tstamp_prequeue __read_mostly = 1;
3017 int netdev_budget __read_mostly = 300;
3018 int weight_p __read_mostly = 64; /* old backlog weight */
3019
3020 /* Called with irq disabled */
3021 static inline void ____napi_schedule(struct softnet_data *sd,
3022 struct napi_struct *napi)
3023 {
3024 list_add_tail(&napi->poll_list, &sd->poll_list);
3025 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3026 }
3027
3028 #ifdef CONFIG_RPS
3029
3030 /* One global table that all flow-based protocols share. */
3031 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3032 EXPORT_SYMBOL(rps_sock_flow_table);
3033
3034 struct static_key rps_needed __read_mostly;
3035
3036 static struct rps_dev_flow *
3037 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3038 struct rps_dev_flow *rflow, u16 next_cpu)
3039 {
3040 if (next_cpu != RPS_NO_CPU) {
3041 #ifdef CONFIG_RFS_ACCEL
3042 struct netdev_rx_queue *rxqueue;
3043 struct rps_dev_flow_table *flow_table;
3044 struct rps_dev_flow *old_rflow;
3045 u32 flow_id;
3046 u16 rxq_index;
3047 int rc;
3048
3049 /* Should we steer this flow to a different hardware queue? */
3050 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3051 !(dev->features & NETIF_F_NTUPLE))
3052 goto out;
3053 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3054 if (rxq_index == skb_get_rx_queue(skb))
3055 goto out;
3056
3057 rxqueue = dev->_rx + rxq_index;
3058 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3059 if (!flow_table)
3060 goto out;
3061 flow_id = skb_get_hash(skb) & flow_table->mask;
3062 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3063 rxq_index, flow_id);
3064 if (rc < 0)
3065 goto out;
3066 old_rflow = rflow;
3067 rflow = &flow_table->flows[flow_id];
3068 rflow->filter = rc;
3069 if (old_rflow->filter == rflow->filter)
3070 old_rflow->filter = RPS_NO_FILTER;
3071 out:
3072 #endif
3073 rflow->last_qtail =
3074 per_cpu(softnet_data, next_cpu).input_queue_head;
3075 }
3076
3077 rflow->cpu = next_cpu;
3078 return rflow;
3079 }
3080
3081 /*
3082 * get_rps_cpu is called from netif_receive_skb and returns the target
3083 * CPU from the RPS map of the receiving queue for a given skb.
3084 * rcu_read_lock must be held on entry.
3085 */
3086 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3087 struct rps_dev_flow **rflowp)
3088 {
3089 struct netdev_rx_queue *rxqueue;
3090 struct rps_map *map;
3091 struct rps_dev_flow_table *flow_table;
3092 struct rps_sock_flow_table *sock_flow_table;
3093 int cpu = -1;
3094 u16 tcpu;
3095 u32 hash;
3096
3097 if (skb_rx_queue_recorded(skb)) {
3098 u16 index = skb_get_rx_queue(skb);
3099 if (unlikely(index >= dev->real_num_rx_queues)) {
3100 WARN_ONCE(dev->real_num_rx_queues > 1,
3101 "%s received packet on queue %u, but number "
3102 "of RX queues is %u\n",
3103 dev->name, index, dev->real_num_rx_queues);
3104 goto done;
3105 }
3106 rxqueue = dev->_rx + index;
3107 } else
3108 rxqueue = dev->_rx;
3109
3110 map = rcu_dereference(rxqueue->rps_map);
3111 if (map) {
3112 if (map->len == 1 &&
3113 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3114 tcpu = map->cpus[0];
3115 if (cpu_online(tcpu))
3116 cpu = tcpu;
3117 goto done;
3118 }
3119 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3120 goto done;
3121 }
3122
3123 skb_reset_network_header(skb);
3124 hash = skb_get_hash(skb);
3125 if (!hash)
3126 goto done;
3127
3128 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3129 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3130 if (flow_table && sock_flow_table) {
3131 u16 next_cpu;
3132 struct rps_dev_flow *rflow;
3133
3134 rflow = &flow_table->flows[hash & flow_table->mask];
3135 tcpu = rflow->cpu;
3136
3137 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3138
3139 /*
3140 * If the desired CPU (where last recvmsg was done) is
3141 * different from current CPU (one in the rx-queue flow
3142 * table entry), switch if one of the following holds:
3143 * - Current CPU is unset (equal to RPS_NO_CPU).
3144 * - Current CPU is offline.
3145 * - The current CPU's queue tail has advanced beyond the
3146 * last packet that was enqueued using this table entry.
3147 * This guarantees that all previous packets for the flow
3148 * have been dequeued, thus preserving in order delivery.
3149 */
3150 if (unlikely(tcpu != next_cpu) &&
3151 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3152 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3153 rflow->last_qtail)) >= 0)) {
3154 tcpu = next_cpu;
3155 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3156 }
3157
3158 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3159 *rflowp = rflow;
3160 cpu = tcpu;
3161 goto done;
3162 }
3163 }
3164
3165 if (map) {
3166 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3167 if (cpu_online(tcpu)) {
3168 cpu = tcpu;
3169 goto done;
3170 }
3171 }
3172
3173 done:
3174 return cpu;
3175 }
3176
3177 #ifdef CONFIG_RFS_ACCEL
3178
3179 /**
3180 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3181 * @dev: Device on which the filter was set
3182 * @rxq_index: RX queue index
3183 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3184 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3185 *
3186 * Drivers that implement ndo_rx_flow_steer() should periodically call
3187 * this function for each installed filter and remove the filters for
3188 * which it returns %true.
3189 */
3190 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3191 u32 flow_id, u16 filter_id)
3192 {
3193 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3194 struct rps_dev_flow_table *flow_table;
3195 struct rps_dev_flow *rflow;
3196 bool expire = true;
3197 int cpu;
3198
3199 rcu_read_lock();
3200 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3201 if (flow_table && flow_id <= flow_table->mask) {
3202 rflow = &flow_table->flows[flow_id];
3203 cpu = ACCESS_ONCE(rflow->cpu);
3204 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3205 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3206 rflow->last_qtail) <
3207 (int)(10 * flow_table->mask)))
3208 expire = false;
3209 }
3210 rcu_read_unlock();
3211 return expire;
3212 }
3213 EXPORT_SYMBOL(rps_may_expire_flow);
3214
3215 #endif /* CONFIG_RFS_ACCEL */
3216
3217 /* Called from hardirq (IPI) context */
3218 static void rps_trigger_softirq(void *data)
3219 {
3220 struct softnet_data *sd = data;
3221
3222 ____napi_schedule(sd, &sd->backlog);
3223 sd->received_rps++;
3224 }
3225
3226 #endif /* CONFIG_RPS */
3227
3228 /*
3229 * Check if this softnet_data structure is another cpu one
3230 * If yes, queue it to our IPI list and return 1
3231 * If no, return 0
3232 */
3233 static int rps_ipi_queued(struct softnet_data *sd)
3234 {
3235 #ifdef CONFIG_RPS
3236 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3237
3238 if (sd != mysd) {
3239 sd->rps_ipi_next = mysd->rps_ipi_list;
3240 mysd->rps_ipi_list = sd;
3241
3242 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3243 return 1;
3244 }
3245 #endif /* CONFIG_RPS */
3246 return 0;
3247 }
3248
3249 #ifdef CONFIG_NET_FLOW_LIMIT
3250 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3251 #endif
3252
3253 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3254 {
3255 #ifdef CONFIG_NET_FLOW_LIMIT
3256 struct sd_flow_limit *fl;
3257 struct softnet_data *sd;
3258 unsigned int old_flow, new_flow;
3259
3260 if (qlen < (netdev_max_backlog >> 1))
3261 return false;
3262
3263 sd = this_cpu_ptr(&softnet_data);
3264
3265 rcu_read_lock();
3266 fl = rcu_dereference(sd->flow_limit);
3267 if (fl) {
3268 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3269 old_flow = fl->history[fl->history_head];
3270 fl->history[fl->history_head] = new_flow;
3271
3272 fl->history_head++;
3273 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3274
3275 if (likely(fl->buckets[old_flow]))
3276 fl->buckets[old_flow]--;
3277
3278 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3279 fl->count++;
3280 rcu_read_unlock();
3281 return true;
3282 }
3283 }
3284 rcu_read_unlock();
3285 #endif
3286 return false;
3287 }
3288
3289 /*
3290 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3291 * queue (may be a remote CPU queue).
3292 */
3293 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3294 unsigned int *qtail)
3295 {
3296 struct softnet_data *sd;
3297 unsigned long flags;
3298 unsigned int qlen;
3299
3300 sd = &per_cpu(softnet_data, cpu);
3301
3302 local_irq_save(flags);
3303
3304 rps_lock(sd);
3305 qlen = skb_queue_len(&sd->input_pkt_queue);
3306 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3307 if (skb_queue_len(&sd->input_pkt_queue)) {
3308 enqueue:
3309 __skb_queue_tail(&sd->input_pkt_queue, skb);
3310 input_queue_tail_incr_save(sd, qtail);
3311 rps_unlock(sd);
3312 local_irq_restore(flags);
3313 return NET_RX_SUCCESS;
3314 }
3315
3316 /* Schedule NAPI for backlog device
3317 * We can use non atomic operation since we own the queue lock
3318 */
3319 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3320 if (!rps_ipi_queued(sd))
3321 ____napi_schedule(sd, &sd->backlog);
3322 }
3323 goto enqueue;
3324 }
3325
3326 sd->dropped++;
3327 rps_unlock(sd);
3328
3329 local_irq_restore(flags);
3330
3331 atomic_long_inc(&skb->dev->rx_dropped);
3332 kfree_skb(skb);
3333 return NET_RX_DROP;
3334 }
3335
3336 static int netif_rx_internal(struct sk_buff *skb)
3337 {
3338 int ret;
3339
3340 net_timestamp_check(netdev_tstamp_prequeue, skb);
3341
3342 trace_netif_rx(skb);
3343 #ifdef CONFIG_RPS
3344 if (static_key_false(&rps_needed)) {
3345 struct rps_dev_flow voidflow, *rflow = &voidflow;
3346 int cpu;
3347
3348 preempt_disable();
3349 rcu_read_lock();
3350
3351 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3352 if (cpu < 0)
3353 cpu = smp_processor_id();
3354
3355 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3356
3357 rcu_read_unlock();
3358 preempt_enable();
3359 } else
3360 #endif
3361 {
3362 unsigned int qtail;
3363 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3364 put_cpu();
3365 }
3366 return ret;
3367 }
3368
3369 /**
3370 * netif_rx - post buffer to the network code
3371 * @skb: buffer to post
3372 *
3373 * This function receives a packet from a device driver and queues it for
3374 * the upper (protocol) levels to process. It always succeeds. The buffer
3375 * may be dropped during processing for congestion control or by the
3376 * protocol layers.
3377 *
3378 * return values:
3379 * NET_RX_SUCCESS (no congestion)
3380 * NET_RX_DROP (packet was dropped)
3381 *
3382 */
3383
3384 int netif_rx(struct sk_buff *skb)
3385 {
3386 trace_netif_rx_entry(skb);
3387
3388 return netif_rx_internal(skb);
3389 }
3390 EXPORT_SYMBOL(netif_rx);
3391
3392 int netif_rx_ni(struct sk_buff *skb)
3393 {
3394 int err;
3395
3396 trace_netif_rx_ni_entry(skb);
3397
3398 preempt_disable();
3399 err = netif_rx_internal(skb);
3400 if (local_softirq_pending())
3401 do_softirq();
3402 preempt_enable();
3403
3404 return err;
3405 }
3406 EXPORT_SYMBOL(netif_rx_ni);
3407
3408 static void net_tx_action(struct softirq_action *h)
3409 {
3410 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3411
3412 if (sd->completion_queue) {
3413 struct sk_buff *clist;
3414
3415 local_irq_disable();
3416 clist = sd->completion_queue;
3417 sd->completion_queue = NULL;
3418 local_irq_enable();
3419
3420 while (clist) {
3421 struct sk_buff *skb = clist;
3422 clist = clist->next;
3423
3424 WARN_ON(atomic_read(&skb->users));
3425 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3426 trace_consume_skb(skb);
3427 else
3428 trace_kfree_skb(skb, net_tx_action);
3429 __kfree_skb(skb);
3430 }
3431 }
3432
3433 if (sd->output_queue) {
3434 struct Qdisc *head;
3435
3436 local_irq_disable();
3437 head = sd->output_queue;
3438 sd->output_queue = NULL;
3439 sd->output_queue_tailp = &sd->output_queue;
3440 local_irq_enable();
3441
3442 while (head) {
3443 struct Qdisc *q = head;
3444 spinlock_t *root_lock;
3445
3446 head = head->next_sched;
3447
3448 root_lock = qdisc_lock(q);
3449 if (spin_trylock(root_lock)) {
3450 smp_mb__before_atomic();
3451 clear_bit(__QDISC_STATE_SCHED,
3452 &q->state);
3453 qdisc_run(q);
3454 spin_unlock(root_lock);
3455 } else {
3456 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3457 &q->state)) {
3458 __netif_reschedule(q);
3459 } else {
3460 smp_mb__before_atomic();
3461 clear_bit(__QDISC_STATE_SCHED,
3462 &q->state);
3463 }
3464 }
3465 }
3466 }
3467 }
3468
3469 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3470 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3471 /* This hook is defined here for ATM LANE */
3472 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3473 unsigned char *addr) __read_mostly;
3474 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3475 #endif
3476
3477 #ifdef CONFIG_NET_CLS_ACT
3478 /* TODO: Maybe we should just force sch_ingress to be compiled in
3479 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3480 * a compare and 2 stores extra right now if we dont have it on
3481 * but have CONFIG_NET_CLS_ACT
3482 * NOTE: This doesn't stop any functionality; if you dont have
3483 * the ingress scheduler, you just can't add policies on ingress.
3484 *
3485 */
3486 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3487 {
3488 struct net_device *dev = skb->dev;
3489 u32 ttl = G_TC_RTTL(skb->tc_verd);
3490 int result = TC_ACT_OK;
3491 struct Qdisc *q;
3492
3493 if (unlikely(MAX_RED_LOOP < ttl++)) {
3494 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3495 skb->skb_iif, dev->ifindex);
3496 return TC_ACT_SHOT;
3497 }
3498
3499 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3500 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3501
3502 q = rcu_dereference(rxq->qdisc);
3503 if (q != &noop_qdisc) {
3504 spin_lock(qdisc_lock(q));
3505 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3506 result = qdisc_enqueue_root(skb, q);
3507 spin_unlock(qdisc_lock(q));
3508 }
3509
3510 return result;
3511 }
3512
3513 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3514 struct packet_type **pt_prev,
3515 int *ret, struct net_device *orig_dev)
3516 {
3517 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3518
3519 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3520 goto out;
3521
3522 if (*pt_prev) {
3523 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3524 *pt_prev = NULL;
3525 }
3526
3527 switch (ing_filter(skb, rxq)) {
3528 case TC_ACT_SHOT:
3529 case TC_ACT_STOLEN:
3530 kfree_skb(skb);
3531 return NULL;
3532 }
3533
3534 out:
3535 skb->tc_verd = 0;
3536 return skb;
3537 }
3538 #endif
3539
3540 /**
3541 * netdev_rx_handler_register - register receive handler
3542 * @dev: device to register a handler for
3543 * @rx_handler: receive handler to register
3544 * @rx_handler_data: data pointer that is used by rx handler
3545 *
3546 * Register a receive handler for a device. This handler will then be
3547 * called from __netif_receive_skb. A negative errno code is returned
3548 * on a failure.
3549 *
3550 * The caller must hold the rtnl_mutex.
3551 *
3552 * For a general description of rx_handler, see enum rx_handler_result.
3553 */
3554 int netdev_rx_handler_register(struct net_device *dev,
3555 rx_handler_func_t *rx_handler,
3556 void *rx_handler_data)
3557 {
3558 ASSERT_RTNL();
3559
3560 if (dev->rx_handler)
3561 return -EBUSY;
3562
3563 /* Note: rx_handler_data must be set before rx_handler */
3564 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3565 rcu_assign_pointer(dev->rx_handler, rx_handler);
3566
3567 return 0;
3568 }
3569 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3570
3571 /**
3572 * netdev_rx_handler_unregister - unregister receive handler
3573 * @dev: device to unregister a handler from
3574 *
3575 * Unregister a receive handler from a device.
3576 *
3577 * The caller must hold the rtnl_mutex.
3578 */
3579 void netdev_rx_handler_unregister(struct net_device *dev)
3580 {
3581
3582 ASSERT_RTNL();
3583 RCU_INIT_POINTER(dev->rx_handler, NULL);
3584 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3585 * section has a guarantee to see a non NULL rx_handler_data
3586 * as well.
3587 */
3588 synchronize_net();
3589 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3590 }
3591 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3592
3593 /*
3594 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3595 * the special handling of PFMEMALLOC skbs.
3596 */
3597 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3598 {
3599 switch (skb->protocol) {
3600 case htons(ETH_P_ARP):
3601 case htons(ETH_P_IP):
3602 case htons(ETH_P_IPV6):
3603 case htons(ETH_P_8021Q):
3604 case htons(ETH_P_8021AD):
3605 return true;
3606 default:
3607 return false;
3608 }
3609 }
3610
3611 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3612 {
3613 struct packet_type *ptype, *pt_prev;
3614 rx_handler_func_t *rx_handler;
3615 struct net_device *orig_dev;
3616 struct net_device *null_or_dev;
3617 bool deliver_exact = false;
3618 int ret = NET_RX_DROP;
3619 __be16 type;
3620
3621 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3622
3623 trace_netif_receive_skb(skb);
3624
3625 orig_dev = skb->dev;
3626
3627 skb_reset_network_header(skb);
3628 if (!skb_transport_header_was_set(skb))
3629 skb_reset_transport_header(skb);
3630 skb_reset_mac_len(skb);
3631
3632 pt_prev = NULL;
3633
3634 rcu_read_lock();
3635
3636 another_round:
3637 skb->skb_iif = skb->dev->ifindex;
3638
3639 __this_cpu_inc(softnet_data.processed);
3640
3641 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3642 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3643 skb = skb_vlan_untag(skb);
3644 if (unlikely(!skb))
3645 goto unlock;
3646 }
3647
3648 #ifdef CONFIG_NET_CLS_ACT
3649 if (skb->tc_verd & TC_NCLS) {
3650 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3651 goto ncls;
3652 }
3653 #endif
3654
3655 if (pfmemalloc)
3656 goto skip_taps;
3657
3658 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3659 if (!ptype->dev || ptype->dev == skb->dev) {
3660 if (pt_prev)
3661 ret = deliver_skb(skb, pt_prev, orig_dev);
3662 pt_prev = ptype;
3663 }
3664 }
3665
3666 skip_taps:
3667 #ifdef CONFIG_NET_CLS_ACT
3668 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3669 if (!skb)
3670 goto unlock;
3671 ncls:
3672 #endif
3673
3674 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3675 goto drop;
3676
3677 if (vlan_tx_tag_present(skb)) {
3678 if (pt_prev) {
3679 ret = deliver_skb(skb, pt_prev, orig_dev);
3680 pt_prev = NULL;
3681 }
3682 if (vlan_do_receive(&skb))
3683 goto another_round;
3684 else if (unlikely(!skb))
3685 goto unlock;
3686 }
3687
3688 rx_handler = rcu_dereference(skb->dev->rx_handler);
3689 if (rx_handler) {
3690 if (pt_prev) {
3691 ret = deliver_skb(skb, pt_prev, orig_dev);
3692 pt_prev = NULL;
3693 }
3694 switch (rx_handler(&skb)) {
3695 case RX_HANDLER_CONSUMED:
3696 ret = NET_RX_SUCCESS;
3697 goto unlock;
3698 case RX_HANDLER_ANOTHER:
3699 goto another_round;
3700 case RX_HANDLER_EXACT:
3701 deliver_exact = true;
3702 case RX_HANDLER_PASS:
3703 break;
3704 default:
3705 BUG();
3706 }
3707 }
3708
3709 if (unlikely(vlan_tx_tag_present(skb))) {
3710 if (vlan_tx_tag_get_id(skb))
3711 skb->pkt_type = PACKET_OTHERHOST;
3712 /* Note: we might in the future use prio bits
3713 * and set skb->priority like in vlan_do_receive()
3714 * For the time being, just ignore Priority Code Point
3715 */
3716 skb->vlan_tci = 0;
3717 }
3718
3719 /* deliver only exact match when indicated */
3720 null_or_dev = deliver_exact ? skb->dev : NULL;
3721
3722 type = skb->protocol;
3723 list_for_each_entry_rcu(ptype,
3724 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3725 if (ptype->type == type &&
3726 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3727 ptype->dev == orig_dev)) {
3728 if (pt_prev)
3729 ret = deliver_skb(skb, pt_prev, orig_dev);
3730 pt_prev = ptype;
3731 }
3732 }
3733
3734 if (pt_prev) {
3735 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3736 goto drop;
3737 else
3738 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3739 } else {
3740 drop:
3741 atomic_long_inc(&skb->dev->rx_dropped);
3742 kfree_skb(skb);
3743 /* Jamal, now you will not able to escape explaining
3744 * me how you were going to use this. :-)
3745 */
3746 ret = NET_RX_DROP;
3747 }
3748
3749 unlock:
3750 rcu_read_unlock();
3751 return ret;
3752 }
3753
3754 static int __netif_receive_skb(struct sk_buff *skb)
3755 {
3756 int ret;
3757
3758 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3759 unsigned long pflags = current->flags;
3760
3761 /*
3762 * PFMEMALLOC skbs are special, they should
3763 * - be delivered to SOCK_MEMALLOC sockets only
3764 * - stay away from userspace
3765 * - have bounded memory usage
3766 *
3767 * Use PF_MEMALLOC as this saves us from propagating the allocation
3768 * context down to all allocation sites.
3769 */
3770 current->flags |= PF_MEMALLOC;
3771 ret = __netif_receive_skb_core(skb, true);
3772 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3773 } else
3774 ret = __netif_receive_skb_core(skb, false);
3775
3776 return ret;
3777 }
3778
3779 static int netif_receive_skb_internal(struct sk_buff *skb)
3780 {
3781 net_timestamp_check(netdev_tstamp_prequeue, skb);
3782
3783 if (skb_defer_rx_timestamp(skb))
3784 return NET_RX_SUCCESS;
3785
3786 #ifdef CONFIG_RPS
3787 if (static_key_false(&rps_needed)) {
3788 struct rps_dev_flow voidflow, *rflow = &voidflow;
3789 int cpu, ret;
3790
3791 rcu_read_lock();
3792
3793 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3794
3795 if (cpu >= 0) {
3796 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3797 rcu_read_unlock();
3798 return ret;
3799 }
3800 rcu_read_unlock();
3801 }
3802 #endif
3803 return __netif_receive_skb(skb);
3804 }
3805
3806 /**
3807 * netif_receive_skb - process receive buffer from network
3808 * @skb: buffer to process
3809 *
3810 * netif_receive_skb() is the main receive data processing function.
3811 * It always succeeds. The buffer may be dropped during processing
3812 * for congestion control or by the protocol layers.
3813 *
3814 * This function may only be called from softirq context and interrupts
3815 * should be enabled.
3816 *
3817 * Return values (usually ignored):
3818 * NET_RX_SUCCESS: no congestion
3819 * NET_RX_DROP: packet was dropped
3820 */
3821 int netif_receive_skb(struct sk_buff *skb)
3822 {
3823 trace_netif_receive_skb_entry(skb);
3824
3825 return netif_receive_skb_internal(skb);
3826 }
3827 EXPORT_SYMBOL(netif_receive_skb);
3828
3829 /* Network device is going away, flush any packets still pending
3830 * Called with irqs disabled.
3831 */
3832 static void flush_backlog(void *arg)
3833 {
3834 struct net_device *dev = arg;
3835 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3836 struct sk_buff *skb, *tmp;
3837
3838 rps_lock(sd);
3839 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3840 if (skb->dev == dev) {
3841 __skb_unlink(skb, &sd->input_pkt_queue);
3842 kfree_skb(skb);
3843 input_queue_head_incr(sd);
3844 }
3845 }
3846 rps_unlock(sd);
3847
3848 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3849 if (skb->dev == dev) {
3850 __skb_unlink(skb, &sd->process_queue);
3851 kfree_skb(skb);
3852 input_queue_head_incr(sd);
3853 }
3854 }
3855 }
3856
3857 static int napi_gro_complete(struct sk_buff *skb)
3858 {
3859 struct packet_offload *ptype;
3860 __be16 type = skb->protocol;
3861 struct list_head *head = &offload_base;
3862 int err = -ENOENT;
3863
3864 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3865
3866 if (NAPI_GRO_CB(skb)->count == 1) {
3867 skb_shinfo(skb)->gso_size = 0;
3868 goto out;
3869 }
3870
3871 rcu_read_lock();
3872 list_for_each_entry_rcu(ptype, head, list) {
3873 if (ptype->type != type || !ptype->callbacks.gro_complete)
3874 continue;
3875
3876 err = ptype->callbacks.gro_complete(skb, 0);
3877 break;
3878 }
3879 rcu_read_unlock();
3880
3881 if (err) {
3882 WARN_ON(&ptype->list == head);
3883 kfree_skb(skb);
3884 return NET_RX_SUCCESS;
3885 }
3886
3887 out:
3888 return netif_receive_skb_internal(skb);
3889 }
3890
3891 /* napi->gro_list contains packets ordered by age.
3892 * youngest packets at the head of it.
3893 * Complete skbs in reverse order to reduce latencies.
3894 */
3895 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3896 {
3897 struct sk_buff *skb, *prev = NULL;
3898
3899 /* scan list and build reverse chain */
3900 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3901 skb->prev = prev;
3902 prev = skb;
3903 }
3904
3905 for (skb = prev; skb; skb = prev) {
3906 skb->next = NULL;
3907
3908 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3909 return;
3910
3911 prev = skb->prev;
3912 napi_gro_complete(skb);
3913 napi->gro_count--;
3914 }
3915
3916 napi->gro_list = NULL;
3917 }
3918 EXPORT_SYMBOL(napi_gro_flush);
3919
3920 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3921 {
3922 struct sk_buff *p;
3923 unsigned int maclen = skb->dev->hard_header_len;
3924 u32 hash = skb_get_hash_raw(skb);
3925
3926 for (p = napi->gro_list; p; p = p->next) {
3927 unsigned long diffs;
3928
3929 NAPI_GRO_CB(p)->flush = 0;
3930
3931 if (hash != skb_get_hash_raw(p)) {
3932 NAPI_GRO_CB(p)->same_flow = 0;
3933 continue;
3934 }
3935
3936 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3937 diffs |= p->vlan_tci ^ skb->vlan_tci;
3938 if (maclen == ETH_HLEN)
3939 diffs |= compare_ether_header(skb_mac_header(p),
3940 skb_mac_header(skb));
3941 else if (!diffs)
3942 diffs = memcmp(skb_mac_header(p),
3943 skb_mac_header(skb),
3944 maclen);
3945 NAPI_GRO_CB(p)->same_flow = !diffs;
3946 }
3947 }
3948
3949 static void skb_gro_reset_offset(struct sk_buff *skb)
3950 {
3951 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3952 const skb_frag_t *frag0 = &pinfo->frags[0];
3953
3954 NAPI_GRO_CB(skb)->data_offset = 0;
3955 NAPI_GRO_CB(skb)->frag0 = NULL;
3956 NAPI_GRO_CB(skb)->frag0_len = 0;
3957
3958 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3959 pinfo->nr_frags &&
3960 !PageHighMem(skb_frag_page(frag0))) {
3961 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3962 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3963 }
3964 }
3965
3966 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3967 {
3968 struct skb_shared_info *pinfo = skb_shinfo(skb);
3969
3970 BUG_ON(skb->end - skb->tail < grow);
3971
3972 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3973
3974 skb->data_len -= grow;
3975 skb->tail += grow;
3976
3977 pinfo->frags[0].page_offset += grow;
3978 skb_frag_size_sub(&pinfo->frags[0], grow);
3979
3980 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3981 skb_frag_unref(skb, 0);
3982 memmove(pinfo->frags, pinfo->frags + 1,
3983 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3984 }
3985 }
3986
3987 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3988 {
3989 struct sk_buff **pp = NULL;
3990 struct packet_offload *ptype;
3991 __be16 type = skb->protocol;
3992 struct list_head *head = &offload_base;
3993 int same_flow;
3994 enum gro_result ret;
3995 int grow;
3996
3997 if (!(skb->dev->features & NETIF_F_GRO))
3998 goto normal;
3999
4000 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4001 goto normal;
4002
4003 gro_list_prepare(napi, skb);
4004
4005 rcu_read_lock();
4006 list_for_each_entry_rcu(ptype, head, list) {
4007 if (ptype->type != type || !ptype->callbacks.gro_receive)
4008 continue;
4009
4010 skb_set_network_header(skb, skb_gro_offset(skb));
4011 skb_reset_mac_len(skb);
4012 NAPI_GRO_CB(skb)->same_flow = 0;
4013 NAPI_GRO_CB(skb)->flush = 0;
4014 NAPI_GRO_CB(skb)->free = 0;
4015 NAPI_GRO_CB(skb)->udp_mark = 0;
4016
4017 /* Setup for GRO checksum validation */
4018 switch (skb->ip_summed) {
4019 case CHECKSUM_COMPLETE:
4020 NAPI_GRO_CB(skb)->csum = skb->csum;
4021 NAPI_GRO_CB(skb)->csum_valid = 1;
4022 NAPI_GRO_CB(skb)->csum_cnt = 0;
4023 break;
4024 case CHECKSUM_UNNECESSARY:
4025 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4026 NAPI_GRO_CB(skb)->csum_valid = 0;
4027 break;
4028 default:
4029 NAPI_GRO_CB(skb)->csum_cnt = 0;
4030 NAPI_GRO_CB(skb)->csum_valid = 0;
4031 }
4032
4033 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4034 break;
4035 }
4036 rcu_read_unlock();
4037
4038 if (&ptype->list == head)
4039 goto normal;
4040
4041 same_flow = NAPI_GRO_CB(skb)->same_flow;
4042 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4043
4044 if (pp) {
4045 struct sk_buff *nskb = *pp;
4046
4047 *pp = nskb->next;
4048 nskb->next = NULL;
4049 napi_gro_complete(nskb);
4050 napi->gro_count--;
4051 }
4052
4053 if (same_flow)
4054 goto ok;
4055
4056 if (NAPI_GRO_CB(skb)->flush)
4057 goto normal;
4058
4059 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4060 struct sk_buff *nskb = napi->gro_list;
4061
4062 /* locate the end of the list to select the 'oldest' flow */
4063 while (nskb->next) {
4064 pp = &nskb->next;
4065 nskb = *pp;
4066 }
4067 *pp = NULL;
4068 nskb->next = NULL;
4069 napi_gro_complete(nskb);
4070 } else {
4071 napi->gro_count++;
4072 }
4073 NAPI_GRO_CB(skb)->count = 1;
4074 NAPI_GRO_CB(skb)->age = jiffies;
4075 NAPI_GRO_CB(skb)->last = skb;
4076 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4077 skb->next = napi->gro_list;
4078 napi->gro_list = skb;
4079 ret = GRO_HELD;
4080
4081 pull:
4082 grow = skb_gro_offset(skb) - skb_headlen(skb);
4083 if (grow > 0)
4084 gro_pull_from_frag0(skb, grow);
4085 ok:
4086 return ret;
4087
4088 normal:
4089 ret = GRO_NORMAL;
4090 goto pull;
4091 }
4092
4093 struct packet_offload *gro_find_receive_by_type(__be16 type)
4094 {
4095 struct list_head *offload_head = &offload_base;
4096 struct packet_offload *ptype;
4097
4098 list_for_each_entry_rcu(ptype, offload_head, list) {
4099 if (ptype->type != type || !ptype->callbacks.gro_receive)
4100 continue;
4101 return ptype;
4102 }
4103 return NULL;
4104 }
4105 EXPORT_SYMBOL(gro_find_receive_by_type);
4106
4107 struct packet_offload *gro_find_complete_by_type(__be16 type)
4108 {
4109 struct list_head *offload_head = &offload_base;
4110 struct packet_offload *ptype;
4111
4112 list_for_each_entry_rcu(ptype, offload_head, list) {
4113 if (ptype->type != type || !ptype->callbacks.gro_complete)
4114 continue;
4115 return ptype;
4116 }
4117 return NULL;
4118 }
4119 EXPORT_SYMBOL(gro_find_complete_by_type);
4120
4121 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4122 {
4123 switch (ret) {
4124 case GRO_NORMAL:
4125 if (netif_receive_skb_internal(skb))
4126 ret = GRO_DROP;
4127 break;
4128
4129 case GRO_DROP:
4130 kfree_skb(skb);
4131 break;
4132
4133 case GRO_MERGED_FREE:
4134 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4135 kmem_cache_free(skbuff_head_cache, skb);
4136 else
4137 __kfree_skb(skb);
4138 break;
4139
4140 case GRO_HELD:
4141 case GRO_MERGED:
4142 break;
4143 }
4144
4145 return ret;
4146 }
4147
4148 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4149 {
4150 trace_napi_gro_receive_entry(skb);
4151
4152 skb_gro_reset_offset(skb);
4153
4154 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4155 }
4156 EXPORT_SYMBOL(napi_gro_receive);
4157
4158 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4159 {
4160 if (unlikely(skb->pfmemalloc)) {
4161 consume_skb(skb);
4162 return;
4163 }
4164 __skb_pull(skb, skb_headlen(skb));
4165 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4166 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4167 skb->vlan_tci = 0;
4168 skb->dev = napi->dev;
4169 skb->skb_iif = 0;
4170 skb->encapsulation = 0;
4171 skb_shinfo(skb)->gso_type = 0;
4172 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4173
4174 napi->skb = skb;
4175 }
4176
4177 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4178 {
4179 struct sk_buff *skb = napi->skb;
4180
4181 if (!skb) {
4182 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4183 napi->skb = skb;
4184 }
4185 return skb;
4186 }
4187 EXPORT_SYMBOL(napi_get_frags);
4188
4189 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4190 struct sk_buff *skb,
4191 gro_result_t ret)
4192 {
4193 switch (ret) {
4194 case GRO_NORMAL:
4195 case GRO_HELD:
4196 __skb_push(skb, ETH_HLEN);
4197 skb->protocol = eth_type_trans(skb, skb->dev);
4198 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4199 ret = GRO_DROP;
4200 break;
4201
4202 case GRO_DROP:
4203 case GRO_MERGED_FREE:
4204 napi_reuse_skb(napi, skb);
4205 break;
4206
4207 case GRO_MERGED:
4208 break;
4209 }
4210
4211 return ret;
4212 }
4213
4214 /* Upper GRO stack assumes network header starts at gro_offset=0
4215 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4216 * We copy ethernet header into skb->data to have a common layout.
4217 */
4218 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4219 {
4220 struct sk_buff *skb = napi->skb;
4221 const struct ethhdr *eth;
4222 unsigned int hlen = sizeof(*eth);
4223
4224 napi->skb = NULL;
4225
4226 skb_reset_mac_header(skb);
4227 skb_gro_reset_offset(skb);
4228
4229 eth = skb_gro_header_fast(skb, 0);
4230 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4231 eth = skb_gro_header_slow(skb, hlen, 0);
4232 if (unlikely(!eth)) {
4233 napi_reuse_skb(napi, skb);
4234 return NULL;
4235 }
4236 } else {
4237 gro_pull_from_frag0(skb, hlen);
4238 NAPI_GRO_CB(skb)->frag0 += hlen;
4239 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4240 }
4241 __skb_pull(skb, hlen);
4242
4243 /*
4244 * This works because the only protocols we care about don't require
4245 * special handling.
4246 * We'll fix it up properly in napi_frags_finish()
4247 */
4248 skb->protocol = eth->h_proto;
4249
4250 return skb;
4251 }
4252
4253 gro_result_t napi_gro_frags(struct napi_struct *napi)
4254 {
4255 struct sk_buff *skb = napi_frags_skb(napi);
4256
4257 if (!skb)
4258 return GRO_DROP;
4259
4260 trace_napi_gro_frags_entry(skb);
4261
4262 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4263 }
4264 EXPORT_SYMBOL(napi_gro_frags);
4265
4266 /* Compute the checksum from gro_offset and return the folded value
4267 * after adding in any pseudo checksum.
4268 */
4269 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4270 {
4271 __wsum wsum;
4272 __sum16 sum;
4273
4274 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4275
4276 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4277 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4278 if (likely(!sum)) {
4279 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4280 !skb->csum_complete_sw)
4281 netdev_rx_csum_fault(skb->dev);
4282 }
4283
4284 NAPI_GRO_CB(skb)->csum = wsum;
4285 NAPI_GRO_CB(skb)->csum_valid = 1;
4286
4287 return sum;
4288 }
4289 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4290
4291 /*
4292 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4293 * Note: called with local irq disabled, but exits with local irq enabled.
4294 */
4295 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4296 {
4297 #ifdef CONFIG_RPS
4298 struct softnet_data *remsd = sd->rps_ipi_list;
4299
4300 if (remsd) {
4301 sd->rps_ipi_list = NULL;
4302
4303 local_irq_enable();
4304
4305 /* Send pending IPI's to kick RPS processing on remote cpus. */
4306 while (remsd) {
4307 struct softnet_data *next = remsd->rps_ipi_next;
4308
4309 if (cpu_online(remsd->cpu))
4310 smp_call_function_single_async(remsd->cpu,
4311 &remsd->csd);
4312 remsd = next;
4313 }
4314 } else
4315 #endif
4316 local_irq_enable();
4317 }
4318
4319 static int process_backlog(struct napi_struct *napi, int quota)
4320 {
4321 int work = 0;
4322 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4323
4324 #ifdef CONFIG_RPS
4325 /* Check if we have pending ipi, its better to send them now,
4326 * not waiting net_rx_action() end.
4327 */
4328 if (sd->rps_ipi_list) {
4329 local_irq_disable();
4330 net_rps_action_and_irq_enable(sd);
4331 }
4332 #endif
4333 napi->weight = weight_p;
4334 local_irq_disable();
4335 while (1) {
4336 struct sk_buff *skb;
4337
4338 while ((skb = __skb_dequeue(&sd->process_queue))) {
4339 local_irq_enable();
4340 __netif_receive_skb(skb);
4341 local_irq_disable();
4342 input_queue_head_incr(sd);
4343 if (++work >= quota) {
4344 local_irq_enable();
4345 return work;
4346 }
4347 }
4348
4349 rps_lock(sd);
4350 if (skb_queue_empty(&sd->input_pkt_queue)) {
4351 /*
4352 * Inline a custom version of __napi_complete().
4353 * only current cpu owns and manipulates this napi,
4354 * and NAPI_STATE_SCHED is the only possible flag set
4355 * on backlog.
4356 * We can use a plain write instead of clear_bit(),
4357 * and we dont need an smp_mb() memory barrier.
4358 */
4359 list_del(&napi->poll_list);
4360 napi->state = 0;
4361 rps_unlock(sd);
4362
4363 break;
4364 }
4365
4366 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4367 &sd->process_queue);
4368 rps_unlock(sd);
4369 }
4370 local_irq_enable();
4371
4372 return work;
4373 }
4374
4375 /**
4376 * __napi_schedule - schedule for receive
4377 * @n: entry to schedule
4378 *
4379 * The entry's receive function will be scheduled to run.
4380 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4381 */
4382 void __napi_schedule(struct napi_struct *n)
4383 {
4384 unsigned long flags;
4385
4386 local_irq_save(flags);
4387 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4388 local_irq_restore(flags);
4389 }
4390 EXPORT_SYMBOL(__napi_schedule);
4391
4392 /**
4393 * __napi_schedule_irqoff - schedule for receive
4394 * @n: entry to schedule
4395 *
4396 * Variant of __napi_schedule() assuming hard irqs are masked
4397 */
4398 void __napi_schedule_irqoff(struct napi_struct *n)
4399 {
4400 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4401 }
4402 EXPORT_SYMBOL(__napi_schedule_irqoff);
4403
4404 void __napi_complete(struct napi_struct *n)
4405 {
4406 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4407 BUG_ON(n->gro_list);
4408
4409 list_del(&n->poll_list);
4410 smp_mb__before_atomic();
4411 clear_bit(NAPI_STATE_SCHED, &n->state);
4412 }
4413 EXPORT_SYMBOL(__napi_complete);
4414
4415 void napi_complete(struct napi_struct *n)
4416 {
4417 unsigned long flags;
4418
4419 /*
4420 * don't let napi dequeue from the cpu poll list
4421 * just in case its running on a different cpu
4422 */
4423 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4424 return;
4425
4426 napi_gro_flush(n, false);
4427 local_irq_save(flags);
4428 __napi_complete(n);
4429 local_irq_restore(flags);
4430 }
4431 EXPORT_SYMBOL(napi_complete);
4432
4433 /* must be called under rcu_read_lock(), as we dont take a reference */
4434 struct napi_struct *napi_by_id(unsigned int napi_id)
4435 {
4436 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4437 struct napi_struct *napi;
4438
4439 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4440 if (napi->napi_id == napi_id)
4441 return napi;
4442
4443 return NULL;
4444 }
4445 EXPORT_SYMBOL_GPL(napi_by_id);
4446
4447 void napi_hash_add(struct napi_struct *napi)
4448 {
4449 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4450
4451 spin_lock(&napi_hash_lock);
4452
4453 /* 0 is not a valid id, we also skip an id that is taken
4454 * we expect both events to be extremely rare
4455 */
4456 napi->napi_id = 0;
4457 while (!napi->napi_id) {
4458 napi->napi_id = ++napi_gen_id;
4459 if (napi_by_id(napi->napi_id))
4460 napi->napi_id = 0;
4461 }
4462
4463 hlist_add_head_rcu(&napi->napi_hash_node,
4464 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4465
4466 spin_unlock(&napi_hash_lock);
4467 }
4468 }
4469 EXPORT_SYMBOL_GPL(napi_hash_add);
4470
4471 /* Warning : caller is responsible to make sure rcu grace period
4472 * is respected before freeing memory containing @napi
4473 */
4474 void napi_hash_del(struct napi_struct *napi)
4475 {
4476 spin_lock(&napi_hash_lock);
4477
4478 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4479 hlist_del_rcu(&napi->napi_hash_node);
4480
4481 spin_unlock(&napi_hash_lock);
4482 }
4483 EXPORT_SYMBOL_GPL(napi_hash_del);
4484
4485 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4486 int (*poll)(struct napi_struct *, int), int weight)
4487 {
4488 INIT_LIST_HEAD(&napi->poll_list);
4489 napi->gro_count = 0;
4490 napi->gro_list = NULL;
4491 napi->skb = NULL;
4492 napi->poll = poll;
4493 if (weight > NAPI_POLL_WEIGHT)
4494 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4495 weight, dev->name);
4496 napi->weight = weight;
4497 list_add(&napi->dev_list, &dev->napi_list);
4498 napi->dev = dev;
4499 #ifdef CONFIG_NETPOLL
4500 spin_lock_init(&napi->poll_lock);
4501 napi->poll_owner = -1;
4502 #endif
4503 set_bit(NAPI_STATE_SCHED, &napi->state);
4504 }
4505 EXPORT_SYMBOL(netif_napi_add);
4506
4507 void netif_napi_del(struct napi_struct *napi)
4508 {
4509 list_del_init(&napi->dev_list);
4510 napi_free_frags(napi);
4511
4512 kfree_skb_list(napi->gro_list);
4513 napi->gro_list = NULL;
4514 napi->gro_count = 0;
4515 }
4516 EXPORT_SYMBOL(netif_napi_del);
4517
4518 static void net_rx_action(struct softirq_action *h)
4519 {
4520 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4521 unsigned long time_limit = jiffies + 2;
4522 int budget = netdev_budget;
4523 void *have;
4524
4525 local_irq_disable();
4526
4527 while (!list_empty(&sd->poll_list)) {
4528 struct napi_struct *n;
4529 int work, weight;
4530
4531 /* If softirq window is exhuasted then punt.
4532 * Allow this to run for 2 jiffies since which will allow
4533 * an average latency of 1.5/HZ.
4534 */
4535 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4536 goto softnet_break;
4537
4538 local_irq_enable();
4539
4540 /* Even though interrupts have been re-enabled, this
4541 * access is safe because interrupts can only add new
4542 * entries to the tail of this list, and only ->poll()
4543 * calls can remove this head entry from the list.
4544 */
4545 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4546
4547 have = netpoll_poll_lock(n);
4548
4549 weight = n->weight;
4550
4551 /* This NAPI_STATE_SCHED test is for avoiding a race
4552 * with netpoll's poll_napi(). Only the entity which
4553 * obtains the lock and sees NAPI_STATE_SCHED set will
4554 * actually make the ->poll() call. Therefore we avoid
4555 * accidentally calling ->poll() when NAPI is not scheduled.
4556 */
4557 work = 0;
4558 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4559 work = n->poll(n, weight);
4560 trace_napi_poll(n);
4561 }
4562
4563 WARN_ON_ONCE(work > weight);
4564
4565 budget -= work;
4566
4567 local_irq_disable();
4568
4569 /* Drivers must not modify the NAPI state if they
4570 * consume the entire weight. In such cases this code
4571 * still "owns" the NAPI instance and therefore can
4572 * move the instance around on the list at-will.
4573 */
4574 if (unlikely(work == weight)) {
4575 if (unlikely(napi_disable_pending(n))) {
4576 local_irq_enable();
4577 napi_complete(n);
4578 local_irq_disable();
4579 } else {
4580 if (n->gro_list) {
4581 /* flush too old packets
4582 * If HZ < 1000, flush all packets.
4583 */
4584 local_irq_enable();
4585 napi_gro_flush(n, HZ >= 1000);
4586 local_irq_disable();
4587 }
4588 list_move_tail(&n->poll_list, &sd->poll_list);
4589 }
4590 }
4591
4592 netpoll_poll_unlock(have);
4593 }
4594 out:
4595 net_rps_action_and_irq_enable(sd);
4596
4597 return;
4598
4599 softnet_break:
4600 sd->time_squeeze++;
4601 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4602 goto out;
4603 }
4604
4605 struct netdev_adjacent {
4606 struct net_device *dev;
4607
4608 /* upper master flag, there can only be one master device per list */
4609 bool master;
4610
4611 /* counter for the number of times this device was added to us */
4612 u16 ref_nr;
4613
4614 /* private field for the users */
4615 void *private;
4616
4617 struct list_head list;
4618 struct rcu_head rcu;
4619 };
4620
4621 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4622 struct net_device *adj_dev,
4623 struct list_head *adj_list)
4624 {
4625 struct netdev_adjacent *adj;
4626
4627 list_for_each_entry(adj, adj_list, list) {
4628 if (adj->dev == adj_dev)
4629 return adj;
4630 }
4631 return NULL;
4632 }
4633
4634 /**
4635 * netdev_has_upper_dev - Check if device is linked to an upper device
4636 * @dev: device
4637 * @upper_dev: upper device to check
4638 *
4639 * Find out if a device is linked to specified upper device and return true
4640 * in case it is. Note that this checks only immediate upper device,
4641 * not through a complete stack of devices. The caller must hold the RTNL lock.
4642 */
4643 bool netdev_has_upper_dev(struct net_device *dev,
4644 struct net_device *upper_dev)
4645 {
4646 ASSERT_RTNL();
4647
4648 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4649 }
4650 EXPORT_SYMBOL(netdev_has_upper_dev);
4651
4652 /**
4653 * netdev_has_any_upper_dev - Check if device is linked to some device
4654 * @dev: device
4655 *
4656 * Find out if a device is linked to an upper device and return true in case
4657 * it is. The caller must hold the RTNL lock.
4658 */
4659 static bool netdev_has_any_upper_dev(struct net_device *dev)
4660 {
4661 ASSERT_RTNL();
4662
4663 return !list_empty(&dev->all_adj_list.upper);
4664 }
4665
4666 /**
4667 * netdev_master_upper_dev_get - Get master upper device
4668 * @dev: device
4669 *
4670 * Find a master upper device and return pointer to it or NULL in case
4671 * it's not there. The caller must hold the RTNL lock.
4672 */
4673 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4674 {
4675 struct netdev_adjacent *upper;
4676
4677 ASSERT_RTNL();
4678
4679 if (list_empty(&dev->adj_list.upper))
4680 return NULL;
4681
4682 upper = list_first_entry(&dev->adj_list.upper,
4683 struct netdev_adjacent, list);
4684 if (likely(upper->master))
4685 return upper->dev;
4686 return NULL;
4687 }
4688 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4689
4690 void *netdev_adjacent_get_private(struct list_head *adj_list)
4691 {
4692 struct netdev_adjacent *adj;
4693
4694 adj = list_entry(adj_list, struct netdev_adjacent, list);
4695
4696 return adj->private;
4697 }
4698 EXPORT_SYMBOL(netdev_adjacent_get_private);
4699
4700 /**
4701 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4702 * @dev: device
4703 * @iter: list_head ** of the current position
4704 *
4705 * Gets the next device from the dev's upper list, starting from iter
4706 * position. The caller must hold RCU read lock.
4707 */
4708 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4709 struct list_head **iter)
4710 {
4711 struct netdev_adjacent *upper;
4712
4713 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4714
4715 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4716
4717 if (&upper->list == &dev->adj_list.upper)
4718 return NULL;
4719
4720 *iter = &upper->list;
4721
4722 return upper->dev;
4723 }
4724 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4725
4726 /**
4727 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4728 * @dev: device
4729 * @iter: list_head ** of the current position
4730 *
4731 * Gets the next device from the dev's upper list, starting from iter
4732 * position. The caller must hold RCU read lock.
4733 */
4734 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4735 struct list_head **iter)
4736 {
4737 struct netdev_adjacent *upper;
4738
4739 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4740
4741 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4742
4743 if (&upper->list == &dev->all_adj_list.upper)
4744 return NULL;
4745
4746 *iter = &upper->list;
4747
4748 return upper->dev;
4749 }
4750 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4751
4752 /**
4753 * netdev_lower_get_next_private - Get the next ->private from the
4754 * lower neighbour list
4755 * @dev: device
4756 * @iter: list_head ** of the current position
4757 *
4758 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4759 * list, starting from iter position. The caller must hold either hold the
4760 * RTNL lock or its own locking that guarantees that the neighbour lower
4761 * list will remain unchainged.
4762 */
4763 void *netdev_lower_get_next_private(struct net_device *dev,
4764 struct list_head **iter)
4765 {
4766 struct netdev_adjacent *lower;
4767
4768 lower = list_entry(*iter, struct netdev_adjacent, list);
4769
4770 if (&lower->list == &dev->adj_list.lower)
4771 return NULL;
4772
4773 *iter = lower->list.next;
4774
4775 return lower->private;
4776 }
4777 EXPORT_SYMBOL(netdev_lower_get_next_private);
4778
4779 /**
4780 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4781 * lower neighbour list, RCU
4782 * variant
4783 * @dev: device
4784 * @iter: list_head ** of the current position
4785 *
4786 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4787 * list, starting from iter position. The caller must hold RCU read lock.
4788 */
4789 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4790 struct list_head **iter)
4791 {
4792 struct netdev_adjacent *lower;
4793
4794 WARN_ON_ONCE(!rcu_read_lock_held());
4795
4796 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4797
4798 if (&lower->list == &dev->adj_list.lower)
4799 return NULL;
4800
4801 *iter = &lower->list;
4802
4803 return lower->private;
4804 }
4805 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4806
4807 /**
4808 * netdev_lower_get_next - Get the next device from the lower neighbour
4809 * list
4810 * @dev: device
4811 * @iter: list_head ** of the current position
4812 *
4813 * Gets the next netdev_adjacent from the dev's lower neighbour
4814 * list, starting from iter position. The caller must hold RTNL lock or
4815 * its own locking that guarantees that the neighbour lower
4816 * list will remain unchainged.
4817 */
4818 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4819 {
4820 struct netdev_adjacent *lower;
4821
4822 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4823
4824 if (&lower->list == &dev->adj_list.lower)
4825 return NULL;
4826
4827 *iter = &lower->list;
4828
4829 return lower->dev;
4830 }
4831 EXPORT_SYMBOL(netdev_lower_get_next);
4832
4833 /**
4834 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4835 * lower neighbour list, RCU
4836 * variant
4837 * @dev: device
4838 *
4839 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4840 * list. The caller must hold RCU read lock.
4841 */
4842 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4843 {
4844 struct netdev_adjacent *lower;
4845
4846 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4847 struct netdev_adjacent, list);
4848 if (lower)
4849 return lower->private;
4850 return NULL;
4851 }
4852 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4853
4854 /**
4855 * netdev_master_upper_dev_get_rcu - Get master upper device
4856 * @dev: device
4857 *
4858 * Find a master upper device and return pointer to it or NULL in case
4859 * it's not there. The caller must hold the RCU read lock.
4860 */
4861 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4862 {
4863 struct netdev_adjacent *upper;
4864
4865 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4866 struct netdev_adjacent, list);
4867 if (upper && likely(upper->master))
4868 return upper->dev;
4869 return NULL;
4870 }
4871 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4872
4873 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4874 struct net_device *adj_dev,
4875 struct list_head *dev_list)
4876 {
4877 char linkname[IFNAMSIZ+7];
4878 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4879 "upper_%s" : "lower_%s", adj_dev->name);
4880 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4881 linkname);
4882 }
4883 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4884 char *name,
4885 struct list_head *dev_list)
4886 {
4887 char linkname[IFNAMSIZ+7];
4888 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4889 "upper_%s" : "lower_%s", name);
4890 sysfs_remove_link(&(dev->dev.kobj), linkname);
4891 }
4892
4893 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4894 struct net_device *adj_dev,
4895 struct list_head *dev_list)
4896 {
4897 return (dev_list == &dev->adj_list.upper ||
4898 dev_list == &dev->adj_list.lower) &&
4899 net_eq(dev_net(dev), dev_net(adj_dev));
4900 }
4901
4902 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4903 struct net_device *adj_dev,
4904 struct list_head *dev_list,
4905 void *private, bool master)
4906 {
4907 struct netdev_adjacent *adj;
4908 int ret;
4909
4910 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4911
4912 if (adj) {
4913 adj->ref_nr++;
4914 return 0;
4915 }
4916
4917 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4918 if (!adj)
4919 return -ENOMEM;
4920
4921 adj->dev = adj_dev;
4922 adj->master = master;
4923 adj->ref_nr = 1;
4924 adj->private = private;
4925 dev_hold(adj_dev);
4926
4927 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4928 adj_dev->name, dev->name, adj_dev->name);
4929
4930 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
4931 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4932 if (ret)
4933 goto free_adj;
4934 }
4935
4936 /* Ensure that master link is always the first item in list. */
4937 if (master) {
4938 ret = sysfs_create_link(&(dev->dev.kobj),
4939 &(adj_dev->dev.kobj), "master");
4940 if (ret)
4941 goto remove_symlinks;
4942
4943 list_add_rcu(&adj->list, dev_list);
4944 } else {
4945 list_add_tail_rcu(&adj->list, dev_list);
4946 }
4947
4948 return 0;
4949
4950 remove_symlinks:
4951 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
4952 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4953 free_adj:
4954 kfree(adj);
4955 dev_put(adj_dev);
4956
4957 return ret;
4958 }
4959
4960 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4961 struct net_device *adj_dev,
4962 struct list_head *dev_list)
4963 {
4964 struct netdev_adjacent *adj;
4965
4966 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4967
4968 if (!adj) {
4969 pr_err("tried to remove device %s from %s\n",
4970 dev->name, adj_dev->name);
4971 BUG();
4972 }
4973
4974 if (adj->ref_nr > 1) {
4975 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4976 adj->ref_nr-1);
4977 adj->ref_nr--;
4978 return;
4979 }
4980
4981 if (adj->master)
4982 sysfs_remove_link(&(dev->dev.kobj), "master");
4983
4984 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
4985 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4986
4987 list_del_rcu(&adj->list);
4988 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4989 adj_dev->name, dev->name, adj_dev->name);
4990 dev_put(adj_dev);
4991 kfree_rcu(adj, rcu);
4992 }
4993
4994 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4995 struct net_device *upper_dev,
4996 struct list_head *up_list,
4997 struct list_head *down_list,
4998 void *private, bool master)
4999 {
5000 int ret;
5001
5002 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5003 master);
5004 if (ret)
5005 return ret;
5006
5007 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5008 false);
5009 if (ret) {
5010 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5011 return ret;
5012 }
5013
5014 return 0;
5015 }
5016
5017 static int __netdev_adjacent_dev_link(struct net_device *dev,
5018 struct net_device *upper_dev)
5019 {
5020 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5021 &dev->all_adj_list.upper,
5022 &upper_dev->all_adj_list.lower,
5023 NULL, false);
5024 }
5025
5026 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5027 struct net_device *upper_dev,
5028 struct list_head *up_list,
5029 struct list_head *down_list)
5030 {
5031 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5032 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5033 }
5034
5035 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5036 struct net_device *upper_dev)
5037 {
5038 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5039 &dev->all_adj_list.upper,
5040 &upper_dev->all_adj_list.lower);
5041 }
5042
5043 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5044 struct net_device *upper_dev,
5045 void *private, bool master)
5046 {
5047 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5048
5049 if (ret)
5050 return ret;
5051
5052 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5053 &dev->adj_list.upper,
5054 &upper_dev->adj_list.lower,
5055 private, master);
5056 if (ret) {
5057 __netdev_adjacent_dev_unlink(dev, upper_dev);
5058 return ret;
5059 }
5060
5061 return 0;
5062 }
5063
5064 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5065 struct net_device *upper_dev)
5066 {
5067 __netdev_adjacent_dev_unlink(dev, upper_dev);
5068 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5069 &dev->adj_list.upper,
5070 &upper_dev->adj_list.lower);
5071 }
5072
5073 static int __netdev_upper_dev_link(struct net_device *dev,
5074 struct net_device *upper_dev, bool master,
5075 void *private)
5076 {
5077 struct netdev_adjacent *i, *j, *to_i, *to_j;
5078 int ret = 0;
5079
5080 ASSERT_RTNL();
5081
5082 if (dev == upper_dev)
5083 return -EBUSY;
5084
5085 /* To prevent loops, check if dev is not upper device to upper_dev. */
5086 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5087 return -EBUSY;
5088
5089 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5090 return -EEXIST;
5091
5092 if (master && netdev_master_upper_dev_get(dev))
5093 return -EBUSY;
5094
5095 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5096 master);
5097 if (ret)
5098 return ret;
5099
5100 /* Now that we linked these devs, make all the upper_dev's
5101 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5102 * versa, and don't forget the devices itself. All of these
5103 * links are non-neighbours.
5104 */
5105 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5106 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5107 pr_debug("Interlinking %s with %s, non-neighbour\n",
5108 i->dev->name, j->dev->name);
5109 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5110 if (ret)
5111 goto rollback_mesh;
5112 }
5113 }
5114
5115 /* add dev to every upper_dev's upper device */
5116 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5117 pr_debug("linking %s's upper device %s with %s\n",
5118 upper_dev->name, i->dev->name, dev->name);
5119 ret = __netdev_adjacent_dev_link(dev, i->dev);
5120 if (ret)
5121 goto rollback_upper_mesh;
5122 }
5123
5124 /* add upper_dev to every dev's lower device */
5125 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5126 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5127 i->dev->name, upper_dev->name);
5128 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5129 if (ret)
5130 goto rollback_lower_mesh;
5131 }
5132
5133 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5134 return 0;
5135
5136 rollback_lower_mesh:
5137 to_i = i;
5138 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5139 if (i == to_i)
5140 break;
5141 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5142 }
5143
5144 i = NULL;
5145
5146 rollback_upper_mesh:
5147 to_i = i;
5148 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5149 if (i == to_i)
5150 break;
5151 __netdev_adjacent_dev_unlink(dev, i->dev);
5152 }
5153
5154 i = j = NULL;
5155
5156 rollback_mesh:
5157 to_i = i;
5158 to_j = j;
5159 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5160 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5161 if (i == to_i && j == to_j)
5162 break;
5163 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5164 }
5165 if (i == to_i)
5166 break;
5167 }
5168
5169 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5170
5171 return ret;
5172 }
5173
5174 /**
5175 * netdev_upper_dev_link - Add a link to the upper device
5176 * @dev: device
5177 * @upper_dev: new upper device
5178 *
5179 * Adds a link to device which is upper to this one. The caller must hold
5180 * the RTNL lock. On a failure a negative errno code is returned.
5181 * On success the reference counts are adjusted and the function
5182 * returns zero.
5183 */
5184 int netdev_upper_dev_link(struct net_device *dev,
5185 struct net_device *upper_dev)
5186 {
5187 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5188 }
5189 EXPORT_SYMBOL(netdev_upper_dev_link);
5190
5191 /**
5192 * netdev_master_upper_dev_link - Add a master link to the upper device
5193 * @dev: device
5194 * @upper_dev: new upper device
5195 *
5196 * Adds a link to device which is upper to this one. In this case, only
5197 * one master upper device can be linked, although other non-master devices
5198 * might be linked as well. The caller must hold the RTNL lock.
5199 * On a failure a negative errno code is returned. On success the reference
5200 * counts are adjusted and the function returns zero.
5201 */
5202 int netdev_master_upper_dev_link(struct net_device *dev,
5203 struct net_device *upper_dev)
5204 {
5205 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5206 }
5207 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5208
5209 int netdev_master_upper_dev_link_private(struct net_device *dev,
5210 struct net_device *upper_dev,
5211 void *private)
5212 {
5213 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5214 }
5215 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5216
5217 /**
5218 * netdev_upper_dev_unlink - Removes a link to upper device
5219 * @dev: device
5220 * @upper_dev: new upper device
5221 *
5222 * Removes a link to device which is upper to this one. The caller must hold
5223 * the RTNL lock.
5224 */
5225 void netdev_upper_dev_unlink(struct net_device *dev,
5226 struct net_device *upper_dev)
5227 {
5228 struct netdev_adjacent *i, *j;
5229 ASSERT_RTNL();
5230
5231 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5232
5233 /* Here is the tricky part. We must remove all dev's lower
5234 * devices from all upper_dev's upper devices and vice
5235 * versa, to maintain the graph relationship.
5236 */
5237 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5238 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5239 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5240
5241 /* remove also the devices itself from lower/upper device
5242 * list
5243 */
5244 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5245 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5246
5247 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5248 __netdev_adjacent_dev_unlink(dev, i->dev);
5249
5250 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5251 }
5252 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5253
5254 void netdev_adjacent_add_links(struct net_device *dev)
5255 {
5256 struct netdev_adjacent *iter;
5257
5258 struct net *net = dev_net(dev);
5259
5260 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5261 if (!net_eq(net,dev_net(iter->dev)))
5262 continue;
5263 netdev_adjacent_sysfs_add(iter->dev, dev,
5264 &iter->dev->adj_list.lower);
5265 netdev_adjacent_sysfs_add(dev, iter->dev,
5266 &dev->adj_list.upper);
5267 }
5268
5269 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5270 if (!net_eq(net,dev_net(iter->dev)))
5271 continue;
5272 netdev_adjacent_sysfs_add(iter->dev, dev,
5273 &iter->dev->adj_list.upper);
5274 netdev_adjacent_sysfs_add(dev, iter->dev,
5275 &dev->adj_list.lower);
5276 }
5277 }
5278
5279 void netdev_adjacent_del_links(struct net_device *dev)
5280 {
5281 struct netdev_adjacent *iter;
5282
5283 struct net *net = dev_net(dev);
5284
5285 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5286 if (!net_eq(net,dev_net(iter->dev)))
5287 continue;
5288 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5289 &iter->dev->adj_list.lower);
5290 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5291 &dev->adj_list.upper);
5292 }
5293
5294 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5295 if (!net_eq(net,dev_net(iter->dev)))
5296 continue;
5297 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5298 &iter->dev->adj_list.upper);
5299 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5300 &dev->adj_list.lower);
5301 }
5302 }
5303
5304 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5305 {
5306 struct netdev_adjacent *iter;
5307
5308 struct net *net = dev_net(dev);
5309
5310 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5311 if (!net_eq(net,dev_net(iter->dev)))
5312 continue;
5313 netdev_adjacent_sysfs_del(iter->dev, oldname,
5314 &iter->dev->adj_list.lower);
5315 netdev_adjacent_sysfs_add(iter->dev, dev,
5316 &iter->dev->adj_list.lower);
5317 }
5318
5319 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5320 if (!net_eq(net,dev_net(iter->dev)))
5321 continue;
5322 netdev_adjacent_sysfs_del(iter->dev, oldname,
5323 &iter->dev->adj_list.upper);
5324 netdev_adjacent_sysfs_add(iter->dev, dev,
5325 &iter->dev->adj_list.upper);
5326 }
5327 }
5328
5329 void *netdev_lower_dev_get_private(struct net_device *dev,
5330 struct net_device *lower_dev)
5331 {
5332 struct netdev_adjacent *lower;
5333
5334 if (!lower_dev)
5335 return NULL;
5336 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5337 if (!lower)
5338 return NULL;
5339
5340 return lower->private;
5341 }
5342 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5343
5344
5345 int dev_get_nest_level(struct net_device *dev,
5346 bool (*type_check)(struct net_device *dev))
5347 {
5348 struct net_device *lower = NULL;
5349 struct list_head *iter;
5350 int max_nest = -1;
5351 int nest;
5352
5353 ASSERT_RTNL();
5354
5355 netdev_for_each_lower_dev(dev, lower, iter) {
5356 nest = dev_get_nest_level(lower, type_check);
5357 if (max_nest < nest)
5358 max_nest = nest;
5359 }
5360
5361 if (type_check(dev))
5362 max_nest++;
5363
5364 return max_nest;
5365 }
5366 EXPORT_SYMBOL(dev_get_nest_level);
5367
5368 static void dev_change_rx_flags(struct net_device *dev, int flags)
5369 {
5370 const struct net_device_ops *ops = dev->netdev_ops;
5371
5372 if (ops->ndo_change_rx_flags)
5373 ops->ndo_change_rx_flags(dev, flags);
5374 }
5375
5376 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5377 {
5378 unsigned int old_flags = dev->flags;
5379 kuid_t uid;
5380 kgid_t gid;
5381
5382 ASSERT_RTNL();
5383
5384 dev->flags |= IFF_PROMISC;
5385 dev->promiscuity += inc;
5386 if (dev->promiscuity == 0) {
5387 /*
5388 * Avoid overflow.
5389 * If inc causes overflow, untouch promisc and return error.
5390 */
5391 if (inc < 0)
5392 dev->flags &= ~IFF_PROMISC;
5393 else {
5394 dev->promiscuity -= inc;
5395 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5396 dev->name);
5397 return -EOVERFLOW;
5398 }
5399 }
5400 if (dev->flags != old_flags) {
5401 pr_info("device %s %s promiscuous mode\n",
5402 dev->name,
5403 dev->flags & IFF_PROMISC ? "entered" : "left");
5404 if (audit_enabled) {
5405 current_uid_gid(&uid, &gid);
5406 audit_log(current->audit_context, GFP_ATOMIC,
5407 AUDIT_ANOM_PROMISCUOUS,
5408 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5409 dev->name, (dev->flags & IFF_PROMISC),
5410 (old_flags & IFF_PROMISC),
5411 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5412 from_kuid(&init_user_ns, uid),
5413 from_kgid(&init_user_ns, gid),
5414 audit_get_sessionid(current));
5415 }
5416
5417 dev_change_rx_flags(dev, IFF_PROMISC);
5418 }
5419 if (notify)
5420 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5421 return 0;
5422 }
5423
5424 /**
5425 * dev_set_promiscuity - update promiscuity count on a device
5426 * @dev: device
5427 * @inc: modifier
5428 *
5429 * Add or remove promiscuity from a device. While the count in the device
5430 * remains above zero the interface remains promiscuous. Once it hits zero
5431 * the device reverts back to normal filtering operation. A negative inc
5432 * value is used to drop promiscuity on the device.
5433 * Return 0 if successful or a negative errno code on error.
5434 */
5435 int dev_set_promiscuity(struct net_device *dev, int inc)
5436 {
5437 unsigned int old_flags = dev->flags;
5438 int err;
5439
5440 err = __dev_set_promiscuity(dev, inc, true);
5441 if (err < 0)
5442 return err;
5443 if (dev->flags != old_flags)
5444 dev_set_rx_mode(dev);
5445 return err;
5446 }
5447 EXPORT_SYMBOL(dev_set_promiscuity);
5448
5449 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5450 {
5451 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5452
5453 ASSERT_RTNL();
5454
5455 dev->flags |= IFF_ALLMULTI;
5456 dev->allmulti += inc;
5457 if (dev->allmulti == 0) {
5458 /*
5459 * Avoid overflow.
5460 * If inc causes overflow, untouch allmulti and return error.
5461 */
5462 if (inc < 0)
5463 dev->flags &= ~IFF_ALLMULTI;
5464 else {
5465 dev->allmulti -= inc;
5466 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5467 dev->name);
5468 return -EOVERFLOW;
5469 }
5470 }
5471 if (dev->flags ^ old_flags) {
5472 dev_change_rx_flags(dev, IFF_ALLMULTI);
5473 dev_set_rx_mode(dev);
5474 if (notify)
5475 __dev_notify_flags(dev, old_flags,
5476 dev->gflags ^ old_gflags);
5477 }
5478 return 0;
5479 }
5480
5481 /**
5482 * dev_set_allmulti - update allmulti count on a device
5483 * @dev: device
5484 * @inc: modifier
5485 *
5486 * Add or remove reception of all multicast frames to a device. While the
5487 * count in the device remains above zero the interface remains listening
5488 * to all interfaces. Once it hits zero the device reverts back to normal
5489 * filtering operation. A negative @inc value is used to drop the counter
5490 * when releasing a resource needing all multicasts.
5491 * Return 0 if successful or a negative errno code on error.
5492 */
5493
5494 int dev_set_allmulti(struct net_device *dev, int inc)
5495 {
5496 return __dev_set_allmulti(dev, inc, true);
5497 }
5498 EXPORT_SYMBOL(dev_set_allmulti);
5499
5500 /*
5501 * Upload unicast and multicast address lists to device and
5502 * configure RX filtering. When the device doesn't support unicast
5503 * filtering it is put in promiscuous mode while unicast addresses
5504 * are present.
5505 */
5506 void __dev_set_rx_mode(struct net_device *dev)
5507 {
5508 const struct net_device_ops *ops = dev->netdev_ops;
5509
5510 /* dev_open will call this function so the list will stay sane. */
5511 if (!(dev->flags&IFF_UP))
5512 return;
5513
5514 if (!netif_device_present(dev))
5515 return;
5516
5517 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5518 /* Unicast addresses changes may only happen under the rtnl,
5519 * therefore calling __dev_set_promiscuity here is safe.
5520 */
5521 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5522 __dev_set_promiscuity(dev, 1, false);
5523 dev->uc_promisc = true;
5524 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5525 __dev_set_promiscuity(dev, -1, false);
5526 dev->uc_promisc = false;
5527 }
5528 }
5529
5530 if (ops->ndo_set_rx_mode)
5531 ops->ndo_set_rx_mode(dev);
5532 }
5533
5534 void dev_set_rx_mode(struct net_device *dev)
5535 {
5536 netif_addr_lock_bh(dev);
5537 __dev_set_rx_mode(dev);
5538 netif_addr_unlock_bh(dev);
5539 }
5540
5541 /**
5542 * dev_get_flags - get flags reported to userspace
5543 * @dev: device
5544 *
5545 * Get the combination of flag bits exported through APIs to userspace.
5546 */
5547 unsigned int dev_get_flags(const struct net_device *dev)
5548 {
5549 unsigned int flags;
5550
5551 flags = (dev->flags & ~(IFF_PROMISC |
5552 IFF_ALLMULTI |
5553 IFF_RUNNING |
5554 IFF_LOWER_UP |
5555 IFF_DORMANT)) |
5556 (dev->gflags & (IFF_PROMISC |
5557 IFF_ALLMULTI));
5558
5559 if (netif_running(dev)) {
5560 if (netif_oper_up(dev))
5561 flags |= IFF_RUNNING;
5562 if (netif_carrier_ok(dev))
5563 flags |= IFF_LOWER_UP;
5564 if (netif_dormant(dev))
5565 flags |= IFF_DORMANT;
5566 }
5567
5568 return flags;
5569 }
5570 EXPORT_SYMBOL(dev_get_flags);
5571
5572 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5573 {
5574 unsigned int old_flags = dev->flags;
5575 int ret;
5576
5577 ASSERT_RTNL();
5578
5579 /*
5580 * Set the flags on our device.
5581 */
5582
5583 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5584 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5585 IFF_AUTOMEDIA)) |
5586 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5587 IFF_ALLMULTI));
5588
5589 /*
5590 * Load in the correct multicast list now the flags have changed.
5591 */
5592
5593 if ((old_flags ^ flags) & IFF_MULTICAST)
5594 dev_change_rx_flags(dev, IFF_MULTICAST);
5595
5596 dev_set_rx_mode(dev);
5597
5598 /*
5599 * Have we downed the interface. We handle IFF_UP ourselves
5600 * according to user attempts to set it, rather than blindly
5601 * setting it.
5602 */
5603
5604 ret = 0;
5605 if ((old_flags ^ flags) & IFF_UP)
5606 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5607
5608 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5609 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5610 unsigned int old_flags = dev->flags;
5611
5612 dev->gflags ^= IFF_PROMISC;
5613
5614 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5615 if (dev->flags != old_flags)
5616 dev_set_rx_mode(dev);
5617 }
5618
5619 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5620 is important. Some (broken) drivers set IFF_PROMISC, when
5621 IFF_ALLMULTI is requested not asking us and not reporting.
5622 */
5623 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5624 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5625
5626 dev->gflags ^= IFF_ALLMULTI;
5627 __dev_set_allmulti(dev, inc, false);
5628 }
5629
5630 return ret;
5631 }
5632
5633 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5634 unsigned int gchanges)
5635 {
5636 unsigned int changes = dev->flags ^ old_flags;
5637
5638 if (gchanges)
5639 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5640
5641 if (changes & IFF_UP) {
5642 if (dev->flags & IFF_UP)
5643 call_netdevice_notifiers(NETDEV_UP, dev);
5644 else
5645 call_netdevice_notifiers(NETDEV_DOWN, dev);
5646 }
5647
5648 if (dev->flags & IFF_UP &&
5649 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5650 struct netdev_notifier_change_info change_info;
5651
5652 change_info.flags_changed = changes;
5653 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5654 &change_info.info);
5655 }
5656 }
5657
5658 /**
5659 * dev_change_flags - change device settings
5660 * @dev: device
5661 * @flags: device state flags
5662 *
5663 * Change settings on device based state flags. The flags are
5664 * in the userspace exported format.
5665 */
5666 int dev_change_flags(struct net_device *dev, unsigned int flags)
5667 {
5668 int ret;
5669 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5670
5671 ret = __dev_change_flags(dev, flags);
5672 if (ret < 0)
5673 return ret;
5674
5675 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5676 __dev_notify_flags(dev, old_flags, changes);
5677 return ret;
5678 }
5679 EXPORT_SYMBOL(dev_change_flags);
5680
5681 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5682 {
5683 const struct net_device_ops *ops = dev->netdev_ops;
5684
5685 if (ops->ndo_change_mtu)
5686 return ops->ndo_change_mtu(dev, new_mtu);
5687
5688 dev->mtu = new_mtu;
5689 return 0;
5690 }
5691
5692 /**
5693 * dev_set_mtu - Change maximum transfer unit
5694 * @dev: device
5695 * @new_mtu: new transfer unit
5696 *
5697 * Change the maximum transfer size of the network device.
5698 */
5699 int dev_set_mtu(struct net_device *dev, int new_mtu)
5700 {
5701 int err, orig_mtu;
5702
5703 if (new_mtu == dev->mtu)
5704 return 0;
5705
5706 /* MTU must be positive. */
5707 if (new_mtu < 0)
5708 return -EINVAL;
5709
5710 if (!netif_device_present(dev))
5711 return -ENODEV;
5712
5713 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5714 err = notifier_to_errno(err);
5715 if (err)
5716 return err;
5717
5718 orig_mtu = dev->mtu;
5719 err = __dev_set_mtu(dev, new_mtu);
5720
5721 if (!err) {
5722 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5723 err = notifier_to_errno(err);
5724 if (err) {
5725 /* setting mtu back and notifying everyone again,
5726 * so that they have a chance to revert changes.
5727 */
5728 __dev_set_mtu(dev, orig_mtu);
5729 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5730 }
5731 }
5732 return err;
5733 }
5734 EXPORT_SYMBOL(dev_set_mtu);
5735
5736 /**
5737 * dev_set_group - Change group this device belongs to
5738 * @dev: device
5739 * @new_group: group this device should belong to
5740 */
5741 void dev_set_group(struct net_device *dev, int new_group)
5742 {
5743 dev->group = new_group;
5744 }
5745 EXPORT_SYMBOL(dev_set_group);
5746
5747 /**
5748 * dev_set_mac_address - Change Media Access Control Address
5749 * @dev: device
5750 * @sa: new address
5751 *
5752 * Change the hardware (MAC) address of the device
5753 */
5754 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5755 {
5756 const struct net_device_ops *ops = dev->netdev_ops;
5757 int err;
5758
5759 if (!ops->ndo_set_mac_address)
5760 return -EOPNOTSUPP;
5761 if (sa->sa_family != dev->type)
5762 return -EINVAL;
5763 if (!netif_device_present(dev))
5764 return -ENODEV;
5765 err = ops->ndo_set_mac_address(dev, sa);
5766 if (err)
5767 return err;
5768 dev->addr_assign_type = NET_ADDR_SET;
5769 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5770 add_device_randomness(dev->dev_addr, dev->addr_len);
5771 return 0;
5772 }
5773 EXPORT_SYMBOL(dev_set_mac_address);
5774
5775 /**
5776 * dev_change_carrier - Change device carrier
5777 * @dev: device
5778 * @new_carrier: new value
5779 *
5780 * Change device carrier
5781 */
5782 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5783 {
5784 const struct net_device_ops *ops = dev->netdev_ops;
5785
5786 if (!ops->ndo_change_carrier)
5787 return -EOPNOTSUPP;
5788 if (!netif_device_present(dev))
5789 return -ENODEV;
5790 return ops->ndo_change_carrier(dev, new_carrier);
5791 }
5792 EXPORT_SYMBOL(dev_change_carrier);
5793
5794 /**
5795 * dev_get_phys_port_id - Get device physical port ID
5796 * @dev: device
5797 * @ppid: port ID
5798 *
5799 * Get device physical port ID
5800 */
5801 int dev_get_phys_port_id(struct net_device *dev,
5802 struct netdev_phys_port_id *ppid)
5803 {
5804 const struct net_device_ops *ops = dev->netdev_ops;
5805
5806 if (!ops->ndo_get_phys_port_id)
5807 return -EOPNOTSUPP;
5808 return ops->ndo_get_phys_port_id(dev, ppid);
5809 }
5810 EXPORT_SYMBOL(dev_get_phys_port_id);
5811
5812 /**
5813 * dev_new_index - allocate an ifindex
5814 * @net: the applicable net namespace
5815 *
5816 * Returns a suitable unique value for a new device interface
5817 * number. The caller must hold the rtnl semaphore or the
5818 * dev_base_lock to be sure it remains unique.
5819 */
5820 static int dev_new_index(struct net *net)
5821 {
5822 int ifindex = net->ifindex;
5823 for (;;) {
5824 if (++ifindex <= 0)
5825 ifindex = 1;
5826 if (!__dev_get_by_index(net, ifindex))
5827 return net->ifindex = ifindex;
5828 }
5829 }
5830
5831 /* Delayed registration/unregisteration */
5832 static LIST_HEAD(net_todo_list);
5833 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5834
5835 static void net_set_todo(struct net_device *dev)
5836 {
5837 list_add_tail(&dev->todo_list, &net_todo_list);
5838 dev_net(dev)->dev_unreg_count++;
5839 }
5840
5841 static void rollback_registered_many(struct list_head *head)
5842 {
5843 struct net_device *dev, *tmp;
5844 LIST_HEAD(close_head);
5845
5846 BUG_ON(dev_boot_phase);
5847 ASSERT_RTNL();
5848
5849 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5850 /* Some devices call without registering
5851 * for initialization unwind. Remove those
5852 * devices and proceed with the remaining.
5853 */
5854 if (dev->reg_state == NETREG_UNINITIALIZED) {
5855 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5856 dev->name, dev);
5857
5858 WARN_ON(1);
5859 list_del(&dev->unreg_list);
5860 continue;
5861 }
5862 dev->dismantle = true;
5863 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5864 }
5865
5866 /* If device is running, close it first. */
5867 list_for_each_entry(dev, head, unreg_list)
5868 list_add_tail(&dev->close_list, &close_head);
5869 dev_close_many(&close_head);
5870
5871 list_for_each_entry(dev, head, unreg_list) {
5872 /* And unlink it from device chain. */
5873 unlist_netdevice(dev);
5874
5875 dev->reg_state = NETREG_UNREGISTERING;
5876 }
5877
5878 synchronize_net();
5879
5880 list_for_each_entry(dev, head, unreg_list) {
5881 /* Shutdown queueing discipline. */
5882 dev_shutdown(dev);
5883
5884
5885 /* Notify protocols, that we are about to destroy
5886 this device. They should clean all the things.
5887 */
5888 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5889
5890 /*
5891 * Flush the unicast and multicast chains
5892 */
5893 dev_uc_flush(dev);
5894 dev_mc_flush(dev);
5895
5896 if (dev->netdev_ops->ndo_uninit)
5897 dev->netdev_ops->ndo_uninit(dev);
5898
5899 if (!dev->rtnl_link_ops ||
5900 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5901 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5902
5903 /* Notifier chain MUST detach us all upper devices. */
5904 WARN_ON(netdev_has_any_upper_dev(dev));
5905
5906 /* Remove entries from kobject tree */
5907 netdev_unregister_kobject(dev);
5908 #ifdef CONFIG_XPS
5909 /* Remove XPS queueing entries */
5910 netif_reset_xps_queues_gt(dev, 0);
5911 #endif
5912 }
5913
5914 synchronize_net();
5915
5916 list_for_each_entry(dev, head, unreg_list)
5917 dev_put(dev);
5918 }
5919
5920 static void rollback_registered(struct net_device *dev)
5921 {
5922 LIST_HEAD(single);
5923
5924 list_add(&dev->unreg_list, &single);
5925 rollback_registered_many(&single);
5926 list_del(&single);
5927 }
5928
5929 static netdev_features_t netdev_fix_features(struct net_device *dev,
5930 netdev_features_t features)
5931 {
5932 /* Fix illegal checksum combinations */
5933 if ((features & NETIF_F_HW_CSUM) &&
5934 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5935 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5936 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5937 }
5938
5939 /* TSO requires that SG is present as well. */
5940 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5941 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5942 features &= ~NETIF_F_ALL_TSO;
5943 }
5944
5945 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5946 !(features & NETIF_F_IP_CSUM)) {
5947 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5948 features &= ~NETIF_F_TSO;
5949 features &= ~NETIF_F_TSO_ECN;
5950 }
5951
5952 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5953 !(features & NETIF_F_IPV6_CSUM)) {
5954 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5955 features &= ~NETIF_F_TSO6;
5956 }
5957
5958 /* TSO ECN requires that TSO is present as well. */
5959 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5960 features &= ~NETIF_F_TSO_ECN;
5961
5962 /* Software GSO depends on SG. */
5963 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5964 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5965 features &= ~NETIF_F_GSO;
5966 }
5967
5968 /* UFO needs SG and checksumming */
5969 if (features & NETIF_F_UFO) {
5970 /* maybe split UFO into V4 and V6? */
5971 if (!((features & NETIF_F_GEN_CSUM) ||
5972 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5973 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5974 netdev_dbg(dev,
5975 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5976 features &= ~NETIF_F_UFO;
5977 }
5978
5979 if (!(features & NETIF_F_SG)) {
5980 netdev_dbg(dev,
5981 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5982 features &= ~NETIF_F_UFO;
5983 }
5984 }
5985
5986 #ifdef CONFIG_NET_RX_BUSY_POLL
5987 if (dev->netdev_ops->ndo_busy_poll)
5988 features |= NETIF_F_BUSY_POLL;
5989 else
5990 #endif
5991 features &= ~NETIF_F_BUSY_POLL;
5992
5993 return features;
5994 }
5995
5996 int __netdev_update_features(struct net_device *dev)
5997 {
5998 netdev_features_t features;
5999 int err = 0;
6000
6001 ASSERT_RTNL();
6002
6003 features = netdev_get_wanted_features(dev);
6004
6005 if (dev->netdev_ops->ndo_fix_features)
6006 features = dev->netdev_ops->ndo_fix_features(dev, features);
6007
6008 /* driver might be less strict about feature dependencies */
6009 features = netdev_fix_features(dev, features);
6010
6011 if (dev->features == features)
6012 return 0;
6013
6014 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6015 &dev->features, &features);
6016
6017 if (dev->netdev_ops->ndo_set_features)
6018 err = dev->netdev_ops->ndo_set_features(dev, features);
6019
6020 if (unlikely(err < 0)) {
6021 netdev_err(dev,
6022 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6023 err, &features, &dev->features);
6024 return -1;
6025 }
6026
6027 if (!err)
6028 dev->features = features;
6029
6030 return 1;
6031 }
6032
6033 /**
6034 * netdev_update_features - recalculate device features
6035 * @dev: the device to check
6036 *
6037 * Recalculate dev->features set and send notifications if it
6038 * has changed. Should be called after driver or hardware dependent
6039 * conditions might have changed that influence the features.
6040 */
6041 void netdev_update_features(struct net_device *dev)
6042 {
6043 if (__netdev_update_features(dev))
6044 netdev_features_change(dev);
6045 }
6046 EXPORT_SYMBOL(netdev_update_features);
6047
6048 /**
6049 * netdev_change_features - recalculate device features
6050 * @dev: the device to check
6051 *
6052 * Recalculate dev->features set and send notifications even
6053 * if they have not changed. Should be called instead of
6054 * netdev_update_features() if also dev->vlan_features might
6055 * have changed to allow the changes to be propagated to stacked
6056 * VLAN devices.
6057 */
6058 void netdev_change_features(struct net_device *dev)
6059 {
6060 __netdev_update_features(dev);
6061 netdev_features_change(dev);
6062 }
6063 EXPORT_SYMBOL(netdev_change_features);
6064
6065 /**
6066 * netif_stacked_transfer_operstate - transfer operstate
6067 * @rootdev: the root or lower level device to transfer state from
6068 * @dev: the device to transfer operstate to
6069 *
6070 * Transfer operational state from root to device. This is normally
6071 * called when a stacking relationship exists between the root
6072 * device and the device(a leaf device).
6073 */
6074 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6075 struct net_device *dev)
6076 {
6077 if (rootdev->operstate == IF_OPER_DORMANT)
6078 netif_dormant_on(dev);
6079 else
6080 netif_dormant_off(dev);
6081
6082 if (netif_carrier_ok(rootdev)) {
6083 if (!netif_carrier_ok(dev))
6084 netif_carrier_on(dev);
6085 } else {
6086 if (netif_carrier_ok(dev))
6087 netif_carrier_off(dev);
6088 }
6089 }
6090 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6091
6092 #ifdef CONFIG_SYSFS
6093 static int netif_alloc_rx_queues(struct net_device *dev)
6094 {
6095 unsigned int i, count = dev->num_rx_queues;
6096 struct netdev_rx_queue *rx;
6097
6098 BUG_ON(count < 1);
6099
6100 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
6101 if (!rx)
6102 return -ENOMEM;
6103
6104 dev->_rx = rx;
6105
6106 for (i = 0; i < count; i++)
6107 rx[i].dev = dev;
6108 return 0;
6109 }
6110 #endif
6111
6112 static void netdev_init_one_queue(struct net_device *dev,
6113 struct netdev_queue *queue, void *_unused)
6114 {
6115 /* Initialize queue lock */
6116 spin_lock_init(&queue->_xmit_lock);
6117 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6118 queue->xmit_lock_owner = -1;
6119 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6120 queue->dev = dev;
6121 #ifdef CONFIG_BQL
6122 dql_init(&queue->dql, HZ);
6123 #endif
6124 }
6125
6126 static void netif_free_tx_queues(struct net_device *dev)
6127 {
6128 kvfree(dev->_tx);
6129 }
6130
6131 static int netif_alloc_netdev_queues(struct net_device *dev)
6132 {
6133 unsigned int count = dev->num_tx_queues;
6134 struct netdev_queue *tx;
6135 size_t sz = count * sizeof(*tx);
6136
6137 BUG_ON(count < 1 || count > 0xffff);
6138
6139 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6140 if (!tx) {
6141 tx = vzalloc(sz);
6142 if (!tx)
6143 return -ENOMEM;
6144 }
6145 dev->_tx = tx;
6146
6147 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6148 spin_lock_init(&dev->tx_global_lock);
6149
6150 return 0;
6151 }
6152
6153 /**
6154 * register_netdevice - register a network device
6155 * @dev: device to register
6156 *
6157 * Take a completed network device structure and add it to the kernel
6158 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6159 * chain. 0 is returned on success. A negative errno code is returned
6160 * on a failure to set up the device, or if the name is a duplicate.
6161 *
6162 * Callers must hold the rtnl semaphore. You may want
6163 * register_netdev() instead of this.
6164 *
6165 * BUGS:
6166 * The locking appears insufficient to guarantee two parallel registers
6167 * will not get the same name.
6168 */
6169
6170 int register_netdevice(struct net_device *dev)
6171 {
6172 int ret;
6173 struct net *net = dev_net(dev);
6174
6175 BUG_ON(dev_boot_phase);
6176 ASSERT_RTNL();
6177
6178 might_sleep();
6179
6180 /* When net_device's are persistent, this will be fatal. */
6181 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6182 BUG_ON(!net);
6183
6184 spin_lock_init(&dev->addr_list_lock);
6185 netdev_set_addr_lockdep_class(dev);
6186
6187 dev->iflink = -1;
6188
6189 ret = dev_get_valid_name(net, dev, dev->name);
6190 if (ret < 0)
6191 goto out;
6192
6193 /* Init, if this function is available */
6194 if (dev->netdev_ops->ndo_init) {
6195 ret = dev->netdev_ops->ndo_init(dev);
6196 if (ret) {
6197 if (ret > 0)
6198 ret = -EIO;
6199 goto out;
6200 }
6201 }
6202
6203 if (((dev->hw_features | dev->features) &
6204 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6205 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6206 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6207 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6208 ret = -EINVAL;
6209 goto err_uninit;
6210 }
6211
6212 ret = -EBUSY;
6213 if (!dev->ifindex)
6214 dev->ifindex = dev_new_index(net);
6215 else if (__dev_get_by_index(net, dev->ifindex))
6216 goto err_uninit;
6217
6218 if (dev->iflink == -1)
6219 dev->iflink = dev->ifindex;
6220
6221 /* Transfer changeable features to wanted_features and enable
6222 * software offloads (GSO and GRO).
6223 */
6224 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6225 dev->features |= NETIF_F_SOFT_FEATURES;
6226 dev->wanted_features = dev->features & dev->hw_features;
6227
6228 if (!(dev->flags & IFF_LOOPBACK)) {
6229 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6230 }
6231
6232 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6233 */
6234 dev->vlan_features |= NETIF_F_HIGHDMA;
6235
6236 /* Make NETIF_F_SG inheritable to tunnel devices.
6237 */
6238 dev->hw_enc_features |= NETIF_F_SG;
6239
6240 /* Make NETIF_F_SG inheritable to MPLS.
6241 */
6242 dev->mpls_features |= NETIF_F_SG;
6243
6244 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6245 ret = notifier_to_errno(ret);
6246 if (ret)
6247 goto err_uninit;
6248
6249 ret = netdev_register_kobject(dev);
6250 if (ret)
6251 goto err_uninit;
6252 dev->reg_state = NETREG_REGISTERED;
6253
6254 __netdev_update_features(dev);
6255
6256 /*
6257 * Default initial state at registry is that the
6258 * device is present.
6259 */
6260
6261 set_bit(__LINK_STATE_PRESENT, &dev->state);
6262
6263 linkwatch_init_dev(dev);
6264
6265 dev_init_scheduler(dev);
6266 dev_hold(dev);
6267 list_netdevice(dev);
6268 add_device_randomness(dev->dev_addr, dev->addr_len);
6269
6270 /* If the device has permanent device address, driver should
6271 * set dev_addr and also addr_assign_type should be set to
6272 * NET_ADDR_PERM (default value).
6273 */
6274 if (dev->addr_assign_type == NET_ADDR_PERM)
6275 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6276
6277 /* Notify protocols, that a new device appeared. */
6278 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6279 ret = notifier_to_errno(ret);
6280 if (ret) {
6281 rollback_registered(dev);
6282 dev->reg_state = NETREG_UNREGISTERED;
6283 }
6284 /*
6285 * Prevent userspace races by waiting until the network
6286 * device is fully setup before sending notifications.
6287 */
6288 if (!dev->rtnl_link_ops ||
6289 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6290 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6291
6292 out:
6293 return ret;
6294
6295 err_uninit:
6296 if (dev->netdev_ops->ndo_uninit)
6297 dev->netdev_ops->ndo_uninit(dev);
6298 goto out;
6299 }
6300 EXPORT_SYMBOL(register_netdevice);
6301
6302 /**
6303 * init_dummy_netdev - init a dummy network device for NAPI
6304 * @dev: device to init
6305 *
6306 * This takes a network device structure and initialize the minimum
6307 * amount of fields so it can be used to schedule NAPI polls without
6308 * registering a full blown interface. This is to be used by drivers
6309 * that need to tie several hardware interfaces to a single NAPI
6310 * poll scheduler due to HW limitations.
6311 */
6312 int init_dummy_netdev(struct net_device *dev)
6313 {
6314 /* Clear everything. Note we don't initialize spinlocks
6315 * are they aren't supposed to be taken by any of the
6316 * NAPI code and this dummy netdev is supposed to be
6317 * only ever used for NAPI polls
6318 */
6319 memset(dev, 0, sizeof(struct net_device));
6320
6321 /* make sure we BUG if trying to hit standard
6322 * register/unregister code path
6323 */
6324 dev->reg_state = NETREG_DUMMY;
6325
6326 /* NAPI wants this */
6327 INIT_LIST_HEAD(&dev->napi_list);
6328
6329 /* a dummy interface is started by default */
6330 set_bit(__LINK_STATE_PRESENT, &dev->state);
6331 set_bit(__LINK_STATE_START, &dev->state);
6332
6333 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6334 * because users of this 'device' dont need to change
6335 * its refcount.
6336 */
6337
6338 return 0;
6339 }
6340 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6341
6342
6343 /**
6344 * register_netdev - register a network device
6345 * @dev: device to register
6346 *
6347 * Take a completed network device structure and add it to the kernel
6348 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6349 * chain. 0 is returned on success. A negative errno code is returned
6350 * on a failure to set up the device, or if the name is a duplicate.
6351 *
6352 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6353 * and expands the device name if you passed a format string to
6354 * alloc_netdev.
6355 */
6356 int register_netdev(struct net_device *dev)
6357 {
6358 int err;
6359
6360 rtnl_lock();
6361 err = register_netdevice(dev);
6362 rtnl_unlock();
6363 return err;
6364 }
6365 EXPORT_SYMBOL(register_netdev);
6366
6367 int netdev_refcnt_read(const struct net_device *dev)
6368 {
6369 int i, refcnt = 0;
6370
6371 for_each_possible_cpu(i)
6372 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6373 return refcnt;
6374 }
6375 EXPORT_SYMBOL(netdev_refcnt_read);
6376
6377 /**
6378 * netdev_wait_allrefs - wait until all references are gone.
6379 * @dev: target net_device
6380 *
6381 * This is called when unregistering network devices.
6382 *
6383 * Any protocol or device that holds a reference should register
6384 * for netdevice notification, and cleanup and put back the
6385 * reference if they receive an UNREGISTER event.
6386 * We can get stuck here if buggy protocols don't correctly
6387 * call dev_put.
6388 */
6389 static void netdev_wait_allrefs(struct net_device *dev)
6390 {
6391 unsigned long rebroadcast_time, warning_time;
6392 int refcnt;
6393
6394 linkwatch_forget_dev(dev);
6395
6396 rebroadcast_time = warning_time = jiffies;
6397 refcnt = netdev_refcnt_read(dev);
6398
6399 while (refcnt != 0) {
6400 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6401 rtnl_lock();
6402
6403 /* Rebroadcast unregister notification */
6404 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6405
6406 __rtnl_unlock();
6407 rcu_barrier();
6408 rtnl_lock();
6409
6410 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6411 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6412 &dev->state)) {
6413 /* We must not have linkwatch events
6414 * pending on unregister. If this
6415 * happens, we simply run the queue
6416 * unscheduled, resulting in a noop
6417 * for this device.
6418 */
6419 linkwatch_run_queue();
6420 }
6421
6422 __rtnl_unlock();
6423
6424 rebroadcast_time = jiffies;
6425 }
6426
6427 msleep(250);
6428
6429 refcnt = netdev_refcnt_read(dev);
6430
6431 if (time_after(jiffies, warning_time + 10 * HZ)) {
6432 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6433 dev->name, refcnt);
6434 warning_time = jiffies;
6435 }
6436 }
6437 }
6438
6439 /* The sequence is:
6440 *
6441 * rtnl_lock();
6442 * ...
6443 * register_netdevice(x1);
6444 * register_netdevice(x2);
6445 * ...
6446 * unregister_netdevice(y1);
6447 * unregister_netdevice(y2);
6448 * ...
6449 * rtnl_unlock();
6450 * free_netdev(y1);
6451 * free_netdev(y2);
6452 *
6453 * We are invoked by rtnl_unlock().
6454 * This allows us to deal with problems:
6455 * 1) We can delete sysfs objects which invoke hotplug
6456 * without deadlocking with linkwatch via keventd.
6457 * 2) Since we run with the RTNL semaphore not held, we can sleep
6458 * safely in order to wait for the netdev refcnt to drop to zero.
6459 *
6460 * We must not return until all unregister events added during
6461 * the interval the lock was held have been completed.
6462 */
6463 void netdev_run_todo(void)
6464 {
6465 struct list_head list;
6466
6467 /* Snapshot list, allow later requests */
6468 list_replace_init(&net_todo_list, &list);
6469
6470 __rtnl_unlock();
6471
6472
6473 /* Wait for rcu callbacks to finish before next phase */
6474 if (!list_empty(&list))
6475 rcu_barrier();
6476
6477 while (!list_empty(&list)) {
6478 struct net_device *dev
6479 = list_first_entry(&list, struct net_device, todo_list);
6480 list_del(&dev->todo_list);
6481
6482 rtnl_lock();
6483 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6484 __rtnl_unlock();
6485
6486 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6487 pr_err("network todo '%s' but state %d\n",
6488 dev->name, dev->reg_state);
6489 dump_stack();
6490 continue;
6491 }
6492
6493 dev->reg_state = NETREG_UNREGISTERED;
6494
6495 on_each_cpu(flush_backlog, dev, 1);
6496
6497 netdev_wait_allrefs(dev);
6498
6499 /* paranoia */
6500 BUG_ON(netdev_refcnt_read(dev));
6501 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6502 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6503 WARN_ON(dev->dn_ptr);
6504
6505 if (dev->destructor)
6506 dev->destructor(dev);
6507
6508 /* Report a network device has been unregistered */
6509 rtnl_lock();
6510 dev_net(dev)->dev_unreg_count--;
6511 __rtnl_unlock();
6512 wake_up(&netdev_unregistering_wq);
6513
6514 /* Free network device */
6515 kobject_put(&dev->dev.kobj);
6516 }
6517 }
6518
6519 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6520 * fields in the same order, with only the type differing.
6521 */
6522 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6523 const struct net_device_stats *netdev_stats)
6524 {
6525 #if BITS_PER_LONG == 64
6526 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6527 memcpy(stats64, netdev_stats, sizeof(*stats64));
6528 #else
6529 size_t i, n = sizeof(*stats64) / sizeof(u64);
6530 const unsigned long *src = (const unsigned long *)netdev_stats;
6531 u64 *dst = (u64 *)stats64;
6532
6533 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6534 sizeof(*stats64) / sizeof(u64));
6535 for (i = 0; i < n; i++)
6536 dst[i] = src[i];
6537 #endif
6538 }
6539 EXPORT_SYMBOL(netdev_stats_to_stats64);
6540
6541 /**
6542 * dev_get_stats - get network device statistics
6543 * @dev: device to get statistics from
6544 * @storage: place to store stats
6545 *
6546 * Get network statistics from device. Return @storage.
6547 * The device driver may provide its own method by setting
6548 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6549 * otherwise the internal statistics structure is used.
6550 */
6551 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6552 struct rtnl_link_stats64 *storage)
6553 {
6554 const struct net_device_ops *ops = dev->netdev_ops;
6555
6556 if (ops->ndo_get_stats64) {
6557 memset(storage, 0, sizeof(*storage));
6558 ops->ndo_get_stats64(dev, storage);
6559 } else if (ops->ndo_get_stats) {
6560 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6561 } else {
6562 netdev_stats_to_stats64(storage, &dev->stats);
6563 }
6564 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6565 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6566 return storage;
6567 }
6568 EXPORT_SYMBOL(dev_get_stats);
6569
6570 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6571 {
6572 struct netdev_queue *queue = dev_ingress_queue(dev);
6573
6574 #ifdef CONFIG_NET_CLS_ACT
6575 if (queue)
6576 return queue;
6577 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6578 if (!queue)
6579 return NULL;
6580 netdev_init_one_queue(dev, queue, NULL);
6581 queue->qdisc = &noop_qdisc;
6582 queue->qdisc_sleeping = &noop_qdisc;
6583 rcu_assign_pointer(dev->ingress_queue, queue);
6584 #endif
6585 return queue;
6586 }
6587
6588 static const struct ethtool_ops default_ethtool_ops;
6589
6590 void netdev_set_default_ethtool_ops(struct net_device *dev,
6591 const struct ethtool_ops *ops)
6592 {
6593 if (dev->ethtool_ops == &default_ethtool_ops)
6594 dev->ethtool_ops = ops;
6595 }
6596 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6597
6598 void netdev_freemem(struct net_device *dev)
6599 {
6600 char *addr = (char *)dev - dev->padded;
6601
6602 kvfree(addr);
6603 }
6604
6605 /**
6606 * alloc_netdev_mqs - allocate network device
6607 * @sizeof_priv: size of private data to allocate space for
6608 * @name: device name format string
6609 * @name_assign_type: origin of device name
6610 * @setup: callback to initialize device
6611 * @txqs: the number of TX subqueues to allocate
6612 * @rxqs: the number of RX subqueues to allocate
6613 *
6614 * Allocates a struct net_device with private data area for driver use
6615 * and performs basic initialization. Also allocates subqueue structs
6616 * for each queue on the device.
6617 */
6618 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6619 unsigned char name_assign_type,
6620 void (*setup)(struct net_device *),
6621 unsigned int txqs, unsigned int rxqs)
6622 {
6623 struct net_device *dev;
6624 size_t alloc_size;
6625 struct net_device *p;
6626
6627 BUG_ON(strlen(name) >= sizeof(dev->name));
6628
6629 if (txqs < 1) {
6630 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6631 return NULL;
6632 }
6633
6634 #ifdef CONFIG_SYSFS
6635 if (rxqs < 1) {
6636 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6637 return NULL;
6638 }
6639 #endif
6640
6641 alloc_size = sizeof(struct net_device);
6642 if (sizeof_priv) {
6643 /* ensure 32-byte alignment of private area */
6644 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6645 alloc_size += sizeof_priv;
6646 }
6647 /* ensure 32-byte alignment of whole construct */
6648 alloc_size += NETDEV_ALIGN - 1;
6649
6650 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6651 if (!p)
6652 p = vzalloc(alloc_size);
6653 if (!p)
6654 return NULL;
6655
6656 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6657 dev->padded = (char *)dev - (char *)p;
6658
6659 dev->pcpu_refcnt = alloc_percpu(int);
6660 if (!dev->pcpu_refcnt)
6661 goto free_dev;
6662
6663 if (dev_addr_init(dev))
6664 goto free_pcpu;
6665
6666 dev_mc_init(dev);
6667 dev_uc_init(dev);
6668
6669 dev_net_set(dev, &init_net);
6670
6671 dev->gso_max_size = GSO_MAX_SIZE;
6672 dev->gso_max_segs = GSO_MAX_SEGS;
6673 dev->gso_min_segs = 0;
6674
6675 INIT_LIST_HEAD(&dev->napi_list);
6676 INIT_LIST_HEAD(&dev->unreg_list);
6677 INIT_LIST_HEAD(&dev->close_list);
6678 INIT_LIST_HEAD(&dev->link_watch_list);
6679 INIT_LIST_HEAD(&dev->adj_list.upper);
6680 INIT_LIST_HEAD(&dev->adj_list.lower);
6681 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6682 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6683 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6684 setup(dev);
6685
6686 dev->num_tx_queues = txqs;
6687 dev->real_num_tx_queues = txqs;
6688 if (netif_alloc_netdev_queues(dev))
6689 goto free_all;
6690
6691 #ifdef CONFIG_SYSFS
6692 dev->num_rx_queues = rxqs;
6693 dev->real_num_rx_queues = rxqs;
6694 if (netif_alloc_rx_queues(dev))
6695 goto free_all;
6696 #endif
6697
6698 strcpy(dev->name, name);
6699 dev->name_assign_type = name_assign_type;
6700 dev->group = INIT_NETDEV_GROUP;
6701 if (!dev->ethtool_ops)
6702 dev->ethtool_ops = &default_ethtool_ops;
6703 return dev;
6704
6705 free_all:
6706 free_netdev(dev);
6707 return NULL;
6708
6709 free_pcpu:
6710 free_percpu(dev->pcpu_refcnt);
6711 free_dev:
6712 netdev_freemem(dev);
6713 return NULL;
6714 }
6715 EXPORT_SYMBOL(alloc_netdev_mqs);
6716
6717 /**
6718 * free_netdev - free network device
6719 * @dev: device
6720 *
6721 * This function does the last stage of destroying an allocated device
6722 * interface. The reference to the device object is released.
6723 * If this is the last reference then it will be freed.
6724 */
6725 void free_netdev(struct net_device *dev)
6726 {
6727 struct napi_struct *p, *n;
6728
6729 release_net(dev_net(dev));
6730
6731 netif_free_tx_queues(dev);
6732 #ifdef CONFIG_SYSFS
6733 kfree(dev->_rx);
6734 #endif
6735
6736 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6737
6738 /* Flush device addresses */
6739 dev_addr_flush(dev);
6740
6741 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6742 netif_napi_del(p);
6743
6744 free_percpu(dev->pcpu_refcnt);
6745 dev->pcpu_refcnt = NULL;
6746
6747 /* Compatibility with error handling in drivers */
6748 if (dev->reg_state == NETREG_UNINITIALIZED) {
6749 netdev_freemem(dev);
6750 return;
6751 }
6752
6753 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6754 dev->reg_state = NETREG_RELEASED;
6755
6756 /* will free via device release */
6757 put_device(&dev->dev);
6758 }
6759 EXPORT_SYMBOL(free_netdev);
6760
6761 /**
6762 * synchronize_net - Synchronize with packet receive processing
6763 *
6764 * Wait for packets currently being received to be done.
6765 * Does not block later packets from starting.
6766 */
6767 void synchronize_net(void)
6768 {
6769 might_sleep();
6770 if (rtnl_is_locked())
6771 synchronize_rcu_expedited();
6772 else
6773 synchronize_rcu();
6774 }
6775 EXPORT_SYMBOL(synchronize_net);
6776
6777 /**
6778 * unregister_netdevice_queue - remove device from the kernel
6779 * @dev: device
6780 * @head: list
6781 *
6782 * This function shuts down a device interface and removes it
6783 * from the kernel tables.
6784 * If head not NULL, device is queued to be unregistered later.
6785 *
6786 * Callers must hold the rtnl semaphore. You may want
6787 * unregister_netdev() instead of this.
6788 */
6789
6790 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6791 {
6792 ASSERT_RTNL();
6793
6794 if (head) {
6795 list_move_tail(&dev->unreg_list, head);
6796 } else {
6797 rollback_registered(dev);
6798 /* Finish processing unregister after unlock */
6799 net_set_todo(dev);
6800 }
6801 }
6802 EXPORT_SYMBOL(unregister_netdevice_queue);
6803
6804 /**
6805 * unregister_netdevice_many - unregister many devices
6806 * @head: list of devices
6807 *
6808 * Note: As most callers use a stack allocated list_head,
6809 * we force a list_del() to make sure stack wont be corrupted later.
6810 */
6811 void unregister_netdevice_many(struct list_head *head)
6812 {
6813 struct net_device *dev;
6814
6815 if (!list_empty(head)) {
6816 rollback_registered_many(head);
6817 list_for_each_entry(dev, head, unreg_list)
6818 net_set_todo(dev);
6819 list_del(head);
6820 }
6821 }
6822 EXPORT_SYMBOL(unregister_netdevice_many);
6823
6824 /**
6825 * unregister_netdev - remove device from the kernel
6826 * @dev: device
6827 *
6828 * This function shuts down a device interface and removes it
6829 * from the kernel tables.
6830 *
6831 * This is just a wrapper for unregister_netdevice that takes
6832 * the rtnl semaphore. In general you want to use this and not
6833 * unregister_netdevice.
6834 */
6835 void unregister_netdev(struct net_device *dev)
6836 {
6837 rtnl_lock();
6838 unregister_netdevice(dev);
6839 rtnl_unlock();
6840 }
6841 EXPORT_SYMBOL(unregister_netdev);
6842
6843 /**
6844 * dev_change_net_namespace - move device to different nethost namespace
6845 * @dev: device
6846 * @net: network namespace
6847 * @pat: If not NULL name pattern to try if the current device name
6848 * is already taken in the destination network namespace.
6849 *
6850 * This function shuts down a device interface and moves it
6851 * to a new network namespace. On success 0 is returned, on
6852 * a failure a netagive errno code is returned.
6853 *
6854 * Callers must hold the rtnl semaphore.
6855 */
6856
6857 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6858 {
6859 int err;
6860
6861 ASSERT_RTNL();
6862
6863 /* Don't allow namespace local devices to be moved. */
6864 err = -EINVAL;
6865 if (dev->features & NETIF_F_NETNS_LOCAL)
6866 goto out;
6867
6868 /* Ensure the device has been registrered */
6869 if (dev->reg_state != NETREG_REGISTERED)
6870 goto out;
6871
6872 /* Get out if there is nothing todo */
6873 err = 0;
6874 if (net_eq(dev_net(dev), net))
6875 goto out;
6876
6877 /* Pick the destination device name, and ensure
6878 * we can use it in the destination network namespace.
6879 */
6880 err = -EEXIST;
6881 if (__dev_get_by_name(net, dev->name)) {
6882 /* We get here if we can't use the current device name */
6883 if (!pat)
6884 goto out;
6885 if (dev_get_valid_name(net, dev, pat) < 0)
6886 goto out;
6887 }
6888
6889 /*
6890 * And now a mini version of register_netdevice unregister_netdevice.
6891 */
6892
6893 /* If device is running close it first. */
6894 dev_close(dev);
6895
6896 /* And unlink it from device chain */
6897 err = -ENODEV;
6898 unlist_netdevice(dev);
6899
6900 synchronize_net();
6901
6902 /* Shutdown queueing discipline. */
6903 dev_shutdown(dev);
6904
6905 /* Notify protocols, that we are about to destroy
6906 this device. They should clean all the things.
6907
6908 Note that dev->reg_state stays at NETREG_REGISTERED.
6909 This is wanted because this way 8021q and macvlan know
6910 the device is just moving and can keep their slaves up.
6911 */
6912 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6913 rcu_barrier();
6914 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6915 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6916
6917 /*
6918 * Flush the unicast and multicast chains
6919 */
6920 dev_uc_flush(dev);
6921 dev_mc_flush(dev);
6922
6923 /* Send a netdev-removed uevent to the old namespace */
6924 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6925 netdev_adjacent_del_links(dev);
6926
6927 /* Actually switch the network namespace */
6928 dev_net_set(dev, net);
6929
6930 /* If there is an ifindex conflict assign a new one */
6931 if (__dev_get_by_index(net, dev->ifindex)) {
6932 int iflink = (dev->iflink == dev->ifindex);
6933 dev->ifindex = dev_new_index(net);
6934 if (iflink)
6935 dev->iflink = dev->ifindex;
6936 }
6937
6938 /* Send a netdev-add uevent to the new namespace */
6939 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6940 netdev_adjacent_add_links(dev);
6941
6942 /* Fixup kobjects */
6943 err = device_rename(&dev->dev, dev->name);
6944 WARN_ON(err);
6945
6946 /* Add the device back in the hashes */
6947 list_netdevice(dev);
6948
6949 /* Notify protocols, that a new device appeared. */
6950 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6951
6952 /*
6953 * Prevent userspace races by waiting until the network
6954 * device is fully setup before sending notifications.
6955 */
6956 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6957
6958 synchronize_net();
6959 err = 0;
6960 out:
6961 return err;
6962 }
6963 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6964
6965 static int dev_cpu_callback(struct notifier_block *nfb,
6966 unsigned long action,
6967 void *ocpu)
6968 {
6969 struct sk_buff **list_skb;
6970 struct sk_buff *skb;
6971 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6972 struct softnet_data *sd, *oldsd;
6973
6974 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6975 return NOTIFY_OK;
6976
6977 local_irq_disable();
6978 cpu = smp_processor_id();
6979 sd = &per_cpu(softnet_data, cpu);
6980 oldsd = &per_cpu(softnet_data, oldcpu);
6981
6982 /* Find end of our completion_queue. */
6983 list_skb = &sd->completion_queue;
6984 while (*list_skb)
6985 list_skb = &(*list_skb)->next;
6986 /* Append completion queue from offline CPU. */
6987 *list_skb = oldsd->completion_queue;
6988 oldsd->completion_queue = NULL;
6989
6990 /* Append output queue from offline CPU. */
6991 if (oldsd->output_queue) {
6992 *sd->output_queue_tailp = oldsd->output_queue;
6993 sd->output_queue_tailp = oldsd->output_queue_tailp;
6994 oldsd->output_queue = NULL;
6995 oldsd->output_queue_tailp = &oldsd->output_queue;
6996 }
6997 /* Append NAPI poll list from offline CPU. */
6998 if (!list_empty(&oldsd->poll_list)) {
6999 list_splice_init(&oldsd->poll_list, &sd->poll_list);
7000 raise_softirq_irqoff(NET_RX_SOFTIRQ);
7001 }
7002
7003 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7004 local_irq_enable();
7005
7006 /* Process offline CPU's input_pkt_queue */
7007 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7008 netif_rx_internal(skb);
7009 input_queue_head_incr(oldsd);
7010 }
7011 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
7012 netif_rx_internal(skb);
7013 input_queue_head_incr(oldsd);
7014 }
7015
7016 return NOTIFY_OK;
7017 }
7018
7019
7020 /**
7021 * netdev_increment_features - increment feature set by one
7022 * @all: current feature set
7023 * @one: new feature set
7024 * @mask: mask feature set
7025 *
7026 * Computes a new feature set after adding a device with feature set
7027 * @one to the master device with current feature set @all. Will not
7028 * enable anything that is off in @mask. Returns the new feature set.
7029 */
7030 netdev_features_t netdev_increment_features(netdev_features_t all,
7031 netdev_features_t one, netdev_features_t mask)
7032 {
7033 if (mask & NETIF_F_GEN_CSUM)
7034 mask |= NETIF_F_ALL_CSUM;
7035 mask |= NETIF_F_VLAN_CHALLENGED;
7036
7037 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7038 all &= one | ~NETIF_F_ALL_FOR_ALL;
7039
7040 /* If one device supports hw checksumming, set for all. */
7041 if (all & NETIF_F_GEN_CSUM)
7042 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7043
7044 return all;
7045 }
7046 EXPORT_SYMBOL(netdev_increment_features);
7047
7048 static struct hlist_head * __net_init netdev_create_hash(void)
7049 {
7050 int i;
7051 struct hlist_head *hash;
7052
7053 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7054 if (hash != NULL)
7055 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7056 INIT_HLIST_HEAD(&hash[i]);
7057
7058 return hash;
7059 }
7060
7061 /* Initialize per network namespace state */
7062 static int __net_init netdev_init(struct net *net)
7063 {
7064 if (net != &init_net)
7065 INIT_LIST_HEAD(&net->dev_base_head);
7066
7067 net->dev_name_head = netdev_create_hash();
7068 if (net->dev_name_head == NULL)
7069 goto err_name;
7070
7071 net->dev_index_head = netdev_create_hash();
7072 if (net->dev_index_head == NULL)
7073 goto err_idx;
7074
7075 return 0;
7076
7077 err_idx:
7078 kfree(net->dev_name_head);
7079 err_name:
7080 return -ENOMEM;
7081 }
7082
7083 /**
7084 * netdev_drivername - network driver for the device
7085 * @dev: network device
7086 *
7087 * Determine network driver for device.
7088 */
7089 const char *netdev_drivername(const struct net_device *dev)
7090 {
7091 const struct device_driver *driver;
7092 const struct device *parent;
7093 const char *empty = "";
7094
7095 parent = dev->dev.parent;
7096 if (!parent)
7097 return empty;
7098
7099 driver = parent->driver;
7100 if (driver && driver->name)
7101 return driver->name;
7102 return empty;
7103 }
7104
7105 static void __netdev_printk(const char *level, const struct net_device *dev,
7106 struct va_format *vaf)
7107 {
7108 if (dev && dev->dev.parent) {
7109 dev_printk_emit(level[1] - '0',
7110 dev->dev.parent,
7111 "%s %s %s%s: %pV",
7112 dev_driver_string(dev->dev.parent),
7113 dev_name(dev->dev.parent),
7114 netdev_name(dev), netdev_reg_state(dev),
7115 vaf);
7116 } else if (dev) {
7117 printk("%s%s%s: %pV",
7118 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7119 } else {
7120 printk("%s(NULL net_device): %pV", level, vaf);
7121 }
7122 }
7123
7124 void netdev_printk(const char *level, const struct net_device *dev,
7125 const char *format, ...)
7126 {
7127 struct va_format vaf;
7128 va_list args;
7129
7130 va_start(args, format);
7131
7132 vaf.fmt = format;
7133 vaf.va = &args;
7134
7135 __netdev_printk(level, dev, &vaf);
7136
7137 va_end(args);
7138 }
7139 EXPORT_SYMBOL(netdev_printk);
7140
7141 #define define_netdev_printk_level(func, level) \
7142 void func(const struct net_device *dev, const char *fmt, ...) \
7143 { \
7144 struct va_format vaf; \
7145 va_list args; \
7146 \
7147 va_start(args, fmt); \
7148 \
7149 vaf.fmt = fmt; \
7150 vaf.va = &args; \
7151 \
7152 __netdev_printk(level, dev, &vaf); \
7153 \
7154 va_end(args); \
7155 } \
7156 EXPORT_SYMBOL(func);
7157
7158 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7159 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7160 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7161 define_netdev_printk_level(netdev_err, KERN_ERR);
7162 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7163 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7164 define_netdev_printk_level(netdev_info, KERN_INFO);
7165
7166 static void __net_exit netdev_exit(struct net *net)
7167 {
7168 kfree(net->dev_name_head);
7169 kfree(net->dev_index_head);
7170 }
7171
7172 static struct pernet_operations __net_initdata netdev_net_ops = {
7173 .init = netdev_init,
7174 .exit = netdev_exit,
7175 };
7176
7177 static void __net_exit default_device_exit(struct net *net)
7178 {
7179 struct net_device *dev, *aux;
7180 /*
7181 * Push all migratable network devices back to the
7182 * initial network namespace
7183 */
7184 rtnl_lock();
7185 for_each_netdev_safe(net, dev, aux) {
7186 int err;
7187 char fb_name[IFNAMSIZ];
7188
7189 /* Ignore unmoveable devices (i.e. loopback) */
7190 if (dev->features & NETIF_F_NETNS_LOCAL)
7191 continue;
7192
7193 /* Leave virtual devices for the generic cleanup */
7194 if (dev->rtnl_link_ops)
7195 continue;
7196
7197 /* Push remaining network devices to init_net */
7198 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7199 err = dev_change_net_namespace(dev, &init_net, fb_name);
7200 if (err) {
7201 pr_emerg("%s: failed to move %s to init_net: %d\n",
7202 __func__, dev->name, err);
7203 BUG();
7204 }
7205 }
7206 rtnl_unlock();
7207 }
7208
7209 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7210 {
7211 /* Return with the rtnl_lock held when there are no network
7212 * devices unregistering in any network namespace in net_list.
7213 */
7214 struct net *net;
7215 bool unregistering;
7216 DEFINE_WAIT(wait);
7217
7218 for (;;) {
7219 prepare_to_wait(&netdev_unregistering_wq, &wait,
7220 TASK_UNINTERRUPTIBLE);
7221 unregistering = false;
7222 rtnl_lock();
7223 list_for_each_entry(net, net_list, exit_list) {
7224 if (net->dev_unreg_count > 0) {
7225 unregistering = true;
7226 break;
7227 }
7228 }
7229 if (!unregistering)
7230 break;
7231 __rtnl_unlock();
7232 schedule();
7233 }
7234 finish_wait(&netdev_unregistering_wq, &wait);
7235 }
7236
7237 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7238 {
7239 /* At exit all network devices most be removed from a network
7240 * namespace. Do this in the reverse order of registration.
7241 * Do this across as many network namespaces as possible to
7242 * improve batching efficiency.
7243 */
7244 struct net_device *dev;
7245 struct net *net;
7246 LIST_HEAD(dev_kill_list);
7247
7248 /* To prevent network device cleanup code from dereferencing
7249 * loopback devices or network devices that have been freed
7250 * wait here for all pending unregistrations to complete,
7251 * before unregistring the loopback device and allowing the
7252 * network namespace be freed.
7253 *
7254 * The netdev todo list containing all network devices
7255 * unregistrations that happen in default_device_exit_batch
7256 * will run in the rtnl_unlock() at the end of
7257 * default_device_exit_batch.
7258 */
7259 rtnl_lock_unregistering(net_list);
7260 list_for_each_entry(net, net_list, exit_list) {
7261 for_each_netdev_reverse(net, dev) {
7262 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7263 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7264 else
7265 unregister_netdevice_queue(dev, &dev_kill_list);
7266 }
7267 }
7268 unregister_netdevice_many(&dev_kill_list);
7269 rtnl_unlock();
7270 }
7271
7272 static struct pernet_operations __net_initdata default_device_ops = {
7273 .exit = default_device_exit,
7274 .exit_batch = default_device_exit_batch,
7275 };
7276
7277 /*
7278 * Initialize the DEV module. At boot time this walks the device list and
7279 * unhooks any devices that fail to initialise (normally hardware not
7280 * present) and leaves us with a valid list of present and active devices.
7281 *
7282 */
7283
7284 /*
7285 * This is called single threaded during boot, so no need
7286 * to take the rtnl semaphore.
7287 */
7288 static int __init net_dev_init(void)
7289 {
7290 int i, rc = -ENOMEM;
7291
7292 BUG_ON(!dev_boot_phase);
7293
7294 if (dev_proc_init())
7295 goto out;
7296
7297 if (netdev_kobject_init())
7298 goto out;
7299
7300 INIT_LIST_HEAD(&ptype_all);
7301 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7302 INIT_LIST_HEAD(&ptype_base[i]);
7303
7304 INIT_LIST_HEAD(&offload_base);
7305
7306 if (register_pernet_subsys(&netdev_net_ops))
7307 goto out;
7308
7309 /*
7310 * Initialise the packet receive queues.
7311 */
7312
7313 for_each_possible_cpu(i) {
7314 struct softnet_data *sd = &per_cpu(softnet_data, i);
7315
7316 skb_queue_head_init(&sd->input_pkt_queue);
7317 skb_queue_head_init(&sd->process_queue);
7318 INIT_LIST_HEAD(&sd->poll_list);
7319 sd->output_queue_tailp = &sd->output_queue;
7320 #ifdef CONFIG_RPS
7321 sd->csd.func = rps_trigger_softirq;
7322 sd->csd.info = sd;
7323 sd->cpu = i;
7324 #endif
7325
7326 sd->backlog.poll = process_backlog;
7327 sd->backlog.weight = weight_p;
7328 }
7329
7330 dev_boot_phase = 0;
7331
7332 /* The loopback device is special if any other network devices
7333 * is present in a network namespace the loopback device must
7334 * be present. Since we now dynamically allocate and free the
7335 * loopback device ensure this invariant is maintained by
7336 * keeping the loopback device as the first device on the
7337 * list of network devices. Ensuring the loopback devices
7338 * is the first device that appears and the last network device
7339 * that disappears.
7340 */
7341 if (register_pernet_device(&loopback_net_ops))
7342 goto out;
7343
7344 if (register_pernet_device(&default_device_ops))
7345 goto out;
7346
7347 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7348 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7349
7350 hotcpu_notifier(dev_cpu_callback, 0);
7351 dst_init();
7352 rc = 0;
7353 out:
7354 return rc;
7355 }
7356
7357 subsys_initcall(net_dev_init);