]> git.ipfire.org Git - thirdparty/linux.git/blob - net/core/flow_dissector.c
Merge tag 'x86-fpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[thirdparty/linux.git] / net / core / flow_dissector.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/skbuff.h>
4 #include <linux/export.h>
5 #include <linux/ip.h>
6 #include <linux/ipv6.h>
7 #include <linux/if_vlan.h>
8 #include <net/dsa.h>
9 #include <net/dst_metadata.h>
10 #include <net/ip.h>
11 #include <net/ipv6.h>
12 #include <net/gre.h>
13 #include <net/pptp.h>
14 #include <net/tipc.h>
15 #include <linux/igmp.h>
16 #include <linux/icmp.h>
17 #include <linux/sctp.h>
18 #include <linux/dccp.h>
19 #include <linux/if_tunnel.h>
20 #include <linux/if_pppox.h>
21 #include <linux/ppp_defs.h>
22 #include <linux/stddef.h>
23 #include <linux/if_ether.h>
24 #include <linux/mpls.h>
25 #include <linux/tcp.h>
26 #include <net/flow_dissector.h>
27 #include <scsi/fc/fc_fcoe.h>
28 #include <uapi/linux/batadv_packet.h>
29 #include <linux/bpf.h>
30 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
31 #include <net/netfilter/nf_conntrack_core.h>
32 #include <net/netfilter/nf_conntrack_labels.h>
33 #endif
34
35 static DEFINE_MUTEX(flow_dissector_mutex);
36
37 static void dissector_set_key(struct flow_dissector *flow_dissector,
38 enum flow_dissector_key_id key_id)
39 {
40 flow_dissector->used_keys |= (1 << key_id);
41 }
42
43 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
44 const struct flow_dissector_key *key,
45 unsigned int key_count)
46 {
47 unsigned int i;
48
49 memset(flow_dissector, 0, sizeof(*flow_dissector));
50
51 for (i = 0; i < key_count; i++, key++) {
52 /* User should make sure that every key target offset is withing
53 * boundaries of unsigned short.
54 */
55 BUG_ON(key->offset > USHRT_MAX);
56 BUG_ON(dissector_uses_key(flow_dissector,
57 key->key_id));
58
59 dissector_set_key(flow_dissector, key->key_id);
60 flow_dissector->offset[key->key_id] = key->offset;
61 }
62
63 /* Ensure that the dissector always includes control and basic key.
64 * That way we are able to avoid handling lack of these in fast path.
65 */
66 BUG_ON(!dissector_uses_key(flow_dissector,
67 FLOW_DISSECTOR_KEY_CONTROL));
68 BUG_ON(!dissector_uses_key(flow_dissector,
69 FLOW_DISSECTOR_KEY_BASIC));
70 }
71 EXPORT_SYMBOL(skb_flow_dissector_init);
72
73 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
74 union bpf_attr __user *uattr)
75 {
76 __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
77 u32 prog_id, prog_cnt = 0, flags = 0;
78 struct bpf_prog *attached;
79 struct net *net;
80
81 if (attr->query.query_flags)
82 return -EINVAL;
83
84 net = get_net_ns_by_fd(attr->query.target_fd);
85 if (IS_ERR(net))
86 return PTR_ERR(net);
87
88 rcu_read_lock();
89 attached = rcu_dereference(net->flow_dissector_prog);
90 if (attached) {
91 prog_cnt = 1;
92 prog_id = attached->aux->id;
93 }
94 rcu_read_unlock();
95
96 put_net(net);
97
98 if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
99 return -EFAULT;
100 if (copy_to_user(&uattr->query.prog_cnt, &prog_cnt, sizeof(prog_cnt)))
101 return -EFAULT;
102
103 if (!attr->query.prog_cnt || !prog_ids || !prog_cnt)
104 return 0;
105
106 if (copy_to_user(prog_ids, &prog_id, sizeof(u32)))
107 return -EFAULT;
108
109 return 0;
110 }
111
112 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
113 struct bpf_prog *prog)
114 {
115 struct bpf_prog *attached;
116 struct net *net;
117 int ret = 0;
118
119 net = current->nsproxy->net_ns;
120 mutex_lock(&flow_dissector_mutex);
121
122 if (net == &init_net) {
123 /* BPF flow dissector in the root namespace overrides
124 * any per-net-namespace one. When attaching to root,
125 * make sure we don't have any BPF program attached
126 * to the non-root namespaces.
127 */
128 struct net *ns;
129
130 for_each_net(ns) {
131 if (ns == &init_net)
132 continue;
133 if (rcu_access_pointer(ns->flow_dissector_prog)) {
134 ret = -EEXIST;
135 goto out;
136 }
137 }
138 } else {
139 /* Make sure root flow dissector is not attached
140 * when attaching to the non-root namespace.
141 */
142 if (rcu_access_pointer(init_net.flow_dissector_prog)) {
143 ret = -EEXIST;
144 goto out;
145 }
146 }
147
148 attached = rcu_dereference_protected(net->flow_dissector_prog,
149 lockdep_is_held(&flow_dissector_mutex));
150 if (attached == prog) {
151 /* The same program cannot be attached twice */
152 ret = -EINVAL;
153 goto out;
154 }
155 rcu_assign_pointer(net->flow_dissector_prog, prog);
156 if (attached)
157 bpf_prog_put(attached);
158 out:
159 mutex_unlock(&flow_dissector_mutex);
160 return ret;
161 }
162
163 static int flow_dissector_bpf_prog_detach(struct net *net)
164 {
165 struct bpf_prog *attached;
166
167 mutex_lock(&flow_dissector_mutex);
168 attached = rcu_dereference_protected(net->flow_dissector_prog,
169 lockdep_is_held(&flow_dissector_mutex));
170 if (!attached) {
171 mutex_unlock(&flow_dissector_mutex);
172 return -ENOENT;
173 }
174 RCU_INIT_POINTER(net->flow_dissector_prog, NULL);
175 bpf_prog_put(attached);
176 mutex_unlock(&flow_dissector_mutex);
177 return 0;
178 }
179
180 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
181 {
182 return flow_dissector_bpf_prog_detach(current->nsproxy->net_ns);
183 }
184
185 static void __net_exit flow_dissector_pernet_pre_exit(struct net *net)
186 {
187 /* We're not racing with attach/detach because there are no
188 * references to netns left when pre_exit gets called.
189 */
190 if (rcu_access_pointer(net->flow_dissector_prog))
191 flow_dissector_bpf_prog_detach(net);
192 }
193
194 static struct pernet_operations flow_dissector_pernet_ops __net_initdata = {
195 .pre_exit = flow_dissector_pernet_pre_exit,
196 };
197
198 /**
199 * __skb_flow_get_ports - extract the upper layer ports and return them
200 * @skb: sk_buff to extract the ports from
201 * @thoff: transport header offset
202 * @ip_proto: protocol for which to get port offset
203 * @data: raw buffer pointer to the packet, if NULL use skb->data
204 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
205 *
206 * The function will try to retrieve the ports at offset thoff + poff where poff
207 * is the protocol port offset returned from proto_ports_offset
208 */
209 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
210 void *data, int hlen)
211 {
212 int poff = proto_ports_offset(ip_proto);
213
214 if (!data) {
215 data = skb->data;
216 hlen = skb_headlen(skb);
217 }
218
219 if (poff >= 0) {
220 __be32 *ports, _ports;
221
222 ports = __skb_header_pointer(skb, thoff + poff,
223 sizeof(_ports), data, hlen, &_ports);
224 if (ports)
225 return *ports;
226 }
227
228 return 0;
229 }
230 EXPORT_SYMBOL(__skb_flow_get_ports);
231
232 static bool icmp_has_id(u8 type)
233 {
234 switch (type) {
235 case ICMP_ECHO:
236 case ICMP_ECHOREPLY:
237 case ICMP_TIMESTAMP:
238 case ICMP_TIMESTAMPREPLY:
239 case ICMPV6_ECHO_REQUEST:
240 case ICMPV6_ECHO_REPLY:
241 return true;
242 }
243
244 return false;
245 }
246
247 /**
248 * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields
249 * @skb: sk_buff to extract from
250 * @key_icmp: struct flow_dissector_key_icmp to fill
251 * @data: raw buffer pointer to the packet
252 * @thoff: offset to extract at
253 * @hlen: packet header length
254 */
255 void skb_flow_get_icmp_tci(const struct sk_buff *skb,
256 struct flow_dissector_key_icmp *key_icmp,
257 void *data, int thoff, int hlen)
258 {
259 struct icmphdr *ih, _ih;
260
261 ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih);
262 if (!ih)
263 return;
264
265 key_icmp->type = ih->type;
266 key_icmp->code = ih->code;
267
268 /* As we use 0 to signal that the Id field is not present,
269 * avoid confusion with packets without such field
270 */
271 if (icmp_has_id(ih->type))
272 key_icmp->id = ih->un.echo.id ? : 1;
273 else
274 key_icmp->id = 0;
275 }
276 EXPORT_SYMBOL(skb_flow_get_icmp_tci);
277
278 /* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet
279 * using skb_flow_get_icmp_tci().
280 */
281 static void __skb_flow_dissect_icmp(const struct sk_buff *skb,
282 struct flow_dissector *flow_dissector,
283 void *target_container,
284 void *data, int thoff, int hlen)
285 {
286 struct flow_dissector_key_icmp *key_icmp;
287
288 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP))
289 return;
290
291 key_icmp = skb_flow_dissector_target(flow_dissector,
292 FLOW_DISSECTOR_KEY_ICMP,
293 target_container);
294
295 skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen);
296 }
297
298 void skb_flow_dissect_meta(const struct sk_buff *skb,
299 struct flow_dissector *flow_dissector,
300 void *target_container)
301 {
302 struct flow_dissector_key_meta *meta;
303
304 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META))
305 return;
306
307 meta = skb_flow_dissector_target(flow_dissector,
308 FLOW_DISSECTOR_KEY_META,
309 target_container);
310 meta->ingress_ifindex = skb->skb_iif;
311 }
312 EXPORT_SYMBOL(skb_flow_dissect_meta);
313
314 static void
315 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
316 struct flow_dissector *flow_dissector,
317 void *target_container)
318 {
319 struct flow_dissector_key_control *ctrl;
320
321 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
322 return;
323
324 ctrl = skb_flow_dissector_target(flow_dissector,
325 FLOW_DISSECTOR_KEY_ENC_CONTROL,
326 target_container);
327 ctrl->addr_type = type;
328 }
329
330 void
331 skb_flow_dissect_ct(const struct sk_buff *skb,
332 struct flow_dissector *flow_dissector,
333 void *target_container,
334 u16 *ctinfo_map,
335 size_t mapsize)
336 {
337 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
338 struct flow_dissector_key_ct *key;
339 enum ip_conntrack_info ctinfo;
340 struct nf_conn_labels *cl;
341 struct nf_conn *ct;
342
343 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT))
344 return;
345
346 ct = nf_ct_get(skb, &ctinfo);
347 if (!ct)
348 return;
349
350 key = skb_flow_dissector_target(flow_dissector,
351 FLOW_DISSECTOR_KEY_CT,
352 target_container);
353
354 if (ctinfo < mapsize)
355 key->ct_state = ctinfo_map[ctinfo];
356 #if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)
357 key->ct_zone = ct->zone.id;
358 #endif
359 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
360 key->ct_mark = ct->mark;
361 #endif
362
363 cl = nf_ct_labels_find(ct);
364 if (cl)
365 memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels));
366 #endif /* CONFIG_NF_CONNTRACK */
367 }
368 EXPORT_SYMBOL(skb_flow_dissect_ct);
369
370 void
371 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
372 struct flow_dissector *flow_dissector,
373 void *target_container)
374 {
375 struct ip_tunnel_info *info;
376 struct ip_tunnel_key *key;
377
378 /* A quick check to see if there might be something to do. */
379 if (!dissector_uses_key(flow_dissector,
380 FLOW_DISSECTOR_KEY_ENC_KEYID) &&
381 !dissector_uses_key(flow_dissector,
382 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
383 !dissector_uses_key(flow_dissector,
384 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
385 !dissector_uses_key(flow_dissector,
386 FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
387 !dissector_uses_key(flow_dissector,
388 FLOW_DISSECTOR_KEY_ENC_PORTS) &&
389 !dissector_uses_key(flow_dissector,
390 FLOW_DISSECTOR_KEY_ENC_IP) &&
391 !dissector_uses_key(flow_dissector,
392 FLOW_DISSECTOR_KEY_ENC_OPTS))
393 return;
394
395 info = skb_tunnel_info(skb);
396 if (!info)
397 return;
398
399 key = &info->key;
400
401 switch (ip_tunnel_info_af(info)) {
402 case AF_INET:
403 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
404 flow_dissector,
405 target_container);
406 if (dissector_uses_key(flow_dissector,
407 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
408 struct flow_dissector_key_ipv4_addrs *ipv4;
409
410 ipv4 = skb_flow_dissector_target(flow_dissector,
411 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
412 target_container);
413 ipv4->src = key->u.ipv4.src;
414 ipv4->dst = key->u.ipv4.dst;
415 }
416 break;
417 case AF_INET6:
418 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
419 flow_dissector,
420 target_container);
421 if (dissector_uses_key(flow_dissector,
422 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
423 struct flow_dissector_key_ipv6_addrs *ipv6;
424
425 ipv6 = skb_flow_dissector_target(flow_dissector,
426 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
427 target_container);
428 ipv6->src = key->u.ipv6.src;
429 ipv6->dst = key->u.ipv6.dst;
430 }
431 break;
432 }
433
434 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
435 struct flow_dissector_key_keyid *keyid;
436
437 keyid = skb_flow_dissector_target(flow_dissector,
438 FLOW_DISSECTOR_KEY_ENC_KEYID,
439 target_container);
440 keyid->keyid = tunnel_id_to_key32(key->tun_id);
441 }
442
443 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
444 struct flow_dissector_key_ports *tp;
445
446 tp = skb_flow_dissector_target(flow_dissector,
447 FLOW_DISSECTOR_KEY_ENC_PORTS,
448 target_container);
449 tp->src = key->tp_src;
450 tp->dst = key->tp_dst;
451 }
452
453 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
454 struct flow_dissector_key_ip *ip;
455
456 ip = skb_flow_dissector_target(flow_dissector,
457 FLOW_DISSECTOR_KEY_ENC_IP,
458 target_container);
459 ip->tos = key->tos;
460 ip->ttl = key->ttl;
461 }
462
463 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
464 struct flow_dissector_key_enc_opts *enc_opt;
465
466 enc_opt = skb_flow_dissector_target(flow_dissector,
467 FLOW_DISSECTOR_KEY_ENC_OPTS,
468 target_container);
469
470 if (info->options_len) {
471 enc_opt->len = info->options_len;
472 ip_tunnel_info_opts_get(enc_opt->data, info);
473 enc_opt->dst_opt_type = info->key.tun_flags &
474 TUNNEL_OPTIONS_PRESENT;
475 }
476 }
477 }
478 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
479
480 static enum flow_dissect_ret
481 __skb_flow_dissect_mpls(const struct sk_buff *skb,
482 struct flow_dissector *flow_dissector,
483 void *target_container, void *data, int nhoff, int hlen)
484 {
485 struct flow_dissector_key_keyid *key_keyid;
486 struct mpls_label *hdr, _hdr[2];
487 u32 entry, label;
488
489 if (!dissector_uses_key(flow_dissector,
490 FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
491 !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
492 return FLOW_DISSECT_RET_OUT_GOOD;
493
494 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
495 hlen, &_hdr);
496 if (!hdr)
497 return FLOW_DISSECT_RET_OUT_BAD;
498
499 entry = ntohl(hdr[0].entry);
500 label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
501
502 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
503 struct flow_dissector_key_mpls *key_mpls;
504
505 key_mpls = skb_flow_dissector_target(flow_dissector,
506 FLOW_DISSECTOR_KEY_MPLS,
507 target_container);
508 key_mpls->mpls_label = label;
509 key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
510 >> MPLS_LS_TTL_SHIFT;
511 key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
512 >> MPLS_LS_TC_SHIFT;
513 key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
514 >> MPLS_LS_S_SHIFT;
515 }
516
517 if (label == MPLS_LABEL_ENTROPY) {
518 key_keyid = skb_flow_dissector_target(flow_dissector,
519 FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
520 target_container);
521 key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
522 }
523 return FLOW_DISSECT_RET_OUT_GOOD;
524 }
525
526 static enum flow_dissect_ret
527 __skb_flow_dissect_arp(const struct sk_buff *skb,
528 struct flow_dissector *flow_dissector,
529 void *target_container, void *data, int nhoff, int hlen)
530 {
531 struct flow_dissector_key_arp *key_arp;
532 struct {
533 unsigned char ar_sha[ETH_ALEN];
534 unsigned char ar_sip[4];
535 unsigned char ar_tha[ETH_ALEN];
536 unsigned char ar_tip[4];
537 } *arp_eth, _arp_eth;
538 const struct arphdr *arp;
539 struct arphdr _arp;
540
541 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
542 return FLOW_DISSECT_RET_OUT_GOOD;
543
544 arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
545 hlen, &_arp);
546 if (!arp)
547 return FLOW_DISSECT_RET_OUT_BAD;
548
549 if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
550 arp->ar_pro != htons(ETH_P_IP) ||
551 arp->ar_hln != ETH_ALEN ||
552 arp->ar_pln != 4 ||
553 (arp->ar_op != htons(ARPOP_REPLY) &&
554 arp->ar_op != htons(ARPOP_REQUEST)))
555 return FLOW_DISSECT_RET_OUT_BAD;
556
557 arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
558 sizeof(_arp_eth), data,
559 hlen, &_arp_eth);
560 if (!arp_eth)
561 return FLOW_DISSECT_RET_OUT_BAD;
562
563 key_arp = skb_flow_dissector_target(flow_dissector,
564 FLOW_DISSECTOR_KEY_ARP,
565 target_container);
566
567 memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
568 memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
569
570 /* Only store the lower byte of the opcode;
571 * this covers ARPOP_REPLY and ARPOP_REQUEST.
572 */
573 key_arp->op = ntohs(arp->ar_op) & 0xff;
574
575 ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
576 ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
577
578 return FLOW_DISSECT_RET_OUT_GOOD;
579 }
580
581 static enum flow_dissect_ret
582 __skb_flow_dissect_gre(const struct sk_buff *skb,
583 struct flow_dissector_key_control *key_control,
584 struct flow_dissector *flow_dissector,
585 void *target_container, void *data,
586 __be16 *p_proto, int *p_nhoff, int *p_hlen,
587 unsigned int flags)
588 {
589 struct flow_dissector_key_keyid *key_keyid;
590 struct gre_base_hdr *hdr, _hdr;
591 int offset = 0;
592 u16 gre_ver;
593
594 hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
595 data, *p_hlen, &_hdr);
596 if (!hdr)
597 return FLOW_DISSECT_RET_OUT_BAD;
598
599 /* Only look inside GRE without routing */
600 if (hdr->flags & GRE_ROUTING)
601 return FLOW_DISSECT_RET_OUT_GOOD;
602
603 /* Only look inside GRE for version 0 and 1 */
604 gre_ver = ntohs(hdr->flags & GRE_VERSION);
605 if (gre_ver > 1)
606 return FLOW_DISSECT_RET_OUT_GOOD;
607
608 *p_proto = hdr->protocol;
609 if (gre_ver) {
610 /* Version1 must be PPTP, and check the flags */
611 if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
612 return FLOW_DISSECT_RET_OUT_GOOD;
613 }
614
615 offset += sizeof(struct gre_base_hdr);
616
617 if (hdr->flags & GRE_CSUM)
618 offset += sizeof_field(struct gre_full_hdr, csum) +
619 sizeof_field(struct gre_full_hdr, reserved1);
620
621 if (hdr->flags & GRE_KEY) {
622 const __be32 *keyid;
623 __be32 _keyid;
624
625 keyid = __skb_header_pointer(skb, *p_nhoff + offset,
626 sizeof(_keyid),
627 data, *p_hlen, &_keyid);
628 if (!keyid)
629 return FLOW_DISSECT_RET_OUT_BAD;
630
631 if (dissector_uses_key(flow_dissector,
632 FLOW_DISSECTOR_KEY_GRE_KEYID)) {
633 key_keyid = skb_flow_dissector_target(flow_dissector,
634 FLOW_DISSECTOR_KEY_GRE_KEYID,
635 target_container);
636 if (gre_ver == 0)
637 key_keyid->keyid = *keyid;
638 else
639 key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
640 }
641 offset += sizeof_field(struct gre_full_hdr, key);
642 }
643
644 if (hdr->flags & GRE_SEQ)
645 offset += sizeof_field(struct pptp_gre_header, seq);
646
647 if (gre_ver == 0) {
648 if (*p_proto == htons(ETH_P_TEB)) {
649 const struct ethhdr *eth;
650 struct ethhdr _eth;
651
652 eth = __skb_header_pointer(skb, *p_nhoff + offset,
653 sizeof(_eth),
654 data, *p_hlen, &_eth);
655 if (!eth)
656 return FLOW_DISSECT_RET_OUT_BAD;
657 *p_proto = eth->h_proto;
658 offset += sizeof(*eth);
659
660 /* Cap headers that we access via pointers at the
661 * end of the Ethernet header as our maximum alignment
662 * at that point is only 2 bytes.
663 */
664 if (NET_IP_ALIGN)
665 *p_hlen = *p_nhoff + offset;
666 }
667 } else { /* version 1, must be PPTP */
668 u8 _ppp_hdr[PPP_HDRLEN];
669 u8 *ppp_hdr;
670
671 if (hdr->flags & GRE_ACK)
672 offset += sizeof_field(struct pptp_gre_header, ack);
673
674 ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
675 sizeof(_ppp_hdr),
676 data, *p_hlen, _ppp_hdr);
677 if (!ppp_hdr)
678 return FLOW_DISSECT_RET_OUT_BAD;
679
680 switch (PPP_PROTOCOL(ppp_hdr)) {
681 case PPP_IP:
682 *p_proto = htons(ETH_P_IP);
683 break;
684 case PPP_IPV6:
685 *p_proto = htons(ETH_P_IPV6);
686 break;
687 default:
688 /* Could probably catch some more like MPLS */
689 break;
690 }
691
692 offset += PPP_HDRLEN;
693 }
694
695 *p_nhoff += offset;
696 key_control->flags |= FLOW_DIS_ENCAPSULATION;
697 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
698 return FLOW_DISSECT_RET_OUT_GOOD;
699
700 return FLOW_DISSECT_RET_PROTO_AGAIN;
701 }
702
703 /**
704 * __skb_flow_dissect_batadv() - dissect batman-adv header
705 * @skb: sk_buff to with the batman-adv header
706 * @key_control: flow dissectors control key
707 * @data: raw buffer pointer to the packet, if NULL use skb->data
708 * @p_proto: pointer used to update the protocol to process next
709 * @p_nhoff: pointer used to update inner network header offset
710 * @hlen: packet header length
711 * @flags: any combination of FLOW_DISSECTOR_F_*
712 *
713 * ETH_P_BATMAN packets are tried to be dissected. Only
714 * &struct batadv_unicast packets are actually processed because they contain an
715 * inner ethernet header and are usually followed by actual network header. This
716 * allows the flow dissector to continue processing the packet.
717 *
718 * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
719 * FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
720 * otherwise FLOW_DISSECT_RET_OUT_BAD
721 */
722 static enum flow_dissect_ret
723 __skb_flow_dissect_batadv(const struct sk_buff *skb,
724 struct flow_dissector_key_control *key_control,
725 void *data, __be16 *p_proto, int *p_nhoff, int hlen,
726 unsigned int flags)
727 {
728 struct {
729 struct batadv_unicast_packet batadv_unicast;
730 struct ethhdr eth;
731 } *hdr, _hdr;
732
733 hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
734 &_hdr);
735 if (!hdr)
736 return FLOW_DISSECT_RET_OUT_BAD;
737
738 if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
739 return FLOW_DISSECT_RET_OUT_BAD;
740
741 if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
742 return FLOW_DISSECT_RET_OUT_BAD;
743
744 *p_proto = hdr->eth.h_proto;
745 *p_nhoff += sizeof(*hdr);
746
747 key_control->flags |= FLOW_DIS_ENCAPSULATION;
748 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
749 return FLOW_DISSECT_RET_OUT_GOOD;
750
751 return FLOW_DISSECT_RET_PROTO_AGAIN;
752 }
753
754 static void
755 __skb_flow_dissect_tcp(const struct sk_buff *skb,
756 struct flow_dissector *flow_dissector,
757 void *target_container, void *data, int thoff, int hlen)
758 {
759 struct flow_dissector_key_tcp *key_tcp;
760 struct tcphdr *th, _th;
761
762 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
763 return;
764
765 th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
766 if (!th)
767 return;
768
769 if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
770 return;
771
772 key_tcp = skb_flow_dissector_target(flow_dissector,
773 FLOW_DISSECTOR_KEY_TCP,
774 target_container);
775 key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
776 }
777
778 static void
779 __skb_flow_dissect_ports(const struct sk_buff *skb,
780 struct flow_dissector *flow_dissector,
781 void *target_container, void *data, int nhoff,
782 u8 ip_proto, int hlen)
783 {
784 enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX;
785 struct flow_dissector_key_ports *key_ports;
786
787 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
788 dissector_ports = FLOW_DISSECTOR_KEY_PORTS;
789 else if (dissector_uses_key(flow_dissector,
790 FLOW_DISSECTOR_KEY_PORTS_RANGE))
791 dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE;
792
793 if (dissector_ports == FLOW_DISSECTOR_KEY_MAX)
794 return;
795
796 key_ports = skb_flow_dissector_target(flow_dissector,
797 dissector_ports,
798 target_container);
799 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
800 data, hlen);
801 }
802
803 static void
804 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
805 struct flow_dissector *flow_dissector,
806 void *target_container, void *data, const struct iphdr *iph)
807 {
808 struct flow_dissector_key_ip *key_ip;
809
810 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
811 return;
812
813 key_ip = skb_flow_dissector_target(flow_dissector,
814 FLOW_DISSECTOR_KEY_IP,
815 target_container);
816 key_ip->tos = iph->tos;
817 key_ip->ttl = iph->ttl;
818 }
819
820 static void
821 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
822 struct flow_dissector *flow_dissector,
823 void *target_container, void *data, const struct ipv6hdr *iph)
824 {
825 struct flow_dissector_key_ip *key_ip;
826
827 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
828 return;
829
830 key_ip = skb_flow_dissector_target(flow_dissector,
831 FLOW_DISSECTOR_KEY_IP,
832 target_container);
833 key_ip->tos = ipv6_get_dsfield(iph);
834 key_ip->ttl = iph->hop_limit;
835 }
836
837 /* Maximum number of protocol headers that can be parsed in
838 * __skb_flow_dissect
839 */
840 #define MAX_FLOW_DISSECT_HDRS 15
841
842 static bool skb_flow_dissect_allowed(int *num_hdrs)
843 {
844 ++*num_hdrs;
845
846 return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
847 }
848
849 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
850 struct flow_dissector *flow_dissector,
851 void *target_container)
852 {
853 struct flow_dissector_key_ports *key_ports = NULL;
854 struct flow_dissector_key_control *key_control;
855 struct flow_dissector_key_basic *key_basic;
856 struct flow_dissector_key_addrs *key_addrs;
857 struct flow_dissector_key_tags *key_tags;
858
859 key_control = skb_flow_dissector_target(flow_dissector,
860 FLOW_DISSECTOR_KEY_CONTROL,
861 target_container);
862 key_control->thoff = flow_keys->thoff;
863 if (flow_keys->is_frag)
864 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
865 if (flow_keys->is_first_frag)
866 key_control->flags |= FLOW_DIS_FIRST_FRAG;
867 if (flow_keys->is_encap)
868 key_control->flags |= FLOW_DIS_ENCAPSULATION;
869
870 key_basic = skb_flow_dissector_target(flow_dissector,
871 FLOW_DISSECTOR_KEY_BASIC,
872 target_container);
873 key_basic->n_proto = flow_keys->n_proto;
874 key_basic->ip_proto = flow_keys->ip_proto;
875
876 if (flow_keys->addr_proto == ETH_P_IP &&
877 dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
878 key_addrs = skb_flow_dissector_target(flow_dissector,
879 FLOW_DISSECTOR_KEY_IPV4_ADDRS,
880 target_container);
881 key_addrs->v4addrs.src = flow_keys->ipv4_src;
882 key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
883 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
884 } else if (flow_keys->addr_proto == ETH_P_IPV6 &&
885 dissector_uses_key(flow_dissector,
886 FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
887 key_addrs = skb_flow_dissector_target(flow_dissector,
888 FLOW_DISSECTOR_KEY_IPV6_ADDRS,
889 target_container);
890 memcpy(&key_addrs->v6addrs, &flow_keys->ipv6_src,
891 sizeof(key_addrs->v6addrs));
892 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
893 }
894
895 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
896 key_ports = skb_flow_dissector_target(flow_dissector,
897 FLOW_DISSECTOR_KEY_PORTS,
898 target_container);
899 else if (dissector_uses_key(flow_dissector,
900 FLOW_DISSECTOR_KEY_PORTS_RANGE))
901 key_ports = skb_flow_dissector_target(flow_dissector,
902 FLOW_DISSECTOR_KEY_PORTS_RANGE,
903 target_container);
904
905 if (key_ports) {
906 key_ports->src = flow_keys->sport;
907 key_ports->dst = flow_keys->dport;
908 }
909
910 if (dissector_uses_key(flow_dissector,
911 FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
912 key_tags = skb_flow_dissector_target(flow_dissector,
913 FLOW_DISSECTOR_KEY_FLOW_LABEL,
914 target_container);
915 key_tags->flow_label = ntohl(flow_keys->flow_label);
916 }
917 }
918
919 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
920 __be16 proto, int nhoff, int hlen, unsigned int flags)
921 {
922 struct bpf_flow_keys *flow_keys = ctx->flow_keys;
923 u32 result;
924
925 /* Pass parameters to the BPF program */
926 memset(flow_keys, 0, sizeof(*flow_keys));
927 flow_keys->n_proto = proto;
928 flow_keys->nhoff = nhoff;
929 flow_keys->thoff = flow_keys->nhoff;
930
931 BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG !=
932 (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG);
933 BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL !=
934 (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
935 BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP !=
936 (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP);
937 flow_keys->flags = flags;
938
939 result = bpf_prog_run_pin_on_cpu(prog, ctx);
940
941 flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
942 flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
943 flow_keys->nhoff, hlen);
944
945 return result == BPF_OK;
946 }
947
948 /**
949 * __skb_flow_dissect - extract the flow_keys struct and return it
950 * @net: associated network namespace, derived from @skb if NULL
951 * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
952 * @flow_dissector: list of keys to dissect
953 * @target_container: target structure to put dissected values into
954 * @data: raw buffer pointer to the packet, if NULL use skb->data
955 * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
956 * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
957 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
958 * @flags: flags that control the dissection process, e.g.
959 * FLOW_DISSECTOR_F_STOP_AT_ENCAP.
960 *
961 * The function will try to retrieve individual keys into target specified
962 * by flow_dissector from either the skbuff or a raw buffer specified by the
963 * rest parameters.
964 *
965 * Caller must take care of zeroing target container memory.
966 */
967 bool __skb_flow_dissect(const struct net *net,
968 const struct sk_buff *skb,
969 struct flow_dissector *flow_dissector,
970 void *target_container,
971 void *data, __be16 proto, int nhoff, int hlen,
972 unsigned int flags)
973 {
974 struct flow_dissector_key_control *key_control;
975 struct flow_dissector_key_basic *key_basic;
976 struct flow_dissector_key_addrs *key_addrs;
977 struct flow_dissector_key_tags *key_tags;
978 struct flow_dissector_key_vlan *key_vlan;
979 struct bpf_prog *attached = NULL;
980 enum flow_dissect_ret fdret;
981 enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
982 int num_hdrs = 0;
983 u8 ip_proto = 0;
984 bool ret;
985
986 if (!data) {
987 data = skb->data;
988 proto = skb_vlan_tag_present(skb) ?
989 skb->vlan_proto : skb->protocol;
990 nhoff = skb_network_offset(skb);
991 hlen = skb_headlen(skb);
992 #if IS_ENABLED(CONFIG_NET_DSA)
993 if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) &&
994 proto == htons(ETH_P_XDSA))) {
995 const struct dsa_device_ops *ops;
996 int offset = 0;
997
998 ops = skb->dev->dsa_ptr->tag_ops;
999 if (ops->flow_dissect &&
1000 !ops->flow_dissect(skb, &proto, &offset)) {
1001 hlen -= offset;
1002 nhoff += offset;
1003 }
1004 }
1005 #endif
1006 }
1007
1008 /* It is ensured by skb_flow_dissector_init() that control key will
1009 * be always present.
1010 */
1011 key_control = skb_flow_dissector_target(flow_dissector,
1012 FLOW_DISSECTOR_KEY_CONTROL,
1013 target_container);
1014
1015 /* It is ensured by skb_flow_dissector_init() that basic key will
1016 * be always present.
1017 */
1018 key_basic = skb_flow_dissector_target(flow_dissector,
1019 FLOW_DISSECTOR_KEY_BASIC,
1020 target_container);
1021
1022 if (skb) {
1023 if (!net) {
1024 if (skb->dev)
1025 net = dev_net(skb->dev);
1026 else if (skb->sk)
1027 net = sock_net(skb->sk);
1028 }
1029 }
1030
1031 WARN_ON_ONCE(!net);
1032 if (net) {
1033 rcu_read_lock();
1034 attached = rcu_dereference(init_net.flow_dissector_prog);
1035
1036 if (!attached)
1037 attached = rcu_dereference(net->flow_dissector_prog);
1038
1039 if (attached) {
1040 struct bpf_flow_keys flow_keys;
1041 struct bpf_flow_dissector ctx = {
1042 .flow_keys = &flow_keys,
1043 .data = data,
1044 .data_end = data + hlen,
1045 };
1046 __be16 n_proto = proto;
1047
1048 if (skb) {
1049 ctx.skb = skb;
1050 /* we can't use 'proto' in the skb case
1051 * because it might be set to skb->vlan_proto
1052 * which has been pulled from the data
1053 */
1054 n_proto = skb->protocol;
1055 }
1056
1057 ret = bpf_flow_dissect(attached, &ctx, n_proto, nhoff,
1058 hlen, flags);
1059 __skb_flow_bpf_to_target(&flow_keys, flow_dissector,
1060 target_container);
1061 rcu_read_unlock();
1062 return ret;
1063 }
1064 rcu_read_unlock();
1065 }
1066
1067 if (dissector_uses_key(flow_dissector,
1068 FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
1069 struct ethhdr *eth = eth_hdr(skb);
1070 struct flow_dissector_key_eth_addrs *key_eth_addrs;
1071
1072 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
1073 FLOW_DISSECTOR_KEY_ETH_ADDRS,
1074 target_container);
1075 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
1076 }
1077
1078 proto_again:
1079 fdret = FLOW_DISSECT_RET_CONTINUE;
1080
1081 switch (proto) {
1082 case htons(ETH_P_IP): {
1083 const struct iphdr *iph;
1084 struct iphdr _iph;
1085
1086 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1087 if (!iph || iph->ihl < 5) {
1088 fdret = FLOW_DISSECT_RET_OUT_BAD;
1089 break;
1090 }
1091
1092 nhoff += iph->ihl * 4;
1093
1094 ip_proto = iph->protocol;
1095
1096 if (dissector_uses_key(flow_dissector,
1097 FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
1098 key_addrs = skb_flow_dissector_target(flow_dissector,
1099 FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1100 target_container);
1101
1102 memcpy(&key_addrs->v4addrs, &iph->saddr,
1103 sizeof(key_addrs->v4addrs));
1104 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
1105 }
1106
1107 if (ip_is_fragment(iph)) {
1108 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1109
1110 if (iph->frag_off & htons(IP_OFFSET)) {
1111 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1112 break;
1113 } else {
1114 key_control->flags |= FLOW_DIS_FIRST_FRAG;
1115 if (!(flags &
1116 FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
1117 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1118 break;
1119 }
1120 }
1121 }
1122
1123 __skb_flow_dissect_ipv4(skb, flow_dissector,
1124 target_container, data, iph);
1125
1126 break;
1127 }
1128 case htons(ETH_P_IPV6): {
1129 const struct ipv6hdr *iph;
1130 struct ipv6hdr _iph;
1131
1132 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1133 if (!iph) {
1134 fdret = FLOW_DISSECT_RET_OUT_BAD;
1135 break;
1136 }
1137
1138 ip_proto = iph->nexthdr;
1139 nhoff += sizeof(struct ipv6hdr);
1140
1141 if (dissector_uses_key(flow_dissector,
1142 FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
1143 key_addrs = skb_flow_dissector_target(flow_dissector,
1144 FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1145 target_container);
1146
1147 memcpy(&key_addrs->v6addrs, &iph->saddr,
1148 sizeof(key_addrs->v6addrs));
1149 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1150 }
1151
1152 if ((dissector_uses_key(flow_dissector,
1153 FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
1154 (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
1155 ip6_flowlabel(iph)) {
1156 __be32 flow_label = ip6_flowlabel(iph);
1157
1158 if (dissector_uses_key(flow_dissector,
1159 FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
1160 key_tags = skb_flow_dissector_target(flow_dissector,
1161 FLOW_DISSECTOR_KEY_FLOW_LABEL,
1162 target_container);
1163 key_tags->flow_label = ntohl(flow_label);
1164 }
1165 if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
1166 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1167 break;
1168 }
1169 }
1170
1171 __skb_flow_dissect_ipv6(skb, flow_dissector,
1172 target_container, data, iph);
1173
1174 break;
1175 }
1176 case htons(ETH_P_8021AD):
1177 case htons(ETH_P_8021Q): {
1178 const struct vlan_hdr *vlan = NULL;
1179 struct vlan_hdr _vlan;
1180 __be16 saved_vlan_tpid = proto;
1181
1182 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
1183 skb && skb_vlan_tag_present(skb)) {
1184 proto = skb->protocol;
1185 } else {
1186 vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
1187 data, hlen, &_vlan);
1188 if (!vlan) {
1189 fdret = FLOW_DISSECT_RET_OUT_BAD;
1190 break;
1191 }
1192
1193 proto = vlan->h_vlan_encapsulated_proto;
1194 nhoff += sizeof(*vlan);
1195 }
1196
1197 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
1198 dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
1199 } else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
1200 dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
1201 } else {
1202 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1203 break;
1204 }
1205
1206 if (dissector_uses_key(flow_dissector, dissector_vlan)) {
1207 key_vlan = skb_flow_dissector_target(flow_dissector,
1208 dissector_vlan,
1209 target_container);
1210
1211 if (!vlan) {
1212 key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
1213 key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
1214 } else {
1215 key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
1216 VLAN_VID_MASK;
1217 key_vlan->vlan_priority =
1218 (ntohs(vlan->h_vlan_TCI) &
1219 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1220 }
1221 key_vlan->vlan_tpid = saved_vlan_tpid;
1222 }
1223
1224 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1225 break;
1226 }
1227 case htons(ETH_P_PPP_SES): {
1228 struct {
1229 struct pppoe_hdr hdr;
1230 __be16 proto;
1231 } *hdr, _hdr;
1232 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
1233 if (!hdr) {
1234 fdret = FLOW_DISSECT_RET_OUT_BAD;
1235 break;
1236 }
1237
1238 proto = hdr->proto;
1239 nhoff += PPPOE_SES_HLEN;
1240 switch (proto) {
1241 case htons(PPP_IP):
1242 proto = htons(ETH_P_IP);
1243 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1244 break;
1245 case htons(PPP_IPV6):
1246 proto = htons(ETH_P_IPV6);
1247 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1248 break;
1249 default:
1250 fdret = FLOW_DISSECT_RET_OUT_BAD;
1251 break;
1252 }
1253 break;
1254 }
1255 case htons(ETH_P_TIPC): {
1256 struct tipc_basic_hdr *hdr, _hdr;
1257
1258 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
1259 data, hlen, &_hdr);
1260 if (!hdr) {
1261 fdret = FLOW_DISSECT_RET_OUT_BAD;
1262 break;
1263 }
1264
1265 if (dissector_uses_key(flow_dissector,
1266 FLOW_DISSECTOR_KEY_TIPC)) {
1267 key_addrs = skb_flow_dissector_target(flow_dissector,
1268 FLOW_DISSECTOR_KEY_TIPC,
1269 target_container);
1270 key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
1271 key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1272 }
1273 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1274 break;
1275 }
1276
1277 case htons(ETH_P_MPLS_UC):
1278 case htons(ETH_P_MPLS_MC):
1279 fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1280 target_container, data,
1281 nhoff, hlen);
1282 break;
1283 case htons(ETH_P_FCOE):
1284 if ((hlen - nhoff) < FCOE_HEADER_LEN) {
1285 fdret = FLOW_DISSECT_RET_OUT_BAD;
1286 break;
1287 }
1288
1289 nhoff += FCOE_HEADER_LEN;
1290 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1291 break;
1292
1293 case htons(ETH_P_ARP):
1294 case htons(ETH_P_RARP):
1295 fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1296 target_container, data,
1297 nhoff, hlen);
1298 break;
1299
1300 case htons(ETH_P_BATMAN):
1301 fdret = __skb_flow_dissect_batadv(skb, key_control, data,
1302 &proto, &nhoff, hlen, flags);
1303 break;
1304
1305 default:
1306 fdret = FLOW_DISSECT_RET_OUT_BAD;
1307 break;
1308 }
1309
1310 /* Process result of proto processing */
1311 switch (fdret) {
1312 case FLOW_DISSECT_RET_OUT_GOOD:
1313 goto out_good;
1314 case FLOW_DISSECT_RET_PROTO_AGAIN:
1315 if (skb_flow_dissect_allowed(&num_hdrs))
1316 goto proto_again;
1317 goto out_good;
1318 case FLOW_DISSECT_RET_CONTINUE:
1319 case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1320 break;
1321 case FLOW_DISSECT_RET_OUT_BAD:
1322 default:
1323 goto out_bad;
1324 }
1325
1326 ip_proto_again:
1327 fdret = FLOW_DISSECT_RET_CONTINUE;
1328
1329 switch (ip_proto) {
1330 case IPPROTO_GRE:
1331 fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1332 target_container, data,
1333 &proto, &nhoff, &hlen, flags);
1334 break;
1335
1336 case NEXTHDR_HOP:
1337 case NEXTHDR_ROUTING:
1338 case NEXTHDR_DEST: {
1339 u8 _opthdr[2], *opthdr;
1340
1341 if (proto != htons(ETH_P_IPV6))
1342 break;
1343
1344 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
1345 data, hlen, &_opthdr);
1346 if (!opthdr) {
1347 fdret = FLOW_DISSECT_RET_OUT_BAD;
1348 break;
1349 }
1350
1351 ip_proto = opthdr[0];
1352 nhoff += (opthdr[1] + 1) << 3;
1353
1354 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1355 break;
1356 }
1357 case NEXTHDR_FRAGMENT: {
1358 struct frag_hdr _fh, *fh;
1359
1360 if (proto != htons(ETH_P_IPV6))
1361 break;
1362
1363 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
1364 data, hlen, &_fh);
1365
1366 if (!fh) {
1367 fdret = FLOW_DISSECT_RET_OUT_BAD;
1368 break;
1369 }
1370
1371 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1372
1373 nhoff += sizeof(_fh);
1374 ip_proto = fh->nexthdr;
1375
1376 if (!(fh->frag_off & htons(IP6_OFFSET))) {
1377 key_control->flags |= FLOW_DIS_FIRST_FRAG;
1378 if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
1379 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1380 break;
1381 }
1382 }
1383
1384 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1385 break;
1386 }
1387 case IPPROTO_IPIP:
1388 proto = htons(ETH_P_IP);
1389
1390 key_control->flags |= FLOW_DIS_ENCAPSULATION;
1391 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1392 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1393 break;
1394 }
1395
1396 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1397 break;
1398
1399 case IPPROTO_IPV6:
1400 proto = htons(ETH_P_IPV6);
1401
1402 key_control->flags |= FLOW_DIS_ENCAPSULATION;
1403 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1404 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1405 break;
1406 }
1407
1408 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1409 break;
1410
1411
1412 case IPPROTO_MPLS:
1413 proto = htons(ETH_P_MPLS_UC);
1414 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1415 break;
1416
1417 case IPPROTO_TCP:
1418 __skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1419 data, nhoff, hlen);
1420 break;
1421
1422 case IPPROTO_ICMP:
1423 case IPPROTO_ICMPV6:
1424 __skb_flow_dissect_icmp(skb, flow_dissector, target_container,
1425 data, nhoff, hlen);
1426 break;
1427
1428 default:
1429 break;
1430 }
1431
1432 if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT))
1433 __skb_flow_dissect_ports(skb, flow_dissector, target_container,
1434 data, nhoff, ip_proto, hlen);
1435
1436 /* Process result of IP proto processing */
1437 switch (fdret) {
1438 case FLOW_DISSECT_RET_PROTO_AGAIN:
1439 if (skb_flow_dissect_allowed(&num_hdrs))
1440 goto proto_again;
1441 break;
1442 case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1443 if (skb_flow_dissect_allowed(&num_hdrs))
1444 goto ip_proto_again;
1445 break;
1446 case FLOW_DISSECT_RET_OUT_GOOD:
1447 case FLOW_DISSECT_RET_CONTINUE:
1448 break;
1449 case FLOW_DISSECT_RET_OUT_BAD:
1450 default:
1451 goto out_bad;
1452 }
1453
1454 out_good:
1455 ret = true;
1456
1457 out:
1458 key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1459 key_basic->n_proto = proto;
1460 key_basic->ip_proto = ip_proto;
1461
1462 return ret;
1463
1464 out_bad:
1465 ret = false;
1466 goto out;
1467 }
1468 EXPORT_SYMBOL(__skb_flow_dissect);
1469
1470 static siphash_key_t hashrnd __read_mostly;
1471 static __always_inline void __flow_hash_secret_init(void)
1472 {
1473 net_get_random_once(&hashrnd, sizeof(hashrnd));
1474 }
1475
1476 static const void *flow_keys_hash_start(const struct flow_keys *flow)
1477 {
1478 BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT);
1479 return &flow->FLOW_KEYS_HASH_START_FIELD;
1480 }
1481
1482 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1483 {
1484 size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1485
1486 BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1487
1488 switch (flow->control.addr_type) {
1489 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1490 diff -= sizeof(flow->addrs.v4addrs);
1491 break;
1492 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1493 diff -= sizeof(flow->addrs.v6addrs);
1494 break;
1495 case FLOW_DISSECTOR_KEY_TIPC:
1496 diff -= sizeof(flow->addrs.tipckey);
1497 break;
1498 }
1499 return sizeof(*flow) - diff;
1500 }
1501
1502 __be32 flow_get_u32_src(const struct flow_keys *flow)
1503 {
1504 switch (flow->control.addr_type) {
1505 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1506 return flow->addrs.v4addrs.src;
1507 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1508 return (__force __be32)ipv6_addr_hash(
1509 &flow->addrs.v6addrs.src);
1510 case FLOW_DISSECTOR_KEY_TIPC:
1511 return flow->addrs.tipckey.key;
1512 default:
1513 return 0;
1514 }
1515 }
1516 EXPORT_SYMBOL(flow_get_u32_src);
1517
1518 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1519 {
1520 switch (flow->control.addr_type) {
1521 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1522 return flow->addrs.v4addrs.dst;
1523 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1524 return (__force __be32)ipv6_addr_hash(
1525 &flow->addrs.v6addrs.dst);
1526 default:
1527 return 0;
1528 }
1529 }
1530 EXPORT_SYMBOL(flow_get_u32_dst);
1531
1532 /* Sort the source and destination IP (and the ports if the IP are the same),
1533 * to have consistent hash within the two directions
1534 */
1535 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1536 {
1537 int addr_diff, i;
1538
1539 switch (keys->control.addr_type) {
1540 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1541 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
1542 (__force u32)keys->addrs.v4addrs.src;
1543 if ((addr_diff < 0) ||
1544 (addr_diff == 0 &&
1545 ((__force u16)keys->ports.dst <
1546 (__force u16)keys->ports.src))) {
1547 swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1548 swap(keys->ports.src, keys->ports.dst);
1549 }
1550 break;
1551 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1552 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1553 &keys->addrs.v6addrs.src,
1554 sizeof(keys->addrs.v6addrs.dst));
1555 if ((addr_diff < 0) ||
1556 (addr_diff == 0 &&
1557 ((__force u16)keys->ports.dst <
1558 (__force u16)keys->ports.src))) {
1559 for (i = 0; i < 4; i++)
1560 swap(keys->addrs.v6addrs.src.s6_addr32[i],
1561 keys->addrs.v6addrs.dst.s6_addr32[i]);
1562 swap(keys->ports.src, keys->ports.dst);
1563 }
1564 break;
1565 }
1566 }
1567
1568 static inline u32 __flow_hash_from_keys(struct flow_keys *keys,
1569 const siphash_key_t *keyval)
1570 {
1571 u32 hash;
1572
1573 __flow_hash_consistentify(keys);
1574
1575 hash = siphash(flow_keys_hash_start(keys),
1576 flow_keys_hash_length(keys), keyval);
1577 if (!hash)
1578 hash = 1;
1579
1580 return hash;
1581 }
1582
1583 u32 flow_hash_from_keys(struct flow_keys *keys)
1584 {
1585 __flow_hash_secret_init();
1586 return __flow_hash_from_keys(keys, &hashrnd);
1587 }
1588 EXPORT_SYMBOL(flow_hash_from_keys);
1589
1590 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1591 struct flow_keys *keys,
1592 const siphash_key_t *keyval)
1593 {
1594 skb_flow_dissect_flow_keys(skb, keys,
1595 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1596
1597 return __flow_hash_from_keys(keys, keyval);
1598 }
1599
1600 struct _flow_keys_digest_data {
1601 __be16 n_proto;
1602 u8 ip_proto;
1603 u8 padding;
1604 __be32 ports;
1605 __be32 src;
1606 __be32 dst;
1607 };
1608
1609 void make_flow_keys_digest(struct flow_keys_digest *digest,
1610 const struct flow_keys *flow)
1611 {
1612 struct _flow_keys_digest_data *data =
1613 (struct _flow_keys_digest_data *)digest;
1614
1615 BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1616
1617 memset(digest, 0, sizeof(*digest));
1618
1619 data->n_proto = flow->basic.n_proto;
1620 data->ip_proto = flow->basic.ip_proto;
1621 data->ports = flow->ports.ports;
1622 data->src = flow->addrs.v4addrs.src;
1623 data->dst = flow->addrs.v4addrs.dst;
1624 }
1625 EXPORT_SYMBOL(make_flow_keys_digest);
1626
1627 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1628
1629 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1630 {
1631 struct flow_keys keys;
1632
1633 __flow_hash_secret_init();
1634
1635 memset(&keys, 0, sizeof(keys));
1636 __skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
1637 &keys, NULL, 0, 0, 0,
1638 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1639
1640 return __flow_hash_from_keys(&keys, &hashrnd);
1641 }
1642 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1643
1644 /**
1645 * __skb_get_hash: calculate a flow hash
1646 * @skb: sk_buff to calculate flow hash from
1647 *
1648 * This function calculates a flow hash based on src/dst addresses
1649 * and src/dst port numbers. Sets hash in skb to non-zero hash value
1650 * on success, zero indicates no valid hash. Also, sets l4_hash in skb
1651 * if hash is a canonical 4-tuple hash over transport ports.
1652 */
1653 void __skb_get_hash(struct sk_buff *skb)
1654 {
1655 struct flow_keys keys;
1656 u32 hash;
1657
1658 __flow_hash_secret_init();
1659
1660 hash = ___skb_get_hash(skb, &keys, &hashrnd);
1661
1662 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1663 }
1664 EXPORT_SYMBOL(__skb_get_hash);
1665
1666 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1667 const siphash_key_t *perturb)
1668 {
1669 struct flow_keys keys;
1670
1671 return ___skb_get_hash(skb, &keys, perturb);
1672 }
1673 EXPORT_SYMBOL(skb_get_hash_perturb);
1674
1675 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1676 const struct flow_keys_basic *keys, int hlen)
1677 {
1678 u32 poff = keys->control.thoff;
1679
1680 /* skip L4 headers for fragments after the first */
1681 if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1682 !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1683 return poff;
1684
1685 switch (keys->basic.ip_proto) {
1686 case IPPROTO_TCP: {
1687 /* access doff as u8 to avoid unaligned access */
1688 const u8 *doff;
1689 u8 _doff;
1690
1691 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1692 data, hlen, &_doff);
1693 if (!doff)
1694 return poff;
1695
1696 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1697 break;
1698 }
1699 case IPPROTO_UDP:
1700 case IPPROTO_UDPLITE:
1701 poff += sizeof(struct udphdr);
1702 break;
1703 /* For the rest, we do not really care about header
1704 * extensions at this point for now.
1705 */
1706 case IPPROTO_ICMP:
1707 poff += sizeof(struct icmphdr);
1708 break;
1709 case IPPROTO_ICMPV6:
1710 poff += sizeof(struct icmp6hdr);
1711 break;
1712 case IPPROTO_IGMP:
1713 poff += sizeof(struct igmphdr);
1714 break;
1715 case IPPROTO_DCCP:
1716 poff += sizeof(struct dccp_hdr);
1717 break;
1718 case IPPROTO_SCTP:
1719 poff += sizeof(struct sctphdr);
1720 break;
1721 }
1722
1723 return poff;
1724 }
1725
1726 /**
1727 * skb_get_poff - get the offset to the payload
1728 * @skb: sk_buff to get the payload offset from
1729 *
1730 * The function will get the offset to the payload as far as it could
1731 * be dissected. The main user is currently BPF, so that we can dynamically
1732 * truncate packets without needing to push actual payload to the user
1733 * space and can analyze headers only, instead.
1734 */
1735 u32 skb_get_poff(const struct sk_buff *skb)
1736 {
1737 struct flow_keys_basic keys;
1738
1739 if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
1740 NULL, 0, 0, 0, 0))
1741 return 0;
1742
1743 return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1744 }
1745
1746 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1747 {
1748 memset(keys, 0, sizeof(*keys));
1749
1750 memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1751 sizeof(keys->addrs.v6addrs.src));
1752 memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1753 sizeof(keys->addrs.v6addrs.dst));
1754 keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1755 keys->ports.src = fl6->fl6_sport;
1756 keys->ports.dst = fl6->fl6_dport;
1757 keys->keyid.keyid = fl6->fl6_gre_key;
1758 keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1759 keys->basic.ip_proto = fl6->flowi6_proto;
1760
1761 return flow_hash_from_keys(keys);
1762 }
1763 EXPORT_SYMBOL(__get_hash_from_flowi6);
1764
1765 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1766 {
1767 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1768 .offset = offsetof(struct flow_keys, control),
1769 },
1770 {
1771 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1772 .offset = offsetof(struct flow_keys, basic),
1773 },
1774 {
1775 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1776 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1777 },
1778 {
1779 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1780 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1781 },
1782 {
1783 .key_id = FLOW_DISSECTOR_KEY_TIPC,
1784 .offset = offsetof(struct flow_keys, addrs.tipckey),
1785 },
1786 {
1787 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1788 .offset = offsetof(struct flow_keys, ports),
1789 },
1790 {
1791 .key_id = FLOW_DISSECTOR_KEY_VLAN,
1792 .offset = offsetof(struct flow_keys, vlan),
1793 },
1794 {
1795 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1796 .offset = offsetof(struct flow_keys, tags),
1797 },
1798 {
1799 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1800 .offset = offsetof(struct flow_keys, keyid),
1801 },
1802 };
1803
1804 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1805 {
1806 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1807 .offset = offsetof(struct flow_keys, control),
1808 },
1809 {
1810 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1811 .offset = offsetof(struct flow_keys, basic),
1812 },
1813 {
1814 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1815 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1816 },
1817 {
1818 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1819 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1820 },
1821 {
1822 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1823 .offset = offsetof(struct flow_keys, ports),
1824 },
1825 };
1826
1827 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1828 {
1829 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1830 .offset = offsetof(struct flow_keys, control),
1831 },
1832 {
1833 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1834 .offset = offsetof(struct flow_keys, basic),
1835 },
1836 };
1837
1838 struct flow_dissector flow_keys_dissector __read_mostly;
1839 EXPORT_SYMBOL(flow_keys_dissector);
1840
1841 struct flow_dissector flow_keys_basic_dissector __read_mostly;
1842 EXPORT_SYMBOL(flow_keys_basic_dissector);
1843
1844 static int __init init_default_flow_dissectors(void)
1845 {
1846 skb_flow_dissector_init(&flow_keys_dissector,
1847 flow_keys_dissector_keys,
1848 ARRAY_SIZE(flow_keys_dissector_keys));
1849 skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1850 flow_keys_dissector_symmetric_keys,
1851 ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1852 skb_flow_dissector_init(&flow_keys_basic_dissector,
1853 flow_keys_basic_dissector_keys,
1854 ARRAY_SIZE(flow_keys_basic_dissector_keys));
1855
1856 return register_pernet_subsys(&flow_dissector_pernet_ops);
1857 }
1858 core_initcall(init_default_flow_dissectors);