]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - net/core/flow_dissector.c
mmc: core: complete HS400 before checking status
[thirdparty/kernel/linux.git] / net / core / flow_dissector.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/skbuff.h>
4 #include <linux/export.h>
5 #include <linux/ip.h>
6 #include <linux/ipv6.h>
7 #include <linux/if_vlan.h>
8 #include <net/dsa.h>
9 #include <net/dst_metadata.h>
10 #include <net/ip.h>
11 #include <net/ipv6.h>
12 #include <net/gre.h>
13 #include <net/pptp.h>
14 #include <net/tipc.h>
15 #include <linux/igmp.h>
16 #include <linux/icmp.h>
17 #include <linux/sctp.h>
18 #include <linux/dccp.h>
19 #include <linux/if_tunnel.h>
20 #include <linux/if_pppox.h>
21 #include <linux/ppp_defs.h>
22 #include <linux/stddef.h>
23 #include <linux/if_ether.h>
24 #include <linux/mpls.h>
25 #include <linux/tcp.h>
26 #include <net/flow_dissector.h>
27 #include <scsi/fc/fc_fcoe.h>
28 #include <uapi/linux/batadv_packet.h>
29 #include <linux/bpf.h>
30
31 static DEFINE_MUTEX(flow_dissector_mutex);
32
33 static void dissector_set_key(struct flow_dissector *flow_dissector,
34 enum flow_dissector_key_id key_id)
35 {
36 flow_dissector->used_keys |= (1 << key_id);
37 }
38
39 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
40 const struct flow_dissector_key *key,
41 unsigned int key_count)
42 {
43 unsigned int i;
44
45 memset(flow_dissector, 0, sizeof(*flow_dissector));
46
47 for (i = 0; i < key_count; i++, key++) {
48 /* User should make sure that every key target offset is withing
49 * boundaries of unsigned short.
50 */
51 BUG_ON(key->offset > USHRT_MAX);
52 BUG_ON(dissector_uses_key(flow_dissector,
53 key->key_id));
54
55 dissector_set_key(flow_dissector, key->key_id);
56 flow_dissector->offset[key->key_id] = key->offset;
57 }
58
59 /* Ensure that the dissector always includes control and basic key.
60 * That way we are able to avoid handling lack of these in fast path.
61 */
62 BUG_ON(!dissector_uses_key(flow_dissector,
63 FLOW_DISSECTOR_KEY_CONTROL));
64 BUG_ON(!dissector_uses_key(flow_dissector,
65 FLOW_DISSECTOR_KEY_BASIC));
66 }
67 EXPORT_SYMBOL(skb_flow_dissector_init);
68
69 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
70 union bpf_attr __user *uattr)
71 {
72 __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
73 u32 prog_id, prog_cnt = 0, flags = 0;
74 struct bpf_prog *attached;
75 struct net *net;
76
77 if (attr->query.query_flags)
78 return -EINVAL;
79
80 net = get_net_ns_by_fd(attr->query.target_fd);
81 if (IS_ERR(net))
82 return PTR_ERR(net);
83
84 rcu_read_lock();
85 attached = rcu_dereference(net->flow_dissector_prog);
86 if (attached) {
87 prog_cnt = 1;
88 prog_id = attached->aux->id;
89 }
90 rcu_read_unlock();
91
92 put_net(net);
93
94 if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
95 return -EFAULT;
96 if (copy_to_user(&uattr->query.prog_cnt, &prog_cnt, sizeof(prog_cnt)))
97 return -EFAULT;
98
99 if (!attr->query.prog_cnt || !prog_ids || !prog_cnt)
100 return 0;
101
102 if (copy_to_user(prog_ids, &prog_id, sizeof(u32)))
103 return -EFAULT;
104
105 return 0;
106 }
107
108 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
109 struct bpf_prog *prog)
110 {
111 struct bpf_prog *attached;
112 struct net *net;
113
114 net = current->nsproxy->net_ns;
115 mutex_lock(&flow_dissector_mutex);
116 attached = rcu_dereference_protected(net->flow_dissector_prog,
117 lockdep_is_held(&flow_dissector_mutex));
118 if (attached) {
119 /* Only one BPF program can be attached at a time */
120 mutex_unlock(&flow_dissector_mutex);
121 return -EEXIST;
122 }
123 rcu_assign_pointer(net->flow_dissector_prog, prog);
124 mutex_unlock(&flow_dissector_mutex);
125 return 0;
126 }
127
128 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
129 {
130 struct bpf_prog *attached;
131 struct net *net;
132
133 net = current->nsproxy->net_ns;
134 mutex_lock(&flow_dissector_mutex);
135 attached = rcu_dereference_protected(net->flow_dissector_prog,
136 lockdep_is_held(&flow_dissector_mutex));
137 if (!attached) {
138 mutex_unlock(&flow_dissector_mutex);
139 return -ENOENT;
140 }
141 bpf_prog_put(attached);
142 RCU_INIT_POINTER(net->flow_dissector_prog, NULL);
143 mutex_unlock(&flow_dissector_mutex);
144 return 0;
145 }
146 /**
147 * skb_flow_get_be16 - extract be16 entity
148 * @skb: sk_buff to extract from
149 * @poff: offset to extract at
150 * @data: raw buffer pointer to the packet
151 * @hlen: packet header length
152 *
153 * The function will try to retrieve a be32 entity at
154 * offset poff
155 */
156 static __be16 skb_flow_get_be16(const struct sk_buff *skb, int poff,
157 void *data, int hlen)
158 {
159 __be16 *u, _u;
160
161 u = __skb_header_pointer(skb, poff, sizeof(_u), data, hlen, &_u);
162 if (u)
163 return *u;
164
165 return 0;
166 }
167
168 /**
169 * __skb_flow_get_ports - extract the upper layer ports and return them
170 * @skb: sk_buff to extract the ports from
171 * @thoff: transport header offset
172 * @ip_proto: protocol for which to get port offset
173 * @data: raw buffer pointer to the packet, if NULL use skb->data
174 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
175 *
176 * The function will try to retrieve the ports at offset thoff + poff where poff
177 * is the protocol port offset returned from proto_ports_offset
178 */
179 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
180 void *data, int hlen)
181 {
182 int poff = proto_ports_offset(ip_proto);
183
184 if (!data) {
185 data = skb->data;
186 hlen = skb_headlen(skb);
187 }
188
189 if (poff >= 0) {
190 __be32 *ports, _ports;
191
192 ports = __skb_header_pointer(skb, thoff + poff,
193 sizeof(_ports), data, hlen, &_ports);
194 if (ports)
195 return *ports;
196 }
197
198 return 0;
199 }
200 EXPORT_SYMBOL(__skb_flow_get_ports);
201
202 static void
203 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
204 struct flow_dissector *flow_dissector,
205 void *target_container)
206 {
207 struct flow_dissector_key_control *ctrl;
208
209 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
210 return;
211
212 ctrl = skb_flow_dissector_target(flow_dissector,
213 FLOW_DISSECTOR_KEY_ENC_CONTROL,
214 target_container);
215 ctrl->addr_type = type;
216 }
217
218 void
219 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
220 struct flow_dissector *flow_dissector,
221 void *target_container)
222 {
223 struct ip_tunnel_info *info;
224 struct ip_tunnel_key *key;
225
226 /* A quick check to see if there might be something to do. */
227 if (!dissector_uses_key(flow_dissector,
228 FLOW_DISSECTOR_KEY_ENC_KEYID) &&
229 !dissector_uses_key(flow_dissector,
230 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
231 !dissector_uses_key(flow_dissector,
232 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
233 !dissector_uses_key(flow_dissector,
234 FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
235 !dissector_uses_key(flow_dissector,
236 FLOW_DISSECTOR_KEY_ENC_PORTS) &&
237 !dissector_uses_key(flow_dissector,
238 FLOW_DISSECTOR_KEY_ENC_IP) &&
239 !dissector_uses_key(flow_dissector,
240 FLOW_DISSECTOR_KEY_ENC_OPTS))
241 return;
242
243 info = skb_tunnel_info(skb);
244 if (!info)
245 return;
246
247 key = &info->key;
248
249 switch (ip_tunnel_info_af(info)) {
250 case AF_INET:
251 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
252 flow_dissector,
253 target_container);
254 if (dissector_uses_key(flow_dissector,
255 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
256 struct flow_dissector_key_ipv4_addrs *ipv4;
257
258 ipv4 = skb_flow_dissector_target(flow_dissector,
259 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
260 target_container);
261 ipv4->src = key->u.ipv4.src;
262 ipv4->dst = key->u.ipv4.dst;
263 }
264 break;
265 case AF_INET6:
266 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
267 flow_dissector,
268 target_container);
269 if (dissector_uses_key(flow_dissector,
270 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
271 struct flow_dissector_key_ipv6_addrs *ipv6;
272
273 ipv6 = skb_flow_dissector_target(flow_dissector,
274 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
275 target_container);
276 ipv6->src = key->u.ipv6.src;
277 ipv6->dst = key->u.ipv6.dst;
278 }
279 break;
280 }
281
282 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
283 struct flow_dissector_key_keyid *keyid;
284
285 keyid = skb_flow_dissector_target(flow_dissector,
286 FLOW_DISSECTOR_KEY_ENC_KEYID,
287 target_container);
288 keyid->keyid = tunnel_id_to_key32(key->tun_id);
289 }
290
291 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
292 struct flow_dissector_key_ports *tp;
293
294 tp = skb_flow_dissector_target(flow_dissector,
295 FLOW_DISSECTOR_KEY_ENC_PORTS,
296 target_container);
297 tp->src = key->tp_src;
298 tp->dst = key->tp_dst;
299 }
300
301 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
302 struct flow_dissector_key_ip *ip;
303
304 ip = skb_flow_dissector_target(flow_dissector,
305 FLOW_DISSECTOR_KEY_ENC_IP,
306 target_container);
307 ip->tos = key->tos;
308 ip->ttl = key->ttl;
309 }
310
311 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
312 struct flow_dissector_key_enc_opts *enc_opt;
313
314 enc_opt = skb_flow_dissector_target(flow_dissector,
315 FLOW_DISSECTOR_KEY_ENC_OPTS,
316 target_container);
317
318 if (info->options_len) {
319 enc_opt->len = info->options_len;
320 ip_tunnel_info_opts_get(enc_opt->data, info);
321 enc_opt->dst_opt_type = info->key.tun_flags &
322 TUNNEL_OPTIONS_PRESENT;
323 }
324 }
325 }
326 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
327
328 static enum flow_dissect_ret
329 __skb_flow_dissect_mpls(const struct sk_buff *skb,
330 struct flow_dissector *flow_dissector,
331 void *target_container, void *data, int nhoff, int hlen)
332 {
333 struct flow_dissector_key_keyid *key_keyid;
334 struct mpls_label *hdr, _hdr[2];
335 u32 entry, label;
336
337 if (!dissector_uses_key(flow_dissector,
338 FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
339 !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
340 return FLOW_DISSECT_RET_OUT_GOOD;
341
342 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
343 hlen, &_hdr);
344 if (!hdr)
345 return FLOW_DISSECT_RET_OUT_BAD;
346
347 entry = ntohl(hdr[0].entry);
348 label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
349
350 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
351 struct flow_dissector_key_mpls *key_mpls;
352
353 key_mpls = skb_flow_dissector_target(flow_dissector,
354 FLOW_DISSECTOR_KEY_MPLS,
355 target_container);
356 key_mpls->mpls_label = label;
357 key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
358 >> MPLS_LS_TTL_SHIFT;
359 key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
360 >> MPLS_LS_TC_SHIFT;
361 key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
362 >> MPLS_LS_S_SHIFT;
363 }
364
365 if (label == MPLS_LABEL_ENTROPY) {
366 key_keyid = skb_flow_dissector_target(flow_dissector,
367 FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
368 target_container);
369 key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
370 }
371 return FLOW_DISSECT_RET_OUT_GOOD;
372 }
373
374 static enum flow_dissect_ret
375 __skb_flow_dissect_arp(const struct sk_buff *skb,
376 struct flow_dissector *flow_dissector,
377 void *target_container, void *data, int nhoff, int hlen)
378 {
379 struct flow_dissector_key_arp *key_arp;
380 struct {
381 unsigned char ar_sha[ETH_ALEN];
382 unsigned char ar_sip[4];
383 unsigned char ar_tha[ETH_ALEN];
384 unsigned char ar_tip[4];
385 } *arp_eth, _arp_eth;
386 const struct arphdr *arp;
387 struct arphdr _arp;
388
389 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
390 return FLOW_DISSECT_RET_OUT_GOOD;
391
392 arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
393 hlen, &_arp);
394 if (!arp)
395 return FLOW_DISSECT_RET_OUT_BAD;
396
397 if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
398 arp->ar_pro != htons(ETH_P_IP) ||
399 arp->ar_hln != ETH_ALEN ||
400 arp->ar_pln != 4 ||
401 (arp->ar_op != htons(ARPOP_REPLY) &&
402 arp->ar_op != htons(ARPOP_REQUEST)))
403 return FLOW_DISSECT_RET_OUT_BAD;
404
405 arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
406 sizeof(_arp_eth), data,
407 hlen, &_arp_eth);
408 if (!arp_eth)
409 return FLOW_DISSECT_RET_OUT_BAD;
410
411 key_arp = skb_flow_dissector_target(flow_dissector,
412 FLOW_DISSECTOR_KEY_ARP,
413 target_container);
414
415 memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
416 memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
417
418 /* Only store the lower byte of the opcode;
419 * this covers ARPOP_REPLY and ARPOP_REQUEST.
420 */
421 key_arp->op = ntohs(arp->ar_op) & 0xff;
422
423 ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
424 ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
425
426 return FLOW_DISSECT_RET_OUT_GOOD;
427 }
428
429 static enum flow_dissect_ret
430 __skb_flow_dissect_gre(const struct sk_buff *skb,
431 struct flow_dissector_key_control *key_control,
432 struct flow_dissector *flow_dissector,
433 void *target_container, void *data,
434 __be16 *p_proto, int *p_nhoff, int *p_hlen,
435 unsigned int flags)
436 {
437 struct flow_dissector_key_keyid *key_keyid;
438 struct gre_base_hdr *hdr, _hdr;
439 int offset = 0;
440 u16 gre_ver;
441
442 hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
443 data, *p_hlen, &_hdr);
444 if (!hdr)
445 return FLOW_DISSECT_RET_OUT_BAD;
446
447 /* Only look inside GRE without routing */
448 if (hdr->flags & GRE_ROUTING)
449 return FLOW_DISSECT_RET_OUT_GOOD;
450
451 /* Only look inside GRE for version 0 and 1 */
452 gre_ver = ntohs(hdr->flags & GRE_VERSION);
453 if (gre_ver > 1)
454 return FLOW_DISSECT_RET_OUT_GOOD;
455
456 *p_proto = hdr->protocol;
457 if (gre_ver) {
458 /* Version1 must be PPTP, and check the flags */
459 if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
460 return FLOW_DISSECT_RET_OUT_GOOD;
461 }
462
463 offset += sizeof(struct gre_base_hdr);
464
465 if (hdr->flags & GRE_CSUM)
466 offset += FIELD_SIZEOF(struct gre_full_hdr, csum) +
467 FIELD_SIZEOF(struct gre_full_hdr, reserved1);
468
469 if (hdr->flags & GRE_KEY) {
470 const __be32 *keyid;
471 __be32 _keyid;
472
473 keyid = __skb_header_pointer(skb, *p_nhoff + offset,
474 sizeof(_keyid),
475 data, *p_hlen, &_keyid);
476 if (!keyid)
477 return FLOW_DISSECT_RET_OUT_BAD;
478
479 if (dissector_uses_key(flow_dissector,
480 FLOW_DISSECTOR_KEY_GRE_KEYID)) {
481 key_keyid = skb_flow_dissector_target(flow_dissector,
482 FLOW_DISSECTOR_KEY_GRE_KEYID,
483 target_container);
484 if (gre_ver == 0)
485 key_keyid->keyid = *keyid;
486 else
487 key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
488 }
489 offset += FIELD_SIZEOF(struct gre_full_hdr, key);
490 }
491
492 if (hdr->flags & GRE_SEQ)
493 offset += FIELD_SIZEOF(struct pptp_gre_header, seq);
494
495 if (gre_ver == 0) {
496 if (*p_proto == htons(ETH_P_TEB)) {
497 const struct ethhdr *eth;
498 struct ethhdr _eth;
499
500 eth = __skb_header_pointer(skb, *p_nhoff + offset,
501 sizeof(_eth),
502 data, *p_hlen, &_eth);
503 if (!eth)
504 return FLOW_DISSECT_RET_OUT_BAD;
505 *p_proto = eth->h_proto;
506 offset += sizeof(*eth);
507
508 /* Cap headers that we access via pointers at the
509 * end of the Ethernet header as our maximum alignment
510 * at that point is only 2 bytes.
511 */
512 if (NET_IP_ALIGN)
513 *p_hlen = *p_nhoff + offset;
514 }
515 } else { /* version 1, must be PPTP */
516 u8 _ppp_hdr[PPP_HDRLEN];
517 u8 *ppp_hdr;
518
519 if (hdr->flags & GRE_ACK)
520 offset += FIELD_SIZEOF(struct pptp_gre_header, ack);
521
522 ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
523 sizeof(_ppp_hdr),
524 data, *p_hlen, _ppp_hdr);
525 if (!ppp_hdr)
526 return FLOW_DISSECT_RET_OUT_BAD;
527
528 switch (PPP_PROTOCOL(ppp_hdr)) {
529 case PPP_IP:
530 *p_proto = htons(ETH_P_IP);
531 break;
532 case PPP_IPV6:
533 *p_proto = htons(ETH_P_IPV6);
534 break;
535 default:
536 /* Could probably catch some more like MPLS */
537 break;
538 }
539
540 offset += PPP_HDRLEN;
541 }
542
543 *p_nhoff += offset;
544 key_control->flags |= FLOW_DIS_ENCAPSULATION;
545 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
546 return FLOW_DISSECT_RET_OUT_GOOD;
547
548 return FLOW_DISSECT_RET_PROTO_AGAIN;
549 }
550
551 /**
552 * __skb_flow_dissect_batadv() - dissect batman-adv header
553 * @skb: sk_buff to with the batman-adv header
554 * @key_control: flow dissectors control key
555 * @data: raw buffer pointer to the packet, if NULL use skb->data
556 * @p_proto: pointer used to update the protocol to process next
557 * @p_nhoff: pointer used to update inner network header offset
558 * @hlen: packet header length
559 * @flags: any combination of FLOW_DISSECTOR_F_*
560 *
561 * ETH_P_BATMAN packets are tried to be dissected. Only
562 * &struct batadv_unicast packets are actually processed because they contain an
563 * inner ethernet header and are usually followed by actual network header. This
564 * allows the flow dissector to continue processing the packet.
565 *
566 * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
567 * FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
568 * otherwise FLOW_DISSECT_RET_OUT_BAD
569 */
570 static enum flow_dissect_ret
571 __skb_flow_dissect_batadv(const struct sk_buff *skb,
572 struct flow_dissector_key_control *key_control,
573 void *data, __be16 *p_proto, int *p_nhoff, int hlen,
574 unsigned int flags)
575 {
576 struct {
577 struct batadv_unicast_packet batadv_unicast;
578 struct ethhdr eth;
579 } *hdr, _hdr;
580
581 hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
582 &_hdr);
583 if (!hdr)
584 return FLOW_DISSECT_RET_OUT_BAD;
585
586 if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
587 return FLOW_DISSECT_RET_OUT_BAD;
588
589 if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
590 return FLOW_DISSECT_RET_OUT_BAD;
591
592 *p_proto = hdr->eth.h_proto;
593 *p_nhoff += sizeof(*hdr);
594
595 key_control->flags |= FLOW_DIS_ENCAPSULATION;
596 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
597 return FLOW_DISSECT_RET_OUT_GOOD;
598
599 return FLOW_DISSECT_RET_PROTO_AGAIN;
600 }
601
602 static void
603 __skb_flow_dissect_tcp(const struct sk_buff *skb,
604 struct flow_dissector *flow_dissector,
605 void *target_container, void *data, int thoff, int hlen)
606 {
607 struct flow_dissector_key_tcp *key_tcp;
608 struct tcphdr *th, _th;
609
610 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
611 return;
612
613 th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
614 if (!th)
615 return;
616
617 if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
618 return;
619
620 key_tcp = skb_flow_dissector_target(flow_dissector,
621 FLOW_DISSECTOR_KEY_TCP,
622 target_container);
623 key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
624 }
625
626 static void
627 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
628 struct flow_dissector *flow_dissector,
629 void *target_container, void *data, const struct iphdr *iph)
630 {
631 struct flow_dissector_key_ip *key_ip;
632
633 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
634 return;
635
636 key_ip = skb_flow_dissector_target(flow_dissector,
637 FLOW_DISSECTOR_KEY_IP,
638 target_container);
639 key_ip->tos = iph->tos;
640 key_ip->ttl = iph->ttl;
641 }
642
643 static void
644 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
645 struct flow_dissector *flow_dissector,
646 void *target_container, void *data, const struct ipv6hdr *iph)
647 {
648 struct flow_dissector_key_ip *key_ip;
649
650 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
651 return;
652
653 key_ip = skb_flow_dissector_target(flow_dissector,
654 FLOW_DISSECTOR_KEY_IP,
655 target_container);
656 key_ip->tos = ipv6_get_dsfield(iph);
657 key_ip->ttl = iph->hop_limit;
658 }
659
660 /* Maximum number of protocol headers that can be parsed in
661 * __skb_flow_dissect
662 */
663 #define MAX_FLOW_DISSECT_HDRS 15
664
665 static bool skb_flow_dissect_allowed(int *num_hdrs)
666 {
667 ++*num_hdrs;
668
669 return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
670 }
671
672 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
673 struct flow_dissector *flow_dissector,
674 void *target_container)
675 {
676 struct flow_dissector_key_control *key_control;
677 struct flow_dissector_key_basic *key_basic;
678 struct flow_dissector_key_addrs *key_addrs;
679 struct flow_dissector_key_ports *key_ports;
680
681 key_control = skb_flow_dissector_target(flow_dissector,
682 FLOW_DISSECTOR_KEY_CONTROL,
683 target_container);
684 key_control->thoff = flow_keys->thoff;
685 if (flow_keys->is_frag)
686 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
687 if (flow_keys->is_first_frag)
688 key_control->flags |= FLOW_DIS_FIRST_FRAG;
689 if (flow_keys->is_encap)
690 key_control->flags |= FLOW_DIS_ENCAPSULATION;
691
692 key_basic = skb_flow_dissector_target(flow_dissector,
693 FLOW_DISSECTOR_KEY_BASIC,
694 target_container);
695 key_basic->n_proto = flow_keys->n_proto;
696 key_basic->ip_proto = flow_keys->ip_proto;
697
698 if (flow_keys->addr_proto == ETH_P_IP &&
699 dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
700 key_addrs = skb_flow_dissector_target(flow_dissector,
701 FLOW_DISSECTOR_KEY_IPV4_ADDRS,
702 target_container);
703 key_addrs->v4addrs.src = flow_keys->ipv4_src;
704 key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
705 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
706 } else if (flow_keys->addr_proto == ETH_P_IPV6 &&
707 dissector_uses_key(flow_dissector,
708 FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
709 key_addrs = skb_flow_dissector_target(flow_dissector,
710 FLOW_DISSECTOR_KEY_IPV6_ADDRS,
711 target_container);
712 memcpy(&key_addrs->v6addrs, &flow_keys->ipv6_src,
713 sizeof(key_addrs->v6addrs));
714 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
715 }
716
717 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) {
718 key_ports = skb_flow_dissector_target(flow_dissector,
719 FLOW_DISSECTOR_KEY_PORTS,
720 target_container);
721 key_ports->src = flow_keys->sport;
722 key_ports->dst = flow_keys->dport;
723 }
724 }
725
726 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
727 __be16 proto, int nhoff, int hlen)
728 {
729 struct bpf_flow_keys *flow_keys = ctx->flow_keys;
730 u32 result;
731
732 /* Pass parameters to the BPF program */
733 memset(flow_keys, 0, sizeof(*flow_keys));
734 flow_keys->n_proto = proto;
735 flow_keys->nhoff = nhoff;
736 flow_keys->thoff = flow_keys->nhoff;
737
738 preempt_disable();
739 result = BPF_PROG_RUN(prog, ctx);
740 preempt_enable();
741
742 flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
743 flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
744 flow_keys->nhoff, hlen);
745
746 return result == BPF_OK;
747 }
748
749 /**
750 * __skb_flow_dissect - extract the flow_keys struct and return it
751 * @net: associated network namespace, derived from @skb if NULL
752 * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
753 * @flow_dissector: list of keys to dissect
754 * @target_container: target structure to put dissected values into
755 * @data: raw buffer pointer to the packet, if NULL use skb->data
756 * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
757 * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
758 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
759 * @flags: flags that control the dissection process, e.g.
760 * FLOW_DISSECTOR_F_STOP_AT_L3.
761 *
762 * The function will try to retrieve individual keys into target specified
763 * by flow_dissector from either the skbuff or a raw buffer specified by the
764 * rest parameters.
765 *
766 * Caller must take care of zeroing target container memory.
767 */
768 bool __skb_flow_dissect(const struct net *net,
769 const struct sk_buff *skb,
770 struct flow_dissector *flow_dissector,
771 void *target_container,
772 void *data, __be16 proto, int nhoff, int hlen,
773 unsigned int flags)
774 {
775 struct flow_dissector_key_control *key_control;
776 struct flow_dissector_key_basic *key_basic;
777 struct flow_dissector_key_addrs *key_addrs;
778 struct flow_dissector_key_ports *key_ports;
779 struct flow_dissector_key_icmp *key_icmp;
780 struct flow_dissector_key_tags *key_tags;
781 struct flow_dissector_key_vlan *key_vlan;
782 struct bpf_prog *attached = NULL;
783 enum flow_dissect_ret fdret;
784 enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
785 int num_hdrs = 0;
786 u8 ip_proto = 0;
787 bool ret;
788
789 if (!data) {
790 data = skb->data;
791 proto = skb_vlan_tag_present(skb) ?
792 skb->vlan_proto : skb->protocol;
793 nhoff = skb_network_offset(skb);
794 hlen = skb_headlen(skb);
795 #if IS_ENABLED(CONFIG_NET_DSA)
796 if (unlikely(skb->dev && netdev_uses_dsa(skb->dev))) {
797 const struct dsa_device_ops *ops;
798 int offset;
799
800 ops = skb->dev->dsa_ptr->tag_ops;
801 if (ops->flow_dissect &&
802 !ops->flow_dissect(skb, &proto, &offset)) {
803 hlen -= offset;
804 nhoff += offset;
805 }
806 }
807 #endif
808 }
809
810 /* It is ensured by skb_flow_dissector_init() that control key will
811 * be always present.
812 */
813 key_control = skb_flow_dissector_target(flow_dissector,
814 FLOW_DISSECTOR_KEY_CONTROL,
815 target_container);
816
817 /* It is ensured by skb_flow_dissector_init() that basic key will
818 * be always present.
819 */
820 key_basic = skb_flow_dissector_target(flow_dissector,
821 FLOW_DISSECTOR_KEY_BASIC,
822 target_container);
823
824 if (skb) {
825 if (!net) {
826 if (skb->dev)
827 net = dev_net(skb->dev);
828 else if (skb->sk)
829 net = sock_net(skb->sk);
830 }
831 }
832
833 WARN_ON_ONCE(!net);
834 if (net) {
835 rcu_read_lock();
836 attached = rcu_dereference(net->flow_dissector_prog);
837
838 if (attached) {
839 struct bpf_flow_keys flow_keys;
840 struct bpf_flow_dissector ctx = {
841 .flow_keys = &flow_keys,
842 .data = data,
843 .data_end = data + hlen,
844 };
845 __be16 n_proto = proto;
846
847 if (skb) {
848 ctx.skb = skb;
849 /* we can't use 'proto' in the skb case
850 * because it might be set to skb->vlan_proto
851 * which has been pulled from the data
852 */
853 n_proto = skb->protocol;
854 }
855
856 ret = bpf_flow_dissect(attached, &ctx, n_proto, nhoff,
857 hlen);
858 __skb_flow_bpf_to_target(&flow_keys, flow_dissector,
859 target_container);
860 rcu_read_unlock();
861 return ret;
862 }
863 rcu_read_unlock();
864 }
865
866 if (dissector_uses_key(flow_dissector,
867 FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
868 struct ethhdr *eth = eth_hdr(skb);
869 struct flow_dissector_key_eth_addrs *key_eth_addrs;
870
871 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
872 FLOW_DISSECTOR_KEY_ETH_ADDRS,
873 target_container);
874 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
875 }
876
877 proto_again:
878 fdret = FLOW_DISSECT_RET_CONTINUE;
879
880 switch (proto) {
881 case htons(ETH_P_IP): {
882 const struct iphdr *iph;
883 struct iphdr _iph;
884
885 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
886 if (!iph || iph->ihl < 5) {
887 fdret = FLOW_DISSECT_RET_OUT_BAD;
888 break;
889 }
890
891 nhoff += iph->ihl * 4;
892
893 ip_proto = iph->protocol;
894
895 if (dissector_uses_key(flow_dissector,
896 FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
897 key_addrs = skb_flow_dissector_target(flow_dissector,
898 FLOW_DISSECTOR_KEY_IPV4_ADDRS,
899 target_container);
900
901 memcpy(&key_addrs->v4addrs, &iph->saddr,
902 sizeof(key_addrs->v4addrs));
903 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
904 }
905
906 if (ip_is_fragment(iph)) {
907 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
908
909 if (iph->frag_off & htons(IP_OFFSET)) {
910 fdret = FLOW_DISSECT_RET_OUT_GOOD;
911 break;
912 } else {
913 key_control->flags |= FLOW_DIS_FIRST_FRAG;
914 if (!(flags &
915 FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
916 fdret = FLOW_DISSECT_RET_OUT_GOOD;
917 break;
918 }
919 }
920 }
921
922 __skb_flow_dissect_ipv4(skb, flow_dissector,
923 target_container, data, iph);
924
925 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3) {
926 fdret = FLOW_DISSECT_RET_OUT_GOOD;
927 break;
928 }
929
930 break;
931 }
932 case htons(ETH_P_IPV6): {
933 const struct ipv6hdr *iph;
934 struct ipv6hdr _iph;
935
936 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
937 if (!iph) {
938 fdret = FLOW_DISSECT_RET_OUT_BAD;
939 break;
940 }
941
942 ip_proto = iph->nexthdr;
943 nhoff += sizeof(struct ipv6hdr);
944
945 if (dissector_uses_key(flow_dissector,
946 FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
947 key_addrs = skb_flow_dissector_target(flow_dissector,
948 FLOW_DISSECTOR_KEY_IPV6_ADDRS,
949 target_container);
950
951 memcpy(&key_addrs->v6addrs, &iph->saddr,
952 sizeof(key_addrs->v6addrs));
953 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
954 }
955
956 if ((dissector_uses_key(flow_dissector,
957 FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
958 (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
959 ip6_flowlabel(iph)) {
960 __be32 flow_label = ip6_flowlabel(iph);
961
962 if (dissector_uses_key(flow_dissector,
963 FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
964 key_tags = skb_flow_dissector_target(flow_dissector,
965 FLOW_DISSECTOR_KEY_FLOW_LABEL,
966 target_container);
967 key_tags->flow_label = ntohl(flow_label);
968 }
969 if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
970 fdret = FLOW_DISSECT_RET_OUT_GOOD;
971 break;
972 }
973 }
974
975 __skb_flow_dissect_ipv6(skb, flow_dissector,
976 target_container, data, iph);
977
978 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
979 fdret = FLOW_DISSECT_RET_OUT_GOOD;
980
981 break;
982 }
983 case htons(ETH_P_8021AD):
984 case htons(ETH_P_8021Q): {
985 const struct vlan_hdr *vlan = NULL;
986 struct vlan_hdr _vlan;
987 __be16 saved_vlan_tpid = proto;
988
989 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
990 skb && skb_vlan_tag_present(skb)) {
991 proto = skb->protocol;
992 } else {
993 vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
994 data, hlen, &_vlan);
995 if (!vlan) {
996 fdret = FLOW_DISSECT_RET_OUT_BAD;
997 break;
998 }
999
1000 proto = vlan->h_vlan_encapsulated_proto;
1001 nhoff += sizeof(*vlan);
1002 }
1003
1004 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
1005 dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
1006 } else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
1007 dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
1008 } else {
1009 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1010 break;
1011 }
1012
1013 if (dissector_uses_key(flow_dissector, dissector_vlan)) {
1014 key_vlan = skb_flow_dissector_target(flow_dissector,
1015 dissector_vlan,
1016 target_container);
1017
1018 if (!vlan) {
1019 key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
1020 key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
1021 } else {
1022 key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
1023 VLAN_VID_MASK;
1024 key_vlan->vlan_priority =
1025 (ntohs(vlan->h_vlan_TCI) &
1026 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1027 }
1028 key_vlan->vlan_tpid = saved_vlan_tpid;
1029 }
1030
1031 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1032 break;
1033 }
1034 case htons(ETH_P_PPP_SES): {
1035 struct {
1036 struct pppoe_hdr hdr;
1037 __be16 proto;
1038 } *hdr, _hdr;
1039 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
1040 if (!hdr) {
1041 fdret = FLOW_DISSECT_RET_OUT_BAD;
1042 break;
1043 }
1044
1045 proto = hdr->proto;
1046 nhoff += PPPOE_SES_HLEN;
1047 switch (proto) {
1048 case htons(PPP_IP):
1049 proto = htons(ETH_P_IP);
1050 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1051 break;
1052 case htons(PPP_IPV6):
1053 proto = htons(ETH_P_IPV6);
1054 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1055 break;
1056 default:
1057 fdret = FLOW_DISSECT_RET_OUT_BAD;
1058 break;
1059 }
1060 break;
1061 }
1062 case htons(ETH_P_TIPC): {
1063 struct tipc_basic_hdr *hdr, _hdr;
1064
1065 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
1066 data, hlen, &_hdr);
1067 if (!hdr) {
1068 fdret = FLOW_DISSECT_RET_OUT_BAD;
1069 break;
1070 }
1071
1072 if (dissector_uses_key(flow_dissector,
1073 FLOW_DISSECTOR_KEY_TIPC)) {
1074 key_addrs = skb_flow_dissector_target(flow_dissector,
1075 FLOW_DISSECTOR_KEY_TIPC,
1076 target_container);
1077 key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
1078 key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1079 }
1080 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1081 break;
1082 }
1083
1084 case htons(ETH_P_MPLS_UC):
1085 case htons(ETH_P_MPLS_MC):
1086 fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1087 target_container, data,
1088 nhoff, hlen);
1089 break;
1090 case htons(ETH_P_FCOE):
1091 if ((hlen - nhoff) < FCOE_HEADER_LEN) {
1092 fdret = FLOW_DISSECT_RET_OUT_BAD;
1093 break;
1094 }
1095
1096 nhoff += FCOE_HEADER_LEN;
1097 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1098 break;
1099
1100 case htons(ETH_P_ARP):
1101 case htons(ETH_P_RARP):
1102 fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1103 target_container, data,
1104 nhoff, hlen);
1105 break;
1106
1107 case htons(ETH_P_BATMAN):
1108 fdret = __skb_flow_dissect_batadv(skb, key_control, data,
1109 &proto, &nhoff, hlen, flags);
1110 break;
1111
1112 default:
1113 fdret = FLOW_DISSECT_RET_OUT_BAD;
1114 break;
1115 }
1116
1117 /* Process result of proto processing */
1118 switch (fdret) {
1119 case FLOW_DISSECT_RET_OUT_GOOD:
1120 goto out_good;
1121 case FLOW_DISSECT_RET_PROTO_AGAIN:
1122 if (skb_flow_dissect_allowed(&num_hdrs))
1123 goto proto_again;
1124 goto out_good;
1125 case FLOW_DISSECT_RET_CONTINUE:
1126 case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1127 break;
1128 case FLOW_DISSECT_RET_OUT_BAD:
1129 default:
1130 goto out_bad;
1131 }
1132
1133 ip_proto_again:
1134 fdret = FLOW_DISSECT_RET_CONTINUE;
1135
1136 switch (ip_proto) {
1137 case IPPROTO_GRE:
1138 fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1139 target_container, data,
1140 &proto, &nhoff, &hlen, flags);
1141 break;
1142
1143 case NEXTHDR_HOP:
1144 case NEXTHDR_ROUTING:
1145 case NEXTHDR_DEST: {
1146 u8 _opthdr[2], *opthdr;
1147
1148 if (proto != htons(ETH_P_IPV6))
1149 break;
1150
1151 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
1152 data, hlen, &_opthdr);
1153 if (!opthdr) {
1154 fdret = FLOW_DISSECT_RET_OUT_BAD;
1155 break;
1156 }
1157
1158 ip_proto = opthdr[0];
1159 nhoff += (opthdr[1] + 1) << 3;
1160
1161 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1162 break;
1163 }
1164 case NEXTHDR_FRAGMENT: {
1165 struct frag_hdr _fh, *fh;
1166
1167 if (proto != htons(ETH_P_IPV6))
1168 break;
1169
1170 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
1171 data, hlen, &_fh);
1172
1173 if (!fh) {
1174 fdret = FLOW_DISSECT_RET_OUT_BAD;
1175 break;
1176 }
1177
1178 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1179
1180 nhoff += sizeof(_fh);
1181 ip_proto = fh->nexthdr;
1182
1183 if (!(fh->frag_off & htons(IP6_OFFSET))) {
1184 key_control->flags |= FLOW_DIS_FIRST_FRAG;
1185 if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
1186 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1187 break;
1188 }
1189 }
1190
1191 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1192 break;
1193 }
1194 case IPPROTO_IPIP:
1195 proto = htons(ETH_P_IP);
1196
1197 key_control->flags |= FLOW_DIS_ENCAPSULATION;
1198 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1199 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1200 break;
1201 }
1202
1203 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1204 break;
1205
1206 case IPPROTO_IPV6:
1207 proto = htons(ETH_P_IPV6);
1208
1209 key_control->flags |= FLOW_DIS_ENCAPSULATION;
1210 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1211 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1212 break;
1213 }
1214
1215 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1216 break;
1217
1218
1219 case IPPROTO_MPLS:
1220 proto = htons(ETH_P_MPLS_UC);
1221 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1222 break;
1223
1224 case IPPROTO_TCP:
1225 __skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1226 data, nhoff, hlen);
1227 break;
1228
1229 default:
1230 break;
1231 }
1232
1233 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS) &&
1234 !(key_control->flags & FLOW_DIS_IS_FRAGMENT)) {
1235 key_ports = skb_flow_dissector_target(flow_dissector,
1236 FLOW_DISSECTOR_KEY_PORTS,
1237 target_container);
1238 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
1239 data, hlen);
1240 }
1241
1242 if (dissector_uses_key(flow_dissector,
1243 FLOW_DISSECTOR_KEY_ICMP)) {
1244 key_icmp = skb_flow_dissector_target(flow_dissector,
1245 FLOW_DISSECTOR_KEY_ICMP,
1246 target_container);
1247 key_icmp->icmp = skb_flow_get_be16(skb, nhoff, data, hlen);
1248 }
1249
1250 /* Process result of IP proto processing */
1251 switch (fdret) {
1252 case FLOW_DISSECT_RET_PROTO_AGAIN:
1253 if (skb_flow_dissect_allowed(&num_hdrs))
1254 goto proto_again;
1255 break;
1256 case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1257 if (skb_flow_dissect_allowed(&num_hdrs))
1258 goto ip_proto_again;
1259 break;
1260 case FLOW_DISSECT_RET_OUT_GOOD:
1261 case FLOW_DISSECT_RET_CONTINUE:
1262 break;
1263 case FLOW_DISSECT_RET_OUT_BAD:
1264 default:
1265 goto out_bad;
1266 }
1267
1268 out_good:
1269 ret = true;
1270
1271 out:
1272 key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1273 key_basic->n_proto = proto;
1274 key_basic->ip_proto = ip_proto;
1275
1276 return ret;
1277
1278 out_bad:
1279 ret = false;
1280 goto out;
1281 }
1282 EXPORT_SYMBOL(__skb_flow_dissect);
1283
1284 static u32 hashrnd __read_mostly;
1285 static __always_inline void __flow_hash_secret_init(void)
1286 {
1287 net_get_random_once(&hashrnd, sizeof(hashrnd));
1288 }
1289
1290 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
1291 u32 keyval)
1292 {
1293 return jhash2(words, length, keyval);
1294 }
1295
1296 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
1297 {
1298 const void *p = flow;
1299
1300 BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
1301 return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
1302 }
1303
1304 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1305 {
1306 size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1307 BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1308 BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
1309 sizeof(*flow) - sizeof(flow->addrs));
1310
1311 switch (flow->control.addr_type) {
1312 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1313 diff -= sizeof(flow->addrs.v4addrs);
1314 break;
1315 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1316 diff -= sizeof(flow->addrs.v6addrs);
1317 break;
1318 case FLOW_DISSECTOR_KEY_TIPC:
1319 diff -= sizeof(flow->addrs.tipckey);
1320 break;
1321 }
1322 return (sizeof(*flow) - diff) / sizeof(u32);
1323 }
1324
1325 __be32 flow_get_u32_src(const struct flow_keys *flow)
1326 {
1327 switch (flow->control.addr_type) {
1328 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1329 return flow->addrs.v4addrs.src;
1330 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1331 return (__force __be32)ipv6_addr_hash(
1332 &flow->addrs.v6addrs.src);
1333 case FLOW_DISSECTOR_KEY_TIPC:
1334 return flow->addrs.tipckey.key;
1335 default:
1336 return 0;
1337 }
1338 }
1339 EXPORT_SYMBOL(flow_get_u32_src);
1340
1341 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1342 {
1343 switch (flow->control.addr_type) {
1344 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1345 return flow->addrs.v4addrs.dst;
1346 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1347 return (__force __be32)ipv6_addr_hash(
1348 &flow->addrs.v6addrs.dst);
1349 default:
1350 return 0;
1351 }
1352 }
1353 EXPORT_SYMBOL(flow_get_u32_dst);
1354
1355 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1356 {
1357 int addr_diff, i;
1358
1359 switch (keys->control.addr_type) {
1360 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1361 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
1362 (__force u32)keys->addrs.v4addrs.src;
1363 if ((addr_diff < 0) ||
1364 (addr_diff == 0 &&
1365 ((__force u16)keys->ports.dst <
1366 (__force u16)keys->ports.src))) {
1367 swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1368 swap(keys->ports.src, keys->ports.dst);
1369 }
1370 break;
1371 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1372 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1373 &keys->addrs.v6addrs.src,
1374 sizeof(keys->addrs.v6addrs.dst));
1375 if ((addr_diff < 0) ||
1376 (addr_diff == 0 &&
1377 ((__force u16)keys->ports.dst <
1378 (__force u16)keys->ports.src))) {
1379 for (i = 0; i < 4; i++)
1380 swap(keys->addrs.v6addrs.src.s6_addr32[i],
1381 keys->addrs.v6addrs.dst.s6_addr32[i]);
1382 swap(keys->ports.src, keys->ports.dst);
1383 }
1384 break;
1385 }
1386 }
1387
1388 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
1389 {
1390 u32 hash;
1391
1392 __flow_hash_consistentify(keys);
1393
1394 hash = __flow_hash_words(flow_keys_hash_start(keys),
1395 flow_keys_hash_length(keys), keyval);
1396 if (!hash)
1397 hash = 1;
1398
1399 return hash;
1400 }
1401
1402 u32 flow_hash_from_keys(struct flow_keys *keys)
1403 {
1404 __flow_hash_secret_init();
1405 return __flow_hash_from_keys(keys, hashrnd);
1406 }
1407 EXPORT_SYMBOL(flow_hash_from_keys);
1408
1409 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1410 struct flow_keys *keys, u32 keyval)
1411 {
1412 skb_flow_dissect_flow_keys(skb, keys,
1413 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1414
1415 return __flow_hash_from_keys(keys, keyval);
1416 }
1417
1418 struct _flow_keys_digest_data {
1419 __be16 n_proto;
1420 u8 ip_proto;
1421 u8 padding;
1422 __be32 ports;
1423 __be32 src;
1424 __be32 dst;
1425 };
1426
1427 void make_flow_keys_digest(struct flow_keys_digest *digest,
1428 const struct flow_keys *flow)
1429 {
1430 struct _flow_keys_digest_data *data =
1431 (struct _flow_keys_digest_data *)digest;
1432
1433 BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1434
1435 memset(digest, 0, sizeof(*digest));
1436
1437 data->n_proto = flow->basic.n_proto;
1438 data->ip_proto = flow->basic.ip_proto;
1439 data->ports = flow->ports.ports;
1440 data->src = flow->addrs.v4addrs.src;
1441 data->dst = flow->addrs.v4addrs.dst;
1442 }
1443 EXPORT_SYMBOL(make_flow_keys_digest);
1444
1445 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1446
1447 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1448 {
1449 struct flow_keys keys;
1450
1451 __flow_hash_secret_init();
1452
1453 memset(&keys, 0, sizeof(keys));
1454 __skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
1455 &keys, NULL, 0, 0, 0,
1456 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1457
1458 return __flow_hash_from_keys(&keys, hashrnd);
1459 }
1460 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1461
1462 /**
1463 * __skb_get_hash: calculate a flow hash
1464 * @skb: sk_buff to calculate flow hash from
1465 *
1466 * This function calculates a flow hash based on src/dst addresses
1467 * and src/dst port numbers. Sets hash in skb to non-zero hash value
1468 * on success, zero indicates no valid hash. Also, sets l4_hash in skb
1469 * if hash is a canonical 4-tuple hash over transport ports.
1470 */
1471 void __skb_get_hash(struct sk_buff *skb)
1472 {
1473 struct flow_keys keys;
1474 u32 hash;
1475
1476 __flow_hash_secret_init();
1477
1478 hash = ___skb_get_hash(skb, &keys, hashrnd);
1479
1480 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1481 }
1482 EXPORT_SYMBOL(__skb_get_hash);
1483
1484 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
1485 {
1486 struct flow_keys keys;
1487
1488 return ___skb_get_hash(skb, &keys, perturb);
1489 }
1490 EXPORT_SYMBOL(skb_get_hash_perturb);
1491
1492 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1493 const struct flow_keys_basic *keys, int hlen)
1494 {
1495 u32 poff = keys->control.thoff;
1496
1497 /* skip L4 headers for fragments after the first */
1498 if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1499 !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1500 return poff;
1501
1502 switch (keys->basic.ip_proto) {
1503 case IPPROTO_TCP: {
1504 /* access doff as u8 to avoid unaligned access */
1505 const u8 *doff;
1506 u8 _doff;
1507
1508 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1509 data, hlen, &_doff);
1510 if (!doff)
1511 return poff;
1512
1513 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1514 break;
1515 }
1516 case IPPROTO_UDP:
1517 case IPPROTO_UDPLITE:
1518 poff += sizeof(struct udphdr);
1519 break;
1520 /* For the rest, we do not really care about header
1521 * extensions at this point for now.
1522 */
1523 case IPPROTO_ICMP:
1524 poff += sizeof(struct icmphdr);
1525 break;
1526 case IPPROTO_ICMPV6:
1527 poff += sizeof(struct icmp6hdr);
1528 break;
1529 case IPPROTO_IGMP:
1530 poff += sizeof(struct igmphdr);
1531 break;
1532 case IPPROTO_DCCP:
1533 poff += sizeof(struct dccp_hdr);
1534 break;
1535 case IPPROTO_SCTP:
1536 poff += sizeof(struct sctphdr);
1537 break;
1538 }
1539
1540 return poff;
1541 }
1542
1543 /**
1544 * skb_get_poff - get the offset to the payload
1545 * @skb: sk_buff to get the payload offset from
1546 *
1547 * The function will get the offset to the payload as far as it could
1548 * be dissected. The main user is currently BPF, so that we can dynamically
1549 * truncate packets without needing to push actual payload to the user
1550 * space and can analyze headers only, instead.
1551 */
1552 u32 skb_get_poff(const struct sk_buff *skb)
1553 {
1554 struct flow_keys_basic keys;
1555
1556 if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
1557 NULL, 0, 0, 0, 0))
1558 return 0;
1559
1560 return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1561 }
1562
1563 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1564 {
1565 memset(keys, 0, sizeof(*keys));
1566
1567 memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1568 sizeof(keys->addrs.v6addrs.src));
1569 memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1570 sizeof(keys->addrs.v6addrs.dst));
1571 keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1572 keys->ports.src = fl6->fl6_sport;
1573 keys->ports.dst = fl6->fl6_dport;
1574 keys->keyid.keyid = fl6->fl6_gre_key;
1575 keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1576 keys->basic.ip_proto = fl6->flowi6_proto;
1577
1578 return flow_hash_from_keys(keys);
1579 }
1580 EXPORT_SYMBOL(__get_hash_from_flowi6);
1581
1582 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1583 {
1584 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1585 .offset = offsetof(struct flow_keys, control),
1586 },
1587 {
1588 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1589 .offset = offsetof(struct flow_keys, basic),
1590 },
1591 {
1592 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1593 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1594 },
1595 {
1596 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1597 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1598 },
1599 {
1600 .key_id = FLOW_DISSECTOR_KEY_TIPC,
1601 .offset = offsetof(struct flow_keys, addrs.tipckey),
1602 },
1603 {
1604 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1605 .offset = offsetof(struct flow_keys, ports),
1606 },
1607 {
1608 .key_id = FLOW_DISSECTOR_KEY_VLAN,
1609 .offset = offsetof(struct flow_keys, vlan),
1610 },
1611 {
1612 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1613 .offset = offsetof(struct flow_keys, tags),
1614 },
1615 {
1616 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1617 .offset = offsetof(struct flow_keys, keyid),
1618 },
1619 };
1620
1621 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1622 {
1623 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1624 .offset = offsetof(struct flow_keys, control),
1625 },
1626 {
1627 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1628 .offset = offsetof(struct flow_keys, basic),
1629 },
1630 {
1631 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1632 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1633 },
1634 {
1635 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1636 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1637 },
1638 {
1639 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1640 .offset = offsetof(struct flow_keys, ports),
1641 },
1642 };
1643
1644 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1645 {
1646 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1647 .offset = offsetof(struct flow_keys, control),
1648 },
1649 {
1650 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1651 .offset = offsetof(struct flow_keys, basic),
1652 },
1653 };
1654
1655 struct flow_dissector flow_keys_dissector __read_mostly;
1656 EXPORT_SYMBOL(flow_keys_dissector);
1657
1658 struct flow_dissector flow_keys_basic_dissector __read_mostly;
1659 EXPORT_SYMBOL(flow_keys_basic_dissector);
1660
1661 static int __init init_default_flow_dissectors(void)
1662 {
1663 skb_flow_dissector_init(&flow_keys_dissector,
1664 flow_keys_dissector_keys,
1665 ARRAY_SIZE(flow_keys_dissector_keys));
1666 skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1667 flow_keys_dissector_symmetric_keys,
1668 ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1669 skb_flow_dissector_init(&flow_keys_basic_dissector,
1670 flow_keys_basic_dissector_keys,
1671 ARRAY_SIZE(flow_keys_basic_dissector_keys));
1672 return 0;
1673 }
1674
1675 core_initcall(init_default_flow_dissectors);