]> git.ipfire.org Git - people/arne_f/kernel.git/blob - net/core/net_namespace.c
net: move somaxconn init from sysctl code
[people/arne_f/kernel.git] / net / core / net_namespace.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <net/sock.h>
20 #include <net/netlink.h>
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23
24 /*
25 * Our network namespace constructor/destructor lists
26 */
27
28 static LIST_HEAD(pernet_list);
29 static struct list_head *first_device = &pernet_list;
30 DEFINE_MUTEX(net_mutex);
31
32 LIST_HEAD(net_namespace_list);
33 EXPORT_SYMBOL_GPL(net_namespace_list);
34
35 struct net init_net = {
36 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
37 };
38 EXPORT_SYMBOL(init_net);
39
40 static bool init_net_initialized;
41
42 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
43
44 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
45
46 static struct net_generic *net_alloc_generic(void)
47 {
48 struct net_generic *ng;
49 size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
50
51 ng = kzalloc(generic_size, GFP_KERNEL);
52 if (ng)
53 ng->len = max_gen_ptrs;
54
55 return ng;
56 }
57
58 static int net_assign_generic(struct net *net, int id, void *data)
59 {
60 struct net_generic *ng, *old_ng;
61
62 BUG_ON(!mutex_is_locked(&net_mutex));
63 BUG_ON(id == 0);
64
65 old_ng = rcu_dereference_protected(net->gen,
66 lockdep_is_held(&net_mutex));
67 ng = old_ng;
68 if (old_ng->len >= id)
69 goto assign;
70
71 ng = net_alloc_generic();
72 if (ng == NULL)
73 return -ENOMEM;
74
75 /*
76 * Some synchronisation notes:
77 *
78 * The net_generic explores the net->gen array inside rcu
79 * read section. Besides once set the net->gen->ptr[x]
80 * pointer never changes (see rules in netns/generic.h).
81 *
82 * That said, we simply duplicate this array and schedule
83 * the old copy for kfree after a grace period.
84 */
85
86 memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
87
88 rcu_assign_pointer(net->gen, ng);
89 kfree_rcu(old_ng, rcu);
90 assign:
91 ng->ptr[id - 1] = data;
92 return 0;
93 }
94
95 static int ops_init(const struct pernet_operations *ops, struct net *net)
96 {
97 int err = -ENOMEM;
98 void *data = NULL;
99
100 if (ops->id && ops->size) {
101 data = kzalloc(ops->size, GFP_KERNEL);
102 if (!data)
103 goto out;
104
105 err = net_assign_generic(net, *ops->id, data);
106 if (err)
107 goto cleanup;
108 }
109 err = 0;
110 if (ops->init)
111 err = ops->init(net);
112 if (!err)
113 return 0;
114
115 cleanup:
116 kfree(data);
117
118 out:
119 return err;
120 }
121
122 static void ops_free(const struct pernet_operations *ops, struct net *net)
123 {
124 if (ops->id && ops->size) {
125 int id = *ops->id;
126 kfree(net_generic(net, id));
127 }
128 }
129
130 static void ops_exit_list(const struct pernet_operations *ops,
131 struct list_head *net_exit_list)
132 {
133 struct net *net;
134 if (ops->exit) {
135 list_for_each_entry(net, net_exit_list, exit_list)
136 ops->exit(net);
137 }
138 if (ops->exit_batch)
139 ops->exit_batch(net_exit_list);
140 }
141
142 static void ops_free_list(const struct pernet_operations *ops,
143 struct list_head *net_exit_list)
144 {
145 struct net *net;
146 if (ops->size && ops->id) {
147 list_for_each_entry(net, net_exit_list, exit_list)
148 ops_free(ops, net);
149 }
150 }
151
152 /* should be called with nsid_lock held */
153 static int alloc_netid(struct net *net, struct net *peer, int reqid)
154 {
155 int min = 0, max = 0;
156
157 if (reqid >= 0) {
158 min = reqid;
159 max = reqid + 1;
160 }
161
162 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
163 }
164
165 /* This function is used by idr_for_each(). If net is equal to peer, the
166 * function returns the id so that idr_for_each() stops. Because we cannot
167 * returns the id 0 (idr_for_each() will not stop), we return the magic value
168 * NET_ID_ZERO (-1) for it.
169 */
170 #define NET_ID_ZERO -1
171 static int net_eq_idr(int id, void *net, void *peer)
172 {
173 if (net_eq(net, peer))
174 return id ? : NET_ID_ZERO;
175 return 0;
176 }
177
178 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
179 * is set to true, thus the caller knows that the new id must be notified via
180 * rtnl.
181 */
182 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
183 {
184 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
185 bool alloc_it = *alloc;
186
187 *alloc = false;
188
189 /* Magic value for id 0. */
190 if (id == NET_ID_ZERO)
191 return 0;
192 if (id > 0)
193 return id;
194
195 if (alloc_it) {
196 id = alloc_netid(net, peer, -1);
197 *alloc = true;
198 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
199 }
200
201 return NETNSA_NSID_NOT_ASSIGNED;
202 }
203
204 /* should be called with nsid_lock held */
205 static int __peernet2id(struct net *net, struct net *peer)
206 {
207 bool no = false;
208
209 return __peernet2id_alloc(net, peer, &no);
210 }
211
212 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
213 /* This function returns the id of a peer netns. If no id is assigned, one will
214 * be allocated and returned.
215 */
216 int peernet2id_alloc(struct net *net, struct net *peer)
217 {
218 unsigned long flags;
219 bool alloc;
220 int id;
221
222 if (atomic_read(&net->count) == 0)
223 return NETNSA_NSID_NOT_ASSIGNED;
224 spin_lock_irqsave(&net->nsid_lock, flags);
225 alloc = atomic_read(&peer->count) == 0 ? false : true;
226 id = __peernet2id_alloc(net, peer, &alloc);
227 spin_unlock_irqrestore(&net->nsid_lock, flags);
228 if (alloc && id >= 0)
229 rtnl_net_notifyid(net, RTM_NEWNSID, id);
230 return id;
231 }
232
233 /* This function returns, if assigned, the id of a peer netns. */
234 int peernet2id(struct net *net, struct net *peer)
235 {
236 unsigned long flags;
237 int id;
238
239 spin_lock_irqsave(&net->nsid_lock, flags);
240 id = __peernet2id(net, peer);
241 spin_unlock_irqrestore(&net->nsid_lock, flags);
242 return id;
243 }
244 EXPORT_SYMBOL(peernet2id);
245
246 /* This function returns true is the peer netns has an id assigned into the
247 * current netns.
248 */
249 bool peernet_has_id(struct net *net, struct net *peer)
250 {
251 return peernet2id(net, peer) >= 0;
252 }
253
254 struct net *get_net_ns_by_id(struct net *net, int id)
255 {
256 unsigned long flags;
257 struct net *peer;
258
259 if (id < 0)
260 return NULL;
261
262 rcu_read_lock();
263 spin_lock_irqsave(&net->nsid_lock, flags);
264 peer = idr_find(&net->netns_ids, id);
265 if (peer)
266 peer = maybe_get_net(peer);
267 spin_unlock_irqrestore(&net->nsid_lock, flags);
268 rcu_read_unlock();
269
270 return peer;
271 }
272
273 /*
274 * setup_net runs the initializers for the network namespace object.
275 */
276 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
277 {
278 /* Must be called with net_mutex held */
279 const struct pernet_operations *ops, *saved_ops;
280 int error = 0;
281 LIST_HEAD(net_exit_list);
282
283 atomic_set(&net->count, 1);
284 atomic_set(&net->passive, 1);
285 net->dev_base_seq = 1;
286 net->user_ns = user_ns;
287 idr_init(&net->netns_ids);
288 spin_lock_init(&net->nsid_lock);
289
290 list_for_each_entry(ops, &pernet_list, list) {
291 error = ops_init(ops, net);
292 if (error < 0)
293 goto out_undo;
294 }
295 out:
296 return error;
297
298 out_undo:
299 /* Walk through the list backwards calling the exit functions
300 * for the pernet modules whose init functions did not fail.
301 */
302 list_add(&net->exit_list, &net_exit_list);
303 saved_ops = ops;
304 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
305 ops_exit_list(ops, &net_exit_list);
306
307 ops = saved_ops;
308 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
309 ops_free_list(ops, &net_exit_list);
310
311 rcu_barrier();
312 goto out;
313 }
314
315 static int __net_init net_defaults_init_net(struct net *net)
316 {
317 net->core.sysctl_somaxconn = SOMAXCONN;
318 return 0;
319 }
320
321 static struct pernet_operations net_defaults_ops = {
322 .init = net_defaults_init_net,
323 };
324
325 static __init int net_defaults_init(void)
326 {
327 if (register_pernet_subsys(&net_defaults_ops))
328 panic("Cannot initialize net default settings");
329
330 return 0;
331 }
332
333 core_initcall(net_defaults_init);
334
335 #ifdef CONFIG_NET_NS
336 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
337 {
338 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
339 }
340
341 static void dec_net_namespaces(struct ucounts *ucounts)
342 {
343 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
344 }
345
346 static struct kmem_cache *net_cachep;
347 static struct workqueue_struct *netns_wq;
348
349 static struct net *net_alloc(void)
350 {
351 struct net *net = NULL;
352 struct net_generic *ng;
353
354 ng = net_alloc_generic();
355 if (!ng)
356 goto out;
357
358 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
359 if (!net)
360 goto out_free;
361
362 rcu_assign_pointer(net->gen, ng);
363 out:
364 return net;
365
366 out_free:
367 kfree(ng);
368 goto out;
369 }
370
371 static void net_free(struct net *net)
372 {
373 kfree(rcu_access_pointer(net->gen));
374 kmem_cache_free(net_cachep, net);
375 }
376
377 void net_drop_ns(void *p)
378 {
379 struct net *ns = p;
380 if (ns && atomic_dec_and_test(&ns->passive))
381 net_free(ns);
382 }
383
384 struct net *copy_net_ns(unsigned long flags,
385 struct user_namespace *user_ns, struct net *old_net)
386 {
387 struct ucounts *ucounts;
388 struct net *net;
389 int rv;
390
391 if (!(flags & CLONE_NEWNET))
392 return get_net(old_net);
393
394 ucounts = inc_net_namespaces(user_ns);
395 if (!ucounts)
396 return ERR_PTR(-ENOSPC);
397
398 net = net_alloc();
399 if (!net) {
400 dec_net_namespaces(ucounts);
401 return ERR_PTR(-ENOMEM);
402 }
403
404 get_user_ns(user_ns);
405
406 mutex_lock(&net_mutex);
407 net->ucounts = ucounts;
408 rv = setup_net(net, user_ns);
409 if (rv == 0) {
410 rtnl_lock();
411 list_add_tail_rcu(&net->list, &net_namespace_list);
412 rtnl_unlock();
413 }
414 mutex_unlock(&net_mutex);
415 if (rv < 0) {
416 dec_net_namespaces(ucounts);
417 put_user_ns(user_ns);
418 net_drop_ns(net);
419 return ERR_PTR(rv);
420 }
421 return net;
422 }
423
424 static DEFINE_SPINLOCK(cleanup_list_lock);
425 static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */
426
427 static void cleanup_net(struct work_struct *work)
428 {
429 const struct pernet_operations *ops;
430 struct net *net, *tmp;
431 struct list_head net_kill_list;
432 LIST_HEAD(net_exit_list);
433
434 /* Atomically snapshot the list of namespaces to cleanup */
435 spin_lock_irq(&cleanup_list_lock);
436 list_replace_init(&cleanup_list, &net_kill_list);
437 spin_unlock_irq(&cleanup_list_lock);
438
439 mutex_lock(&net_mutex);
440
441 /* Don't let anyone else find us. */
442 rtnl_lock();
443 list_for_each_entry(net, &net_kill_list, cleanup_list) {
444 list_del_rcu(&net->list);
445 list_add_tail(&net->exit_list, &net_exit_list);
446 for_each_net(tmp) {
447 int id;
448
449 spin_lock_irq(&tmp->nsid_lock);
450 id = __peernet2id(tmp, net);
451 if (id >= 0)
452 idr_remove(&tmp->netns_ids, id);
453 spin_unlock_irq(&tmp->nsid_lock);
454 if (id >= 0)
455 rtnl_net_notifyid(tmp, RTM_DELNSID, id);
456 }
457 spin_lock_irq(&net->nsid_lock);
458 idr_destroy(&net->netns_ids);
459 spin_unlock_irq(&net->nsid_lock);
460
461 }
462 rtnl_unlock();
463
464 /*
465 * Another CPU might be rcu-iterating the list, wait for it.
466 * This needs to be before calling the exit() notifiers, so
467 * the rcu_barrier() below isn't sufficient alone.
468 */
469 synchronize_rcu();
470
471 /* Run all of the network namespace exit methods */
472 list_for_each_entry_reverse(ops, &pernet_list, list)
473 ops_exit_list(ops, &net_exit_list);
474
475 /* Free the net generic variables */
476 list_for_each_entry_reverse(ops, &pernet_list, list)
477 ops_free_list(ops, &net_exit_list);
478
479 mutex_unlock(&net_mutex);
480
481 /* Ensure there are no outstanding rcu callbacks using this
482 * network namespace.
483 */
484 rcu_barrier();
485
486 /* Finally it is safe to free my network namespace structure */
487 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
488 list_del_init(&net->exit_list);
489 dec_net_namespaces(net->ucounts);
490 put_user_ns(net->user_ns);
491 net_drop_ns(net);
492 }
493 }
494 static DECLARE_WORK(net_cleanup_work, cleanup_net);
495
496 void __put_net(struct net *net)
497 {
498 /* Cleanup the network namespace in process context */
499 unsigned long flags;
500
501 spin_lock_irqsave(&cleanup_list_lock, flags);
502 list_add(&net->cleanup_list, &cleanup_list);
503 spin_unlock_irqrestore(&cleanup_list_lock, flags);
504
505 queue_work(netns_wq, &net_cleanup_work);
506 }
507 EXPORT_SYMBOL_GPL(__put_net);
508
509 struct net *get_net_ns_by_fd(int fd)
510 {
511 struct file *file;
512 struct ns_common *ns;
513 struct net *net;
514
515 file = proc_ns_fget(fd);
516 if (IS_ERR(file))
517 return ERR_CAST(file);
518
519 ns = get_proc_ns(file_inode(file));
520 if (ns->ops == &netns_operations)
521 net = get_net(container_of(ns, struct net, ns));
522 else
523 net = ERR_PTR(-EINVAL);
524
525 fput(file);
526 return net;
527 }
528
529 #else
530 struct net *get_net_ns_by_fd(int fd)
531 {
532 return ERR_PTR(-EINVAL);
533 }
534 #endif
535 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
536
537 struct net *get_net_ns_by_pid(pid_t pid)
538 {
539 struct task_struct *tsk;
540 struct net *net;
541
542 /* Lookup the network namespace */
543 net = ERR_PTR(-ESRCH);
544 rcu_read_lock();
545 tsk = find_task_by_vpid(pid);
546 if (tsk) {
547 struct nsproxy *nsproxy;
548 task_lock(tsk);
549 nsproxy = tsk->nsproxy;
550 if (nsproxy)
551 net = get_net(nsproxy->net_ns);
552 task_unlock(tsk);
553 }
554 rcu_read_unlock();
555 return net;
556 }
557 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
558
559 static __net_init int net_ns_net_init(struct net *net)
560 {
561 #ifdef CONFIG_NET_NS
562 net->ns.ops = &netns_operations;
563 #endif
564 return ns_alloc_inum(&net->ns);
565 }
566
567 static __net_exit void net_ns_net_exit(struct net *net)
568 {
569 ns_free_inum(&net->ns);
570 }
571
572 static struct pernet_operations __net_initdata net_ns_ops = {
573 .init = net_ns_net_init,
574 .exit = net_ns_net_exit,
575 };
576
577 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
578 [NETNSA_NONE] = { .type = NLA_UNSPEC },
579 [NETNSA_NSID] = { .type = NLA_S32 },
580 [NETNSA_PID] = { .type = NLA_U32 },
581 [NETNSA_FD] = { .type = NLA_U32 },
582 };
583
584 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
585 {
586 struct net *net = sock_net(skb->sk);
587 struct nlattr *tb[NETNSA_MAX + 1];
588 unsigned long flags;
589 struct net *peer;
590 int nsid, err;
591
592 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
593 rtnl_net_policy);
594 if (err < 0)
595 return err;
596 if (!tb[NETNSA_NSID])
597 return -EINVAL;
598 nsid = nla_get_s32(tb[NETNSA_NSID]);
599
600 if (tb[NETNSA_PID])
601 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
602 else if (tb[NETNSA_FD])
603 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
604 else
605 return -EINVAL;
606 if (IS_ERR(peer))
607 return PTR_ERR(peer);
608
609 spin_lock_irqsave(&net->nsid_lock, flags);
610 if (__peernet2id(net, peer) >= 0) {
611 spin_unlock_irqrestore(&net->nsid_lock, flags);
612 err = -EEXIST;
613 goto out;
614 }
615
616 err = alloc_netid(net, peer, nsid);
617 spin_unlock_irqrestore(&net->nsid_lock, flags);
618 if (err >= 0) {
619 rtnl_net_notifyid(net, RTM_NEWNSID, err);
620 err = 0;
621 }
622 out:
623 put_net(peer);
624 return err;
625 }
626
627 static int rtnl_net_get_size(void)
628 {
629 return NLMSG_ALIGN(sizeof(struct rtgenmsg))
630 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
631 ;
632 }
633
634 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
635 int cmd, struct net *net, int nsid)
636 {
637 struct nlmsghdr *nlh;
638 struct rtgenmsg *rth;
639
640 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
641 if (!nlh)
642 return -EMSGSIZE;
643
644 rth = nlmsg_data(nlh);
645 rth->rtgen_family = AF_UNSPEC;
646
647 if (nla_put_s32(skb, NETNSA_NSID, nsid))
648 goto nla_put_failure;
649
650 nlmsg_end(skb, nlh);
651 return 0;
652
653 nla_put_failure:
654 nlmsg_cancel(skb, nlh);
655 return -EMSGSIZE;
656 }
657
658 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
659 {
660 struct net *net = sock_net(skb->sk);
661 struct nlattr *tb[NETNSA_MAX + 1];
662 struct sk_buff *msg;
663 struct net *peer;
664 int err, id;
665
666 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
667 rtnl_net_policy);
668 if (err < 0)
669 return err;
670 if (tb[NETNSA_PID])
671 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
672 else if (tb[NETNSA_FD])
673 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
674 else
675 return -EINVAL;
676
677 if (IS_ERR(peer))
678 return PTR_ERR(peer);
679
680 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
681 if (!msg) {
682 err = -ENOMEM;
683 goto out;
684 }
685
686 id = peernet2id(net, peer);
687 err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
688 RTM_NEWNSID, net, id);
689 if (err < 0)
690 goto err_out;
691
692 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
693 goto out;
694
695 err_out:
696 nlmsg_free(msg);
697 out:
698 put_net(peer);
699 return err;
700 }
701
702 struct rtnl_net_dump_cb {
703 struct net *net;
704 struct sk_buff *skb;
705 struct netlink_callback *cb;
706 int idx;
707 int s_idx;
708 };
709
710 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
711 {
712 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
713 int ret;
714
715 if (net_cb->idx < net_cb->s_idx)
716 goto cont;
717
718 ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
719 net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
720 RTM_NEWNSID, net_cb->net, id);
721 if (ret < 0)
722 return ret;
723
724 cont:
725 net_cb->idx++;
726 return 0;
727 }
728
729 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
730 {
731 struct net *net = sock_net(skb->sk);
732 struct rtnl_net_dump_cb net_cb = {
733 .net = net,
734 .skb = skb,
735 .cb = cb,
736 .idx = 0,
737 .s_idx = cb->args[0],
738 };
739 unsigned long flags;
740
741 spin_lock_irqsave(&net->nsid_lock, flags);
742 idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
743 spin_unlock_irqrestore(&net->nsid_lock, flags);
744
745 cb->args[0] = net_cb.idx;
746 return skb->len;
747 }
748
749 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
750 {
751 struct sk_buff *msg;
752 int err = -ENOMEM;
753
754 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
755 if (!msg)
756 goto out;
757
758 err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
759 if (err < 0)
760 goto err_out;
761
762 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
763 return;
764
765 err_out:
766 nlmsg_free(msg);
767 out:
768 rtnl_set_sk_err(net, RTNLGRP_NSID, err);
769 }
770
771 static int __init net_ns_init(void)
772 {
773 struct net_generic *ng;
774
775 #ifdef CONFIG_NET_NS
776 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
777 SMP_CACHE_BYTES,
778 SLAB_PANIC, NULL);
779
780 /* Create workqueue for cleanup */
781 netns_wq = create_singlethread_workqueue("netns");
782 if (!netns_wq)
783 panic("Could not create netns workq");
784 #endif
785
786 ng = net_alloc_generic();
787 if (!ng)
788 panic("Could not allocate generic netns");
789
790 rcu_assign_pointer(init_net.gen, ng);
791
792 mutex_lock(&net_mutex);
793 if (setup_net(&init_net, &init_user_ns))
794 panic("Could not setup the initial network namespace");
795
796 init_net_initialized = true;
797
798 rtnl_lock();
799 list_add_tail_rcu(&init_net.list, &net_namespace_list);
800 rtnl_unlock();
801
802 mutex_unlock(&net_mutex);
803
804 register_pernet_subsys(&net_ns_ops);
805
806 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
807 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
808 NULL);
809
810 return 0;
811 }
812
813 pure_initcall(net_ns_init);
814
815 #ifdef CONFIG_NET_NS
816 static int __register_pernet_operations(struct list_head *list,
817 struct pernet_operations *ops)
818 {
819 struct net *net;
820 int error;
821 LIST_HEAD(net_exit_list);
822
823 list_add_tail(&ops->list, list);
824 if (ops->init || (ops->id && ops->size)) {
825 for_each_net(net) {
826 error = ops_init(ops, net);
827 if (error)
828 goto out_undo;
829 list_add_tail(&net->exit_list, &net_exit_list);
830 }
831 }
832 return 0;
833
834 out_undo:
835 /* If I have an error cleanup all namespaces I initialized */
836 list_del(&ops->list);
837 ops_exit_list(ops, &net_exit_list);
838 ops_free_list(ops, &net_exit_list);
839 return error;
840 }
841
842 static void __unregister_pernet_operations(struct pernet_operations *ops)
843 {
844 struct net *net;
845 LIST_HEAD(net_exit_list);
846
847 list_del(&ops->list);
848 for_each_net(net)
849 list_add_tail(&net->exit_list, &net_exit_list);
850 ops_exit_list(ops, &net_exit_list);
851 ops_free_list(ops, &net_exit_list);
852 }
853
854 #else
855
856 static int __register_pernet_operations(struct list_head *list,
857 struct pernet_operations *ops)
858 {
859 if (!init_net_initialized) {
860 list_add_tail(&ops->list, list);
861 return 0;
862 }
863
864 return ops_init(ops, &init_net);
865 }
866
867 static void __unregister_pernet_operations(struct pernet_operations *ops)
868 {
869 if (!init_net_initialized) {
870 list_del(&ops->list);
871 } else {
872 LIST_HEAD(net_exit_list);
873 list_add(&init_net.exit_list, &net_exit_list);
874 ops_exit_list(ops, &net_exit_list);
875 ops_free_list(ops, &net_exit_list);
876 }
877 }
878
879 #endif /* CONFIG_NET_NS */
880
881 static DEFINE_IDA(net_generic_ids);
882
883 static int register_pernet_operations(struct list_head *list,
884 struct pernet_operations *ops)
885 {
886 int error;
887
888 if (ops->id) {
889 again:
890 error = ida_get_new_above(&net_generic_ids, 1, ops->id);
891 if (error < 0) {
892 if (error == -EAGAIN) {
893 ida_pre_get(&net_generic_ids, GFP_KERNEL);
894 goto again;
895 }
896 return error;
897 }
898 max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
899 }
900 error = __register_pernet_operations(list, ops);
901 if (error) {
902 rcu_barrier();
903 if (ops->id)
904 ida_remove(&net_generic_ids, *ops->id);
905 }
906
907 return error;
908 }
909
910 static void unregister_pernet_operations(struct pernet_operations *ops)
911 {
912
913 __unregister_pernet_operations(ops);
914 rcu_barrier();
915 if (ops->id)
916 ida_remove(&net_generic_ids, *ops->id);
917 }
918
919 /**
920 * register_pernet_subsys - register a network namespace subsystem
921 * @ops: pernet operations structure for the subsystem
922 *
923 * Register a subsystem which has init and exit functions
924 * that are called when network namespaces are created and
925 * destroyed respectively.
926 *
927 * When registered all network namespace init functions are
928 * called for every existing network namespace. Allowing kernel
929 * modules to have a race free view of the set of network namespaces.
930 *
931 * When a new network namespace is created all of the init
932 * methods are called in the order in which they were registered.
933 *
934 * When a network namespace is destroyed all of the exit methods
935 * are called in the reverse of the order with which they were
936 * registered.
937 */
938 int register_pernet_subsys(struct pernet_operations *ops)
939 {
940 int error;
941 mutex_lock(&net_mutex);
942 error = register_pernet_operations(first_device, ops);
943 mutex_unlock(&net_mutex);
944 return error;
945 }
946 EXPORT_SYMBOL_GPL(register_pernet_subsys);
947
948 /**
949 * unregister_pernet_subsys - unregister a network namespace subsystem
950 * @ops: pernet operations structure to manipulate
951 *
952 * Remove the pernet operations structure from the list to be
953 * used when network namespaces are created or destroyed. In
954 * addition run the exit method for all existing network
955 * namespaces.
956 */
957 void unregister_pernet_subsys(struct pernet_operations *ops)
958 {
959 mutex_lock(&net_mutex);
960 unregister_pernet_operations(ops);
961 mutex_unlock(&net_mutex);
962 }
963 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
964
965 /**
966 * register_pernet_device - register a network namespace device
967 * @ops: pernet operations structure for the subsystem
968 *
969 * Register a device which has init and exit functions
970 * that are called when network namespaces are created and
971 * destroyed respectively.
972 *
973 * When registered all network namespace init functions are
974 * called for every existing network namespace. Allowing kernel
975 * modules to have a race free view of the set of network namespaces.
976 *
977 * When a new network namespace is created all of the init
978 * methods are called in the order in which they were registered.
979 *
980 * When a network namespace is destroyed all of the exit methods
981 * are called in the reverse of the order with which they were
982 * registered.
983 */
984 int register_pernet_device(struct pernet_operations *ops)
985 {
986 int error;
987 mutex_lock(&net_mutex);
988 error = register_pernet_operations(&pernet_list, ops);
989 if (!error && (first_device == &pernet_list))
990 first_device = &ops->list;
991 mutex_unlock(&net_mutex);
992 return error;
993 }
994 EXPORT_SYMBOL_GPL(register_pernet_device);
995
996 /**
997 * unregister_pernet_device - unregister a network namespace netdevice
998 * @ops: pernet operations structure to manipulate
999 *
1000 * Remove the pernet operations structure from the list to be
1001 * used when network namespaces are created or destroyed. In
1002 * addition run the exit method for all existing network
1003 * namespaces.
1004 */
1005 void unregister_pernet_device(struct pernet_operations *ops)
1006 {
1007 mutex_lock(&net_mutex);
1008 if (&ops->list == first_device)
1009 first_device = first_device->next;
1010 unregister_pernet_operations(ops);
1011 mutex_unlock(&net_mutex);
1012 }
1013 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1014
1015 #ifdef CONFIG_NET_NS
1016 static struct ns_common *netns_get(struct task_struct *task)
1017 {
1018 struct net *net = NULL;
1019 struct nsproxy *nsproxy;
1020
1021 task_lock(task);
1022 nsproxy = task->nsproxy;
1023 if (nsproxy)
1024 net = get_net(nsproxy->net_ns);
1025 task_unlock(task);
1026
1027 return net ? &net->ns : NULL;
1028 }
1029
1030 static inline struct net *to_net_ns(struct ns_common *ns)
1031 {
1032 return container_of(ns, struct net, ns);
1033 }
1034
1035 static void netns_put(struct ns_common *ns)
1036 {
1037 put_net(to_net_ns(ns));
1038 }
1039
1040 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1041 {
1042 struct net *net = to_net_ns(ns);
1043
1044 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1045 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1046 return -EPERM;
1047
1048 put_net(nsproxy->net_ns);
1049 nsproxy->net_ns = get_net(net);
1050 return 0;
1051 }
1052
1053 static struct user_namespace *netns_owner(struct ns_common *ns)
1054 {
1055 return to_net_ns(ns)->user_ns;
1056 }
1057
1058 const struct proc_ns_operations netns_operations = {
1059 .name = "net",
1060 .type = CLONE_NEWNET,
1061 .get = netns_get,
1062 .put = netns_put,
1063 .install = netns_install,
1064 .owner = netns_owner,
1065 };
1066 #endif