]> git.ipfire.org Git - people/arne_f/kernel.git/blob - net/core/net_namespace.c
netns: provide pure entropy for net_hash_mix()
[people/arne_f/kernel.git] / net / core / net_namespace.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <net/sock.h>
20 #include <net/netlink.h>
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23
24 /*
25 * Our network namespace constructor/destructor lists
26 */
27
28 static LIST_HEAD(pernet_list);
29 static struct list_head *first_device = &pernet_list;
30 DEFINE_MUTEX(net_mutex);
31
32 LIST_HEAD(net_namespace_list);
33 EXPORT_SYMBOL_GPL(net_namespace_list);
34
35 struct net init_net = {
36 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
37 };
38 EXPORT_SYMBOL(init_net);
39
40 static bool init_net_initialized;
41
42 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
43
44 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
45
46 static struct net_generic *net_alloc_generic(void)
47 {
48 struct net_generic *ng;
49 size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
50
51 ng = kzalloc(generic_size, GFP_KERNEL);
52 if (ng)
53 ng->len = max_gen_ptrs;
54
55 return ng;
56 }
57
58 static int net_assign_generic(struct net *net, int id, void *data)
59 {
60 struct net_generic *ng, *old_ng;
61
62 BUG_ON(!mutex_is_locked(&net_mutex));
63 BUG_ON(id == 0);
64
65 old_ng = rcu_dereference_protected(net->gen,
66 lockdep_is_held(&net_mutex));
67 ng = old_ng;
68 if (old_ng->len >= id)
69 goto assign;
70
71 ng = net_alloc_generic();
72 if (ng == NULL)
73 return -ENOMEM;
74
75 /*
76 * Some synchronisation notes:
77 *
78 * The net_generic explores the net->gen array inside rcu
79 * read section. Besides once set the net->gen->ptr[x]
80 * pointer never changes (see rules in netns/generic.h).
81 *
82 * That said, we simply duplicate this array and schedule
83 * the old copy for kfree after a grace period.
84 */
85
86 memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
87
88 rcu_assign_pointer(net->gen, ng);
89 kfree_rcu(old_ng, rcu);
90 assign:
91 ng->ptr[id - 1] = data;
92 return 0;
93 }
94
95 static int ops_init(const struct pernet_operations *ops, struct net *net)
96 {
97 int err = -ENOMEM;
98 void *data = NULL;
99
100 if (ops->id && ops->size) {
101 data = kzalloc(ops->size, GFP_KERNEL);
102 if (!data)
103 goto out;
104
105 err = net_assign_generic(net, *ops->id, data);
106 if (err)
107 goto cleanup;
108 }
109 err = 0;
110 if (ops->init)
111 err = ops->init(net);
112 if (!err)
113 return 0;
114
115 cleanup:
116 kfree(data);
117
118 out:
119 return err;
120 }
121
122 static void ops_free(const struct pernet_operations *ops, struct net *net)
123 {
124 if (ops->id && ops->size) {
125 int id = *ops->id;
126 kfree(net_generic(net, id));
127 }
128 }
129
130 static void ops_exit_list(const struct pernet_operations *ops,
131 struct list_head *net_exit_list)
132 {
133 struct net *net;
134 if (ops->exit) {
135 list_for_each_entry(net, net_exit_list, exit_list)
136 ops->exit(net);
137 }
138 if (ops->exit_batch)
139 ops->exit_batch(net_exit_list);
140 }
141
142 static void ops_free_list(const struct pernet_operations *ops,
143 struct list_head *net_exit_list)
144 {
145 struct net *net;
146 if (ops->size && ops->id) {
147 list_for_each_entry(net, net_exit_list, exit_list)
148 ops_free(ops, net);
149 }
150 }
151
152 /* should be called with nsid_lock held */
153 static int alloc_netid(struct net *net, struct net *peer, int reqid)
154 {
155 int min = 0, max = 0;
156
157 if (reqid >= 0) {
158 min = reqid;
159 max = reqid + 1;
160 }
161
162 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
163 }
164
165 /* This function is used by idr_for_each(). If net is equal to peer, the
166 * function returns the id so that idr_for_each() stops. Because we cannot
167 * returns the id 0 (idr_for_each() will not stop), we return the magic value
168 * NET_ID_ZERO (-1) for it.
169 */
170 #define NET_ID_ZERO -1
171 static int net_eq_idr(int id, void *net, void *peer)
172 {
173 if (net_eq(net, peer))
174 return id ? : NET_ID_ZERO;
175 return 0;
176 }
177
178 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
179 * is set to true, thus the caller knows that the new id must be notified via
180 * rtnl.
181 */
182 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
183 {
184 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
185 bool alloc_it = *alloc;
186
187 *alloc = false;
188
189 /* Magic value for id 0. */
190 if (id == NET_ID_ZERO)
191 return 0;
192 if (id > 0)
193 return id;
194
195 if (alloc_it) {
196 id = alloc_netid(net, peer, -1);
197 *alloc = true;
198 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
199 }
200
201 return NETNSA_NSID_NOT_ASSIGNED;
202 }
203
204 /* should be called with nsid_lock held */
205 static int __peernet2id(struct net *net, struct net *peer)
206 {
207 bool no = false;
208
209 return __peernet2id_alloc(net, peer, &no);
210 }
211
212 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
213 /* This function returns the id of a peer netns. If no id is assigned, one will
214 * be allocated and returned.
215 */
216 int peernet2id_alloc(struct net *net, struct net *peer)
217 {
218 unsigned long flags;
219 bool alloc;
220 int id;
221
222 if (atomic_read(&net->count) == 0)
223 return NETNSA_NSID_NOT_ASSIGNED;
224 spin_lock_irqsave(&net->nsid_lock, flags);
225 alloc = atomic_read(&peer->count) == 0 ? false : true;
226 id = __peernet2id_alloc(net, peer, &alloc);
227 spin_unlock_irqrestore(&net->nsid_lock, flags);
228 if (alloc && id >= 0)
229 rtnl_net_notifyid(net, RTM_NEWNSID, id);
230 return id;
231 }
232
233 /* This function returns, if assigned, the id of a peer netns. */
234 int peernet2id(struct net *net, struct net *peer)
235 {
236 unsigned long flags;
237 int id;
238
239 spin_lock_irqsave(&net->nsid_lock, flags);
240 id = __peernet2id(net, peer);
241 spin_unlock_irqrestore(&net->nsid_lock, flags);
242 return id;
243 }
244 EXPORT_SYMBOL(peernet2id);
245
246 /* This function returns true is the peer netns has an id assigned into the
247 * current netns.
248 */
249 bool peernet_has_id(struct net *net, struct net *peer)
250 {
251 return peernet2id(net, peer) >= 0;
252 }
253
254 struct net *get_net_ns_by_id(struct net *net, int id)
255 {
256 unsigned long flags;
257 struct net *peer;
258
259 if (id < 0)
260 return NULL;
261
262 rcu_read_lock();
263 spin_lock_irqsave(&net->nsid_lock, flags);
264 peer = idr_find(&net->netns_ids, id);
265 if (peer)
266 peer = maybe_get_net(peer);
267 spin_unlock_irqrestore(&net->nsid_lock, flags);
268 rcu_read_unlock();
269
270 return peer;
271 }
272
273 /*
274 * setup_net runs the initializers for the network namespace object.
275 */
276 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
277 {
278 /* Must be called with net_mutex held */
279 const struct pernet_operations *ops, *saved_ops;
280 int error = 0;
281 LIST_HEAD(net_exit_list);
282
283 atomic_set(&net->count, 1);
284 atomic_set(&net->passive, 1);
285 get_random_bytes(&net->hash_mix, sizeof(u32));
286 net->dev_base_seq = 1;
287 net->user_ns = user_ns;
288 idr_init(&net->netns_ids);
289 spin_lock_init(&net->nsid_lock);
290
291 list_for_each_entry(ops, &pernet_list, list) {
292 error = ops_init(ops, net);
293 if (error < 0)
294 goto out_undo;
295 }
296 out:
297 return error;
298
299 out_undo:
300 /* Walk through the list backwards calling the exit functions
301 * for the pernet modules whose init functions did not fail.
302 */
303 list_add(&net->exit_list, &net_exit_list);
304 saved_ops = ops;
305 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
306 ops_exit_list(ops, &net_exit_list);
307
308 ops = saved_ops;
309 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
310 ops_free_list(ops, &net_exit_list);
311
312 rcu_barrier();
313 goto out;
314 }
315
316 static int __net_init net_defaults_init_net(struct net *net)
317 {
318 net->core.sysctl_somaxconn = SOMAXCONN;
319 return 0;
320 }
321
322 static struct pernet_operations net_defaults_ops = {
323 .init = net_defaults_init_net,
324 };
325
326 static __init int net_defaults_init(void)
327 {
328 if (register_pernet_subsys(&net_defaults_ops))
329 panic("Cannot initialize net default settings");
330
331 return 0;
332 }
333
334 core_initcall(net_defaults_init);
335
336 #ifdef CONFIG_NET_NS
337 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
338 {
339 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
340 }
341
342 static void dec_net_namespaces(struct ucounts *ucounts)
343 {
344 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
345 }
346
347 static struct kmem_cache *net_cachep;
348 static struct workqueue_struct *netns_wq;
349
350 static struct net *net_alloc(void)
351 {
352 struct net *net = NULL;
353 struct net_generic *ng;
354
355 ng = net_alloc_generic();
356 if (!ng)
357 goto out;
358
359 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
360 if (!net)
361 goto out_free;
362
363 rcu_assign_pointer(net->gen, ng);
364 out:
365 return net;
366
367 out_free:
368 kfree(ng);
369 goto out;
370 }
371
372 static void net_free(struct net *net)
373 {
374 kfree(rcu_access_pointer(net->gen));
375 kmem_cache_free(net_cachep, net);
376 }
377
378 void net_drop_ns(void *p)
379 {
380 struct net *ns = p;
381 if (ns && atomic_dec_and_test(&ns->passive))
382 net_free(ns);
383 }
384
385 struct net *copy_net_ns(unsigned long flags,
386 struct user_namespace *user_ns, struct net *old_net)
387 {
388 struct ucounts *ucounts;
389 struct net *net;
390 int rv;
391
392 if (!(flags & CLONE_NEWNET))
393 return get_net(old_net);
394
395 ucounts = inc_net_namespaces(user_ns);
396 if (!ucounts)
397 return ERR_PTR(-ENOSPC);
398
399 net = net_alloc();
400 if (!net) {
401 dec_net_namespaces(ucounts);
402 return ERR_PTR(-ENOMEM);
403 }
404
405 get_user_ns(user_ns);
406
407 mutex_lock(&net_mutex);
408 net->ucounts = ucounts;
409 rv = setup_net(net, user_ns);
410 if (rv == 0) {
411 rtnl_lock();
412 list_add_tail_rcu(&net->list, &net_namespace_list);
413 rtnl_unlock();
414 }
415 mutex_unlock(&net_mutex);
416 if (rv < 0) {
417 dec_net_namespaces(ucounts);
418 put_user_ns(user_ns);
419 net_drop_ns(net);
420 return ERR_PTR(rv);
421 }
422 return net;
423 }
424
425 static DEFINE_SPINLOCK(cleanup_list_lock);
426 static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */
427
428 static void cleanup_net(struct work_struct *work)
429 {
430 const struct pernet_operations *ops;
431 struct net *net, *tmp;
432 struct list_head net_kill_list;
433 LIST_HEAD(net_exit_list);
434
435 /* Atomically snapshot the list of namespaces to cleanup */
436 spin_lock_irq(&cleanup_list_lock);
437 list_replace_init(&cleanup_list, &net_kill_list);
438 spin_unlock_irq(&cleanup_list_lock);
439
440 mutex_lock(&net_mutex);
441
442 /* Don't let anyone else find us. */
443 rtnl_lock();
444 list_for_each_entry(net, &net_kill_list, cleanup_list) {
445 list_del_rcu(&net->list);
446 list_add_tail(&net->exit_list, &net_exit_list);
447 for_each_net(tmp) {
448 int id;
449
450 spin_lock_irq(&tmp->nsid_lock);
451 id = __peernet2id(tmp, net);
452 if (id >= 0)
453 idr_remove(&tmp->netns_ids, id);
454 spin_unlock_irq(&tmp->nsid_lock);
455 if (id >= 0)
456 rtnl_net_notifyid(tmp, RTM_DELNSID, id);
457 }
458 spin_lock_irq(&net->nsid_lock);
459 idr_destroy(&net->netns_ids);
460 spin_unlock_irq(&net->nsid_lock);
461
462 }
463 rtnl_unlock();
464
465 /*
466 * Another CPU might be rcu-iterating the list, wait for it.
467 * This needs to be before calling the exit() notifiers, so
468 * the rcu_barrier() below isn't sufficient alone.
469 */
470 synchronize_rcu();
471
472 /* Run all of the network namespace exit methods */
473 list_for_each_entry_reverse(ops, &pernet_list, list)
474 ops_exit_list(ops, &net_exit_list);
475
476 /* Free the net generic variables */
477 list_for_each_entry_reverse(ops, &pernet_list, list)
478 ops_free_list(ops, &net_exit_list);
479
480 mutex_unlock(&net_mutex);
481
482 /* Ensure there are no outstanding rcu callbacks using this
483 * network namespace.
484 */
485 rcu_barrier();
486
487 /* Finally it is safe to free my network namespace structure */
488 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
489 list_del_init(&net->exit_list);
490 dec_net_namespaces(net->ucounts);
491 put_user_ns(net->user_ns);
492 net_drop_ns(net);
493 }
494 }
495 static DECLARE_WORK(net_cleanup_work, cleanup_net);
496
497 void __put_net(struct net *net)
498 {
499 /* Cleanup the network namespace in process context */
500 unsigned long flags;
501
502 spin_lock_irqsave(&cleanup_list_lock, flags);
503 list_add(&net->cleanup_list, &cleanup_list);
504 spin_unlock_irqrestore(&cleanup_list_lock, flags);
505
506 queue_work(netns_wq, &net_cleanup_work);
507 }
508 EXPORT_SYMBOL_GPL(__put_net);
509
510 struct net *get_net_ns_by_fd(int fd)
511 {
512 struct file *file;
513 struct ns_common *ns;
514 struct net *net;
515
516 file = proc_ns_fget(fd);
517 if (IS_ERR(file))
518 return ERR_CAST(file);
519
520 ns = get_proc_ns(file_inode(file));
521 if (ns->ops == &netns_operations)
522 net = get_net(container_of(ns, struct net, ns));
523 else
524 net = ERR_PTR(-EINVAL);
525
526 fput(file);
527 return net;
528 }
529
530 #else
531 struct net *get_net_ns_by_fd(int fd)
532 {
533 return ERR_PTR(-EINVAL);
534 }
535 #endif
536 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
537
538 struct net *get_net_ns_by_pid(pid_t pid)
539 {
540 struct task_struct *tsk;
541 struct net *net;
542
543 /* Lookup the network namespace */
544 net = ERR_PTR(-ESRCH);
545 rcu_read_lock();
546 tsk = find_task_by_vpid(pid);
547 if (tsk) {
548 struct nsproxy *nsproxy;
549 task_lock(tsk);
550 nsproxy = tsk->nsproxy;
551 if (nsproxy)
552 net = get_net(nsproxy->net_ns);
553 task_unlock(tsk);
554 }
555 rcu_read_unlock();
556 return net;
557 }
558 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
559
560 static __net_init int net_ns_net_init(struct net *net)
561 {
562 #ifdef CONFIG_NET_NS
563 net->ns.ops = &netns_operations;
564 #endif
565 return ns_alloc_inum(&net->ns);
566 }
567
568 static __net_exit void net_ns_net_exit(struct net *net)
569 {
570 ns_free_inum(&net->ns);
571 }
572
573 static struct pernet_operations __net_initdata net_ns_ops = {
574 .init = net_ns_net_init,
575 .exit = net_ns_net_exit,
576 };
577
578 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
579 [NETNSA_NONE] = { .type = NLA_UNSPEC },
580 [NETNSA_NSID] = { .type = NLA_S32 },
581 [NETNSA_PID] = { .type = NLA_U32 },
582 [NETNSA_FD] = { .type = NLA_U32 },
583 };
584
585 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
586 {
587 struct net *net = sock_net(skb->sk);
588 struct nlattr *tb[NETNSA_MAX + 1];
589 unsigned long flags;
590 struct net *peer;
591 int nsid, err;
592
593 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
594 rtnl_net_policy);
595 if (err < 0)
596 return err;
597 if (!tb[NETNSA_NSID])
598 return -EINVAL;
599 nsid = nla_get_s32(tb[NETNSA_NSID]);
600
601 if (tb[NETNSA_PID])
602 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
603 else if (tb[NETNSA_FD])
604 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
605 else
606 return -EINVAL;
607 if (IS_ERR(peer))
608 return PTR_ERR(peer);
609
610 spin_lock_irqsave(&net->nsid_lock, flags);
611 if (__peernet2id(net, peer) >= 0) {
612 spin_unlock_irqrestore(&net->nsid_lock, flags);
613 err = -EEXIST;
614 goto out;
615 }
616
617 err = alloc_netid(net, peer, nsid);
618 spin_unlock_irqrestore(&net->nsid_lock, flags);
619 if (err >= 0) {
620 rtnl_net_notifyid(net, RTM_NEWNSID, err);
621 err = 0;
622 }
623 out:
624 put_net(peer);
625 return err;
626 }
627
628 static int rtnl_net_get_size(void)
629 {
630 return NLMSG_ALIGN(sizeof(struct rtgenmsg))
631 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
632 ;
633 }
634
635 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
636 int cmd, struct net *net, int nsid)
637 {
638 struct nlmsghdr *nlh;
639 struct rtgenmsg *rth;
640
641 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
642 if (!nlh)
643 return -EMSGSIZE;
644
645 rth = nlmsg_data(nlh);
646 rth->rtgen_family = AF_UNSPEC;
647
648 if (nla_put_s32(skb, NETNSA_NSID, nsid))
649 goto nla_put_failure;
650
651 nlmsg_end(skb, nlh);
652 return 0;
653
654 nla_put_failure:
655 nlmsg_cancel(skb, nlh);
656 return -EMSGSIZE;
657 }
658
659 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
660 {
661 struct net *net = sock_net(skb->sk);
662 struct nlattr *tb[NETNSA_MAX + 1];
663 struct sk_buff *msg;
664 struct net *peer;
665 int err, id;
666
667 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
668 rtnl_net_policy);
669 if (err < 0)
670 return err;
671 if (tb[NETNSA_PID])
672 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
673 else if (tb[NETNSA_FD])
674 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
675 else
676 return -EINVAL;
677
678 if (IS_ERR(peer))
679 return PTR_ERR(peer);
680
681 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
682 if (!msg) {
683 err = -ENOMEM;
684 goto out;
685 }
686
687 id = peernet2id(net, peer);
688 err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
689 RTM_NEWNSID, net, id);
690 if (err < 0)
691 goto err_out;
692
693 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
694 goto out;
695
696 err_out:
697 nlmsg_free(msg);
698 out:
699 put_net(peer);
700 return err;
701 }
702
703 struct rtnl_net_dump_cb {
704 struct net *net;
705 struct sk_buff *skb;
706 struct netlink_callback *cb;
707 int idx;
708 int s_idx;
709 };
710
711 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
712 {
713 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
714 int ret;
715
716 if (net_cb->idx < net_cb->s_idx)
717 goto cont;
718
719 ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
720 net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
721 RTM_NEWNSID, net_cb->net, id);
722 if (ret < 0)
723 return ret;
724
725 cont:
726 net_cb->idx++;
727 return 0;
728 }
729
730 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
731 {
732 struct net *net = sock_net(skb->sk);
733 struct rtnl_net_dump_cb net_cb = {
734 .net = net,
735 .skb = skb,
736 .cb = cb,
737 .idx = 0,
738 .s_idx = cb->args[0],
739 };
740 unsigned long flags;
741
742 spin_lock_irqsave(&net->nsid_lock, flags);
743 idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
744 spin_unlock_irqrestore(&net->nsid_lock, flags);
745
746 cb->args[0] = net_cb.idx;
747 return skb->len;
748 }
749
750 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
751 {
752 struct sk_buff *msg;
753 int err = -ENOMEM;
754
755 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
756 if (!msg)
757 goto out;
758
759 err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
760 if (err < 0)
761 goto err_out;
762
763 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
764 return;
765
766 err_out:
767 nlmsg_free(msg);
768 out:
769 rtnl_set_sk_err(net, RTNLGRP_NSID, err);
770 }
771
772 static int __init net_ns_init(void)
773 {
774 struct net_generic *ng;
775
776 #ifdef CONFIG_NET_NS
777 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
778 SMP_CACHE_BYTES,
779 SLAB_PANIC, NULL);
780
781 /* Create workqueue for cleanup */
782 netns_wq = create_singlethread_workqueue("netns");
783 if (!netns_wq)
784 panic("Could not create netns workq");
785 #endif
786
787 ng = net_alloc_generic();
788 if (!ng)
789 panic("Could not allocate generic netns");
790
791 rcu_assign_pointer(init_net.gen, ng);
792
793 mutex_lock(&net_mutex);
794 if (setup_net(&init_net, &init_user_ns))
795 panic("Could not setup the initial network namespace");
796
797 init_net_initialized = true;
798
799 rtnl_lock();
800 list_add_tail_rcu(&init_net.list, &net_namespace_list);
801 rtnl_unlock();
802
803 mutex_unlock(&net_mutex);
804
805 register_pernet_subsys(&net_ns_ops);
806
807 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
808 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
809 NULL);
810
811 return 0;
812 }
813
814 pure_initcall(net_ns_init);
815
816 #ifdef CONFIG_NET_NS
817 static int __register_pernet_operations(struct list_head *list,
818 struct pernet_operations *ops)
819 {
820 struct net *net;
821 int error;
822 LIST_HEAD(net_exit_list);
823
824 list_add_tail(&ops->list, list);
825 if (ops->init || (ops->id && ops->size)) {
826 for_each_net(net) {
827 error = ops_init(ops, net);
828 if (error)
829 goto out_undo;
830 list_add_tail(&net->exit_list, &net_exit_list);
831 }
832 }
833 return 0;
834
835 out_undo:
836 /* If I have an error cleanup all namespaces I initialized */
837 list_del(&ops->list);
838 ops_exit_list(ops, &net_exit_list);
839 ops_free_list(ops, &net_exit_list);
840 return error;
841 }
842
843 static void __unregister_pernet_operations(struct pernet_operations *ops)
844 {
845 struct net *net;
846 LIST_HEAD(net_exit_list);
847
848 list_del(&ops->list);
849 for_each_net(net)
850 list_add_tail(&net->exit_list, &net_exit_list);
851 ops_exit_list(ops, &net_exit_list);
852 ops_free_list(ops, &net_exit_list);
853 }
854
855 #else
856
857 static int __register_pernet_operations(struct list_head *list,
858 struct pernet_operations *ops)
859 {
860 if (!init_net_initialized) {
861 list_add_tail(&ops->list, list);
862 return 0;
863 }
864
865 return ops_init(ops, &init_net);
866 }
867
868 static void __unregister_pernet_operations(struct pernet_operations *ops)
869 {
870 if (!init_net_initialized) {
871 list_del(&ops->list);
872 } else {
873 LIST_HEAD(net_exit_list);
874 list_add(&init_net.exit_list, &net_exit_list);
875 ops_exit_list(ops, &net_exit_list);
876 ops_free_list(ops, &net_exit_list);
877 }
878 }
879
880 #endif /* CONFIG_NET_NS */
881
882 static DEFINE_IDA(net_generic_ids);
883
884 static int register_pernet_operations(struct list_head *list,
885 struct pernet_operations *ops)
886 {
887 int error;
888
889 if (ops->id) {
890 again:
891 error = ida_get_new_above(&net_generic_ids, 1, ops->id);
892 if (error < 0) {
893 if (error == -EAGAIN) {
894 ida_pre_get(&net_generic_ids, GFP_KERNEL);
895 goto again;
896 }
897 return error;
898 }
899 max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
900 }
901 error = __register_pernet_operations(list, ops);
902 if (error) {
903 rcu_barrier();
904 if (ops->id)
905 ida_remove(&net_generic_ids, *ops->id);
906 }
907
908 return error;
909 }
910
911 static void unregister_pernet_operations(struct pernet_operations *ops)
912 {
913
914 __unregister_pernet_operations(ops);
915 rcu_barrier();
916 if (ops->id)
917 ida_remove(&net_generic_ids, *ops->id);
918 }
919
920 /**
921 * register_pernet_subsys - register a network namespace subsystem
922 * @ops: pernet operations structure for the subsystem
923 *
924 * Register a subsystem which has init and exit functions
925 * that are called when network namespaces are created and
926 * destroyed respectively.
927 *
928 * When registered all network namespace init functions are
929 * called for every existing network namespace. Allowing kernel
930 * modules to have a race free view of the set of network namespaces.
931 *
932 * When a new network namespace is created all of the init
933 * methods are called in the order in which they were registered.
934 *
935 * When a network namespace is destroyed all of the exit methods
936 * are called in the reverse of the order with which they were
937 * registered.
938 */
939 int register_pernet_subsys(struct pernet_operations *ops)
940 {
941 int error;
942 mutex_lock(&net_mutex);
943 error = register_pernet_operations(first_device, ops);
944 mutex_unlock(&net_mutex);
945 return error;
946 }
947 EXPORT_SYMBOL_GPL(register_pernet_subsys);
948
949 /**
950 * unregister_pernet_subsys - unregister a network namespace subsystem
951 * @ops: pernet operations structure to manipulate
952 *
953 * Remove the pernet operations structure from the list to be
954 * used when network namespaces are created or destroyed. In
955 * addition run the exit method for all existing network
956 * namespaces.
957 */
958 void unregister_pernet_subsys(struct pernet_operations *ops)
959 {
960 mutex_lock(&net_mutex);
961 unregister_pernet_operations(ops);
962 mutex_unlock(&net_mutex);
963 }
964 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
965
966 /**
967 * register_pernet_device - register a network namespace device
968 * @ops: pernet operations structure for the subsystem
969 *
970 * Register a device which has init and exit functions
971 * that are called when network namespaces are created and
972 * destroyed respectively.
973 *
974 * When registered all network namespace init functions are
975 * called for every existing network namespace. Allowing kernel
976 * modules to have a race free view of the set of network namespaces.
977 *
978 * When a new network namespace is created all of the init
979 * methods are called in the order in which they were registered.
980 *
981 * When a network namespace is destroyed all of the exit methods
982 * are called in the reverse of the order with which they were
983 * registered.
984 */
985 int register_pernet_device(struct pernet_operations *ops)
986 {
987 int error;
988 mutex_lock(&net_mutex);
989 error = register_pernet_operations(&pernet_list, ops);
990 if (!error && (first_device == &pernet_list))
991 first_device = &ops->list;
992 mutex_unlock(&net_mutex);
993 return error;
994 }
995 EXPORT_SYMBOL_GPL(register_pernet_device);
996
997 /**
998 * unregister_pernet_device - unregister a network namespace netdevice
999 * @ops: pernet operations structure to manipulate
1000 *
1001 * Remove the pernet operations structure from the list to be
1002 * used when network namespaces are created or destroyed. In
1003 * addition run the exit method for all existing network
1004 * namespaces.
1005 */
1006 void unregister_pernet_device(struct pernet_operations *ops)
1007 {
1008 mutex_lock(&net_mutex);
1009 if (&ops->list == first_device)
1010 first_device = first_device->next;
1011 unregister_pernet_operations(ops);
1012 mutex_unlock(&net_mutex);
1013 }
1014 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1015
1016 #ifdef CONFIG_NET_NS
1017 static struct ns_common *netns_get(struct task_struct *task)
1018 {
1019 struct net *net = NULL;
1020 struct nsproxy *nsproxy;
1021
1022 task_lock(task);
1023 nsproxy = task->nsproxy;
1024 if (nsproxy)
1025 net = get_net(nsproxy->net_ns);
1026 task_unlock(task);
1027
1028 return net ? &net->ns : NULL;
1029 }
1030
1031 static inline struct net *to_net_ns(struct ns_common *ns)
1032 {
1033 return container_of(ns, struct net, ns);
1034 }
1035
1036 static void netns_put(struct ns_common *ns)
1037 {
1038 put_net(to_net_ns(ns));
1039 }
1040
1041 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1042 {
1043 struct net *net = to_net_ns(ns);
1044
1045 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1046 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1047 return -EPERM;
1048
1049 put_net(nsproxy->net_ns);
1050 nsproxy->net_ns = get_net(net);
1051 return 0;
1052 }
1053
1054 static struct user_namespace *netns_owner(struct ns_common *ns)
1055 {
1056 return to_net_ns(ns)->user_ns;
1057 }
1058
1059 const struct proc_ns_operations netns_operations = {
1060 .name = "net",
1061 .type = CLONE_NEWNET,
1062 .get = netns_get,
1063 .put = netns_put,
1064 .install = netns_install,
1065 .owner = netns_owner,
1066 };
1067 #endif