]> git.ipfire.org Git - people/arne_f/kernel.git/blob - net/core/net_namespace.c
Merge tag 'sunxi-drm-fixes-for-4.9' of https://git.kernel.org/pub/scm/linux/kernel...
[people/arne_f/kernel.git] / net / core / net_namespace.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <net/sock.h>
20 #include <net/netlink.h>
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23
24 /*
25 * Our network namespace constructor/destructor lists
26 */
27
28 static LIST_HEAD(pernet_list);
29 static struct list_head *first_device = &pernet_list;
30 DEFINE_MUTEX(net_mutex);
31
32 LIST_HEAD(net_namespace_list);
33 EXPORT_SYMBOL_GPL(net_namespace_list);
34
35 struct net init_net = {
36 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
37 };
38 EXPORT_SYMBOL(init_net);
39
40 static bool init_net_initialized;
41
42 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
43
44 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
45
46 static struct net_generic *net_alloc_generic(void)
47 {
48 struct net_generic *ng;
49 size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
50
51 ng = kzalloc(generic_size, GFP_KERNEL);
52 if (ng)
53 ng->len = max_gen_ptrs;
54
55 return ng;
56 }
57
58 static int net_assign_generic(struct net *net, int id, void *data)
59 {
60 struct net_generic *ng, *old_ng;
61
62 BUG_ON(!mutex_is_locked(&net_mutex));
63 BUG_ON(id == 0);
64
65 old_ng = rcu_dereference_protected(net->gen,
66 lockdep_is_held(&net_mutex));
67 ng = old_ng;
68 if (old_ng->len >= id)
69 goto assign;
70
71 ng = net_alloc_generic();
72 if (ng == NULL)
73 return -ENOMEM;
74
75 /*
76 * Some synchronisation notes:
77 *
78 * The net_generic explores the net->gen array inside rcu
79 * read section. Besides once set the net->gen->ptr[x]
80 * pointer never changes (see rules in netns/generic.h).
81 *
82 * That said, we simply duplicate this array and schedule
83 * the old copy for kfree after a grace period.
84 */
85
86 memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
87
88 rcu_assign_pointer(net->gen, ng);
89 kfree_rcu(old_ng, rcu);
90 assign:
91 ng->ptr[id - 1] = data;
92 return 0;
93 }
94
95 static int ops_init(const struct pernet_operations *ops, struct net *net)
96 {
97 int err = -ENOMEM;
98 void *data = NULL;
99
100 if (ops->id && ops->size) {
101 data = kzalloc(ops->size, GFP_KERNEL);
102 if (!data)
103 goto out;
104
105 err = net_assign_generic(net, *ops->id, data);
106 if (err)
107 goto cleanup;
108 }
109 err = 0;
110 if (ops->init)
111 err = ops->init(net);
112 if (!err)
113 return 0;
114
115 cleanup:
116 kfree(data);
117
118 out:
119 return err;
120 }
121
122 static void ops_free(const struct pernet_operations *ops, struct net *net)
123 {
124 if (ops->id && ops->size) {
125 int id = *ops->id;
126 kfree(net_generic(net, id));
127 }
128 }
129
130 static void ops_exit_list(const struct pernet_operations *ops,
131 struct list_head *net_exit_list)
132 {
133 struct net *net;
134 if (ops->exit) {
135 list_for_each_entry(net, net_exit_list, exit_list)
136 ops->exit(net);
137 }
138 if (ops->exit_batch)
139 ops->exit_batch(net_exit_list);
140 }
141
142 static void ops_free_list(const struct pernet_operations *ops,
143 struct list_head *net_exit_list)
144 {
145 struct net *net;
146 if (ops->size && ops->id) {
147 list_for_each_entry(net, net_exit_list, exit_list)
148 ops_free(ops, net);
149 }
150 }
151
152 /* should be called with nsid_lock held */
153 static int alloc_netid(struct net *net, struct net *peer, int reqid)
154 {
155 int min = 0, max = 0;
156
157 if (reqid >= 0) {
158 min = reqid;
159 max = reqid + 1;
160 }
161
162 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
163 }
164
165 /* This function is used by idr_for_each(). If net is equal to peer, the
166 * function returns the id so that idr_for_each() stops. Because we cannot
167 * returns the id 0 (idr_for_each() will not stop), we return the magic value
168 * NET_ID_ZERO (-1) for it.
169 */
170 #define NET_ID_ZERO -1
171 static int net_eq_idr(int id, void *net, void *peer)
172 {
173 if (net_eq(net, peer))
174 return id ? : NET_ID_ZERO;
175 return 0;
176 }
177
178 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
179 * is set to true, thus the caller knows that the new id must be notified via
180 * rtnl.
181 */
182 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
183 {
184 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
185 bool alloc_it = *alloc;
186
187 *alloc = false;
188
189 /* Magic value for id 0. */
190 if (id == NET_ID_ZERO)
191 return 0;
192 if (id > 0)
193 return id;
194
195 if (alloc_it) {
196 id = alloc_netid(net, peer, -1);
197 *alloc = true;
198 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
199 }
200
201 return NETNSA_NSID_NOT_ASSIGNED;
202 }
203
204 /* should be called with nsid_lock held */
205 static int __peernet2id(struct net *net, struct net *peer)
206 {
207 bool no = false;
208
209 return __peernet2id_alloc(net, peer, &no);
210 }
211
212 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
213 /* This function returns the id of a peer netns. If no id is assigned, one will
214 * be allocated and returned.
215 */
216 int peernet2id_alloc(struct net *net, struct net *peer)
217 {
218 unsigned long flags;
219 bool alloc;
220 int id;
221
222 spin_lock_irqsave(&net->nsid_lock, flags);
223 alloc = atomic_read(&peer->count) == 0 ? false : true;
224 id = __peernet2id_alloc(net, peer, &alloc);
225 spin_unlock_irqrestore(&net->nsid_lock, flags);
226 if (alloc && id >= 0)
227 rtnl_net_notifyid(net, RTM_NEWNSID, id);
228 return id;
229 }
230
231 /* This function returns, if assigned, the id of a peer netns. */
232 int peernet2id(struct net *net, struct net *peer)
233 {
234 unsigned long flags;
235 int id;
236
237 spin_lock_irqsave(&net->nsid_lock, flags);
238 id = __peernet2id(net, peer);
239 spin_unlock_irqrestore(&net->nsid_lock, flags);
240 return id;
241 }
242 EXPORT_SYMBOL(peernet2id);
243
244 /* This function returns true is the peer netns has an id assigned into the
245 * current netns.
246 */
247 bool peernet_has_id(struct net *net, struct net *peer)
248 {
249 return peernet2id(net, peer) >= 0;
250 }
251
252 struct net *get_net_ns_by_id(struct net *net, int id)
253 {
254 unsigned long flags;
255 struct net *peer;
256
257 if (id < 0)
258 return NULL;
259
260 rcu_read_lock();
261 spin_lock_irqsave(&net->nsid_lock, flags);
262 peer = idr_find(&net->netns_ids, id);
263 if (peer)
264 get_net(peer);
265 spin_unlock_irqrestore(&net->nsid_lock, flags);
266 rcu_read_unlock();
267
268 return peer;
269 }
270
271 /*
272 * setup_net runs the initializers for the network namespace object.
273 */
274 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
275 {
276 /* Must be called with net_mutex held */
277 const struct pernet_operations *ops, *saved_ops;
278 int error = 0;
279 LIST_HEAD(net_exit_list);
280
281 atomic_set(&net->count, 1);
282 atomic_set(&net->passive, 1);
283 net->dev_base_seq = 1;
284 net->user_ns = user_ns;
285 idr_init(&net->netns_ids);
286 spin_lock_init(&net->nsid_lock);
287
288 list_for_each_entry(ops, &pernet_list, list) {
289 error = ops_init(ops, net);
290 if (error < 0)
291 goto out_undo;
292 }
293 out:
294 return error;
295
296 out_undo:
297 /* Walk through the list backwards calling the exit functions
298 * for the pernet modules whose init functions did not fail.
299 */
300 list_add(&net->exit_list, &net_exit_list);
301 saved_ops = ops;
302 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
303 ops_exit_list(ops, &net_exit_list);
304
305 ops = saved_ops;
306 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
307 ops_free_list(ops, &net_exit_list);
308
309 rcu_barrier();
310 goto out;
311 }
312
313
314 #ifdef CONFIG_NET_NS
315 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
316 {
317 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
318 }
319
320 static void dec_net_namespaces(struct ucounts *ucounts)
321 {
322 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
323 }
324
325 static struct kmem_cache *net_cachep;
326 static struct workqueue_struct *netns_wq;
327
328 static struct net *net_alloc(void)
329 {
330 struct net *net = NULL;
331 struct net_generic *ng;
332
333 ng = net_alloc_generic();
334 if (!ng)
335 goto out;
336
337 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
338 if (!net)
339 goto out_free;
340
341 rcu_assign_pointer(net->gen, ng);
342 out:
343 return net;
344
345 out_free:
346 kfree(ng);
347 goto out;
348 }
349
350 static void net_free(struct net *net)
351 {
352 kfree(rcu_access_pointer(net->gen));
353 kmem_cache_free(net_cachep, net);
354 }
355
356 void net_drop_ns(void *p)
357 {
358 struct net *ns = p;
359 if (ns && atomic_dec_and_test(&ns->passive))
360 net_free(ns);
361 }
362
363 struct net *copy_net_ns(unsigned long flags,
364 struct user_namespace *user_ns, struct net *old_net)
365 {
366 struct ucounts *ucounts;
367 struct net *net;
368 int rv;
369
370 if (!(flags & CLONE_NEWNET))
371 return get_net(old_net);
372
373 ucounts = inc_net_namespaces(user_ns);
374 if (!ucounts)
375 return ERR_PTR(-ENOSPC);
376
377 net = net_alloc();
378 if (!net) {
379 dec_net_namespaces(ucounts);
380 return ERR_PTR(-ENOMEM);
381 }
382
383 get_user_ns(user_ns);
384
385 mutex_lock(&net_mutex);
386 net->ucounts = ucounts;
387 rv = setup_net(net, user_ns);
388 if (rv == 0) {
389 rtnl_lock();
390 list_add_tail_rcu(&net->list, &net_namespace_list);
391 rtnl_unlock();
392 }
393 mutex_unlock(&net_mutex);
394 if (rv < 0) {
395 dec_net_namespaces(ucounts);
396 put_user_ns(user_ns);
397 net_drop_ns(net);
398 return ERR_PTR(rv);
399 }
400 return net;
401 }
402
403 static DEFINE_SPINLOCK(cleanup_list_lock);
404 static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */
405
406 static void cleanup_net(struct work_struct *work)
407 {
408 const struct pernet_operations *ops;
409 struct net *net, *tmp;
410 struct list_head net_kill_list;
411 LIST_HEAD(net_exit_list);
412
413 /* Atomically snapshot the list of namespaces to cleanup */
414 spin_lock_irq(&cleanup_list_lock);
415 list_replace_init(&cleanup_list, &net_kill_list);
416 spin_unlock_irq(&cleanup_list_lock);
417
418 mutex_lock(&net_mutex);
419
420 /* Don't let anyone else find us. */
421 rtnl_lock();
422 list_for_each_entry(net, &net_kill_list, cleanup_list) {
423 list_del_rcu(&net->list);
424 list_add_tail(&net->exit_list, &net_exit_list);
425 for_each_net(tmp) {
426 int id;
427
428 spin_lock_irq(&tmp->nsid_lock);
429 id = __peernet2id(tmp, net);
430 if (id >= 0)
431 idr_remove(&tmp->netns_ids, id);
432 spin_unlock_irq(&tmp->nsid_lock);
433 if (id >= 0)
434 rtnl_net_notifyid(tmp, RTM_DELNSID, id);
435 }
436 spin_lock_irq(&net->nsid_lock);
437 idr_destroy(&net->netns_ids);
438 spin_unlock_irq(&net->nsid_lock);
439
440 }
441 rtnl_unlock();
442
443 /*
444 * Another CPU might be rcu-iterating the list, wait for it.
445 * This needs to be before calling the exit() notifiers, so
446 * the rcu_barrier() below isn't sufficient alone.
447 */
448 synchronize_rcu();
449
450 /* Run all of the network namespace exit methods */
451 list_for_each_entry_reverse(ops, &pernet_list, list)
452 ops_exit_list(ops, &net_exit_list);
453
454 /* Free the net generic variables */
455 list_for_each_entry_reverse(ops, &pernet_list, list)
456 ops_free_list(ops, &net_exit_list);
457
458 mutex_unlock(&net_mutex);
459
460 /* Ensure there are no outstanding rcu callbacks using this
461 * network namespace.
462 */
463 rcu_barrier();
464
465 /* Finally it is safe to free my network namespace structure */
466 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
467 list_del_init(&net->exit_list);
468 dec_net_namespaces(net->ucounts);
469 put_user_ns(net->user_ns);
470 net_drop_ns(net);
471 }
472 }
473 static DECLARE_WORK(net_cleanup_work, cleanup_net);
474
475 void __put_net(struct net *net)
476 {
477 /* Cleanup the network namespace in process context */
478 unsigned long flags;
479
480 spin_lock_irqsave(&cleanup_list_lock, flags);
481 list_add(&net->cleanup_list, &cleanup_list);
482 spin_unlock_irqrestore(&cleanup_list_lock, flags);
483
484 queue_work(netns_wq, &net_cleanup_work);
485 }
486 EXPORT_SYMBOL_GPL(__put_net);
487
488 struct net *get_net_ns_by_fd(int fd)
489 {
490 struct file *file;
491 struct ns_common *ns;
492 struct net *net;
493
494 file = proc_ns_fget(fd);
495 if (IS_ERR(file))
496 return ERR_CAST(file);
497
498 ns = get_proc_ns(file_inode(file));
499 if (ns->ops == &netns_operations)
500 net = get_net(container_of(ns, struct net, ns));
501 else
502 net = ERR_PTR(-EINVAL);
503
504 fput(file);
505 return net;
506 }
507
508 #else
509 struct net *get_net_ns_by_fd(int fd)
510 {
511 return ERR_PTR(-EINVAL);
512 }
513 #endif
514 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
515
516 struct net *get_net_ns_by_pid(pid_t pid)
517 {
518 struct task_struct *tsk;
519 struct net *net;
520
521 /* Lookup the network namespace */
522 net = ERR_PTR(-ESRCH);
523 rcu_read_lock();
524 tsk = find_task_by_vpid(pid);
525 if (tsk) {
526 struct nsproxy *nsproxy;
527 task_lock(tsk);
528 nsproxy = tsk->nsproxy;
529 if (nsproxy)
530 net = get_net(nsproxy->net_ns);
531 task_unlock(tsk);
532 }
533 rcu_read_unlock();
534 return net;
535 }
536 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
537
538 static __net_init int net_ns_net_init(struct net *net)
539 {
540 #ifdef CONFIG_NET_NS
541 net->ns.ops = &netns_operations;
542 #endif
543 return ns_alloc_inum(&net->ns);
544 }
545
546 static __net_exit void net_ns_net_exit(struct net *net)
547 {
548 ns_free_inum(&net->ns);
549 }
550
551 static struct pernet_operations __net_initdata net_ns_ops = {
552 .init = net_ns_net_init,
553 .exit = net_ns_net_exit,
554 };
555
556 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
557 [NETNSA_NONE] = { .type = NLA_UNSPEC },
558 [NETNSA_NSID] = { .type = NLA_S32 },
559 [NETNSA_PID] = { .type = NLA_U32 },
560 [NETNSA_FD] = { .type = NLA_U32 },
561 };
562
563 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
564 {
565 struct net *net = sock_net(skb->sk);
566 struct nlattr *tb[NETNSA_MAX + 1];
567 unsigned long flags;
568 struct net *peer;
569 int nsid, err;
570
571 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
572 rtnl_net_policy);
573 if (err < 0)
574 return err;
575 if (!tb[NETNSA_NSID])
576 return -EINVAL;
577 nsid = nla_get_s32(tb[NETNSA_NSID]);
578
579 if (tb[NETNSA_PID])
580 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
581 else if (tb[NETNSA_FD])
582 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
583 else
584 return -EINVAL;
585 if (IS_ERR(peer))
586 return PTR_ERR(peer);
587
588 spin_lock_irqsave(&net->nsid_lock, flags);
589 if (__peernet2id(net, peer) >= 0) {
590 spin_unlock_irqrestore(&net->nsid_lock, flags);
591 err = -EEXIST;
592 goto out;
593 }
594
595 err = alloc_netid(net, peer, nsid);
596 spin_unlock_irqrestore(&net->nsid_lock, flags);
597 if (err >= 0) {
598 rtnl_net_notifyid(net, RTM_NEWNSID, err);
599 err = 0;
600 }
601 out:
602 put_net(peer);
603 return err;
604 }
605
606 static int rtnl_net_get_size(void)
607 {
608 return NLMSG_ALIGN(sizeof(struct rtgenmsg))
609 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
610 ;
611 }
612
613 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
614 int cmd, struct net *net, int nsid)
615 {
616 struct nlmsghdr *nlh;
617 struct rtgenmsg *rth;
618
619 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
620 if (!nlh)
621 return -EMSGSIZE;
622
623 rth = nlmsg_data(nlh);
624 rth->rtgen_family = AF_UNSPEC;
625
626 if (nla_put_s32(skb, NETNSA_NSID, nsid))
627 goto nla_put_failure;
628
629 nlmsg_end(skb, nlh);
630 return 0;
631
632 nla_put_failure:
633 nlmsg_cancel(skb, nlh);
634 return -EMSGSIZE;
635 }
636
637 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
638 {
639 struct net *net = sock_net(skb->sk);
640 struct nlattr *tb[NETNSA_MAX + 1];
641 struct sk_buff *msg;
642 struct net *peer;
643 int err, id;
644
645 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
646 rtnl_net_policy);
647 if (err < 0)
648 return err;
649 if (tb[NETNSA_PID])
650 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
651 else if (tb[NETNSA_FD])
652 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
653 else
654 return -EINVAL;
655
656 if (IS_ERR(peer))
657 return PTR_ERR(peer);
658
659 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
660 if (!msg) {
661 err = -ENOMEM;
662 goto out;
663 }
664
665 id = peernet2id(net, peer);
666 err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
667 RTM_NEWNSID, net, id);
668 if (err < 0)
669 goto err_out;
670
671 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
672 goto out;
673
674 err_out:
675 nlmsg_free(msg);
676 out:
677 put_net(peer);
678 return err;
679 }
680
681 struct rtnl_net_dump_cb {
682 struct net *net;
683 struct sk_buff *skb;
684 struct netlink_callback *cb;
685 int idx;
686 int s_idx;
687 };
688
689 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
690 {
691 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
692 int ret;
693
694 if (net_cb->idx < net_cb->s_idx)
695 goto cont;
696
697 ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
698 net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
699 RTM_NEWNSID, net_cb->net, id);
700 if (ret < 0)
701 return ret;
702
703 cont:
704 net_cb->idx++;
705 return 0;
706 }
707
708 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
709 {
710 struct net *net = sock_net(skb->sk);
711 struct rtnl_net_dump_cb net_cb = {
712 .net = net,
713 .skb = skb,
714 .cb = cb,
715 .idx = 0,
716 .s_idx = cb->args[0],
717 };
718 unsigned long flags;
719
720 spin_lock_irqsave(&net->nsid_lock, flags);
721 idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
722 spin_unlock_irqrestore(&net->nsid_lock, flags);
723
724 cb->args[0] = net_cb.idx;
725 return skb->len;
726 }
727
728 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
729 {
730 struct sk_buff *msg;
731 int err = -ENOMEM;
732
733 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
734 if (!msg)
735 goto out;
736
737 err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
738 if (err < 0)
739 goto err_out;
740
741 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
742 return;
743
744 err_out:
745 nlmsg_free(msg);
746 out:
747 rtnl_set_sk_err(net, RTNLGRP_NSID, err);
748 }
749
750 static int __init net_ns_init(void)
751 {
752 struct net_generic *ng;
753
754 #ifdef CONFIG_NET_NS
755 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
756 SMP_CACHE_BYTES,
757 SLAB_PANIC, NULL);
758
759 /* Create workqueue for cleanup */
760 netns_wq = create_singlethread_workqueue("netns");
761 if (!netns_wq)
762 panic("Could not create netns workq");
763 #endif
764
765 ng = net_alloc_generic();
766 if (!ng)
767 panic("Could not allocate generic netns");
768
769 rcu_assign_pointer(init_net.gen, ng);
770
771 mutex_lock(&net_mutex);
772 if (setup_net(&init_net, &init_user_ns))
773 panic("Could not setup the initial network namespace");
774
775 init_net_initialized = true;
776
777 rtnl_lock();
778 list_add_tail_rcu(&init_net.list, &net_namespace_list);
779 rtnl_unlock();
780
781 mutex_unlock(&net_mutex);
782
783 register_pernet_subsys(&net_ns_ops);
784
785 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
786 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
787 NULL);
788
789 return 0;
790 }
791
792 pure_initcall(net_ns_init);
793
794 #ifdef CONFIG_NET_NS
795 static int __register_pernet_operations(struct list_head *list,
796 struct pernet_operations *ops)
797 {
798 struct net *net;
799 int error;
800 LIST_HEAD(net_exit_list);
801
802 list_add_tail(&ops->list, list);
803 if (ops->init || (ops->id && ops->size)) {
804 for_each_net(net) {
805 error = ops_init(ops, net);
806 if (error)
807 goto out_undo;
808 list_add_tail(&net->exit_list, &net_exit_list);
809 }
810 }
811 return 0;
812
813 out_undo:
814 /* If I have an error cleanup all namespaces I initialized */
815 list_del(&ops->list);
816 ops_exit_list(ops, &net_exit_list);
817 ops_free_list(ops, &net_exit_list);
818 return error;
819 }
820
821 static void __unregister_pernet_operations(struct pernet_operations *ops)
822 {
823 struct net *net;
824 LIST_HEAD(net_exit_list);
825
826 list_del(&ops->list);
827 for_each_net(net)
828 list_add_tail(&net->exit_list, &net_exit_list);
829 ops_exit_list(ops, &net_exit_list);
830 ops_free_list(ops, &net_exit_list);
831 }
832
833 #else
834
835 static int __register_pernet_operations(struct list_head *list,
836 struct pernet_operations *ops)
837 {
838 if (!init_net_initialized) {
839 list_add_tail(&ops->list, list);
840 return 0;
841 }
842
843 return ops_init(ops, &init_net);
844 }
845
846 static void __unregister_pernet_operations(struct pernet_operations *ops)
847 {
848 if (!init_net_initialized) {
849 list_del(&ops->list);
850 } else {
851 LIST_HEAD(net_exit_list);
852 list_add(&init_net.exit_list, &net_exit_list);
853 ops_exit_list(ops, &net_exit_list);
854 ops_free_list(ops, &net_exit_list);
855 }
856 }
857
858 #endif /* CONFIG_NET_NS */
859
860 static DEFINE_IDA(net_generic_ids);
861
862 static int register_pernet_operations(struct list_head *list,
863 struct pernet_operations *ops)
864 {
865 int error;
866
867 if (ops->id) {
868 again:
869 error = ida_get_new_above(&net_generic_ids, 1, ops->id);
870 if (error < 0) {
871 if (error == -EAGAIN) {
872 ida_pre_get(&net_generic_ids, GFP_KERNEL);
873 goto again;
874 }
875 return error;
876 }
877 max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
878 }
879 error = __register_pernet_operations(list, ops);
880 if (error) {
881 rcu_barrier();
882 if (ops->id)
883 ida_remove(&net_generic_ids, *ops->id);
884 }
885
886 return error;
887 }
888
889 static void unregister_pernet_operations(struct pernet_operations *ops)
890 {
891
892 __unregister_pernet_operations(ops);
893 rcu_barrier();
894 if (ops->id)
895 ida_remove(&net_generic_ids, *ops->id);
896 }
897
898 /**
899 * register_pernet_subsys - register a network namespace subsystem
900 * @ops: pernet operations structure for the subsystem
901 *
902 * Register a subsystem which has init and exit functions
903 * that are called when network namespaces are created and
904 * destroyed respectively.
905 *
906 * When registered all network namespace init functions are
907 * called for every existing network namespace. Allowing kernel
908 * modules to have a race free view of the set of network namespaces.
909 *
910 * When a new network namespace is created all of the init
911 * methods are called in the order in which they were registered.
912 *
913 * When a network namespace is destroyed all of the exit methods
914 * are called in the reverse of the order with which they were
915 * registered.
916 */
917 int register_pernet_subsys(struct pernet_operations *ops)
918 {
919 int error;
920 mutex_lock(&net_mutex);
921 error = register_pernet_operations(first_device, ops);
922 mutex_unlock(&net_mutex);
923 return error;
924 }
925 EXPORT_SYMBOL_GPL(register_pernet_subsys);
926
927 /**
928 * unregister_pernet_subsys - unregister a network namespace subsystem
929 * @ops: pernet operations structure to manipulate
930 *
931 * Remove the pernet operations structure from the list to be
932 * used when network namespaces are created or destroyed. In
933 * addition run the exit method for all existing network
934 * namespaces.
935 */
936 void unregister_pernet_subsys(struct pernet_operations *ops)
937 {
938 mutex_lock(&net_mutex);
939 unregister_pernet_operations(ops);
940 mutex_unlock(&net_mutex);
941 }
942 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
943
944 /**
945 * register_pernet_device - register a network namespace device
946 * @ops: pernet operations structure for the subsystem
947 *
948 * Register a device which has init and exit functions
949 * that are called when network namespaces are created and
950 * destroyed respectively.
951 *
952 * When registered all network namespace init functions are
953 * called for every existing network namespace. Allowing kernel
954 * modules to have a race free view of the set of network namespaces.
955 *
956 * When a new network namespace is created all of the init
957 * methods are called in the order in which they were registered.
958 *
959 * When a network namespace is destroyed all of the exit methods
960 * are called in the reverse of the order with which they were
961 * registered.
962 */
963 int register_pernet_device(struct pernet_operations *ops)
964 {
965 int error;
966 mutex_lock(&net_mutex);
967 error = register_pernet_operations(&pernet_list, ops);
968 if (!error && (first_device == &pernet_list))
969 first_device = &ops->list;
970 mutex_unlock(&net_mutex);
971 return error;
972 }
973 EXPORT_SYMBOL_GPL(register_pernet_device);
974
975 /**
976 * unregister_pernet_device - unregister a network namespace netdevice
977 * @ops: pernet operations structure to manipulate
978 *
979 * Remove the pernet operations structure from the list to be
980 * used when network namespaces are created or destroyed. In
981 * addition run the exit method for all existing network
982 * namespaces.
983 */
984 void unregister_pernet_device(struct pernet_operations *ops)
985 {
986 mutex_lock(&net_mutex);
987 if (&ops->list == first_device)
988 first_device = first_device->next;
989 unregister_pernet_operations(ops);
990 mutex_unlock(&net_mutex);
991 }
992 EXPORT_SYMBOL_GPL(unregister_pernet_device);
993
994 #ifdef CONFIG_NET_NS
995 static struct ns_common *netns_get(struct task_struct *task)
996 {
997 struct net *net = NULL;
998 struct nsproxy *nsproxy;
999
1000 task_lock(task);
1001 nsproxy = task->nsproxy;
1002 if (nsproxy)
1003 net = get_net(nsproxy->net_ns);
1004 task_unlock(task);
1005
1006 return net ? &net->ns : NULL;
1007 }
1008
1009 static inline struct net *to_net_ns(struct ns_common *ns)
1010 {
1011 return container_of(ns, struct net, ns);
1012 }
1013
1014 static void netns_put(struct ns_common *ns)
1015 {
1016 put_net(to_net_ns(ns));
1017 }
1018
1019 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1020 {
1021 struct net *net = to_net_ns(ns);
1022
1023 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1024 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1025 return -EPERM;
1026
1027 put_net(nsproxy->net_ns);
1028 nsproxy->net_ns = get_net(net);
1029 return 0;
1030 }
1031
1032 static struct user_namespace *netns_owner(struct ns_common *ns)
1033 {
1034 return to_net_ns(ns)->user_ns;
1035 }
1036
1037 const struct proc_ns_operations netns_operations = {
1038 .name = "net",
1039 .type = CLONE_NEWNET,
1040 .get = netns_get,
1041 .put = netns_put,
1042 .install = netns_install,
1043 .owner = netns_owner,
1044 };
1045 #endif