]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - net/core/sock.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[thirdparty/kernel/stable.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120
121 #include <linux/uaccess.h>
122
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
135
136 #include <linux/filter.h>
137 #include <net/sock_reuseport.h>
138
139 #include <trace/events/sock.h>
140
141 #ifdef CONFIG_INET
142 #include <net/tcp.h>
143 #endif
144
145 #include <net/busy_poll.h>
146
147 static DEFINE_MUTEX(proto_list_mutex);
148 static LIST_HEAD(proto_list);
149
150 /**
151 * sk_ns_capable - General socket capability test
152 * @sk: Socket to use a capability on or through
153 * @user_ns: The user namespace of the capability to use
154 * @cap: The capability to use
155 *
156 * Test to see if the opener of the socket had when the socket was
157 * created and the current process has the capability @cap in the user
158 * namespace @user_ns.
159 */
160 bool sk_ns_capable(const struct sock *sk,
161 struct user_namespace *user_ns, int cap)
162 {
163 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
164 ns_capable(user_ns, cap);
165 }
166 EXPORT_SYMBOL(sk_ns_capable);
167
168 /**
169 * sk_capable - Socket global capability test
170 * @sk: Socket to use a capability on or through
171 * @cap: The global capability to use
172 *
173 * Test to see if the opener of the socket had when the socket was
174 * created and the current process has the capability @cap in all user
175 * namespaces.
176 */
177 bool sk_capable(const struct sock *sk, int cap)
178 {
179 return sk_ns_capable(sk, &init_user_ns, cap);
180 }
181 EXPORT_SYMBOL(sk_capable);
182
183 /**
184 * sk_net_capable - Network namespace socket capability test
185 * @sk: Socket to use a capability on or through
186 * @cap: The capability to use
187 *
188 * Test to see if the opener of the socket had when the socket was created
189 * and the current process has the capability @cap over the network namespace
190 * the socket is a member of.
191 */
192 bool sk_net_capable(const struct sock *sk, int cap)
193 {
194 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
195 }
196 EXPORT_SYMBOL(sk_net_capable);
197
198 /*
199 * Each address family might have different locking rules, so we have
200 * one slock key per address family and separate keys for internal and
201 * userspace sockets.
202 */
203 static struct lock_class_key af_family_keys[AF_MAX];
204 static struct lock_class_key af_family_kern_keys[AF_MAX];
205 static struct lock_class_key af_family_slock_keys[AF_MAX];
206 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
207
208 /*
209 * Make lock validator output more readable. (we pre-construct these
210 * strings build-time, so that runtime initialization of socket
211 * locks is fast):
212 */
213
214 #define _sock_locks(x) \
215 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
216 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
217 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
218 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
219 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
220 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
221 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
222 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
223 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
224 x "27" , x "28" , x "AF_CAN" , \
225 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
226 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
227 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
228 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
229 x "AF_QIPCRTR", x "AF_SMC" , x "AF_MAX"
230
231 static const char *const af_family_key_strings[AF_MAX+1] = {
232 _sock_locks("sk_lock-")
233 };
234 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
235 _sock_locks("slock-")
236 };
237 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
238 _sock_locks("clock-")
239 };
240
241 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
242 _sock_locks("k-sk_lock-")
243 };
244 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
245 _sock_locks("k-slock-")
246 };
247 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
248 _sock_locks("k-clock-")
249 };
250 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
251 "rlock-AF_UNSPEC", "rlock-AF_UNIX" , "rlock-AF_INET" ,
252 "rlock-AF_AX25" , "rlock-AF_IPX" , "rlock-AF_APPLETALK",
253 "rlock-AF_NETROM", "rlock-AF_BRIDGE" , "rlock-AF_ATMPVC" ,
254 "rlock-AF_X25" , "rlock-AF_INET6" , "rlock-AF_ROSE" ,
255 "rlock-AF_DECnet", "rlock-AF_NETBEUI" , "rlock-AF_SECURITY" ,
256 "rlock-AF_KEY" , "rlock-AF_NETLINK" , "rlock-AF_PACKET" ,
257 "rlock-AF_ASH" , "rlock-AF_ECONET" , "rlock-AF_ATMSVC" ,
258 "rlock-AF_RDS" , "rlock-AF_SNA" , "rlock-AF_IRDA" ,
259 "rlock-AF_PPPOX" , "rlock-AF_WANPIPE" , "rlock-AF_LLC" ,
260 "rlock-27" , "rlock-28" , "rlock-AF_CAN" ,
261 "rlock-AF_TIPC" , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV" ,
262 "rlock-AF_RXRPC" , "rlock-AF_ISDN" , "rlock-AF_PHONET" ,
263 "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG" ,
264 "rlock-AF_NFC" , "rlock-AF_VSOCK" , "rlock-AF_KCM" ,
265 "rlock-AF_QIPCRTR", "rlock-AF_SMC" , "rlock-AF_MAX"
266 };
267 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
268 "wlock-AF_UNSPEC", "wlock-AF_UNIX" , "wlock-AF_INET" ,
269 "wlock-AF_AX25" , "wlock-AF_IPX" , "wlock-AF_APPLETALK",
270 "wlock-AF_NETROM", "wlock-AF_BRIDGE" , "wlock-AF_ATMPVC" ,
271 "wlock-AF_X25" , "wlock-AF_INET6" , "wlock-AF_ROSE" ,
272 "wlock-AF_DECnet", "wlock-AF_NETBEUI" , "wlock-AF_SECURITY" ,
273 "wlock-AF_KEY" , "wlock-AF_NETLINK" , "wlock-AF_PACKET" ,
274 "wlock-AF_ASH" , "wlock-AF_ECONET" , "wlock-AF_ATMSVC" ,
275 "wlock-AF_RDS" , "wlock-AF_SNA" , "wlock-AF_IRDA" ,
276 "wlock-AF_PPPOX" , "wlock-AF_WANPIPE" , "wlock-AF_LLC" ,
277 "wlock-27" , "wlock-28" , "wlock-AF_CAN" ,
278 "wlock-AF_TIPC" , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV" ,
279 "wlock-AF_RXRPC" , "wlock-AF_ISDN" , "wlock-AF_PHONET" ,
280 "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG" ,
281 "wlock-AF_NFC" , "wlock-AF_VSOCK" , "wlock-AF_KCM" ,
282 "wlock-AF_QIPCRTR", "wlock-AF_SMC" , "wlock-AF_MAX"
283 };
284 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
285 "elock-AF_UNSPEC", "elock-AF_UNIX" , "elock-AF_INET" ,
286 "elock-AF_AX25" , "elock-AF_IPX" , "elock-AF_APPLETALK",
287 "elock-AF_NETROM", "elock-AF_BRIDGE" , "elock-AF_ATMPVC" ,
288 "elock-AF_X25" , "elock-AF_INET6" , "elock-AF_ROSE" ,
289 "elock-AF_DECnet", "elock-AF_NETBEUI" , "elock-AF_SECURITY" ,
290 "elock-AF_KEY" , "elock-AF_NETLINK" , "elock-AF_PACKET" ,
291 "elock-AF_ASH" , "elock-AF_ECONET" , "elock-AF_ATMSVC" ,
292 "elock-AF_RDS" , "elock-AF_SNA" , "elock-AF_IRDA" ,
293 "elock-AF_PPPOX" , "elock-AF_WANPIPE" , "elock-AF_LLC" ,
294 "elock-27" , "elock-28" , "elock-AF_CAN" ,
295 "elock-AF_TIPC" , "elock-AF_BLUETOOTH", "elock-AF_IUCV" ,
296 "elock-AF_RXRPC" , "elock-AF_ISDN" , "elock-AF_PHONET" ,
297 "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG" ,
298 "elock-AF_NFC" , "elock-AF_VSOCK" , "elock-AF_KCM" ,
299 "elock-AF_QIPCRTR", "elock-AF_SMC" , "elock-AF_MAX"
300 };
301
302 /*
303 * sk_callback_lock and sk queues locking rules are per-address-family,
304 * so split the lock classes by using a per-AF key:
305 */
306 static struct lock_class_key af_callback_keys[AF_MAX];
307 static struct lock_class_key af_rlock_keys[AF_MAX];
308 static struct lock_class_key af_wlock_keys[AF_MAX];
309 static struct lock_class_key af_elock_keys[AF_MAX];
310 static struct lock_class_key af_kern_callback_keys[AF_MAX];
311
312 /* Take into consideration the size of the struct sk_buff overhead in the
313 * determination of these values, since that is non-constant across
314 * platforms. This makes socket queueing behavior and performance
315 * not depend upon such differences.
316 */
317 #define _SK_MEM_PACKETS 256
318 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
319 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
320 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
321
322 /* Run time adjustable parameters. */
323 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
324 EXPORT_SYMBOL(sysctl_wmem_max);
325 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
326 EXPORT_SYMBOL(sysctl_rmem_max);
327 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
328 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
329
330 /* Maximal space eaten by iovec or ancillary data plus some space */
331 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
332 EXPORT_SYMBOL(sysctl_optmem_max);
333
334 int sysctl_tstamp_allow_data __read_mostly = 1;
335
336 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
337 EXPORT_SYMBOL_GPL(memalloc_socks);
338
339 /**
340 * sk_set_memalloc - sets %SOCK_MEMALLOC
341 * @sk: socket to set it on
342 *
343 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
344 * It's the responsibility of the admin to adjust min_free_kbytes
345 * to meet the requirements
346 */
347 void sk_set_memalloc(struct sock *sk)
348 {
349 sock_set_flag(sk, SOCK_MEMALLOC);
350 sk->sk_allocation |= __GFP_MEMALLOC;
351 static_key_slow_inc(&memalloc_socks);
352 }
353 EXPORT_SYMBOL_GPL(sk_set_memalloc);
354
355 void sk_clear_memalloc(struct sock *sk)
356 {
357 sock_reset_flag(sk, SOCK_MEMALLOC);
358 sk->sk_allocation &= ~__GFP_MEMALLOC;
359 static_key_slow_dec(&memalloc_socks);
360
361 /*
362 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
363 * progress of swapping. SOCK_MEMALLOC may be cleared while
364 * it has rmem allocations due to the last swapfile being deactivated
365 * but there is a risk that the socket is unusable due to exceeding
366 * the rmem limits. Reclaim the reserves and obey rmem limits again.
367 */
368 sk_mem_reclaim(sk);
369 }
370 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
371
372 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
373 {
374 int ret;
375 unsigned long pflags = current->flags;
376
377 /* these should have been dropped before queueing */
378 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
379
380 current->flags |= PF_MEMALLOC;
381 ret = sk->sk_backlog_rcv(sk, skb);
382 current_restore_flags(pflags, PF_MEMALLOC);
383
384 return ret;
385 }
386 EXPORT_SYMBOL(__sk_backlog_rcv);
387
388 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
389 {
390 struct timeval tv;
391
392 if (optlen < sizeof(tv))
393 return -EINVAL;
394 if (copy_from_user(&tv, optval, sizeof(tv)))
395 return -EFAULT;
396 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
397 return -EDOM;
398
399 if (tv.tv_sec < 0) {
400 static int warned __read_mostly;
401
402 *timeo_p = 0;
403 if (warned < 10 && net_ratelimit()) {
404 warned++;
405 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
406 __func__, current->comm, task_pid_nr(current));
407 }
408 return 0;
409 }
410 *timeo_p = MAX_SCHEDULE_TIMEOUT;
411 if (tv.tv_sec == 0 && tv.tv_usec == 0)
412 return 0;
413 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
414 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ);
415 return 0;
416 }
417
418 static void sock_warn_obsolete_bsdism(const char *name)
419 {
420 static int warned;
421 static char warncomm[TASK_COMM_LEN];
422 if (strcmp(warncomm, current->comm) && warned < 5) {
423 strcpy(warncomm, current->comm);
424 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
425 warncomm, name);
426 warned++;
427 }
428 }
429
430 static bool sock_needs_netstamp(const struct sock *sk)
431 {
432 switch (sk->sk_family) {
433 case AF_UNSPEC:
434 case AF_UNIX:
435 return false;
436 default:
437 return true;
438 }
439 }
440
441 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
442 {
443 if (sk->sk_flags & flags) {
444 sk->sk_flags &= ~flags;
445 if (sock_needs_netstamp(sk) &&
446 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
447 net_disable_timestamp();
448 }
449 }
450
451
452 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
453 {
454 unsigned long flags;
455 struct sk_buff_head *list = &sk->sk_receive_queue;
456
457 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
458 atomic_inc(&sk->sk_drops);
459 trace_sock_rcvqueue_full(sk, skb);
460 return -ENOMEM;
461 }
462
463 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
464 atomic_inc(&sk->sk_drops);
465 return -ENOBUFS;
466 }
467
468 skb->dev = NULL;
469 skb_set_owner_r(skb, sk);
470
471 /* we escape from rcu protected region, make sure we dont leak
472 * a norefcounted dst
473 */
474 skb_dst_force(skb);
475
476 spin_lock_irqsave(&list->lock, flags);
477 sock_skb_set_dropcount(sk, skb);
478 __skb_queue_tail(list, skb);
479 spin_unlock_irqrestore(&list->lock, flags);
480
481 if (!sock_flag(sk, SOCK_DEAD))
482 sk->sk_data_ready(sk);
483 return 0;
484 }
485 EXPORT_SYMBOL(__sock_queue_rcv_skb);
486
487 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
488 {
489 int err;
490
491 err = sk_filter(sk, skb);
492 if (err)
493 return err;
494
495 return __sock_queue_rcv_skb(sk, skb);
496 }
497 EXPORT_SYMBOL(sock_queue_rcv_skb);
498
499 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
500 const int nested, unsigned int trim_cap, bool refcounted)
501 {
502 int rc = NET_RX_SUCCESS;
503
504 if (sk_filter_trim_cap(sk, skb, trim_cap))
505 goto discard_and_relse;
506
507 skb->dev = NULL;
508
509 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
510 atomic_inc(&sk->sk_drops);
511 goto discard_and_relse;
512 }
513 if (nested)
514 bh_lock_sock_nested(sk);
515 else
516 bh_lock_sock(sk);
517 if (!sock_owned_by_user(sk)) {
518 /*
519 * trylock + unlock semantics:
520 */
521 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
522
523 rc = sk_backlog_rcv(sk, skb);
524
525 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
526 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
527 bh_unlock_sock(sk);
528 atomic_inc(&sk->sk_drops);
529 goto discard_and_relse;
530 }
531
532 bh_unlock_sock(sk);
533 out:
534 if (refcounted)
535 sock_put(sk);
536 return rc;
537 discard_and_relse:
538 kfree_skb(skb);
539 goto out;
540 }
541 EXPORT_SYMBOL(__sk_receive_skb);
542
543 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
544 {
545 struct dst_entry *dst = __sk_dst_get(sk);
546
547 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
548 sk_tx_queue_clear(sk);
549 sk->sk_dst_pending_confirm = 0;
550 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
551 dst_release(dst);
552 return NULL;
553 }
554
555 return dst;
556 }
557 EXPORT_SYMBOL(__sk_dst_check);
558
559 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
560 {
561 struct dst_entry *dst = sk_dst_get(sk);
562
563 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
564 sk_dst_reset(sk);
565 dst_release(dst);
566 return NULL;
567 }
568
569 return dst;
570 }
571 EXPORT_SYMBOL(sk_dst_check);
572
573 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
574 int optlen)
575 {
576 int ret = -ENOPROTOOPT;
577 #ifdef CONFIG_NETDEVICES
578 struct net *net = sock_net(sk);
579 char devname[IFNAMSIZ];
580 int index;
581
582 /* Sorry... */
583 ret = -EPERM;
584 if (!ns_capable(net->user_ns, CAP_NET_RAW))
585 goto out;
586
587 ret = -EINVAL;
588 if (optlen < 0)
589 goto out;
590
591 /* Bind this socket to a particular device like "eth0",
592 * as specified in the passed interface name. If the
593 * name is "" or the option length is zero the socket
594 * is not bound.
595 */
596 if (optlen > IFNAMSIZ - 1)
597 optlen = IFNAMSIZ - 1;
598 memset(devname, 0, sizeof(devname));
599
600 ret = -EFAULT;
601 if (copy_from_user(devname, optval, optlen))
602 goto out;
603
604 index = 0;
605 if (devname[0] != '\0') {
606 struct net_device *dev;
607
608 rcu_read_lock();
609 dev = dev_get_by_name_rcu(net, devname);
610 if (dev)
611 index = dev->ifindex;
612 rcu_read_unlock();
613 ret = -ENODEV;
614 if (!dev)
615 goto out;
616 }
617
618 lock_sock(sk);
619 sk->sk_bound_dev_if = index;
620 sk_dst_reset(sk);
621 release_sock(sk);
622
623 ret = 0;
624
625 out:
626 #endif
627
628 return ret;
629 }
630
631 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
632 int __user *optlen, int len)
633 {
634 int ret = -ENOPROTOOPT;
635 #ifdef CONFIG_NETDEVICES
636 struct net *net = sock_net(sk);
637 char devname[IFNAMSIZ];
638
639 if (sk->sk_bound_dev_if == 0) {
640 len = 0;
641 goto zero;
642 }
643
644 ret = -EINVAL;
645 if (len < IFNAMSIZ)
646 goto out;
647
648 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
649 if (ret)
650 goto out;
651
652 len = strlen(devname) + 1;
653
654 ret = -EFAULT;
655 if (copy_to_user(optval, devname, len))
656 goto out;
657
658 zero:
659 ret = -EFAULT;
660 if (put_user(len, optlen))
661 goto out;
662
663 ret = 0;
664
665 out:
666 #endif
667
668 return ret;
669 }
670
671 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
672 {
673 if (valbool)
674 sock_set_flag(sk, bit);
675 else
676 sock_reset_flag(sk, bit);
677 }
678
679 bool sk_mc_loop(struct sock *sk)
680 {
681 if (dev_recursion_level())
682 return false;
683 if (!sk)
684 return true;
685 switch (sk->sk_family) {
686 case AF_INET:
687 return inet_sk(sk)->mc_loop;
688 #if IS_ENABLED(CONFIG_IPV6)
689 case AF_INET6:
690 return inet6_sk(sk)->mc_loop;
691 #endif
692 }
693 WARN_ON(1);
694 return true;
695 }
696 EXPORT_SYMBOL(sk_mc_loop);
697
698 /*
699 * This is meant for all protocols to use and covers goings on
700 * at the socket level. Everything here is generic.
701 */
702
703 int sock_setsockopt(struct socket *sock, int level, int optname,
704 char __user *optval, unsigned int optlen)
705 {
706 struct sock *sk = sock->sk;
707 int val;
708 int valbool;
709 struct linger ling;
710 int ret = 0;
711
712 /*
713 * Options without arguments
714 */
715
716 if (optname == SO_BINDTODEVICE)
717 return sock_setbindtodevice(sk, optval, optlen);
718
719 if (optlen < sizeof(int))
720 return -EINVAL;
721
722 if (get_user(val, (int __user *)optval))
723 return -EFAULT;
724
725 valbool = val ? 1 : 0;
726
727 lock_sock(sk);
728
729 switch (optname) {
730 case SO_DEBUG:
731 if (val && !capable(CAP_NET_ADMIN))
732 ret = -EACCES;
733 else
734 sock_valbool_flag(sk, SOCK_DBG, valbool);
735 break;
736 case SO_REUSEADDR:
737 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
738 break;
739 case SO_REUSEPORT:
740 sk->sk_reuseport = valbool;
741 break;
742 case SO_TYPE:
743 case SO_PROTOCOL:
744 case SO_DOMAIN:
745 case SO_ERROR:
746 ret = -ENOPROTOOPT;
747 break;
748 case SO_DONTROUTE:
749 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
750 break;
751 case SO_BROADCAST:
752 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
753 break;
754 case SO_SNDBUF:
755 /* Don't error on this BSD doesn't and if you think
756 * about it this is right. Otherwise apps have to
757 * play 'guess the biggest size' games. RCVBUF/SNDBUF
758 * are treated in BSD as hints
759 */
760 val = min_t(u32, val, sysctl_wmem_max);
761 set_sndbuf:
762 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
763 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
764 /* Wake up sending tasks if we upped the value. */
765 sk->sk_write_space(sk);
766 break;
767
768 case SO_SNDBUFFORCE:
769 if (!capable(CAP_NET_ADMIN)) {
770 ret = -EPERM;
771 break;
772 }
773 goto set_sndbuf;
774
775 case SO_RCVBUF:
776 /* Don't error on this BSD doesn't and if you think
777 * about it this is right. Otherwise apps have to
778 * play 'guess the biggest size' games. RCVBUF/SNDBUF
779 * are treated in BSD as hints
780 */
781 val = min_t(u32, val, sysctl_rmem_max);
782 set_rcvbuf:
783 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
784 /*
785 * We double it on the way in to account for
786 * "struct sk_buff" etc. overhead. Applications
787 * assume that the SO_RCVBUF setting they make will
788 * allow that much actual data to be received on that
789 * socket.
790 *
791 * Applications are unaware that "struct sk_buff" and
792 * other overheads allocate from the receive buffer
793 * during socket buffer allocation.
794 *
795 * And after considering the possible alternatives,
796 * returning the value we actually used in getsockopt
797 * is the most desirable behavior.
798 */
799 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
800 break;
801
802 case SO_RCVBUFFORCE:
803 if (!capable(CAP_NET_ADMIN)) {
804 ret = -EPERM;
805 break;
806 }
807 goto set_rcvbuf;
808
809 case SO_KEEPALIVE:
810 if (sk->sk_prot->keepalive)
811 sk->sk_prot->keepalive(sk, valbool);
812 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
813 break;
814
815 case SO_OOBINLINE:
816 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
817 break;
818
819 case SO_NO_CHECK:
820 sk->sk_no_check_tx = valbool;
821 break;
822
823 case SO_PRIORITY:
824 if ((val >= 0 && val <= 6) ||
825 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
826 sk->sk_priority = val;
827 else
828 ret = -EPERM;
829 break;
830
831 case SO_LINGER:
832 if (optlen < sizeof(ling)) {
833 ret = -EINVAL; /* 1003.1g */
834 break;
835 }
836 if (copy_from_user(&ling, optval, sizeof(ling))) {
837 ret = -EFAULT;
838 break;
839 }
840 if (!ling.l_onoff)
841 sock_reset_flag(sk, SOCK_LINGER);
842 else {
843 #if (BITS_PER_LONG == 32)
844 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
845 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
846 else
847 #endif
848 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
849 sock_set_flag(sk, SOCK_LINGER);
850 }
851 break;
852
853 case SO_BSDCOMPAT:
854 sock_warn_obsolete_bsdism("setsockopt");
855 break;
856
857 case SO_PASSCRED:
858 if (valbool)
859 set_bit(SOCK_PASSCRED, &sock->flags);
860 else
861 clear_bit(SOCK_PASSCRED, &sock->flags);
862 break;
863
864 case SO_TIMESTAMP:
865 case SO_TIMESTAMPNS:
866 if (valbool) {
867 if (optname == SO_TIMESTAMP)
868 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
869 else
870 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
871 sock_set_flag(sk, SOCK_RCVTSTAMP);
872 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
873 } else {
874 sock_reset_flag(sk, SOCK_RCVTSTAMP);
875 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
876 }
877 break;
878
879 case SO_TIMESTAMPING:
880 if (val & ~SOF_TIMESTAMPING_MASK) {
881 ret = -EINVAL;
882 break;
883 }
884
885 if (val & SOF_TIMESTAMPING_OPT_ID &&
886 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
887 if (sk->sk_protocol == IPPROTO_TCP &&
888 sk->sk_type == SOCK_STREAM) {
889 if ((1 << sk->sk_state) &
890 (TCPF_CLOSE | TCPF_LISTEN)) {
891 ret = -EINVAL;
892 break;
893 }
894 sk->sk_tskey = tcp_sk(sk)->snd_una;
895 } else {
896 sk->sk_tskey = 0;
897 }
898 }
899
900 if (val & SOF_TIMESTAMPING_OPT_STATS &&
901 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
902 ret = -EINVAL;
903 break;
904 }
905
906 sk->sk_tsflags = val;
907 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
908 sock_enable_timestamp(sk,
909 SOCK_TIMESTAMPING_RX_SOFTWARE);
910 else
911 sock_disable_timestamp(sk,
912 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
913 break;
914
915 case SO_RCVLOWAT:
916 if (val < 0)
917 val = INT_MAX;
918 sk->sk_rcvlowat = val ? : 1;
919 break;
920
921 case SO_RCVTIMEO:
922 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
923 break;
924
925 case SO_SNDTIMEO:
926 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
927 break;
928
929 case SO_ATTACH_FILTER:
930 ret = -EINVAL;
931 if (optlen == sizeof(struct sock_fprog)) {
932 struct sock_fprog fprog;
933
934 ret = -EFAULT;
935 if (copy_from_user(&fprog, optval, sizeof(fprog)))
936 break;
937
938 ret = sk_attach_filter(&fprog, sk);
939 }
940 break;
941
942 case SO_ATTACH_BPF:
943 ret = -EINVAL;
944 if (optlen == sizeof(u32)) {
945 u32 ufd;
946
947 ret = -EFAULT;
948 if (copy_from_user(&ufd, optval, sizeof(ufd)))
949 break;
950
951 ret = sk_attach_bpf(ufd, sk);
952 }
953 break;
954
955 case SO_ATTACH_REUSEPORT_CBPF:
956 ret = -EINVAL;
957 if (optlen == sizeof(struct sock_fprog)) {
958 struct sock_fprog fprog;
959
960 ret = -EFAULT;
961 if (copy_from_user(&fprog, optval, sizeof(fprog)))
962 break;
963
964 ret = sk_reuseport_attach_filter(&fprog, sk);
965 }
966 break;
967
968 case SO_ATTACH_REUSEPORT_EBPF:
969 ret = -EINVAL;
970 if (optlen == sizeof(u32)) {
971 u32 ufd;
972
973 ret = -EFAULT;
974 if (copy_from_user(&ufd, optval, sizeof(ufd)))
975 break;
976
977 ret = sk_reuseport_attach_bpf(ufd, sk);
978 }
979 break;
980
981 case SO_DETACH_FILTER:
982 ret = sk_detach_filter(sk);
983 break;
984
985 case SO_LOCK_FILTER:
986 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
987 ret = -EPERM;
988 else
989 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
990 break;
991
992 case SO_PASSSEC:
993 if (valbool)
994 set_bit(SOCK_PASSSEC, &sock->flags);
995 else
996 clear_bit(SOCK_PASSSEC, &sock->flags);
997 break;
998 case SO_MARK:
999 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1000 ret = -EPERM;
1001 else
1002 sk->sk_mark = val;
1003 break;
1004
1005 case SO_RXQ_OVFL:
1006 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1007 break;
1008
1009 case SO_WIFI_STATUS:
1010 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1011 break;
1012
1013 case SO_PEEK_OFF:
1014 if (sock->ops->set_peek_off)
1015 ret = sock->ops->set_peek_off(sk, val);
1016 else
1017 ret = -EOPNOTSUPP;
1018 break;
1019
1020 case SO_NOFCS:
1021 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1022 break;
1023
1024 case SO_SELECT_ERR_QUEUE:
1025 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1026 break;
1027
1028 #ifdef CONFIG_NET_RX_BUSY_POLL
1029 case SO_BUSY_POLL:
1030 /* allow unprivileged users to decrease the value */
1031 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1032 ret = -EPERM;
1033 else {
1034 if (val < 0)
1035 ret = -EINVAL;
1036 else
1037 sk->sk_ll_usec = val;
1038 }
1039 break;
1040 #endif
1041
1042 case SO_MAX_PACING_RATE:
1043 sk->sk_max_pacing_rate = val;
1044 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1045 sk->sk_max_pacing_rate);
1046 break;
1047
1048 case SO_INCOMING_CPU:
1049 sk->sk_incoming_cpu = val;
1050 break;
1051
1052 case SO_CNX_ADVICE:
1053 if (val == 1)
1054 dst_negative_advice(sk);
1055 break;
1056 default:
1057 ret = -ENOPROTOOPT;
1058 break;
1059 }
1060 release_sock(sk);
1061 return ret;
1062 }
1063 EXPORT_SYMBOL(sock_setsockopt);
1064
1065
1066 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1067 struct ucred *ucred)
1068 {
1069 ucred->pid = pid_vnr(pid);
1070 ucred->uid = ucred->gid = -1;
1071 if (cred) {
1072 struct user_namespace *current_ns = current_user_ns();
1073
1074 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1075 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1076 }
1077 }
1078
1079 int sock_getsockopt(struct socket *sock, int level, int optname,
1080 char __user *optval, int __user *optlen)
1081 {
1082 struct sock *sk = sock->sk;
1083
1084 union {
1085 int val;
1086 u64 val64;
1087 struct linger ling;
1088 struct timeval tm;
1089 } v;
1090
1091 int lv = sizeof(int);
1092 int len;
1093
1094 if (get_user(len, optlen))
1095 return -EFAULT;
1096 if (len < 0)
1097 return -EINVAL;
1098
1099 memset(&v, 0, sizeof(v));
1100
1101 switch (optname) {
1102 case SO_DEBUG:
1103 v.val = sock_flag(sk, SOCK_DBG);
1104 break;
1105
1106 case SO_DONTROUTE:
1107 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1108 break;
1109
1110 case SO_BROADCAST:
1111 v.val = sock_flag(sk, SOCK_BROADCAST);
1112 break;
1113
1114 case SO_SNDBUF:
1115 v.val = sk->sk_sndbuf;
1116 break;
1117
1118 case SO_RCVBUF:
1119 v.val = sk->sk_rcvbuf;
1120 break;
1121
1122 case SO_REUSEADDR:
1123 v.val = sk->sk_reuse;
1124 break;
1125
1126 case SO_REUSEPORT:
1127 v.val = sk->sk_reuseport;
1128 break;
1129
1130 case SO_KEEPALIVE:
1131 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1132 break;
1133
1134 case SO_TYPE:
1135 v.val = sk->sk_type;
1136 break;
1137
1138 case SO_PROTOCOL:
1139 v.val = sk->sk_protocol;
1140 break;
1141
1142 case SO_DOMAIN:
1143 v.val = sk->sk_family;
1144 break;
1145
1146 case SO_ERROR:
1147 v.val = -sock_error(sk);
1148 if (v.val == 0)
1149 v.val = xchg(&sk->sk_err_soft, 0);
1150 break;
1151
1152 case SO_OOBINLINE:
1153 v.val = sock_flag(sk, SOCK_URGINLINE);
1154 break;
1155
1156 case SO_NO_CHECK:
1157 v.val = sk->sk_no_check_tx;
1158 break;
1159
1160 case SO_PRIORITY:
1161 v.val = sk->sk_priority;
1162 break;
1163
1164 case SO_LINGER:
1165 lv = sizeof(v.ling);
1166 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1167 v.ling.l_linger = sk->sk_lingertime / HZ;
1168 break;
1169
1170 case SO_BSDCOMPAT:
1171 sock_warn_obsolete_bsdism("getsockopt");
1172 break;
1173
1174 case SO_TIMESTAMP:
1175 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1176 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1177 break;
1178
1179 case SO_TIMESTAMPNS:
1180 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1181 break;
1182
1183 case SO_TIMESTAMPING:
1184 v.val = sk->sk_tsflags;
1185 break;
1186
1187 case SO_RCVTIMEO:
1188 lv = sizeof(struct timeval);
1189 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1190 v.tm.tv_sec = 0;
1191 v.tm.tv_usec = 0;
1192 } else {
1193 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1194 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ;
1195 }
1196 break;
1197
1198 case SO_SNDTIMEO:
1199 lv = sizeof(struct timeval);
1200 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1201 v.tm.tv_sec = 0;
1202 v.tm.tv_usec = 0;
1203 } else {
1204 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1205 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ;
1206 }
1207 break;
1208
1209 case SO_RCVLOWAT:
1210 v.val = sk->sk_rcvlowat;
1211 break;
1212
1213 case SO_SNDLOWAT:
1214 v.val = 1;
1215 break;
1216
1217 case SO_PASSCRED:
1218 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1219 break;
1220
1221 case SO_PEERCRED:
1222 {
1223 struct ucred peercred;
1224 if (len > sizeof(peercred))
1225 len = sizeof(peercred);
1226 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1227 if (copy_to_user(optval, &peercred, len))
1228 return -EFAULT;
1229 goto lenout;
1230 }
1231
1232 case SO_PEERNAME:
1233 {
1234 char address[128];
1235
1236 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1237 return -ENOTCONN;
1238 if (lv < len)
1239 return -EINVAL;
1240 if (copy_to_user(optval, address, len))
1241 return -EFAULT;
1242 goto lenout;
1243 }
1244
1245 /* Dubious BSD thing... Probably nobody even uses it, but
1246 * the UNIX standard wants it for whatever reason... -DaveM
1247 */
1248 case SO_ACCEPTCONN:
1249 v.val = sk->sk_state == TCP_LISTEN;
1250 break;
1251
1252 case SO_PASSSEC:
1253 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1254 break;
1255
1256 case SO_PEERSEC:
1257 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1258
1259 case SO_MARK:
1260 v.val = sk->sk_mark;
1261 break;
1262
1263 case SO_RXQ_OVFL:
1264 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1265 break;
1266
1267 case SO_WIFI_STATUS:
1268 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1269 break;
1270
1271 case SO_PEEK_OFF:
1272 if (!sock->ops->set_peek_off)
1273 return -EOPNOTSUPP;
1274
1275 v.val = sk->sk_peek_off;
1276 break;
1277 case SO_NOFCS:
1278 v.val = sock_flag(sk, SOCK_NOFCS);
1279 break;
1280
1281 case SO_BINDTODEVICE:
1282 return sock_getbindtodevice(sk, optval, optlen, len);
1283
1284 case SO_GET_FILTER:
1285 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1286 if (len < 0)
1287 return len;
1288
1289 goto lenout;
1290
1291 case SO_LOCK_FILTER:
1292 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1293 break;
1294
1295 case SO_BPF_EXTENSIONS:
1296 v.val = bpf_tell_extensions();
1297 break;
1298
1299 case SO_SELECT_ERR_QUEUE:
1300 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1301 break;
1302
1303 #ifdef CONFIG_NET_RX_BUSY_POLL
1304 case SO_BUSY_POLL:
1305 v.val = sk->sk_ll_usec;
1306 break;
1307 #endif
1308
1309 case SO_MAX_PACING_RATE:
1310 v.val = sk->sk_max_pacing_rate;
1311 break;
1312
1313 case SO_INCOMING_CPU:
1314 v.val = sk->sk_incoming_cpu;
1315 break;
1316
1317 case SO_MEMINFO:
1318 {
1319 u32 meminfo[SK_MEMINFO_VARS];
1320
1321 if (get_user(len, optlen))
1322 return -EFAULT;
1323
1324 sk_get_meminfo(sk, meminfo);
1325
1326 len = min_t(unsigned int, len, sizeof(meminfo));
1327 if (copy_to_user(optval, &meminfo, len))
1328 return -EFAULT;
1329
1330 goto lenout;
1331 }
1332
1333 #ifdef CONFIG_NET_RX_BUSY_POLL
1334 case SO_INCOMING_NAPI_ID:
1335 v.val = READ_ONCE(sk->sk_napi_id);
1336
1337 /* aggregate non-NAPI IDs down to 0 */
1338 if (v.val < MIN_NAPI_ID)
1339 v.val = 0;
1340
1341 break;
1342 #endif
1343
1344 case SO_COOKIE:
1345 lv = sizeof(u64);
1346 if (len < lv)
1347 return -EINVAL;
1348 v.val64 = sock_gen_cookie(sk);
1349 break;
1350
1351 default:
1352 /* We implement the SO_SNDLOWAT etc to not be settable
1353 * (1003.1g 7).
1354 */
1355 return -ENOPROTOOPT;
1356 }
1357
1358 if (len > lv)
1359 len = lv;
1360 if (copy_to_user(optval, &v, len))
1361 return -EFAULT;
1362 lenout:
1363 if (put_user(len, optlen))
1364 return -EFAULT;
1365 return 0;
1366 }
1367
1368 /*
1369 * Initialize an sk_lock.
1370 *
1371 * (We also register the sk_lock with the lock validator.)
1372 */
1373 static inline void sock_lock_init(struct sock *sk)
1374 {
1375 if (sk->sk_kern_sock)
1376 sock_lock_init_class_and_name(
1377 sk,
1378 af_family_kern_slock_key_strings[sk->sk_family],
1379 af_family_kern_slock_keys + sk->sk_family,
1380 af_family_kern_key_strings[sk->sk_family],
1381 af_family_kern_keys + sk->sk_family);
1382 else
1383 sock_lock_init_class_and_name(
1384 sk,
1385 af_family_slock_key_strings[sk->sk_family],
1386 af_family_slock_keys + sk->sk_family,
1387 af_family_key_strings[sk->sk_family],
1388 af_family_keys + sk->sk_family);
1389 }
1390
1391 /*
1392 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1393 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1394 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1395 */
1396 static void sock_copy(struct sock *nsk, const struct sock *osk)
1397 {
1398 #ifdef CONFIG_SECURITY_NETWORK
1399 void *sptr = nsk->sk_security;
1400 #endif
1401 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1402
1403 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1404 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1405
1406 #ifdef CONFIG_SECURITY_NETWORK
1407 nsk->sk_security = sptr;
1408 security_sk_clone(osk, nsk);
1409 #endif
1410 }
1411
1412 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1413 int family)
1414 {
1415 struct sock *sk;
1416 struct kmem_cache *slab;
1417
1418 slab = prot->slab;
1419 if (slab != NULL) {
1420 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1421 if (!sk)
1422 return sk;
1423 if (priority & __GFP_ZERO)
1424 sk_prot_clear_nulls(sk, prot->obj_size);
1425 } else
1426 sk = kmalloc(prot->obj_size, priority);
1427
1428 if (sk != NULL) {
1429 kmemcheck_annotate_bitfield(sk, flags);
1430
1431 if (security_sk_alloc(sk, family, priority))
1432 goto out_free;
1433
1434 if (!try_module_get(prot->owner))
1435 goto out_free_sec;
1436 sk_tx_queue_clear(sk);
1437 }
1438
1439 return sk;
1440
1441 out_free_sec:
1442 security_sk_free(sk);
1443 out_free:
1444 if (slab != NULL)
1445 kmem_cache_free(slab, sk);
1446 else
1447 kfree(sk);
1448 return NULL;
1449 }
1450
1451 static void sk_prot_free(struct proto *prot, struct sock *sk)
1452 {
1453 struct kmem_cache *slab;
1454 struct module *owner;
1455
1456 owner = prot->owner;
1457 slab = prot->slab;
1458
1459 cgroup_sk_free(&sk->sk_cgrp_data);
1460 mem_cgroup_sk_free(sk);
1461 security_sk_free(sk);
1462 if (slab != NULL)
1463 kmem_cache_free(slab, sk);
1464 else
1465 kfree(sk);
1466 module_put(owner);
1467 }
1468
1469 /**
1470 * sk_alloc - All socket objects are allocated here
1471 * @net: the applicable net namespace
1472 * @family: protocol family
1473 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1474 * @prot: struct proto associated with this new sock instance
1475 * @kern: is this to be a kernel socket?
1476 */
1477 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1478 struct proto *prot, int kern)
1479 {
1480 struct sock *sk;
1481
1482 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1483 if (sk) {
1484 sk->sk_family = family;
1485 /*
1486 * See comment in struct sock definition to understand
1487 * why we need sk_prot_creator -acme
1488 */
1489 sk->sk_prot = sk->sk_prot_creator = prot;
1490 sk->sk_kern_sock = kern;
1491 sock_lock_init(sk);
1492 sk->sk_net_refcnt = kern ? 0 : 1;
1493 if (likely(sk->sk_net_refcnt))
1494 get_net(net);
1495 sock_net_set(sk, net);
1496 atomic_set(&sk->sk_wmem_alloc, 1);
1497
1498 mem_cgroup_sk_alloc(sk);
1499 cgroup_sk_alloc(&sk->sk_cgrp_data);
1500 sock_update_classid(&sk->sk_cgrp_data);
1501 sock_update_netprioidx(&sk->sk_cgrp_data);
1502 }
1503
1504 return sk;
1505 }
1506 EXPORT_SYMBOL(sk_alloc);
1507
1508 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1509 * grace period. This is the case for UDP sockets and TCP listeners.
1510 */
1511 static void __sk_destruct(struct rcu_head *head)
1512 {
1513 struct sock *sk = container_of(head, struct sock, sk_rcu);
1514 struct sk_filter *filter;
1515
1516 if (sk->sk_destruct)
1517 sk->sk_destruct(sk);
1518
1519 filter = rcu_dereference_check(sk->sk_filter,
1520 atomic_read(&sk->sk_wmem_alloc) == 0);
1521 if (filter) {
1522 sk_filter_uncharge(sk, filter);
1523 RCU_INIT_POINTER(sk->sk_filter, NULL);
1524 }
1525 if (rcu_access_pointer(sk->sk_reuseport_cb))
1526 reuseport_detach_sock(sk);
1527
1528 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1529
1530 if (atomic_read(&sk->sk_omem_alloc))
1531 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1532 __func__, atomic_read(&sk->sk_omem_alloc));
1533
1534 if (sk->sk_frag.page) {
1535 put_page(sk->sk_frag.page);
1536 sk->sk_frag.page = NULL;
1537 }
1538
1539 if (sk->sk_peer_cred)
1540 put_cred(sk->sk_peer_cred);
1541 put_pid(sk->sk_peer_pid);
1542 if (likely(sk->sk_net_refcnt))
1543 put_net(sock_net(sk));
1544 sk_prot_free(sk->sk_prot_creator, sk);
1545 }
1546
1547 void sk_destruct(struct sock *sk)
1548 {
1549 if (sock_flag(sk, SOCK_RCU_FREE))
1550 call_rcu(&sk->sk_rcu, __sk_destruct);
1551 else
1552 __sk_destruct(&sk->sk_rcu);
1553 }
1554
1555 static void __sk_free(struct sock *sk)
1556 {
1557 if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1558 sock_diag_broadcast_destroy(sk);
1559 else
1560 sk_destruct(sk);
1561 }
1562
1563 void sk_free(struct sock *sk)
1564 {
1565 /*
1566 * We subtract one from sk_wmem_alloc and can know if
1567 * some packets are still in some tx queue.
1568 * If not null, sock_wfree() will call __sk_free(sk) later
1569 */
1570 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1571 __sk_free(sk);
1572 }
1573 EXPORT_SYMBOL(sk_free);
1574
1575 static void sk_init_common(struct sock *sk)
1576 {
1577 skb_queue_head_init(&sk->sk_receive_queue);
1578 skb_queue_head_init(&sk->sk_write_queue);
1579 skb_queue_head_init(&sk->sk_error_queue);
1580
1581 rwlock_init(&sk->sk_callback_lock);
1582 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1583 af_rlock_keys + sk->sk_family,
1584 af_family_rlock_key_strings[sk->sk_family]);
1585 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1586 af_wlock_keys + sk->sk_family,
1587 af_family_wlock_key_strings[sk->sk_family]);
1588 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1589 af_elock_keys + sk->sk_family,
1590 af_family_elock_key_strings[sk->sk_family]);
1591 lockdep_set_class_and_name(&sk->sk_callback_lock,
1592 af_callback_keys + sk->sk_family,
1593 af_family_clock_key_strings[sk->sk_family]);
1594 }
1595
1596 /**
1597 * sk_clone_lock - clone a socket, and lock its clone
1598 * @sk: the socket to clone
1599 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1600 *
1601 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1602 */
1603 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1604 {
1605 struct sock *newsk;
1606 bool is_charged = true;
1607
1608 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1609 if (newsk != NULL) {
1610 struct sk_filter *filter;
1611
1612 sock_copy(newsk, sk);
1613
1614 /* SANITY */
1615 if (likely(newsk->sk_net_refcnt))
1616 get_net(sock_net(newsk));
1617 sk_node_init(&newsk->sk_node);
1618 sock_lock_init(newsk);
1619 bh_lock_sock(newsk);
1620 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1621 newsk->sk_backlog.len = 0;
1622
1623 atomic_set(&newsk->sk_rmem_alloc, 0);
1624 /*
1625 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1626 */
1627 atomic_set(&newsk->sk_wmem_alloc, 1);
1628 atomic_set(&newsk->sk_omem_alloc, 0);
1629 sk_init_common(newsk);
1630
1631 newsk->sk_dst_cache = NULL;
1632 newsk->sk_dst_pending_confirm = 0;
1633 newsk->sk_wmem_queued = 0;
1634 newsk->sk_forward_alloc = 0;
1635 atomic_set(&newsk->sk_drops, 0);
1636 newsk->sk_send_head = NULL;
1637 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1638
1639 sock_reset_flag(newsk, SOCK_DONE);
1640
1641 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1642 if (filter != NULL)
1643 /* though it's an empty new sock, the charging may fail
1644 * if sysctl_optmem_max was changed between creation of
1645 * original socket and cloning
1646 */
1647 is_charged = sk_filter_charge(newsk, filter);
1648
1649 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1650 /* We need to make sure that we don't uncharge the new
1651 * socket if we couldn't charge it in the first place
1652 * as otherwise we uncharge the parent's filter.
1653 */
1654 if (!is_charged)
1655 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1656 sk_free_unlock_clone(newsk);
1657 newsk = NULL;
1658 goto out;
1659 }
1660 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1661
1662 newsk->sk_err = 0;
1663 newsk->sk_err_soft = 0;
1664 newsk->sk_priority = 0;
1665 newsk->sk_incoming_cpu = raw_smp_processor_id();
1666 atomic64_set(&newsk->sk_cookie, 0);
1667
1668 mem_cgroup_sk_alloc(newsk);
1669 cgroup_sk_alloc(&newsk->sk_cgrp_data);
1670
1671 /*
1672 * Before updating sk_refcnt, we must commit prior changes to memory
1673 * (Documentation/RCU/rculist_nulls.txt for details)
1674 */
1675 smp_wmb();
1676 atomic_set(&newsk->sk_refcnt, 2);
1677
1678 /*
1679 * Increment the counter in the same struct proto as the master
1680 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1681 * is the same as sk->sk_prot->socks, as this field was copied
1682 * with memcpy).
1683 *
1684 * This _changes_ the previous behaviour, where
1685 * tcp_create_openreq_child always was incrementing the
1686 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1687 * to be taken into account in all callers. -acme
1688 */
1689 sk_refcnt_debug_inc(newsk);
1690 sk_set_socket(newsk, NULL);
1691 newsk->sk_wq = NULL;
1692
1693 if (newsk->sk_prot->sockets_allocated)
1694 sk_sockets_allocated_inc(newsk);
1695
1696 if (sock_needs_netstamp(sk) &&
1697 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1698 net_enable_timestamp();
1699 }
1700 out:
1701 return newsk;
1702 }
1703 EXPORT_SYMBOL_GPL(sk_clone_lock);
1704
1705 void sk_free_unlock_clone(struct sock *sk)
1706 {
1707 /* It is still raw copy of parent, so invalidate
1708 * destructor and make plain sk_free() */
1709 sk->sk_destruct = NULL;
1710 bh_unlock_sock(sk);
1711 sk_free(sk);
1712 }
1713 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1714
1715 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1716 {
1717 u32 max_segs = 1;
1718
1719 sk_dst_set(sk, dst);
1720 sk->sk_route_caps = dst->dev->features;
1721 if (sk->sk_route_caps & NETIF_F_GSO)
1722 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1723 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1724 if (sk_can_gso(sk)) {
1725 if (dst->header_len) {
1726 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1727 } else {
1728 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1729 sk->sk_gso_max_size = dst->dev->gso_max_size;
1730 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1731 }
1732 }
1733 sk->sk_gso_max_segs = max_segs;
1734 }
1735 EXPORT_SYMBOL_GPL(sk_setup_caps);
1736
1737 /*
1738 * Simple resource managers for sockets.
1739 */
1740
1741
1742 /*
1743 * Write buffer destructor automatically called from kfree_skb.
1744 */
1745 void sock_wfree(struct sk_buff *skb)
1746 {
1747 struct sock *sk = skb->sk;
1748 unsigned int len = skb->truesize;
1749
1750 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1751 /*
1752 * Keep a reference on sk_wmem_alloc, this will be released
1753 * after sk_write_space() call
1754 */
1755 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1756 sk->sk_write_space(sk);
1757 len = 1;
1758 }
1759 /*
1760 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1761 * could not do because of in-flight packets
1762 */
1763 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1764 __sk_free(sk);
1765 }
1766 EXPORT_SYMBOL(sock_wfree);
1767
1768 /* This variant of sock_wfree() is used by TCP,
1769 * since it sets SOCK_USE_WRITE_QUEUE.
1770 */
1771 void __sock_wfree(struct sk_buff *skb)
1772 {
1773 struct sock *sk = skb->sk;
1774
1775 if (atomic_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1776 __sk_free(sk);
1777 }
1778
1779 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1780 {
1781 skb_orphan(skb);
1782 skb->sk = sk;
1783 #ifdef CONFIG_INET
1784 if (unlikely(!sk_fullsock(sk))) {
1785 skb->destructor = sock_edemux;
1786 sock_hold(sk);
1787 return;
1788 }
1789 #endif
1790 skb->destructor = sock_wfree;
1791 skb_set_hash_from_sk(skb, sk);
1792 /*
1793 * We used to take a refcount on sk, but following operation
1794 * is enough to guarantee sk_free() wont free this sock until
1795 * all in-flight packets are completed
1796 */
1797 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1798 }
1799 EXPORT_SYMBOL(skb_set_owner_w);
1800
1801 /* This helper is used by netem, as it can hold packets in its
1802 * delay queue. We want to allow the owner socket to send more
1803 * packets, as if they were already TX completed by a typical driver.
1804 * But we also want to keep skb->sk set because some packet schedulers
1805 * rely on it (sch_fq for example). So we set skb->truesize to a small
1806 * amount (1) and decrease sk_wmem_alloc accordingly.
1807 */
1808 void skb_orphan_partial(struct sk_buff *skb)
1809 {
1810 /* If this skb is a TCP pure ACK or already went here,
1811 * we have nothing to do. 2 is already a very small truesize.
1812 */
1813 if (skb->truesize <= 2)
1814 return;
1815
1816 /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1817 * so we do not completely orphan skb, but transfert all
1818 * accounted bytes but one, to avoid unexpected reorders.
1819 */
1820 if (skb->destructor == sock_wfree
1821 #ifdef CONFIG_INET
1822 || skb->destructor == tcp_wfree
1823 #endif
1824 ) {
1825 atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1826 skb->truesize = 1;
1827 } else {
1828 skb_orphan(skb);
1829 }
1830 }
1831 EXPORT_SYMBOL(skb_orphan_partial);
1832
1833 /*
1834 * Read buffer destructor automatically called from kfree_skb.
1835 */
1836 void sock_rfree(struct sk_buff *skb)
1837 {
1838 struct sock *sk = skb->sk;
1839 unsigned int len = skb->truesize;
1840
1841 atomic_sub(len, &sk->sk_rmem_alloc);
1842 sk_mem_uncharge(sk, len);
1843 }
1844 EXPORT_SYMBOL(sock_rfree);
1845
1846 /*
1847 * Buffer destructor for skbs that are not used directly in read or write
1848 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1849 */
1850 void sock_efree(struct sk_buff *skb)
1851 {
1852 sock_put(skb->sk);
1853 }
1854 EXPORT_SYMBOL(sock_efree);
1855
1856 kuid_t sock_i_uid(struct sock *sk)
1857 {
1858 kuid_t uid;
1859
1860 read_lock_bh(&sk->sk_callback_lock);
1861 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1862 read_unlock_bh(&sk->sk_callback_lock);
1863 return uid;
1864 }
1865 EXPORT_SYMBOL(sock_i_uid);
1866
1867 unsigned long sock_i_ino(struct sock *sk)
1868 {
1869 unsigned long ino;
1870
1871 read_lock_bh(&sk->sk_callback_lock);
1872 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1873 read_unlock_bh(&sk->sk_callback_lock);
1874 return ino;
1875 }
1876 EXPORT_SYMBOL(sock_i_ino);
1877
1878 /*
1879 * Allocate a skb from the socket's send buffer.
1880 */
1881 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1882 gfp_t priority)
1883 {
1884 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1885 struct sk_buff *skb = alloc_skb(size, priority);
1886 if (skb) {
1887 skb_set_owner_w(skb, sk);
1888 return skb;
1889 }
1890 }
1891 return NULL;
1892 }
1893 EXPORT_SYMBOL(sock_wmalloc);
1894
1895 /*
1896 * Allocate a memory block from the socket's option memory buffer.
1897 */
1898 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1899 {
1900 if ((unsigned int)size <= sysctl_optmem_max &&
1901 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1902 void *mem;
1903 /* First do the add, to avoid the race if kmalloc
1904 * might sleep.
1905 */
1906 atomic_add(size, &sk->sk_omem_alloc);
1907 mem = kmalloc(size, priority);
1908 if (mem)
1909 return mem;
1910 atomic_sub(size, &sk->sk_omem_alloc);
1911 }
1912 return NULL;
1913 }
1914 EXPORT_SYMBOL(sock_kmalloc);
1915
1916 /* Free an option memory block. Note, we actually want the inline
1917 * here as this allows gcc to detect the nullify and fold away the
1918 * condition entirely.
1919 */
1920 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1921 const bool nullify)
1922 {
1923 if (WARN_ON_ONCE(!mem))
1924 return;
1925 if (nullify)
1926 kzfree(mem);
1927 else
1928 kfree(mem);
1929 atomic_sub(size, &sk->sk_omem_alloc);
1930 }
1931
1932 void sock_kfree_s(struct sock *sk, void *mem, int size)
1933 {
1934 __sock_kfree_s(sk, mem, size, false);
1935 }
1936 EXPORT_SYMBOL(sock_kfree_s);
1937
1938 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1939 {
1940 __sock_kfree_s(sk, mem, size, true);
1941 }
1942 EXPORT_SYMBOL(sock_kzfree_s);
1943
1944 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1945 I think, these locks should be removed for datagram sockets.
1946 */
1947 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1948 {
1949 DEFINE_WAIT(wait);
1950
1951 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1952 for (;;) {
1953 if (!timeo)
1954 break;
1955 if (signal_pending(current))
1956 break;
1957 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1958 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1959 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1960 break;
1961 if (sk->sk_shutdown & SEND_SHUTDOWN)
1962 break;
1963 if (sk->sk_err)
1964 break;
1965 timeo = schedule_timeout(timeo);
1966 }
1967 finish_wait(sk_sleep(sk), &wait);
1968 return timeo;
1969 }
1970
1971
1972 /*
1973 * Generic send/receive buffer handlers
1974 */
1975
1976 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1977 unsigned long data_len, int noblock,
1978 int *errcode, int max_page_order)
1979 {
1980 struct sk_buff *skb;
1981 long timeo;
1982 int err;
1983
1984 timeo = sock_sndtimeo(sk, noblock);
1985 for (;;) {
1986 err = sock_error(sk);
1987 if (err != 0)
1988 goto failure;
1989
1990 err = -EPIPE;
1991 if (sk->sk_shutdown & SEND_SHUTDOWN)
1992 goto failure;
1993
1994 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1995 break;
1996
1997 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1998 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1999 err = -EAGAIN;
2000 if (!timeo)
2001 goto failure;
2002 if (signal_pending(current))
2003 goto interrupted;
2004 timeo = sock_wait_for_wmem(sk, timeo);
2005 }
2006 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2007 errcode, sk->sk_allocation);
2008 if (skb)
2009 skb_set_owner_w(skb, sk);
2010 return skb;
2011
2012 interrupted:
2013 err = sock_intr_errno(timeo);
2014 failure:
2015 *errcode = err;
2016 return NULL;
2017 }
2018 EXPORT_SYMBOL(sock_alloc_send_pskb);
2019
2020 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2021 int noblock, int *errcode)
2022 {
2023 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2024 }
2025 EXPORT_SYMBOL(sock_alloc_send_skb);
2026
2027 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2028 struct sockcm_cookie *sockc)
2029 {
2030 u32 tsflags;
2031
2032 switch (cmsg->cmsg_type) {
2033 case SO_MARK:
2034 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2035 return -EPERM;
2036 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2037 return -EINVAL;
2038 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2039 break;
2040 case SO_TIMESTAMPING:
2041 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2042 return -EINVAL;
2043
2044 tsflags = *(u32 *)CMSG_DATA(cmsg);
2045 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2046 return -EINVAL;
2047
2048 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2049 sockc->tsflags |= tsflags;
2050 break;
2051 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2052 case SCM_RIGHTS:
2053 case SCM_CREDENTIALS:
2054 break;
2055 default:
2056 return -EINVAL;
2057 }
2058 return 0;
2059 }
2060 EXPORT_SYMBOL(__sock_cmsg_send);
2061
2062 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2063 struct sockcm_cookie *sockc)
2064 {
2065 struct cmsghdr *cmsg;
2066 int ret;
2067
2068 for_each_cmsghdr(cmsg, msg) {
2069 if (!CMSG_OK(msg, cmsg))
2070 return -EINVAL;
2071 if (cmsg->cmsg_level != SOL_SOCKET)
2072 continue;
2073 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2074 if (ret)
2075 return ret;
2076 }
2077 return 0;
2078 }
2079 EXPORT_SYMBOL(sock_cmsg_send);
2080
2081 /* On 32bit arches, an skb frag is limited to 2^15 */
2082 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2083
2084 /**
2085 * skb_page_frag_refill - check that a page_frag contains enough room
2086 * @sz: minimum size of the fragment we want to get
2087 * @pfrag: pointer to page_frag
2088 * @gfp: priority for memory allocation
2089 *
2090 * Note: While this allocator tries to use high order pages, there is
2091 * no guarantee that allocations succeed. Therefore, @sz MUST be
2092 * less or equal than PAGE_SIZE.
2093 */
2094 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2095 {
2096 if (pfrag->page) {
2097 if (page_ref_count(pfrag->page) == 1) {
2098 pfrag->offset = 0;
2099 return true;
2100 }
2101 if (pfrag->offset + sz <= pfrag->size)
2102 return true;
2103 put_page(pfrag->page);
2104 }
2105
2106 pfrag->offset = 0;
2107 if (SKB_FRAG_PAGE_ORDER) {
2108 /* Avoid direct reclaim but allow kswapd to wake */
2109 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2110 __GFP_COMP | __GFP_NOWARN |
2111 __GFP_NORETRY,
2112 SKB_FRAG_PAGE_ORDER);
2113 if (likely(pfrag->page)) {
2114 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2115 return true;
2116 }
2117 }
2118 pfrag->page = alloc_page(gfp);
2119 if (likely(pfrag->page)) {
2120 pfrag->size = PAGE_SIZE;
2121 return true;
2122 }
2123 return false;
2124 }
2125 EXPORT_SYMBOL(skb_page_frag_refill);
2126
2127 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2128 {
2129 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2130 return true;
2131
2132 sk_enter_memory_pressure(sk);
2133 sk_stream_moderate_sndbuf(sk);
2134 return false;
2135 }
2136 EXPORT_SYMBOL(sk_page_frag_refill);
2137
2138 static void __lock_sock(struct sock *sk)
2139 __releases(&sk->sk_lock.slock)
2140 __acquires(&sk->sk_lock.slock)
2141 {
2142 DEFINE_WAIT(wait);
2143
2144 for (;;) {
2145 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2146 TASK_UNINTERRUPTIBLE);
2147 spin_unlock_bh(&sk->sk_lock.slock);
2148 schedule();
2149 spin_lock_bh(&sk->sk_lock.slock);
2150 if (!sock_owned_by_user(sk))
2151 break;
2152 }
2153 finish_wait(&sk->sk_lock.wq, &wait);
2154 }
2155
2156 static void __release_sock(struct sock *sk)
2157 __releases(&sk->sk_lock.slock)
2158 __acquires(&sk->sk_lock.slock)
2159 {
2160 struct sk_buff *skb, *next;
2161
2162 while ((skb = sk->sk_backlog.head) != NULL) {
2163 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2164
2165 spin_unlock_bh(&sk->sk_lock.slock);
2166
2167 do {
2168 next = skb->next;
2169 prefetch(next);
2170 WARN_ON_ONCE(skb_dst_is_noref(skb));
2171 skb->next = NULL;
2172 sk_backlog_rcv(sk, skb);
2173
2174 cond_resched();
2175
2176 skb = next;
2177 } while (skb != NULL);
2178
2179 spin_lock_bh(&sk->sk_lock.slock);
2180 }
2181
2182 /*
2183 * Doing the zeroing here guarantee we can not loop forever
2184 * while a wild producer attempts to flood us.
2185 */
2186 sk->sk_backlog.len = 0;
2187 }
2188
2189 void __sk_flush_backlog(struct sock *sk)
2190 {
2191 spin_lock_bh(&sk->sk_lock.slock);
2192 __release_sock(sk);
2193 spin_unlock_bh(&sk->sk_lock.slock);
2194 }
2195
2196 /**
2197 * sk_wait_data - wait for data to arrive at sk_receive_queue
2198 * @sk: sock to wait on
2199 * @timeo: for how long
2200 * @skb: last skb seen on sk_receive_queue
2201 *
2202 * Now socket state including sk->sk_err is changed only under lock,
2203 * hence we may omit checks after joining wait queue.
2204 * We check receive queue before schedule() only as optimization;
2205 * it is very likely that release_sock() added new data.
2206 */
2207 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2208 {
2209 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2210 int rc;
2211
2212 add_wait_queue(sk_sleep(sk), &wait);
2213 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2214 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2215 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2216 remove_wait_queue(sk_sleep(sk), &wait);
2217 return rc;
2218 }
2219 EXPORT_SYMBOL(sk_wait_data);
2220
2221 /**
2222 * __sk_mem_raise_allocated - increase memory_allocated
2223 * @sk: socket
2224 * @size: memory size to allocate
2225 * @amt: pages to allocate
2226 * @kind: allocation type
2227 *
2228 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2229 */
2230 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2231 {
2232 struct proto *prot = sk->sk_prot;
2233 long allocated = sk_memory_allocated_add(sk, amt);
2234
2235 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2236 !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2237 goto suppress_allocation;
2238
2239 /* Under limit. */
2240 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2241 sk_leave_memory_pressure(sk);
2242 return 1;
2243 }
2244
2245 /* Under pressure. */
2246 if (allocated > sk_prot_mem_limits(sk, 1))
2247 sk_enter_memory_pressure(sk);
2248
2249 /* Over hard limit. */
2250 if (allocated > sk_prot_mem_limits(sk, 2))
2251 goto suppress_allocation;
2252
2253 /* guarantee minimum buffer size under pressure */
2254 if (kind == SK_MEM_RECV) {
2255 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2256 return 1;
2257
2258 } else { /* SK_MEM_SEND */
2259 if (sk->sk_type == SOCK_STREAM) {
2260 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2261 return 1;
2262 } else if (atomic_read(&sk->sk_wmem_alloc) <
2263 prot->sysctl_wmem[0])
2264 return 1;
2265 }
2266
2267 if (sk_has_memory_pressure(sk)) {
2268 int alloc;
2269
2270 if (!sk_under_memory_pressure(sk))
2271 return 1;
2272 alloc = sk_sockets_allocated_read_positive(sk);
2273 if (sk_prot_mem_limits(sk, 2) > alloc *
2274 sk_mem_pages(sk->sk_wmem_queued +
2275 atomic_read(&sk->sk_rmem_alloc) +
2276 sk->sk_forward_alloc))
2277 return 1;
2278 }
2279
2280 suppress_allocation:
2281
2282 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2283 sk_stream_moderate_sndbuf(sk);
2284
2285 /* Fail only if socket is _under_ its sndbuf.
2286 * In this case we cannot block, so that we have to fail.
2287 */
2288 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2289 return 1;
2290 }
2291
2292 trace_sock_exceed_buf_limit(sk, prot, allocated);
2293
2294 sk_memory_allocated_sub(sk, amt);
2295
2296 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2297 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2298
2299 return 0;
2300 }
2301 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2302
2303 /**
2304 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2305 * @sk: socket
2306 * @size: memory size to allocate
2307 * @kind: allocation type
2308 *
2309 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2310 * rmem allocation. This function assumes that protocols which have
2311 * memory_pressure use sk_wmem_queued as write buffer accounting.
2312 */
2313 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2314 {
2315 int ret, amt = sk_mem_pages(size);
2316
2317 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2318 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2319 if (!ret)
2320 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2321 return ret;
2322 }
2323 EXPORT_SYMBOL(__sk_mem_schedule);
2324
2325 /**
2326 * __sk_mem_reduce_allocated - reclaim memory_allocated
2327 * @sk: socket
2328 * @amount: number of quanta
2329 *
2330 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2331 */
2332 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2333 {
2334 sk_memory_allocated_sub(sk, amount);
2335
2336 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2337 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2338
2339 if (sk_under_memory_pressure(sk) &&
2340 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2341 sk_leave_memory_pressure(sk);
2342 }
2343 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2344
2345 /**
2346 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2347 * @sk: socket
2348 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2349 */
2350 void __sk_mem_reclaim(struct sock *sk, int amount)
2351 {
2352 amount >>= SK_MEM_QUANTUM_SHIFT;
2353 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2354 __sk_mem_reduce_allocated(sk, amount);
2355 }
2356 EXPORT_SYMBOL(__sk_mem_reclaim);
2357
2358 int sk_set_peek_off(struct sock *sk, int val)
2359 {
2360 if (val < 0)
2361 return -EINVAL;
2362
2363 sk->sk_peek_off = val;
2364 return 0;
2365 }
2366 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2367
2368 /*
2369 * Set of default routines for initialising struct proto_ops when
2370 * the protocol does not support a particular function. In certain
2371 * cases where it makes no sense for a protocol to have a "do nothing"
2372 * function, some default processing is provided.
2373 */
2374
2375 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2376 {
2377 return -EOPNOTSUPP;
2378 }
2379 EXPORT_SYMBOL(sock_no_bind);
2380
2381 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2382 int len, int flags)
2383 {
2384 return -EOPNOTSUPP;
2385 }
2386 EXPORT_SYMBOL(sock_no_connect);
2387
2388 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2389 {
2390 return -EOPNOTSUPP;
2391 }
2392 EXPORT_SYMBOL(sock_no_socketpair);
2393
2394 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2395 bool kern)
2396 {
2397 return -EOPNOTSUPP;
2398 }
2399 EXPORT_SYMBOL(sock_no_accept);
2400
2401 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2402 int *len, int peer)
2403 {
2404 return -EOPNOTSUPP;
2405 }
2406 EXPORT_SYMBOL(sock_no_getname);
2407
2408 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2409 {
2410 return 0;
2411 }
2412 EXPORT_SYMBOL(sock_no_poll);
2413
2414 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2415 {
2416 return -EOPNOTSUPP;
2417 }
2418 EXPORT_SYMBOL(sock_no_ioctl);
2419
2420 int sock_no_listen(struct socket *sock, int backlog)
2421 {
2422 return -EOPNOTSUPP;
2423 }
2424 EXPORT_SYMBOL(sock_no_listen);
2425
2426 int sock_no_shutdown(struct socket *sock, int how)
2427 {
2428 return -EOPNOTSUPP;
2429 }
2430 EXPORT_SYMBOL(sock_no_shutdown);
2431
2432 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2433 char __user *optval, unsigned int optlen)
2434 {
2435 return -EOPNOTSUPP;
2436 }
2437 EXPORT_SYMBOL(sock_no_setsockopt);
2438
2439 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2440 char __user *optval, int __user *optlen)
2441 {
2442 return -EOPNOTSUPP;
2443 }
2444 EXPORT_SYMBOL(sock_no_getsockopt);
2445
2446 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2447 {
2448 return -EOPNOTSUPP;
2449 }
2450 EXPORT_SYMBOL(sock_no_sendmsg);
2451
2452 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2453 int flags)
2454 {
2455 return -EOPNOTSUPP;
2456 }
2457 EXPORT_SYMBOL(sock_no_recvmsg);
2458
2459 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2460 {
2461 /* Mirror missing mmap method error code */
2462 return -ENODEV;
2463 }
2464 EXPORT_SYMBOL(sock_no_mmap);
2465
2466 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2467 {
2468 ssize_t res;
2469 struct msghdr msg = {.msg_flags = flags};
2470 struct kvec iov;
2471 char *kaddr = kmap(page);
2472 iov.iov_base = kaddr + offset;
2473 iov.iov_len = size;
2474 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2475 kunmap(page);
2476 return res;
2477 }
2478 EXPORT_SYMBOL(sock_no_sendpage);
2479
2480 /*
2481 * Default Socket Callbacks
2482 */
2483
2484 static void sock_def_wakeup(struct sock *sk)
2485 {
2486 struct socket_wq *wq;
2487
2488 rcu_read_lock();
2489 wq = rcu_dereference(sk->sk_wq);
2490 if (skwq_has_sleeper(wq))
2491 wake_up_interruptible_all(&wq->wait);
2492 rcu_read_unlock();
2493 }
2494
2495 static void sock_def_error_report(struct sock *sk)
2496 {
2497 struct socket_wq *wq;
2498
2499 rcu_read_lock();
2500 wq = rcu_dereference(sk->sk_wq);
2501 if (skwq_has_sleeper(wq))
2502 wake_up_interruptible_poll(&wq->wait, POLLERR);
2503 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2504 rcu_read_unlock();
2505 }
2506
2507 static void sock_def_readable(struct sock *sk)
2508 {
2509 struct socket_wq *wq;
2510
2511 rcu_read_lock();
2512 wq = rcu_dereference(sk->sk_wq);
2513 if (skwq_has_sleeper(wq))
2514 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2515 POLLRDNORM | POLLRDBAND);
2516 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2517 rcu_read_unlock();
2518 }
2519
2520 static void sock_def_write_space(struct sock *sk)
2521 {
2522 struct socket_wq *wq;
2523
2524 rcu_read_lock();
2525
2526 /* Do not wake up a writer until he can make "significant"
2527 * progress. --DaveM
2528 */
2529 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2530 wq = rcu_dereference(sk->sk_wq);
2531 if (skwq_has_sleeper(wq))
2532 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2533 POLLWRNORM | POLLWRBAND);
2534
2535 /* Should agree with poll, otherwise some programs break */
2536 if (sock_writeable(sk))
2537 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2538 }
2539
2540 rcu_read_unlock();
2541 }
2542
2543 static void sock_def_destruct(struct sock *sk)
2544 {
2545 }
2546
2547 void sk_send_sigurg(struct sock *sk)
2548 {
2549 if (sk->sk_socket && sk->sk_socket->file)
2550 if (send_sigurg(&sk->sk_socket->file->f_owner))
2551 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2552 }
2553 EXPORT_SYMBOL(sk_send_sigurg);
2554
2555 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2556 unsigned long expires)
2557 {
2558 if (!mod_timer(timer, expires))
2559 sock_hold(sk);
2560 }
2561 EXPORT_SYMBOL(sk_reset_timer);
2562
2563 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2564 {
2565 if (del_timer(timer))
2566 __sock_put(sk);
2567 }
2568 EXPORT_SYMBOL(sk_stop_timer);
2569
2570 void sock_init_data(struct socket *sock, struct sock *sk)
2571 {
2572 sk_init_common(sk);
2573 sk->sk_send_head = NULL;
2574
2575 init_timer(&sk->sk_timer);
2576
2577 sk->sk_allocation = GFP_KERNEL;
2578 sk->sk_rcvbuf = sysctl_rmem_default;
2579 sk->sk_sndbuf = sysctl_wmem_default;
2580 sk->sk_state = TCP_CLOSE;
2581 sk_set_socket(sk, sock);
2582
2583 sock_set_flag(sk, SOCK_ZAPPED);
2584
2585 if (sock) {
2586 sk->sk_type = sock->type;
2587 sk->sk_wq = sock->wq;
2588 sock->sk = sk;
2589 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2590 } else {
2591 sk->sk_wq = NULL;
2592 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2593 }
2594
2595 rwlock_init(&sk->sk_callback_lock);
2596 if (sk->sk_kern_sock)
2597 lockdep_set_class_and_name(
2598 &sk->sk_callback_lock,
2599 af_kern_callback_keys + sk->sk_family,
2600 af_family_kern_clock_key_strings[sk->sk_family]);
2601 else
2602 lockdep_set_class_and_name(
2603 &sk->sk_callback_lock,
2604 af_callback_keys + sk->sk_family,
2605 af_family_clock_key_strings[sk->sk_family]);
2606
2607 sk->sk_state_change = sock_def_wakeup;
2608 sk->sk_data_ready = sock_def_readable;
2609 sk->sk_write_space = sock_def_write_space;
2610 sk->sk_error_report = sock_def_error_report;
2611 sk->sk_destruct = sock_def_destruct;
2612
2613 sk->sk_frag.page = NULL;
2614 sk->sk_frag.offset = 0;
2615 sk->sk_peek_off = -1;
2616
2617 sk->sk_peer_pid = NULL;
2618 sk->sk_peer_cred = NULL;
2619 sk->sk_write_pending = 0;
2620 sk->sk_rcvlowat = 1;
2621 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2622 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2623
2624 sk->sk_stamp = SK_DEFAULT_STAMP;
2625
2626 #ifdef CONFIG_NET_RX_BUSY_POLL
2627 sk->sk_napi_id = 0;
2628 sk->sk_ll_usec = sysctl_net_busy_read;
2629 #endif
2630
2631 sk->sk_max_pacing_rate = ~0U;
2632 sk->sk_pacing_rate = ~0U;
2633 sk->sk_incoming_cpu = -1;
2634 /*
2635 * Before updating sk_refcnt, we must commit prior changes to memory
2636 * (Documentation/RCU/rculist_nulls.txt for details)
2637 */
2638 smp_wmb();
2639 atomic_set(&sk->sk_refcnt, 1);
2640 atomic_set(&sk->sk_drops, 0);
2641 }
2642 EXPORT_SYMBOL(sock_init_data);
2643
2644 void lock_sock_nested(struct sock *sk, int subclass)
2645 {
2646 might_sleep();
2647 spin_lock_bh(&sk->sk_lock.slock);
2648 if (sk->sk_lock.owned)
2649 __lock_sock(sk);
2650 sk->sk_lock.owned = 1;
2651 spin_unlock(&sk->sk_lock.slock);
2652 /*
2653 * The sk_lock has mutex_lock() semantics here:
2654 */
2655 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2656 local_bh_enable();
2657 }
2658 EXPORT_SYMBOL(lock_sock_nested);
2659
2660 void release_sock(struct sock *sk)
2661 {
2662 spin_lock_bh(&sk->sk_lock.slock);
2663 if (sk->sk_backlog.tail)
2664 __release_sock(sk);
2665
2666 /* Warning : release_cb() might need to release sk ownership,
2667 * ie call sock_release_ownership(sk) before us.
2668 */
2669 if (sk->sk_prot->release_cb)
2670 sk->sk_prot->release_cb(sk);
2671
2672 sock_release_ownership(sk);
2673 if (waitqueue_active(&sk->sk_lock.wq))
2674 wake_up(&sk->sk_lock.wq);
2675 spin_unlock_bh(&sk->sk_lock.slock);
2676 }
2677 EXPORT_SYMBOL(release_sock);
2678
2679 /**
2680 * lock_sock_fast - fast version of lock_sock
2681 * @sk: socket
2682 *
2683 * This version should be used for very small section, where process wont block
2684 * return false if fast path is taken
2685 * sk_lock.slock locked, owned = 0, BH disabled
2686 * return true if slow path is taken
2687 * sk_lock.slock unlocked, owned = 1, BH enabled
2688 */
2689 bool lock_sock_fast(struct sock *sk)
2690 {
2691 might_sleep();
2692 spin_lock_bh(&sk->sk_lock.slock);
2693
2694 if (!sk->sk_lock.owned)
2695 /*
2696 * Note : We must disable BH
2697 */
2698 return false;
2699
2700 __lock_sock(sk);
2701 sk->sk_lock.owned = 1;
2702 spin_unlock(&sk->sk_lock.slock);
2703 /*
2704 * The sk_lock has mutex_lock() semantics here:
2705 */
2706 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2707 local_bh_enable();
2708 return true;
2709 }
2710 EXPORT_SYMBOL(lock_sock_fast);
2711
2712 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2713 {
2714 struct timeval tv;
2715 if (!sock_flag(sk, SOCK_TIMESTAMP))
2716 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2717 tv = ktime_to_timeval(sk->sk_stamp);
2718 if (tv.tv_sec == -1)
2719 return -ENOENT;
2720 if (tv.tv_sec == 0) {
2721 sk->sk_stamp = ktime_get_real();
2722 tv = ktime_to_timeval(sk->sk_stamp);
2723 }
2724 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2725 }
2726 EXPORT_SYMBOL(sock_get_timestamp);
2727
2728 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2729 {
2730 struct timespec ts;
2731 if (!sock_flag(sk, SOCK_TIMESTAMP))
2732 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2733 ts = ktime_to_timespec(sk->sk_stamp);
2734 if (ts.tv_sec == -1)
2735 return -ENOENT;
2736 if (ts.tv_sec == 0) {
2737 sk->sk_stamp = ktime_get_real();
2738 ts = ktime_to_timespec(sk->sk_stamp);
2739 }
2740 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2741 }
2742 EXPORT_SYMBOL(sock_get_timestampns);
2743
2744 void sock_enable_timestamp(struct sock *sk, int flag)
2745 {
2746 if (!sock_flag(sk, flag)) {
2747 unsigned long previous_flags = sk->sk_flags;
2748
2749 sock_set_flag(sk, flag);
2750 /*
2751 * we just set one of the two flags which require net
2752 * time stamping, but time stamping might have been on
2753 * already because of the other one
2754 */
2755 if (sock_needs_netstamp(sk) &&
2756 !(previous_flags & SK_FLAGS_TIMESTAMP))
2757 net_enable_timestamp();
2758 }
2759 }
2760
2761 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2762 int level, int type)
2763 {
2764 struct sock_exterr_skb *serr;
2765 struct sk_buff *skb;
2766 int copied, err;
2767
2768 err = -EAGAIN;
2769 skb = sock_dequeue_err_skb(sk);
2770 if (skb == NULL)
2771 goto out;
2772
2773 copied = skb->len;
2774 if (copied > len) {
2775 msg->msg_flags |= MSG_TRUNC;
2776 copied = len;
2777 }
2778 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2779 if (err)
2780 goto out_free_skb;
2781
2782 sock_recv_timestamp(msg, sk, skb);
2783
2784 serr = SKB_EXT_ERR(skb);
2785 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2786
2787 msg->msg_flags |= MSG_ERRQUEUE;
2788 err = copied;
2789
2790 out_free_skb:
2791 kfree_skb(skb);
2792 out:
2793 return err;
2794 }
2795 EXPORT_SYMBOL(sock_recv_errqueue);
2796
2797 /*
2798 * Get a socket option on an socket.
2799 *
2800 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2801 * asynchronous errors should be reported by getsockopt. We assume
2802 * this means if you specify SO_ERROR (otherwise whats the point of it).
2803 */
2804 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2805 char __user *optval, int __user *optlen)
2806 {
2807 struct sock *sk = sock->sk;
2808
2809 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2810 }
2811 EXPORT_SYMBOL(sock_common_getsockopt);
2812
2813 #ifdef CONFIG_COMPAT
2814 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2815 char __user *optval, int __user *optlen)
2816 {
2817 struct sock *sk = sock->sk;
2818
2819 if (sk->sk_prot->compat_getsockopt != NULL)
2820 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2821 optval, optlen);
2822 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2823 }
2824 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2825 #endif
2826
2827 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2828 int flags)
2829 {
2830 struct sock *sk = sock->sk;
2831 int addr_len = 0;
2832 int err;
2833
2834 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2835 flags & ~MSG_DONTWAIT, &addr_len);
2836 if (err >= 0)
2837 msg->msg_namelen = addr_len;
2838 return err;
2839 }
2840 EXPORT_SYMBOL(sock_common_recvmsg);
2841
2842 /*
2843 * Set socket options on an inet socket.
2844 */
2845 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2846 char __user *optval, unsigned int optlen)
2847 {
2848 struct sock *sk = sock->sk;
2849
2850 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2851 }
2852 EXPORT_SYMBOL(sock_common_setsockopt);
2853
2854 #ifdef CONFIG_COMPAT
2855 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2856 char __user *optval, unsigned int optlen)
2857 {
2858 struct sock *sk = sock->sk;
2859
2860 if (sk->sk_prot->compat_setsockopt != NULL)
2861 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2862 optval, optlen);
2863 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2864 }
2865 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2866 #endif
2867
2868 void sk_common_release(struct sock *sk)
2869 {
2870 if (sk->sk_prot->destroy)
2871 sk->sk_prot->destroy(sk);
2872
2873 /*
2874 * Observation: when sock_common_release is called, processes have
2875 * no access to socket. But net still has.
2876 * Step one, detach it from networking:
2877 *
2878 * A. Remove from hash tables.
2879 */
2880
2881 sk->sk_prot->unhash(sk);
2882
2883 /*
2884 * In this point socket cannot receive new packets, but it is possible
2885 * that some packets are in flight because some CPU runs receiver and
2886 * did hash table lookup before we unhashed socket. They will achieve
2887 * receive queue and will be purged by socket destructor.
2888 *
2889 * Also we still have packets pending on receive queue and probably,
2890 * our own packets waiting in device queues. sock_destroy will drain
2891 * receive queue, but transmitted packets will delay socket destruction
2892 * until the last reference will be released.
2893 */
2894
2895 sock_orphan(sk);
2896
2897 xfrm_sk_free_policy(sk);
2898
2899 sk_refcnt_debug_release(sk);
2900
2901 sock_put(sk);
2902 }
2903 EXPORT_SYMBOL(sk_common_release);
2904
2905 void sk_get_meminfo(const struct sock *sk, u32 *mem)
2906 {
2907 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
2908
2909 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
2910 mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
2911 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
2912 mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
2913 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
2914 mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
2915 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
2916 mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
2917 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
2918 }
2919
2920 #ifdef CONFIG_PROC_FS
2921 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2922 struct prot_inuse {
2923 int val[PROTO_INUSE_NR];
2924 };
2925
2926 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2927
2928 #ifdef CONFIG_NET_NS
2929 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2930 {
2931 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2932 }
2933 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2934
2935 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2936 {
2937 int cpu, idx = prot->inuse_idx;
2938 int res = 0;
2939
2940 for_each_possible_cpu(cpu)
2941 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2942
2943 return res >= 0 ? res : 0;
2944 }
2945 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2946
2947 static int __net_init sock_inuse_init_net(struct net *net)
2948 {
2949 net->core.inuse = alloc_percpu(struct prot_inuse);
2950 return net->core.inuse ? 0 : -ENOMEM;
2951 }
2952
2953 static void __net_exit sock_inuse_exit_net(struct net *net)
2954 {
2955 free_percpu(net->core.inuse);
2956 }
2957
2958 static struct pernet_operations net_inuse_ops = {
2959 .init = sock_inuse_init_net,
2960 .exit = sock_inuse_exit_net,
2961 };
2962
2963 static __init int net_inuse_init(void)
2964 {
2965 if (register_pernet_subsys(&net_inuse_ops))
2966 panic("Cannot initialize net inuse counters");
2967
2968 return 0;
2969 }
2970
2971 core_initcall(net_inuse_init);
2972 #else
2973 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2974
2975 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2976 {
2977 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2978 }
2979 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2980
2981 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2982 {
2983 int cpu, idx = prot->inuse_idx;
2984 int res = 0;
2985
2986 for_each_possible_cpu(cpu)
2987 res += per_cpu(prot_inuse, cpu).val[idx];
2988
2989 return res >= 0 ? res : 0;
2990 }
2991 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2992 #endif
2993
2994 static void assign_proto_idx(struct proto *prot)
2995 {
2996 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2997
2998 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2999 pr_err("PROTO_INUSE_NR exhausted\n");
3000 return;
3001 }
3002
3003 set_bit(prot->inuse_idx, proto_inuse_idx);
3004 }
3005
3006 static void release_proto_idx(struct proto *prot)
3007 {
3008 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3009 clear_bit(prot->inuse_idx, proto_inuse_idx);
3010 }
3011 #else
3012 static inline void assign_proto_idx(struct proto *prot)
3013 {
3014 }
3015
3016 static inline void release_proto_idx(struct proto *prot)
3017 {
3018 }
3019 #endif
3020
3021 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3022 {
3023 if (!rsk_prot)
3024 return;
3025 kfree(rsk_prot->slab_name);
3026 rsk_prot->slab_name = NULL;
3027 kmem_cache_destroy(rsk_prot->slab);
3028 rsk_prot->slab = NULL;
3029 }
3030
3031 static int req_prot_init(const struct proto *prot)
3032 {
3033 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3034
3035 if (!rsk_prot)
3036 return 0;
3037
3038 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3039 prot->name);
3040 if (!rsk_prot->slab_name)
3041 return -ENOMEM;
3042
3043 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3044 rsk_prot->obj_size, 0,
3045 prot->slab_flags, NULL);
3046
3047 if (!rsk_prot->slab) {
3048 pr_crit("%s: Can't create request sock SLAB cache!\n",
3049 prot->name);
3050 return -ENOMEM;
3051 }
3052 return 0;
3053 }
3054
3055 int proto_register(struct proto *prot, int alloc_slab)
3056 {
3057 if (alloc_slab) {
3058 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
3059 SLAB_HWCACHE_ALIGN | prot->slab_flags,
3060 NULL);
3061
3062 if (prot->slab == NULL) {
3063 pr_crit("%s: Can't create sock SLAB cache!\n",
3064 prot->name);
3065 goto out;
3066 }
3067
3068 if (req_prot_init(prot))
3069 goto out_free_request_sock_slab;
3070
3071 if (prot->twsk_prot != NULL) {
3072 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3073
3074 if (prot->twsk_prot->twsk_slab_name == NULL)
3075 goto out_free_request_sock_slab;
3076
3077 prot->twsk_prot->twsk_slab =
3078 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3079 prot->twsk_prot->twsk_obj_size,
3080 0,
3081 prot->slab_flags,
3082 NULL);
3083 if (prot->twsk_prot->twsk_slab == NULL)
3084 goto out_free_timewait_sock_slab_name;
3085 }
3086 }
3087
3088 mutex_lock(&proto_list_mutex);
3089 list_add(&prot->node, &proto_list);
3090 assign_proto_idx(prot);
3091 mutex_unlock(&proto_list_mutex);
3092 return 0;
3093
3094 out_free_timewait_sock_slab_name:
3095 kfree(prot->twsk_prot->twsk_slab_name);
3096 out_free_request_sock_slab:
3097 req_prot_cleanup(prot->rsk_prot);
3098
3099 kmem_cache_destroy(prot->slab);
3100 prot->slab = NULL;
3101 out:
3102 return -ENOBUFS;
3103 }
3104 EXPORT_SYMBOL(proto_register);
3105
3106 void proto_unregister(struct proto *prot)
3107 {
3108 mutex_lock(&proto_list_mutex);
3109 release_proto_idx(prot);
3110 list_del(&prot->node);
3111 mutex_unlock(&proto_list_mutex);
3112
3113 kmem_cache_destroy(prot->slab);
3114 prot->slab = NULL;
3115
3116 req_prot_cleanup(prot->rsk_prot);
3117
3118 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3119 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3120 kfree(prot->twsk_prot->twsk_slab_name);
3121 prot->twsk_prot->twsk_slab = NULL;
3122 }
3123 }
3124 EXPORT_SYMBOL(proto_unregister);
3125
3126 #ifdef CONFIG_PROC_FS
3127 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3128 __acquires(proto_list_mutex)
3129 {
3130 mutex_lock(&proto_list_mutex);
3131 return seq_list_start_head(&proto_list, *pos);
3132 }
3133
3134 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3135 {
3136 return seq_list_next(v, &proto_list, pos);
3137 }
3138
3139 static void proto_seq_stop(struct seq_file *seq, void *v)
3140 __releases(proto_list_mutex)
3141 {
3142 mutex_unlock(&proto_list_mutex);
3143 }
3144
3145 static char proto_method_implemented(const void *method)
3146 {
3147 return method == NULL ? 'n' : 'y';
3148 }
3149 static long sock_prot_memory_allocated(struct proto *proto)
3150 {
3151 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3152 }
3153
3154 static char *sock_prot_memory_pressure(struct proto *proto)
3155 {
3156 return proto->memory_pressure != NULL ?
3157 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3158 }
3159
3160 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3161 {
3162
3163 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3164 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3165 proto->name,
3166 proto->obj_size,
3167 sock_prot_inuse_get(seq_file_net(seq), proto),
3168 sock_prot_memory_allocated(proto),
3169 sock_prot_memory_pressure(proto),
3170 proto->max_header,
3171 proto->slab == NULL ? "no" : "yes",
3172 module_name(proto->owner),
3173 proto_method_implemented(proto->close),
3174 proto_method_implemented(proto->connect),
3175 proto_method_implemented(proto->disconnect),
3176 proto_method_implemented(proto->accept),
3177 proto_method_implemented(proto->ioctl),
3178 proto_method_implemented(proto->init),
3179 proto_method_implemented(proto->destroy),
3180 proto_method_implemented(proto->shutdown),
3181 proto_method_implemented(proto->setsockopt),
3182 proto_method_implemented(proto->getsockopt),
3183 proto_method_implemented(proto->sendmsg),
3184 proto_method_implemented(proto->recvmsg),
3185 proto_method_implemented(proto->sendpage),
3186 proto_method_implemented(proto->bind),
3187 proto_method_implemented(proto->backlog_rcv),
3188 proto_method_implemented(proto->hash),
3189 proto_method_implemented(proto->unhash),
3190 proto_method_implemented(proto->get_port),
3191 proto_method_implemented(proto->enter_memory_pressure));
3192 }
3193
3194 static int proto_seq_show(struct seq_file *seq, void *v)
3195 {
3196 if (v == &proto_list)
3197 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3198 "protocol",
3199 "size",
3200 "sockets",
3201 "memory",
3202 "press",
3203 "maxhdr",
3204 "slab",
3205 "module",
3206 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3207 else
3208 proto_seq_printf(seq, list_entry(v, struct proto, node));
3209 return 0;
3210 }
3211
3212 static const struct seq_operations proto_seq_ops = {
3213 .start = proto_seq_start,
3214 .next = proto_seq_next,
3215 .stop = proto_seq_stop,
3216 .show = proto_seq_show,
3217 };
3218
3219 static int proto_seq_open(struct inode *inode, struct file *file)
3220 {
3221 return seq_open_net(inode, file, &proto_seq_ops,
3222 sizeof(struct seq_net_private));
3223 }
3224
3225 static const struct file_operations proto_seq_fops = {
3226 .owner = THIS_MODULE,
3227 .open = proto_seq_open,
3228 .read = seq_read,
3229 .llseek = seq_lseek,
3230 .release = seq_release_net,
3231 };
3232
3233 static __net_init int proto_init_net(struct net *net)
3234 {
3235 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3236 return -ENOMEM;
3237
3238 return 0;
3239 }
3240
3241 static __net_exit void proto_exit_net(struct net *net)
3242 {
3243 remove_proc_entry("protocols", net->proc_net);
3244 }
3245
3246
3247 static __net_initdata struct pernet_operations proto_net_ops = {
3248 .init = proto_init_net,
3249 .exit = proto_exit_net,
3250 };
3251
3252 static int __init proto_init(void)
3253 {
3254 return register_pernet_subsys(&proto_net_ops);
3255 }
3256
3257 subsys_initcall(proto_init);
3258
3259 #endif /* PROC_FS */
3260
3261 #ifdef CONFIG_NET_RX_BUSY_POLL
3262 bool sk_busy_loop_end(void *p, unsigned long start_time)
3263 {
3264 struct sock *sk = p;
3265
3266 return !skb_queue_empty(&sk->sk_receive_queue) ||
3267 sk_busy_loop_timeout(sk, start_time);
3268 }
3269 EXPORT_SYMBOL(sk_busy_loop_end);
3270 #endif /* CONFIG_NET_RX_BUSY_POLL */