]> git.ipfire.org Git - thirdparty/linux.git/blob - net/core/sock.c
ASoC: sirf: Added blank line after declarations
[thirdparty/linux.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120
121 #include <linux/uaccess.h>
122
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
135
136 #include <linux/filter.h>
137 #include <net/sock_reuseport.h>
138
139 #include <trace/events/sock.h>
140
141 #ifdef CONFIG_INET
142 #include <net/tcp.h>
143 #endif
144
145 #include <net/busy_poll.h>
146
147 static DEFINE_MUTEX(proto_list_mutex);
148 static LIST_HEAD(proto_list);
149
150 /**
151 * sk_ns_capable - General socket capability test
152 * @sk: Socket to use a capability on or through
153 * @user_ns: The user namespace of the capability to use
154 * @cap: The capability to use
155 *
156 * Test to see if the opener of the socket had when the socket was
157 * created and the current process has the capability @cap in the user
158 * namespace @user_ns.
159 */
160 bool sk_ns_capable(const struct sock *sk,
161 struct user_namespace *user_ns, int cap)
162 {
163 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
164 ns_capable(user_ns, cap);
165 }
166 EXPORT_SYMBOL(sk_ns_capable);
167
168 /**
169 * sk_capable - Socket global capability test
170 * @sk: Socket to use a capability on or through
171 * @cap: The global capability to use
172 *
173 * Test to see if the opener of the socket had when the socket was
174 * created and the current process has the capability @cap in all user
175 * namespaces.
176 */
177 bool sk_capable(const struct sock *sk, int cap)
178 {
179 return sk_ns_capable(sk, &init_user_ns, cap);
180 }
181 EXPORT_SYMBOL(sk_capable);
182
183 /**
184 * sk_net_capable - Network namespace socket capability test
185 * @sk: Socket to use a capability on or through
186 * @cap: The capability to use
187 *
188 * Test to see if the opener of the socket had when the socket was created
189 * and the current process has the capability @cap over the network namespace
190 * the socket is a member of.
191 */
192 bool sk_net_capable(const struct sock *sk, int cap)
193 {
194 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
195 }
196 EXPORT_SYMBOL(sk_net_capable);
197
198 /*
199 * Each address family might have different locking rules, so we have
200 * one slock key per address family:
201 */
202 static struct lock_class_key af_family_keys[AF_MAX];
203 static struct lock_class_key af_family_slock_keys[AF_MAX];
204
205 /*
206 * Make lock validator output more readable. (we pre-construct these
207 * strings build-time, so that runtime initialization of socket
208 * locks is fast):
209 */
210 static const char *const af_family_key_strings[AF_MAX+1] = {
211 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
212 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
213 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
214 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
215 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
216 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
217 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
218 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
219 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
220 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
221 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
222 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
223 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
224 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_KCM" ,
225 "sk_lock-AF_QIPCRTR", "sk_lock-AF_SMC" , "sk_lock-AF_MAX"
226 };
227 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
228 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
229 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
230 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
231 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
232 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
233 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
234 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
235 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
236 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
237 "slock-27" , "slock-28" , "slock-AF_CAN" ,
238 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
239 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
240 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
241 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_KCM" ,
242 "slock-AF_QIPCRTR", "slock-AF_SMC" , "slock-AF_MAX"
243 };
244 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
245 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
246 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
247 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
248 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
249 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
250 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
251 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
252 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
253 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
254 "clock-27" , "clock-28" , "clock-AF_CAN" ,
255 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
256 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
257 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
258 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_KCM" ,
259 "clock-AF_QIPCRTR", "clock-AF_SMC" , "clock-AF_MAX"
260 };
261
262 /*
263 * sk_callback_lock locking rules are per-address-family,
264 * so split the lock classes by using a per-AF key:
265 */
266 static struct lock_class_key af_callback_keys[AF_MAX];
267
268 /* Take into consideration the size of the struct sk_buff overhead in the
269 * determination of these values, since that is non-constant across
270 * platforms. This makes socket queueing behavior and performance
271 * not depend upon such differences.
272 */
273 #define _SK_MEM_PACKETS 256
274 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
275 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
276 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
277
278 /* Run time adjustable parameters. */
279 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
280 EXPORT_SYMBOL(sysctl_wmem_max);
281 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
282 EXPORT_SYMBOL(sysctl_rmem_max);
283 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
284 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
285
286 /* Maximal space eaten by iovec or ancillary data plus some space */
287 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
288 EXPORT_SYMBOL(sysctl_optmem_max);
289
290 int sysctl_tstamp_allow_data __read_mostly = 1;
291
292 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
293 EXPORT_SYMBOL_GPL(memalloc_socks);
294
295 /**
296 * sk_set_memalloc - sets %SOCK_MEMALLOC
297 * @sk: socket to set it on
298 *
299 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
300 * It's the responsibility of the admin to adjust min_free_kbytes
301 * to meet the requirements
302 */
303 void sk_set_memalloc(struct sock *sk)
304 {
305 sock_set_flag(sk, SOCK_MEMALLOC);
306 sk->sk_allocation |= __GFP_MEMALLOC;
307 static_key_slow_inc(&memalloc_socks);
308 }
309 EXPORT_SYMBOL_GPL(sk_set_memalloc);
310
311 void sk_clear_memalloc(struct sock *sk)
312 {
313 sock_reset_flag(sk, SOCK_MEMALLOC);
314 sk->sk_allocation &= ~__GFP_MEMALLOC;
315 static_key_slow_dec(&memalloc_socks);
316
317 /*
318 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
319 * progress of swapping. SOCK_MEMALLOC may be cleared while
320 * it has rmem allocations due to the last swapfile being deactivated
321 * but there is a risk that the socket is unusable due to exceeding
322 * the rmem limits. Reclaim the reserves and obey rmem limits again.
323 */
324 sk_mem_reclaim(sk);
325 }
326 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
327
328 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
329 {
330 int ret;
331 unsigned long pflags = current->flags;
332
333 /* these should have been dropped before queueing */
334 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
335
336 current->flags |= PF_MEMALLOC;
337 ret = sk->sk_backlog_rcv(sk, skb);
338 tsk_restore_flags(current, pflags, PF_MEMALLOC);
339
340 return ret;
341 }
342 EXPORT_SYMBOL(__sk_backlog_rcv);
343
344 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
345 {
346 struct timeval tv;
347
348 if (optlen < sizeof(tv))
349 return -EINVAL;
350 if (copy_from_user(&tv, optval, sizeof(tv)))
351 return -EFAULT;
352 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
353 return -EDOM;
354
355 if (tv.tv_sec < 0) {
356 static int warned __read_mostly;
357
358 *timeo_p = 0;
359 if (warned < 10 && net_ratelimit()) {
360 warned++;
361 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
362 __func__, current->comm, task_pid_nr(current));
363 }
364 return 0;
365 }
366 *timeo_p = MAX_SCHEDULE_TIMEOUT;
367 if (tv.tv_sec == 0 && tv.tv_usec == 0)
368 return 0;
369 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
370 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ);
371 return 0;
372 }
373
374 static void sock_warn_obsolete_bsdism(const char *name)
375 {
376 static int warned;
377 static char warncomm[TASK_COMM_LEN];
378 if (strcmp(warncomm, current->comm) && warned < 5) {
379 strcpy(warncomm, current->comm);
380 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
381 warncomm, name);
382 warned++;
383 }
384 }
385
386 static bool sock_needs_netstamp(const struct sock *sk)
387 {
388 switch (sk->sk_family) {
389 case AF_UNSPEC:
390 case AF_UNIX:
391 return false;
392 default:
393 return true;
394 }
395 }
396
397 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
398 {
399 if (sk->sk_flags & flags) {
400 sk->sk_flags &= ~flags;
401 if (sock_needs_netstamp(sk) &&
402 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
403 net_disable_timestamp();
404 }
405 }
406
407
408 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
409 {
410 unsigned long flags;
411 struct sk_buff_head *list = &sk->sk_receive_queue;
412
413 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
414 atomic_inc(&sk->sk_drops);
415 trace_sock_rcvqueue_full(sk, skb);
416 return -ENOMEM;
417 }
418
419 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
420 atomic_inc(&sk->sk_drops);
421 return -ENOBUFS;
422 }
423
424 skb->dev = NULL;
425 skb_set_owner_r(skb, sk);
426
427 /* we escape from rcu protected region, make sure we dont leak
428 * a norefcounted dst
429 */
430 skb_dst_force(skb);
431
432 spin_lock_irqsave(&list->lock, flags);
433 sock_skb_set_dropcount(sk, skb);
434 __skb_queue_tail(list, skb);
435 spin_unlock_irqrestore(&list->lock, flags);
436
437 if (!sock_flag(sk, SOCK_DEAD))
438 sk->sk_data_ready(sk);
439 return 0;
440 }
441 EXPORT_SYMBOL(__sock_queue_rcv_skb);
442
443 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
444 {
445 int err;
446
447 err = sk_filter(sk, skb);
448 if (err)
449 return err;
450
451 return __sock_queue_rcv_skb(sk, skb);
452 }
453 EXPORT_SYMBOL(sock_queue_rcv_skb);
454
455 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
456 const int nested, unsigned int trim_cap, bool refcounted)
457 {
458 int rc = NET_RX_SUCCESS;
459
460 if (sk_filter_trim_cap(sk, skb, trim_cap))
461 goto discard_and_relse;
462
463 skb->dev = NULL;
464
465 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
466 atomic_inc(&sk->sk_drops);
467 goto discard_and_relse;
468 }
469 if (nested)
470 bh_lock_sock_nested(sk);
471 else
472 bh_lock_sock(sk);
473 if (!sock_owned_by_user(sk)) {
474 /*
475 * trylock + unlock semantics:
476 */
477 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
478
479 rc = sk_backlog_rcv(sk, skb);
480
481 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
482 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
483 bh_unlock_sock(sk);
484 atomic_inc(&sk->sk_drops);
485 goto discard_and_relse;
486 }
487
488 bh_unlock_sock(sk);
489 out:
490 if (refcounted)
491 sock_put(sk);
492 return rc;
493 discard_and_relse:
494 kfree_skb(skb);
495 goto out;
496 }
497 EXPORT_SYMBOL(__sk_receive_skb);
498
499 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
500 {
501 struct dst_entry *dst = __sk_dst_get(sk);
502
503 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
504 sk_tx_queue_clear(sk);
505 sk->sk_dst_pending_confirm = 0;
506 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
507 dst_release(dst);
508 return NULL;
509 }
510
511 return dst;
512 }
513 EXPORT_SYMBOL(__sk_dst_check);
514
515 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
516 {
517 struct dst_entry *dst = sk_dst_get(sk);
518
519 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
520 sk_dst_reset(sk);
521 dst_release(dst);
522 return NULL;
523 }
524
525 return dst;
526 }
527 EXPORT_SYMBOL(sk_dst_check);
528
529 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
530 int optlen)
531 {
532 int ret = -ENOPROTOOPT;
533 #ifdef CONFIG_NETDEVICES
534 struct net *net = sock_net(sk);
535 char devname[IFNAMSIZ];
536 int index;
537
538 /* Sorry... */
539 ret = -EPERM;
540 if (!ns_capable(net->user_ns, CAP_NET_RAW))
541 goto out;
542
543 ret = -EINVAL;
544 if (optlen < 0)
545 goto out;
546
547 /* Bind this socket to a particular device like "eth0",
548 * as specified in the passed interface name. If the
549 * name is "" or the option length is zero the socket
550 * is not bound.
551 */
552 if (optlen > IFNAMSIZ - 1)
553 optlen = IFNAMSIZ - 1;
554 memset(devname, 0, sizeof(devname));
555
556 ret = -EFAULT;
557 if (copy_from_user(devname, optval, optlen))
558 goto out;
559
560 index = 0;
561 if (devname[0] != '\0') {
562 struct net_device *dev;
563
564 rcu_read_lock();
565 dev = dev_get_by_name_rcu(net, devname);
566 if (dev)
567 index = dev->ifindex;
568 rcu_read_unlock();
569 ret = -ENODEV;
570 if (!dev)
571 goto out;
572 }
573
574 lock_sock(sk);
575 sk->sk_bound_dev_if = index;
576 sk_dst_reset(sk);
577 release_sock(sk);
578
579 ret = 0;
580
581 out:
582 #endif
583
584 return ret;
585 }
586
587 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
588 int __user *optlen, int len)
589 {
590 int ret = -ENOPROTOOPT;
591 #ifdef CONFIG_NETDEVICES
592 struct net *net = sock_net(sk);
593 char devname[IFNAMSIZ];
594
595 if (sk->sk_bound_dev_if == 0) {
596 len = 0;
597 goto zero;
598 }
599
600 ret = -EINVAL;
601 if (len < IFNAMSIZ)
602 goto out;
603
604 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
605 if (ret)
606 goto out;
607
608 len = strlen(devname) + 1;
609
610 ret = -EFAULT;
611 if (copy_to_user(optval, devname, len))
612 goto out;
613
614 zero:
615 ret = -EFAULT;
616 if (put_user(len, optlen))
617 goto out;
618
619 ret = 0;
620
621 out:
622 #endif
623
624 return ret;
625 }
626
627 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
628 {
629 if (valbool)
630 sock_set_flag(sk, bit);
631 else
632 sock_reset_flag(sk, bit);
633 }
634
635 bool sk_mc_loop(struct sock *sk)
636 {
637 if (dev_recursion_level())
638 return false;
639 if (!sk)
640 return true;
641 switch (sk->sk_family) {
642 case AF_INET:
643 return inet_sk(sk)->mc_loop;
644 #if IS_ENABLED(CONFIG_IPV6)
645 case AF_INET6:
646 return inet6_sk(sk)->mc_loop;
647 #endif
648 }
649 WARN_ON(1);
650 return true;
651 }
652 EXPORT_SYMBOL(sk_mc_loop);
653
654 /*
655 * This is meant for all protocols to use and covers goings on
656 * at the socket level. Everything here is generic.
657 */
658
659 int sock_setsockopt(struct socket *sock, int level, int optname,
660 char __user *optval, unsigned int optlen)
661 {
662 struct sock *sk = sock->sk;
663 int val;
664 int valbool;
665 struct linger ling;
666 int ret = 0;
667
668 /*
669 * Options without arguments
670 */
671
672 if (optname == SO_BINDTODEVICE)
673 return sock_setbindtodevice(sk, optval, optlen);
674
675 if (optlen < sizeof(int))
676 return -EINVAL;
677
678 if (get_user(val, (int __user *)optval))
679 return -EFAULT;
680
681 valbool = val ? 1 : 0;
682
683 lock_sock(sk);
684
685 switch (optname) {
686 case SO_DEBUG:
687 if (val && !capable(CAP_NET_ADMIN))
688 ret = -EACCES;
689 else
690 sock_valbool_flag(sk, SOCK_DBG, valbool);
691 break;
692 case SO_REUSEADDR:
693 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
694 break;
695 case SO_REUSEPORT:
696 sk->sk_reuseport = valbool;
697 break;
698 case SO_TYPE:
699 case SO_PROTOCOL:
700 case SO_DOMAIN:
701 case SO_ERROR:
702 ret = -ENOPROTOOPT;
703 break;
704 case SO_DONTROUTE:
705 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
706 break;
707 case SO_BROADCAST:
708 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
709 break;
710 case SO_SNDBUF:
711 /* Don't error on this BSD doesn't and if you think
712 * about it this is right. Otherwise apps have to
713 * play 'guess the biggest size' games. RCVBUF/SNDBUF
714 * are treated in BSD as hints
715 */
716 val = min_t(u32, val, sysctl_wmem_max);
717 set_sndbuf:
718 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
719 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
720 /* Wake up sending tasks if we upped the value. */
721 sk->sk_write_space(sk);
722 break;
723
724 case SO_SNDBUFFORCE:
725 if (!capable(CAP_NET_ADMIN)) {
726 ret = -EPERM;
727 break;
728 }
729 goto set_sndbuf;
730
731 case SO_RCVBUF:
732 /* Don't error on this BSD doesn't and if you think
733 * about it this is right. Otherwise apps have to
734 * play 'guess the biggest size' games. RCVBUF/SNDBUF
735 * are treated in BSD as hints
736 */
737 val = min_t(u32, val, sysctl_rmem_max);
738 set_rcvbuf:
739 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
740 /*
741 * We double it on the way in to account for
742 * "struct sk_buff" etc. overhead. Applications
743 * assume that the SO_RCVBUF setting they make will
744 * allow that much actual data to be received on that
745 * socket.
746 *
747 * Applications are unaware that "struct sk_buff" and
748 * other overheads allocate from the receive buffer
749 * during socket buffer allocation.
750 *
751 * And after considering the possible alternatives,
752 * returning the value we actually used in getsockopt
753 * is the most desirable behavior.
754 */
755 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
756 break;
757
758 case SO_RCVBUFFORCE:
759 if (!capable(CAP_NET_ADMIN)) {
760 ret = -EPERM;
761 break;
762 }
763 goto set_rcvbuf;
764
765 case SO_KEEPALIVE:
766 if (sk->sk_prot->keepalive)
767 sk->sk_prot->keepalive(sk, valbool);
768 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
769 break;
770
771 case SO_OOBINLINE:
772 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
773 break;
774
775 case SO_NO_CHECK:
776 sk->sk_no_check_tx = valbool;
777 break;
778
779 case SO_PRIORITY:
780 if ((val >= 0 && val <= 6) ||
781 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
782 sk->sk_priority = val;
783 else
784 ret = -EPERM;
785 break;
786
787 case SO_LINGER:
788 if (optlen < sizeof(ling)) {
789 ret = -EINVAL; /* 1003.1g */
790 break;
791 }
792 if (copy_from_user(&ling, optval, sizeof(ling))) {
793 ret = -EFAULT;
794 break;
795 }
796 if (!ling.l_onoff)
797 sock_reset_flag(sk, SOCK_LINGER);
798 else {
799 #if (BITS_PER_LONG == 32)
800 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
801 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
802 else
803 #endif
804 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
805 sock_set_flag(sk, SOCK_LINGER);
806 }
807 break;
808
809 case SO_BSDCOMPAT:
810 sock_warn_obsolete_bsdism("setsockopt");
811 break;
812
813 case SO_PASSCRED:
814 if (valbool)
815 set_bit(SOCK_PASSCRED, &sock->flags);
816 else
817 clear_bit(SOCK_PASSCRED, &sock->flags);
818 break;
819
820 case SO_TIMESTAMP:
821 case SO_TIMESTAMPNS:
822 if (valbool) {
823 if (optname == SO_TIMESTAMP)
824 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
825 else
826 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
827 sock_set_flag(sk, SOCK_RCVTSTAMP);
828 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
829 } else {
830 sock_reset_flag(sk, SOCK_RCVTSTAMP);
831 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
832 }
833 break;
834
835 case SO_TIMESTAMPING:
836 if (val & ~SOF_TIMESTAMPING_MASK) {
837 ret = -EINVAL;
838 break;
839 }
840
841 if (val & SOF_TIMESTAMPING_OPT_ID &&
842 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
843 if (sk->sk_protocol == IPPROTO_TCP &&
844 sk->sk_type == SOCK_STREAM) {
845 if ((1 << sk->sk_state) &
846 (TCPF_CLOSE | TCPF_LISTEN)) {
847 ret = -EINVAL;
848 break;
849 }
850 sk->sk_tskey = tcp_sk(sk)->snd_una;
851 } else {
852 sk->sk_tskey = 0;
853 }
854 }
855
856 if (val & SOF_TIMESTAMPING_OPT_STATS &&
857 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
858 ret = -EINVAL;
859 break;
860 }
861
862 sk->sk_tsflags = val;
863 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
864 sock_enable_timestamp(sk,
865 SOCK_TIMESTAMPING_RX_SOFTWARE);
866 else
867 sock_disable_timestamp(sk,
868 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
869 break;
870
871 case SO_RCVLOWAT:
872 if (val < 0)
873 val = INT_MAX;
874 sk->sk_rcvlowat = val ? : 1;
875 break;
876
877 case SO_RCVTIMEO:
878 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
879 break;
880
881 case SO_SNDTIMEO:
882 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
883 break;
884
885 case SO_ATTACH_FILTER:
886 ret = -EINVAL;
887 if (optlen == sizeof(struct sock_fprog)) {
888 struct sock_fprog fprog;
889
890 ret = -EFAULT;
891 if (copy_from_user(&fprog, optval, sizeof(fprog)))
892 break;
893
894 ret = sk_attach_filter(&fprog, sk);
895 }
896 break;
897
898 case SO_ATTACH_BPF:
899 ret = -EINVAL;
900 if (optlen == sizeof(u32)) {
901 u32 ufd;
902
903 ret = -EFAULT;
904 if (copy_from_user(&ufd, optval, sizeof(ufd)))
905 break;
906
907 ret = sk_attach_bpf(ufd, sk);
908 }
909 break;
910
911 case SO_ATTACH_REUSEPORT_CBPF:
912 ret = -EINVAL;
913 if (optlen == sizeof(struct sock_fprog)) {
914 struct sock_fprog fprog;
915
916 ret = -EFAULT;
917 if (copy_from_user(&fprog, optval, sizeof(fprog)))
918 break;
919
920 ret = sk_reuseport_attach_filter(&fprog, sk);
921 }
922 break;
923
924 case SO_ATTACH_REUSEPORT_EBPF:
925 ret = -EINVAL;
926 if (optlen == sizeof(u32)) {
927 u32 ufd;
928
929 ret = -EFAULT;
930 if (copy_from_user(&ufd, optval, sizeof(ufd)))
931 break;
932
933 ret = sk_reuseport_attach_bpf(ufd, sk);
934 }
935 break;
936
937 case SO_DETACH_FILTER:
938 ret = sk_detach_filter(sk);
939 break;
940
941 case SO_LOCK_FILTER:
942 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
943 ret = -EPERM;
944 else
945 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
946 break;
947
948 case SO_PASSSEC:
949 if (valbool)
950 set_bit(SOCK_PASSSEC, &sock->flags);
951 else
952 clear_bit(SOCK_PASSSEC, &sock->flags);
953 break;
954 case SO_MARK:
955 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
956 ret = -EPERM;
957 else
958 sk->sk_mark = val;
959 break;
960
961 case SO_RXQ_OVFL:
962 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
963 break;
964
965 case SO_WIFI_STATUS:
966 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
967 break;
968
969 case SO_PEEK_OFF:
970 if (sock->ops->set_peek_off)
971 ret = sock->ops->set_peek_off(sk, val);
972 else
973 ret = -EOPNOTSUPP;
974 break;
975
976 case SO_NOFCS:
977 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
978 break;
979
980 case SO_SELECT_ERR_QUEUE:
981 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
982 break;
983
984 #ifdef CONFIG_NET_RX_BUSY_POLL
985 case SO_BUSY_POLL:
986 /* allow unprivileged users to decrease the value */
987 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
988 ret = -EPERM;
989 else {
990 if (val < 0)
991 ret = -EINVAL;
992 else
993 sk->sk_ll_usec = val;
994 }
995 break;
996 #endif
997
998 case SO_MAX_PACING_RATE:
999 sk->sk_max_pacing_rate = val;
1000 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1001 sk->sk_max_pacing_rate);
1002 break;
1003
1004 case SO_INCOMING_CPU:
1005 sk->sk_incoming_cpu = val;
1006 break;
1007
1008 case SO_CNX_ADVICE:
1009 if (val == 1)
1010 dst_negative_advice(sk);
1011 break;
1012 default:
1013 ret = -ENOPROTOOPT;
1014 break;
1015 }
1016 release_sock(sk);
1017 return ret;
1018 }
1019 EXPORT_SYMBOL(sock_setsockopt);
1020
1021
1022 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1023 struct ucred *ucred)
1024 {
1025 ucred->pid = pid_vnr(pid);
1026 ucred->uid = ucred->gid = -1;
1027 if (cred) {
1028 struct user_namespace *current_ns = current_user_ns();
1029
1030 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1031 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1032 }
1033 }
1034
1035 int sock_getsockopt(struct socket *sock, int level, int optname,
1036 char __user *optval, int __user *optlen)
1037 {
1038 struct sock *sk = sock->sk;
1039
1040 union {
1041 int val;
1042 struct linger ling;
1043 struct timeval tm;
1044 } v;
1045
1046 int lv = sizeof(int);
1047 int len;
1048
1049 if (get_user(len, optlen))
1050 return -EFAULT;
1051 if (len < 0)
1052 return -EINVAL;
1053
1054 memset(&v, 0, sizeof(v));
1055
1056 switch (optname) {
1057 case SO_DEBUG:
1058 v.val = sock_flag(sk, SOCK_DBG);
1059 break;
1060
1061 case SO_DONTROUTE:
1062 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1063 break;
1064
1065 case SO_BROADCAST:
1066 v.val = sock_flag(sk, SOCK_BROADCAST);
1067 break;
1068
1069 case SO_SNDBUF:
1070 v.val = sk->sk_sndbuf;
1071 break;
1072
1073 case SO_RCVBUF:
1074 v.val = sk->sk_rcvbuf;
1075 break;
1076
1077 case SO_REUSEADDR:
1078 v.val = sk->sk_reuse;
1079 break;
1080
1081 case SO_REUSEPORT:
1082 v.val = sk->sk_reuseport;
1083 break;
1084
1085 case SO_KEEPALIVE:
1086 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1087 break;
1088
1089 case SO_TYPE:
1090 v.val = sk->sk_type;
1091 break;
1092
1093 case SO_PROTOCOL:
1094 v.val = sk->sk_protocol;
1095 break;
1096
1097 case SO_DOMAIN:
1098 v.val = sk->sk_family;
1099 break;
1100
1101 case SO_ERROR:
1102 v.val = -sock_error(sk);
1103 if (v.val == 0)
1104 v.val = xchg(&sk->sk_err_soft, 0);
1105 break;
1106
1107 case SO_OOBINLINE:
1108 v.val = sock_flag(sk, SOCK_URGINLINE);
1109 break;
1110
1111 case SO_NO_CHECK:
1112 v.val = sk->sk_no_check_tx;
1113 break;
1114
1115 case SO_PRIORITY:
1116 v.val = sk->sk_priority;
1117 break;
1118
1119 case SO_LINGER:
1120 lv = sizeof(v.ling);
1121 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1122 v.ling.l_linger = sk->sk_lingertime / HZ;
1123 break;
1124
1125 case SO_BSDCOMPAT:
1126 sock_warn_obsolete_bsdism("getsockopt");
1127 break;
1128
1129 case SO_TIMESTAMP:
1130 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1131 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1132 break;
1133
1134 case SO_TIMESTAMPNS:
1135 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1136 break;
1137
1138 case SO_TIMESTAMPING:
1139 v.val = sk->sk_tsflags;
1140 break;
1141
1142 case SO_RCVTIMEO:
1143 lv = sizeof(struct timeval);
1144 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1145 v.tm.tv_sec = 0;
1146 v.tm.tv_usec = 0;
1147 } else {
1148 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1149 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ;
1150 }
1151 break;
1152
1153 case SO_SNDTIMEO:
1154 lv = sizeof(struct timeval);
1155 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1156 v.tm.tv_sec = 0;
1157 v.tm.tv_usec = 0;
1158 } else {
1159 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1160 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ;
1161 }
1162 break;
1163
1164 case SO_RCVLOWAT:
1165 v.val = sk->sk_rcvlowat;
1166 break;
1167
1168 case SO_SNDLOWAT:
1169 v.val = 1;
1170 break;
1171
1172 case SO_PASSCRED:
1173 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1174 break;
1175
1176 case SO_PEERCRED:
1177 {
1178 struct ucred peercred;
1179 if (len > sizeof(peercred))
1180 len = sizeof(peercred);
1181 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1182 if (copy_to_user(optval, &peercred, len))
1183 return -EFAULT;
1184 goto lenout;
1185 }
1186
1187 case SO_PEERNAME:
1188 {
1189 char address[128];
1190
1191 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1192 return -ENOTCONN;
1193 if (lv < len)
1194 return -EINVAL;
1195 if (copy_to_user(optval, address, len))
1196 return -EFAULT;
1197 goto lenout;
1198 }
1199
1200 /* Dubious BSD thing... Probably nobody even uses it, but
1201 * the UNIX standard wants it for whatever reason... -DaveM
1202 */
1203 case SO_ACCEPTCONN:
1204 v.val = sk->sk_state == TCP_LISTEN;
1205 break;
1206
1207 case SO_PASSSEC:
1208 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1209 break;
1210
1211 case SO_PEERSEC:
1212 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1213
1214 case SO_MARK:
1215 v.val = sk->sk_mark;
1216 break;
1217
1218 case SO_RXQ_OVFL:
1219 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1220 break;
1221
1222 case SO_WIFI_STATUS:
1223 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1224 break;
1225
1226 case SO_PEEK_OFF:
1227 if (!sock->ops->set_peek_off)
1228 return -EOPNOTSUPP;
1229
1230 v.val = sk->sk_peek_off;
1231 break;
1232 case SO_NOFCS:
1233 v.val = sock_flag(sk, SOCK_NOFCS);
1234 break;
1235
1236 case SO_BINDTODEVICE:
1237 return sock_getbindtodevice(sk, optval, optlen, len);
1238
1239 case SO_GET_FILTER:
1240 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1241 if (len < 0)
1242 return len;
1243
1244 goto lenout;
1245
1246 case SO_LOCK_FILTER:
1247 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1248 break;
1249
1250 case SO_BPF_EXTENSIONS:
1251 v.val = bpf_tell_extensions();
1252 break;
1253
1254 case SO_SELECT_ERR_QUEUE:
1255 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1256 break;
1257
1258 #ifdef CONFIG_NET_RX_BUSY_POLL
1259 case SO_BUSY_POLL:
1260 v.val = sk->sk_ll_usec;
1261 break;
1262 #endif
1263
1264 case SO_MAX_PACING_RATE:
1265 v.val = sk->sk_max_pacing_rate;
1266 break;
1267
1268 case SO_INCOMING_CPU:
1269 v.val = sk->sk_incoming_cpu;
1270 break;
1271
1272 default:
1273 /* We implement the SO_SNDLOWAT etc to not be settable
1274 * (1003.1g 7).
1275 */
1276 return -ENOPROTOOPT;
1277 }
1278
1279 if (len > lv)
1280 len = lv;
1281 if (copy_to_user(optval, &v, len))
1282 return -EFAULT;
1283 lenout:
1284 if (put_user(len, optlen))
1285 return -EFAULT;
1286 return 0;
1287 }
1288
1289 /*
1290 * Initialize an sk_lock.
1291 *
1292 * (We also register the sk_lock with the lock validator.)
1293 */
1294 static inline void sock_lock_init(struct sock *sk)
1295 {
1296 sock_lock_init_class_and_name(sk,
1297 af_family_slock_key_strings[sk->sk_family],
1298 af_family_slock_keys + sk->sk_family,
1299 af_family_key_strings[sk->sk_family],
1300 af_family_keys + sk->sk_family);
1301 }
1302
1303 /*
1304 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1305 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1306 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1307 */
1308 static void sock_copy(struct sock *nsk, const struct sock *osk)
1309 {
1310 #ifdef CONFIG_SECURITY_NETWORK
1311 void *sptr = nsk->sk_security;
1312 #endif
1313 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1314
1315 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1316 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1317
1318 #ifdef CONFIG_SECURITY_NETWORK
1319 nsk->sk_security = sptr;
1320 security_sk_clone(osk, nsk);
1321 #endif
1322 }
1323
1324 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1325 int family)
1326 {
1327 struct sock *sk;
1328 struct kmem_cache *slab;
1329
1330 slab = prot->slab;
1331 if (slab != NULL) {
1332 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1333 if (!sk)
1334 return sk;
1335 if (priority & __GFP_ZERO)
1336 sk_prot_clear_nulls(sk, prot->obj_size);
1337 } else
1338 sk = kmalloc(prot->obj_size, priority);
1339
1340 if (sk != NULL) {
1341 kmemcheck_annotate_bitfield(sk, flags);
1342
1343 if (security_sk_alloc(sk, family, priority))
1344 goto out_free;
1345
1346 if (!try_module_get(prot->owner))
1347 goto out_free_sec;
1348 sk_tx_queue_clear(sk);
1349 }
1350
1351 return sk;
1352
1353 out_free_sec:
1354 security_sk_free(sk);
1355 out_free:
1356 if (slab != NULL)
1357 kmem_cache_free(slab, sk);
1358 else
1359 kfree(sk);
1360 return NULL;
1361 }
1362
1363 static void sk_prot_free(struct proto *prot, struct sock *sk)
1364 {
1365 struct kmem_cache *slab;
1366 struct module *owner;
1367
1368 owner = prot->owner;
1369 slab = prot->slab;
1370
1371 cgroup_sk_free(&sk->sk_cgrp_data);
1372 mem_cgroup_sk_free(sk);
1373 security_sk_free(sk);
1374 if (slab != NULL)
1375 kmem_cache_free(slab, sk);
1376 else
1377 kfree(sk);
1378 module_put(owner);
1379 }
1380
1381 /**
1382 * sk_alloc - All socket objects are allocated here
1383 * @net: the applicable net namespace
1384 * @family: protocol family
1385 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1386 * @prot: struct proto associated with this new sock instance
1387 * @kern: is this to be a kernel socket?
1388 */
1389 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1390 struct proto *prot, int kern)
1391 {
1392 struct sock *sk;
1393
1394 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1395 if (sk) {
1396 sk->sk_family = family;
1397 /*
1398 * See comment in struct sock definition to understand
1399 * why we need sk_prot_creator -acme
1400 */
1401 sk->sk_prot = sk->sk_prot_creator = prot;
1402 sock_lock_init(sk);
1403 sk->sk_net_refcnt = kern ? 0 : 1;
1404 if (likely(sk->sk_net_refcnt))
1405 get_net(net);
1406 sock_net_set(sk, net);
1407 atomic_set(&sk->sk_wmem_alloc, 1);
1408
1409 mem_cgroup_sk_alloc(sk);
1410 cgroup_sk_alloc(&sk->sk_cgrp_data);
1411 sock_update_classid(&sk->sk_cgrp_data);
1412 sock_update_netprioidx(&sk->sk_cgrp_data);
1413 }
1414
1415 return sk;
1416 }
1417 EXPORT_SYMBOL(sk_alloc);
1418
1419 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1420 * grace period. This is the case for UDP sockets and TCP listeners.
1421 */
1422 static void __sk_destruct(struct rcu_head *head)
1423 {
1424 struct sock *sk = container_of(head, struct sock, sk_rcu);
1425 struct sk_filter *filter;
1426
1427 if (sk->sk_destruct)
1428 sk->sk_destruct(sk);
1429
1430 filter = rcu_dereference_check(sk->sk_filter,
1431 atomic_read(&sk->sk_wmem_alloc) == 0);
1432 if (filter) {
1433 sk_filter_uncharge(sk, filter);
1434 RCU_INIT_POINTER(sk->sk_filter, NULL);
1435 }
1436 if (rcu_access_pointer(sk->sk_reuseport_cb))
1437 reuseport_detach_sock(sk);
1438
1439 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1440
1441 if (atomic_read(&sk->sk_omem_alloc))
1442 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1443 __func__, atomic_read(&sk->sk_omem_alloc));
1444
1445 if (sk->sk_peer_cred)
1446 put_cred(sk->sk_peer_cred);
1447 put_pid(sk->sk_peer_pid);
1448 if (likely(sk->sk_net_refcnt))
1449 put_net(sock_net(sk));
1450 sk_prot_free(sk->sk_prot_creator, sk);
1451 }
1452
1453 void sk_destruct(struct sock *sk)
1454 {
1455 if (sock_flag(sk, SOCK_RCU_FREE))
1456 call_rcu(&sk->sk_rcu, __sk_destruct);
1457 else
1458 __sk_destruct(&sk->sk_rcu);
1459 }
1460
1461 static void __sk_free(struct sock *sk)
1462 {
1463 if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1464 sock_diag_broadcast_destroy(sk);
1465 else
1466 sk_destruct(sk);
1467 }
1468
1469 void sk_free(struct sock *sk)
1470 {
1471 /*
1472 * We subtract one from sk_wmem_alloc and can know if
1473 * some packets are still in some tx queue.
1474 * If not null, sock_wfree() will call __sk_free(sk) later
1475 */
1476 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1477 __sk_free(sk);
1478 }
1479 EXPORT_SYMBOL(sk_free);
1480
1481 /**
1482 * sk_clone_lock - clone a socket, and lock its clone
1483 * @sk: the socket to clone
1484 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1485 *
1486 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1487 */
1488 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1489 {
1490 struct sock *newsk;
1491 bool is_charged = true;
1492
1493 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1494 if (newsk != NULL) {
1495 struct sk_filter *filter;
1496
1497 sock_copy(newsk, sk);
1498
1499 /* SANITY */
1500 if (likely(newsk->sk_net_refcnt))
1501 get_net(sock_net(newsk));
1502 sk_node_init(&newsk->sk_node);
1503 sock_lock_init(newsk);
1504 bh_lock_sock(newsk);
1505 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1506 newsk->sk_backlog.len = 0;
1507
1508 atomic_set(&newsk->sk_rmem_alloc, 0);
1509 /*
1510 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1511 */
1512 atomic_set(&newsk->sk_wmem_alloc, 1);
1513 atomic_set(&newsk->sk_omem_alloc, 0);
1514 skb_queue_head_init(&newsk->sk_receive_queue);
1515 skb_queue_head_init(&newsk->sk_write_queue);
1516
1517 rwlock_init(&newsk->sk_callback_lock);
1518 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1519 af_callback_keys + newsk->sk_family,
1520 af_family_clock_key_strings[newsk->sk_family]);
1521
1522 newsk->sk_dst_cache = NULL;
1523 newsk->sk_dst_pending_confirm = 0;
1524 newsk->sk_wmem_queued = 0;
1525 newsk->sk_forward_alloc = 0;
1526 atomic_set(&newsk->sk_drops, 0);
1527 newsk->sk_send_head = NULL;
1528 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1529
1530 sock_reset_flag(newsk, SOCK_DONE);
1531 skb_queue_head_init(&newsk->sk_error_queue);
1532
1533 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1534 if (filter != NULL)
1535 /* though it's an empty new sock, the charging may fail
1536 * if sysctl_optmem_max was changed between creation of
1537 * original socket and cloning
1538 */
1539 is_charged = sk_filter_charge(newsk, filter);
1540
1541 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1542 sk_free_unlock_clone(newsk);
1543 newsk = NULL;
1544 goto out;
1545 }
1546 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1547
1548 newsk->sk_err = 0;
1549 newsk->sk_err_soft = 0;
1550 newsk->sk_priority = 0;
1551 newsk->sk_incoming_cpu = raw_smp_processor_id();
1552 atomic64_set(&newsk->sk_cookie, 0);
1553
1554 mem_cgroup_sk_alloc(newsk);
1555 cgroup_sk_alloc(&newsk->sk_cgrp_data);
1556
1557 /*
1558 * Before updating sk_refcnt, we must commit prior changes to memory
1559 * (Documentation/RCU/rculist_nulls.txt for details)
1560 */
1561 smp_wmb();
1562 atomic_set(&newsk->sk_refcnt, 2);
1563
1564 /*
1565 * Increment the counter in the same struct proto as the master
1566 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1567 * is the same as sk->sk_prot->socks, as this field was copied
1568 * with memcpy).
1569 *
1570 * This _changes_ the previous behaviour, where
1571 * tcp_create_openreq_child always was incrementing the
1572 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1573 * to be taken into account in all callers. -acme
1574 */
1575 sk_refcnt_debug_inc(newsk);
1576 sk_set_socket(newsk, NULL);
1577 newsk->sk_wq = NULL;
1578
1579 if (newsk->sk_prot->sockets_allocated)
1580 sk_sockets_allocated_inc(newsk);
1581
1582 if (sock_needs_netstamp(sk) &&
1583 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1584 net_enable_timestamp();
1585 }
1586 out:
1587 return newsk;
1588 }
1589 EXPORT_SYMBOL_GPL(sk_clone_lock);
1590
1591 void sk_free_unlock_clone(struct sock *sk)
1592 {
1593 /* It is still raw copy of parent, so invalidate
1594 * destructor and make plain sk_free() */
1595 sk->sk_destruct = NULL;
1596 bh_unlock_sock(sk);
1597 sk_free(sk);
1598 }
1599 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1600
1601 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1602 {
1603 u32 max_segs = 1;
1604
1605 sk_dst_set(sk, dst);
1606 sk->sk_route_caps = dst->dev->features;
1607 if (sk->sk_route_caps & NETIF_F_GSO)
1608 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1609 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1610 if (sk_can_gso(sk)) {
1611 if (dst->header_len) {
1612 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1613 } else {
1614 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1615 sk->sk_gso_max_size = dst->dev->gso_max_size;
1616 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1617 }
1618 }
1619 sk->sk_gso_max_segs = max_segs;
1620 }
1621 EXPORT_SYMBOL_GPL(sk_setup_caps);
1622
1623 /*
1624 * Simple resource managers for sockets.
1625 */
1626
1627
1628 /*
1629 * Write buffer destructor automatically called from kfree_skb.
1630 */
1631 void sock_wfree(struct sk_buff *skb)
1632 {
1633 struct sock *sk = skb->sk;
1634 unsigned int len = skb->truesize;
1635
1636 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1637 /*
1638 * Keep a reference on sk_wmem_alloc, this will be released
1639 * after sk_write_space() call
1640 */
1641 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1642 sk->sk_write_space(sk);
1643 len = 1;
1644 }
1645 /*
1646 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1647 * could not do because of in-flight packets
1648 */
1649 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1650 __sk_free(sk);
1651 }
1652 EXPORT_SYMBOL(sock_wfree);
1653
1654 /* This variant of sock_wfree() is used by TCP,
1655 * since it sets SOCK_USE_WRITE_QUEUE.
1656 */
1657 void __sock_wfree(struct sk_buff *skb)
1658 {
1659 struct sock *sk = skb->sk;
1660
1661 if (atomic_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1662 __sk_free(sk);
1663 }
1664
1665 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1666 {
1667 skb_orphan(skb);
1668 skb->sk = sk;
1669 #ifdef CONFIG_INET
1670 if (unlikely(!sk_fullsock(sk))) {
1671 skb->destructor = sock_edemux;
1672 sock_hold(sk);
1673 return;
1674 }
1675 #endif
1676 skb->destructor = sock_wfree;
1677 skb_set_hash_from_sk(skb, sk);
1678 /*
1679 * We used to take a refcount on sk, but following operation
1680 * is enough to guarantee sk_free() wont free this sock until
1681 * all in-flight packets are completed
1682 */
1683 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1684 }
1685 EXPORT_SYMBOL(skb_set_owner_w);
1686
1687 /* This helper is used by netem, as it can hold packets in its
1688 * delay queue. We want to allow the owner socket to send more
1689 * packets, as if they were already TX completed by a typical driver.
1690 * But we also want to keep skb->sk set because some packet schedulers
1691 * rely on it (sch_fq for example). So we set skb->truesize to a small
1692 * amount (1) and decrease sk_wmem_alloc accordingly.
1693 */
1694 void skb_orphan_partial(struct sk_buff *skb)
1695 {
1696 /* If this skb is a TCP pure ACK or already went here,
1697 * we have nothing to do. 2 is already a very small truesize.
1698 */
1699 if (skb->truesize <= 2)
1700 return;
1701
1702 /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1703 * so we do not completely orphan skb, but transfert all
1704 * accounted bytes but one, to avoid unexpected reorders.
1705 */
1706 if (skb->destructor == sock_wfree
1707 #ifdef CONFIG_INET
1708 || skb->destructor == tcp_wfree
1709 #endif
1710 ) {
1711 atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1712 skb->truesize = 1;
1713 } else {
1714 skb_orphan(skb);
1715 }
1716 }
1717 EXPORT_SYMBOL(skb_orphan_partial);
1718
1719 /*
1720 * Read buffer destructor automatically called from kfree_skb.
1721 */
1722 void sock_rfree(struct sk_buff *skb)
1723 {
1724 struct sock *sk = skb->sk;
1725 unsigned int len = skb->truesize;
1726
1727 atomic_sub(len, &sk->sk_rmem_alloc);
1728 sk_mem_uncharge(sk, len);
1729 }
1730 EXPORT_SYMBOL(sock_rfree);
1731
1732 /*
1733 * Buffer destructor for skbs that are not used directly in read or write
1734 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1735 */
1736 void sock_efree(struct sk_buff *skb)
1737 {
1738 sock_put(skb->sk);
1739 }
1740 EXPORT_SYMBOL(sock_efree);
1741
1742 kuid_t sock_i_uid(struct sock *sk)
1743 {
1744 kuid_t uid;
1745
1746 read_lock_bh(&sk->sk_callback_lock);
1747 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1748 read_unlock_bh(&sk->sk_callback_lock);
1749 return uid;
1750 }
1751 EXPORT_SYMBOL(sock_i_uid);
1752
1753 unsigned long sock_i_ino(struct sock *sk)
1754 {
1755 unsigned long ino;
1756
1757 read_lock_bh(&sk->sk_callback_lock);
1758 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1759 read_unlock_bh(&sk->sk_callback_lock);
1760 return ino;
1761 }
1762 EXPORT_SYMBOL(sock_i_ino);
1763
1764 /*
1765 * Allocate a skb from the socket's send buffer.
1766 */
1767 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1768 gfp_t priority)
1769 {
1770 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1771 struct sk_buff *skb = alloc_skb(size, priority);
1772 if (skb) {
1773 skb_set_owner_w(skb, sk);
1774 return skb;
1775 }
1776 }
1777 return NULL;
1778 }
1779 EXPORT_SYMBOL(sock_wmalloc);
1780
1781 /*
1782 * Allocate a memory block from the socket's option memory buffer.
1783 */
1784 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1785 {
1786 if ((unsigned int)size <= sysctl_optmem_max &&
1787 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1788 void *mem;
1789 /* First do the add, to avoid the race if kmalloc
1790 * might sleep.
1791 */
1792 atomic_add(size, &sk->sk_omem_alloc);
1793 mem = kmalloc(size, priority);
1794 if (mem)
1795 return mem;
1796 atomic_sub(size, &sk->sk_omem_alloc);
1797 }
1798 return NULL;
1799 }
1800 EXPORT_SYMBOL(sock_kmalloc);
1801
1802 /* Free an option memory block. Note, we actually want the inline
1803 * here as this allows gcc to detect the nullify and fold away the
1804 * condition entirely.
1805 */
1806 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1807 const bool nullify)
1808 {
1809 if (WARN_ON_ONCE(!mem))
1810 return;
1811 if (nullify)
1812 kzfree(mem);
1813 else
1814 kfree(mem);
1815 atomic_sub(size, &sk->sk_omem_alloc);
1816 }
1817
1818 void sock_kfree_s(struct sock *sk, void *mem, int size)
1819 {
1820 __sock_kfree_s(sk, mem, size, false);
1821 }
1822 EXPORT_SYMBOL(sock_kfree_s);
1823
1824 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1825 {
1826 __sock_kfree_s(sk, mem, size, true);
1827 }
1828 EXPORT_SYMBOL(sock_kzfree_s);
1829
1830 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1831 I think, these locks should be removed for datagram sockets.
1832 */
1833 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1834 {
1835 DEFINE_WAIT(wait);
1836
1837 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1838 for (;;) {
1839 if (!timeo)
1840 break;
1841 if (signal_pending(current))
1842 break;
1843 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1844 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1845 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1846 break;
1847 if (sk->sk_shutdown & SEND_SHUTDOWN)
1848 break;
1849 if (sk->sk_err)
1850 break;
1851 timeo = schedule_timeout(timeo);
1852 }
1853 finish_wait(sk_sleep(sk), &wait);
1854 return timeo;
1855 }
1856
1857
1858 /*
1859 * Generic send/receive buffer handlers
1860 */
1861
1862 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1863 unsigned long data_len, int noblock,
1864 int *errcode, int max_page_order)
1865 {
1866 struct sk_buff *skb;
1867 long timeo;
1868 int err;
1869
1870 timeo = sock_sndtimeo(sk, noblock);
1871 for (;;) {
1872 err = sock_error(sk);
1873 if (err != 0)
1874 goto failure;
1875
1876 err = -EPIPE;
1877 if (sk->sk_shutdown & SEND_SHUTDOWN)
1878 goto failure;
1879
1880 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1881 break;
1882
1883 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1884 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1885 err = -EAGAIN;
1886 if (!timeo)
1887 goto failure;
1888 if (signal_pending(current))
1889 goto interrupted;
1890 timeo = sock_wait_for_wmem(sk, timeo);
1891 }
1892 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1893 errcode, sk->sk_allocation);
1894 if (skb)
1895 skb_set_owner_w(skb, sk);
1896 return skb;
1897
1898 interrupted:
1899 err = sock_intr_errno(timeo);
1900 failure:
1901 *errcode = err;
1902 return NULL;
1903 }
1904 EXPORT_SYMBOL(sock_alloc_send_pskb);
1905
1906 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1907 int noblock, int *errcode)
1908 {
1909 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1910 }
1911 EXPORT_SYMBOL(sock_alloc_send_skb);
1912
1913 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1914 struct sockcm_cookie *sockc)
1915 {
1916 u32 tsflags;
1917
1918 switch (cmsg->cmsg_type) {
1919 case SO_MARK:
1920 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1921 return -EPERM;
1922 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1923 return -EINVAL;
1924 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
1925 break;
1926 case SO_TIMESTAMPING:
1927 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1928 return -EINVAL;
1929
1930 tsflags = *(u32 *)CMSG_DATA(cmsg);
1931 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
1932 return -EINVAL;
1933
1934 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
1935 sockc->tsflags |= tsflags;
1936 break;
1937 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
1938 case SCM_RIGHTS:
1939 case SCM_CREDENTIALS:
1940 break;
1941 default:
1942 return -EINVAL;
1943 }
1944 return 0;
1945 }
1946 EXPORT_SYMBOL(__sock_cmsg_send);
1947
1948 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1949 struct sockcm_cookie *sockc)
1950 {
1951 struct cmsghdr *cmsg;
1952 int ret;
1953
1954 for_each_cmsghdr(cmsg, msg) {
1955 if (!CMSG_OK(msg, cmsg))
1956 return -EINVAL;
1957 if (cmsg->cmsg_level != SOL_SOCKET)
1958 continue;
1959 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
1960 if (ret)
1961 return ret;
1962 }
1963 return 0;
1964 }
1965 EXPORT_SYMBOL(sock_cmsg_send);
1966
1967 /* On 32bit arches, an skb frag is limited to 2^15 */
1968 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1969
1970 /**
1971 * skb_page_frag_refill - check that a page_frag contains enough room
1972 * @sz: minimum size of the fragment we want to get
1973 * @pfrag: pointer to page_frag
1974 * @gfp: priority for memory allocation
1975 *
1976 * Note: While this allocator tries to use high order pages, there is
1977 * no guarantee that allocations succeed. Therefore, @sz MUST be
1978 * less or equal than PAGE_SIZE.
1979 */
1980 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1981 {
1982 if (pfrag->page) {
1983 if (page_ref_count(pfrag->page) == 1) {
1984 pfrag->offset = 0;
1985 return true;
1986 }
1987 if (pfrag->offset + sz <= pfrag->size)
1988 return true;
1989 put_page(pfrag->page);
1990 }
1991
1992 pfrag->offset = 0;
1993 if (SKB_FRAG_PAGE_ORDER) {
1994 /* Avoid direct reclaim but allow kswapd to wake */
1995 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
1996 __GFP_COMP | __GFP_NOWARN |
1997 __GFP_NORETRY,
1998 SKB_FRAG_PAGE_ORDER);
1999 if (likely(pfrag->page)) {
2000 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2001 return true;
2002 }
2003 }
2004 pfrag->page = alloc_page(gfp);
2005 if (likely(pfrag->page)) {
2006 pfrag->size = PAGE_SIZE;
2007 return true;
2008 }
2009 return false;
2010 }
2011 EXPORT_SYMBOL(skb_page_frag_refill);
2012
2013 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2014 {
2015 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2016 return true;
2017
2018 sk_enter_memory_pressure(sk);
2019 sk_stream_moderate_sndbuf(sk);
2020 return false;
2021 }
2022 EXPORT_SYMBOL(sk_page_frag_refill);
2023
2024 static void __lock_sock(struct sock *sk)
2025 __releases(&sk->sk_lock.slock)
2026 __acquires(&sk->sk_lock.slock)
2027 {
2028 DEFINE_WAIT(wait);
2029
2030 for (;;) {
2031 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2032 TASK_UNINTERRUPTIBLE);
2033 spin_unlock_bh(&sk->sk_lock.slock);
2034 schedule();
2035 spin_lock_bh(&sk->sk_lock.slock);
2036 if (!sock_owned_by_user(sk))
2037 break;
2038 }
2039 finish_wait(&sk->sk_lock.wq, &wait);
2040 }
2041
2042 static void __release_sock(struct sock *sk)
2043 __releases(&sk->sk_lock.slock)
2044 __acquires(&sk->sk_lock.slock)
2045 {
2046 struct sk_buff *skb, *next;
2047
2048 while ((skb = sk->sk_backlog.head) != NULL) {
2049 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2050
2051 spin_unlock_bh(&sk->sk_lock.slock);
2052
2053 do {
2054 next = skb->next;
2055 prefetch(next);
2056 WARN_ON_ONCE(skb_dst_is_noref(skb));
2057 skb->next = NULL;
2058 sk_backlog_rcv(sk, skb);
2059
2060 cond_resched();
2061
2062 skb = next;
2063 } while (skb != NULL);
2064
2065 spin_lock_bh(&sk->sk_lock.slock);
2066 }
2067
2068 /*
2069 * Doing the zeroing here guarantee we can not loop forever
2070 * while a wild producer attempts to flood us.
2071 */
2072 sk->sk_backlog.len = 0;
2073 }
2074
2075 void __sk_flush_backlog(struct sock *sk)
2076 {
2077 spin_lock_bh(&sk->sk_lock.slock);
2078 __release_sock(sk);
2079 spin_unlock_bh(&sk->sk_lock.slock);
2080 }
2081
2082 /**
2083 * sk_wait_data - wait for data to arrive at sk_receive_queue
2084 * @sk: sock to wait on
2085 * @timeo: for how long
2086 * @skb: last skb seen on sk_receive_queue
2087 *
2088 * Now socket state including sk->sk_err is changed only under lock,
2089 * hence we may omit checks after joining wait queue.
2090 * We check receive queue before schedule() only as optimization;
2091 * it is very likely that release_sock() added new data.
2092 */
2093 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2094 {
2095 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2096 int rc;
2097
2098 add_wait_queue(sk_sleep(sk), &wait);
2099 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2100 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2101 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2102 remove_wait_queue(sk_sleep(sk), &wait);
2103 return rc;
2104 }
2105 EXPORT_SYMBOL(sk_wait_data);
2106
2107 /**
2108 * __sk_mem_raise_allocated - increase memory_allocated
2109 * @sk: socket
2110 * @size: memory size to allocate
2111 * @amt: pages to allocate
2112 * @kind: allocation type
2113 *
2114 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2115 */
2116 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2117 {
2118 struct proto *prot = sk->sk_prot;
2119 long allocated = sk_memory_allocated_add(sk, amt);
2120
2121 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2122 !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2123 goto suppress_allocation;
2124
2125 /* Under limit. */
2126 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2127 sk_leave_memory_pressure(sk);
2128 return 1;
2129 }
2130
2131 /* Under pressure. */
2132 if (allocated > sk_prot_mem_limits(sk, 1))
2133 sk_enter_memory_pressure(sk);
2134
2135 /* Over hard limit. */
2136 if (allocated > sk_prot_mem_limits(sk, 2))
2137 goto suppress_allocation;
2138
2139 /* guarantee minimum buffer size under pressure */
2140 if (kind == SK_MEM_RECV) {
2141 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2142 return 1;
2143
2144 } else { /* SK_MEM_SEND */
2145 if (sk->sk_type == SOCK_STREAM) {
2146 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2147 return 1;
2148 } else if (atomic_read(&sk->sk_wmem_alloc) <
2149 prot->sysctl_wmem[0])
2150 return 1;
2151 }
2152
2153 if (sk_has_memory_pressure(sk)) {
2154 int alloc;
2155
2156 if (!sk_under_memory_pressure(sk))
2157 return 1;
2158 alloc = sk_sockets_allocated_read_positive(sk);
2159 if (sk_prot_mem_limits(sk, 2) > alloc *
2160 sk_mem_pages(sk->sk_wmem_queued +
2161 atomic_read(&sk->sk_rmem_alloc) +
2162 sk->sk_forward_alloc))
2163 return 1;
2164 }
2165
2166 suppress_allocation:
2167
2168 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2169 sk_stream_moderate_sndbuf(sk);
2170
2171 /* Fail only if socket is _under_ its sndbuf.
2172 * In this case we cannot block, so that we have to fail.
2173 */
2174 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2175 return 1;
2176 }
2177
2178 trace_sock_exceed_buf_limit(sk, prot, allocated);
2179
2180 sk_memory_allocated_sub(sk, amt);
2181
2182 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2183 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2184
2185 return 0;
2186 }
2187 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2188
2189 /**
2190 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2191 * @sk: socket
2192 * @size: memory size to allocate
2193 * @kind: allocation type
2194 *
2195 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2196 * rmem allocation. This function assumes that protocols which have
2197 * memory_pressure use sk_wmem_queued as write buffer accounting.
2198 */
2199 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2200 {
2201 int ret, amt = sk_mem_pages(size);
2202
2203 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2204 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2205 if (!ret)
2206 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2207 return ret;
2208 }
2209 EXPORT_SYMBOL(__sk_mem_schedule);
2210
2211 /**
2212 * __sk_mem_reduce_allocated - reclaim memory_allocated
2213 * @sk: socket
2214 * @amount: number of quanta
2215 *
2216 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2217 */
2218 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2219 {
2220 sk_memory_allocated_sub(sk, amount);
2221
2222 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2223 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2224
2225 if (sk_under_memory_pressure(sk) &&
2226 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2227 sk_leave_memory_pressure(sk);
2228 }
2229 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2230
2231 /**
2232 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2233 * @sk: socket
2234 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2235 */
2236 void __sk_mem_reclaim(struct sock *sk, int amount)
2237 {
2238 amount >>= SK_MEM_QUANTUM_SHIFT;
2239 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2240 __sk_mem_reduce_allocated(sk, amount);
2241 }
2242 EXPORT_SYMBOL(__sk_mem_reclaim);
2243
2244 int sk_set_peek_off(struct sock *sk, int val)
2245 {
2246 if (val < 0)
2247 return -EINVAL;
2248
2249 sk->sk_peek_off = val;
2250 return 0;
2251 }
2252 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2253
2254 /*
2255 * Set of default routines for initialising struct proto_ops when
2256 * the protocol does not support a particular function. In certain
2257 * cases where it makes no sense for a protocol to have a "do nothing"
2258 * function, some default processing is provided.
2259 */
2260
2261 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2262 {
2263 return -EOPNOTSUPP;
2264 }
2265 EXPORT_SYMBOL(sock_no_bind);
2266
2267 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2268 int len, int flags)
2269 {
2270 return -EOPNOTSUPP;
2271 }
2272 EXPORT_SYMBOL(sock_no_connect);
2273
2274 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2275 {
2276 return -EOPNOTSUPP;
2277 }
2278 EXPORT_SYMBOL(sock_no_socketpair);
2279
2280 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2281 {
2282 return -EOPNOTSUPP;
2283 }
2284 EXPORT_SYMBOL(sock_no_accept);
2285
2286 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2287 int *len, int peer)
2288 {
2289 return -EOPNOTSUPP;
2290 }
2291 EXPORT_SYMBOL(sock_no_getname);
2292
2293 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2294 {
2295 return 0;
2296 }
2297 EXPORT_SYMBOL(sock_no_poll);
2298
2299 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2300 {
2301 return -EOPNOTSUPP;
2302 }
2303 EXPORT_SYMBOL(sock_no_ioctl);
2304
2305 int sock_no_listen(struct socket *sock, int backlog)
2306 {
2307 return -EOPNOTSUPP;
2308 }
2309 EXPORT_SYMBOL(sock_no_listen);
2310
2311 int sock_no_shutdown(struct socket *sock, int how)
2312 {
2313 return -EOPNOTSUPP;
2314 }
2315 EXPORT_SYMBOL(sock_no_shutdown);
2316
2317 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2318 char __user *optval, unsigned int optlen)
2319 {
2320 return -EOPNOTSUPP;
2321 }
2322 EXPORT_SYMBOL(sock_no_setsockopt);
2323
2324 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2325 char __user *optval, int __user *optlen)
2326 {
2327 return -EOPNOTSUPP;
2328 }
2329 EXPORT_SYMBOL(sock_no_getsockopt);
2330
2331 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2332 {
2333 return -EOPNOTSUPP;
2334 }
2335 EXPORT_SYMBOL(sock_no_sendmsg);
2336
2337 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2338 int flags)
2339 {
2340 return -EOPNOTSUPP;
2341 }
2342 EXPORT_SYMBOL(sock_no_recvmsg);
2343
2344 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2345 {
2346 /* Mirror missing mmap method error code */
2347 return -ENODEV;
2348 }
2349 EXPORT_SYMBOL(sock_no_mmap);
2350
2351 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2352 {
2353 ssize_t res;
2354 struct msghdr msg = {.msg_flags = flags};
2355 struct kvec iov;
2356 char *kaddr = kmap(page);
2357 iov.iov_base = kaddr + offset;
2358 iov.iov_len = size;
2359 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2360 kunmap(page);
2361 return res;
2362 }
2363 EXPORT_SYMBOL(sock_no_sendpage);
2364
2365 /*
2366 * Default Socket Callbacks
2367 */
2368
2369 static void sock_def_wakeup(struct sock *sk)
2370 {
2371 struct socket_wq *wq;
2372
2373 rcu_read_lock();
2374 wq = rcu_dereference(sk->sk_wq);
2375 if (skwq_has_sleeper(wq))
2376 wake_up_interruptible_all(&wq->wait);
2377 rcu_read_unlock();
2378 }
2379
2380 static void sock_def_error_report(struct sock *sk)
2381 {
2382 struct socket_wq *wq;
2383
2384 rcu_read_lock();
2385 wq = rcu_dereference(sk->sk_wq);
2386 if (skwq_has_sleeper(wq))
2387 wake_up_interruptible_poll(&wq->wait, POLLERR);
2388 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2389 rcu_read_unlock();
2390 }
2391
2392 static void sock_def_readable(struct sock *sk)
2393 {
2394 struct socket_wq *wq;
2395
2396 rcu_read_lock();
2397 wq = rcu_dereference(sk->sk_wq);
2398 if (skwq_has_sleeper(wq))
2399 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2400 POLLRDNORM | POLLRDBAND);
2401 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2402 rcu_read_unlock();
2403 }
2404
2405 static void sock_def_write_space(struct sock *sk)
2406 {
2407 struct socket_wq *wq;
2408
2409 rcu_read_lock();
2410
2411 /* Do not wake up a writer until he can make "significant"
2412 * progress. --DaveM
2413 */
2414 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2415 wq = rcu_dereference(sk->sk_wq);
2416 if (skwq_has_sleeper(wq))
2417 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2418 POLLWRNORM | POLLWRBAND);
2419
2420 /* Should agree with poll, otherwise some programs break */
2421 if (sock_writeable(sk))
2422 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2423 }
2424
2425 rcu_read_unlock();
2426 }
2427
2428 static void sock_def_destruct(struct sock *sk)
2429 {
2430 }
2431
2432 void sk_send_sigurg(struct sock *sk)
2433 {
2434 if (sk->sk_socket && sk->sk_socket->file)
2435 if (send_sigurg(&sk->sk_socket->file->f_owner))
2436 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2437 }
2438 EXPORT_SYMBOL(sk_send_sigurg);
2439
2440 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2441 unsigned long expires)
2442 {
2443 if (!mod_timer(timer, expires))
2444 sock_hold(sk);
2445 }
2446 EXPORT_SYMBOL(sk_reset_timer);
2447
2448 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2449 {
2450 if (del_timer(timer))
2451 __sock_put(sk);
2452 }
2453 EXPORT_SYMBOL(sk_stop_timer);
2454
2455 void sock_init_data(struct socket *sock, struct sock *sk)
2456 {
2457 skb_queue_head_init(&sk->sk_receive_queue);
2458 skb_queue_head_init(&sk->sk_write_queue);
2459 skb_queue_head_init(&sk->sk_error_queue);
2460
2461 sk->sk_send_head = NULL;
2462
2463 init_timer(&sk->sk_timer);
2464
2465 sk->sk_allocation = GFP_KERNEL;
2466 sk->sk_rcvbuf = sysctl_rmem_default;
2467 sk->sk_sndbuf = sysctl_wmem_default;
2468 sk->sk_state = TCP_CLOSE;
2469 sk_set_socket(sk, sock);
2470
2471 sock_set_flag(sk, SOCK_ZAPPED);
2472
2473 if (sock) {
2474 sk->sk_type = sock->type;
2475 sk->sk_wq = sock->wq;
2476 sock->sk = sk;
2477 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2478 } else {
2479 sk->sk_wq = NULL;
2480 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2481 }
2482
2483 rwlock_init(&sk->sk_callback_lock);
2484 lockdep_set_class_and_name(&sk->sk_callback_lock,
2485 af_callback_keys + sk->sk_family,
2486 af_family_clock_key_strings[sk->sk_family]);
2487
2488 sk->sk_state_change = sock_def_wakeup;
2489 sk->sk_data_ready = sock_def_readable;
2490 sk->sk_write_space = sock_def_write_space;
2491 sk->sk_error_report = sock_def_error_report;
2492 sk->sk_destruct = sock_def_destruct;
2493
2494 sk->sk_frag.page = NULL;
2495 sk->sk_frag.offset = 0;
2496 sk->sk_peek_off = -1;
2497
2498 sk->sk_peer_pid = NULL;
2499 sk->sk_peer_cred = NULL;
2500 sk->sk_write_pending = 0;
2501 sk->sk_rcvlowat = 1;
2502 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2503 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2504
2505 sk->sk_stamp = ktime_set(-1L, 0);
2506
2507 #ifdef CONFIG_NET_RX_BUSY_POLL
2508 sk->sk_napi_id = 0;
2509 sk->sk_ll_usec = sysctl_net_busy_read;
2510 #endif
2511
2512 sk->sk_max_pacing_rate = ~0U;
2513 sk->sk_pacing_rate = ~0U;
2514 sk->sk_incoming_cpu = -1;
2515 /*
2516 * Before updating sk_refcnt, we must commit prior changes to memory
2517 * (Documentation/RCU/rculist_nulls.txt for details)
2518 */
2519 smp_wmb();
2520 atomic_set(&sk->sk_refcnt, 1);
2521 atomic_set(&sk->sk_drops, 0);
2522 }
2523 EXPORT_SYMBOL(sock_init_data);
2524
2525 void lock_sock_nested(struct sock *sk, int subclass)
2526 {
2527 might_sleep();
2528 spin_lock_bh(&sk->sk_lock.slock);
2529 if (sk->sk_lock.owned)
2530 __lock_sock(sk);
2531 sk->sk_lock.owned = 1;
2532 spin_unlock(&sk->sk_lock.slock);
2533 /*
2534 * The sk_lock has mutex_lock() semantics here:
2535 */
2536 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2537 local_bh_enable();
2538 }
2539 EXPORT_SYMBOL(lock_sock_nested);
2540
2541 void release_sock(struct sock *sk)
2542 {
2543 spin_lock_bh(&sk->sk_lock.slock);
2544 if (sk->sk_backlog.tail)
2545 __release_sock(sk);
2546
2547 /* Warning : release_cb() might need to release sk ownership,
2548 * ie call sock_release_ownership(sk) before us.
2549 */
2550 if (sk->sk_prot->release_cb)
2551 sk->sk_prot->release_cb(sk);
2552
2553 sock_release_ownership(sk);
2554 if (waitqueue_active(&sk->sk_lock.wq))
2555 wake_up(&sk->sk_lock.wq);
2556 spin_unlock_bh(&sk->sk_lock.slock);
2557 }
2558 EXPORT_SYMBOL(release_sock);
2559
2560 /**
2561 * lock_sock_fast - fast version of lock_sock
2562 * @sk: socket
2563 *
2564 * This version should be used for very small section, where process wont block
2565 * return false if fast path is taken
2566 * sk_lock.slock locked, owned = 0, BH disabled
2567 * return true if slow path is taken
2568 * sk_lock.slock unlocked, owned = 1, BH enabled
2569 */
2570 bool lock_sock_fast(struct sock *sk)
2571 {
2572 might_sleep();
2573 spin_lock_bh(&sk->sk_lock.slock);
2574
2575 if (!sk->sk_lock.owned)
2576 /*
2577 * Note : We must disable BH
2578 */
2579 return false;
2580
2581 __lock_sock(sk);
2582 sk->sk_lock.owned = 1;
2583 spin_unlock(&sk->sk_lock.slock);
2584 /*
2585 * The sk_lock has mutex_lock() semantics here:
2586 */
2587 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2588 local_bh_enable();
2589 return true;
2590 }
2591 EXPORT_SYMBOL(lock_sock_fast);
2592
2593 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2594 {
2595 struct timeval tv;
2596 if (!sock_flag(sk, SOCK_TIMESTAMP))
2597 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2598 tv = ktime_to_timeval(sk->sk_stamp);
2599 if (tv.tv_sec == -1)
2600 return -ENOENT;
2601 if (tv.tv_sec == 0) {
2602 sk->sk_stamp = ktime_get_real();
2603 tv = ktime_to_timeval(sk->sk_stamp);
2604 }
2605 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2606 }
2607 EXPORT_SYMBOL(sock_get_timestamp);
2608
2609 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2610 {
2611 struct timespec ts;
2612 if (!sock_flag(sk, SOCK_TIMESTAMP))
2613 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2614 ts = ktime_to_timespec(sk->sk_stamp);
2615 if (ts.tv_sec == -1)
2616 return -ENOENT;
2617 if (ts.tv_sec == 0) {
2618 sk->sk_stamp = ktime_get_real();
2619 ts = ktime_to_timespec(sk->sk_stamp);
2620 }
2621 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2622 }
2623 EXPORT_SYMBOL(sock_get_timestampns);
2624
2625 void sock_enable_timestamp(struct sock *sk, int flag)
2626 {
2627 if (!sock_flag(sk, flag)) {
2628 unsigned long previous_flags = sk->sk_flags;
2629
2630 sock_set_flag(sk, flag);
2631 /*
2632 * we just set one of the two flags which require net
2633 * time stamping, but time stamping might have been on
2634 * already because of the other one
2635 */
2636 if (sock_needs_netstamp(sk) &&
2637 !(previous_flags & SK_FLAGS_TIMESTAMP))
2638 net_enable_timestamp();
2639 }
2640 }
2641
2642 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2643 int level, int type)
2644 {
2645 struct sock_exterr_skb *serr;
2646 struct sk_buff *skb;
2647 int copied, err;
2648
2649 err = -EAGAIN;
2650 skb = sock_dequeue_err_skb(sk);
2651 if (skb == NULL)
2652 goto out;
2653
2654 copied = skb->len;
2655 if (copied > len) {
2656 msg->msg_flags |= MSG_TRUNC;
2657 copied = len;
2658 }
2659 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2660 if (err)
2661 goto out_free_skb;
2662
2663 sock_recv_timestamp(msg, sk, skb);
2664
2665 serr = SKB_EXT_ERR(skb);
2666 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2667
2668 msg->msg_flags |= MSG_ERRQUEUE;
2669 err = copied;
2670
2671 out_free_skb:
2672 kfree_skb(skb);
2673 out:
2674 return err;
2675 }
2676 EXPORT_SYMBOL(sock_recv_errqueue);
2677
2678 /*
2679 * Get a socket option on an socket.
2680 *
2681 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2682 * asynchronous errors should be reported by getsockopt. We assume
2683 * this means if you specify SO_ERROR (otherwise whats the point of it).
2684 */
2685 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2686 char __user *optval, int __user *optlen)
2687 {
2688 struct sock *sk = sock->sk;
2689
2690 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2691 }
2692 EXPORT_SYMBOL(sock_common_getsockopt);
2693
2694 #ifdef CONFIG_COMPAT
2695 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2696 char __user *optval, int __user *optlen)
2697 {
2698 struct sock *sk = sock->sk;
2699
2700 if (sk->sk_prot->compat_getsockopt != NULL)
2701 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2702 optval, optlen);
2703 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2704 }
2705 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2706 #endif
2707
2708 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2709 int flags)
2710 {
2711 struct sock *sk = sock->sk;
2712 int addr_len = 0;
2713 int err;
2714
2715 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2716 flags & ~MSG_DONTWAIT, &addr_len);
2717 if (err >= 0)
2718 msg->msg_namelen = addr_len;
2719 return err;
2720 }
2721 EXPORT_SYMBOL(sock_common_recvmsg);
2722
2723 /*
2724 * Set socket options on an inet socket.
2725 */
2726 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2727 char __user *optval, unsigned int optlen)
2728 {
2729 struct sock *sk = sock->sk;
2730
2731 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2732 }
2733 EXPORT_SYMBOL(sock_common_setsockopt);
2734
2735 #ifdef CONFIG_COMPAT
2736 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2737 char __user *optval, unsigned int optlen)
2738 {
2739 struct sock *sk = sock->sk;
2740
2741 if (sk->sk_prot->compat_setsockopt != NULL)
2742 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2743 optval, optlen);
2744 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2745 }
2746 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2747 #endif
2748
2749 void sk_common_release(struct sock *sk)
2750 {
2751 if (sk->sk_prot->destroy)
2752 sk->sk_prot->destroy(sk);
2753
2754 /*
2755 * Observation: when sock_common_release is called, processes have
2756 * no access to socket. But net still has.
2757 * Step one, detach it from networking:
2758 *
2759 * A. Remove from hash tables.
2760 */
2761
2762 sk->sk_prot->unhash(sk);
2763
2764 /*
2765 * In this point socket cannot receive new packets, but it is possible
2766 * that some packets are in flight because some CPU runs receiver and
2767 * did hash table lookup before we unhashed socket. They will achieve
2768 * receive queue and will be purged by socket destructor.
2769 *
2770 * Also we still have packets pending on receive queue and probably,
2771 * our own packets waiting in device queues. sock_destroy will drain
2772 * receive queue, but transmitted packets will delay socket destruction
2773 * until the last reference will be released.
2774 */
2775
2776 sock_orphan(sk);
2777
2778 xfrm_sk_free_policy(sk);
2779
2780 sk_refcnt_debug_release(sk);
2781
2782 if (sk->sk_frag.page) {
2783 put_page(sk->sk_frag.page);
2784 sk->sk_frag.page = NULL;
2785 }
2786
2787 sock_put(sk);
2788 }
2789 EXPORT_SYMBOL(sk_common_release);
2790
2791 #ifdef CONFIG_PROC_FS
2792 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2793 struct prot_inuse {
2794 int val[PROTO_INUSE_NR];
2795 };
2796
2797 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2798
2799 #ifdef CONFIG_NET_NS
2800 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2801 {
2802 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2803 }
2804 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2805
2806 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2807 {
2808 int cpu, idx = prot->inuse_idx;
2809 int res = 0;
2810
2811 for_each_possible_cpu(cpu)
2812 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2813
2814 return res >= 0 ? res : 0;
2815 }
2816 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2817
2818 static int __net_init sock_inuse_init_net(struct net *net)
2819 {
2820 net->core.inuse = alloc_percpu(struct prot_inuse);
2821 return net->core.inuse ? 0 : -ENOMEM;
2822 }
2823
2824 static void __net_exit sock_inuse_exit_net(struct net *net)
2825 {
2826 free_percpu(net->core.inuse);
2827 }
2828
2829 static struct pernet_operations net_inuse_ops = {
2830 .init = sock_inuse_init_net,
2831 .exit = sock_inuse_exit_net,
2832 };
2833
2834 static __init int net_inuse_init(void)
2835 {
2836 if (register_pernet_subsys(&net_inuse_ops))
2837 panic("Cannot initialize net inuse counters");
2838
2839 return 0;
2840 }
2841
2842 core_initcall(net_inuse_init);
2843 #else
2844 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2845
2846 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2847 {
2848 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2849 }
2850 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2851
2852 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2853 {
2854 int cpu, idx = prot->inuse_idx;
2855 int res = 0;
2856
2857 for_each_possible_cpu(cpu)
2858 res += per_cpu(prot_inuse, cpu).val[idx];
2859
2860 return res >= 0 ? res : 0;
2861 }
2862 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2863 #endif
2864
2865 static void assign_proto_idx(struct proto *prot)
2866 {
2867 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2868
2869 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2870 pr_err("PROTO_INUSE_NR exhausted\n");
2871 return;
2872 }
2873
2874 set_bit(prot->inuse_idx, proto_inuse_idx);
2875 }
2876
2877 static void release_proto_idx(struct proto *prot)
2878 {
2879 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2880 clear_bit(prot->inuse_idx, proto_inuse_idx);
2881 }
2882 #else
2883 static inline void assign_proto_idx(struct proto *prot)
2884 {
2885 }
2886
2887 static inline void release_proto_idx(struct proto *prot)
2888 {
2889 }
2890 #endif
2891
2892 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2893 {
2894 if (!rsk_prot)
2895 return;
2896 kfree(rsk_prot->slab_name);
2897 rsk_prot->slab_name = NULL;
2898 kmem_cache_destroy(rsk_prot->slab);
2899 rsk_prot->slab = NULL;
2900 }
2901
2902 static int req_prot_init(const struct proto *prot)
2903 {
2904 struct request_sock_ops *rsk_prot = prot->rsk_prot;
2905
2906 if (!rsk_prot)
2907 return 0;
2908
2909 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2910 prot->name);
2911 if (!rsk_prot->slab_name)
2912 return -ENOMEM;
2913
2914 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2915 rsk_prot->obj_size, 0,
2916 prot->slab_flags, NULL);
2917
2918 if (!rsk_prot->slab) {
2919 pr_crit("%s: Can't create request sock SLAB cache!\n",
2920 prot->name);
2921 return -ENOMEM;
2922 }
2923 return 0;
2924 }
2925
2926 int proto_register(struct proto *prot, int alloc_slab)
2927 {
2928 if (alloc_slab) {
2929 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2930 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2931 NULL);
2932
2933 if (prot->slab == NULL) {
2934 pr_crit("%s: Can't create sock SLAB cache!\n",
2935 prot->name);
2936 goto out;
2937 }
2938
2939 if (req_prot_init(prot))
2940 goto out_free_request_sock_slab;
2941
2942 if (prot->twsk_prot != NULL) {
2943 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2944
2945 if (prot->twsk_prot->twsk_slab_name == NULL)
2946 goto out_free_request_sock_slab;
2947
2948 prot->twsk_prot->twsk_slab =
2949 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2950 prot->twsk_prot->twsk_obj_size,
2951 0,
2952 prot->slab_flags,
2953 NULL);
2954 if (prot->twsk_prot->twsk_slab == NULL)
2955 goto out_free_timewait_sock_slab_name;
2956 }
2957 }
2958
2959 mutex_lock(&proto_list_mutex);
2960 list_add(&prot->node, &proto_list);
2961 assign_proto_idx(prot);
2962 mutex_unlock(&proto_list_mutex);
2963 return 0;
2964
2965 out_free_timewait_sock_slab_name:
2966 kfree(prot->twsk_prot->twsk_slab_name);
2967 out_free_request_sock_slab:
2968 req_prot_cleanup(prot->rsk_prot);
2969
2970 kmem_cache_destroy(prot->slab);
2971 prot->slab = NULL;
2972 out:
2973 return -ENOBUFS;
2974 }
2975 EXPORT_SYMBOL(proto_register);
2976
2977 void proto_unregister(struct proto *prot)
2978 {
2979 mutex_lock(&proto_list_mutex);
2980 release_proto_idx(prot);
2981 list_del(&prot->node);
2982 mutex_unlock(&proto_list_mutex);
2983
2984 kmem_cache_destroy(prot->slab);
2985 prot->slab = NULL;
2986
2987 req_prot_cleanup(prot->rsk_prot);
2988
2989 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2990 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2991 kfree(prot->twsk_prot->twsk_slab_name);
2992 prot->twsk_prot->twsk_slab = NULL;
2993 }
2994 }
2995 EXPORT_SYMBOL(proto_unregister);
2996
2997 #ifdef CONFIG_PROC_FS
2998 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2999 __acquires(proto_list_mutex)
3000 {
3001 mutex_lock(&proto_list_mutex);
3002 return seq_list_start_head(&proto_list, *pos);
3003 }
3004
3005 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3006 {
3007 return seq_list_next(v, &proto_list, pos);
3008 }
3009
3010 static void proto_seq_stop(struct seq_file *seq, void *v)
3011 __releases(proto_list_mutex)
3012 {
3013 mutex_unlock(&proto_list_mutex);
3014 }
3015
3016 static char proto_method_implemented(const void *method)
3017 {
3018 return method == NULL ? 'n' : 'y';
3019 }
3020 static long sock_prot_memory_allocated(struct proto *proto)
3021 {
3022 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3023 }
3024
3025 static char *sock_prot_memory_pressure(struct proto *proto)
3026 {
3027 return proto->memory_pressure != NULL ?
3028 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3029 }
3030
3031 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3032 {
3033
3034 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3035 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3036 proto->name,
3037 proto->obj_size,
3038 sock_prot_inuse_get(seq_file_net(seq), proto),
3039 sock_prot_memory_allocated(proto),
3040 sock_prot_memory_pressure(proto),
3041 proto->max_header,
3042 proto->slab == NULL ? "no" : "yes",
3043 module_name(proto->owner),
3044 proto_method_implemented(proto->close),
3045 proto_method_implemented(proto->connect),
3046 proto_method_implemented(proto->disconnect),
3047 proto_method_implemented(proto->accept),
3048 proto_method_implemented(proto->ioctl),
3049 proto_method_implemented(proto->init),
3050 proto_method_implemented(proto->destroy),
3051 proto_method_implemented(proto->shutdown),
3052 proto_method_implemented(proto->setsockopt),
3053 proto_method_implemented(proto->getsockopt),
3054 proto_method_implemented(proto->sendmsg),
3055 proto_method_implemented(proto->recvmsg),
3056 proto_method_implemented(proto->sendpage),
3057 proto_method_implemented(proto->bind),
3058 proto_method_implemented(proto->backlog_rcv),
3059 proto_method_implemented(proto->hash),
3060 proto_method_implemented(proto->unhash),
3061 proto_method_implemented(proto->get_port),
3062 proto_method_implemented(proto->enter_memory_pressure));
3063 }
3064
3065 static int proto_seq_show(struct seq_file *seq, void *v)
3066 {
3067 if (v == &proto_list)
3068 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3069 "protocol",
3070 "size",
3071 "sockets",
3072 "memory",
3073 "press",
3074 "maxhdr",
3075 "slab",
3076 "module",
3077 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3078 else
3079 proto_seq_printf(seq, list_entry(v, struct proto, node));
3080 return 0;
3081 }
3082
3083 static const struct seq_operations proto_seq_ops = {
3084 .start = proto_seq_start,
3085 .next = proto_seq_next,
3086 .stop = proto_seq_stop,
3087 .show = proto_seq_show,
3088 };
3089
3090 static int proto_seq_open(struct inode *inode, struct file *file)
3091 {
3092 return seq_open_net(inode, file, &proto_seq_ops,
3093 sizeof(struct seq_net_private));
3094 }
3095
3096 static const struct file_operations proto_seq_fops = {
3097 .owner = THIS_MODULE,
3098 .open = proto_seq_open,
3099 .read = seq_read,
3100 .llseek = seq_lseek,
3101 .release = seq_release_net,
3102 };
3103
3104 static __net_init int proto_init_net(struct net *net)
3105 {
3106 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3107 return -ENOMEM;
3108
3109 return 0;
3110 }
3111
3112 static __net_exit void proto_exit_net(struct net *net)
3113 {
3114 remove_proc_entry("protocols", net->proc_net);
3115 }
3116
3117
3118 static __net_initdata struct pernet_operations proto_net_ops = {
3119 .init = proto_init_net,
3120 .exit = proto_exit_net,
3121 };
3122
3123 static int __init proto_init(void)
3124 {
3125 return register_pernet_subsys(&proto_net_ops);
3126 }
3127
3128 subsys_initcall(proto_init);
3129
3130 #endif /* PROC_FS */