]> git.ipfire.org Git - thirdparty/linux.git/blob - net/ipv4/fib_trie.c
Merge tag 'x86-fpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[thirdparty/linux.git] / net / ipv4 / fib_trie.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5 * & Swedish University of Agricultural Sciences.
6 *
7 * Jens Laas <jens.laas@data.slu.se> Swedish University of
8 * Agricultural Sciences.
9 *
10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
11 *
12 * This work is based on the LPC-trie which is originally described in:
13 *
14 * An experimental study of compression methods for dynamic tries
15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
17 *
18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
20 *
21 * Code from fib_hash has been reused which includes the following header:
22 *
23 * INET An implementation of the TCP/IP protocol suite for the LINUX
24 * operating system. INET is implemented using the BSD Socket
25 * interface as the means of communication with the user level.
26 *
27 * IPv4 FIB: lookup engine and maintenance routines.
28 *
29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
30 *
31 * Substantial contributions to this work comes from:
32 *
33 * David S. Miller, <davem@davemloft.net>
34 * Stephen Hemminger <shemminger@osdl.org>
35 * Paul E. McKenney <paulmck@us.ibm.com>
36 * Patrick McHardy <kaber@trash.net>
37 */
38 #include <linux/cache.h>
39 #include <linux/uaccess.h>
40 #include <linux/bitops.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/mm.h>
44 #include <linux/string.h>
45 #include <linux/socket.h>
46 #include <linux/sockios.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/inet.h>
50 #include <linux/inetdevice.h>
51 #include <linux/netdevice.h>
52 #include <linux/if_arp.h>
53 #include <linux/proc_fs.h>
54 #include <linux/rcupdate.h>
55 #include <linux/skbuff.h>
56 #include <linux/netlink.h>
57 #include <linux/init.h>
58 #include <linux/list.h>
59 #include <linux/slab.h>
60 #include <linux/export.h>
61 #include <linux/vmalloc.h>
62 #include <linux/notifier.h>
63 #include <net/net_namespace.h>
64 #include <net/ip.h>
65 #include <net/protocol.h>
66 #include <net/route.h>
67 #include <net/tcp.h>
68 #include <net/sock.h>
69 #include <net/ip_fib.h>
70 #include <net/fib_notifier.h>
71 #include <trace/events/fib.h>
72 #include "fib_lookup.h"
73
74 static int call_fib_entry_notifier(struct notifier_block *nb,
75 enum fib_event_type event_type, u32 dst,
76 int dst_len, struct fib_alias *fa,
77 struct netlink_ext_ack *extack)
78 {
79 struct fib_entry_notifier_info info = {
80 .info.extack = extack,
81 .dst = dst,
82 .dst_len = dst_len,
83 .fi = fa->fa_info,
84 .tos = fa->fa_tos,
85 .type = fa->fa_type,
86 .tb_id = fa->tb_id,
87 };
88 return call_fib4_notifier(nb, event_type, &info.info);
89 }
90
91 static int call_fib_entry_notifiers(struct net *net,
92 enum fib_event_type event_type, u32 dst,
93 int dst_len, struct fib_alias *fa,
94 struct netlink_ext_ack *extack)
95 {
96 struct fib_entry_notifier_info info = {
97 .info.extack = extack,
98 .dst = dst,
99 .dst_len = dst_len,
100 .fi = fa->fa_info,
101 .tos = fa->fa_tos,
102 .type = fa->fa_type,
103 .tb_id = fa->tb_id,
104 };
105 return call_fib4_notifiers(net, event_type, &info.info);
106 }
107
108 #define MAX_STAT_DEPTH 32
109
110 #define KEYLENGTH (8*sizeof(t_key))
111 #define KEY_MAX ((t_key)~0)
112
113 typedef unsigned int t_key;
114
115 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
116 #define IS_TNODE(n) ((n)->bits)
117 #define IS_LEAF(n) (!(n)->bits)
118
119 struct key_vector {
120 t_key key;
121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
123 unsigned char slen;
124 union {
125 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
126 struct hlist_head leaf;
127 /* This array is valid if (pos | bits) > 0 (TNODE) */
128 struct key_vector __rcu *tnode[0];
129 };
130 };
131
132 struct tnode {
133 struct rcu_head rcu;
134 t_key empty_children; /* KEYLENGTH bits needed */
135 t_key full_children; /* KEYLENGTH bits needed */
136 struct key_vector __rcu *parent;
137 struct key_vector kv[1];
138 #define tn_bits kv[0].bits
139 };
140
141 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
142 #define LEAF_SIZE TNODE_SIZE(1)
143
144 #ifdef CONFIG_IP_FIB_TRIE_STATS
145 struct trie_use_stats {
146 unsigned int gets;
147 unsigned int backtrack;
148 unsigned int semantic_match_passed;
149 unsigned int semantic_match_miss;
150 unsigned int null_node_hit;
151 unsigned int resize_node_skipped;
152 };
153 #endif
154
155 struct trie_stat {
156 unsigned int totdepth;
157 unsigned int maxdepth;
158 unsigned int tnodes;
159 unsigned int leaves;
160 unsigned int nullpointers;
161 unsigned int prefixes;
162 unsigned int nodesizes[MAX_STAT_DEPTH];
163 };
164
165 struct trie {
166 struct key_vector kv[1];
167 #ifdef CONFIG_IP_FIB_TRIE_STATS
168 struct trie_use_stats __percpu *stats;
169 #endif
170 };
171
172 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
173 static unsigned int tnode_free_size;
174
175 /*
176 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
177 * especially useful before resizing the root node with PREEMPT_NONE configs;
178 * the value was obtained experimentally, aiming to avoid visible slowdown.
179 */
180 unsigned int sysctl_fib_sync_mem = 512 * 1024;
181 unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
182 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
183
184 static struct kmem_cache *fn_alias_kmem __ro_after_init;
185 static struct kmem_cache *trie_leaf_kmem __ro_after_init;
186
187 static inline struct tnode *tn_info(struct key_vector *kv)
188 {
189 return container_of(kv, struct tnode, kv[0]);
190 }
191
192 /* caller must hold RTNL */
193 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
194 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
195
196 /* caller must hold RCU read lock or RTNL */
197 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
198 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
199
200 /* wrapper for rcu_assign_pointer */
201 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
202 {
203 if (n)
204 rcu_assign_pointer(tn_info(n)->parent, tp);
205 }
206
207 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
208
209 /* This provides us with the number of children in this node, in the case of a
210 * leaf this will return 0 meaning none of the children are accessible.
211 */
212 static inline unsigned long child_length(const struct key_vector *tn)
213 {
214 return (1ul << tn->bits) & ~(1ul);
215 }
216
217 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
218
219 static inline unsigned long get_index(t_key key, struct key_vector *kv)
220 {
221 unsigned long index = key ^ kv->key;
222
223 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
224 return 0;
225
226 return index >> kv->pos;
227 }
228
229 /* To understand this stuff, an understanding of keys and all their bits is
230 * necessary. Every node in the trie has a key associated with it, but not
231 * all of the bits in that key are significant.
232 *
233 * Consider a node 'n' and its parent 'tp'.
234 *
235 * If n is a leaf, every bit in its key is significant. Its presence is
236 * necessitated by path compression, since during a tree traversal (when
237 * searching for a leaf - unless we are doing an insertion) we will completely
238 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
239 * a potentially successful search, that we have indeed been walking the
240 * correct key path.
241 *
242 * Note that we can never "miss" the correct key in the tree if present by
243 * following the wrong path. Path compression ensures that segments of the key
244 * that are the same for all keys with a given prefix are skipped, but the
245 * skipped part *is* identical for each node in the subtrie below the skipped
246 * bit! trie_insert() in this implementation takes care of that.
247 *
248 * if n is an internal node - a 'tnode' here, the various parts of its key
249 * have many different meanings.
250 *
251 * Example:
252 * _________________________________________________________________
253 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
254 * -----------------------------------------------------------------
255 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
256 *
257 * _________________________________________________________________
258 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
259 * -----------------------------------------------------------------
260 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
261 *
262 * tp->pos = 22
263 * tp->bits = 3
264 * n->pos = 13
265 * n->bits = 4
266 *
267 * First, let's just ignore the bits that come before the parent tp, that is
268 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
269 * point we do not use them for anything.
270 *
271 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
272 * index into the parent's child array. That is, they will be used to find
273 * 'n' among tp's children.
274 *
275 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
276 * for the node n.
277 *
278 * All the bits we have seen so far are significant to the node n. The rest
279 * of the bits are really not needed or indeed known in n->key.
280 *
281 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
282 * n's child array, and will of course be different for each child.
283 *
284 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
285 * at this point.
286 */
287
288 static const int halve_threshold = 25;
289 static const int inflate_threshold = 50;
290 static const int halve_threshold_root = 15;
291 static const int inflate_threshold_root = 30;
292
293 static void __alias_free_mem(struct rcu_head *head)
294 {
295 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
296 kmem_cache_free(fn_alias_kmem, fa);
297 }
298
299 static inline void alias_free_mem_rcu(struct fib_alias *fa)
300 {
301 call_rcu(&fa->rcu, __alias_free_mem);
302 }
303
304 #define TNODE_VMALLOC_MAX \
305 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
306
307 static void __node_free_rcu(struct rcu_head *head)
308 {
309 struct tnode *n = container_of(head, struct tnode, rcu);
310
311 if (!n->tn_bits)
312 kmem_cache_free(trie_leaf_kmem, n);
313 else
314 kvfree(n);
315 }
316
317 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
318
319 static struct tnode *tnode_alloc(int bits)
320 {
321 size_t size;
322
323 /* verify bits is within bounds */
324 if (bits > TNODE_VMALLOC_MAX)
325 return NULL;
326
327 /* determine size and verify it is non-zero and didn't overflow */
328 size = TNODE_SIZE(1ul << bits);
329
330 if (size <= PAGE_SIZE)
331 return kzalloc(size, GFP_KERNEL);
332 else
333 return vzalloc(size);
334 }
335
336 static inline void empty_child_inc(struct key_vector *n)
337 {
338 tn_info(n)->empty_children++;
339
340 if (!tn_info(n)->empty_children)
341 tn_info(n)->full_children++;
342 }
343
344 static inline void empty_child_dec(struct key_vector *n)
345 {
346 if (!tn_info(n)->empty_children)
347 tn_info(n)->full_children--;
348
349 tn_info(n)->empty_children--;
350 }
351
352 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
353 {
354 struct key_vector *l;
355 struct tnode *kv;
356
357 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
358 if (!kv)
359 return NULL;
360
361 /* initialize key vector */
362 l = kv->kv;
363 l->key = key;
364 l->pos = 0;
365 l->bits = 0;
366 l->slen = fa->fa_slen;
367
368 /* link leaf to fib alias */
369 INIT_HLIST_HEAD(&l->leaf);
370 hlist_add_head(&fa->fa_list, &l->leaf);
371
372 return l;
373 }
374
375 static struct key_vector *tnode_new(t_key key, int pos, int bits)
376 {
377 unsigned int shift = pos + bits;
378 struct key_vector *tn;
379 struct tnode *tnode;
380
381 /* verify bits and pos their msb bits clear and values are valid */
382 BUG_ON(!bits || (shift > KEYLENGTH));
383
384 tnode = tnode_alloc(bits);
385 if (!tnode)
386 return NULL;
387
388 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
389 sizeof(struct key_vector *) << bits);
390
391 if (bits == KEYLENGTH)
392 tnode->full_children = 1;
393 else
394 tnode->empty_children = 1ul << bits;
395
396 tn = tnode->kv;
397 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
398 tn->pos = pos;
399 tn->bits = bits;
400 tn->slen = pos;
401
402 return tn;
403 }
404
405 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
406 * and no bits are skipped. See discussion in dyntree paper p. 6
407 */
408 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
409 {
410 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
411 }
412
413 /* Add a child at position i overwriting the old value.
414 * Update the value of full_children and empty_children.
415 */
416 static void put_child(struct key_vector *tn, unsigned long i,
417 struct key_vector *n)
418 {
419 struct key_vector *chi = get_child(tn, i);
420 int isfull, wasfull;
421
422 BUG_ON(i >= child_length(tn));
423
424 /* update emptyChildren, overflow into fullChildren */
425 if (!n && chi)
426 empty_child_inc(tn);
427 if (n && !chi)
428 empty_child_dec(tn);
429
430 /* update fullChildren */
431 wasfull = tnode_full(tn, chi);
432 isfull = tnode_full(tn, n);
433
434 if (wasfull && !isfull)
435 tn_info(tn)->full_children--;
436 else if (!wasfull && isfull)
437 tn_info(tn)->full_children++;
438
439 if (n && (tn->slen < n->slen))
440 tn->slen = n->slen;
441
442 rcu_assign_pointer(tn->tnode[i], n);
443 }
444
445 static void update_children(struct key_vector *tn)
446 {
447 unsigned long i;
448
449 /* update all of the child parent pointers */
450 for (i = child_length(tn); i;) {
451 struct key_vector *inode = get_child(tn, --i);
452
453 if (!inode)
454 continue;
455
456 /* Either update the children of a tnode that
457 * already belongs to us or update the child
458 * to point to ourselves.
459 */
460 if (node_parent(inode) == tn)
461 update_children(inode);
462 else
463 node_set_parent(inode, tn);
464 }
465 }
466
467 static inline void put_child_root(struct key_vector *tp, t_key key,
468 struct key_vector *n)
469 {
470 if (IS_TRIE(tp))
471 rcu_assign_pointer(tp->tnode[0], n);
472 else
473 put_child(tp, get_index(key, tp), n);
474 }
475
476 static inline void tnode_free_init(struct key_vector *tn)
477 {
478 tn_info(tn)->rcu.next = NULL;
479 }
480
481 static inline void tnode_free_append(struct key_vector *tn,
482 struct key_vector *n)
483 {
484 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
485 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
486 }
487
488 static void tnode_free(struct key_vector *tn)
489 {
490 struct callback_head *head = &tn_info(tn)->rcu;
491
492 while (head) {
493 head = head->next;
494 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
495 node_free(tn);
496
497 tn = container_of(head, struct tnode, rcu)->kv;
498 }
499
500 if (tnode_free_size >= sysctl_fib_sync_mem) {
501 tnode_free_size = 0;
502 synchronize_rcu();
503 }
504 }
505
506 static struct key_vector *replace(struct trie *t,
507 struct key_vector *oldtnode,
508 struct key_vector *tn)
509 {
510 struct key_vector *tp = node_parent(oldtnode);
511 unsigned long i;
512
513 /* setup the parent pointer out of and back into this node */
514 NODE_INIT_PARENT(tn, tp);
515 put_child_root(tp, tn->key, tn);
516
517 /* update all of the child parent pointers */
518 update_children(tn);
519
520 /* all pointers should be clean so we are done */
521 tnode_free(oldtnode);
522
523 /* resize children now that oldtnode is freed */
524 for (i = child_length(tn); i;) {
525 struct key_vector *inode = get_child(tn, --i);
526
527 /* resize child node */
528 if (tnode_full(tn, inode))
529 tn = resize(t, inode);
530 }
531
532 return tp;
533 }
534
535 static struct key_vector *inflate(struct trie *t,
536 struct key_vector *oldtnode)
537 {
538 struct key_vector *tn;
539 unsigned long i;
540 t_key m;
541
542 pr_debug("In inflate\n");
543
544 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
545 if (!tn)
546 goto notnode;
547
548 /* prepare oldtnode to be freed */
549 tnode_free_init(oldtnode);
550
551 /* Assemble all of the pointers in our cluster, in this case that
552 * represents all of the pointers out of our allocated nodes that
553 * point to existing tnodes and the links between our allocated
554 * nodes.
555 */
556 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
557 struct key_vector *inode = get_child(oldtnode, --i);
558 struct key_vector *node0, *node1;
559 unsigned long j, k;
560
561 /* An empty child */
562 if (!inode)
563 continue;
564
565 /* A leaf or an internal node with skipped bits */
566 if (!tnode_full(oldtnode, inode)) {
567 put_child(tn, get_index(inode->key, tn), inode);
568 continue;
569 }
570
571 /* drop the node in the old tnode free list */
572 tnode_free_append(oldtnode, inode);
573
574 /* An internal node with two children */
575 if (inode->bits == 1) {
576 put_child(tn, 2 * i + 1, get_child(inode, 1));
577 put_child(tn, 2 * i, get_child(inode, 0));
578 continue;
579 }
580
581 /* We will replace this node 'inode' with two new
582 * ones, 'node0' and 'node1', each with half of the
583 * original children. The two new nodes will have
584 * a position one bit further down the key and this
585 * means that the "significant" part of their keys
586 * (see the discussion near the top of this file)
587 * will differ by one bit, which will be "0" in
588 * node0's key and "1" in node1's key. Since we are
589 * moving the key position by one step, the bit that
590 * we are moving away from - the bit at position
591 * (tn->pos) - is the one that will differ between
592 * node0 and node1. So... we synthesize that bit in the
593 * two new keys.
594 */
595 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
596 if (!node1)
597 goto nomem;
598 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
599
600 tnode_free_append(tn, node1);
601 if (!node0)
602 goto nomem;
603 tnode_free_append(tn, node0);
604
605 /* populate child pointers in new nodes */
606 for (k = child_length(inode), j = k / 2; j;) {
607 put_child(node1, --j, get_child(inode, --k));
608 put_child(node0, j, get_child(inode, j));
609 put_child(node1, --j, get_child(inode, --k));
610 put_child(node0, j, get_child(inode, j));
611 }
612
613 /* link new nodes to parent */
614 NODE_INIT_PARENT(node1, tn);
615 NODE_INIT_PARENT(node0, tn);
616
617 /* link parent to nodes */
618 put_child(tn, 2 * i + 1, node1);
619 put_child(tn, 2 * i, node0);
620 }
621
622 /* setup the parent pointers into and out of this node */
623 return replace(t, oldtnode, tn);
624 nomem:
625 /* all pointers should be clean so we are done */
626 tnode_free(tn);
627 notnode:
628 return NULL;
629 }
630
631 static struct key_vector *halve(struct trie *t,
632 struct key_vector *oldtnode)
633 {
634 struct key_vector *tn;
635 unsigned long i;
636
637 pr_debug("In halve\n");
638
639 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
640 if (!tn)
641 goto notnode;
642
643 /* prepare oldtnode to be freed */
644 tnode_free_init(oldtnode);
645
646 /* Assemble all of the pointers in our cluster, in this case that
647 * represents all of the pointers out of our allocated nodes that
648 * point to existing tnodes and the links between our allocated
649 * nodes.
650 */
651 for (i = child_length(oldtnode); i;) {
652 struct key_vector *node1 = get_child(oldtnode, --i);
653 struct key_vector *node0 = get_child(oldtnode, --i);
654 struct key_vector *inode;
655
656 /* At least one of the children is empty */
657 if (!node1 || !node0) {
658 put_child(tn, i / 2, node1 ? : node0);
659 continue;
660 }
661
662 /* Two nonempty children */
663 inode = tnode_new(node0->key, oldtnode->pos, 1);
664 if (!inode)
665 goto nomem;
666 tnode_free_append(tn, inode);
667
668 /* initialize pointers out of node */
669 put_child(inode, 1, node1);
670 put_child(inode, 0, node0);
671 NODE_INIT_PARENT(inode, tn);
672
673 /* link parent to node */
674 put_child(tn, i / 2, inode);
675 }
676
677 /* setup the parent pointers into and out of this node */
678 return replace(t, oldtnode, tn);
679 nomem:
680 /* all pointers should be clean so we are done */
681 tnode_free(tn);
682 notnode:
683 return NULL;
684 }
685
686 static struct key_vector *collapse(struct trie *t,
687 struct key_vector *oldtnode)
688 {
689 struct key_vector *n, *tp;
690 unsigned long i;
691
692 /* scan the tnode looking for that one child that might still exist */
693 for (n = NULL, i = child_length(oldtnode); !n && i;)
694 n = get_child(oldtnode, --i);
695
696 /* compress one level */
697 tp = node_parent(oldtnode);
698 put_child_root(tp, oldtnode->key, n);
699 node_set_parent(n, tp);
700
701 /* drop dead node */
702 node_free(oldtnode);
703
704 return tp;
705 }
706
707 static unsigned char update_suffix(struct key_vector *tn)
708 {
709 unsigned char slen = tn->pos;
710 unsigned long stride, i;
711 unsigned char slen_max;
712
713 /* only vector 0 can have a suffix length greater than or equal to
714 * tn->pos + tn->bits, the second highest node will have a suffix
715 * length at most of tn->pos + tn->bits - 1
716 */
717 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
718
719 /* search though the list of children looking for nodes that might
720 * have a suffix greater than the one we currently have. This is
721 * why we start with a stride of 2 since a stride of 1 would
722 * represent the nodes with suffix length equal to tn->pos
723 */
724 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
725 struct key_vector *n = get_child(tn, i);
726
727 if (!n || (n->slen <= slen))
728 continue;
729
730 /* update stride and slen based on new value */
731 stride <<= (n->slen - slen);
732 slen = n->slen;
733 i &= ~(stride - 1);
734
735 /* stop searching if we have hit the maximum possible value */
736 if (slen >= slen_max)
737 break;
738 }
739
740 tn->slen = slen;
741
742 return slen;
743 }
744
745 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
746 * the Helsinki University of Technology and Matti Tikkanen of Nokia
747 * Telecommunications, page 6:
748 * "A node is doubled if the ratio of non-empty children to all
749 * children in the *doubled* node is at least 'high'."
750 *
751 * 'high' in this instance is the variable 'inflate_threshold'. It
752 * is expressed as a percentage, so we multiply it with
753 * child_length() and instead of multiplying by 2 (since the
754 * child array will be doubled by inflate()) and multiplying
755 * the left-hand side by 100 (to handle the percentage thing) we
756 * multiply the left-hand side by 50.
757 *
758 * The left-hand side may look a bit weird: child_length(tn)
759 * - tn->empty_children is of course the number of non-null children
760 * in the current node. tn->full_children is the number of "full"
761 * children, that is non-null tnodes with a skip value of 0.
762 * All of those will be doubled in the resulting inflated tnode, so
763 * we just count them one extra time here.
764 *
765 * A clearer way to write this would be:
766 *
767 * to_be_doubled = tn->full_children;
768 * not_to_be_doubled = child_length(tn) - tn->empty_children -
769 * tn->full_children;
770 *
771 * new_child_length = child_length(tn) * 2;
772 *
773 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
774 * new_child_length;
775 * if (new_fill_factor >= inflate_threshold)
776 *
777 * ...and so on, tho it would mess up the while () loop.
778 *
779 * anyway,
780 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
781 * inflate_threshold
782 *
783 * avoid a division:
784 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
785 * inflate_threshold * new_child_length
786 *
787 * expand not_to_be_doubled and to_be_doubled, and shorten:
788 * 100 * (child_length(tn) - tn->empty_children +
789 * tn->full_children) >= inflate_threshold * new_child_length
790 *
791 * expand new_child_length:
792 * 100 * (child_length(tn) - tn->empty_children +
793 * tn->full_children) >=
794 * inflate_threshold * child_length(tn) * 2
795 *
796 * shorten again:
797 * 50 * (tn->full_children + child_length(tn) -
798 * tn->empty_children) >= inflate_threshold *
799 * child_length(tn)
800 *
801 */
802 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
803 {
804 unsigned long used = child_length(tn);
805 unsigned long threshold = used;
806
807 /* Keep root node larger */
808 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
809 used -= tn_info(tn)->empty_children;
810 used += tn_info(tn)->full_children;
811
812 /* if bits == KEYLENGTH then pos = 0, and will fail below */
813
814 return (used > 1) && tn->pos && ((50 * used) >= threshold);
815 }
816
817 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
818 {
819 unsigned long used = child_length(tn);
820 unsigned long threshold = used;
821
822 /* Keep root node larger */
823 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
824 used -= tn_info(tn)->empty_children;
825
826 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
827
828 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
829 }
830
831 static inline bool should_collapse(struct key_vector *tn)
832 {
833 unsigned long used = child_length(tn);
834
835 used -= tn_info(tn)->empty_children;
836
837 /* account for bits == KEYLENGTH case */
838 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
839 used -= KEY_MAX;
840
841 /* One child or none, time to drop us from the trie */
842 return used < 2;
843 }
844
845 #define MAX_WORK 10
846 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
847 {
848 #ifdef CONFIG_IP_FIB_TRIE_STATS
849 struct trie_use_stats __percpu *stats = t->stats;
850 #endif
851 struct key_vector *tp = node_parent(tn);
852 unsigned long cindex = get_index(tn->key, tp);
853 int max_work = MAX_WORK;
854
855 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
856 tn, inflate_threshold, halve_threshold);
857
858 /* track the tnode via the pointer from the parent instead of
859 * doing it ourselves. This way we can let RCU fully do its
860 * thing without us interfering
861 */
862 BUG_ON(tn != get_child(tp, cindex));
863
864 /* Double as long as the resulting node has a number of
865 * nonempty nodes that are above the threshold.
866 */
867 while (should_inflate(tp, tn) && max_work) {
868 tp = inflate(t, tn);
869 if (!tp) {
870 #ifdef CONFIG_IP_FIB_TRIE_STATS
871 this_cpu_inc(stats->resize_node_skipped);
872 #endif
873 break;
874 }
875
876 max_work--;
877 tn = get_child(tp, cindex);
878 }
879
880 /* update parent in case inflate failed */
881 tp = node_parent(tn);
882
883 /* Return if at least one inflate is run */
884 if (max_work != MAX_WORK)
885 return tp;
886
887 /* Halve as long as the number of empty children in this
888 * node is above threshold.
889 */
890 while (should_halve(tp, tn) && max_work) {
891 tp = halve(t, tn);
892 if (!tp) {
893 #ifdef CONFIG_IP_FIB_TRIE_STATS
894 this_cpu_inc(stats->resize_node_skipped);
895 #endif
896 break;
897 }
898
899 max_work--;
900 tn = get_child(tp, cindex);
901 }
902
903 /* Only one child remains */
904 if (should_collapse(tn))
905 return collapse(t, tn);
906
907 /* update parent in case halve failed */
908 return node_parent(tn);
909 }
910
911 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
912 {
913 unsigned char node_slen = tn->slen;
914
915 while ((node_slen > tn->pos) && (node_slen > slen)) {
916 slen = update_suffix(tn);
917 if (node_slen == slen)
918 break;
919
920 tn = node_parent(tn);
921 node_slen = tn->slen;
922 }
923 }
924
925 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
926 {
927 while (tn->slen < slen) {
928 tn->slen = slen;
929 tn = node_parent(tn);
930 }
931 }
932
933 /* rcu_read_lock needs to be hold by caller from readside */
934 static struct key_vector *fib_find_node(struct trie *t,
935 struct key_vector **tp, u32 key)
936 {
937 struct key_vector *pn, *n = t->kv;
938 unsigned long index = 0;
939
940 do {
941 pn = n;
942 n = get_child_rcu(n, index);
943
944 if (!n)
945 break;
946
947 index = get_cindex(key, n);
948
949 /* This bit of code is a bit tricky but it combines multiple
950 * checks into a single check. The prefix consists of the
951 * prefix plus zeros for the bits in the cindex. The index
952 * is the difference between the key and this value. From
953 * this we can actually derive several pieces of data.
954 * if (index >= (1ul << bits))
955 * we have a mismatch in skip bits and failed
956 * else
957 * we know the value is cindex
958 *
959 * This check is safe even if bits == KEYLENGTH due to the
960 * fact that we can only allocate a node with 32 bits if a
961 * long is greater than 32 bits.
962 */
963 if (index >= (1ul << n->bits)) {
964 n = NULL;
965 break;
966 }
967
968 /* keep searching until we find a perfect match leaf or NULL */
969 } while (IS_TNODE(n));
970
971 *tp = pn;
972
973 return n;
974 }
975
976 /* Return the first fib alias matching TOS with
977 * priority less than or equal to PRIO.
978 * If 'find_first' is set, return the first matching
979 * fib alias, regardless of TOS and priority.
980 */
981 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
982 u8 tos, u32 prio, u32 tb_id,
983 bool find_first)
984 {
985 struct fib_alias *fa;
986
987 if (!fah)
988 return NULL;
989
990 hlist_for_each_entry(fa, fah, fa_list) {
991 if (fa->fa_slen < slen)
992 continue;
993 if (fa->fa_slen != slen)
994 break;
995 if (fa->tb_id > tb_id)
996 continue;
997 if (fa->tb_id != tb_id)
998 break;
999 if (find_first)
1000 return fa;
1001 if (fa->fa_tos > tos)
1002 continue;
1003 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1004 return fa;
1005 }
1006
1007 return NULL;
1008 }
1009
1010 static struct fib_alias *
1011 fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1012 {
1013 u8 slen = KEYLENGTH - fri->dst_len;
1014 struct key_vector *l, *tp;
1015 struct fib_table *tb;
1016 struct fib_alias *fa;
1017 struct trie *t;
1018
1019 tb = fib_get_table(net, fri->tb_id);
1020 if (!tb)
1021 return NULL;
1022
1023 t = (struct trie *)tb->tb_data;
1024 l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1025 if (!l)
1026 return NULL;
1027
1028 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1029 if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1030 fa->fa_tos == fri->tos && fa->fa_info == fri->fi &&
1031 fa->fa_type == fri->type)
1032 return fa;
1033 }
1034
1035 return NULL;
1036 }
1037
1038 void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1039 {
1040 struct fib_alias *fa_match;
1041
1042 rcu_read_lock();
1043
1044 fa_match = fib_find_matching_alias(net, fri);
1045 if (!fa_match)
1046 goto out;
1047
1048 fa_match->offload = fri->offload;
1049 fa_match->trap = fri->trap;
1050
1051 out:
1052 rcu_read_unlock();
1053 }
1054 EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1055
1056 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1057 {
1058 while (!IS_TRIE(tn))
1059 tn = resize(t, tn);
1060 }
1061
1062 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1063 struct fib_alias *new, t_key key)
1064 {
1065 struct key_vector *n, *l;
1066
1067 l = leaf_new(key, new);
1068 if (!l)
1069 goto noleaf;
1070
1071 /* retrieve child from parent node */
1072 n = get_child(tp, get_index(key, tp));
1073
1074 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1075 *
1076 * Add a new tnode here
1077 * first tnode need some special handling
1078 * leaves us in position for handling as case 3
1079 */
1080 if (n) {
1081 struct key_vector *tn;
1082
1083 tn = tnode_new(key, __fls(key ^ n->key), 1);
1084 if (!tn)
1085 goto notnode;
1086
1087 /* initialize routes out of node */
1088 NODE_INIT_PARENT(tn, tp);
1089 put_child(tn, get_index(key, tn) ^ 1, n);
1090
1091 /* start adding routes into the node */
1092 put_child_root(tp, key, tn);
1093 node_set_parent(n, tn);
1094
1095 /* parent now has a NULL spot where the leaf can go */
1096 tp = tn;
1097 }
1098
1099 /* Case 3: n is NULL, and will just insert a new leaf */
1100 node_push_suffix(tp, new->fa_slen);
1101 NODE_INIT_PARENT(l, tp);
1102 put_child_root(tp, key, l);
1103 trie_rebalance(t, tp);
1104
1105 return 0;
1106 notnode:
1107 node_free(l);
1108 noleaf:
1109 return -ENOMEM;
1110 }
1111
1112 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1113 struct key_vector *l, struct fib_alias *new,
1114 struct fib_alias *fa, t_key key)
1115 {
1116 if (!l)
1117 return fib_insert_node(t, tp, new, key);
1118
1119 if (fa) {
1120 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1121 } else {
1122 struct fib_alias *last;
1123
1124 hlist_for_each_entry(last, &l->leaf, fa_list) {
1125 if (new->fa_slen < last->fa_slen)
1126 break;
1127 if ((new->fa_slen == last->fa_slen) &&
1128 (new->tb_id > last->tb_id))
1129 break;
1130 fa = last;
1131 }
1132
1133 if (fa)
1134 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1135 else
1136 hlist_add_head_rcu(&new->fa_list, &l->leaf);
1137 }
1138
1139 /* if we added to the tail node then we need to update slen */
1140 if (l->slen < new->fa_slen) {
1141 l->slen = new->fa_slen;
1142 node_push_suffix(tp, new->fa_slen);
1143 }
1144
1145 return 0;
1146 }
1147
1148 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1149 {
1150 if (plen > KEYLENGTH) {
1151 NL_SET_ERR_MSG(extack, "Invalid prefix length");
1152 return false;
1153 }
1154
1155 if ((plen < KEYLENGTH) && (key << plen)) {
1156 NL_SET_ERR_MSG(extack,
1157 "Invalid prefix for given prefix length");
1158 return false;
1159 }
1160
1161 return true;
1162 }
1163
1164 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1165 struct key_vector *l, struct fib_alias *old);
1166
1167 /* Caller must hold RTNL. */
1168 int fib_table_insert(struct net *net, struct fib_table *tb,
1169 struct fib_config *cfg, struct netlink_ext_ack *extack)
1170 {
1171 struct trie *t = (struct trie *)tb->tb_data;
1172 struct fib_alias *fa, *new_fa;
1173 struct key_vector *l, *tp;
1174 u16 nlflags = NLM_F_EXCL;
1175 struct fib_info *fi;
1176 u8 plen = cfg->fc_dst_len;
1177 u8 slen = KEYLENGTH - plen;
1178 u8 tos = cfg->fc_tos;
1179 u32 key;
1180 int err;
1181
1182 key = ntohl(cfg->fc_dst);
1183
1184 if (!fib_valid_key_len(key, plen, extack))
1185 return -EINVAL;
1186
1187 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1188
1189 fi = fib_create_info(cfg, extack);
1190 if (IS_ERR(fi)) {
1191 err = PTR_ERR(fi);
1192 goto err;
1193 }
1194
1195 l = fib_find_node(t, &tp, key);
1196 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1197 tb->tb_id, false) : NULL;
1198
1199 /* Now fa, if non-NULL, points to the first fib alias
1200 * with the same keys [prefix,tos,priority], if such key already
1201 * exists or to the node before which we will insert new one.
1202 *
1203 * If fa is NULL, we will need to allocate a new one and
1204 * insert to the tail of the section matching the suffix length
1205 * of the new alias.
1206 */
1207
1208 if (fa && fa->fa_tos == tos &&
1209 fa->fa_info->fib_priority == fi->fib_priority) {
1210 struct fib_alias *fa_first, *fa_match;
1211
1212 err = -EEXIST;
1213 if (cfg->fc_nlflags & NLM_F_EXCL)
1214 goto out;
1215
1216 nlflags &= ~NLM_F_EXCL;
1217
1218 /* We have 2 goals:
1219 * 1. Find exact match for type, scope, fib_info to avoid
1220 * duplicate routes
1221 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1222 */
1223 fa_match = NULL;
1224 fa_first = fa;
1225 hlist_for_each_entry_from(fa, fa_list) {
1226 if ((fa->fa_slen != slen) ||
1227 (fa->tb_id != tb->tb_id) ||
1228 (fa->fa_tos != tos))
1229 break;
1230 if (fa->fa_info->fib_priority != fi->fib_priority)
1231 break;
1232 if (fa->fa_type == cfg->fc_type &&
1233 fa->fa_info == fi) {
1234 fa_match = fa;
1235 break;
1236 }
1237 }
1238
1239 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1240 struct fib_info *fi_drop;
1241 u8 state;
1242
1243 nlflags |= NLM_F_REPLACE;
1244 fa = fa_first;
1245 if (fa_match) {
1246 if (fa == fa_match)
1247 err = 0;
1248 goto out;
1249 }
1250 err = -ENOBUFS;
1251 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1252 if (!new_fa)
1253 goto out;
1254
1255 fi_drop = fa->fa_info;
1256 new_fa->fa_tos = fa->fa_tos;
1257 new_fa->fa_info = fi;
1258 new_fa->fa_type = cfg->fc_type;
1259 state = fa->fa_state;
1260 new_fa->fa_state = state & ~FA_S_ACCESSED;
1261 new_fa->fa_slen = fa->fa_slen;
1262 new_fa->tb_id = tb->tb_id;
1263 new_fa->fa_default = -1;
1264 new_fa->offload = 0;
1265 new_fa->trap = 0;
1266
1267 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1268
1269 if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1270 tb->tb_id, true) == new_fa) {
1271 enum fib_event_type fib_event;
1272
1273 fib_event = FIB_EVENT_ENTRY_REPLACE;
1274 err = call_fib_entry_notifiers(net, fib_event,
1275 key, plen,
1276 new_fa, extack);
1277 if (err) {
1278 hlist_replace_rcu(&new_fa->fa_list,
1279 &fa->fa_list);
1280 goto out_free_new_fa;
1281 }
1282 }
1283
1284 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1285 tb->tb_id, &cfg->fc_nlinfo, nlflags);
1286
1287 alias_free_mem_rcu(fa);
1288
1289 fib_release_info(fi_drop);
1290 if (state & FA_S_ACCESSED)
1291 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1292
1293 goto succeeded;
1294 }
1295 /* Error if we find a perfect match which
1296 * uses the same scope, type, and nexthop
1297 * information.
1298 */
1299 if (fa_match)
1300 goto out;
1301
1302 if (cfg->fc_nlflags & NLM_F_APPEND)
1303 nlflags |= NLM_F_APPEND;
1304 else
1305 fa = fa_first;
1306 }
1307 err = -ENOENT;
1308 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1309 goto out;
1310
1311 nlflags |= NLM_F_CREATE;
1312 err = -ENOBUFS;
1313 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1314 if (!new_fa)
1315 goto out;
1316
1317 new_fa->fa_info = fi;
1318 new_fa->fa_tos = tos;
1319 new_fa->fa_type = cfg->fc_type;
1320 new_fa->fa_state = 0;
1321 new_fa->fa_slen = slen;
1322 new_fa->tb_id = tb->tb_id;
1323 new_fa->fa_default = -1;
1324 new_fa->offload = 0;
1325 new_fa->trap = 0;
1326
1327 /* Insert new entry to the list. */
1328 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1329 if (err)
1330 goto out_free_new_fa;
1331
1332 /* The alias was already inserted, so the node must exist. */
1333 l = l ? l : fib_find_node(t, &tp, key);
1334 if (WARN_ON_ONCE(!l))
1335 goto out_free_new_fa;
1336
1337 if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1338 new_fa) {
1339 enum fib_event_type fib_event;
1340
1341 fib_event = FIB_EVENT_ENTRY_REPLACE;
1342 err = call_fib_entry_notifiers(net, fib_event, key, plen,
1343 new_fa, extack);
1344 if (err)
1345 goto out_remove_new_fa;
1346 }
1347
1348 if (!plen)
1349 tb->tb_num_default++;
1350
1351 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1352 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1353 &cfg->fc_nlinfo, nlflags);
1354 succeeded:
1355 return 0;
1356
1357 out_remove_new_fa:
1358 fib_remove_alias(t, tp, l, new_fa);
1359 out_free_new_fa:
1360 kmem_cache_free(fn_alias_kmem, new_fa);
1361 out:
1362 fib_release_info(fi);
1363 err:
1364 return err;
1365 }
1366
1367 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1368 {
1369 t_key prefix = n->key;
1370
1371 return (key ^ prefix) & (prefix | -prefix);
1372 }
1373
1374 bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1375 const struct flowi4 *flp)
1376 {
1377 if (nhc->nhc_flags & RTNH_F_DEAD)
1378 return false;
1379
1380 if (ip_ignore_linkdown(nhc->nhc_dev) &&
1381 nhc->nhc_flags & RTNH_F_LINKDOWN &&
1382 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1383 return false;
1384
1385 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1386 if (flp->flowi4_oif &&
1387 flp->flowi4_oif != nhc->nhc_oif)
1388 return false;
1389 }
1390
1391 return true;
1392 }
1393
1394 /* should be called with rcu_read_lock */
1395 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1396 struct fib_result *res, int fib_flags)
1397 {
1398 struct trie *t = (struct trie *) tb->tb_data;
1399 #ifdef CONFIG_IP_FIB_TRIE_STATS
1400 struct trie_use_stats __percpu *stats = t->stats;
1401 #endif
1402 const t_key key = ntohl(flp->daddr);
1403 struct key_vector *n, *pn;
1404 struct fib_alias *fa;
1405 unsigned long index;
1406 t_key cindex;
1407
1408 pn = t->kv;
1409 cindex = 0;
1410
1411 n = get_child_rcu(pn, cindex);
1412 if (!n) {
1413 trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1414 return -EAGAIN;
1415 }
1416
1417 #ifdef CONFIG_IP_FIB_TRIE_STATS
1418 this_cpu_inc(stats->gets);
1419 #endif
1420
1421 /* Step 1: Travel to the longest prefix match in the trie */
1422 for (;;) {
1423 index = get_cindex(key, n);
1424
1425 /* This bit of code is a bit tricky but it combines multiple
1426 * checks into a single check. The prefix consists of the
1427 * prefix plus zeros for the "bits" in the prefix. The index
1428 * is the difference between the key and this value. From
1429 * this we can actually derive several pieces of data.
1430 * if (index >= (1ul << bits))
1431 * we have a mismatch in skip bits and failed
1432 * else
1433 * we know the value is cindex
1434 *
1435 * This check is safe even if bits == KEYLENGTH due to the
1436 * fact that we can only allocate a node with 32 bits if a
1437 * long is greater than 32 bits.
1438 */
1439 if (index >= (1ul << n->bits))
1440 break;
1441
1442 /* we have found a leaf. Prefixes have already been compared */
1443 if (IS_LEAF(n))
1444 goto found;
1445
1446 /* only record pn and cindex if we are going to be chopping
1447 * bits later. Otherwise we are just wasting cycles.
1448 */
1449 if (n->slen > n->pos) {
1450 pn = n;
1451 cindex = index;
1452 }
1453
1454 n = get_child_rcu(n, index);
1455 if (unlikely(!n))
1456 goto backtrace;
1457 }
1458
1459 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1460 for (;;) {
1461 /* record the pointer where our next node pointer is stored */
1462 struct key_vector __rcu **cptr = n->tnode;
1463
1464 /* This test verifies that none of the bits that differ
1465 * between the key and the prefix exist in the region of
1466 * the lsb and higher in the prefix.
1467 */
1468 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1469 goto backtrace;
1470
1471 /* exit out and process leaf */
1472 if (unlikely(IS_LEAF(n)))
1473 break;
1474
1475 /* Don't bother recording parent info. Since we are in
1476 * prefix match mode we will have to come back to wherever
1477 * we started this traversal anyway
1478 */
1479
1480 while ((n = rcu_dereference(*cptr)) == NULL) {
1481 backtrace:
1482 #ifdef CONFIG_IP_FIB_TRIE_STATS
1483 if (!n)
1484 this_cpu_inc(stats->null_node_hit);
1485 #endif
1486 /* If we are at cindex 0 there are no more bits for
1487 * us to strip at this level so we must ascend back
1488 * up one level to see if there are any more bits to
1489 * be stripped there.
1490 */
1491 while (!cindex) {
1492 t_key pkey = pn->key;
1493
1494 /* If we don't have a parent then there is
1495 * nothing for us to do as we do not have any
1496 * further nodes to parse.
1497 */
1498 if (IS_TRIE(pn)) {
1499 trace_fib_table_lookup(tb->tb_id, flp,
1500 NULL, -EAGAIN);
1501 return -EAGAIN;
1502 }
1503 #ifdef CONFIG_IP_FIB_TRIE_STATS
1504 this_cpu_inc(stats->backtrack);
1505 #endif
1506 /* Get Child's index */
1507 pn = node_parent_rcu(pn);
1508 cindex = get_index(pkey, pn);
1509 }
1510
1511 /* strip the least significant bit from the cindex */
1512 cindex &= cindex - 1;
1513
1514 /* grab pointer for next child node */
1515 cptr = &pn->tnode[cindex];
1516 }
1517 }
1518
1519 found:
1520 /* this line carries forward the xor from earlier in the function */
1521 index = key ^ n->key;
1522
1523 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1524 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1525 struct fib_info *fi = fa->fa_info;
1526 struct fib_nh_common *nhc;
1527 int nhsel, err;
1528
1529 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1530 if (index >= (1ul << fa->fa_slen))
1531 continue;
1532 }
1533 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1534 continue;
1535 if (fi->fib_dead)
1536 continue;
1537 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1538 continue;
1539 fib_alias_accessed(fa);
1540 err = fib_props[fa->fa_type].error;
1541 if (unlikely(err < 0)) {
1542 out_reject:
1543 #ifdef CONFIG_IP_FIB_TRIE_STATS
1544 this_cpu_inc(stats->semantic_match_passed);
1545 #endif
1546 trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1547 return err;
1548 }
1549 if (fi->fib_flags & RTNH_F_DEAD)
1550 continue;
1551
1552 if (unlikely(fi->nh)) {
1553 if (nexthop_is_blackhole(fi->nh)) {
1554 err = fib_props[RTN_BLACKHOLE].error;
1555 goto out_reject;
1556 }
1557
1558 nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1559 &nhsel);
1560 if (nhc)
1561 goto set_result;
1562 goto miss;
1563 }
1564
1565 for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1566 nhc = fib_info_nhc(fi, nhsel);
1567
1568 if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1569 continue;
1570 set_result:
1571 if (!(fib_flags & FIB_LOOKUP_NOREF))
1572 refcount_inc(&fi->fib_clntref);
1573
1574 res->prefix = htonl(n->key);
1575 res->prefixlen = KEYLENGTH - fa->fa_slen;
1576 res->nh_sel = nhsel;
1577 res->nhc = nhc;
1578 res->type = fa->fa_type;
1579 res->scope = fi->fib_scope;
1580 res->fi = fi;
1581 res->table = tb;
1582 res->fa_head = &n->leaf;
1583 #ifdef CONFIG_IP_FIB_TRIE_STATS
1584 this_cpu_inc(stats->semantic_match_passed);
1585 #endif
1586 trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1587
1588 return err;
1589 }
1590 }
1591 miss:
1592 #ifdef CONFIG_IP_FIB_TRIE_STATS
1593 this_cpu_inc(stats->semantic_match_miss);
1594 #endif
1595 goto backtrace;
1596 }
1597 EXPORT_SYMBOL_GPL(fib_table_lookup);
1598
1599 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1600 struct key_vector *l, struct fib_alias *old)
1601 {
1602 /* record the location of the previous list_info entry */
1603 struct hlist_node **pprev = old->fa_list.pprev;
1604 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1605
1606 /* remove the fib_alias from the list */
1607 hlist_del_rcu(&old->fa_list);
1608
1609 /* if we emptied the list this leaf will be freed and we can sort
1610 * out parent suffix lengths as a part of trie_rebalance
1611 */
1612 if (hlist_empty(&l->leaf)) {
1613 if (tp->slen == l->slen)
1614 node_pull_suffix(tp, tp->pos);
1615 put_child_root(tp, l->key, NULL);
1616 node_free(l);
1617 trie_rebalance(t, tp);
1618 return;
1619 }
1620
1621 /* only access fa if it is pointing at the last valid hlist_node */
1622 if (*pprev)
1623 return;
1624
1625 /* update the trie with the latest suffix length */
1626 l->slen = fa->fa_slen;
1627 node_pull_suffix(tp, fa->fa_slen);
1628 }
1629
1630 static void fib_notify_alias_delete(struct net *net, u32 key,
1631 struct hlist_head *fah,
1632 struct fib_alias *fa_to_delete,
1633 struct netlink_ext_ack *extack)
1634 {
1635 struct fib_alias *fa_next, *fa_to_notify;
1636 u32 tb_id = fa_to_delete->tb_id;
1637 u8 slen = fa_to_delete->fa_slen;
1638 enum fib_event_type fib_event;
1639
1640 /* Do not notify if we do not care about the route. */
1641 if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1642 return;
1643
1644 /* Determine if the route should be replaced by the next route in the
1645 * list.
1646 */
1647 fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1648 struct fib_alias, fa_list);
1649 if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1650 fib_event = FIB_EVENT_ENTRY_REPLACE;
1651 fa_to_notify = fa_next;
1652 } else {
1653 fib_event = FIB_EVENT_ENTRY_DEL;
1654 fa_to_notify = fa_to_delete;
1655 }
1656 call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1657 fa_to_notify, extack);
1658 }
1659
1660 /* Caller must hold RTNL. */
1661 int fib_table_delete(struct net *net, struct fib_table *tb,
1662 struct fib_config *cfg, struct netlink_ext_ack *extack)
1663 {
1664 struct trie *t = (struct trie *) tb->tb_data;
1665 struct fib_alias *fa, *fa_to_delete;
1666 struct key_vector *l, *tp;
1667 u8 plen = cfg->fc_dst_len;
1668 u8 slen = KEYLENGTH - plen;
1669 u8 tos = cfg->fc_tos;
1670 u32 key;
1671
1672 key = ntohl(cfg->fc_dst);
1673
1674 if (!fib_valid_key_len(key, plen, extack))
1675 return -EINVAL;
1676
1677 l = fib_find_node(t, &tp, key);
1678 if (!l)
1679 return -ESRCH;
1680
1681 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id, false);
1682 if (!fa)
1683 return -ESRCH;
1684
1685 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1686
1687 fa_to_delete = NULL;
1688 hlist_for_each_entry_from(fa, fa_list) {
1689 struct fib_info *fi = fa->fa_info;
1690
1691 if ((fa->fa_slen != slen) ||
1692 (fa->tb_id != tb->tb_id) ||
1693 (fa->fa_tos != tos))
1694 break;
1695
1696 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1697 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1698 fa->fa_info->fib_scope == cfg->fc_scope) &&
1699 (!cfg->fc_prefsrc ||
1700 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1701 (!cfg->fc_protocol ||
1702 fi->fib_protocol == cfg->fc_protocol) &&
1703 fib_nh_match(net, cfg, fi, extack) == 0 &&
1704 fib_metrics_match(cfg, fi)) {
1705 fa_to_delete = fa;
1706 break;
1707 }
1708 }
1709
1710 if (!fa_to_delete)
1711 return -ESRCH;
1712
1713 fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1714 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1715 &cfg->fc_nlinfo, 0);
1716
1717 if (!plen)
1718 tb->tb_num_default--;
1719
1720 fib_remove_alias(t, tp, l, fa_to_delete);
1721
1722 if (fa_to_delete->fa_state & FA_S_ACCESSED)
1723 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1724
1725 fib_release_info(fa_to_delete->fa_info);
1726 alias_free_mem_rcu(fa_to_delete);
1727 return 0;
1728 }
1729
1730 /* Scan for the next leaf starting at the provided key value */
1731 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1732 {
1733 struct key_vector *pn, *n = *tn;
1734 unsigned long cindex;
1735
1736 /* this loop is meant to try and find the key in the trie */
1737 do {
1738 /* record parent and next child index */
1739 pn = n;
1740 cindex = (key > pn->key) ? get_index(key, pn) : 0;
1741
1742 if (cindex >> pn->bits)
1743 break;
1744
1745 /* descend into the next child */
1746 n = get_child_rcu(pn, cindex++);
1747 if (!n)
1748 break;
1749
1750 /* guarantee forward progress on the keys */
1751 if (IS_LEAF(n) && (n->key >= key))
1752 goto found;
1753 } while (IS_TNODE(n));
1754
1755 /* this loop will search for the next leaf with a greater key */
1756 while (!IS_TRIE(pn)) {
1757 /* if we exhausted the parent node we will need to climb */
1758 if (cindex >= (1ul << pn->bits)) {
1759 t_key pkey = pn->key;
1760
1761 pn = node_parent_rcu(pn);
1762 cindex = get_index(pkey, pn) + 1;
1763 continue;
1764 }
1765
1766 /* grab the next available node */
1767 n = get_child_rcu(pn, cindex++);
1768 if (!n)
1769 continue;
1770
1771 /* no need to compare keys since we bumped the index */
1772 if (IS_LEAF(n))
1773 goto found;
1774
1775 /* Rescan start scanning in new node */
1776 pn = n;
1777 cindex = 0;
1778 }
1779
1780 *tn = pn;
1781 return NULL; /* Root of trie */
1782 found:
1783 /* if we are at the limit for keys just return NULL for the tnode */
1784 *tn = pn;
1785 return n;
1786 }
1787
1788 static void fib_trie_free(struct fib_table *tb)
1789 {
1790 struct trie *t = (struct trie *)tb->tb_data;
1791 struct key_vector *pn = t->kv;
1792 unsigned long cindex = 1;
1793 struct hlist_node *tmp;
1794 struct fib_alias *fa;
1795
1796 /* walk trie in reverse order and free everything */
1797 for (;;) {
1798 struct key_vector *n;
1799
1800 if (!(cindex--)) {
1801 t_key pkey = pn->key;
1802
1803 if (IS_TRIE(pn))
1804 break;
1805
1806 n = pn;
1807 pn = node_parent(pn);
1808
1809 /* drop emptied tnode */
1810 put_child_root(pn, n->key, NULL);
1811 node_free(n);
1812
1813 cindex = get_index(pkey, pn);
1814
1815 continue;
1816 }
1817
1818 /* grab the next available node */
1819 n = get_child(pn, cindex);
1820 if (!n)
1821 continue;
1822
1823 if (IS_TNODE(n)) {
1824 /* record pn and cindex for leaf walking */
1825 pn = n;
1826 cindex = 1ul << n->bits;
1827
1828 continue;
1829 }
1830
1831 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1832 hlist_del_rcu(&fa->fa_list);
1833 alias_free_mem_rcu(fa);
1834 }
1835
1836 put_child_root(pn, n->key, NULL);
1837 node_free(n);
1838 }
1839
1840 #ifdef CONFIG_IP_FIB_TRIE_STATS
1841 free_percpu(t->stats);
1842 #endif
1843 kfree(tb);
1844 }
1845
1846 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1847 {
1848 struct trie *ot = (struct trie *)oldtb->tb_data;
1849 struct key_vector *l, *tp = ot->kv;
1850 struct fib_table *local_tb;
1851 struct fib_alias *fa;
1852 struct trie *lt;
1853 t_key key = 0;
1854
1855 if (oldtb->tb_data == oldtb->__data)
1856 return oldtb;
1857
1858 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1859 if (!local_tb)
1860 return NULL;
1861
1862 lt = (struct trie *)local_tb->tb_data;
1863
1864 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1865 struct key_vector *local_l = NULL, *local_tp;
1866
1867 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1868 struct fib_alias *new_fa;
1869
1870 if (local_tb->tb_id != fa->tb_id)
1871 continue;
1872
1873 /* clone fa for new local table */
1874 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1875 if (!new_fa)
1876 goto out;
1877
1878 memcpy(new_fa, fa, sizeof(*fa));
1879
1880 /* insert clone into table */
1881 if (!local_l)
1882 local_l = fib_find_node(lt, &local_tp, l->key);
1883
1884 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1885 NULL, l->key)) {
1886 kmem_cache_free(fn_alias_kmem, new_fa);
1887 goto out;
1888 }
1889 }
1890
1891 /* stop loop if key wrapped back to 0 */
1892 key = l->key + 1;
1893 if (key < l->key)
1894 break;
1895 }
1896
1897 return local_tb;
1898 out:
1899 fib_trie_free(local_tb);
1900
1901 return NULL;
1902 }
1903
1904 /* Caller must hold RTNL */
1905 void fib_table_flush_external(struct fib_table *tb)
1906 {
1907 struct trie *t = (struct trie *)tb->tb_data;
1908 struct key_vector *pn = t->kv;
1909 unsigned long cindex = 1;
1910 struct hlist_node *tmp;
1911 struct fib_alias *fa;
1912
1913 /* walk trie in reverse order */
1914 for (;;) {
1915 unsigned char slen = 0;
1916 struct key_vector *n;
1917
1918 if (!(cindex--)) {
1919 t_key pkey = pn->key;
1920
1921 /* cannot resize the trie vector */
1922 if (IS_TRIE(pn))
1923 break;
1924
1925 /* update the suffix to address pulled leaves */
1926 if (pn->slen > pn->pos)
1927 update_suffix(pn);
1928
1929 /* resize completed node */
1930 pn = resize(t, pn);
1931 cindex = get_index(pkey, pn);
1932
1933 continue;
1934 }
1935
1936 /* grab the next available node */
1937 n = get_child(pn, cindex);
1938 if (!n)
1939 continue;
1940
1941 if (IS_TNODE(n)) {
1942 /* record pn and cindex for leaf walking */
1943 pn = n;
1944 cindex = 1ul << n->bits;
1945
1946 continue;
1947 }
1948
1949 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1950 /* if alias was cloned to local then we just
1951 * need to remove the local copy from main
1952 */
1953 if (tb->tb_id != fa->tb_id) {
1954 hlist_del_rcu(&fa->fa_list);
1955 alias_free_mem_rcu(fa);
1956 continue;
1957 }
1958
1959 /* record local slen */
1960 slen = fa->fa_slen;
1961 }
1962
1963 /* update leaf slen */
1964 n->slen = slen;
1965
1966 if (hlist_empty(&n->leaf)) {
1967 put_child_root(pn, n->key, NULL);
1968 node_free(n);
1969 }
1970 }
1971 }
1972
1973 /* Caller must hold RTNL. */
1974 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
1975 {
1976 struct trie *t = (struct trie *)tb->tb_data;
1977 struct key_vector *pn = t->kv;
1978 unsigned long cindex = 1;
1979 struct hlist_node *tmp;
1980 struct fib_alias *fa;
1981 int found = 0;
1982
1983 /* walk trie in reverse order */
1984 for (;;) {
1985 unsigned char slen = 0;
1986 struct key_vector *n;
1987
1988 if (!(cindex--)) {
1989 t_key pkey = pn->key;
1990
1991 /* cannot resize the trie vector */
1992 if (IS_TRIE(pn))
1993 break;
1994
1995 /* update the suffix to address pulled leaves */
1996 if (pn->slen > pn->pos)
1997 update_suffix(pn);
1998
1999 /* resize completed node */
2000 pn = resize(t, pn);
2001 cindex = get_index(pkey, pn);
2002
2003 continue;
2004 }
2005
2006 /* grab the next available node */
2007 n = get_child(pn, cindex);
2008 if (!n)
2009 continue;
2010
2011 if (IS_TNODE(n)) {
2012 /* record pn and cindex for leaf walking */
2013 pn = n;
2014 cindex = 1ul << n->bits;
2015
2016 continue;
2017 }
2018
2019 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2020 struct fib_info *fi = fa->fa_info;
2021
2022 if (!fi || tb->tb_id != fa->tb_id ||
2023 (!(fi->fib_flags & RTNH_F_DEAD) &&
2024 !fib_props[fa->fa_type].error)) {
2025 slen = fa->fa_slen;
2026 continue;
2027 }
2028
2029 /* Do not flush error routes if network namespace is
2030 * not being dismantled
2031 */
2032 if (!flush_all && fib_props[fa->fa_type].error) {
2033 slen = fa->fa_slen;
2034 continue;
2035 }
2036
2037 fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2038 NULL);
2039 hlist_del_rcu(&fa->fa_list);
2040 fib_release_info(fa->fa_info);
2041 alias_free_mem_rcu(fa);
2042 found++;
2043 }
2044
2045 /* update leaf slen */
2046 n->slen = slen;
2047
2048 if (hlist_empty(&n->leaf)) {
2049 put_child_root(pn, n->key, NULL);
2050 node_free(n);
2051 }
2052 }
2053
2054 pr_debug("trie_flush found=%d\n", found);
2055 return found;
2056 }
2057
2058 /* derived from fib_trie_free */
2059 static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2060 struct nl_info *info)
2061 {
2062 struct trie *t = (struct trie *)tb->tb_data;
2063 struct key_vector *pn = t->kv;
2064 unsigned long cindex = 1;
2065 struct fib_alias *fa;
2066
2067 for (;;) {
2068 struct key_vector *n;
2069
2070 if (!(cindex--)) {
2071 t_key pkey = pn->key;
2072
2073 if (IS_TRIE(pn))
2074 break;
2075
2076 pn = node_parent(pn);
2077 cindex = get_index(pkey, pn);
2078 continue;
2079 }
2080
2081 /* grab the next available node */
2082 n = get_child(pn, cindex);
2083 if (!n)
2084 continue;
2085
2086 if (IS_TNODE(n)) {
2087 /* record pn and cindex for leaf walking */
2088 pn = n;
2089 cindex = 1ul << n->bits;
2090
2091 continue;
2092 }
2093
2094 hlist_for_each_entry(fa, &n->leaf, fa_list) {
2095 struct fib_info *fi = fa->fa_info;
2096
2097 if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2098 continue;
2099
2100 rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2101 KEYLENGTH - fa->fa_slen, tb->tb_id,
2102 info, NLM_F_REPLACE);
2103
2104 /* call_fib_entry_notifiers will be removed when
2105 * in-kernel notifier is implemented and supported
2106 * for nexthop objects
2107 */
2108 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
2109 n->key,
2110 KEYLENGTH - fa->fa_slen, fa,
2111 NULL);
2112 }
2113 }
2114 }
2115
2116 void fib_info_notify_update(struct net *net, struct nl_info *info)
2117 {
2118 unsigned int h;
2119
2120 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2121 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2122 struct fib_table *tb;
2123
2124 hlist_for_each_entry_rcu(tb, head, tb_hlist)
2125 __fib_info_notify_update(net, tb, info);
2126 }
2127 }
2128
2129 static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2130 struct notifier_block *nb,
2131 struct netlink_ext_ack *extack)
2132 {
2133 struct fib_alias *fa;
2134 int last_slen = -1;
2135 int err;
2136
2137 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2138 struct fib_info *fi = fa->fa_info;
2139
2140 if (!fi)
2141 continue;
2142
2143 /* local and main table can share the same trie,
2144 * so don't notify twice for the same entry.
2145 */
2146 if (tb->tb_id != fa->tb_id)
2147 continue;
2148
2149 if (fa->fa_slen == last_slen)
2150 continue;
2151
2152 last_slen = fa->fa_slen;
2153 err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2154 l->key, KEYLENGTH - fa->fa_slen,
2155 fa, extack);
2156 if (err)
2157 return err;
2158 }
2159 return 0;
2160 }
2161
2162 static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2163 struct netlink_ext_ack *extack)
2164 {
2165 struct trie *t = (struct trie *)tb->tb_data;
2166 struct key_vector *l, *tp = t->kv;
2167 t_key key = 0;
2168 int err;
2169
2170 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2171 err = fib_leaf_notify(l, tb, nb, extack);
2172 if (err)
2173 return err;
2174
2175 key = l->key + 1;
2176 /* stop in case of wrap around */
2177 if (key < l->key)
2178 break;
2179 }
2180 return 0;
2181 }
2182
2183 int fib_notify(struct net *net, struct notifier_block *nb,
2184 struct netlink_ext_ack *extack)
2185 {
2186 unsigned int h;
2187 int err;
2188
2189 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2190 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2191 struct fib_table *tb;
2192
2193 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2194 err = fib_table_notify(tb, nb, extack);
2195 if (err)
2196 return err;
2197 }
2198 }
2199 return 0;
2200 }
2201
2202 static void __trie_free_rcu(struct rcu_head *head)
2203 {
2204 struct fib_table *tb = container_of(head, struct fib_table, rcu);
2205 #ifdef CONFIG_IP_FIB_TRIE_STATS
2206 struct trie *t = (struct trie *)tb->tb_data;
2207
2208 if (tb->tb_data == tb->__data)
2209 free_percpu(t->stats);
2210 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2211 kfree(tb);
2212 }
2213
2214 void fib_free_table(struct fib_table *tb)
2215 {
2216 call_rcu(&tb->rcu, __trie_free_rcu);
2217 }
2218
2219 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2220 struct sk_buff *skb, struct netlink_callback *cb,
2221 struct fib_dump_filter *filter)
2222 {
2223 unsigned int flags = NLM_F_MULTI;
2224 __be32 xkey = htonl(l->key);
2225 int i, s_i, i_fa, s_fa, err;
2226 struct fib_alias *fa;
2227
2228 if (filter->filter_set ||
2229 !filter->dump_exceptions || !filter->dump_routes)
2230 flags |= NLM_F_DUMP_FILTERED;
2231
2232 s_i = cb->args[4];
2233 s_fa = cb->args[5];
2234 i = 0;
2235
2236 /* rcu_read_lock is hold by caller */
2237 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2238 struct fib_info *fi = fa->fa_info;
2239
2240 if (i < s_i)
2241 goto next;
2242
2243 i_fa = 0;
2244
2245 if (tb->tb_id != fa->tb_id)
2246 goto next;
2247
2248 if (filter->filter_set) {
2249 if (filter->rt_type && fa->fa_type != filter->rt_type)
2250 goto next;
2251
2252 if ((filter->protocol &&
2253 fi->fib_protocol != filter->protocol))
2254 goto next;
2255
2256 if (filter->dev &&
2257 !fib_info_nh_uses_dev(fi, filter->dev))
2258 goto next;
2259 }
2260
2261 if (filter->dump_routes) {
2262 if (!s_fa) {
2263 struct fib_rt_info fri;
2264
2265 fri.fi = fi;
2266 fri.tb_id = tb->tb_id;
2267 fri.dst = xkey;
2268 fri.dst_len = KEYLENGTH - fa->fa_slen;
2269 fri.tos = fa->fa_tos;
2270 fri.type = fa->fa_type;
2271 fri.offload = fa->offload;
2272 fri.trap = fa->trap;
2273 err = fib_dump_info(skb,
2274 NETLINK_CB(cb->skb).portid,
2275 cb->nlh->nlmsg_seq,
2276 RTM_NEWROUTE, &fri, flags);
2277 if (err < 0)
2278 goto stop;
2279 }
2280
2281 i_fa++;
2282 }
2283
2284 if (filter->dump_exceptions) {
2285 err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2286 &i_fa, s_fa, flags);
2287 if (err < 0)
2288 goto stop;
2289 }
2290
2291 next:
2292 i++;
2293 }
2294
2295 cb->args[4] = i;
2296 return skb->len;
2297
2298 stop:
2299 cb->args[4] = i;
2300 cb->args[5] = i_fa;
2301 return err;
2302 }
2303
2304 /* rcu_read_lock needs to be hold by caller from readside */
2305 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2306 struct netlink_callback *cb, struct fib_dump_filter *filter)
2307 {
2308 struct trie *t = (struct trie *)tb->tb_data;
2309 struct key_vector *l, *tp = t->kv;
2310 /* Dump starting at last key.
2311 * Note: 0.0.0.0/0 (ie default) is first key.
2312 */
2313 int count = cb->args[2];
2314 t_key key = cb->args[3];
2315
2316 /* First time here, count and key are both always 0. Count > 0
2317 * and key == 0 means the dump has wrapped around and we are done.
2318 */
2319 if (count && !key)
2320 return skb->len;
2321
2322 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2323 int err;
2324
2325 err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2326 if (err < 0) {
2327 cb->args[3] = key;
2328 cb->args[2] = count;
2329 return err;
2330 }
2331
2332 ++count;
2333 key = l->key + 1;
2334
2335 memset(&cb->args[4], 0,
2336 sizeof(cb->args) - 4*sizeof(cb->args[0]));
2337
2338 /* stop loop if key wrapped back to 0 */
2339 if (key < l->key)
2340 break;
2341 }
2342
2343 cb->args[3] = key;
2344 cb->args[2] = count;
2345
2346 return skb->len;
2347 }
2348
2349 void __init fib_trie_init(void)
2350 {
2351 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2352 sizeof(struct fib_alias),
2353 0, SLAB_PANIC, NULL);
2354
2355 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2356 LEAF_SIZE,
2357 0, SLAB_PANIC, NULL);
2358 }
2359
2360 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2361 {
2362 struct fib_table *tb;
2363 struct trie *t;
2364 size_t sz = sizeof(*tb);
2365
2366 if (!alias)
2367 sz += sizeof(struct trie);
2368
2369 tb = kzalloc(sz, GFP_KERNEL);
2370 if (!tb)
2371 return NULL;
2372
2373 tb->tb_id = id;
2374 tb->tb_num_default = 0;
2375 tb->tb_data = (alias ? alias->__data : tb->__data);
2376
2377 if (alias)
2378 return tb;
2379
2380 t = (struct trie *) tb->tb_data;
2381 t->kv[0].pos = KEYLENGTH;
2382 t->kv[0].slen = KEYLENGTH;
2383 #ifdef CONFIG_IP_FIB_TRIE_STATS
2384 t->stats = alloc_percpu(struct trie_use_stats);
2385 if (!t->stats) {
2386 kfree(tb);
2387 tb = NULL;
2388 }
2389 #endif
2390
2391 return tb;
2392 }
2393
2394 #ifdef CONFIG_PROC_FS
2395 /* Depth first Trie walk iterator */
2396 struct fib_trie_iter {
2397 struct seq_net_private p;
2398 struct fib_table *tb;
2399 struct key_vector *tnode;
2400 unsigned int index;
2401 unsigned int depth;
2402 };
2403
2404 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2405 {
2406 unsigned long cindex = iter->index;
2407 struct key_vector *pn = iter->tnode;
2408 t_key pkey;
2409
2410 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2411 iter->tnode, iter->index, iter->depth);
2412
2413 while (!IS_TRIE(pn)) {
2414 while (cindex < child_length(pn)) {
2415 struct key_vector *n = get_child_rcu(pn, cindex++);
2416
2417 if (!n)
2418 continue;
2419
2420 if (IS_LEAF(n)) {
2421 iter->tnode = pn;
2422 iter->index = cindex;
2423 } else {
2424 /* push down one level */
2425 iter->tnode = n;
2426 iter->index = 0;
2427 ++iter->depth;
2428 }
2429
2430 return n;
2431 }
2432
2433 /* Current node exhausted, pop back up */
2434 pkey = pn->key;
2435 pn = node_parent_rcu(pn);
2436 cindex = get_index(pkey, pn) + 1;
2437 --iter->depth;
2438 }
2439
2440 /* record root node so further searches know we are done */
2441 iter->tnode = pn;
2442 iter->index = 0;
2443
2444 return NULL;
2445 }
2446
2447 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2448 struct trie *t)
2449 {
2450 struct key_vector *n, *pn;
2451
2452 if (!t)
2453 return NULL;
2454
2455 pn = t->kv;
2456 n = rcu_dereference(pn->tnode[0]);
2457 if (!n)
2458 return NULL;
2459
2460 if (IS_TNODE(n)) {
2461 iter->tnode = n;
2462 iter->index = 0;
2463 iter->depth = 1;
2464 } else {
2465 iter->tnode = pn;
2466 iter->index = 0;
2467 iter->depth = 0;
2468 }
2469
2470 return n;
2471 }
2472
2473 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2474 {
2475 struct key_vector *n;
2476 struct fib_trie_iter iter;
2477
2478 memset(s, 0, sizeof(*s));
2479
2480 rcu_read_lock();
2481 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2482 if (IS_LEAF(n)) {
2483 struct fib_alias *fa;
2484
2485 s->leaves++;
2486 s->totdepth += iter.depth;
2487 if (iter.depth > s->maxdepth)
2488 s->maxdepth = iter.depth;
2489
2490 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2491 ++s->prefixes;
2492 } else {
2493 s->tnodes++;
2494 if (n->bits < MAX_STAT_DEPTH)
2495 s->nodesizes[n->bits]++;
2496 s->nullpointers += tn_info(n)->empty_children;
2497 }
2498 }
2499 rcu_read_unlock();
2500 }
2501
2502 /*
2503 * This outputs /proc/net/fib_triestats
2504 */
2505 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2506 {
2507 unsigned int i, max, pointers, bytes, avdepth;
2508
2509 if (stat->leaves)
2510 avdepth = stat->totdepth*100 / stat->leaves;
2511 else
2512 avdepth = 0;
2513
2514 seq_printf(seq, "\tAver depth: %u.%02d\n",
2515 avdepth / 100, avdepth % 100);
2516 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2517
2518 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2519 bytes = LEAF_SIZE * stat->leaves;
2520
2521 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2522 bytes += sizeof(struct fib_alias) * stat->prefixes;
2523
2524 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2525 bytes += TNODE_SIZE(0) * stat->tnodes;
2526
2527 max = MAX_STAT_DEPTH;
2528 while (max > 0 && stat->nodesizes[max-1] == 0)
2529 max--;
2530
2531 pointers = 0;
2532 for (i = 1; i < max; i++)
2533 if (stat->nodesizes[i] != 0) {
2534 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2535 pointers += (1<<i) * stat->nodesizes[i];
2536 }
2537 seq_putc(seq, '\n');
2538 seq_printf(seq, "\tPointers: %u\n", pointers);
2539
2540 bytes += sizeof(struct key_vector *) * pointers;
2541 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2542 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2543 }
2544
2545 #ifdef CONFIG_IP_FIB_TRIE_STATS
2546 static void trie_show_usage(struct seq_file *seq,
2547 const struct trie_use_stats __percpu *stats)
2548 {
2549 struct trie_use_stats s = { 0 };
2550 int cpu;
2551
2552 /* loop through all of the CPUs and gather up the stats */
2553 for_each_possible_cpu(cpu) {
2554 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2555
2556 s.gets += pcpu->gets;
2557 s.backtrack += pcpu->backtrack;
2558 s.semantic_match_passed += pcpu->semantic_match_passed;
2559 s.semantic_match_miss += pcpu->semantic_match_miss;
2560 s.null_node_hit += pcpu->null_node_hit;
2561 s.resize_node_skipped += pcpu->resize_node_skipped;
2562 }
2563
2564 seq_printf(seq, "\nCounters:\n---------\n");
2565 seq_printf(seq, "gets = %u\n", s.gets);
2566 seq_printf(seq, "backtracks = %u\n", s.backtrack);
2567 seq_printf(seq, "semantic match passed = %u\n",
2568 s.semantic_match_passed);
2569 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2570 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2571 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2572 }
2573 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2574
2575 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2576 {
2577 if (tb->tb_id == RT_TABLE_LOCAL)
2578 seq_puts(seq, "Local:\n");
2579 else if (tb->tb_id == RT_TABLE_MAIN)
2580 seq_puts(seq, "Main:\n");
2581 else
2582 seq_printf(seq, "Id %d:\n", tb->tb_id);
2583 }
2584
2585
2586 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2587 {
2588 struct net *net = (struct net *)seq->private;
2589 unsigned int h;
2590
2591 seq_printf(seq,
2592 "Basic info: size of leaf:"
2593 " %zd bytes, size of tnode: %zd bytes.\n",
2594 LEAF_SIZE, TNODE_SIZE(0));
2595
2596 rcu_read_lock();
2597 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2598 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2599 struct fib_table *tb;
2600
2601 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2602 struct trie *t = (struct trie *) tb->tb_data;
2603 struct trie_stat stat;
2604
2605 if (!t)
2606 continue;
2607
2608 fib_table_print(seq, tb);
2609
2610 trie_collect_stats(t, &stat);
2611 trie_show_stats(seq, &stat);
2612 #ifdef CONFIG_IP_FIB_TRIE_STATS
2613 trie_show_usage(seq, t->stats);
2614 #endif
2615 }
2616 cond_resched_rcu();
2617 }
2618 rcu_read_unlock();
2619
2620 return 0;
2621 }
2622
2623 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2624 {
2625 struct fib_trie_iter *iter = seq->private;
2626 struct net *net = seq_file_net(seq);
2627 loff_t idx = 0;
2628 unsigned int h;
2629
2630 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2631 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2632 struct fib_table *tb;
2633
2634 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2635 struct key_vector *n;
2636
2637 for (n = fib_trie_get_first(iter,
2638 (struct trie *) tb->tb_data);
2639 n; n = fib_trie_get_next(iter))
2640 if (pos == idx++) {
2641 iter->tb = tb;
2642 return n;
2643 }
2644 }
2645 }
2646
2647 return NULL;
2648 }
2649
2650 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2651 __acquires(RCU)
2652 {
2653 rcu_read_lock();
2654 return fib_trie_get_idx(seq, *pos);
2655 }
2656
2657 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2658 {
2659 struct fib_trie_iter *iter = seq->private;
2660 struct net *net = seq_file_net(seq);
2661 struct fib_table *tb = iter->tb;
2662 struct hlist_node *tb_node;
2663 unsigned int h;
2664 struct key_vector *n;
2665
2666 ++*pos;
2667 /* next node in same table */
2668 n = fib_trie_get_next(iter);
2669 if (n)
2670 return n;
2671
2672 /* walk rest of this hash chain */
2673 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2674 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2675 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2676 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2677 if (n)
2678 goto found;
2679 }
2680
2681 /* new hash chain */
2682 while (++h < FIB_TABLE_HASHSZ) {
2683 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2684 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2685 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2686 if (n)
2687 goto found;
2688 }
2689 }
2690 return NULL;
2691
2692 found:
2693 iter->tb = tb;
2694 return n;
2695 }
2696
2697 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2698 __releases(RCU)
2699 {
2700 rcu_read_unlock();
2701 }
2702
2703 static void seq_indent(struct seq_file *seq, int n)
2704 {
2705 while (n-- > 0)
2706 seq_puts(seq, " ");
2707 }
2708
2709 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2710 {
2711 switch (s) {
2712 case RT_SCOPE_UNIVERSE: return "universe";
2713 case RT_SCOPE_SITE: return "site";
2714 case RT_SCOPE_LINK: return "link";
2715 case RT_SCOPE_HOST: return "host";
2716 case RT_SCOPE_NOWHERE: return "nowhere";
2717 default:
2718 snprintf(buf, len, "scope=%d", s);
2719 return buf;
2720 }
2721 }
2722
2723 static const char *const rtn_type_names[__RTN_MAX] = {
2724 [RTN_UNSPEC] = "UNSPEC",
2725 [RTN_UNICAST] = "UNICAST",
2726 [RTN_LOCAL] = "LOCAL",
2727 [RTN_BROADCAST] = "BROADCAST",
2728 [RTN_ANYCAST] = "ANYCAST",
2729 [RTN_MULTICAST] = "MULTICAST",
2730 [RTN_BLACKHOLE] = "BLACKHOLE",
2731 [RTN_UNREACHABLE] = "UNREACHABLE",
2732 [RTN_PROHIBIT] = "PROHIBIT",
2733 [RTN_THROW] = "THROW",
2734 [RTN_NAT] = "NAT",
2735 [RTN_XRESOLVE] = "XRESOLVE",
2736 };
2737
2738 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2739 {
2740 if (t < __RTN_MAX && rtn_type_names[t])
2741 return rtn_type_names[t];
2742 snprintf(buf, len, "type %u", t);
2743 return buf;
2744 }
2745
2746 /* Pretty print the trie */
2747 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2748 {
2749 const struct fib_trie_iter *iter = seq->private;
2750 struct key_vector *n = v;
2751
2752 if (IS_TRIE(node_parent_rcu(n)))
2753 fib_table_print(seq, iter->tb);
2754
2755 if (IS_TNODE(n)) {
2756 __be32 prf = htonl(n->key);
2757
2758 seq_indent(seq, iter->depth-1);
2759 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2760 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2761 tn_info(n)->full_children,
2762 tn_info(n)->empty_children);
2763 } else {
2764 __be32 val = htonl(n->key);
2765 struct fib_alias *fa;
2766
2767 seq_indent(seq, iter->depth);
2768 seq_printf(seq, " |-- %pI4\n", &val);
2769
2770 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2771 char buf1[32], buf2[32];
2772
2773 seq_indent(seq, iter->depth + 1);
2774 seq_printf(seq, " /%zu %s %s",
2775 KEYLENGTH - fa->fa_slen,
2776 rtn_scope(buf1, sizeof(buf1),
2777 fa->fa_info->fib_scope),
2778 rtn_type(buf2, sizeof(buf2),
2779 fa->fa_type));
2780 if (fa->fa_tos)
2781 seq_printf(seq, " tos=%d", fa->fa_tos);
2782 seq_putc(seq, '\n');
2783 }
2784 }
2785
2786 return 0;
2787 }
2788
2789 static const struct seq_operations fib_trie_seq_ops = {
2790 .start = fib_trie_seq_start,
2791 .next = fib_trie_seq_next,
2792 .stop = fib_trie_seq_stop,
2793 .show = fib_trie_seq_show,
2794 };
2795
2796 struct fib_route_iter {
2797 struct seq_net_private p;
2798 struct fib_table *main_tb;
2799 struct key_vector *tnode;
2800 loff_t pos;
2801 t_key key;
2802 };
2803
2804 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2805 loff_t pos)
2806 {
2807 struct key_vector *l, **tp = &iter->tnode;
2808 t_key key;
2809
2810 /* use cached location of previously found key */
2811 if (iter->pos > 0 && pos >= iter->pos) {
2812 key = iter->key;
2813 } else {
2814 iter->pos = 1;
2815 key = 0;
2816 }
2817
2818 pos -= iter->pos;
2819
2820 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2821 key = l->key + 1;
2822 iter->pos++;
2823 l = NULL;
2824
2825 /* handle unlikely case of a key wrap */
2826 if (!key)
2827 break;
2828 }
2829
2830 if (l)
2831 iter->key = l->key; /* remember it */
2832 else
2833 iter->pos = 0; /* forget it */
2834
2835 return l;
2836 }
2837
2838 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2839 __acquires(RCU)
2840 {
2841 struct fib_route_iter *iter = seq->private;
2842 struct fib_table *tb;
2843 struct trie *t;
2844
2845 rcu_read_lock();
2846
2847 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2848 if (!tb)
2849 return NULL;
2850
2851 iter->main_tb = tb;
2852 t = (struct trie *)tb->tb_data;
2853 iter->tnode = t->kv;
2854
2855 if (*pos != 0)
2856 return fib_route_get_idx(iter, *pos);
2857
2858 iter->pos = 0;
2859 iter->key = KEY_MAX;
2860
2861 return SEQ_START_TOKEN;
2862 }
2863
2864 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2865 {
2866 struct fib_route_iter *iter = seq->private;
2867 struct key_vector *l = NULL;
2868 t_key key = iter->key + 1;
2869
2870 ++*pos;
2871
2872 /* only allow key of 0 for start of sequence */
2873 if ((v == SEQ_START_TOKEN) || key)
2874 l = leaf_walk_rcu(&iter->tnode, key);
2875
2876 if (l) {
2877 iter->key = l->key;
2878 iter->pos++;
2879 } else {
2880 iter->pos = 0;
2881 }
2882
2883 return l;
2884 }
2885
2886 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2887 __releases(RCU)
2888 {
2889 rcu_read_unlock();
2890 }
2891
2892 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2893 {
2894 unsigned int flags = 0;
2895
2896 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2897 flags = RTF_REJECT;
2898 if (fi) {
2899 const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2900
2901 if (nhc->nhc_gw.ipv4)
2902 flags |= RTF_GATEWAY;
2903 }
2904 if (mask == htonl(0xFFFFFFFF))
2905 flags |= RTF_HOST;
2906 flags |= RTF_UP;
2907 return flags;
2908 }
2909
2910 /*
2911 * This outputs /proc/net/route.
2912 * The format of the file is not supposed to be changed
2913 * and needs to be same as fib_hash output to avoid breaking
2914 * legacy utilities
2915 */
2916 static int fib_route_seq_show(struct seq_file *seq, void *v)
2917 {
2918 struct fib_route_iter *iter = seq->private;
2919 struct fib_table *tb = iter->main_tb;
2920 struct fib_alias *fa;
2921 struct key_vector *l = v;
2922 __be32 prefix;
2923
2924 if (v == SEQ_START_TOKEN) {
2925 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2926 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2927 "\tWindow\tIRTT");
2928 return 0;
2929 }
2930
2931 prefix = htonl(l->key);
2932
2933 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2934 struct fib_info *fi = fa->fa_info;
2935 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2936 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2937
2938 if ((fa->fa_type == RTN_BROADCAST) ||
2939 (fa->fa_type == RTN_MULTICAST))
2940 continue;
2941
2942 if (fa->tb_id != tb->tb_id)
2943 continue;
2944
2945 seq_setwidth(seq, 127);
2946
2947 if (fi) {
2948 struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2949 __be32 gw = 0;
2950
2951 if (nhc->nhc_gw_family == AF_INET)
2952 gw = nhc->nhc_gw.ipv4;
2953
2954 seq_printf(seq,
2955 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2956 "%d\t%08X\t%d\t%u\t%u",
2957 nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2958 prefix, gw, flags, 0, 0,
2959 fi->fib_priority,
2960 mask,
2961 (fi->fib_advmss ?
2962 fi->fib_advmss + 40 : 0),
2963 fi->fib_window,
2964 fi->fib_rtt >> 3);
2965 } else {
2966 seq_printf(seq,
2967 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2968 "%d\t%08X\t%d\t%u\t%u",
2969 prefix, 0, flags, 0, 0, 0,
2970 mask, 0, 0, 0);
2971 }
2972 seq_pad(seq, '\n');
2973 }
2974
2975 return 0;
2976 }
2977
2978 static const struct seq_operations fib_route_seq_ops = {
2979 .start = fib_route_seq_start,
2980 .next = fib_route_seq_next,
2981 .stop = fib_route_seq_stop,
2982 .show = fib_route_seq_show,
2983 };
2984
2985 int __net_init fib_proc_init(struct net *net)
2986 {
2987 if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
2988 sizeof(struct fib_trie_iter)))
2989 goto out1;
2990
2991 if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
2992 fib_triestat_seq_show, NULL))
2993 goto out2;
2994
2995 if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
2996 sizeof(struct fib_route_iter)))
2997 goto out3;
2998
2999 return 0;
3000
3001 out3:
3002 remove_proc_entry("fib_triestat", net->proc_net);
3003 out2:
3004 remove_proc_entry("fib_trie", net->proc_net);
3005 out1:
3006 return -ENOMEM;
3007 }
3008
3009 void __net_exit fib_proc_exit(struct net *net)
3010 {
3011 remove_proc_entry("fib_trie", net->proc_net);
3012 remove_proc_entry("fib_triestat", net->proc_net);
3013 remove_proc_entry("route", net->proc_net);
3014 }
3015
3016 #endif /* CONFIG_PROC_FS */