]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - net/ipv4/fib_trie.c
NFS4: Only set creation opendata if O_CREAT
[thirdparty/kernel/stable.git] / net / ipv4 / fib_trie.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5 * & Swedish University of Agricultural Sciences.
6 *
7 * Jens Laas <jens.laas@data.slu.se> Swedish University of
8 * Agricultural Sciences.
9 *
10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
11 *
12 * This work is based on the LPC-trie which is originally described in:
13 *
14 * An experimental study of compression methods for dynamic tries
15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
17 *
18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
20 *
21 * Code from fib_hash has been reused which includes the following header:
22 *
23 * INET An implementation of the TCP/IP protocol suite for the LINUX
24 * operating system. INET is implemented using the BSD Socket
25 * interface as the means of communication with the user level.
26 *
27 * IPv4 FIB: lookup engine and maintenance routines.
28 *
29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
30 *
31 * Substantial contributions to this work comes from:
32 *
33 * David S. Miller, <davem@davemloft.net>
34 * Stephen Hemminger <shemminger@osdl.org>
35 * Paul E. McKenney <paulmck@us.ibm.com>
36 * Patrick McHardy <kaber@trash.net>
37 */
38
39 #define VERSION "0.409"
40
41 #include <linux/cache.h>
42 #include <linux/uaccess.h>
43 #include <linux/bitops.h>
44 #include <linux/types.h>
45 #include <linux/kernel.h>
46 #include <linux/mm.h>
47 #include <linux/string.h>
48 #include <linux/socket.h>
49 #include <linux/sockios.h>
50 #include <linux/errno.h>
51 #include <linux/in.h>
52 #include <linux/inet.h>
53 #include <linux/inetdevice.h>
54 #include <linux/netdevice.h>
55 #include <linux/if_arp.h>
56 #include <linux/proc_fs.h>
57 #include <linux/rcupdate.h>
58 #include <linux/skbuff.h>
59 #include <linux/netlink.h>
60 #include <linux/init.h>
61 #include <linux/list.h>
62 #include <linux/slab.h>
63 #include <linux/export.h>
64 #include <linux/vmalloc.h>
65 #include <linux/notifier.h>
66 #include <net/net_namespace.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/tcp.h>
71 #include <net/sock.h>
72 #include <net/ip_fib.h>
73 #include <net/fib_notifier.h>
74 #include <trace/events/fib.h>
75 #include "fib_lookup.h"
76
77 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
78 enum fib_event_type event_type, u32 dst,
79 int dst_len, struct fib_alias *fa)
80 {
81 struct fib_entry_notifier_info info = {
82 .dst = dst,
83 .dst_len = dst_len,
84 .fi = fa->fa_info,
85 .tos = fa->fa_tos,
86 .type = fa->fa_type,
87 .tb_id = fa->tb_id,
88 };
89 return call_fib4_notifier(nb, net, event_type, &info.info);
90 }
91
92 static int call_fib_entry_notifiers(struct net *net,
93 enum fib_event_type event_type, u32 dst,
94 int dst_len, struct fib_alias *fa,
95 struct netlink_ext_ack *extack)
96 {
97 struct fib_entry_notifier_info info = {
98 .info.extack = extack,
99 .dst = dst,
100 .dst_len = dst_len,
101 .fi = fa->fa_info,
102 .tos = fa->fa_tos,
103 .type = fa->fa_type,
104 .tb_id = fa->tb_id,
105 };
106 return call_fib4_notifiers(net, event_type, &info.info);
107 }
108
109 #define MAX_STAT_DEPTH 32
110
111 #define KEYLENGTH (8*sizeof(t_key))
112 #define KEY_MAX ((t_key)~0)
113
114 typedef unsigned int t_key;
115
116 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
117 #define IS_TNODE(n) ((n)->bits)
118 #define IS_LEAF(n) (!(n)->bits)
119
120 struct key_vector {
121 t_key key;
122 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
123 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
124 unsigned char slen;
125 union {
126 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
127 struct hlist_head leaf;
128 /* This array is valid if (pos | bits) > 0 (TNODE) */
129 struct key_vector __rcu *tnode[0];
130 };
131 };
132
133 struct tnode {
134 struct rcu_head rcu;
135 t_key empty_children; /* KEYLENGTH bits needed */
136 t_key full_children; /* KEYLENGTH bits needed */
137 struct key_vector __rcu *parent;
138 struct key_vector kv[1];
139 #define tn_bits kv[0].bits
140 };
141
142 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
143 #define LEAF_SIZE TNODE_SIZE(1)
144
145 #ifdef CONFIG_IP_FIB_TRIE_STATS
146 struct trie_use_stats {
147 unsigned int gets;
148 unsigned int backtrack;
149 unsigned int semantic_match_passed;
150 unsigned int semantic_match_miss;
151 unsigned int null_node_hit;
152 unsigned int resize_node_skipped;
153 };
154 #endif
155
156 struct trie_stat {
157 unsigned int totdepth;
158 unsigned int maxdepth;
159 unsigned int tnodes;
160 unsigned int leaves;
161 unsigned int nullpointers;
162 unsigned int prefixes;
163 unsigned int nodesizes[MAX_STAT_DEPTH];
164 };
165
166 struct trie {
167 struct key_vector kv[1];
168 #ifdef CONFIG_IP_FIB_TRIE_STATS
169 struct trie_use_stats __percpu *stats;
170 #endif
171 };
172
173 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
174 static unsigned int tnode_free_size;
175
176 /*
177 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
178 * especially useful before resizing the root node with PREEMPT_NONE configs;
179 * the value was obtained experimentally, aiming to avoid visible slowdown.
180 */
181 unsigned int sysctl_fib_sync_mem = 512 * 1024;
182 unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
183 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
184
185 static struct kmem_cache *fn_alias_kmem __ro_after_init;
186 static struct kmem_cache *trie_leaf_kmem __ro_after_init;
187
188 static inline struct tnode *tn_info(struct key_vector *kv)
189 {
190 return container_of(kv, struct tnode, kv[0]);
191 }
192
193 /* caller must hold RTNL */
194 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
195 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
196
197 /* caller must hold RCU read lock or RTNL */
198 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
199 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
200
201 /* wrapper for rcu_assign_pointer */
202 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
203 {
204 if (n)
205 rcu_assign_pointer(tn_info(n)->parent, tp);
206 }
207
208 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
209
210 /* This provides us with the number of children in this node, in the case of a
211 * leaf this will return 0 meaning none of the children are accessible.
212 */
213 static inline unsigned long child_length(const struct key_vector *tn)
214 {
215 return (1ul << tn->bits) & ~(1ul);
216 }
217
218 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
219
220 static inline unsigned long get_index(t_key key, struct key_vector *kv)
221 {
222 unsigned long index = key ^ kv->key;
223
224 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
225 return 0;
226
227 return index >> kv->pos;
228 }
229
230 /* To understand this stuff, an understanding of keys and all their bits is
231 * necessary. Every node in the trie has a key associated with it, but not
232 * all of the bits in that key are significant.
233 *
234 * Consider a node 'n' and its parent 'tp'.
235 *
236 * If n is a leaf, every bit in its key is significant. Its presence is
237 * necessitated by path compression, since during a tree traversal (when
238 * searching for a leaf - unless we are doing an insertion) we will completely
239 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
240 * a potentially successful search, that we have indeed been walking the
241 * correct key path.
242 *
243 * Note that we can never "miss" the correct key in the tree if present by
244 * following the wrong path. Path compression ensures that segments of the key
245 * that are the same for all keys with a given prefix are skipped, but the
246 * skipped part *is* identical for each node in the subtrie below the skipped
247 * bit! trie_insert() in this implementation takes care of that.
248 *
249 * if n is an internal node - a 'tnode' here, the various parts of its key
250 * have many different meanings.
251 *
252 * Example:
253 * _________________________________________________________________
254 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
255 * -----------------------------------------------------------------
256 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
257 *
258 * _________________________________________________________________
259 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
260 * -----------------------------------------------------------------
261 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
262 *
263 * tp->pos = 22
264 * tp->bits = 3
265 * n->pos = 13
266 * n->bits = 4
267 *
268 * First, let's just ignore the bits that come before the parent tp, that is
269 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
270 * point we do not use them for anything.
271 *
272 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
273 * index into the parent's child array. That is, they will be used to find
274 * 'n' among tp's children.
275 *
276 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
277 * for the node n.
278 *
279 * All the bits we have seen so far are significant to the node n. The rest
280 * of the bits are really not needed or indeed known in n->key.
281 *
282 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
283 * n's child array, and will of course be different for each child.
284 *
285 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
286 * at this point.
287 */
288
289 static const int halve_threshold = 25;
290 static const int inflate_threshold = 50;
291 static const int halve_threshold_root = 15;
292 static const int inflate_threshold_root = 30;
293
294 static void __alias_free_mem(struct rcu_head *head)
295 {
296 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
297 kmem_cache_free(fn_alias_kmem, fa);
298 }
299
300 static inline void alias_free_mem_rcu(struct fib_alias *fa)
301 {
302 call_rcu(&fa->rcu, __alias_free_mem);
303 }
304
305 #define TNODE_KMALLOC_MAX \
306 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
307 #define TNODE_VMALLOC_MAX \
308 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
309
310 static void __node_free_rcu(struct rcu_head *head)
311 {
312 struct tnode *n = container_of(head, struct tnode, rcu);
313
314 if (!n->tn_bits)
315 kmem_cache_free(trie_leaf_kmem, n);
316 else
317 kvfree(n);
318 }
319
320 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
321
322 static struct tnode *tnode_alloc(int bits)
323 {
324 size_t size;
325
326 /* verify bits is within bounds */
327 if (bits > TNODE_VMALLOC_MAX)
328 return NULL;
329
330 /* determine size and verify it is non-zero and didn't overflow */
331 size = TNODE_SIZE(1ul << bits);
332
333 if (size <= PAGE_SIZE)
334 return kzalloc(size, GFP_KERNEL);
335 else
336 return vzalloc(size);
337 }
338
339 static inline void empty_child_inc(struct key_vector *n)
340 {
341 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
342 }
343
344 static inline void empty_child_dec(struct key_vector *n)
345 {
346 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
347 }
348
349 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
350 {
351 struct key_vector *l;
352 struct tnode *kv;
353
354 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
355 if (!kv)
356 return NULL;
357
358 /* initialize key vector */
359 l = kv->kv;
360 l->key = key;
361 l->pos = 0;
362 l->bits = 0;
363 l->slen = fa->fa_slen;
364
365 /* link leaf to fib alias */
366 INIT_HLIST_HEAD(&l->leaf);
367 hlist_add_head(&fa->fa_list, &l->leaf);
368
369 return l;
370 }
371
372 static struct key_vector *tnode_new(t_key key, int pos, int bits)
373 {
374 unsigned int shift = pos + bits;
375 struct key_vector *tn;
376 struct tnode *tnode;
377
378 /* verify bits and pos their msb bits clear and values are valid */
379 BUG_ON(!bits || (shift > KEYLENGTH));
380
381 tnode = tnode_alloc(bits);
382 if (!tnode)
383 return NULL;
384
385 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
386 sizeof(struct key_vector *) << bits);
387
388 if (bits == KEYLENGTH)
389 tnode->full_children = 1;
390 else
391 tnode->empty_children = 1ul << bits;
392
393 tn = tnode->kv;
394 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
395 tn->pos = pos;
396 tn->bits = bits;
397 tn->slen = pos;
398
399 return tn;
400 }
401
402 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
403 * and no bits are skipped. See discussion in dyntree paper p. 6
404 */
405 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
406 {
407 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
408 }
409
410 /* Add a child at position i overwriting the old value.
411 * Update the value of full_children and empty_children.
412 */
413 static void put_child(struct key_vector *tn, unsigned long i,
414 struct key_vector *n)
415 {
416 struct key_vector *chi = get_child(tn, i);
417 int isfull, wasfull;
418
419 BUG_ON(i >= child_length(tn));
420
421 /* update emptyChildren, overflow into fullChildren */
422 if (!n && chi)
423 empty_child_inc(tn);
424 if (n && !chi)
425 empty_child_dec(tn);
426
427 /* update fullChildren */
428 wasfull = tnode_full(tn, chi);
429 isfull = tnode_full(tn, n);
430
431 if (wasfull && !isfull)
432 tn_info(tn)->full_children--;
433 else if (!wasfull && isfull)
434 tn_info(tn)->full_children++;
435
436 if (n && (tn->slen < n->slen))
437 tn->slen = n->slen;
438
439 rcu_assign_pointer(tn->tnode[i], n);
440 }
441
442 static void update_children(struct key_vector *tn)
443 {
444 unsigned long i;
445
446 /* update all of the child parent pointers */
447 for (i = child_length(tn); i;) {
448 struct key_vector *inode = get_child(tn, --i);
449
450 if (!inode)
451 continue;
452
453 /* Either update the children of a tnode that
454 * already belongs to us or update the child
455 * to point to ourselves.
456 */
457 if (node_parent(inode) == tn)
458 update_children(inode);
459 else
460 node_set_parent(inode, tn);
461 }
462 }
463
464 static inline void put_child_root(struct key_vector *tp, t_key key,
465 struct key_vector *n)
466 {
467 if (IS_TRIE(tp))
468 rcu_assign_pointer(tp->tnode[0], n);
469 else
470 put_child(tp, get_index(key, tp), n);
471 }
472
473 static inline void tnode_free_init(struct key_vector *tn)
474 {
475 tn_info(tn)->rcu.next = NULL;
476 }
477
478 static inline void tnode_free_append(struct key_vector *tn,
479 struct key_vector *n)
480 {
481 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
482 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
483 }
484
485 static void tnode_free(struct key_vector *tn)
486 {
487 struct callback_head *head = &tn_info(tn)->rcu;
488
489 while (head) {
490 head = head->next;
491 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
492 node_free(tn);
493
494 tn = container_of(head, struct tnode, rcu)->kv;
495 }
496
497 if (tnode_free_size >= sysctl_fib_sync_mem) {
498 tnode_free_size = 0;
499 synchronize_rcu();
500 }
501 }
502
503 static struct key_vector *replace(struct trie *t,
504 struct key_vector *oldtnode,
505 struct key_vector *tn)
506 {
507 struct key_vector *tp = node_parent(oldtnode);
508 unsigned long i;
509
510 /* setup the parent pointer out of and back into this node */
511 NODE_INIT_PARENT(tn, tp);
512 put_child_root(tp, tn->key, tn);
513
514 /* update all of the child parent pointers */
515 update_children(tn);
516
517 /* all pointers should be clean so we are done */
518 tnode_free(oldtnode);
519
520 /* resize children now that oldtnode is freed */
521 for (i = child_length(tn); i;) {
522 struct key_vector *inode = get_child(tn, --i);
523
524 /* resize child node */
525 if (tnode_full(tn, inode))
526 tn = resize(t, inode);
527 }
528
529 return tp;
530 }
531
532 static struct key_vector *inflate(struct trie *t,
533 struct key_vector *oldtnode)
534 {
535 struct key_vector *tn;
536 unsigned long i;
537 t_key m;
538
539 pr_debug("In inflate\n");
540
541 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
542 if (!tn)
543 goto notnode;
544
545 /* prepare oldtnode to be freed */
546 tnode_free_init(oldtnode);
547
548 /* Assemble all of the pointers in our cluster, in this case that
549 * represents all of the pointers out of our allocated nodes that
550 * point to existing tnodes and the links between our allocated
551 * nodes.
552 */
553 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
554 struct key_vector *inode = get_child(oldtnode, --i);
555 struct key_vector *node0, *node1;
556 unsigned long j, k;
557
558 /* An empty child */
559 if (!inode)
560 continue;
561
562 /* A leaf or an internal node with skipped bits */
563 if (!tnode_full(oldtnode, inode)) {
564 put_child(tn, get_index(inode->key, tn), inode);
565 continue;
566 }
567
568 /* drop the node in the old tnode free list */
569 tnode_free_append(oldtnode, inode);
570
571 /* An internal node with two children */
572 if (inode->bits == 1) {
573 put_child(tn, 2 * i + 1, get_child(inode, 1));
574 put_child(tn, 2 * i, get_child(inode, 0));
575 continue;
576 }
577
578 /* We will replace this node 'inode' with two new
579 * ones, 'node0' and 'node1', each with half of the
580 * original children. The two new nodes will have
581 * a position one bit further down the key and this
582 * means that the "significant" part of their keys
583 * (see the discussion near the top of this file)
584 * will differ by one bit, which will be "0" in
585 * node0's key and "1" in node1's key. Since we are
586 * moving the key position by one step, the bit that
587 * we are moving away from - the bit at position
588 * (tn->pos) - is the one that will differ between
589 * node0 and node1. So... we synthesize that bit in the
590 * two new keys.
591 */
592 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
593 if (!node1)
594 goto nomem;
595 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
596
597 tnode_free_append(tn, node1);
598 if (!node0)
599 goto nomem;
600 tnode_free_append(tn, node0);
601
602 /* populate child pointers in new nodes */
603 for (k = child_length(inode), j = k / 2; j;) {
604 put_child(node1, --j, get_child(inode, --k));
605 put_child(node0, j, get_child(inode, j));
606 put_child(node1, --j, get_child(inode, --k));
607 put_child(node0, j, get_child(inode, j));
608 }
609
610 /* link new nodes to parent */
611 NODE_INIT_PARENT(node1, tn);
612 NODE_INIT_PARENT(node0, tn);
613
614 /* link parent to nodes */
615 put_child(tn, 2 * i + 1, node1);
616 put_child(tn, 2 * i, node0);
617 }
618
619 /* setup the parent pointers into and out of this node */
620 return replace(t, oldtnode, tn);
621 nomem:
622 /* all pointers should be clean so we are done */
623 tnode_free(tn);
624 notnode:
625 return NULL;
626 }
627
628 static struct key_vector *halve(struct trie *t,
629 struct key_vector *oldtnode)
630 {
631 struct key_vector *tn;
632 unsigned long i;
633
634 pr_debug("In halve\n");
635
636 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
637 if (!tn)
638 goto notnode;
639
640 /* prepare oldtnode to be freed */
641 tnode_free_init(oldtnode);
642
643 /* Assemble all of the pointers in our cluster, in this case that
644 * represents all of the pointers out of our allocated nodes that
645 * point to existing tnodes and the links between our allocated
646 * nodes.
647 */
648 for (i = child_length(oldtnode); i;) {
649 struct key_vector *node1 = get_child(oldtnode, --i);
650 struct key_vector *node0 = get_child(oldtnode, --i);
651 struct key_vector *inode;
652
653 /* At least one of the children is empty */
654 if (!node1 || !node0) {
655 put_child(tn, i / 2, node1 ? : node0);
656 continue;
657 }
658
659 /* Two nonempty children */
660 inode = tnode_new(node0->key, oldtnode->pos, 1);
661 if (!inode)
662 goto nomem;
663 tnode_free_append(tn, inode);
664
665 /* initialize pointers out of node */
666 put_child(inode, 1, node1);
667 put_child(inode, 0, node0);
668 NODE_INIT_PARENT(inode, tn);
669
670 /* link parent to node */
671 put_child(tn, i / 2, inode);
672 }
673
674 /* setup the parent pointers into and out of this node */
675 return replace(t, oldtnode, tn);
676 nomem:
677 /* all pointers should be clean so we are done */
678 tnode_free(tn);
679 notnode:
680 return NULL;
681 }
682
683 static struct key_vector *collapse(struct trie *t,
684 struct key_vector *oldtnode)
685 {
686 struct key_vector *n, *tp;
687 unsigned long i;
688
689 /* scan the tnode looking for that one child that might still exist */
690 for (n = NULL, i = child_length(oldtnode); !n && i;)
691 n = get_child(oldtnode, --i);
692
693 /* compress one level */
694 tp = node_parent(oldtnode);
695 put_child_root(tp, oldtnode->key, n);
696 node_set_parent(n, tp);
697
698 /* drop dead node */
699 node_free(oldtnode);
700
701 return tp;
702 }
703
704 static unsigned char update_suffix(struct key_vector *tn)
705 {
706 unsigned char slen = tn->pos;
707 unsigned long stride, i;
708 unsigned char slen_max;
709
710 /* only vector 0 can have a suffix length greater than or equal to
711 * tn->pos + tn->bits, the second highest node will have a suffix
712 * length at most of tn->pos + tn->bits - 1
713 */
714 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
715
716 /* search though the list of children looking for nodes that might
717 * have a suffix greater than the one we currently have. This is
718 * why we start with a stride of 2 since a stride of 1 would
719 * represent the nodes with suffix length equal to tn->pos
720 */
721 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
722 struct key_vector *n = get_child(tn, i);
723
724 if (!n || (n->slen <= slen))
725 continue;
726
727 /* update stride and slen based on new value */
728 stride <<= (n->slen - slen);
729 slen = n->slen;
730 i &= ~(stride - 1);
731
732 /* stop searching if we have hit the maximum possible value */
733 if (slen >= slen_max)
734 break;
735 }
736
737 tn->slen = slen;
738
739 return slen;
740 }
741
742 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
743 * the Helsinki University of Technology and Matti Tikkanen of Nokia
744 * Telecommunications, page 6:
745 * "A node is doubled if the ratio of non-empty children to all
746 * children in the *doubled* node is at least 'high'."
747 *
748 * 'high' in this instance is the variable 'inflate_threshold'. It
749 * is expressed as a percentage, so we multiply it with
750 * child_length() and instead of multiplying by 2 (since the
751 * child array will be doubled by inflate()) and multiplying
752 * the left-hand side by 100 (to handle the percentage thing) we
753 * multiply the left-hand side by 50.
754 *
755 * The left-hand side may look a bit weird: child_length(tn)
756 * - tn->empty_children is of course the number of non-null children
757 * in the current node. tn->full_children is the number of "full"
758 * children, that is non-null tnodes with a skip value of 0.
759 * All of those will be doubled in the resulting inflated tnode, so
760 * we just count them one extra time here.
761 *
762 * A clearer way to write this would be:
763 *
764 * to_be_doubled = tn->full_children;
765 * not_to_be_doubled = child_length(tn) - tn->empty_children -
766 * tn->full_children;
767 *
768 * new_child_length = child_length(tn) * 2;
769 *
770 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
771 * new_child_length;
772 * if (new_fill_factor >= inflate_threshold)
773 *
774 * ...and so on, tho it would mess up the while () loop.
775 *
776 * anyway,
777 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
778 * inflate_threshold
779 *
780 * avoid a division:
781 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
782 * inflate_threshold * new_child_length
783 *
784 * expand not_to_be_doubled and to_be_doubled, and shorten:
785 * 100 * (child_length(tn) - tn->empty_children +
786 * tn->full_children) >= inflate_threshold * new_child_length
787 *
788 * expand new_child_length:
789 * 100 * (child_length(tn) - tn->empty_children +
790 * tn->full_children) >=
791 * inflate_threshold * child_length(tn) * 2
792 *
793 * shorten again:
794 * 50 * (tn->full_children + child_length(tn) -
795 * tn->empty_children) >= inflate_threshold *
796 * child_length(tn)
797 *
798 */
799 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
800 {
801 unsigned long used = child_length(tn);
802 unsigned long threshold = used;
803
804 /* Keep root node larger */
805 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
806 used -= tn_info(tn)->empty_children;
807 used += tn_info(tn)->full_children;
808
809 /* if bits == KEYLENGTH then pos = 0, and will fail below */
810
811 return (used > 1) && tn->pos && ((50 * used) >= threshold);
812 }
813
814 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
815 {
816 unsigned long used = child_length(tn);
817 unsigned long threshold = used;
818
819 /* Keep root node larger */
820 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
821 used -= tn_info(tn)->empty_children;
822
823 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
824
825 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
826 }
827
828 static inline bool should_collapse(struct key_vector *tn)
829 {
830 unsigned long used = child_length(tn);
831
832 used -= tn_info(tn)->empty_children;
833
834 /* account for bits == KEYLENGTH case */
835 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
836 used -= KEY_MAX;
837
838 /* One child or none, time to drop us from the trie */
839 return used < 2;
840 }
841
842 #define MAX_WORK 10
843 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
844 {
845 #ifdef CONFIG_IP_FIB_TRIE_STATS
846 struct trie_use_stats __percpu *stats = t->stats;
847 #endif
848 struct key_vector *tp = node_parent(tn);
849 unsigned long cindex = get_index(tn->key, tp);
850 int max_work = MAX_WORK;
851
852 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
853 tn, inflate_threshold, halve_threshold);
854
855 /* track the tnode via the pointer from the parent instead of
856 * doing it ourselves. This way we can let RCU fully do its
857 * thing without us interfering
858 */
859 BUG_ON(tn != get_child(tp, cindex));
860
861 /* Double as long as the resulting node has a number of
862 * nonempty nodes that are above the threshold.
863 */
864 while (should_inflate(tp, tn) && max_work) {
865 tp = inflate(t, tn);
866 if (!tp) {
867 #ifdef CONFIG_IP_FIB_TRIE_STATS
868 this_cpu_inc(stats->resize_node_skipped);
869 #endif
870 break;
871 }
872
873 max_work--;
874 tn = get_child(tp, cindex);
875 }
876
877 /* update parent in case inflate failed */
878 tp = node_parent(tn);
879
880 /* Return if at least one inflate is run */
881 if (max_work != MAX_WORK)
882 return tp;
883
884 /* Halve as long as the number of empty children in this
885 * node is above threshold.
886 */
887 while (should_halve(tp, tn) && max_work) {
888 tp = halve(t, tn);
889 if (!tp) {
890 #ifdef CONFIG_IP_FIB_TRIE_STATS
891 this_cpu_inc(stats->resize_node_skipped);
892 #endif
893 break;
894 }
895
896 max_work--;
897 tn = get_child(tp, cindex);
898 }
899
900 /* Only one child remains */
901 if (should_collapse(tn))
902 return collapse(t, tn);
903
904 /* update parent in case halve failed */
905 return node_parent(tn);
906 }
907
908 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
909 {
910 unsigned char node_slen = tn->slen;
911
912 while ((node_slen > tn->pos) && (node_slen > slen)) {
913 slen = update_suffix(tn);
914 if (node_slen == slen)
915 break;
916
917 tn = node_parent(tn);
918 node_slen = tn->slen;
919 }
920 }
921
922 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
923 {
924 while (tn->slen < slen) {
925 tn->slen = slen;
926 tn = node_parent(tn);
927 }
928 }
929
930 /* rcu_read_lock needs to be hold by caller from readside */
931 static struct key_vector *fib_find_node(struct trie *t,
932 struct key_vector **tp, u32 key)
933 {
934 struct key_vector *pn, *n = t->kv;
935 unsigned long index = 0;
936
937 do {
938 pn = n;
939 n = get_child_rcu(n, index);
940
941 if (!n)
942 break;
943
944 index = get_cindex(key, n);
945
946 /* This bit of code is a bit tricky but it combines multiple
947 * checks into a single check. The prefix consists of the
948 * prefix plus zeros for the bits in the cindex. The index
949 * is the difference between the key and this value. From
950 * this we can actually derive several pieces of data.
951 * if (index >= (1ul << bits))
952 * we have a mismatch in skip bits and failed
953 * else
954 * we know the value is cindex
955 *
956 * This check is safe even if bits == KEYLENGTH due to the
957 * fact that we can only allocate a node with 32 bits if a
958 * long is greater than 32 bits.
959 */
960 if (index >= (1ul << n->bits)) {
961 n = NULL;
962 break;
963 }
964
965 /* keep searching until we find a perfect match leaf or NULL */
966 } while (IS_TNODE(n));
967
968 *tp = pn;
969
970 return n;
971 }
972
973 /* Return the first fib alias matching TOS with
974 * priority less than or equal to PRIO.
975 */
976 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
977 u8 tos, u32 prio, u32 tb_id)
978 {
979 struct fib_alias *fa;
980
981 if (!fah)
982 return NULL;
983
984 hlist_for_each_entry(fa, fah, fa_list) {
985 if (fa->fa_slen < slen)
986 continue;
987 if (fa->fa_slen != slen)
988 break;
989 if (fa->tb_id > tb_id)
990 continue;
991 if (fa->tb_id != tb_id)
992 break;
993 if (fa->fa_tos > tos)
994 continue;
995 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
996 return fa;
997 }
998
999 return NULL;
1000 }
1001
1002 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1003 {
1004 while (!IS_TRIE(tn))
1005 tn = resize(t, tn);
1006 }
1007
1008 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1009 struct fib_alias *new, t_key key)
1010 {
1011 struct key_vector *n, *l;
1012
1013 l = leaf_new(key, new);
1014 if (!l)
1015 goto noleaf;
1016
1017 /* retrieve child from parent node */
1018 n = get_child(tp, get_index(key, tp));
1019
1020 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1021 *
1022 * Add a new tnode here
1023 * first tnode need some special handling
1024 * leaves us in position for handling as case 3
1025 */
1026 if (n) {
1027 struct key_vector *tn;
1028
1029 tn = tnode_new(key, __fls(key ^ n->key), 1);
1030 if (!tn)
1031 goto notnode;
1032
1033 /* initialize routes out of node */
1034 NODE_INIT_PARENT(tn, tp);
1035 put_child(tn, get_index(key, tn) ^ 1, n);
1036
1037 /* start adding routes into the node */
1038 put_child_root(tp, key, tn);
1039 node_set_parent(n, tn);
1040
1041 /* parent now has a NULL spot where the leaf can go */
1042 tp = tn;
1043 }
1044
1045 /* Case 3: n is NULL, and will just insert a new leaf */
1046 node_push_suffix(tp, new->fa_slen);
1047 NODE_INIT_PARENT(l, tp);
1048 put_child_root(tp, key, l);
1049 trie_rebalance(t, tp);
1050
1051 return 0;
1052 notnode:
1053 node_free(l);
1054 noleaf:
1055 return -ENOMEM;
1056 }
1057
1058 /* fib notifier for ADD is sent before calling fib_insert_alias with
1059 * the expectation that the only possible failure ENOMEM
1060 */
1061 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1062 struct key_vector *l, struct fib_alias *new,
1063 struct fib_alias *fa, t_key key)
1064 {
1065 if (!l)
1066 return fib_insert_node(t, tp, new, key);
1067
1068 if (fa) {
1069 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1070 } else {
1071 struct fib_alias *last;
1072
1073 hlist_for_each_entry(last, &l->leaf, fa_list) {
1074 if (new->fa_slen < last->fa_slen)
1075 break;
1076 if ((new->fa_slen == last->fa_slen) &&
1077 (new->tb_id > last->tb_id))
1078 break;
1079 fa = last;
1080 }
1081
1082 if (fa)
1083 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1084 else
1085 hlist_add_head_rcu(&new->fa_list, &l->leaf);
1086 }
1087
1088 /* if we added to the tail node then we need to update slen */
1089 if (l->slen < new->fa_slen) {
1090 l->slen = new->fa_slen;
1091 node_push_suffix(tp, new->fa_slen);
1092 }
1093
1094 return 0;
1095 }
1096
1097 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1098 {
1099 if (plen > KEYLENGTH) {
1100 NL_SET_ERR_MSG(extack, "Invalid prefix length");
1101 return false;
1102 }
1103
1104 if ((plen < KEYLENGTH) && (key << plen)) {
1105 NL_SET_ERR_MSG(extack,
1106 "Invalid prefix for given prefix length");
1107 return false;
1108 }
1109
1110 return true;
1111 }
1112
1113 /* Caller must hold RTNL. */
1114 int fib_table_insert(struct net *net, struct fib_table *tb,
1115 struct fib_config *cfg, struct netlink_ext_ack *extack)
1116 {
1117 enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1118 struct trie *t = (struct trie *)tb->tb_data;
1119 struct fib_alias *fa, *new_fa;
1120 struct key_vector *l, *tp;
1121 u16 nlflags = NLM_F_EXCL;
1122 struct fib_info *fi;
1123 u8 plen = cfg->fc_dst_len;
1124 u8 slen = KEYLENGTH - plen;
1125 u8 tos = cfg->fc_tos;
1126 u32 key;
1127 int err;
1128
1129 key = ntohl(cfg->fc_dst);
1130
1131 if (!fib_valid_key_len(key, plen, extack))
1132 return -EINVAL;
1133
1134 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1135
1136 fi = fib_create_info(cfg, extack);
1137 if (IS_ERR(fi)) {
1138 err = PTR_ERR(fi);
1139 goto err;
1140 }
1141
1142 l = fib_find_node(t, &tp, key);
1143 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1144 tb->tb_id) : NULL;
1145
1146 /* Now fa, if non-NULL, points to the first fib alias
1147 * with the same keys [prefix,tos,priority], if such key already
1148 * exists or to the node before which we will insert new one.
1149 *
1150 * If fa is NULL, we will need to allocate a new one and
1151 * insert to the tail of the section matching the suffix length
1152 * of the new alias.
1153 */
1154
1155 if (fa && fa->fa_tos == tos &&
1156 fa->fa_info->fib_priority == fi->fib_priority) {
1157 struct fib_alias *fa_first, *fa_match;
1158
1159 err = -EEXIST;
1160 if (cfg->fc_nlflags & NLM_F_EXCL)
1161 goto out;
1162
1163 nlflags &= ~NLM_F_EXCL;
1164
1165 /* We have 2 goals:
1166 * 1. Find exact match for type, scope, fib_info to avoid
1167 * duplicate routes
1168 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1169 */
1170 fa_match = NULL;
1171 fa_first = fa;
1172 hlist_for_each_entry_from(fa, fa_list) {
1173 if ((fa->fa_slen != slen) ||
1174 (fa->tb_id != tb->tb_id) ||
1175 (fa->fa_tos != tos))
1176 break;
1177 if (fa->fa_info->fib_priority != fi->fib_priority)
1178 break;
1179 if (fa->fa_type == cfg->fc_type &&
1180 fa->fa_info == fi) {
1181 fa_match = fa;
1182 break;
1183 }
1184 }
1185
1186 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1187 struct fib_info *fi_drop;
1188 u8 state;
1189
1190 nlflags |= NLM_F_REPLACE;
1191 fa = fa_first;
1192 if (fa_match) {
1193 if (fa == fa_match)
1194 err = 0;
1195 goto out;
1196 }
1197 err = -ENOBUFS;
1198 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1199 if (!new_fa)
1200 goto out;
1201
1202 fi_drop = fa->fa_info;
1203 new_fa->fa_tos = fa->fa_tos;
1204 new_fa->fa_info = fi;
1205 new_fa->fa_type = cfg->fc_type;
1206 state = fa->fa_state;
1207 new_fa->fa_state = state & ~FA_S_ACCESSED;
1208 new_fa->fa_slen = fa->fa_slen;
1209 new_fa->tb_id = tb->tb_id;
1210 new_fa->fa_default = -1;
1211
1212 err = call_fib_entry_notifiers(net,
1213 FIB_EVENT_ENTRY_REPLACE,
1214 key, plen, new_fa,
1215 extack);
1216 if (err)
1217 goto out_free_new_fa;
1218
1219 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1220 tb->tb_id, &cfg->fc_nlinfo, nlflags);
1221
1222 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1223
1224 alias_free_mem_rcu(fa);
1225
1226 fib_release_info(fi_drop);
1227 if (state & FA_S_ACCESSED)
1228 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1229
1230 goto succeeded;
1231 }
1232 /* Error if we find a perfect match which
1233 * uses the same scope, type, and nexthop
1234 * information.
1235 */
1236 if (fa_match)
1237 goto out;
1238
1239 if (cfg->fc_nlflags & NLM_F_APPEND) {
1240 event = FIB_EVENT_ENTRY_APPEND;
1241 nlflags |= NLM_F_APPEND;
1242 } else {
1243 fa = fa_first;
1244 }
1245 }
1246 err = -ENOENT;
1247 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1248 goto out;
1249
1250 nlflags |= NLM_F_CREATE;
1251 err = -ENOBUFS;
1252 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1253 if (!new_fa)
1254 goto out;
1255
1256 new_fa->fa_info = fi;
1257 new_fa->fa_tos = tos;
1258 new_fa->fa_type = cfg->fc_type;
1259 new_fa->fa_state = 0;
1260 new_fa->fa_slen = slen;
1261 new_fa->tb_id = tb->tb_id;
1262 new_fa->fa_default = -1;
1263
1264 err = call_fib_entry_notifiers(net, event, key, plen, new_fa, extack);
1265 if (err)
1266 goto out_free_new_fa;
1267
1268 /* Insert new entry to the list. */
1269 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1270 if (err)
1271 goto out_fib_notif;
1272
1273 if (!plen)
1274 tb->tb_num_default++;
1275
1276 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1277 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1278 &cfg->fc_nlinfo, nlflags);
1279 succeeded:
1280 return 0;
1281
1282 out_fib_notif:
1283 /* notifier was sent that entry would be added to trie, but
1284 * the add failed and need to recover. Only failure for
1285 * fib_insert_alias is ENOMEM.
1286 */
1287 NL_SET_ERR_MSG(extack, "Failed to insert route into trie");
1288 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key,
1289 plen, new_fa, NULL);
1290 out_free_new_fa:
1291 kmem_cache_free(fn_alias_kmem, new_fa);
1292 out:
1293 fib_release_info(fi);
1294 err:
1295 return err;
1296 }
1297
1298 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1299 {
1300 t_key prefix = n->key;
1301
1302 return (key ^ prefix) & (prefix | -prefix);
1303 }
1304
1305 /* should be called with rcu_read_lock */
1306 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1307 struct fib_result *res, int fib_flags)
1308 {
1309 struct trie *t = (struct trie *) tb->tb_data;
1310 #ifdef CONFIG_IP_FIB_TRIE_STATS
1311 struct trie_use_stats __percpu *stats = t->stats;
1312 #endif
1313 const t_key key = ntohl(flp->daddr);
1314 struct key_vector *n, *pn;
1315 struct fib_alias *fa;
1316 unsigned long index;
1317 t_key cindex;
1318
1319 pn = t->kv;
1320 cindex = 0;
1321
1322 n = get_child_rcu(pn, cindex);
1323 if (!n) {
1324 trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1325 return -EAGAIN;
1326 }
1327
1328 #ifdef CONFIG_IP_FIB_TRIE_STATS
1329 this_cpu_inc(stats->gets);
1330 #endif
1331
1332 /* Step 1: Travel to the longest prefix match in the trie */
1333 for (;;) {
1334 index = get_cindex(key, n);
1335
1336 /* This bit of code is a bit tricky but it combines multiple
1337 * checks into a single check. The prefix consists of the
1338 * prefix plus zeros for the "bits" in the prefix. The index
1339 * is the difference between the key and this value. From
1340 * this we can actually derive several pieces of data.
1341 * if (index >= (1ul << bits))
1342 * we have a mismatch in skip bits and failed
1343 * else
1344 * we know the value is cindex
1345 *
1346 * This check is safe even if bits == KEYLENGTH due to the
1347 * fact that we can only allocate a node with 32 bits if a
1348 * long is greater than 32 bits.
1349 */
1350 if (index >= (1ul << n->bits))
1351 break;
1352
1353 /* we have found a leaf. Prefixes have already been compared */
1354 if (IS_LEAF(n))
1355 goto found;
1356
1357 /* only record pn and cindex if we are going to be chopping
1358 * bits later. Otherwise we are just wasting cycles.
1359 */
1360 if (n->slen > n->pos) {
1361 pn = n;
1362 cindex = index;
1363 }
1364
1365 n = get_child_rcu(n, index);
1366 if (unlikely(!n))
1367 goto backtrace;
1368 }
1369
1370 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1371 for (;;) {
1372 /* record the pointer where our next node pointer is stored */
1373 struct key_vector __rcu **cptr = n->tnode;
1374
1375 /* This test verifies that none of the bits that differ
1376 * between the key and the prefix exist in the region of
1377 * the lsb and higher in the prefix.
1378 */
1379 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1380 goto backtrace;
1381
1382 /* exit out and process leaf */
1383 if (unlikely(IS_LEAF(n)))
1384 break;
1385
1386 /* Don't bother recording parent info. Since we are in
1387 * prefix match mode we will have to come back to wherever
1388 * we started this traversal anyway
1389 */
1390
1391 while ((n = rcu_dereference(*cptr)) == NULL) {
1392 backtrace:
1393 #ifdef CONFIG_IP_FIB_TRIE_STATS
1394 if (!n)
1395 this_cpu_inc(stats->null_node_hit);
1396 #endif
1397 /* If we are at cindex 0 there are no more bits for
1398 * us to strip at this level so we must ascend back
1399 * up one level to see if there are any more bits to
1400 * be stripped there.
1401 */
1402 while (!cindex) {
1403 t_key pkey = pn->key;
1404
1405 /* If we don't have a parent then there is
1406 * nothing for us to do as we do not have any
1407 * further nodes to parse.
1408 */
1409 if (IS_TRIE(pn)) {
1410 trace_fib_table_lookup(tb->tb_id, flp,
1411 NULL, -EAGAIN);
1412 return -EAGAIN;
1413 }
1414 #ifdef CONFIG_IP_FIB_TRIE_STATS
1415 this_cpu_inc(stats->backtrack);
1416 #endif
1417 /* Get Child's index */
1418 pn = node_parent_rcu(pn);
1419 cindex = get_index(pkey, pn);
1420 }
1421
1422 /* strip the least significant bit from the cindex */
1423 cindex &= cindex - 1;
1424
1425 /* grab pointer for next child node */
1426 cptr = &pn->tnode[cindex];
1427 }
1428 }
1429
1430 found:
1431 /* this line carries forward the xor from earlier in the function */
1432 index = key ^ n->key;
1433
1434 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1435 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1436 struct fib_info *fi = fa->fa_info;
1437 int nhsel, err;
1438
1439 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1440 if (index >= (1ul << fa->fa_slen))
1441 continue;
1442 }
1443 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1444 continue;
1445 if (fi->fib_dead)
1446 continue;
1447 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1448 continue;
1449 fib_alias_accessed(fa);
1450 err = fib_props[fa->fa_type].error;
1451 if (unlikely(err < 0)) {
1452 #ifdef CONFIG_IP_FIB_TRIE_STATS
1453 this_cpu_inc(stats->semantic_match_passed);
1454 #endif
1455 trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1456 return err;
1457 }
1458 if (fi->fib_flags & RTNH_F_DEAD)
1459 continue;
1460 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1461 struct fib_nh_common *nhc = fib_info_nhc(fi, nhsel);
1462
1463 if (nhc->nhc_flags & RTNH_F_DEAD)
1464 continue;
1465 if (ip_ignore_linkdown(nhc->nhc_dev) &&
1466 nhc->nhc_flags & RTNH_F_LINKDOWN &&
1467 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1468 continue;
1469 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1470 if (flp->flowi4_oif &&
1471 flp->flowi4_oif != nhc->nhc_oif)
1472 continue;
1473 }
1474
1475 if (!(fib_flags & FIB_LOOKUP_NOREF))
1476 refcount_inc(&fi->fib_clntref);
1477
1478 res->prefix = htonl(n->key);
1479 res->prefixlen = KEYLENGTH - fa->fa_slen;
1480 res->nh_sel = nhsel;
1481 res->nhc = nhc;
1482 res->type = fa->fa_type;
1483 res->scope = fi->fib_scope;
1484 res->fi = fi;
1485 res->table = tb;
1486 res->fa_head = &n->leaf;
1487 #ifdef CONFIG_IP_FIB_TRIE_STATS
1488 this_cpu_inc(stats->semantic_match_passed);
1489 #endif
1490 trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1491
1492 return err;
1493 }
1494 }
1495 #ifdef CONFIG_IP_FIB_TRIE_STATS
1496 this_cpu_inc(stats->semantic_match_miss);
1497 #endif
1498 goto backtrace;
1499 }
1500 EXPORT_SYMBOL_GPL(fib_table_lookup);
1501
1502 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1503 struct key_vector *l, struct fib_alias *old)
1504 {
1505 /* record the location of the previous list_info entry */
1506 struct hlist_node **pprev = old->fa_list.pprev;
1507 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1508
1509 /* remove the fib_alias from the list */
1510 hlist_del_rcu(&old->fa_list);
1511
1512 /* if we emptied the list this leaf will be freed and we can sort
1513 * out parent suffix lengths as a part of trie_rebalance
1514 */
1515 if (hlist_empty(&l->leaf)) {
1516 if (tp->slen == l->slen)
1517 node_pull_suffix(tp, tp->pos);
1518 put_child_root(tp, l->key, NULL);
1519 node_free(l);
1520 trie_rebalance(t, tp);
1521 return;
1522 }
1523
1524 /* only access fa if it is pointing at the last valid hlist_node */
1525 if (*pprev)
1526 return;
1527
1528 /* update the trie with the latest suffix length */
1529 l->slen = fa->fa_slen;
1530 node_pull_suffix(tp, fa->fa_slen);
1531 }
1532
1533 /* Caller must hold RTNL. */
1534 int fib_table_delete(struct net *net, struct fib_table *tb,
1535 struct fib_config *cfg, struct netlink_ext_ack *extack)
1536 {
1537 struct trie *t = (struct trie *) tb->tb_data;
1538 struct fib_alias *fa, *fa_to_delete;
1539 struct key_vector *l, *tp;
1540 u8 plen = cfg->fc_dst_len;
1541 u8 slen = KEYLENGTH - plen;
1542 u8 tos = cfg->fc_tos;
1543 u32 key;
1544
1545 key = ntohl(cfg->fc_dst);
1546
1547 if (!fib_valid_key_len(key, plen, extack))
1548 return -EINVAL;
1549
1550 l = fib_find_node(t, &tp, key);
1551 if (!l)
1552 return -ESRCH;
1553
1554 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1555 if (!fa)
1556 return -ESRCH;
1557
1558 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1559
1560 fa_to_delete = NULL;
1561 hlist_for_each_entry_from(fa, fa_list) {
1562 struct fib_info *fi = fa->fa_info;
1563
1564 if ((fa->fa_slen != slen) ||
1565 (fa->tb_id != tb->tb_id) ||
1566 (fa->fa_tos != tos))
1567 break;
1568
1569 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1570 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1571 fa->fa_info->fib_scope == cfg->fc_scope) &&
1572 (!cfg->fc_prefsrc ||
1573 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1574 (!cfg->fc_protocol ||
1575 fi->fib_protocol == cfg->fc_protocol) &&
1576 fib_nh_match(cfg, fi, extack) == 0 &&
1577 fib_metrics_match(cfg, fi)) {
1578 fa_to_delete = fa;
1579 break;
1580 }
1581 }
1582
1583 if (!fa_to_delete)
1584 return -ESRCH;
1585
1586 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1587 fa_to_delete, extack);
1588 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1589 &cfg->fc_nlinfo, 0);
1590
1591 if (!plen)
1592 tb->tb_num_default--;
1593
1594 fib_remove_alias(t, tp, l, fa_to_delete);
1595
1596 if (fa_to_delete->fa_state & FA_S_ACCESSED)
1597 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1598
1599 fib_release_info(fa_to_delete->fa_info);
1600 alias_free_mem_rcu(fa_to_delete);
1601 return 0;
1602 }
1603
1604 /* Scan for the next leaf starting at the provided key value */
1605 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1606 {
1607 struct key_vector *pn, *n = *tn;
1608 unsigned long cindex;
1609
1610 /* this loop is meant to try and find the key in the trie */
1611 do {
1612 /* record parent and next child index */
1613 pn = n;
1614 cindex = (key > pn->key) ? get_index(key, pn) : 0;
1615
1616 if (cindex >> pn->bits)
1617 break;
1618
1619 /* descend into the next child */
1620 n = get_child_rcu(pn, cindex++);
1621 if (!n)
1622 break;
1623
1624 /* guarantee forward progress on the keys */
1625 if (IS_LEAF(n) && (n->key >= key))
1626 goto found;
1627 } while (IS_TNODE(n));
1628
1629 /* this loop will search for the next leaf with a greater key */
1630 while (!IS_TRIE(pn)) {
1631 /* if we exhausted the parent node we will need to climb */
1632 if (cindex >= (1ul << pn->bits)) {
1633 t_key pkey = pn->key;
1634
1635 pn = node_parent_rcu(pn);
1636 cindex = get_index(pkey, pn) + 1;
1637 continue;
1638 }
1639
1640 /* grab the next available node */
1641 n = get_child_rcu(pn, cindex++);
1642 if (!n)
1643 continue;
1644
1645 /* no need to compare keys since we bumped the index */
1646 if (IS_LEAF(n))
1647 goto found;
1648
1649 /* Rescan start scanning in new node */
1650 pn = n;
1651 cindex = 0;
1652 }
1653
1654 *tn = pn;
1655 return NULL; /* Root of trie */
1656 found:
1657 /* if we are at the limit for keys just return NULL for the tnode */
1658 *tn = pn;
1659 return n;
1660 }
1661
1662 static void fib_trie_free(struct fib_table *tb)
1663 {
1664 struct trie *t = (struct trie *)tb->tb_data;
1665 struct key_vector *pn = t->kv;
1666 unsigned long cindex = 1;
1667 struct hlist_node *tmp;
1668 struct fib_alias *fa;
1669
1670 /* walk trie in reverse order and free everything */
1671 for (;;) {
1672 struct key_vector *n;
1673
1674 if (!(cindex--)) {
1675 t_key pkey = pn->key;
1676
1677 if (IS_TRIE(pn))
1678 break;
1679
1680 n = pn;
1681 pn = node_parent(pn);
1682
1683 /* drop emptied tnode */
1684 put_child_root(pn, n->key, NULL);
1685 node_free(n);
1686
1687 cindex = get_index(pkey, pn);
1688
1689 continue;
1690 }
1691
1692 /* grab the next available node */
1693 n = get_child(pn, cindex);
1694 if (!n)
1695 continue;
1696
1697 if (IS_TNODE(n)) {
1698 /* record pn and cindex for leaf walking */
1699 pn = n;
1700 cindex = 1ul << n->bits;
1701
1702 continue;
1703 }
1704
1705 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1706 hlist_del_rcu(&fa->fa_list);
1707 alias_free_mem_rcu(fa);
1708 }
1709
1710 put_child_root(pn, n->key, NULL);
1711 node_free(n);
1712 }
1713
1714 #ifdef CONFIG_IP_FIB_TRIE_STATS
1715 free_percpu(t->stats);
1716 #endif
1717 kfree(tb);
1718 }
1719
1720 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1721 {
1722 struct trie *ot = (struct trie *)oldtb->tb_data;
1723 struct key_vector *l, *tp = ot->kv;
1724 struct fib_table *local_tb;
1725 struct fib_alias *fa;
1726 struct trie *lt;
1727 t_key key = 0;
1728
1729 if (oldtb->tb_data == oldtb->__data)
1730 return oldtb;
1731
1732 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1733 if (!local_tb)
1734 return NULL;
1735
1736 lt = (struct trie *)local_tb->tb_data;
1737
1738 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1739 struct key_vector *local_l = NULL, *local_tp;
1740
1741 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1742 struct fib_alias *new_fa;
1743
1744 if (local_tb->tb_id != fa->tb_id)
1745 continue;
1746
1747 /* clone fa for new local table */
1748 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1749 if (!new_fa)
1750 goto out;
1751
1752 memcpy(new_fa, fa, sizeof(*fa));
1753
1754 /* insert clone into table */
1755 if (!local_l)
1756 local_l = fib_find_node(lt, &local_tp, l->key);
1757
1758 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1759 NULL, l->key)) {
1760 kmem_cache_free(fn_alias_kmem, new_fa);
1761 goto out;
1762 }
1763 }
1764
1765 /* stop loop if key wrapped back to 0 */
1766 key = l->key + 1;
1767 if (key < l->key)
1768 break;
1769 }
1770
1771 return local_tb;
1772 out:
1773 fib_trie_free(local_tb);
1774
1775 return NULL;
1776 }
1777
1778 /* Caller must hold RTNL */
1779 void fib_table_flush_external(struct fib_table *tb)
1780 {
1781 struct trie *t = (struct trie *)tb->tb_data;
1782 struct key_vector *pn = t->kv;
1783 unsigned long cindex = 1;
1784 struct hlist_node *tmp;
1785 struct fib_alias *fa;
1786
1787 /* walk trie in reverse order */
1788 for (;;) {
1789 unsigned char slen = 0;
1790 struct key_vector *n;
1791
1792 if (!(cindex--)) {
1793 t_key pkey = pn->key;
1794
1795 /* cannot resize the trie vector */
1796 if (IS_TRIE(pn))
1797 break;
1798
1799 /* update the suffix to address pulled leaves */
1800 if (pn->slen > pn->pos)
1801 update_suffix(pn);
1802
1803 /* resize completed node */
1804 pn = resize(t, pn);
1805 cindex = get_index(pkey, pn);
1806
1807 continue;
1808 }
1809
1810 /* grab the next available node */
1811 n = get_child(pn, cindex);
1812 if (!n)
1813 continue;
1814
1815 if (IS_TNODE(n)) {
1816 /* record pn and cindex for leaf walking */
1817 pn = n;
1818 cindex = 1ul << n->bits;
1819
1820 continue;
1821 }
1822
1823 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1824 /* if alias was cloned to local then we just
1825 * need to remove the local copy from main
1826 */
1827 if (tb->tb_id != fa->tb_id) {
1828 hlist_del_rcu(&fa->fa_list);
1829 alias_free_mem_rcu(fa);
1830 continue;
1831 }
1832
1833 /* record local slen */
1834 slen = fa->fa_slen;
1835 }
1836
1837 /* update leaf slen */
1838 n->slen = slen;
1839
1840 if (hlist_empty(&n->leaf)) {
1841 put_child_root(pn, n->key, NULL);
1842 node_free(n);
1843 }
1844 }
1845 }
1846
1847 /* Caller must hold RTNL. */
1848 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
1849 {
1850 struct trie *t = (struct trie *)tb->tb_data;
1851 struct key_vector *pn = t->kv;
1852 unsigned long cindex = 1;
1853 struct hlist_node *tmp;
1854 struct fib_alias *fa;
1855 int found = 0;
1856
1857 /* walk trie in reverse order */
1858 for (;;) {
1859 unsigned char slen = 0;
1860 struct key_vector *n;
1861
1862 if (!(cindex--)) {
1863 t_key pkey = pn->key;
1864
1865 /* cannot resize the trie vector */
1866 if (IS_TRIE(pn))
1867 break;
1868
1869 /* update the suffix to address pulled leaves */
1870 if (pn->slen > pn->pos)
1871 update_suffix(pn);
1872
1873 /* resize completed node */
1874 pn = resize(t, pn);
1875 cindex = get_index(pkey, pn);
1876
1877 continue;
1878 }
1879
1880 /* grab the next available node */
1881 n = get_child(pn, cindex);
1882 if (!n)
1883 continue;
1884
1885 if (IS_TNODE(n)) {
1886 /* record pn and cindex for leaf walking */
1887 pn = n;
1888 cindex = 1ul << n->bits;
1889
1890 continue;
1891 }
1892
1893 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1894 struct fib_info *fi = fa->fa_info;
1895
1896 if (!fi || tb->tb_id != fa->tb_id ||
1897 (!(fi->fib_flags & RTNH_F_DEAD) &&
1898 !fib_props[fa->fa_type].error)) {
1899 slen = fa->fa_slen;
1900 continue;
1901 }
1902
1903 /* Do not flush error routes if network namespace is
1904 * not being dismantled
1905 */
1906 if (!flush_all && fib_props[fa->fa_type].error) {
1907 slen = fa->fa_slen;
1908 continue;
1909 }
1910
1911 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1912 n->key,
1913 KEYLENGTH - fa->fa_slen, fa,
1914 NULL);
1915 hlist_del_rcu(&fa->fa_list);
1916 fib_release_info(fa->fa_info);
1917 alias_free_mem_rcu(fa);
1918 found++;
1919 }
1920
1921 /* update leaf slen */
1922 n->slen = slen;
1923
1924 if (hlist_empty(&n->leaf)) {
1925 put_child_root(pn, n->key, NULL);
1926 node_free(n);
1927 }
1928 }
1929
1930 pr_debug("trie_flush found=%d\n", found);
1931 return found;
1932 }
1933
1934 static void fib_leaf_notify(struct net *net, struct key_vector *l,
1935 struct fib_table *tb, struct notifier_block *nb)
1936 {
1937 struct fib_alias *fa;
1938
1939 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1940 struct fib_info *fi = fa->fa_info;
1941
1942 if (!fi)
1943 continue;
1944
1945 /* local and main table can share the same trie,
1946 * so don't notify twice for the same entry.
1947 */
1948 if (tb->tb_id != fa->tb_id)
1949 continue;
1950
1951 call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
1952 KEYLENGTH - fa->fa_slen, fa);
1953 }
1954 }
1955
1956 static void fib_table_notify(struct net *net, struct fib_table *tb,
1957 struct notifier_block *nb)
1958 {
1959 struct trie *t = (struct trie *)tb->tb_data;
1960 struct key_vector *l, *tp = t->kv;
1961 t_key key = 0;
1962
1963 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1964 fib_leaf_notify(net, l, tb, nb);
1965
1966 key = l->key + 1;
1967 /* stop in case of wrap around */
1968 if (key < l->key)
1969 break;
1970 }
1971 }
1972
1973 void fib_notify(struct net *net, struct notifier_block *nb)
1974 {
1975 unsigned int h;
1976
1977 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1978 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
1979 struct fib_table *tb;
1980
1981 hlist_for_each_entry_rcu(tb, head, tb_hlist)
1982 fib_table_notify(net, tb, nb);
1983 }
1984 }
1985
1986 static void __trie_free_rcu(struct rcu_head *head)
1987 {
1988 struct fib_table *tb = container_of(head, struct fib_table, rcu);
1989 #ifdef CONFIG_IP_FIB_TRIE_STATS
1990 struct trie *t = (struct trie *)tb->tb_data;
1991
1992 if (tb->tb_data == tb->__data)
1993 free_percpu(t->stats);
1994 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1995 kfree(tb);
1996 }
1997
1998 void fib_free_table(struct fib_table *tb)
1999 {
2000 call_rcu(&tb->rcu, __trie_free_rcu);
2001 }
2002
2003 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2004 struct sk_buff *skb, struct netlink_callback *cb,
2005 struct fib_dump_filter *filter)
2006 {
2007 unsigned int flags = NLM_F_MULTI;
2008 __be32 xkey = htonl(l->key);
2009 struct fib_alias *fa;
2010 int i, s_i;
2011
2012 if (filter->filter_set)
2013 flags |= NLM_F_DUMP_FILTERED;
2014
2015 s_i = cb->args[4];
2016 i = 0;
2017
2018 /* rcu_read_lock is hold by caller */
2019 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2020 int err;
2021
2022 if (i < s_i)
2023 goto next;
2024
2025 if (tb->tb_id != fa->tb_id)
2026 goto next;
2027
2028 if (filter->filter_set) {
2029 if (filter->rt_type && fa->fa_type != filter->rt_type)
2030 goto next;
2031
2032 if ((filter->protocol &&
2033 fa->fa_info->fib_protocol != filter->protocol))
2034 goto next;
2035
2036 if (filter->dev &&
2037 !fib_info_nh_uses_dev(fa->fa_info, filter->dev))
2038 goto next;
2039 }
2040
2041 err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
2042 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2043 tb->tb_id, fa->fa_type,
2044 xkey, KEYLENGTH - fa->fa_slen,
2045 fa->fa_tos, fa->fa_info, flags);
2046 if (err < 0) {
2047 cb->args[4] = i;
2048 return err;
2049 }
2050 next:
2051 i++;
2052 }
2053
2054 cb->args[4] = i;
2055 return skb->len;
2056 }
2057
2058 /* rcu_read_lock needs to be hold by caller from readside */
2059 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2060 struct netlink_callback *cb, struct fib_dump_filter *filter)
2061 {
2062 struct trie *t = (struct trie *)tb->tb_data;
2063 struct key_vector *l, *tp = t->kv;
2064 /* Dump starting at last key.
2065 * Note: 0.0.0.0/0 (ie default) is first key.
2066 */
2067 int count = cb->args[2];
2068 t_key key = cb->args[3];
2069
2070 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2071 int err;
2072
2073 err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2074 if (err < 0) {
2075 cb->args[3] = key;
2076 cb->args[2] = count;
2077 return err;
2078 }
2079
2080 ++count;
2081 key = l->key + 1;
2082
2083 memset(&cb->args[4], 0,
2084 sizeof(cb->args) - 4*sizeof(cb->args[0]));
2085
2086 /* stop loop if key wrapped back to 0 */
2087 if (key < l->key)
2088 break;
2089 }
2090
2091 cb->args[3] = key;
2092 cb->args[2] = count;
2093
2094 return skb->len;
2095 }
2096
2097 void __init fib_trie_init(void)
2098 {
2099 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2100 sizeof(struct fib_alias),
2101 0, SLAB_PANIC, NULL);
2102
2103 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2104 LEAF_SIZE,
2105 0, SLAB_PANIC, NULL);
2106 }
2107
2108 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2109 {
2110 struct fib_table *tb;
2111 struct trie *t;
2112 size_t sz = sizeof(*tb);
2113
2114 if (!alias)
2115 sz += sizeof(struct trie);
2116
2117 tb = kzalloc(sz, GFP_KERNEL);
2118 if (!tb)
2119 return NULL;
2120
2121 tb->tb_id = id;
2122 tb->tb_num_default = 0;
2123 tb->tb_data = (alias ? alias->__data : tb->__data);
2124
2125 if (alias)
2126 return tb;
2127
2128 t = (struct trie *) tb->tb_data;
2129 t->kv[0].pos = KEYLENGTH;
2130 t->kv[0].slen = KEYLENGTH;
2131 #ifdef CONFIG_IP_FIB_TRIE_STATS
2132 t->stats = alloc_percpu(struct trie_use_stats);
2133 if (!t->stats) {
2134 kfree(tb);
2135 tb = NULL;
2136 }
2137 #endif
2138
2139 return tb;
2140 }
2141
2142 #ifdef CONFIG_PROC_FS
2143 /* Depth first Trie walk iterator */
2144 struct fib_trie_iter {
2145 struct seq_net_private p;
2146 struct fib_table *tb;
2147 struct key_vector *tnode;
2148 unsigned int index;
2149 unsigned int depth;
2150 };
2151
2152 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2153 {
2154 unsigned long cindex = iter->index;
2155 struct key_vector *pn = iter->tnode;
2156 t_key pkey;
2157
2158 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2159 iter->tnode, iter->index, iter->depth);
2160
2161 while (!IS_TRIE(pn)) {
2162 while (cindex < child_length(pn)) {
2163 struct key_vector *n = get_child_rcu(pn, cindex++);
2164
2165 if (!n)
2166 continue;
2167
2168 if (IS_LEAF(n)) {
2169 iter->tnode = pn;
2170 iter->index = cindex;
2171 } else {
2172 /* push down one level */
2173 iter->tnode = n;
2174 iter->index = 0;
2175 ++iter->depth;
2176 }
2177
2178 return n;
2179 }
2180
2181 /* Current node exhausted, pop back up */
2182 pkey = pn->key;
2183 pn = node_parent_rcu(pn);
2184 cindex = get_index(pkey, pn) + 1;
2185 --iter->depth;
2186 }
2187
2188 /* record root node so further searches know we are done */
2189 iter->tnode = pn;
2190 iter->index = 0;
2191
2192 return NULL;
2193 }
2194
2195 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2196 struct trie *t)
2197 {
2198 struct key_vector *n, *pn;
2199
2200 if (!t)
2201 return NULL;
2202
2203 pn = t->kv;
2204 n = rcu_dereference(pn->tnode[0]);
2205 if (!n)
2206 return NULL;
2207
2208 if (IS_TNODE(n)) {
2209 iter->tnode = n;
2210 iter->index = 0;
2211 iter->depth = 1;
2212 } else {
2213 iter->tnode = pn;
2214 iter->index = 0;
2215 iter->depth = 0;
2216 }
2217
2218 return n;
2219 }
2220
2221 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2222 {
2223 struct key_vector *n;
2224 struct fib_trie_iter iter;
2225
2226 memset(s, 0, sizeof(*s));
2227
2228 rcu_read_lock();
2229 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2230 if (IS_LEAF(n)) {
2231 struct fib_alias *fa;
2232
2233 s->leaves++;
2234 s->totdepth += iter.depth;
2235 if (iter.depth > s->maxdepth)
2236 s->maxdepth = iter.depth;
2237
2238 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2239 ++s->prefixes;
2240 } else {
2241 s->tnodes++;
2242 if (n->bits < MAX_STAT_DEPTH)
2243 s->nodesizes[n->bits]++;
2244 s->nullpointers += tn_info(n)->empty_children;
2245 }
2246 }
2247 rcu_read_unlock();
2248 }
2249
2250 /*
2251 * This outputs /proc/net/fib_triestats
2252 */
2253 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2254 {
2255 unsigned int i, max, pointers, bytes, avdepth;
2256
2257 if (stat->leaves)
2258 avdepth = stat->totdepth*100 / stat->leaves;
2259 else
2260 avdepth = 0;
2261
2262 seq_printf(seq, "\tAver depth: %u.%02d\n",
2263 avdepth / 100, avdepth % 100);
2264 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2265
2266 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2267 bytes = LEAF_SIZE * stat->leaves;
2268
2269 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2270 bytes += sizeof(struct fib_alias) * stat->prefixes;
2271
2272 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2273 bytes += TNODE_SIZE(0) * stat->tnodes;
2274
2275 max = MAX_STAT_DEPTH;
2276 while (max > 0 && stat->nodesizes[max-1] == 0)
2277 max--;
2278
2279 pointers = 0;
2280 for (i = 1; i < max; i++)
2281 if (stat->nodesizes[i] != 0) {
2282 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2283 pointers += (1<<i) * stat->nodesizes[i];
2284 }
2285 seq_putc(seq, '\n');
2286 seq_printf(seq, "\tPointers: %u\n", pointers);
2287
2288 bytes += sizeof(struct key_vector *) * pointers;
2289 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2290 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2291 }
2292
2293 #ifdef CONFIG_IP_FIB_TRIE_STATS
2294 static void trie_show_usage(struct seq_file *seq,
2295 const struct trie_use_stats __percpu *stats)
2296 {
2297 struct trie_use_stats s = { 0 };
2298 int cpu;
2299
2300 /* loop through all of the CPUs and gather up the stats */
2301 for_each_possible_cpu(cpu) {
2302 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2303
2304 s.gets += pcpu->gets;
2305 s.backtrack += pcpu->backtrack;
2306 s.semantic_match_passed += pcpu->semantic_match_passed;
2307 s.semantic_match_miss += pcpu->semantic_match_miss;
2308 s.null_node_hit += pcpu->null_node_hit;
2309 s.resize_node_skipped += pcpu->resize_node_skipped;
2310 }
2311
2312 seq_printf(seq, "\nCounters:\n---------\n");
2313 seq_printf(seq, "gets = %u\n", s.gets);
2314 seq_printf(seq, "backtracks = %u\n", s.backtrack);
2315 seq_printf(seq, "semantic match passed = %u\n",
2316 s.semantic_match_passed);
2317 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2318 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2319 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2320 }
2321 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2322
2323 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2324 {
2325 if (tb->tb_id == RT_TABLE_LOCAL)
2326 seq_puts(seq, "Local:\n");
2327 else if (tb->tb_id == RT_TABLE_MAIN)
2328 seq_puts(seq, "Main:\n");
2329 else
2330 seq_printf(seq, "Id %d:\n", tb->tb_id);
2331 }
2332
2333
2334 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2335 {
2336 struct net *net = (struct net *)seq->private;
2337 unsigned int h;
2338
2339 seq_printf(seq,
2340 "Basic info: size of leaf:"
2341 " %zd bytes, size of tnode: %zd bytes.\n",
2342 LEAF_SIZE, TNODE_SIZE(0));
2343
2344 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2345 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2346 struct fib_table *tb;
2347
2348 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2349 struct trie *t = (struct trie *) tb->tb_data;
2350 struct trie_stat stat;
2351
2352 if (!t)
2353 continue;
2354
2355 fib_table_print(seq, tb);
2356
2357 trie_collect_stats(t, &stat);
2358 trie_show_stats(seq, &stat);
2359 #ifdef CONFIG_IP_FIB_TRIE_STATS
2360 trie_show_usage(seq, t->stats);
2361 #endif
2362 }
2363 }
2364
2365 return 0;
2366 }
2367
2368 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2369 {
2370 struct fib_trie_iter *iter = seq->private;
2371 struct net *net = seq_file_net(seq);
2372 loff_t idx = 0;
2373 unsigned int h;
2374
2375 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2376 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2377 struct fib_table *tb;
2378
2379 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2380 struct key_vector *n;
2381
2382 for (n = fib_trie_get_first(iter,
2383 (struct trie *) tb->tb_data);
2384 n; n = fib_trie_get_next(iter))
2385 if (pos == idx++) {
2386 iter->tb = tb;
2387 return n;
2388 }
2389 }
2390 }
2391
2392 return NULL;
2393 }
2394
2395 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2396 __acquires(RCU)
2397 {
2398 rcu_read_lock();
2399 return fib_trie_get_idx(seq, *pos);
2400 }
2401
2402 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2403 {
2404 struct fib_trie_iter *iter = seq->private;
2405 struct net *net = seq_file_net(seq);
2406 struct fib_table *tb = iter->tb;
2407 struct hlist_node *tb_node;
2408 unsigned int h;
2409 struct key_vector *n;
2410
2411 ++*pos;
2412 /* next node in same table */
2413 n = fib_trie_get_next(iter);
2414 if (n)
2415 return n;
2416
2417 /* walk rest of this hash chain */
2418 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2419 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2420 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2421 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2422 if (n)
2423 goto found;
2424 }
2425
2426 /* new hash chain */
2427 while (++h < FIB_TABLE_HASHSZ) {
2428 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2429 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2430 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2431 if (n)
2432 goto found;
2433 }
2434 }
2435 return NULL;
2436
2437 found:
2438 iter->tb = tb;
2439 return n;
2440 }
2441
2442 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2443 __releases(RCU)
2444 {
2445 rcu_read_unlock();
2446 }
2447
2448 static void seq_indent(struct seq_file *seq, int n)
2449 {
2450 while (n-- > 0)
2451 seq_puts(seq, " ");
2452 }
2453
2454 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2455 {
2456 switch (s) {
2457 case RT_SCOPE_UNIVERSE: return "universe";
2458 case RT_SCOPE_SITE: return "site";
2459 case RT_SCOPE_LINK: return "link";
2460 case RT_SCOPE_HOST: return "host";
2461 case RT_SCOPE_NOWHERE: return "nowhere";
2462 default:
2463 snprintf(buf, len, "scope=%d", s);
2464 return buf;
2465 }
2466 }
2467
2468 static const char *const rtn_type_names[__RTN_MAX] = {
2469 [RTN_UNSPEC] = "UNSPEC",
2470 [RTN_UNICAST] = "UNICAST",
2471 [RTN_LOCAL] = "LOCAL",
2472 [RTN_BROADCAST] = "BROADCAST",
2473 [RTN_ANYCAST] = "ANYCAST",
2474 [RTN_MULTICAST] = "MULTICAST",
2475 [RTN_BLACKHOLE] = "BLACKHOLE",
2476 [RTN_UNREACHABLE] = "UNREACHABLE",
2477 [RTN_PROHIBIT] = "PROHIBIT",
2478 [RTN_THROW] = "THROW",
2479 [RTN_NAT] = "NAT",
2480 [RTN_XRESOLVE] = "XRESOLVE",
2481 };
2482
2483 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2484 {
2485 if (t < __RTN_MAX && rtn_type_names[t])
2486 return rtn_type_names[t];
2487 snprintf(buf, len, "type %u", t);
2488 return buf;
2489 }
2490
2491 /* Pretty print the trie */
2492 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2493 {
2494 const struct fib_trie_iter *iter = seq->private;
2495 struct key_vector *n = v;
2496
2497 if (IS_TRIE(node_parent_rcu(n)))
2498 fib_table_print(seq, iter->tb);
2499
2500 if (IS_TNODE(n)) {
2501 __be32 prf = htonl(n->key);
2502
2503 seq_indent(seq, iter->depth-1);
2504 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2505 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2506 tn_info(n)->full_children,
2507 tn_info(n)->empty_children);
2508 } else {
2509 __be32 val = htonl(n->key);
2510 struct fib_alias *fa;
2511
2512 seq_indent(seq, iter->depth);
2513 seq_printf(seq, " |-- %pI4\n", &val);
2514
2515 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2516 char buf1[32], buf2[32];
2517
2518 seq_indent(seq, iter->depth + 1);
2519 seq_printf(seq, " /%zu %s %s",
2520 KEYLENGTH - fa->fa_slen,
2521 rtn_scope(buf1, sizeof(buf1),
2522 fa->fa_info->fib_scope),
2523 rtn_type(buf2, sizeof(buf2),
2524 fa->fa_type));
2525 if (fa->fa_tos)
2526 seq_printf(seq, " tos=%d", fa->fa_tos);
2527 seq_putc(seq, '\n');
2528 }
2529 }
2530
2531 return 0;
2532 }
2533
2534 static const struct seq_operations fib_trie_seq_ops = {
2535 .start = fib_trie_seq_start,
2536 .next = fib_trie_seq_next,
2537 .stop = fib_trie_seq_stop,
2538 .show = fib_trie_seq_show,
2539 };
2540
2541 struct fib_route_iter {
2542 struct seq_net_private p;
2543 struct fib_table *main_tb;
2544 struct key_vector *tnode;
2545 loff_t pos;
2546 t_key key;
2547 };
2548
2549 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2550 loff_t pos)
2551 {
2552 struct key_vector *l, **tp = &iter->tnode;
2553 t_key key;
2554
2555 /* use cached location of previously found key */
2556 if (iter->pos > 0 && pos >= iter->pos) {
2557 key = iter->key;
2558 } else {
2559 iter->pos = 1;
2560 key = 0;
2561 }
2562
2563 pos -= iter->pos;
2564
2565 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2566 key = l->key + 1;
2567 iter->pos++;
2568 l = NULL;
2569
2570 /* handle unlikely case of a key wrap */
2571 if (!key)
2572 break;
2573 }
2574
2575 if (l)
2576 iter->key = l->key; /* remember it */
2577 else
2578 iter->pos = 0; /* forget it */
2579
2580 return l;
2581 }
2582
2583 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2584 __acquires(RCU)
2585 {
2586 struct fib_route_iter *iter = seq->private;
2587 struct fib_table *tb;
2588 struct trie *t;
2589
2590 rcu_read_lock();
2591
2592 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2593 if (!tb)
2594 return NULL;
2595
2596 iter->main_tb = tb;
2597 t = (struct trie *)tb->tb_data;
2598 iter->tnode = t->kv;
2599
2600 if (*pos != 0)
2601 return fib_route_get_idx(iter, *pos);
2602
2603 iter->pos = 0;
2604 iter->key = KEY_MAX;
2605
2606 return SEQ_START_TOKEN;
2607 }
2608
2609 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2610 {
2611 struct fib_route_iter *iter = seq->private;
2612 struct key_vector *l = NULL;
2613 t_key key = iter->key + 1;
2614
2615 ++*pos;
2616
2617 /* only allow key of 0 for start of sequence */
2618 if ((v == SEQ_START_TOKEN) || key)
2619 l = leaf_walk_rcu(&iter->tnode, key);
2620
2621 if (l) {
2622 iter->key = l->key;
2623 iter->pos++;
2624 } else {
2625 iter->pos = 0;
2626 }
2627
2628 return l;
2629 }
2630
2631 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2632 __releases(RCU)
2633 {
2634 rcu_read_unlock();
2635 }
2636
2637 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2638 {
2639 unsigned int flags = 0;
2640
2641 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2642 flags = RTF_REJECT;
2643 if (fi && fi->fib_nh->fib_nh_gw4)
2644 flags |= RTF_GATEWAY;
2645 if (mask == htonl(0xFFFFFFFF))
2646 flags |= RTF_HOST;
2647 flags |= RTF_UP;
2648 return flags;
2649 }
2650
2651 /*
2652 * This outputs /proc/net/route.
2653 * The format of the file is not supposed to be changed
2654 * and needs to be same as fib_hash output to avoid breaking
2655 * legacy utilities
2656 */
2657 static int fib_route_seq_show(struct seq_file *seq, void *v)
2658 {
2659 struct fib_route_iter *iter = seq->private;
2660 struct fib_table *tb = iter->main_tb;
2661 struct fib_alias *fa;
2662 struct key_vector *l = v;
2663 __be32 prefix;
2664
2665 if (v == SEQ_START_TOKEN) {
2666 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2667 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2668 "\tWindow\tIRTT");
2669 return 0;
2670 }
2671
2672 prefix = htonl(l->key);
2673
2674 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2675 const struct fib_info *fi = fa->fa_info;
2676 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2677 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2678
2679 if ((fa->fa_type == RTN_BROADCAST) ||
2680 (fa->fa_type == RTN_MULTICAST))
2681 continue;
2682
2683 if (fa->tb_id != tb->tb_id)
2684 continue;
2685
2686 seq_setwidth(seq, 127);
2687
2688 if (fi)
2689 seq_printf(seq,
2690 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2691 "%d\t%08X\t%d\t%u\t%u",
2692 fi->fib_dev ? fi->fib_dev->name : "*",
2693 prefix,
2694 fi->fib_nh->fib_nh_gw4, flags, 0, 0,
2695 fi->fib_priority,
2696 mask,
2697 (fi->fib_advmss ?
2698 fi->fib_advmss + 40 : 0),
2699 fi->fib_window,
2700 fi->fib_rtt >> 3);
2701 else
2702 seq_printf(seq,
2703 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2704 "%d\t%08X\t%d\t%u\t%u",
2705 prefix, 0, flags, 0, 0, 0,
2706 mask, 0, 0, 0);
2707
2708 seq_pad(seq, '\n');
2709 }
2710
2711 return 0;
2712 }
2713
2714 static const struct seq_operations fib_route_seq_ops = {
2715 .start = fib_route_seq_start,
2716 .next = fib_route_seq_next,
2717 .stop = fib_route_seq_stop,
2718 .show = fib_route_seq_show,
2719 };
2720
2721 int __net_init fib_proc_init(struct net *net)
2722 {
2723 if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
2724 sizeof(struct fib_trie_iter)))
2725 goto out1;
2726
2727 if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
2728 fib_triestat_seq_show, NULL))
2729 goto out2;
2730
2731 if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
2732 sizeof(struct fib_route_iter)))
2733 goto out3;
2734
2735 return 0;
2736
2737 out3:
2738 remove_proc_entry("fib_triestat", net->proc_net);
2739 out2:
2740 remove_proc_entry("fib_trie", net->proc_net);
2741 out1:
2742 return -ENOMEM;
2743 }
2744
2745 void __net_exit fib_proc_exit(struct net *net)
2746 {
2747 remove_proc_entry("fib_trie", net->proc_net);
2748 remove_proc_entry("fib_triestat", net->proc_net);
2749 remove_proc_entry("route", net->proc_net);
2750 }
2751
2752 #endif /* CONFIG_PROC_FS */