]> git.ipfire.org Git - thirdparty/linux.git/blob - net/ipv4/ip_fragment.c
d6ee343fdb8647ea96240d017b72aef2f6790299
[thirdparty/linux.git] / net / ipv4 / ip_fragment.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The IP fragmentation functionality.
8 *
9 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox <alan@lxorguk.ukuu.org.uk>
11 *
12 * Fixes:
13 * Alan Cox : Split from ip.c , see ip_input.c for history.
14 * David S. Miller : Begin massive cleanup...
15 * Andi Kleen : Add sysctls.
16 * xxxx : Overlapfrag bug.
17 * Ultima : ip_expire() kernel panic.
18 * Bill Hawes : Frag accounting and evictor fixes.
19 * John McDonald : 0 length frag bug.
20 * Alexey Kuznetsov: SMP races, threading, cleanup.
21 * Patrick McHardy : LRU queue of frag heads for evictor.
22 */
23
24 #define pr_fmt(fmt) "IPv4: " fmt
25
26 #include <linux/compiler.h>
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/mm.h>
30 #include <linux/jiffies.h>
31 #include <linux/skbuff.h>
32 #include <linux/list.h>
33 #include <linux/ip.h>
34 #include <linux/icmp.h>
35 #include <linux/netdevice.h>
36 #include <linux/jhash.h>
37 #include <linux/random.h>
38 #include <linux/slab.h>
39 #include <net/route.h>
40 #include <net/dst.h>
41 #include <net/sock.h>
42 #include <net/ip.h>
43 #include <net/icmp.h>
44 #include <net/checksum.h>
45 #include <net/inetpeer.h>
46 #include <net/inet_frag.h>
47 #include <linux/tcp.h>
48 #include <linux/udp.h>
49 #include <linux/inet.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <net/inet_ecn.h>
52 #include <net/l3mdev.h>
53
54 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
55 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
56 * as well. Or notify me, at least. --ANK
57 */
58 static const char ip_frag_cache_name[] = "ip4-frags";
59
60 /* Use skb->cb to track consecutive/adjacent fragments coming at
61 * the end of the queue. Nodes in the rb-tree queue will
62 * contain "runs" of one or more adjacent fragments.
63 *
64 * Invariants:
65 * - next_frag is NULL at the tail of a "run";
66 * - the head of a "run" has the sum of all fragment lengths in frag_run_len.
67 */
68 struct ipfrag_skb_cb {
69 struct inet_skb_parm h;
70 struct sk_buff *next_frag;
71 int frag_run_len;
72 };
73
74 #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
75
76 static void ip4_frag_init_run(struct sk_buff *skb)
77 {
78 BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
79
80 FRAG_CB(skb)->next_frag = NULL;
81 FRAG_CB(skb)->frag_run_len = skb->len;
82 }
83
84 /* Append skb to the last "run". */
85 static void ip4_frag_append_to_last_run(struct inet_frag_queue *q,
86 struct sk_buff *skb)
87 {
88 RB_CLEAR_NODE(&skb->rbnode);
89 FRAG_CB(skb)->next_frag = NULL;
90
91 FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
92 FRAG_CB(q->fragments_tail)->next_frag = skb;
93 q->fragments_tail = skb;
94 }
95
96 /* Create a new "run" with the skb. */
97 static void ip4_frag_create_run(struct inet_frag_queue *q, struct sk_buff *skb)
98 {
99 if (q->last_run_head)
100 rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
101 &q->last_run_head->rbnode.rb_right);
102 else
103 rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
104 rb_insert_color(&skb->rbnode, &q->rb_fragments);
105
106 ip4_frag_init_run(skb);
107 q->fragments_tail = skb;
108 q->last_run_head = skb;
109 }
110
111 /* Describe an entry in the "incomplete datagrams" queue. */
112 struct ipq {
113 struct inet_frag_queue q;
114
115 u8 ecn; /* RFC3168 support */
116 u16 max_df_size; /* largest frag with DF set seen */
117 int iif;
118 unsigned int rid;
119 struct inet_peer *peer;
120 };
121
122 static u8 ip4_frag_ecn(u8 tos)
123 {
124 return 1 << (tos & INET_ECN_MASK);
125 }
126
127 static struct inet_frags ip4_frags;
128
129 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
130 struct sk_buff *prev_tail, struct net_device *dev);
131
132
133 static void ip4_frag_init(struct inet_frag_queue *q, const void *a)
134 {
135 struct ipq *qp = container_of(q, struct ipq, q);
136 struct netns_ipv4 *ipv4 = container_of(q->net, struct netns_ipv4,
137 frags);
138 struct net *net = container_of(ipv4, struct net, ipv4);
139
140 const struct frag_v4_compare_key *key = a;
141
142 q->key.v4 = *key;
143 qp->ecn = 0;
144 qp->peer = q->net->max_dist ?
145 inet_getpeer_v4(net->ipv4.peers, key->saddr, key->vif, 1) :
146 NULL;
147 }
148
149 static void ip4_frag_free(struct inet_frag_queue *q)
150 {
151 struct ipq *qp;
152
153 qp = container_of(q, struct ipq, q);
154 if (qp->peer)
155 inet_putpeer(qp->peer);
156 }
157
158
159 /* Destruction primitives. */
160
161 static void ipq_put(struct ipq *ipq)
162 {
163 inet_frag_put(&ipq->q);
164 }
165
166 /* Kill ipq entry. It is not destroyed immediately,
167 * because caller (and someone more) holds reference count.
168 */
169 static void ipq_kill(struct ipq *ipq)
170 {
171 inet_frag_kill(&ipq->q);
172 }
173
174 static bool frag_expire_skip_icmp(u32 user)
175 {
176 return user == IP_DEFRAG_AF_PACKET ||
177 ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_IN,
178 __IP_DEFRAG_CONNTRACK_IN_END) ||
179 ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_BRIDGE_IN,
180 __IP_DEFRAG_CONNTRACK_BRIDGE_IN);
181 }
182
183 /*
184 * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
185 */
186 static void ip_expire(struct timer_list *t)
187 {
188 struct inet_frag_queue *frag = from_timer(frag, t, timer);
189 const struct iphdr *iph;
190 struct sk_buff *head = NULL;
191 struct net *net;
192 struct ipq *qp;
193 int err;
194
195 qp = container_of(frag, struct ipq, q);
196 net = container_of(qp->q.net, struct net, ipv4.frags);
197
198 rcu_read_lock();
199 spin_lock(&qp->q.lock);
200
201 if (qp->q.flags & INET_FRAG_COMPLETE)
202 goto out;
203
204 ipq_kill(qp);
205 __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
206 __IP_INC_STATS(net, IPSTATS_MIB_REASMTIMEOUT);
207
208 if (!(qp->q.flags & INET_FRAG_FIRST_IN))
209 goto out;
210
211 /* sk_buff::dev and sk_buff::rbnode are unionized. So we
212 * pull the head out of the tree in order to be able to
213 * deal with head->dev.
214 */
215 if (qp->q.fragments) {
216 head = qp->q.fragments;
217 qp->q.fragments = head->next;
218 } else {
219 head = skb_rb_first(&qp->q.rb_fragments);
220 if (!head)
221 goto out;
222 if (FRAG_CB(head)->next_frag)
223 rb_replace_node(&head->rbnode,
224 &FRAG_CB(head)->next_frag->rbnode,
225 &qp->q.rb_fragments);
226 else
227 rb_erase(&head->rbnode, &qp->q.rb_fragments);
228 memset(&head->rbnode, 0, sizeof(head->rbnode));
229 barrier();
230 }
231 if (head == qp->q.fragments_tail)
232 qp->q.fragments_tail = NULL;
233
234 sub_frag_mem_limit(qp->q.net, head->truesize);
235
236 head->dev = dev_get_by_index_rcu(net, qp->iif);
237 if (!head->dev)
238 goto out;
239
240
241 /* skb has no dst, perform route lookup again */
242 iph = ip_hdr(head);
243 err = ip_route_input_noref(head, iph->daddr, iph->saddr,
244 iph->tos, head->dev);
245 if (err)
246 goto out;
247
248 /* Only an end host needs to send an ICMP
249 * "Fragment Reassembly Timeout" message, per RFC792.
250 */
251 if (frag_expire_skip_icmp(qp->q.key.v4.user) &&
252 (skb_rtable(head)->rt_type != RTN_LOCAL))
253 goto out;
254
255 spin_unlock(&qp->q.lock);
256 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
257 goto out_rcu_unlock;
258
259 out:
260 spin_unlock(&qp->q.lock);
261 out_rcu_unlock:
262 rcu_read_unlock();
263 kfree_skb(head);
264 ipq_put(qp);
265 }
266
267 /* Find the correct entry in the "incomplete datagrams" queue for
268 * this IP datagram, and create new one, if nothing is found.
269 */
270 static struct ipq *ip_find(struct net *net, struct iphdr *iph,
271 u32 user, int vif)
272 {
273 struct frag_v4_compare_key key = {
274 .saddr = iph->saddr,
275 .daddr = iph->daddr,
276 .user = user,
277 .vif = vif,
278 .id = iph->id,
279 .protocol = iph->protocol,
280 };
281 struct inet_frag_queue *q;
282
283 q = inet_frag_find(&net->ipv4.frags, &key);
284 if (!q)
285 return NULL;
286
287 return container_of(q, struct ipq, q);
288 }
289
290 /* Is the fragment too far ahead to be part of ipq? */
291 static int ip_frag_too_far(struct ipq *qp)
292 {
293 struct inet_peer *peer = qp->peer;
294 unsigned int max = qp->q.net->max_dist;
295 unsigned int start, end;
296
297 int rc;
298
299 if (!peer || !max)
300 return 0;
301
302 start = qp->rid;
303 end = atomic_inc_return(&peer->rid);
304 qp->rid = end;
305
306 rc = qp->q.fragments_tail && (end - start) > max;
307
308 if (rc) {
309 struct net *net;
310
311 net = container_of(qp->q.net, struct net, ipv4.frags);
312 __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
313 }
314
315 return rc;
316 }
317
318 static int ip_frag_reinit(struct ipq *qp)
319 {
320 unsigned int sum_truesize = 0;
321
322 if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
323 refcount_inc(&qp->q.refcnt);
324 return -ETIMEDOUT;
325 }
326
327 sum_truesize = inet_frag_rbtree_purge(&qp->q.rb_fragments);
328 sub_frag_mem_limit(qp->q.net, sum_truesize);
329
330 qp->q.flags = 0;
331 qp->q.len = 0;
332 qp->q.meat = 0;
333 qp->q.fragments = NULL;
334 qp->q.rb_fragments = RB_ROOT;
335 qp->q.fragments_tail = NULL;
336 qp->q.last_run_head = NULL;
337 qp->iif = 0;
338 qp->ecn = 0;
339
340 return 0;
341 }
342
343 /* Add new segment to existing queue. */
344 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
345 {
346 struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
347 struct rb_node **rbn, *parent;
348 struct sk_buff *skb1, *prev_tail;
349 struct net_device *dev;
350 unsigned int fragsize;
351 int flags, offset;
352 int ihl, end;
353 int err = -ENOENT;
354 u8 ecn;
355
356 if (qp->q.flags & INET_FRAG_COMPLETE)
357 goto err;
358
359 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
360 unlikely(ip_frag_too_far(qp)) &&
361 unlikely(err = ip_frag_reinit(qp))) {
362 ipq_kill(qp);
363 goto err;
364 }
365
366 ecn = ip4_frag_ecn(ip_hdr(skb)->tos);
367 offset = ntohs(ip_hdr(skb)->frag_off);
368 flags = offset & ~IP_OFFSET;
369 offset &= IP_OFFSET;
370 offset <<= 3; /* offset is in 8-byte chunks */
371 ihl = ip_hdrlen(skb);
372
373 /* Determine the position of this fragment. */
374 end = offset + skb->len - skb_network_offset(skb) - ihl;
375 err = -EINVAL;
376
377 /* Is this the final fragment? */
378 if ((flags & IP_MF) == 0) {
379 /* If we already have some bits beyond end
380 * or have different end, the segment is corrupted.
381 */
382 if (end < qp->q.len ||
383 ((qp->q.flags & INET_FRAG_LAST_IN) && end != qp->q.len))
384 goto discard_qp;
385 qp->q.flags |= INET_FRAG_LAST_IN;
386 qp->q.len = end;
387 } else {
388 if (end&7) {
389 end &= ~7;
390 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
391 skb->ip_summed = CHECKSUM_NONE;
392 }
393 if (end > qp->q.len) {
394 /* Some bits beyond end -> corruption. */
395 if (qp->q.flags & INET_FRAG_LAST_IN)
396 goto discard_qp;
397 qp->q.len = end;
398 }
399 }
400 if (end == offset)
401 goto discard_qp;
402
403 err = -ENOMEM;
404 if (!pskb_pull(skb, skb_network_offset(skb) + ihl))
405 goto discard_qp;
406
407 err = pskb_trim_rcsum(skb, end - offset);
408 if (err)
409 goto discard_qp;
410
411 /* Note : skb->rbnode and skb->dev share the same location. */
412 dev = skb->dev;
413 /* Makes sure compiler wont do silly aliasing games */
414 barrier();
415
416 /* RFC5722, Section 4, amended by Errata ID : 3089
417 * When reassembling an IPv6 datagram, if
418 * one or more its constituent fragments is determined to be an
419 * overlapping fragment, the entire datagram (and any constituent
420 * fragments) MUST be silently discarded.
421 *
422 * We do the same here for IPv4 (and increment an snmp counter).
423 */
424
425 err = -EINVAL;
426 /* Find out where to put this fragment. */
427 prev_tail = qp->q.fragments_tail;
428 if (!prev_tail)
429 ip4_frag_create_run(&qp->q, skb); /* First fragment. */
430 else if (prev_tail->ip_defrag_offset + prev_tail->len < end) {
431 /* This is the common case: skb goes to the end. */
432 /* Detect and discard overlaps. */
433 if (offset < prev_tail->ip_defrag_offset + prev_tail->len)
434 goto overlap;
435 if (offset == prev_tail->ip_defrag_offset + prev_tail->len)
436 ip4_frag_append_to_last_run(&qp->q, skb);
437 else
438 ip4_frag_create_run(&qp->q, skb);
439 } else {
440 /* Binary search. Note that skb can become the first fragment,
441 * but not the last (covered above).
442 */
443 rbn = &qp->q.rb_fragments.rb_node;
444 do {
445 parent = *rbn;
446 skb1 = rb_to_skb(parent);
447 if (end <= skb1->ip_defrag_offset)
448 rbn = &parent->rb_left;
449 else if (offset >= skb1->ip_defrag_offset +
450 FRAG_CB(skb1)->frag_run_len)
451 rbn = &parent->rb_right;
452 else /* Found an overlap with skb1. */
453 goto overlap;
454 } while (*rbn);
455 /* Here we have parent properly set, and rbn pointing to
456 * one of its NULL left/right children. Insert skb.
457 */
458 ip4_frag_init_run(skb);
459 rb_link_node(&skb->rbnode, parent, rbn);
460 rb_insert_color(&skb->rbnode, &qp->q.rb_fragments);
461 }
462
463 if (dev)
464 qp->iif = dev->ifindex;
465 skb->ip_defrag_offset = offset;
466
467 qp->q.stamp = skb->tstamp;
468 qp->q.meat += skb->len;
469 qp->ecn |= ecn;
470 add_frag_mem_limit(qp->q.net, skb->truesize);
471 if (offset == 0)
472 qp->q.flags |= INET_FRAG_FIRST_IN;
473
474 fragsize = skb->len + ihl;
475
476 if (fragsize > qp->q.max_size)
477 qp->q.max_size = fragsize;
478
479 if (ip_hdr(skb)->frag_off & htons(IP_DF) &&
480 fragsize > qp->max_df_size)
481 qp->max_df_size = fragsize;
482
483 if (qp->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
484 qp->q.meat == qp->q.len) {
485 unsigned long orefdst = skb->_skb_refdst;
486
487 skb->_skb_refdst = 0UL;
488 err = ip_frag_reasm(qp, skb, prev_tail, dev);
489 skb->_skb_refdst = orefdst;
490 if (err)
491 inet_frag_kill(&qp->q);
492 return err;
493 }
494
495 skb_dst_drop(skb);
496 return -EINPROGRESS;
497
498 overlap:
499 __IP_INC_STATS(net, IPSTATS_MIB_REASM_OVERLAPS);
500 discard_qp:
501 inet_frag_kill(&qp->q);
502 err:
503 kfree_skb(skb);
504 return err;
505 }
506
507 /* Build a new IP datagram from all its fragments. */
508 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
509 struct sk_buff *prev_tail, struct net_device *dev)
510 {
511 struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
512 struct iphdr *iph;
513 struct sk_buff *fp, *head = skb_rb_first(&qp->q.rb_fragments);
514 struct sk_buff **nextp; /* To build frag_list. */
515 struct rb_node *rbn;
516 int len;
517 int ihlen;
518 int err;
519 u8 ecn;
520
521 ipq_kill(qp);
522
523 ecn = ip_frag_ecn_table[qp->ecn];
524 if (unlikely(ecn == 0xff)) {
525 err = -EINVAL;
526 goto out_fail;
527 }
528 /* Make the one we just received the head. */
529 if (head != skb) {
530 fp = skb_clone(skb, GFP_ATOMIC);
531 if (!fp)
532 goto out_nomem;
533 FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
534 if (RB_EMPTY_NODE(&skb->rbnode))
535 FRAG_CB(prev_tail)->next_frag = fp;
536 else
537 rb_replace_node(&skb->rbnode, &fp->rbnode,
538 &qp->q.rb_fragments);
539 if (qp->q.fragments_tail == skb)
540 qp->q.fragments_tail = fp;
541 skb_morph(skb, head);
542 FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
543 rb_replace_node(&head->rbnode, &skb->rbnode,
544 &qp->q.rb_fragments);
545 consume_skb(head);
546 head = skb;
547 }
548
549 WARN_ON(head->ip_defrag_offset != 0);
550
551 /* Allocate a new buffer for the datagram. */
552 ihlen = ip_hdrlen(head);
553 len = ihlen + qp->q.len;
554
555 err = -E2BIG;
556 if (len > 65535)
557 goto out_oversize;
558
559 /* Head of list must not be cloned. */
560 if (skb_unclone(head, GFP_ATOMIC))
561 goto out_nomem;
562
563 /* If the first fragment is fragmented itself, we split
564 * it to two chunks: the first with data and paged part
565 * and the second, holding only fragments. */
566 if (skb_has_frag_list(head)) {
567 struct sk_buff *clone;
568 int i, plen = 0;
569
570 clone = alloc_skb(0, GFP_ATOMIC);
571 if (!clone)
572 goto out_nomem;
573 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
574 skb_frag_list_init(head);
575 for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
576 plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
577 clone->len = clone->data_len = head->data_len - plen;
578 head->truesize += clone->truesize;
579 clone->csum = 0;
580 clone->ip_summed = head->ip_summed;
581 add_frag_mem_limit(qp->q.net, clone->truesize);
582 skb_shinfo(head)->frag_list = clone;
583 nextp = &clone->next;
584 } else {
585 nextp = &skb_shinfo(head)->frag_list;
586 }
587
588 skb_push(head, head->data - skb_network_header(head));
589
590 /* Traverse the tree in order, to build frag_list. */
591 fp = FRAG_CB(head)->next_frag;
592 rbn = rb_next(&head->rbnode);
593 rb_erase(&head->rbnode, &qp->q.rb_fragments);
594 while (rbn || fp) {
595 /* fp points to the next sk_buff in the current run;
596 * rbn points to the next run.
597 */
598 /* Go through the current run. */
599 while (fp) {
600 *nextp = fp;
601 nextp = &fp->next;
602 fp->prev = NULL;
603 memset(&fp->rbnode, 0, sizeof(fp->rbnode));
604 fp->sk = NULL;
605 head->data_len += fp->len;
606 head->len += fp->len;
607 if (head->ip_summed != fp->ip_summed)
608 head->ip_summed = CHECKSUM_NONE;
609 else if (head->ip_summed == CHECKSUM_COMPLETE)
610 head->csum = csum_add(head->csum, fp->csum);
611 head->truesize += fp->truesize;
612 fp = FRAG_CB(fp)->next_frag;
613 }
614 /* Move to the next run. */
615 if (rbn) {
616 struct rb_node *rbnext = rb_next(rbn);
617
618 fp = rb_to_skb(rbn);
619 rb_erase(rbn, &qp->q.rb_fragments);
620 rbn = rbnext;
621 }
622 }
623 sub_frag_mem_limit(qp->q.net, head->truesize);
624
625 *nextp = NULL;
626 skb_mark_not_on_list(head);
627 head->prev = NULL;
628 head->dev = dev;
629 head->tstamp = qp->q.stamp;
630 IPCB(head)->frag_max_size = max(qp->max_df_size, qp->q.max_size);
631
632 iph = ip_hdr(head);
633 iph->tot_len = htons(len);
634 iph->tos |= ecn;
635
636 /* When we set IP_DF on a refragmented skb we must also force a
637 * call to ip_fragment to avoid forwarding a DF-skb of size s while
638 * original sender only sent fragments of size f (where f < s).
639 *
640 * We only set DF/IPSKB_FRAG_PMTU if such DF fragment was the largest
641 * frag seen to avoid sending tiny DF-fragments in case skb was built
642 * from one very small df-fragment and one large non-df frag.
643 */
644 if (qp->max_df_size == qp->q.max_size) {
645 IPCB(head)->flags |= IPSKB_FRAG_PMTU;
646 iph->frag_off = htons(IP_DF);
647 } else {
648 iph->frag_off = 0;
649 }
650
651 ip_send_check(iph);
652
653 __IP_INC_STATS(net, IPSTATS_MIB_REASMOKS);
654 qp->q.fragments = NULL;
655 qp->q.rb_fragments = RB_ROOT;
656 qp->q.fragments_tail = NULL;
657 qp->q.last_run_head = NULL;
658 return 0;
659
660 out_nomem:
661 net_dbg_ratelimited("queue_glue: no memory for gluing queue %p\n", qp);
662 err = -ENOMEM;
663 goto out_fail;
664 out_oversize:
665 net_info_ratelimited("Oversized IP packet from %pI4\n", &qp->q.key.v4.saddr);
666 out_fail:
667 __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
668 return err;
669 }
670
671 /* Process an incoming IP datagram fragment. */
672 int ip_defrag(struct net *net, struct sk_buff *skb, u32 user)
673 {
674 struct net_device *dev = skb->dev ? : skb_dst(skb)->dev;
675 int vif = l3mdev_master_ifindex_rcu(dev);
676 struct ipq *qp;
677
678 __IP_INC_STATS(net, IPSTATS_MIB_REASMREQDS);
679 skb_orphan(skb);
680
681 /* Lookup (or create) queue header */
682 qp = ip_find(net, ip_hdr(skb), user, vif);
683 if (qp) {
684 int ret;
685
686 spin_lock(&qp->q.lock);
687
688 ret = ip_frag_queue(qp, skb);
689
690 spin_unlock(&qp->q.lock);
691 ipq_put(qp);
692 return ret;
693 }
694
695 __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
696 kfree_skb(skb);
697 return -ENOMEM;
698 }
699 EXPORT_SYMBOL(ip_defrag);
700
701 struct sk_buff *ip_check_defrag(struct net *net, struct sk_buff *skb, u32 user)
702 {
703 struct iphdr iph;
704 int netoff;
705 u32 len;
706
707 if (skb->protocol != htons(ETH_P_IP))
708 return skb;
709
710 netoff = skb_network_offset(skb);
711
712 if (skb_copy_bits(skb, netoff, &iph, sizeof(iph)) < 0)
713 return skb;
714
715 if (iph.ihl < 5 || iph.version != 4)
716 return skb;
717
718 len = ntohs(iph.tot_len);
719 if (skb->len < netoff + len || len < (iph.ihl * 4))
720 return skb;
721
722 if (ip_is_fragment(&iph)) {
723 skb = skb_share_check(skb, GFP_ATOMIC);
724 if (skb) {
725 if (!pskb_may_pull(skb, netoff + iph.ihl * 4)) {
726 kfree_skb(skb);
727 return NULL;
728 }
729 if (pskb_trim_rcsum(skb, netoff + len)) {
730 kfree_skb(skb);
731 return NULL;
732 }
733 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
734 if (ip_defrag(net, skb, user))
735 return NULL;
736 skb_clear_hash(skb);
737 }
738 }
739 return skb;
740 }
741 EXPORT_SYMBOL(ip_check_defrag);
742
743 unsigned int inet_frag_rbtree_purge(struct rb_root *root)
744 {
745 struct rb_node *p = rb_first(root);
746 unsigned int sum = 0;
747
748 while (p) {
749 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
750
751 p = rb_next(p);
752 rb_erase(&skb->rbnode, root);
753 while (skb) {
754 struct sk_buff *next = FRAG_CB(skb)->next_frag;
755
756 sum += skb->truesize;
757 kfree_skb(skb);
758 skb = next;
759 }
760 }
761 return sum;
762 }
763 EXPORT_SYMBOL(inet_frag_rbtree_purge);
764
765 #ifdef CONFIG_SYSCTL
766 static int dist_min;
767
768 static struct ctl_table ip4_frags_ns_ctl_table[] = {
769 {
770 .procname = "ipfrag_high_thresh",
771 .data = &init_net.ipv4.frags.high_thresh,
772 .maxlen = sizeof(unsigned long),
773 .mode = 0644,
774 .proc_handler = proc_doulongvec_minmax,
775 .extra1 = &init_net.ipv4.frags.low_thresh
776 },
777 {
778 .procname = "ipfrag_low_thresh",
779 .data = &init_net.ipv4.frags.low_thresh,
780 .maxlen = sizeof(unsigned long),
781 .mode = 0644,
782 .proc_handler = proc_doulongvec_minmax,
783 .extra2 = &init_net.ipv4.frags.high_thresh
784 },
785 {
786 .procname = "ipfrag_time",
787 .data = &init_net.ipv4.frags.timeout,
788 .maxlen = sizeof(int),
789 .mode = 0644,
790 .proc_handler = proc_dointvec_jiffies,
791 },
792 {
793 .procname = "ipfrag_max_dist",
794 .data = &init_net.ipv4.frags.max_dist,
795 .maxlen = sizeof(int),
796 .mode = 0644,
797 .proc_handler = proc_dointvec_minmax,
798 .extra1 = &dist_min,
799 },
800 { }
801 };
802
803 /* secret interval has been deprecated */
804 static int ip4_frags_secret_interval_unused;
805 static struct ctl_table ip4_frags_ctl_table[] = {
806 {
807 .procname = "ipfrag_secret_interval",
808 .data = &ip4_frags_secret_interval_unused,
809 .maxlen = sizeof(int),
810 .mode = 0644,
811 .proc_handler = proc_dointvec_jiffies,
812 },
813 { }
814 };
815
816 static int __net_init ip4_frags_ns_ctl_register(struct net *net)
817 {
818 struct ctl_table *table;
819 struct ctl_table_header *hdr;
820
821 table = ip4_frags_ns_ctl_table;
822 if (!net_eq(net, &init_net)) {
823 table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
824 if (!table)
825 goto err_alloc;
826
827 table[0].data = &net->ipv4.frags.high_thresh;
828 table[0].extra1 = &net->ipv4.frags.low_thresh;
829 table[1].data = &net->ipv4.frags.low_thresh;
830 table[1].extra2 = &net->ipv4.frags.high_thresh;
831 table[2].data = &net->ipv4.frags.timeout;
832 table[3].data = &net->ipv4.frags.max_dist;
833 }
834
835 hdr = register_net_sysctl(net, "net/ipv4", table);
836 if (!hdr)
837 goto err_reg;
838
839 net->ipv4.frags_hdr = hdr;
840 return 0;
841
842 err_reg:
843 if (!net_eq(net, &init_net))
844 kfree(table);
845 err_alloc:
846 return -ENOMEM;
847 }
848
849 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
850 {
851 struct ctl_table *table;
852
853 table = net->ipv4.frags_hdr->ctl_table_arg;
854 unregister_net_sysctl_table(net->ipv4.frags_hdr);
855 kfree(table);
856 }
857
858 static void __init ip4_frags_ctl_register(void)
859 {
860 register_net_sysctl(&init_net, "net/ipv4", ip4_frags_ctl_table);
861 }
862 #else
863 static int ip4_frags_ns_ctl_register(struct net *net)
864 {
865 return 0;
866 }
867
868 static void ip4_frags_ns_ctl_unregister(struct net *net)
869 {
870 }
871
872 static void __init ip4_frags_ctl_register(void)
873 {
874 }
875 #endif
876
877 static int __net_init ipv4_frags_init_net(struct net *net)
878 {
879 int res;
880
881 /* Fragment cache limits.
882 *
883 * The fragment memory accounting code, (tries to) account for
884 * the real memory usage, by measuring both the size of frag
885 * queue struct (inet_frag_queue (ipv4:ipq/ipv6:frag_queue))
886 * and the SKB's truesize.
887 *
888 * A 64K fragment consumes 129736 bytes (44*2944)+200
889 * (1500 truesize == 2944, sizeof(struct ipq) == 200)
890 *
891 * We will commit 4MB at one time. Should we cross that limit
892 * we will prune down to 3MB, making room for approx 8 big 64K
893 * fragments 8x128k.
894 */
895 net->ipv4.frags.high_thresh = 4 * 1024 * 1024;
896 net->ipv4.frags.low_thresh = 3 * 1024 * 1024;
897 /*
898 * Important NOTE! Fragment queue must be destroyed before MSL expires.
899 * RFC791 is wrong proposing to prolongate timer each fragment arrival
900 * by TTL.
901 */
902 net->ipv4.frags.timeout = IP_FRAG_TIME;
903
904 net->ipv4.frags.max_dist = 64;
905 net->ipv4.frags.f = &ip4_frags;
906
907 res = inet_frags_init_net(&net->ipv4.frags);
908 if (res < 0)
909 return res;
910 res = ip4_frags_ns_ctl_register(net);
911 if (res < 0)
912 inet_frags_exit_net(&net->ipv4.frags);
913 return res;
914 }
915
916 static void __net_exit ipv4_frags_exit_net(struct net *net)
917 {
918 ip4_frags_ns_ctl_unregister(net);
919 inet_frags_exit_net(&net->ipv4.frags);
920 }
921
922 static struct pernet_operations ip4_frags_ops = {
923 .init = ipv4_frags_init_net,
924 .exit = ipv4_frags_exit_net,
925 };
926
927
928 static u32 ip4_key_hashfn(const void *data, u32 len, u32 seed)
929 {
930 return jhash2(data,
931 sizeof(struct frag_v4_compare_key) / sizeof(u32), seed);
932 }
933
934 static u32 ip4_obj_hashfn(const void *data, u32 len, u32 seed)
935 {
936 const struct inet_frag_queue *fq = data;
937
938 return jhash2((const u32 *)&fq->key.v4,
939 sizeof(struct frag_v4_compare_key) / sizeof(u32), seed);
940 }
941
942 static int ip4_obj_cmpfn(struct rhashtable_compare_arg *arg, const void *ptr)
943 {
944 const struct frag_v4_compare_key *key = arg->key;
945 const struct inet_frag_queue *fq = ptr;
946
947 return !!memcmp(&fq->key, key, sizeof(*key));
948 }
949
950 static const struct rhashtable_params ip4_rhash_params = {
951 .head_offset = offsetof(struct inet_frag_queue, node),
952 .key_offset = offsetof(struct inet_frag_queue, key),
953 .key_len = sizeof(struct frag_v4_compare_key),
954 .hashfn = ip4_key_hashfn,
955 .obj_hashfn = ip4_obj_hashfn,
956 .obj_cmpfn = ip4_obj_cmpfn,
957 .automatic_shrinking = true,
958 };
959
960 void __init ipfrag_init(void)
961 {
962 ip4_frags.constructor = ip4_frag_init;
963 ip4_frags.destructor = ip4_frag_free;
964 ip4_frags.qsize = sizeof(struct ipq);
965 ip4_frags.frag_expire = ip_expire;
966 ip4_frags.frags_cache_name = ip_frag_cache_name;
967 ip4_frags.rhash_params = ip4_rhash_params;
968 if (inet_frags_init(&ip4_frags))
969 panic("IP: failed to allocate ip4_frags cache\n");
970 ip4_frags_ctl_register();
971 register_pernet_subsys(&ip4_frags_ops);
972 }