]> git.ipfire.org Git - people/ms/linux.git/blob - net/ipv4/ip_output.c
treewide: Add SPDX license identifier for missed files
[people/ms/linux.git] / net / ipv4 / ip_output.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The Internet Protocol (IP) output module.
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Donald Becker, <becker@super.org>
12 * Alan Cox, <Alan.Cox@linux.org>
13 * Richard Underwood
14 * Stefan Becker, <stefanb@yello.ping.de>
15 * Jorge Cwik, <jorge@laser.satlink.net>
16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 *
19 * See ip_input.c for original log
20 *
21 * Fixes:
22 * Alan Cox : Missing nonblock feature in ip_build_xmit.
23 * Mike Kilburn : htons() missing in ip_build_xmit.
24 * Bradford Johnson: Fix faulty handling of some frames when
25 * no route is found.
26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
27 * (in case if packet not accepted by
28 * output firewall rules)
29 * Mike McLagan : Routing by source
30 * Alexey Kuznetsov: use new route cache
31 * Andi Kleen: Fix broken PMTU recovery and remove
32 * some redundant tests.
33 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
34 * Andi Kleen : Replace ip_reply with ip_send_reply.
35 * Andi Kleen : Split fast and slow ip_build_xmit path
36 * for decreased register pressure on x86
37 * and more readibility.
38 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
39 * silently drop skb instead of failing with -EPERM.
40 * Detlev Wengorz : Copy protocol for fragments.
41 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * datagrams.
43 * Hirokazu Takahashi: sendfile() on UDP works now.
44 */
45
46 #include <linux/uaccess.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
55
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
65
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <net/lwtunnel.h>
78 #include <linux/bpf-cgroup.h>
79 #include <linux/igmp.h>
80 #include <linux/netfilter_ipv4.h>
81 #include <linux/netfilter_bridge.h>
82 #include <linux/netlink.h>
83 #include <linux/tcp.h>
84
85 static int
86 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
87 unsigned int mtu,
88 int (*output)(struct net *, struct sock *, struct sk_buff *));
89
90 /* Generate a checksum for an outgoing IP datagram. */
91 void ip_send_check(struct iphdr *iph)
92 {
93 iph->check = 0;
94 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
95 }
96 EXPORT_SYMBOL(ip_send_check);
97
98 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
99 {
100 struct iphdr *iph = ip_hdr(skb);
101
102 iph->tot_len = htons(skb->len);
103 ip_send_check(iph);
104
105 /* if egress device is enslaved to an L3 master device pass the
106 * skb to its handler for processing
107 */
108 skb = l3mdev_ip_out(sk, skb);
109 if (unlikely(!skb))
110 return 0;
111
112 skb->protocol = htons(ETH_P_IP);
113
114 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
115 net, sk, skb, NULL, skb_dst(skb)->dev,
116 dst_output);
117 }
118
119 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
120 {
121 int err;
122
123 err = __ip_local_out(net, sk, skb);
124 if (likely(err == 1))
125 err = dst_output(net, sk, skb);
126
127 return err;
128 }
129 EXPORT_SYMBOL_GPL(ip_local_out);
130
131 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
132 {
133 int ttl = inet->uc_ttl;
134
135 if (ttl < 0)
136 ttl = ip4_dst_hoplimit(dst);
137 return ttl;
138 }
139
140 /*
141 * Add an ip header to a skbuff and send it out.
142 *
143 */
144 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
145 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
146 {
147 struct inet_sock *inet = inet_sk(sk);
148 struct rtable *rt = skb_rtable(skb);
149 struct net *net = sock_net(sk);
150 struct iphdr *iph;
151
152 /* Build the IP header. */
153 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
154 skb_reset_network_header(skb);
155 iph = ip_hdr(skb);
156 iph->version = 4;
157 iph->ihl = 5;
158 iph->tos = inet->tos;
159 iph->ttl = ip_select_ttl(inet, &rt->dst);
160 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
161 iph->saddr = saddr;
162 iph->protocol = sk->sk_protocol;
163 if (ip_dont_fragment(sk, &rt->dst)) {
164 iph->frag_off = htons(IP_DF);
165 iph->id = 0;
166 } else {
167 iph->frag_off = 0;
168 __ip_select_ident(net, iph, 1);
169 }
170
171 if (opt && opt->opt.optlen) {
172 iph->ihl += opt->opt.optlen>>2;
173 ip_options_build(skb, &opt->opt, daddr, rt, 0);
174 }
175
176 skb->priority = sk->sk_priority;
177 if (!skb->mark)
178 skb->mark = sk->sk_mark;
179
180 /* Send it out. */
181 return ip_local_out(net, skb->sk, skb);
182 }
183 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
184
185 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
186 {
187 struct dst_entry *dst = skb_dst(skb);
188 struct rtable *rt = (struct rtable *)dst;
189 struct net_device *dev = dst->dev;
190 unsigned int hh_len = LL_RESERVED_SPACE(dev);
191 struct neighbour *neigh;
192 bool is_v6gw = false;
193
194 if (rt->rt_type == RTN_MULTICAST) {
195 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
196 } else if (rt->rt_type == RTN_BROADCAST)
197 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
198
199 /* Be paranoid, rather than too clever. */
200 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
201 struct sk_buff *skb2;
202
203 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
204 if (!skb2) {
205 kfree_skb(skb);
206 return -ENOMEM;
207 }
208 if (skb->sk)
209 skb_set_owner_w(skb2, skb->sk);
210 consume_skb(skb);
211 skb = skb2;
212 }
213
214 if (lwtunnel_xmit_redirect(dst->lwtstate)) {
215 int res = lwtunnel_xmit(skb);
216
217 if (res < 0 || res == LWTUNNEL_XMIT_DONE)
218 return res;
219 }
220
221 rcu_read_lock_bh();
222 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
223 if (!IS_ERR(neigh)) {
224 int res;
225
226 sock_confirm_neigh(skb, neigh);
227 /* if crossing protocols, can not use the cached header */
228 res = neigh_output(neigh, skb, is_v6gw);
229 rcu_read_unlock_bh();
230 return res;
231 }
232 rcu_read_unlock_bh();
233
234 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
235 __func__);
236 kfree_skb(skb);
237 return -EINVAL;
238 }
239
240 static int ip_finish_output_gso(struct net *net, struct sock *sk,
241 struct sk_buff *skb, unsigned int mtu)
242 {
243 netdev_features_t features;
244 struct sk_buff *segs;
245 int ret = 0;
246
247 /* common case: seglen is <= mtu
248 */
249 if (skb_gso_validate_network_len(skb, mtu))
250 return ip_finish_output2(net, sk, skb);
251
252 /* Slowpath - GSO segment length exceeds the egress MTU.
253 *
254 * This can happen in several cases:
255 * - Forwarding of a TCP GRO skb, when DF flag is not set.
256 * - Forwarding of an skb that arrived on a virtualization interface
257 * (virtio-net/vhost/tap) with TSO/GSO size set by other network
258 * stack.
259 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
260 * interface with a smaller MTU.
261 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is
262 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an
263 * insufficent MTU.
264 */
265 features = netif_skb_features(skb);
266 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
267 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
268 if (IS_ERR_OR_NULL(segs)) {
269 kfree_skb(skb);
270 return -ENOMEM;
271 }
272
273 consume_skb(skb);
274
275 do {
276 struct sk_buff *nskb = segs->next;
277 int err;
278
279 skb_mark_not_on_list(segs);
280 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
281
282 if (err && ret == 0)
283 ret = err;
284 segs = nskb;
285 } while (segs);
286
287 return ret;
288 }
289
290 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
291 {
292 unsigned int mtu;
293 int ret;
294
295 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
296 if (ret) {
297 kfree_skb(skb);
298 return ret;
299 }
300
301 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
302 /* Policy lookup after SNAT yielded a new policy */
303 if (skb_dst(skb)->xfrm) {
304 IPCB(skb)->flags |= IPSKB_REROUTED;
305 return dst_output(net, sk, skb);
306 }
307 #endif
308 mtu = ip_skb_dst_mtu(sk, skb);
309 if (skb_is_gso(skb))
310 return ip_finish_output_gso(net, sk, skb, mtu);
311
312 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
313 return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
314
315 return ip_finish_output2(net, sk, skb);
316 }
317
318 static int ip_mc_finish_output(struct net *net, struct sock *sk,
319 struct sk_buff *skb)
320 {
321 int ret;
322
323 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
324 if (ret) {
325 kfree_skb(skb);
326 return ret;
327 }
328
329 return dev_loopback_xmit(net, sk, skb);
330 }
331
332 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
333 {
334 struct rtable *rt = skb_rtable(skb);
335 struct net_device *dev = rt->dst.dev;
336
337 /*
338 * If the indicated interface is up and running, send the packet.
339 */
340 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
341
342 skb->dev = dev;
343 skb->protocol = htons(ETH_P_IP);
344
345 /*
346 * Multicasts are looped back for other local users
347 */
348
349 if (rt->rt_flags&RTCF_MULTICAST) {
350 if (sk_mc_loop(sk)
351 #ifdef CONFIG_IP_MROUTE
352 /* Small optimization: do not loopback not local frames,
353 which returned after forwarding; they will be dropped
354 by ip_mr_input in any case.
355 Note, that local frames are looped back to be delivered
356 to local recipients.
357
358 This check is duplicated in ip_mr_input at the moment.
359 */
360 &&
361 ((rt->rt_flags & RTCF_LOCAL) ||
362 !(IPCB(skb)->flags & IPSKB_FORWARDED))
363 #endif
364 ) {
365 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
366 if (newskb)
367 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
368 net, sk, newskb, NULL, newskb->dev,
369 ip_mc_finish_output);
370 }
371
372 /* Multicasts with ttl 0 must not go beyond the host */
373
374 if (ip_hdr(skb)->ttl == 0) {
375 kfree_skb(skb);
376 return 0;
377 }
378 }
379
380 if (rt->rt_flags&RTCF_BROADCAST) {
381 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
382 if (newskb)
383 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
384 net, sk, newskb, NULL, newskb->dev,
385 ip_mc_finish_output);
386 }
387
388 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
389 net, sk, skb, NULL, skb->dev,
390 ip_finish_output,
391 !(IPCB(skb)->flags & IPSKB_REROUTED));
392 }
393
394 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
395 {
396 struct net_device *dev = skb_dst(skb)->dev;
397
398 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
399
400 skb->dev = dev;
401 skb->protocol = htons(ETH_P_IP);
402
403 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
404 net, sk, skb, NULL, dev,
405 ip_finish_output,
406 !(IPCB(skb)->flags & IPSKB_REROUTED));
407 }
408
409 /*
410 * copy saddr and daddr, possibly using 64bit load/stores
411 * Equivalent to :
412 * iph->saddr = fl4->saddr;
413 * iph->daddr = fl4->daddr;
414 */
415 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
416 {
417 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
418 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
419 memcpy(&iph->saddr, &fl4->saddr,
420 sizeof(fl4->saddr) + sizeof(fl4->daddr));
421 }
422
423 /* Note: skb->sk can be different from sk, in case of tunnels */
424 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
425 __u8 tos)
426 {
427 struct inet_sock *inet = inet_sk(sk);
428 struct net *net = sock_net(sk);
429 struct ip_options_rcu *inet_opt;
430 struct flowi4 *fl4;
431 struct rtable *rt;
432 struct iphdr *iph;
433 int res;
434
435 /* Skip all of this if the packet is already routed,
436 * f.e. by something like SCTP.
437 */
438 rcu_read_lock();
439 inet_opt = rcu_dereference(inet->inet_opt);
440 fl4 = &fl->u.ip4;
441 rt = skb_rtable(skb);
442 if (rt)
443 goto packet_routed;
444
445 /* Make sure we can route this packet. */
446 rt = (struct rtable *)__sk_dst_check(sk, 0);
447 if (!rt) {
448 __be32 daddr;
449
450 /* Use correct destination address if we have options. */
451 daddr = inet->inet_daddr;
452 if (inet_opt && inet_opt->opt.srr)
453 daddr = inet_opt->opt.faddr;
454
455 /* If this fails, retransmit mechanism of transport layer will
456 * keep trying until route appears or the connection times
457 * itself out.
458 */
459 rt = ip_route_output_ports(net, fl4, sk,
460 daddr, inet->inet_saddr,
461 inet->inet_dport,
462 inet->inet_sport,
463 sk->sk_protocol,
464 RT_CONN_FLAGS_TOS(sk, tos),
465 sk->sk_bound_dev_if);
466 if (IS_ERR(rt))
467 goto no_route;
468 sk_setup_caps(sk, &rt->dst);
469 }
470 skb_dst_set_noref(skb, &rt->dst);
471
472 packet_routed:
473 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_gw_family)
474 goto no_route;
475
476 /* OK, we know where to send it, allocate and build IP header. */
477 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
478 skb_reset_network_header(skb);
479 iph = ip_hdr(skb);
480 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
481 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
482 iph->frag_off = htons(IP_DF);
483 else
484 iph->frag_off = 0;
485 iph->ttl = ip_select_ttl(inet, &rt->dst);
486 iph->protocol = sk->sk_protocol;
487 ip_copy_addrs(iph, fl4);
488
489 /* Transport layer set skb->h.foo itself. */
490
491 if (inet_opt && inet_opt->opt.optlen) {
492 iph->ihl += inet_opt->opt.optlen >> 2;
493 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
494 }
495
496 ip_select_ident_segs(net, skb, sk,
497 skb_shinfo(skb)->gso_segs ?: 1);
498
499 /* TODO : should we use skb->sk here instead of sk ? */
500 skb->priority = sk->sk_priority;
501 skb->mark = sk->sk_mark;
502
503 res = ip_local_out(net, sk, skb);
504 rcu_read_unlock();
505 return res;
506
507 no_route:
508 rcu_read_unlock();
509 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
510 kfree_skb(skb);
511 return -EHOSTUNREACH;
512 }
513 EXPORT_SYMBOL(__ip_queue_xmit);
514
515 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
516 {
517 to->pkt_type = from->pkt_type;
518 to->priority = from->priority;
519 to->protocol = from->protocol;
520 to->skb_iif = from->skb_iif;
521 skb_dst_drop(to);
522 skb_dst_copy(to, from);
523 to->dev = from->dev;
524 to->mark = from->mark;
525
526 skb_copy_hash(to, from);
527
528 /* Copy the flags to each fragment. */
529 IPCB(to)->flags = IPCB(from)->flags;
530
531 #ifdef CONFIG_NET_SCHED
532 to->tc_index = from->tc_index;
533 #endif
534 nf_copy(to, from);
535 skb_ext_copy(to, from);
536 #if IS_ENABLED(CONFIG_IP_VS)
537 to->ipvs_property = from->ipvs_property;
538 #endif
539 skb_copy_secmark(to, from);
540 }
541
542 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
543 unsigned int mtu,
544 int (*output)(struct net *, struct sock *, struct sk_buff *))
545 {
546 struct iphdr *iph = ip_hdr(skb);
547
548 if ((iph->frag_off & htons(IP_DF)) == 0)
549 return ip_do_fragment(net, sk, skb, output);
550
551 if (unlikely(!skb->ignore_df ||
552 (IPCB(skb)->frag_max_size &&
553 IPCB(skb)->frag_max_size > mtu))) {
554 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
555 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
556 htonl(mtu));
557 kfree_skb(skb);
558 return -EMSGSIZE;
559 }
560
561 return ip_do_fragment(net, sk, skb, output);
562 }
563
564 /*
565 * This IP datagram is too large to be sent in one piece. Break it up into
566 * smaller pieces (each of size equal to IP header plus
567 * a block of the data of the original IP data part) that will yet fit in a
568 * single device frame, and queue such a frame for sending.
569 */
570
571 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
572 int (*output)(struct net *, struct sock *, struct sk_buff *))
573 {
574 struct iphdr *iph;
575 int ptr;
576 struct sk_buff *skb2;
577 unsigned int mtu, hlen, left, len, ll_rs;
578 int offset;
579 __be16 not_last_frag;
580 struct rtable *rt = skb_rtable(skb);
581 int err = 0;
582
583 /* for offloaded checksums cleanup checksum before fragmentation */
584 if (skb->ip_summed == CHECKSUM_PARTIAL &&
585 (err = skb_checksum_help(skb)))
586 goto fail;
587
588 /*
589 * Point into the IP datagram header.
590 */
591
592 iph = ip_hdr(skb);
593
594 mtu = ip_skb_dst_mtu(sk, skb);
595 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
596 mtu = IPCB(skb)->frag_max_size;
597
598 /*
599 * Setup starting values.
600 */
601
602 hlen = iph->ihl * 4;
603 mtu = mtu - hlen; /* Size of data space */
604 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
605 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
606
607 /* When frag_list is given, use it. First, check its validity:
608 * some transformers could create wrong frag_list or break existing
609 * one, it is not prohibited. In this case fall back to copying.
610 *
611 * LATER: this step can be merged to real generation of fragments,
612 * we can switch to copy when see the first bad fragment.
613 */
614 if (skb_has_frag_list(skb)) {
615 struct sk_buff *frag, *frag2;
616 unsigned int first_len = skb_pagelen(skb);
617
618 if (first_len - hlen > mtu ||
619 ((first_len - hlen) & 7) ||
620 ip_is_fragment(iph) ||
621 skb_cloned(skb) ||
622 skb_headroom(skb) < ll_rs)
623 goto slow_path;
624
625 skb_walk_frags(skb, frag) {
626 /* Correct geometry. */
627 if (frag->len > mtu ||
628 ((frag->len & 7) && frag->next) ||
629 skb_headroom(frag) < hlen + ll_rs)
630 goto slow_path_clean;
631
632 /* Partially cloned skb? */
633 if (skb_shared(frag))
634 goto slow_path_clean;
635
636 BUG_ON(frag->sk);
637 if (skb->sk) {
638 frag->sk = skb->sk;
639 frag->destructor = sock_wfree;
640 }
641 skb->truesize -= frag->truesize;
642 }
643
644 /* Everything is OK. Generate! */
645
646 err = 0;
647 offset = 0;
648 frag = skb_shinfo(skb)->frag_list;
649 skb_frag_list_init(skb);
650 skb->data_len = first_len - skb_headlen(skb);
651 skb->len = first_len;
652 iph->tot_len = htons(first_len);
653 iph->frag_off = htons(IP_MF);
654 ip_send_check(iph);
655
656 for (;;) {
657 /* Prepare header of the next frame,
658 * before previous one went down. */
659 if (frag) {
660 frag->ip_summed = CHECKSUM_NONE;
661 skb_reset_transport_header(frag);
662 __skb_push(frag, hlen);
663 skb_reset_network_header(frag);
664 memcpy(skb_network_header(frag), iph, hlen);
665 iph = ip_hdr(frag);
666 iph->tot_len = htons(frag->len);
667 ip_copy_metadata(frag, skb);
668 if (offset == 0)
669 ip_options_fragment(frag);
670 offset += skb->len - hlen;
671 iph->frag_off = htons(offset>>3);
672 if (frag->next)
673 iph->frag_off |= htons(IP_MF);
674 /* Ready, complete checksum */
675 ip_send_check(iph);
676 }
677
678 err = output(net, sk, skb);
679
680 if (!err)
681 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
682 if (err || !frag)
683 break;
684
685 skb = frag;
686 frag = skb->next;
687 skb_mark_not_on_list(skb);
688 }
689
690 if (err == 0) {
691 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
692 return 0;
693 }
694
695 kfree_skb_list(frag);
696
697 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
698 return err;
699
700 slow_path_clean:
701 skb_walk_frags(skb, frag2) {
702 if (frag2 == frag)
703 break;
704 frag2->sk = NULL;
705 frag2->destructor = NULL;
706 skb->truesize += frag2->truesize;
707 }
708 }
709
710 slow_path:
711 iph = ip_hdr(skb);
712
713 left = skb->len - hlen; /* Space per frame */
714 ptr = hlen; /* Where to start from */
715
716 /*
717 * Fragment the datagram.
718 */
719
720 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
721 not_last_frag = iph->frag_off & htons(IP_MF);
722
723 /*
724 * Keep copying data until we run out.
725 */
726
727 while (left > 0) {
728 len = left;
729 /* IF: it doesn't fit, use 'mtu' - the data space left */
730 if (len > mtu)
731 len = mtu;
732 /* IF: we are not sending up to and including the packet end
733 then align the next start on an eight byte boundary */
734 if (len < left) {
735 len &= ~7;
736 }
737
738 /* Allocate buffer */
739 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
740 if (!skb2) {
741 err = -ENOMEM;
742 goto fail;
743 }
744
745 /*
746 * Set up data on packet
747 */
748
749 ip_copy_metadata(skb2, skb);
750 skb_reserve(skb2, ll_rs);
751 skb_put(skb2, len + hlen);
752 skb_reset_network_header(skb2);
753 skb2->transport_header = skb2->network_header + hlen;
754
755 /*
756 * Charge the memory for the fragment to any owner
757 * it might possess
758 */
759
760 if (skb->sk)
761 skb_set_owner_w(skb2, skb->sk);
762
763 /*
764 * Copy the packet header into the new buffer.
765 */
766
767 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
768
769 /*
770 * Copy a block of the IP datagram.
771 */
772 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
773 BUG();
774 left -= len;
775
776 /*
777 * Fill in the new header fields.
778 */
779 iph = ip_hdr(skb2);
780 iph->frag_off = htons((offset >> 3));
781
782 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
783 iph->frag_off |= htons(IP_DF);
784
785 /* ANK: dirty, but effective trick. Upgrade options only if
786 * the segment to be fragmented was THE FIRST (otherwise,
787 * options are already fixed) and make it ONCE
788 * on the initial skb, so that all the following fragments
789 * will inherit fixed options.
790 */
791 if (offset == 0)
792 ip_options_fragment(skb);
793
794 /*
795 * Added AC : If we are fragmenting a fragment that's not the
796 * last fragment then keep MF on each bit
797 */
798 if (left > 0 || not_last_frag)
799 iph->frag_off |= htons(IP_MF);
800 ptr += len;
801 offset += len;
802
803 /*
804 * Put this fragment into the sending queue.
805 */
806 iph->tot_len = htons(len + hlen);
807
808 ip_send_check(iph);
809
810 err = output(net, sk, skb2);
811 if (err)
812 goto fail;
813
814 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
815 }
816 consume_skb(skb);
817 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
818 return err;
819
820 fail:
821 kfree_skb(skb);
822 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
823 return err;
824 }
825 EXPORT_SYMBOL(ip_do_fragment);
826
827 int
828 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
829 {
830 struct msghdr *msg = from;
831
832 if (skb->ip_summed == CHECKSUM_PARTIAL) {
833 if (!copy_from_iter_full(to, len, &msg->msg_iter))
834 return -EFAULT;
835 } else {
836 __wsum csum = 0;
837 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
838 return -EFAULT;
839 skb->csum = csum_block_add(skb->csum, csum, odd);
840 }
841 return 0;
842 }
843 EXPORT_SYMBOL(ip_generic_getfrag);
844
845 static inline __wsum
846 csum_page(struct page *page, int offset, int copy)
847 {
848 char *kaddr;
849 __wsum csum;
850 kaddr = kmap(page);
851 csum = csum_partial(kaddr + offset, copy, 0);
852 kunmap(page);
853 return csum;
854 }
855
856 static int __ip_append_data(struct sock *sk,
857 struct flowi4 *fl4,
858 struct sk_buff_head *queue,
859 struct inet_cork *cork,
860 struct page_frag *pfrag,
861 int getfrag(void *from, char *to, int offset,
862 int len, int odd, struct sk_buff *skb),
863 void *from, int length, int transhdrlen,
864 unsigned int flags)
865 {
866 struct inet_sock *inet = inet_sk(sk);
867 struct ubuf_info *uarg = NULL;
868 struct sk_buff *skb;
869
870 struct ip_options *opt = cork->opt;
871 int hh_len;
872 int exthdrlen;
873 int mtu;
874 int copy;
875 int err;
876 int offset = 0;
877 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
878 int csummode = CHECKSUM_NONE;
879 struct rtable *rt = (struct rtable *)cork->dst;
880 unsigned int wmem_alloc_delta = 0;
881 bool paged, extra_uref;
882 u32 tskey = 0;
883
884 skb = skb_peek_tail(queue);
885
886 exthdrlen = !skb ? rt->dst.header_len : 0;
887 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
888 paged = !!cork->gso_size;
889
890 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
891 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
892 tskey = sk->sk_tskey++;
893
894 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
895
896 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
897 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
898 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
899
900 if (cork->length + length > maxnonfragsize - fragheaderlen) {
901 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
902 mtu - (opt ? opt->optlen : 0));
903 return -EMSGSIZE;
904 }
905
906 /*
907 * transhdrlen > 0 means that this is the first fragment and we wish
908 * it won't be fragmented in the future.
909 */
910 if (transhdrlen &&
911 length + fragheaderlen <= mtu &&
912 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
913 (!(flags & MSG_MORE) || cork->gso_size) &&
914 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
915 csummode = CHECKSUM_PARTIAL;
916
917 if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) {
918 uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb));
919 if (!uarg)
920 return -ENOBUFS;
921 extra_uref = true;
922 if (rt->dst.dev->features & NETIF_F_SG &&
923 csummode == CHECKSUM_PARTIAL) {
924 paged = true;
925 } else {
926 uarg->zerocopy = 0;
927 skb_zcopy_set(skb, uarg, &extra_uref);
928 }
929 }
930
931 cork->length += length;
932
933 /* So, what's going on in the loop below?
934 *
935 * We use calculated fragment length to generate chained skb,
936 * each of segments is IP fragment ready for sending to network after
937 * adding appropriate IP header.
938 */
939
940 if (!skb)
941 goto alloc_new_skb;
942
943 while (length > 0) {
944 /* Check if the remaining data fits into current packet. */
945 copy = mtu - skb->len;
946 if (copy < length)
947 copy = maxfraglen - skb->len;
948 if (copy <= 0) {
949 char *data;
950 unsigned int datalen;
951 unsigned int fraglen;
952 unsigned int fraggap;
953 unsigned int alloclen;
954 unsigned int pagedlen;
955 struct sk_buff *skb_prev;
956 alloc_new_skb:
957 skb_prev = skb;
958 if (skb_prev)
959 fraggap = skb_prev->len - maxfraglen;
960 else
961 fraggap = 0;
962
963 /*
964 * If remaining data exceeds the mtu,
965 * we know we need more fragment(s).
966 */
967 datalen = length + fraggap;
968 if (datalen > mtu - fragheaderlen)
969 datalen = maxfraglen - fragheaderlen;
970 fraglen = datalen + fragheaderlen;
971 pagedlen = 0;
972
973 if ((flags & MSG_MORE) &&
974 !(rt->dst.dev->features&NETIF_F_SG))
975 alloclen = mtu;
976 else if (!paged)
977 alloclen = fraglen;
978 else {
979 alloclen = min_t(int, fraglen, MAX_HEADER);
980 pagedlen = fraglen - alloclen;
981 }
982
983 alloclen += exthdrlen;
984
985 /* The last fragment gets additional space at tail.
986 * Note, with MSG_MORE we overallocate on fragments,
987 * because we have no idea what fragment will be
988 * the last.
989 */
990 if (datalen == length + fraggap)
991 alloclen += rt->dst.trailer_len;
992
993 if (transhdrlen) {
994 skb = sock_alloc_send_skb(sk,
995 alloclen + hh_len + 15,
996 (flags & MSG_DONTWAIT), &err);
997 } else {
998 skb = NULL;
999 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1000 2 * sk->sk_sndbuf)
1001 skb = alloc_skb(alloclen + hh_len + 15,
1002 sk->sk_allocation);
1003 if (unlikely(!skb))
1004 err = -ENOBUFS;
1005 }
1006 if (!skb)
1007 goto error;
1008
1009 /*
1010 * Fill in the control structures
1011 */
1012 skb->ip_summed = csummode;
1013 skb->csum = 0;
1014 skb_reserve(skb, hh_len);
1015
1016 /*
1017 * Find where to start putting bytes.
1018 */
1019 data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1020 skb_set_network_header(skb, exthdrlen);
1021 skb->transport_header = (skb->network_header +
1022 fragheaderlen);
1023 data += fragheaderlen + exthdrlen;
1024
1025 if (fraggap) {
1026 skb->csum = skb_copy_and_csum_bits(
1027 skb_prev, maxfraglen,
1028 data + transhdrlen, fraggap, 0);
1029 skb_prev->csum = csum_sub(skb_prev->csum,
1030 skb->csum);
1031 data += fraggap;
1032 pskb_trim_unique(skb_prev, maxfraglen);
1033 }
1034
1035 copy = datalen - transhdrlen - fraggap - pagedlen;
1036 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1037 err = -EFAULT;
1038 kfree_skb(skb);
1039 goto error;
1040 }
1041
1042 offset += copy;
1043 length -= copy + transhdrlen;
1044 transhdrlen = 0;
1045 exthdrlen = 0;
1046 csummode = CHECKSUM_NONE;
1047
1048 /* only the initial fragment is time stamped */
1049 skb_shinfo(skb)->tx_flags = cork->tx_flags;
1050 cork->tx_flags = 0;
1051 skb_shinfo(skb)->tskey = tskey;
1052 tskey = 0;
1053 skb_zcopy_set(skb, uarg, &extra_uref);
1054
1055 if ((flags & MSG_CONFIRM) && !skb_prev)
1056 skb_set_dst_pending_confirm(skb, 1);
1057
1058 /*
1059 * Put the packet on the pending queue.
1060 */
1061 if (!skb->destructor) {
1062 skb->destructor = sock_wfree;
1063 skb->sk = sk;
1064 wmem_alloc_delta += skb->truesize;
1065 }
1066 __skb_queue_tail(queue, skb);
1067 continue;
1068 }
1069
1070 if (copy > length)
1071 copy = length;
1072
1073 if (!(rt->dst.dev->features&NETIF_F_SG) &&
1074 skb_tailroom(skb) >= copy) {
1075 unsigned int off;
1076
1077 off = skb->len;
1078 if (getfrag(from, skb_put(skb, copy),
1079 offset, copy, off, skb) < 0) {
1080 __skb_trim(skb, off);
1081 err = -EFAULT;
1082 goto error;
1083 }
1084 } else if (!uarg || !uarg->zerocopy) {
1085 int i = skb_shinfo(skb)->nr_frags;
1086
1087 err = -ENOMEM;
1088 if (!sk_page_frag_refill(sk, pfrag))
1089 goto error;
1090
1091 if (!skb_can_coalesce(skb, i, pfrag->page,
1092 pfrag->offset)) {
1093 err = -EMSGSIZE;
1094 if (i == MAX_SKB_FRAGS)
1095 goto error;
1096
1097 __skb_fill_page_desc(skb, i, pfrag->page,
1098 pfrag->offset, 0);
1099 skb_shinfo(skb)->nr_frags = ++i;
1100 get_page(pfrag->page);
1101 }
1102 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1103 if (getfrag(from,
1104 page_address(pfrag->page) + pfrag->offset,
1105 offset, copy, skb->len, skb) < 0)
1106 goto error_efault;
1107
1108 pfrag->offset += copy;
1109 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1110 skb->len += copy;
1111 skb->data_len += copy;
1112 skb->truesize += copy;
1113 wmem_alloc_delta += copy;
1114 } else {
1115 err = skb_zerocopy_iter_dgram(skb, from, copy);
1116 if (err < 0)
1117 goto error;
1118 }
1119 offset += copy;
1120 length -= copy;
1121 }
1122
1123 if (wmem_alloc_delta)
1124 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1125 return 0;
1126
1127 error_efault:
1128 err = -EFAULT;
1129 error:
1130 if (uarg)
1131 sock_zerocopy_put_abort(uarg, extra_uref);
1132 cork->length -= length;
1133 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1134 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1135 return err;
1136 }
1137
1138 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1139 struct ipcm_cookie *ipc, struct rtable **rtp)
1140 {
1141 struct ip_options_rcu *opt;
1142 struct rtable *rt;
1143
1144 rt = *rtp;
1145 if (unlikely(!rt))
1146 return -EFAULT;
1147
1148 /*
1149 * setup for corking.
1150 */
1151 opt = ipc->opt;
1152 if (opt) {
1153 if (!cork->opt) {
1154 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1155 sk->sk_allocation);
1156 if (unlikely(!cork->opt))
1157 return -ENOBUFS;
1158 }
1159 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1160 cork->flags |= IPCORK_OPT;
1161 cork->addr = ipc->addr;
1162 }
1163
1164 /*
1165 * We steal reference to this route, caller should not release it
1166 */
1167 *rtp = NULL;
1168 cork->fragsize = ip_sk_use_pmtu(sk) ?
1169 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1170
1171 cork->gso_size = ipc->gso_size;
1172 cork->dst = &rt->dst;
1173 cork->length = 0;
1174 cork->ttl = ipc->ttl;
1175 cork->tos = ipc->tos;
1176 cork->priority = ipc->priority;
1177 cork->transmit_time = ipc->sockc.transmit_time;
1178 cork->tx_flags = 0;
1179 sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags);
1180
1181 return 0;
1182 }
1183
1184 /*
1185 * ip_append_data() and ip_append_page() can make one large IP datagram
1186 * from many pieces of data. Each pieces will be holded on the socket
1187 * until ip_push_pending_frames() is called. Each piece can be a page
1188 * or non-page data.
1189 *
1190 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1191 * this interface potentially.
1192 *
1193 * LATER: length must be adjusted by pad at tail, when it is required.
1194 */
1195 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1196 int getfrag(void *from, char *to, int offset, int len,
1197 int odd, struct sk_buff *skb),
1198 void *from, int length, int transhdrlen,
1199 struct ipcm_cookie *ipc, struct rtable **rtp,
1200 unsigned int flags)
1201 {
1202 struct inet_sock *inet = inet_sk(sk);
1203 int err;
1204
1205 if (flags&MSG_PROBE)
1206 return 0;
1207
1208 if (skb_queue_empty(&sk->sk_write_queue)) {
1209 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1210 if (err)
1211 return err;
1212 } else {
1213 transhdrlen = 0;
1214 }
1215
1216 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1217 sk_page_frag(sk), getfrag,
1218 from, length, transhdrlen, flags);
1219 }
1220
1221 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1222 int offset, size_t size, int flags)
1223 {
1224 struct inet_sock *inet = inet_sk(sk);
1225 struct sk_buff *skb;
1226 struct rtable *rt;
1227 struct ip_options *opt = NULL;
1228 struct inet_cork *cork;
1229 int hh_len;
1230 int mtu;
1231 int len;
1232 int err;
1233 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1234
1235 if (inet->hdrincl)
1236 return -EPERM;
1237
1238 if (flags&MSG_PROBE)
1239 return 0;
1240
1241 if (skb_queue_empty(&sk->sk_write_queue))
1242 return -EINVAL;
1243
1244 cork = &inet->cork.base;
1245 rt = (struct rtable *)cork->dst;
1246 if (cork->flags & IPCORK_OPT)
1247 opt = cork->opt;
1248
1249 if (!(rt->dst.dev->features&NETIF_F_SG))
1250 return -EOPNOTSUPP;
1251
1252 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1253 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
1254
1255 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1256 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1257 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1258
1259 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1260 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1261 mtu - (opt ? opt->optlen : 0));
1262 return -EMSGSIZE;
1263 }
1264
1265 skb = skb_peek_tail(&sk->sk_write_queue);
1266 if (!skb)
1267 return -EINVAL;
1268
1269 cork->length += size;
1270
1271 while (size > 0) {
1272 /* Check if the remaining data fits into current packet. */
1273 len = mtu - skb->len;
1274 if (len < size)
1275 len = maxfraglen - skb->len;
1276
1277 if (len <= 0) {
1278 struct sk_buff *skb_prev;
1279 int alloclen;
1280
1281 skb_prev = skb;
1282 fraggap = skb_prev->len - maxfraglen;
1283
1284 alloclen = fragheaderlen + hh_len + fraggap + 15;
1285 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1286 if (unlikely(!skb)) {
1287 err = -ENOBUFS;
1288 goto error;
1289 }
1290
1291 /*
1292 * Fill in the control structures
1293 */
1294 skb->ip_summed = CHECKSUM_NONE;
1295 skb->csum = 0;
1296 skb_reserve(skb, hh_len);
1297
1298 /*
1299 * Find where to start putting bytes.
1300 */
1301 skb_put(skb, fragheaderlen + fraggap);
1302 skb_reset_network_header(skb);
1303 skb->transport_header = (skb->network_header +
1304 fragheaderlen);
1305 if (fraggap) {
1306 skb->csum = skb_copy_and_csum_bits(skb_prev,
1307 maxfraglen,
1308 skb_transport_header(skb),
1309 fraggap, 0);
1310 skb_prev->csum = csum_sub(skb_prev->csum,
1311 skb->csum);
1312 pskb_trim_unique(skb_prev, maxfraglen);
1313 }
1314
1315 /*
1316 * Put the packet on the pending queue.
1317 */
1318 __skb_queue_tail(&sk->sk_write_queue, skb);
1319 continue;
1320 }
1321
1322 if (len > size)
1323 len = size;
1324
1325 if (skb_append_pagefrags(skb, page, offset, len)) {
1326 err = -EMSGSIZE;
1327 goto error;
1328 }
1329
1330 if (skb->ip_summed == CHECKSUM_NONE) {
1331 __wsum csum;
1332 csum = csum_page(page, offset, len);
1333 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1334 }
1335
1336 skb->len += len;
1337 skb->data_len += len;
1338 skb->truesize += len;
1339 refcount_add(len, &sk->sk_wmem_alloc);
1340 offset += len;
1341 size -= len;
1342 }
1343 return 0;
1344
1345 error:
1346 cork->length -= size;
1347 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1348 return err;
1349 }
1350
1351 static void ip_cork_release(struct inet_cork *cork)
1352 {
1353 cork->flags &= ~IPCORK_OPT;
1354 kfree(cork->opt);
1355 cork->opt = NULL;
1356 dst_release(cork->dst);
1357 cork->dst = NULL;
1358 }
1359
1360 /*
1361 * Combined all pending IP fragments on the socket as one IP datagram
1362 * and push them out.
1363 */
1364 struct sk_buff *__ip_make_skb(struct sock *sk,
1365 struct flowi4 *fl4,
1366 struct sk_buff_head *queue,
1367 struct inet_cork *cork)
1368 {
1369 struct sk_buff *skb, *tmp_skb;
1370 struct sk_buff **tail_skb;
1371 struct inet_sock *inet = inet_sk(sk);
1372 struct net *net = sock_net(sk);
1373 struct ip_options *opt = NULL;
1374 struct rtable *rt = (struct rtable *)cork->dst;
1375 struct iphdr *iph;
1376 __be16 df = 0;
1377 __u8 ttl;
1378
1379 skb = __skb_dequeue(queue);
1380 if (!skb)
1381 goto out;
1382 tail_skb = &(skb_shinfo(skb)->frag_list);
1383
1384 /* move skb->data to ip header from ext header */
1385 if (skb->data < skb_network_header(skb))
1386 __skb_pull(skb, skb_network_offset(skb));
1387 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1388 __skb_pull(tmp_skb, skb_network_header_len(skb));
1389 *tail_skb = tmp_skb;
1390 tail_skb = &(tmp_skb->next);
1391 skb->len += tmp_skb->len;
1392 skb->data_len += tmp_skb->len;
1393 skb->truesize += tmp_skb->truesize;
1394 tmp_skb->destructor = NULL;
1395 tmp_skb->sk = NULL;
1396 }
1397
1398 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1399 * to fragment the frame generated here. No matter, what transforms
1400 * how transforms change size of the packet, it will come out.
1401 */
1402 skb->ignore_df = ip_sk_ignore_df(sk);
1403
1404 /* DF bit is set when we want to see DF on outgoing frames.
1405 * If ignore_df is set too, we still allow to fragment this frame
1406 * locally. */
1407 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1408 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1409 (skb->len <= dst_mtu(&rt->dst) &&
1410 ip_dont_fragment(sk, &rt->dst)))
1411 df = htons(IP_DF);
1412
1413 if (cork->flags & IPCORK_OPT)
1414 opt = cork->opt;
1415
1416 if (cork->ttl != 0)
1417 ttl = cork->ttl;
1418 else if (rt->rt_type == RTN_MULTICAST)
1419 ttl = inet->mc_ttl;
1420 else
1421 ttl = ip_select_ttl(inet, &rt->dst);
1422
1423 iph = ip_hdr(skb);
1424 iph->version = 4;
1425 iph->ihl = 5;
1426 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1427 iph->frag_off = df;
1428 iph->ttl = ttl;
1429 iph->protocol = sk->sk_protocol;
1430 ip_copy_addrs(iph, fl4);
1431 ip_select_ident(net, skb, sk);
1432
1433 if (opt) {
1434 iph->ihl += opt->optlen>>2;
1435 ip_options_build(skb, opt, cork->addr, rt, 0);
1436 }
1437
1438 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1439 skb->mark = sk->sk_mark;
1440 skb->tstamp = cork->transmit_time;
1441 /*
1442 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1443 * on dst refcount
1444 */
1445 cork->dst = NULL;
1446 skb_dst_set(skb, &rt->dst);
1447
1448 if (iph->protocol == IPPROTO_ICMP)
1449 icmp_out_count(net, ((struct icmphdr *)
1450 skb_transport_header(skb))->type);
1451
1452 ip_cork_release(cork);
1453 out:
1454 return skb;
1455 }
1456
1457 int ip_send_skb(struct net *net, struct sk_buff *skb)
1458 {
1459 int err;
1460
1461 err = ip_local_out(net, skb->sk, skb);
1462 if (err) {
1463 if (err > 0)
1464 err = net_xmit_errno(err);
1465 if (err)
1466 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1467 }
1468
1469 return err;
1470 }
1471
1472 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1473 {
1474 struct sk_buff *skb;
1475
1476 skb = ip_finish_skb(sk, fl4);
1477 if (!skb)
1478 return 0;
1479
1480 /* Netfilter gets whole the not fragmented skb. */
1481 return ip_send_skb(sock_net(sk), skb);
1482 }
1483
1484 /*
1485 * Throw away all pending data on the socket.
1486 */
1487 static void __ip_flush_pending_frames(struct sock *sk,
1488 struct sk_buff_head *queue,
1489 struct inet_cork *cork)
1490 {
1491 struct sk_buff *skb;
1492
1493 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1494 kfree_skb(skb);
1495
1496 ip_cork_release(cork);
1497 }
1498
1499 void ip_flush_pending_frames(struct sock *sk)
1500 {
1501 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1502 }
1503
1504 struct sk_buff *ip_make_skb(struct sock *sk,
1505 struct flowi4 *fl4,
1506 int getfrag(void *from, char *to, int offset,
1507 int len, int odd, struct sk_buff *skb),
1508 void *from, int length, int transhdrlen,
1509 struct ipcm_cookie *ipc, struct rtable **rtp,
1510 struct inet_cork *cork, unsigned int flags)
1511 {
1512 struct sk_buff_head queue;
1513 int err;
1514
1515 if (flags & MSG_PROBE)
1516 return NULL;
1517
1518 __skb_queue_head_init(&queue);
1519
1520 cork->flags = 0;
1521 cork->addr = 0;
1522 cork->opt = NULL;
1523 err = ip_setup_cork(sk, cork, ipc, rtp);
1524 if (err)
1525 return ERR_PTR(err);
1526
1527 err = __ip_append_data(sk, fl4, &queue, cork,
1528 &current->task_frag, getfrag,
1529 from, length, transhdrlen, flags);
1530 if (err) {
1531 __ip_flush_pending_frames(sk, &queue, cork);
1532 return ERR_PTR(err);
1533 }
1534
1535 return __ip_make_skb(sk, fl4, &queue, cork);
1536 }
1537
1538 /*
1539 * Fetch data from kernel space and fill in checksum if needed.
1540 */
1541 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1542 int len, int odd, struct sk_buff *skb)
1543 {
1544 __wsum csum;
1545
1546 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1547 skb->csum = csum_block_add(skb->csum, csum, odd);
1548 return 0;
1549 }
1550
1551 /*
1552 * Generic function to send a packet as reply to another packet.
1553 * Used to send some TCP resets/acks so far.
1554 */
1555 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1556 const struct ip_options *sopt,
1557 __be32 daddr, __be32 saddr,
1558 const struct ip_reply_arg *arg,
1559 unsigned int len)
1560 {
1561 struct ip_options_data replyopts;
1562 struct ipcm_cookie ipc;
1563 struct flowi4 fl4;
1564 struct rtable *rt = skb_rtable(skb);
1565 struct net *net = sock_net(sk);
1566 struct sk_buff *nskb;
1567 int err;
1568 int oif;
1569
1570 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1571 return;
1572
1573 ipcm_init(&ipc);
1574 ipc.addr = daddr;
1575
1576 if (replyopts.opt.opt.optlen) {
1577 ipc.opt = &replyopts.opt;
1578
1579 if (replyopts.opt.opt.srr)
1580 daddr = replyopts.opt.opt.faddr;
1581 }
1582
1583 oif = arg->bound_dev_if;
1584 if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1585 oif = skb->skb_iif;
1586
1587 flowi4_init_output(&fl4, oif,
1588 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1589 RT_TOS(arg->tos),
1590 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1591 ip_reply_arg_flowi_flags(arg),
1592 daddr, saddr,
1593 tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1594 arg->uid);
1595 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1596 rt = ip_route_output_key(net, &fl4);
1597 if (IS_ERR(rt))
1598 return;
1599
1600 inet_sk(sk)->tos = arg->tos;
1601
1602 sk->sk_priority = skb->priority;
1603 sk->sk_protocol = ip_hdr(skb)->protocol;
1604 sk->sk_bound_dev_if = arg->bound_dev_if;
1605 sk->sk_sndbuf = sysctl_wmem_default;
1606 sk->sk_mark = fl4.flowi4_mark;
1607 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1608 len, 0, &ipc, &rt, MSG_DONTWAIT);
1609 if (unlikely(err)) {
1610 ip_flush_pending_frames(sk);
1611 goto out;
1612 }
1613
1614 nskb = skb_peek(&sk->sk_write_queue);
1615 if (nskb) {
1616 if (arg->csumoffset >= 0)
1617 *((__sum16 *)skb_transport_header(nskb) +
1618 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1619 arg->csum));
1620 nskb->ip_summed = CHECKSUM_NONE;
1621 ip_push_pending_frames(sk, &fl4);
1622 }
1623 out:
1624 ip_rt_put(rt);
1625 }
1626
1627 void __init ip_init(void)
1628 {
1629 ip_rt_init();
1630 inet_initpeers();
1631
1632 #if defined(CONFIG_IP_MULTICAST)
1633 igmp_mc_init();
1634 #endif
1635 }