]> git.ipfire.org Git - thirdparty/linux.git/blob - net/ipv4/tcp.c
tcp: limit sk_rcvlowat by the maximum receive buffer
[thirdparty/linux.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 #include <linux/errqueue.h>
273 #include <linux/static_key.h>
274
275 #include <net/icmp.h>
276 #include <net/inet_common.h>
277 #include <net/tcp.h>
278 #include <net/xfrm.h>
279 #include <net/ip.h>
280 #include <net/sock.h>
281
282 #include <linux/uaccess.h>
283 #include <asm/ioctls.h>
284 #include <net/busy_poll.h>
285
286 struct percpu_counter tcp_orphan_count;
287 EXPORT_SYMBOL_GPL(tcp_orphan_count);
288
289 long sysctl_tcp_mem[3] __read_mostly;
290 EXPORT_SYMBOL(sysctl_tcp_mem);
291
292 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
293 EXPORT_SYMBOL(tcp_memory_allocated);
294
295 #if IS_ENABLED(CONFIG_SMC)
296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
297 EXPORT_SYMBOL(tcp_have_smc);
298 #endif
299
300 /*
301 * Current number of TCP sockets.
302 */
303 struct percpu_counter tcp_sockets_allocated;
304 EXPORT_SYMBOL(tcp_sockets_allocated);
305
306 /*
307 * TCP splice context
308 */
309 struct tcp_splice_state {
310 struct pipe_inode_info *pipe;
311 size_t len;
312 unsigned int flags;
313 };
314
315 /*
316 * Pressure flag: try to collapse.
317 * Technical note: it is used by multiple contexts non atomically.
318 * All the __sk_mem_schedule() is of this nature: accounting
319 * is strict, actions are advisory and have some latency.
320 */
321 unsigned long tcp_memory_pressure __read_mostly;
322 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
323
324 void tcp_enter_memory_pressure(struct sock *sk)
325 {
326 unsigned long val;
327
328 if (tcp_memory_pressure)
329 return;
330 val = jiffies;
331
332 if (!val)
333 val--;
334 if (!cmpxchg(&tcp_memory_pressure, 0, val))
335 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
336 }
337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
338
339 void tcp_leave_memory_pressure(struct sock *sk)
340 {
341 unsigned long val;
342
343 if (!tcp_memory_pressure)
344 return;
345 val = xchg(&tcp_memory_pressure, 0);
346 if (val)
347 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
348 jiffies_to_msecs(jiffies - val));
349 }
350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
351
352 /* Convert seconds to retransmits based on initial and max timeout */
353 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
354 {
355 u8 res = 0;
356
357 if (seconds > 0) {
358 int period = timeout;
359
360 res = 1;
361 while (seconds > period && res < 255) {
362 res++;
363 timeout <<= 1;
364 if (timeout > rto_max)
365 timeout = rto_max;
366 period += timeout;
367 }
368 }
369 return res;
370 }
371
372 /* Convert retransmits to seconds based on initial and max timeout */
373 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
374 {
375 int period = 0;
376
377 if (retrans > 0) {
378 period = timeout;
379 while (--retrans) {
380 timeout <<= 1;
381 if (timeout > rto_max)
382 timeout = rto_max;
383 period += timeout;
384 }
385 }
386 return period;
387 }
388
389 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
390 {
391 u32 rate = READ_ONCE(tp->rate_delivered);
392 u32 intv = READ_ONCE(tp->rate_interval_us);
393 u64 rate64 = 0;
394
395 if (rate && intv) {
396 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
397 do_div(rate64, intv);
398 }
399 return rate64;
400 }
401
402 /* Address-family independent initialization for a tcp_sock.
403 *
404 * NOTE: A lot of things set to zero explicitly by call to
405 * sk_alloc() so need not be done here.
406 */
407 void tcp_init_sock(struct sock *sk)
408 {
409 struct inet_connection_sock *icsk = inet_csk(sk);
410 struct tcp_sock *tp = tcp_sk(sk);
411
412 tp->out_of_order_queue = RB_ROOT;
413 sk->tcp_rtx_queue = RB_ROOT;
414 tcp_init_xmit_timers(sk);
415 INIT_LIST_HEAD(&tp->tsq_node);
416 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
417
418 icsk->icsk_rto = TCP_TIMEOUT_INIT;
419 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
420 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
421
422 /* So many TCP implementations out there (incorrectly) count the
423 * initial SYN frame in their delayed-ACK and congestion control
424 * algorithms that we must have the following bandaid to talk
425 * efficiently to them. -DaveM
426 */
427 tp->snd_cwnd = TCP_INIT_CWND;
428
429 /* There's a bubble in the pipe until at least the first ACK. */
430 tp->app_limited = ~0U;
431
432 /* See draft-stevens-tcpca-spec-01 for discussion of the
433 * initialization of these values.
434 */
435 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
436 tp->snd_cwnd_clamp = ~0;
437 tp->mss_cache = TCP_MSS_DEFAULT;
438
439 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
440 tcp_assign_congestion_control(sk);
441
442 tp->tsoffset = 0;
443 tp->rack.reo_wnd_steps = 1;
444
445 sk->sk_state = TCP_CLOSE;
446
447 sk->sk_write_space = sk_stream_write_space;
448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
449
450 icsk->icsk_sync_mss = tcp_sync_mss;
451
452 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
453 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
454
455 sk_sockets_allocated_inc(sk);
456 sk->sk_route_forced_caps = NETIF_F_GSO;
457 }
458 EXPORT_SYMBOL(tcp_init_sock);
459
460 void tcp_init_transfer(struct sock *sk, int bpf_op)
461 {
462 struct inet_connection_sock *icsk = inet_csk(sk);
463
464 tcp_mtup_init(sk);
465 icsk->icsk_af_ops->rebuild_header(sk);
466 tcp_init_metrics(sk);
467 tcp_call_bpf(sk, bpf_op, 0, NULL);
468 tcp_init_congestion_control(sk);
469 tcp_init_buffer_space(sk);
470 }
471
472 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
473 {
474 struct sk_buff *skb = tcp_write_queue_tail(sk);
475
476 if (tsflags && skb) {
477 struct skb_shared_info *shinfo = skb_shinfo(skb);
478 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
479
480 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
481 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
482 tcb->txstamp_ack = 1;
483 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
484 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
485 }
486 }
487
488 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
489 int target, struct sock *sk)
490 {
491 return (tp->rcv_nxt - tp->copied_seq >= target) ||
492 (sk->sk_prot->stream_memory_read ?
493 sk->sk_prot->stream_memory_read(sk) : false);
494 }
495
496 /*
497 * Socket is not locked. We are protected from async events by poll logic and
498 * correct handling of state changes made by other threads is impossible in
499 * any case.
500 */
501 __poll_t tcp_poll_mask(struct socket *sock, __poll_t events)
502 {
503 struct sock *sk = sock->sk;
504 const struct tcp_sock *tp = tcp_sk(sk);
505 __poll_t mask = 0;
506 int state;
507
508 state = inet_sk_state_load(sk);
509 if (state == TCP_LISTEN)
510 return inet_csk_listen_poll(sk);
511
512 /*
513 * EPOLLHUP is certainly not done right. But poll() doesn't
514 * have a notion of HUP in just one direction, and for a
515 * socket the read side is more interesting.
516 *
517 * Some poll() documentation says that EPOLLHUP is incompatible
518 * with the EPOLLOUT/POLLWR flags, so somebody should check this
519 * all. But careful, it tends to be safer to return too many
520 * bits than too few, and you can easily break real applications
521 * if you don't tell them that something has hung up!
522 *
523 * Check-me.
524 *
525 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
526 * our fs/select.c). It means that after we received EOF,
527 * poll always returns immediately, making impossible poll() on write()
528 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
529 * if and only if shutdown has been made in both directions.
530 * Actually, it is interesting to look how Solaris and DUX
531 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
532 * then we could set it on SND_SHUTDOWN. BTW examples given
533 * in Stevens' books assume exactly this behaviour, it explains
534 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
535 *
536 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
537 * blocking on fresh not-connected or disconnected socket. --ANK
538 */
539 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
540 mask |= EPOLLHUP;
541 if (sk->sk_shutdown & RCV_SHUTDOWN)
542 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
543
544 /* Connected or passive Fast Open socket? */
545 if (state != TCP_SYN_SENT &&
546 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
547 int target = sock_rcvlowat(sk, 0, INT_MAX);
548
549 if (tp->urg_seq == tp->copied_seq &&
550 !sock_flag(sk, SOCK_URGINLINE) &&
551 tp->urg_data)
552 target++;
553
554 if (tcp_stream_is_readable(tp, target, sk))
555 mask |= EPOLLIN | EPOLLRDNORM;
556
557 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
558 if (sk_stream_is_writeable(sk)) {
559 mask |= EPOLLOUT | EPOLLWRNORM;
560 } else { /* send SIGIO later */
561 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
562 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
563
564 /* Race breaker. If space is freed after
565 * wspace test but before the flags are set,
566 * IO signal will be lost. Memory barrier
567 * pairs with the input side.
568 */
569 smp_mb__after_atomic();
570 if (sk_stream_is_writeable(sk))
571 mask |= EPOLLOUT | EPOLLWRNORM;
572 }
573 } else
574 mask |= EPOLLOUT | EPOLLWRNORM;
575
576 if (tp->urg_data & TCP_URG_VALID)
577 mask |= EPOLLPRI;
578 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
579 /* Active TCP fastopen socket with defer_connect
580 * Return EPOLLOUT so application can call write()
581 * in order for kernel to generate SYN+data
582 */
583 mask |= EPOLLOUT | EPOLLWRNORM;
584 }
585 /* This barrier is coupled with smp_wmb() in tcp_reset() */
586 smp_rmb();
587 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
588 mask |= EPOLLERR;
589
590 return mask;
591 }
592 EXPORT_SYMBOL(tcp_poll_mask);
593
594 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
595 {
596 struct tcp_sock *tp = tcp_sk(sk);
597 int answ;
598 bool slow;
599
600 switch (cmd) {
601 case SIOCINQ:
602 if (sk->sk_state == TCP_LISTEN)
603 return -EINVAL;
604
605 slow = lock_sock_fast(sk);
606 answ = tcp_inq(sk);
607 unlock_sock_fast(sk, slow);
608 break;
609 case SIOCATMARK:
610 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
611 break;
612 case SIOCOUTQ:
613 if (sk->sk_state == TCP_LISTEN)
614 return -EINVAL;
615
616 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
617 answ = 0;
618 else
619 answ = tp->write_seq - tp->snd_una;
620 break;
621 case SIOCOUTQNSD:
622 if (sk->sk_state == TCP_LISTEN)
623 return -EINVAL;
624
625 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
626 answ = 0;
627 else
628 answ = tp->write_seq - tp->snd_nxt;
629 break;
630 default:
631 return -ENOIOCTLCMD;
632 }
633
634 return put_user(answ, (int __user *)arg);
635 }
636 EXPORT_SYMBOL(tcp_ioctl);
637
638 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
639 {
640 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
641 tp->pushed_seq = tp->write_seq;
642 }
643
644 static inline bool forced_push(const struct tcp_sock *tp)
645 {
646 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
647 }
648
649 static void skb_entail(struct sock *sk, struct sk_buff *skb)
650 {
651 struct tcp_sock *tp = tcp_sk(sk);
652 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
653
654 skb->csum = 0;
655 tcb->seq = tcb->end_seq = tp->write_seq;
656 tcb->tcp_flags = TCPHDR_ACK;
657 tcb->sacked = 0;
658 __skb_header_release(skb);
659 tcp_add_write_queue_tail(sk, skb);
660 sk->sk_wmem_queued += skb->truesize;
661 sk_mem_charge(sk, skb->truesize);
662 if (tp->nonagle & TCP_NAGLE_PUSH)
663 tp->nonagle &= ~TCP_NAGLE_PUSH;
664
665 tcp_slow_start_after_idle_check(sk);
666 }
667
668 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
669 {
670 if (flags & MSG_OOB)
671 tp->snd_up = tp->write_seq;
672 }
673
674 /* If a not yet filled skb is pushed, do not send it if
675 * we have data packets in Qdisc or NIC queues :
676 * Because TX completion will happen shortly, it gives a chance
677 * to coalesce future sendmsg() payload into this skb, without
678 * need for a timer, and with no latency trade off.
679 * As packets containing data payload have a bigger truesize
680 * than pure acks (dataless) packets, the last checks prevent
681 * autocorking if we only have an ACK in Qdisc/NIC queues,
682 * or if TX completion was delayed after we processed ACK packet.
683 */
684 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
685 int size_goal)
686 {
687 return skb->len < size_goal &&
688 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
689 !tcp_rtx_queue_empty(sk) &&
690 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
691 }
692
693 static void tcp_push(struct sock *sk, int flags, int mss_now,
694 int nonagle, int size_goal)
695 {
696 struct tcp_sock *tp = tcp_sk(sk);
697 struct sk_buff *skb;
698
699 skb = tcp_write_queue_tail(sk);
700 if (!skb)
701 return;
702 if (!(flags & MSG_MORE) || forced_push(tp))
703 tcp_mark_push(tp, skb);
704
705 tcp_mark_urg(tp, flags);
706
707 if (tcp_should_autocork(sk, skb, size_goal)) {
708
709 /* avoid atomic op if TSQ_THROTTLED bit is already set */
710 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
711 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
712 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
713 }
714 /* It is possible TX completion already happened
715 * before we set TSQ_THROTTLED.
716 */
717 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
718 return;
719 }
720
721 if (flags & MSG_MORE)
722 nonagle = TCP_NAGLE_CORK;
723
724 __tcp_push_pending_frames(sk, mss_now, nonagle);
725 }
726
727 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
728 unsigned int offset, size_t len)
729 {
730 struct tcp_splice_state *tss = rd_desc->arg.data;
731 int ret;
732
733 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
734 min(rd_desc->count, len), tss->flags);
735 if (ret > 0)
736 rd_desc->count -= ret;
737 return ret;
738 }
739
740 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
741 {
742 /* Store TCP splice context information in read_descriptor_t. */
743 read_descriptor_t rd_desc = {
744 .arg.data = tss,
745 .count = tss->len,
746 };
747
748 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
749 }
750
751 /**
752 * tcp_splice_read - splice data from TCP socket to a pipe
753 * @sock: socket to splice from
754 * @ppos: position (not valid)
755 * @pipe: pipe to splice to
756 * @len: number of bytes to splice
757 * @flags: splice modifier flags
758 *
759 * Description:
760 * Will read pages from given socket and fill them into a pipe.
761 *
762 **/
763 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
764 struct pipe_inode_info *pipe, size_t len,
765 unsigned int flags)
766 {
767 struct sock *sk = sock->sk;
768 struct tcp_splice_state tss = {
769 .pipe = pipe,
770 .len = len,
771 .flags = flags,
772 };
773 long timeo;
774 ssize_t spliced;
775 int ret;
776
777 sock_rps_record_flow(sk);
778 /*
779 * We can't seek on a socket input
780 */
781 if (unlikely(*ppos))
782 return -ESPIPE;
783
784 ret = spliced = 0;
785
786 lock_sock(sk);
787
788 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
789 while (tss.len) {
790 ret = __tcp_splice_read(sk, &tss);
791 if (ret < 0)
792 break;
793 else if (!ret) {
794 if (spliced)
795 break;
796 if (sock_flag(sk, SOCK_DONE))
797 break;
798 if (sk->sk_err) {
799 ret = sock_error(sk);
800 break;
801 }
802 if (sk->sk_shutdown & RCV_SHUTDOWN)
803 break;
804 if (sk->sk_state == TCP_CLOSE) {
805 /*
806 * This occurs when user tries to read
807 * from never connected socket.
808 */
809 if (!sock_flag(sk, SOCK_DONE))
810 ret = -ENOTCONN;
811 break;
812 }
813 if (!timeo) {
814 ret = -EAGAIN;
815 break;
816 }
817 /* if __tcp_splice_read() got nothing while we have
818 * an skb in receive queue, we do not want to loop.
819 * This might happen with URG data.
820 */
821 if (!skb_queue_empty(&sk->sk_receive_queue))
822 break;
823 sk_wait_data(sk, &timeo, NULL);
824 if (signal_pending(current)) {
825 ret = sock_intr_errno(timeo);
826 break;
827 }
828 continue;
829 }
830 tss.len -= ret;
831 spliced += ret;
832
833 if (!timeo)
834 break;
835 release_sock(sk);
836 lock_sock(sk);
837
838 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
839 (sk->sk_shutdown & RCV_SHUTDOWN) ||
840 signal_pending(current))
841 break;
842 }
843
844 release_sock(sk);
845
846 if (spliced)
847 return spliced;
848
849 return ret;
850 }
851 EXPORT_SYMBOL(tcp_splice_read);
852
853 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
854 bool force_schedule)
855 {
856 struct sk_buff *skb;
857
858 /* The TCP header must be at least 32-bit aligned. */
859 size = ALIGN(size, 4);
860
861 if (unlikely(tcp_under_memory_pressure(sk)))
862 sk_mem_reclaim_partial(sk);
863
864 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
865 if (likely(skb)) {
866 bool mem_scheduled;
867
868 if (force_schedule) {
869 mem_scheduled = true;
870 sk_forced_mem_schedule(sk, skb->truesize);
871 } else {
872 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
873 }
874 if (likely(mem_scheduled)) {
875 skb_reserve(skb, sk->sk_prot->max_header);
876 /*
877 * Make sure that we have exactly size bytes
878 * available to the caller, no more, no less.
879 */
880 skb->reserved_tailroom = skb->end - skb->tail - size;
881 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
882 return skb;
883 }
884 __kfree_skb(skb);
885 } else {
886 sk->sk_prot->enter_memory_pressure(sk);
887 sk_stream_moderate_sndbuf(sk);
888 }
889 return NULL;
890 }
891
892 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
893 int large_allowed)
894 {
895 struct tcp_sock *tp = tcp_sk(sk);
896 u32 new_size_goal, size_goal;
897
898 if (!large_allowed)
899 return mss_now;
900
901 /* Note : tcp_tso_autosize() will eventually split this later */
902 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
903 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
904
905 /* We try hard to avoid divides here */
906 size_goal = tp->gso_segs * mss_now;
907 if (unlikely(new_size_goal < size_goal ||
908 new_size_goal >= size_goal + mss_now)) {
909 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
910 sk->sk_gso_max_segs);
911 size_goal = tp->gso_segs * mss_now;
912 }
913
914 return max(size_goal, mss_now);
915 }
916
917 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
918 {
919 int mss_now;
920
921 mss_now = tcp_current_mss(sk);
922 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
923
924 return mss_now;
925 }
926
927 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
928 size_t size, int flags)
929 {
930 struct tcp_sock *tp = tcp_sk(sk);
931 int mss_now, size_goal;
932 int err;
933 ssize_t copied;
934 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
935
936 /* Wait for a connection to finish. One exception is TCP Fast Open
937 * (passive side) where data is allowed to be sent before a connection
938 * is fully established.
939 */
940 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
941 !tcp_passive_fastopen(sk)) {
942 err = sk_stream_wait_connect(sk, &timeo);
943 if (err != 0)
944 goto out_err;
945 }
946
947 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
948
949 mss_now = tcp_send_mss(sk, &size_goal, flags);
950 copied = 0;
951
952 err = -EPIPE;
953 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
954 goto out_err;
955
956 while (size > 0) {
957 struct sk_buff *skb = tcp_write_queue_tail(sk);
958 int copy, i;
959 bool can_coalesce;
960
961 if (!skb || (copy = size_goal - skb->len) <= 0 ||
962 !tcp_skb_can_collapse_to(skb)) {
963 new_segment:
964 if (!sk_stream_memory_free(sk))
965 goto wait_for_sndbuf;
966
967 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
968 tcp_rtx_and_write_queues_empty(sk));
969 if (!skb)
970 goto wait_for_memory;
971
972 skb_entail(sk, skb);
973 copy = size_goal;
974 }
975
976 if (copy > size)
977 copy = size;
978
979 i = skb_shinfo(skb)->nr_frags;
980 can_coalesce = skb_can_coalesce(skb, i, page, offset);
981 if (!can_coalesce && i >= sysctl_max_skb_frags) {
982 tcp_mark_push(tp, skb);
983 goto new_segment;
984 }
985 if (!sk_wmem_schedule(sk, copy))
986 goto wait_for_memory;
987
988 if (can_coalesce) {
989 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
990 } else {
991 get_page(page);
992 skb_fill_page_desc(skb, i, page, offset, copy);
993 }
994
995 if (!(flags & MSG_NO_SHARED_FRAGS))
996 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
997
998 skb->len += copy;
999 skb->data_len += copy;
1000 skb->truesize += copy;
1001 sk->sk_wmem_queued += copy;
1002 sk_mem_charge(sk, copy);
1003 skb->ip_summed = CHECKSUM_PARTIAL;
1004 tp->write_seq += copy;
1005 TCP_SKB_CB(skb)->end_seq += copy;
1006 tcp_skb_pcount_set(skb, 0);
1007
1008 if (!copied)
1009 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1010
1011 copied += copy;
1012 offset += copy;
1013 size -= copy;
1014 if (!size)
1015 goto out;
1016
1017 if (skb->len < size_goal || (flags & MSG_OOB))
1018 continue;
1019
1020 if (forced_push(tp)) {
1021 tcp_mark_push(tp, skb);
1022 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1023 } else if (skb == tcp_send_head(sk))
1024 tcp_push_one(sk, mss_now);
1025 continue;
1026
1027 wait_for_sndbuf:
1028 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1029 wait_for_memory:
1030 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1031 TCP_NAGLE_PUSH, size_goal);
1032
1033 err = sk_stream_wait_memory(sk, &timeo);
1034 if (err != 0)
1035 goto do_error;
1036
1037 mss_now = tcp_send_mss(sk, &size_goal, flags);
1038 }
1039
1040 out:
1041 if (copied) {
1042 tcp_tx_timestamp(sk, sk->sk_tsflags);
1043 if (!(flags & MSG_SENDPAGE_NOTLAST))
1044 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1045 }
1046 return copied;
1047
1048 do_error:
1049 if (copied)
1050 goto out;
1051 out_err:
1052 /* make sure we wake any epoll edge trigger waiter */
1053 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1054 err == -EAGAIN)) {
1055 sk->sk_write_space(sk);
1056 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1057 }
1058 return sk_stream_error(sk, flags, err);
1059 }
1060 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1061
1062 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1063 size_t size, int flags)
1064 {
1065 if (!(sk->sk_route_caps & NETIF_F_SG))
1066 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1067
1068 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1069
1070 return do_tcp_sendpages(sk, page, offset, size, flags);
1071 }
1072 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1073
1074 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1075 size_t size, int flags)
1076 {
1077 int ret;
1078
1079 lock_sock(sk);
1080 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1081 release_sock(sk);
1082
1083 return ret;
1084 }
1085 EXPORT_SYMBOL(tcp_sendpage);
1086
1087 /* Do not bother using a page frag for very small frames.
1088 * But use this heuristic only for the first skb in write queue.
1089 *
1090 * Having no payload in skb->head allows better SACK shifting
1091 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1092 * write queue has less skbs.
1093 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1094 * This also speeds up tso_fragment(), since it wont fallback
1095 * to tcp_fragment().
1096 */
1097 static int linear_payload_sz(bool first_skb)
1098 {
1099 if (first_skb)
1100 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1101 return 0;
1102 }
1103
1104 static int select_size(bool first_skb, bool zc)
1105 {
1106 if (zc)
1107 return 0;
1108 return linear_payload_sz(first_skb);
1109 }
1110
1111 void tcp_free_fastopen_req(struct tcp_sock *tp)
1112 {
1113 if (tp->fastopen_req) {
1114 kfree(tp->fastopen_req);
1115 tp->fastopen_req = NULL;
1116 }
1117 }
1118
1119 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1120 int *copied, size_t size)
1121 {
1122 struct tcp_sock *tp = tcp_sk(sk);
1123 struct inet_sock *inet = inet_sk(sk);
1124 struct sockaddr *uaddr = msg->msg_name;
1125 int err, flags;
1126
1127 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1128 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1129 uaddr->sa_family == AF_UNSPEC))
1130 return -EOPNOTSUPP;
1131 if (tp->fastopen_req)
1132 return -EALREADY; /* Another Fast Open is in progress */
1133
1134 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1135 sk->sk_allocation);
1136 if (unlikely(!tp->fastopen_req))
1137 return -ENOBUFS;
1138 tp->fastopen_req->data = msg;
1139 tp->fastopen_req->size = size;
1140
1141 if (inet->defer_connect) {
1142 err = tcp_connect(sk);
1143 /* Same failure procedure as in tcp_v4/6_connect */
1144 if (err) {
1145 tcp_set_state(sk, TCP_CLOSE);
1146 inet->inet_dport = 0;
1147 sk->sk_route_caps = 0;
1148 }
1149 }
1150 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1151 err = __inet_stream_connect(sk->sk_socket, uaddr,
1152 msg->msg_namelen, flags, 1);
1153 /* fastopen_req could already be freed in __inet_stream_connect
1154 * if the connection times out or gets rst
1155 */
1156 if (tp->fastopen_req) {
1157 *copied = tp->fastopen_req->copied;
1158 tcp_free_fastopen_req(tp);
1159 inet->defer_connect = 0;
1160 }
1161 return err;
1162 }
1163
1164 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1165 {
1166 struct tcp_sock *tp = tcp_sk(sk);
1167 struct ubuf_info *uarg = NULL;
1168 struct sk_buff *skb;
1169 struct sockcm_cookie sockc;
1170 int flags, err, copied = 0;
1171 int mss_now = 0, size_goal, copied_syn = 0;
1172 bool process_backlog = false;
1173 bool zc = false;
1174 long timeo;
1175
1176 flags = msg->msg_flags;
1177
1178 if (flags & MSG_ZEROCOPY && size) {
1179 if (sk->sk_state != TCP_ESTABLISHED) {
1180 err = -EINVAL;
1181 goto out_err;
1182 }
1183
1184 skb = tcp_write_queue_tail(sk);
1185 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1186 if (!uarg) {
1187 err = -ENOBUFS;
1188 goto out_err;
1189 }
1190
1191 zc = sk->sk_route_caps & NETIF_F_SG;
1192 if (!zc)
1193 uarg->zerocopy = 0;
1194 }
1195
1196 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1197 !tp->repair) {
1198 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1199 if (err == -EINPROGRESS && copied_syn > 0)
1200 goto out;
1201 else if (err)
1202 goto out_err;
1203 }
1204
1205 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1206
1207 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1208
1209 /* Wait for a connection to finish. One exception is TCP Fast Open
1210 * (passive side) where data is allowed to be sent before a connection
1211 * is fully established.
1212 */
1213 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1214 !tcp_passive_fastopen(sk)) {
1215 err = sk_stream_wait_connect(sk, &timeo);
1216 if (err != 0)
1217 goto do_error;
1218 }
1219
1220 if (unlikely(tp->repair)) {
1221 if (tp->repair_queue == TCP_RECV_QUEUE) {
1222 copied = tcp_send_rcvq(sk, msg, size);
1223 goto out_nopush;
1224 }
1225
1226 err = -EINVAL;
1227 if (tp->repair_queue == TCP_NO_QUEUE)
1228 goto out_err;
1229
1230 /* 'common' sending to sendq */
1231 }
1232
1233 sockc.tsflags = sk->sk_tsflags;
1234 if (msg->msg_controllen) {
1235 err = sock_cmsg_send(sk, msg, &sockc);
1236 if (unlikely(err)) {
1237 err = -EINVAL;
1238 goto out_err;
1239 }
1240 }
1241
1242 /* This should be in poll */
1243 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1244
1245 /* Ok commence sending. */
1246 copied = 0;
1247
1248 restart:
1249 mss_now = tcp_send_mss(sk, &size_goal, flags);
1250
1251 err = -EPIPE;
1252 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1253 goto do_error;
1254
1255 while (msg_data_left(msg)) {
1256 int copy = 0;
1257
1258 skb = tcp_write_queue_tail(sk);
1259 if (skb)
1260 copy = size_goal - skb->len;
1261
1262 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1263 bool first_skb;
1264 int linear;
1265
1266 new_segment:
1267 /* Allocate new segment. If the interface is SG,
1268 * allocate skb fitting to single page.
1269 */
1270 if (!sk_stream_memory_free(sk))
1271 goto wait_for_sndbuf;
1272
1273 if (process_backlog && sk_flush_backlog(sk)) {
1274 process_backlog = false;
1275 goto restart;
1276 }
1277 first_skb = tcp_rtx_and_write_queues_empty(sk);
1278 linear = select_size(first_skb, zc);
1279 skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation,
1280 first_skb);
1281 if (!skb)
1282 goto wait_for_memory;
1283
1284 process_backlog = true;
1285 skb->ip_summed = CHECKSUM_PARTIAL;
1286
1287 skb_entail(sk, skb);
1288 copy = size_goal;
1289
1290 /* All packets are restored as if they have
1291 * already been sent. skb_mstamp isn't set to
1292 * avoid wrong rtt estimation.
1293 */
1294 if (tp->repair)
1295 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1296 }
1297
1298 /* Try to append data to the end of skb. */
1299 if (copy > msg_data_left(msg))
1300 copy = msg_data_left(msg);
1301
1302 /* Where to copy to? */
1303 if (skb_availroom(skb) > 0 && !zc) {
1304 /* We have some space in skb head. Superb! */
1305 copy = min_t(int, copy, skb_availroom(skb));
1306 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1307 if (err)
1308 goto do_fault;
1309 } else if (!zc) {
1310 bool merge = true;
1311 int i = skb_shinfo(skb)->nr_frags;
1312 struct page_frag *pfrag = sk_page_frag(sk);
1313
1314 if (!sk_page_frag_refill(sk, pfrag))
1315 goto wait_for_memory;
1316
1317 if (!skb_can_coalesce(skb, i, pfrag->page,
1318 pfrag->offset)) {
1319 if (i >= sysctl_max_skb_frags) {
1320 tcp_mark_push(tp, skb);
1321 goto new_segment;
1322 }
1323 merge = false;
1324 }
1325
1326 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1327
1328 if (!sk_wmem_schedule(sk, copy))
1329 goto wait_for_memory;
1330
1331 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1332 pfrag->page,
1333 pfrag->offset,
1334 copy);
1335 if (err)
1336 goto do_error;
1337
1338 /* Update the skb. */
1339 if (merge) {
1340 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1341 } else {
1342 skb_fill_page_desc(skb, i, pfrag->page,
1343 pfrag->offset, copy);
1344 page_ref_inc(pfrag->page);
1345 }
1346 pfrag->offset += copy;
1347 } else {
1348 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1349 if (err == -EMSGSIZE || err == -EEXIST) {
1350 tcp_mark_push(tp, skb);
1351 goto new_segment;
1352 }
1353 if (err < 0)
1354 goto do_error;
1355 copy = err;
1356 }
1357
1358 if (!copied)
1359 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1360
1361 tp->write_seq += copy;
1362 TCP_SKB_CB(skb)->end_seq += copy;
1363 tcp_skb_pcount_set(skb, 0);
1364
1365 copied += copy;
1366 if (!msg_data_left(msg)) {
1367 if (unlikely(flags & MSG_EOR))
1368 TCP_SKB_CB(skb)->eor = 1;
1369 goto out;
1370 }
1371
1372 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1373 continue;
1374
1375 if (forced_push(tp)) {
1376 tcp_mark_push(tp, skb);
1377 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1378 } else if (skb == tcp_send_head(sk))
1379 tcp_push_one(sk, mss_now);
1380 continue;
1381
1382 wait_for_sndbuf:
1383 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1384 wait_for_memory:
1385 if (copied)
1386 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1387 TCP_NAGLE_PUSH, size_goal);
1388
1389 err = sk_stream_wait_memory(sk, &timeo);
1390 if (err != 0)
1391 goto do_error;
1392
1393 mss_now = tcp_send_mss(sk, &size_goal, flags);
1394 }
1395
1396 out:
1397 if (copied) {
1398 tcp_tx_timestamp(sk, sockc.tsflags);
1399 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1400 }
1401 out_nopush:
1402 sock_zerocopy_put(uarg);
1403 return copied + copied_syn;
1404
1405 do_fault:
1406 if (!skb->len) {
1407 tcp_unlink_write_queue(skb, sk);
1408 /* It is the one place in all of TCP, except connection
1409 * reset, where we can be unlinking the send_head.
1410 */
1411 tcp_check_send_head(sk, skb);
1412 sk_wmem_free_skb(sk, skb);
1413 }
1414
1415 do_error:
1416 if (copied + copied_syn)
1417 goto out;
1418 out_err:
1419 sock_zerocopy_put_abort(uarg);
1420 err = sk_stream_error(sk, flags, err);
1421 /* make sure we wake any epoll edge trigger waiter */
1422 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1423 err == -EAGAIN)) {
1424 sk->sk_write_space(sk);
1425 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1426 }
1427 return err;
1428 }
1429 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1430
1431 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1432 {
1433 int ret;
1434
1435 lock_sock(sk);
1436 ret = tcp_sendmsg_locked(sk, msg, size);
1437 release_sock(sk);
1438
1439 return ret;
1440 }
1441 EXPORT_SYMBOL(tcp_sendmsg);
1442
1443 /*
1444 * Handle reading urgent data. BSD has very simple semantics for
1445 * this, no blocking and very strange errors 8)
1446 */
1447
1448 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1449 {
1450 struct tcp_sock *tp = tcp_sk(sk);
1451
1452 /* No URG data to read. */
1453 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1454 tp->urg_data == TCP_URG_READ)
1455 return -EINVAL; /* Yes this is right ! */
1456
1457 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1458 return -ENOTCONN;
1459
1460 if (tp->urg_data & TCP_URG_VALID) {
1461 int err = 0;
1462 char c = tp->urg_data;
1463
1464 if (!(flags & MSG_PEEK))
1465 tp->urg_data = TCP_URG_READ;
1466
1467 /* Read urgent data. */
1468 msg->msg_flags |= MSG_OOB;
1469
1470 if (len > 0) {
1471 if (!(flags & MSG_TRUNC))
1472 err = memcpy_to_msg(msg, &c, 1);
1473 len = 1;
1474 } else
1475 msg->msg_flags |= MSG_TRUNC;
1476
1477 return err ? -EFAULT : len;
1478 }
1479
1480 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1481 return 0;
1482
1483 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1484 * the available implementations agree in this case:
1485 * this call should never block, independent of the
1486 * blocking state of the socket.
1487 * Mike <pall@rz.uni-karlsruhe.de>
1488 */
1489 return -EAGAIN;
1490 }
1491
1492 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1493 {
1494 struct sk_buff *skb;
1495 int copied = 0, err = 0;
1496
1497 /* XXX -- need to support SO_PEEK_OFF */
1498
1499 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1500 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1501 if (err)
1502 return err;
1503 copied += skb->len;
1504 }
1505
1506 skb_queue_walk(&sk->sk_write_queue, skb) {
1507 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1508 if (err)
1509 break;
1510
1511 copied += skb->len;
1512 }
1513
1514 return err ?: copied;
1515 }
1516
1517 /* Clean up the receive buffer for full frames taken by the user,
1518 * then send an ACK if necessary. COPIED is the number of bytes
1519 * tcp_recvmsg has given to the user so far, it speeds up the
1520 * calculation of whether or not we must ACK for the sake of
1521 * a window update.
1522 */
1523 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1524 {
1525 struct tcp_sock *tp = tcp_sk(sk);
1526 bool time_to_ack = false;
1527
1528 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1529
1530 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1531 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1532 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1533
1534 if (inet_csk_ack_scheduled(sk)) {
1535 const struct inet_connection_sock *icsk = inet_csk(sk);
1536 /* Delayed ACKs frequently hit locked sockets during bulk
1537 * receive. */
1538 if (icsk->icsk_ack.blocked ||
1539 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1540 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1541 /*
1542 * If this read emptied read buffer, we send ACK, if
1543 * connection is not bidirectional, user drained
1544 * receive buffer and there was a small segment
1545 * in queue.
1546 */
1547 (copied > 0 &&
1548 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1549 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1550 !icsk->icsk_ack.pingpong)) &&
1551 !atomic_read(&sk->sk_rmem_alloc)))
1552 time_to_ack = true;
1553 }
1554
1555 /* We send an ACK if we can now advertise a non-zero window
1556 * which has been raised "significantly".
1557 *
1558 * Even if window raised up to infinity, do not send window open ACK
1559 * in states, where we will not receive more. It is useless.
1560 */
1561 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1562 __u32 rcv_window_now = tcp_receive_window(tp);
1563
1564 /* Optimize, __tcp_select_window() is not cheap. */
1565 if (2*rcv_window_now <= tp->window_clamp) {
1566 __u32 new_window = __tcp_select_window(sk);
1567
1568 /* Send ACK now, if this read freed lots of space
1569 * in our buffer. Certainly, new_window is new window.
1570 * We can advertise it now, if it is not less than current one.
1571 * "Lots" means "at least twice" here.
1572 */
1573 if (new_window && new_window >= 2 * rcv_window_now)
1574 time_to_ack = true;
1575 }
1576 }
1577 if (time_to_ack)
1578 tcp_send_ack(sk);
1579 }
1580
1581 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1582 {
1583 struct sk_buff *skb;
1584 u32 offset;
1585
1586 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1587 offset = seq - TCP_SKB_CB(skb)->seq;
1588 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1589 pr_err_once("%s: found a SYN, please report !\n", __func__);
1590 offset--;
1591 }
1592 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1593 *off = offset;
1594 return skb;
1595 }
1596 /* This looks weird, but this can happen if TCP collapsing
1597 * splitted a fat GRO packet, while we released socket lock
1598 * in skb_splice_bits()
1599 */
1600 sk_eat_skb(sk, skb);
1601 }
1602 return NULL;
1603 }
1604
1605 /*
1606 * This routine provides an alternative to tcp_recvmsg() for routines
1607 * that would like to handle copying from skbuffs directly in 'sendfile'
1608 * fashion.
1609 * Note:
1610 * - It is assumed that the socket was locked by the caller.
1611 * - The routine does not block.
1612 * - At present, there is no support for reading OOB data
1613 * or for 'peeking' the socket using this routine
1614 * (although both would be easy to implement).
1615 */
1616 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1617 sk_read_actor_t recv_actor)
1618 {
1619 struct sk_buff *skb;
1620 struct tcp_sock *tp = tcp_sk(sk);
1621 u32 seq = tp->copied_seq;
1622 u32 offset;
1623 int copied = 0;
1624
1625 if (sk->sk_state == TCP_LISTEN)
1626 return -ENOTCONN;
1627 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1628 if (offset < skb->len) {
1629 int used;
1630 size_t len;
1631
1632 len = skb->len - offset;
1633 /* Stop reading if we hit a patch of urgent data */
1634 if (tp->urg_data) {
1635 u32 urg_offset = tp->urg_seq - seq;
1636 if (urg_offset < len)
1637 len = urg_offset;
1638 if (!len)
1639 break;
1640 }
1641 used = recv_actor(desc, skb, offset, len);
1642 if (used <= 0) {
1643 if (!copied)
1644 copied = used;
1645 break;
1646 } else if (used <= len) {
1647 seq += used;
1648 copied += used;
1649 offset += used;
1650 }
1651 /* If recv_actor drops the lock (e.g. TCP splice
1652 * receive) the skb pointer might be invalid when
1653 * getting here: tcp_collapse might have deleted it
1654 * while aggregating skbs from the socket queue.
1655 */
1656 skb = tcp_recv_skb(sk, seq - 1, &offset);
1657 if (!skb)
1658 break;
1659 /* TCP coalescing might have appended data to the skb.
1660 * Try to splice more frags
1661 */
1662 if (offset + 1 != skb->len)
1663 continue;
1664 }
1665 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1666 sk_eat_skb(sk, skb);
1667 ++seq;
1668 break;
1669 }
1670 sk_eat_skb(sk, skb);
1671 if (!desc->count)
1672 break;
1673 tp->copied_seq = seq;
1674 }
1675 tp->copied_seq = seq;
1676
1677 tcp_rcv_space_adjust(sk);
1678
1679 /* Clean up data we have read: This will do ACK frames. */
1680 if (copied > 0) {
1681 tcp_recv_skb(sk, seq, &offset);
1682 tcp_cleanup_rbuf(sk, copied);
1683 }
1684 return copied;
1685 }
1686 EXPORT_SYMBOL(tcp_read_sock);
1687
1688 int tcp_peek_len(struct socket *sock)
1689 {
1690 return tcp_inq(sock->sk);
1691 }
1692 EXPORT_SYMBOL(tcp_peek_len);
1693
1694 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1695 int tcp_set_rcvlowat(struct sock *sk, int val)
1696 {
1697 int cap;
1698
1699 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1700 cap = sk->sk_rcvbuf >> 1;
1701 else
1702 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1703 val = min(val, cap);
1704 sk->sk_rcvlowat = val ? : 1;
1705
1706 /* Check if we need to signal EPOLLIN right now */
1707 tcp_data_ready(sk);
1708
1709 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1710 return 0;
1711
1712 val <<= 1;
1713 if (val > sk->sk_rcvbuf) {
1714 sk->sk_rcvbuf = val;
1715 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1716 }
1717 return 0;
1718 }
1719 EXPORT_SYMBOL(tcp_set_rcvlowat);
1720
1721 #ifdef CONFIG_MMU
1722 static const struct vm_operations_struct tcp_vm_ops = {
1723 };
1724
1725 int tcp_mmap(struct file *file, struct socket *sock,
1726 struct vm_area_struct *vma)
1727 {
1728 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1729 return -EPERM;
1730 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1731
1732 /* Instruct vm_insert_page() to not down_read(mmap_sem) */
1733 vma->vm_flags |= VM_MIXEDMAP;
1734
1735 vma->vm_ops = &tcp_vm_ops;
1736 return 0;
1737 }
1738 EXPORT_SYMBOL(tcp_mmap);
1739
1740 static int tcp_zerocopy_receive(struct sock *sk,
1741 struct tcp_zerocopy_receive *zc)
1742 {
1743 unsigned long address = (unsigned long)zc->address;
1744 const skb_frag_t *frags = NULL;
1745 u32 length = 0, seq, offset;
1746 struct vm_area_struct *vma;
1747 struct sk_buff *skb = NULL;
1748 struct tcp_sock *tp;
1749 int ret;
1750
1751 if (address & (PAGE_SIZE - 1) || address != zc->address)
1752 return -EINVAL;
1753
1754 if (sk->sk_state == TCP_LISTEN)
1755 return -ENOTCONN;
1756
1757 sock_rps_record_flow(sk);
1758
1759 down_read(&current->mm->mmap_sem);
1760
1761 ret = -EINVAL;
1762 vma = find_vma(current->mm, address);
1763 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops)
1764 goto out;
1765 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address);
1766
1767 tp = tcp_sk(sk);
1768 seq = tp->copied_seq;
1769 zc->length = min_t(u32, zc->length, tcp_inq(sk));
1770 zc->length &= ~(PAGE_SIZE - 1);
1771
1772 zap_page_range(vma, address, zc->length);
1773
1774 zc->recv_skip_hint = 0;
1775 ret = 0;
1776 while (length + PAGE_SIZE <= zc->length) {
1777 if (zc->recv_skip_hint < PAGE_SIZE) {
1778 if (skb) {
1779 skb = skb->next;
1780 offset = seq - TCP_SKB_CB(skb)->seq;
1781 } else {
1782 skb = tcp_recv_skb(sk, seq, &offset);
1783 }
1784
1785 zc->recv_skip_hint = skb->len - offset;
1786 offset -= skb_headlen(skb);
1787 if ((int)offset < 0 || skb_has_frag_list(skb))
1788 break;
1789 frags = skb_shinfo(skb)->frags;
1790 while (offset) {
1791 if (frags->size > offset)
1792 goto out;
1793 offset -= frags->size;
1794 frags++;
1795 }
1796 }
1797 if (frags->size != PAGE_SIZE || frags->page_offset)
1798 break;
1799 ret = vm_insert_page(vma, address + length,
1800 skb_frag_page(frags));
1801 if (ret)
1802 break;
1803 length += PAGE_SIZE;
1804 seq += PAGE_SIZE;
1805 zc->recv_skip_hint -= PAGE_SIZE;
1806 frags++;
1807 }
1808 out:
1809 up_read(&current->mm->mmap_sem);
1810 if (length) {
1811 tp->copied_seq = seq;
1812 tcp_rcv_space_adjust(sk);
1813
1814 /* Clean up data we have read: This will do ACK frames. */
1815 tcp_recv_skb(sk, seq, &offset);
1816 tcp_cleanup_rbuf(sk, length);
1817 ret = 0;
1818 if (length == zc->length)
1819 zc->recv_skip_hint = 0;
1820 } else {
1821 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1822 ret = -EIO;
1823 }
1824 zc->length = length;
1825 return ret;
1826 }
1827 #endif
1828
1829 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1830 struct scm_timestamping *tss)
1831 {
1832 if (skb->tstamp)
1833 tss->ts[0] = ktime_to_timespec(skb->tstamp);
1834 else
1835 tss->ts[0] = (struct timespec) {0};
1836
1837 if (skb_hwtstamps(skb)->hwtstamp)
1838 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
1839 else
1840 tss->ts[2] = (struct timespec) {0};
1841 }
1842
1843 /* Similar to __sock_recv_timestamp, but does not require an skb */
1844 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1845 struct scm_timestamping *tss)
1846 {
1847 struct timeval tv;
1848 bool has_timestamping = false;
1849
1850 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1851 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1852 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1853 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
1854 sizeof(tss->ts[0]), &tss->ts[0]);
1855 } else {
1856 tv.tv_sec = tss->ts[0].tv_sec;
1857 tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1858
1859 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
1860 sizeof(tv), &tv);
1861 }
1862 }
1863
1864 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1865 has_timestamping = true;
1866 else
1867 tss->ts[0] = (struct timespec) {0};
1868 }
1869
1870 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1871 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1872 has_timestamping = true;
1873 else
1874 tss->ts[2] = (struct timespec) {0};
1875 }
1876
1877 if (has_timestamping) {
1878 tss->ts[1] = (struct timespec) {0};
1879 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
1880 sizeof(*tss), tss);
1881 }
1882 }
1883
1884 static int tcp_inq_hint(struct sock *sk)
1885 {
1886 const struct tcp_sock *tp = tcp_sk(sk);
1887 u32 copied_seq = READ_ONCE(tp->copied_seq);
1888 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
1889 int inq;
1890
1891 inq = rcv_nxt - copied_seq;
1892 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
1893 lock_sock(sk);
1894 inq = tp->rcv_nxt - tp->copied_seq;
1895 release_sock(sk);
1896 }
1897 return inq;
1898 }
1899
1900 /*
1901 * This routine copies from a sock struct into the user buffer.
1902 *
1903 * Technical note: in 2.3 we work on _locked_ socket, so that
1904 * tricks with *seq access order and skb->users are not required.
1905 * Probably, code can be easily improved even more.
1906 */
1907
1908 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1909 int flags, int *addr_len)
1910 {
1911 struct tcp_sock *tp = tcp_sk(sk);
1912 int copied = 0;
1913 u32 peek_seq;
1914 u32 *seq;
1915 unsigned long used;
1916 int err, inq;
1917 int target; /* Read at least this many bytes */
1918 long timeo;
1919 struct sk_buff *skb, *last;
1920 u32 urg_hole = 0;
1921 struct scm_timestamping tss;
1922 bool has_tss = false;
1923 bool has_cmsg;
1924
1925 if (unlikely(flags & MSG_ERRQUEUE))
1926 return inet_recv_error(sk, msg, len, addr_len);
1927
1928 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1929 (sk->sk_state == TCP_ESTABLISHED))
1930 sk_busy_loop(sk, nonblock);
1931
1932 lock_sock(sk);
1933
1934 err = -ENOTCONN;
1935 if (sk->sk_state == TCP_LISTEN)
1936 goto out;
1937
1938 has_cmsg = tp->recvmsg_inq;
1939 timeo = sock_rcvtimeo(sk, nonblock);
1940
1941 /* Urgent data needs to be handled specially. */
1942 if (flags & MSG_OOB)
1943 goto recv_urg;
1944
1945 if (unlikely(tp->repair)) {
1946 err = -EPERM;
1947 if (!(flags & MSG_PEEK))
1948 goto out;
1949
1950 if (tp->repair_queue == TCP_SEND_QUEUE)
1951 goto recv_sndq;
1952
1953 err = -EINVAL;
1954 if (tp->repair_queue == TCP_NO_QUEUE)
1955 goto out;
1956
1957 /* 'common' recv queue MSG_PEEK-ing */
1958 }
1959
1960 seq = &tp->copied_seq;
1961 if (flags & MSG_PEEK) {
1962 peek_seq = tp->copied_seq;
1963 seq = &peek_seq;
1964 }
1965
1966 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1967
1968 do {
1969 u32 offset;
1970
1971 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1972 if (tp->urg_data && tp->urg_seq == *seq) {
1973 if (copied)
1974 break;
1975 if (signal_pending(current)) {
1976 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1977 break;
1978 }
1979 }
1980
1981 /* Next get a buffer. */
1982
1983 last = skb_peek_tail(&sk->sk_receive_queue);
1984 skb_queue_walk(&sk->sk_receive_queue, skb) {
1985 last = skb;
1986 /* Now that we have two receive queues this
1987 * shouldn't happen.
1988 */
1989 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1990 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1991 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1992 flags))
1993 break;
1994
1995 offset = *seq - TCP_SKB_CB(skb)->seq;
1996 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1997 pr_err_once("%s: found a SYN, please report !\n", __func__);
1998 offset--;
1999 }
2000 if (offset < skb->len)
2001 goto found_ok_skb;
2002 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2003 goto found_fin_ok;
2004 WARN(!(flags & MSG_PEEK),
2005 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
2006 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2007 }
2008
2009 /* Well, if we have backlog, try to process it now yet. */
2010
2011 if (copied >= target && !sk->sk_backlog.tail)
2012 break;
2013
2014 if (copied) {
2015 if (sk->sk_err ||
2016 sk->sk_state == TCP_CLOSE ||
2017 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2018 !timeo ||
2019 signal_pending(current))
2020 break;
2021 } else {
2022 if (sock_flag(sk, SOCK_DONE))
2023 break;
2024
2025 if (sk->sk_err) {
2026 copied = sock_error(sk);
2027 break;
2028 }
2029
2030 if (sk->sk_shutdown & RCV_SHUTDOWN)
2031 break;
2032
2033 if (sk->sk_state == TCP_CLOSE) {
2034 if (!sock_flag(sk, SOCK_DONE)) {
2035 /* This occurs when user tries to read
2036 * from never connected socket.
2037 */
2038 copied = -ENOTCONN;
2039 break;
2040 }
2041 break;
2042 }
2043
2044 if (!timeo) {
2045 copied = -EAGAIN;
2046 break;
2047 }
2048
2049 if (signal_pending(current)) {
2050 copied = sock_intr_errno(timeo);
2051 break;
2052 }
2053 }
2054
2055 tcp_cleanup_rbuf(sk, copied);
2056
2057 if (copied >= target) {
2058 /* Do not sleep, just process backlog. */
2059 release_sock(sk);
2060 lock_sock(sk);
2061 } else {
2062 sk_wait_data(sk, &timeo, last);
2063 }
2064
2065 if ((flags & MSG_PEEK) &&
2066 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2067 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2068 current->comm,
2069 task_pid_nr(current));
2070 peek_seq = tp->copied_seq;
2071 }
2072 continue;
2073
2074 found_ok_skb:
2075 /* Ok so how much can we use? */
2076 used = skb->len - offset;
2077 if (len < used)
2078 used = len;
2079
2080 /* Do we have urgent data here? */
2081 if (tp->urg_data) {
2082 u32 urg_offset = tp->urg_seq - *seq;
2083 if (urg_offset < used) {
2084 if (!urg_offset) {
2085 if (!sock_flag(sk, SOCK_URGINLINE)) {
2086 ++*seq;
2087 urg_hole++;
2088 offset++;
2089 used--;
2090 if (!used)
2091 goto skip_copy;
2092 }
2093 } else
2094 used = urg_offset;
2095 }
2096 }
2097
2098 if (!(flags & MSG_TRUNC)) {
2099 err = skb_copy_datagram_msg(skb, offset, msg, used);
2100 if (err) {
2101 /* Exception. Bailout! */
2102 if (!copied)
2103 copied = -EFAULT;
2104 break;
2105 }
2106 }
2107
2108 *seq += used;
2109 copied += used;
2110 len -= used;
2111
2112 tcp_rcv_space_adjust(sk);
2113
2114 skip_copy:
2115 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2116 tp->urg_data = 0;
2117 tcp_fast_path_check(sk);
2118 }
2119 if (used + offset < skb->len)
2120 continue;
2121
2122 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2123 tcp_update_recv_tstamps(skb, &tss);
2124 has_tss = true;
2125 has_cmsg = true;
2126 }
2127 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2128 goto found_fin_ok;
2129 if (!(flags & MSG_PEEK))
2130 sk_eat_skb(sk, skb);
2131 continue;
2132
2133 found_fin_ok:
2134 /* Process the FIN. */
2135 ++*seq;
2136 if (!(flags & MSG_PEEK))
2137 sk_eat_skb(sk, skb);
2138 break;
2139 } while (len > 0);
2140
2141 /* According to UNIX98, msg_name/msg_namelen are ignored
2142 * on connected socket. I was just happy when found this 8) --ANK
2143 */
2144
2145 /* Clean up data we have read: This will do ACK frames. */
2146 tcp_cleanup_rbuf(sk, copied);
2147
2148 release_sock(sk);
2149
2150 if (has_cmsg) {
2151 if (has_tss)
2152 tcp_recv_timestamp(msg, sk, &tss);
2153 if (tp->recvmsg_inq) {
2154 inq = tcp_inq_hint(sk);
2155 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2156 }
2157 }
2158
2159 return copied;
2160
2161 out:
2162 release_sock(sk);
2163 return err;
2164
2165 recv_urg:
2166 err = tcp_recv_urg(sk, msg, len, flags);
2167 goto out;
2168
2169 recv_sndq:
2170 err = tcp_peek_sndq(sk, msg, len);
2171 goto out;
2172 }
2173 EXPORT_SYMBOL(tcp_recvmsg);
2174
2175 void tcp_set_state(struct sock *sk, int state)
2176 {
2177 int oldstate = sk->sk_state;
2178
2179 /* We defined a new enum for TCP states that are exported in BPF
2180 * so as not force the internal TCP states to be frozen. The
2181 * following checks will detect if an internal state value ever
2182 * differs from the BPF value. If this ever happens, then we will
2183 * need to remap the internal value to the BPF value before calling
2184 * tcp_call_bpf_2arg.
2185 */
2186 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2187 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2188 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2189 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2190 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2191 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2192 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2193 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2194 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2195 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2196 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2197 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2198 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2199
2200 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2201 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2202
2203 switch (state) {
2204 case TCP_ESTABLISHED:
2205 if (oldstate != TCP_ESTABLISHED)
2206 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2207 break;
2208
2209 case TCP_CLOSE:
2210 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2211 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2212
2213 sk->sk_prot->unhash(sk);
2214 if (inet_csk(sk)->icsk_bind_hash &&
2215 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2216 inet_put_port(sk);
2217 /* fall through */
2218 default:
2219 if (oldstate == TCP_ESTABLISHED)
2220 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2221 }
2222
2223 /* Change state AFTER socket is unhashed to avoid closed
2224 * socket sitting in hash tables.
2225 */
2226 inet_sk_state_store(sk, state);
2227
2228 #ifdef STATE_TRACE
2229 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2230 #endif
2231 }
2232 EXPORT_SYMBOL_GPL(tcp_set_state);
2233
2234 /*
2235 * State processing on a close. This implements the state shift for
2236 * sending our FIN frame. Note that we only send a FIN for some
2237 * states. A shutdown() may have already sent the FIN, or we may be
2238 * closed.
2239 */
2240
2241 static const unsigned char new_state[16] = {
2242 /* current state: new state: action: */
2243 [0 /* (Invalid) */] = TCP_CLOSE,
2244 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2245 [TCP_SYN_SENT] = TCP_CLOSE,
2246 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2247 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2248 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2249 [TCP_TIME_WAIT] = TCP_CLOSE,
2250 [TCP_CLOSE] = TCP_CLOSE,
2251 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2252 [TCP_LAST_ACK] = TCP_LAST_ACK,
2253 [TCP_LISTEN] = TCP_CLOSE,
2254 [TCP_CLOSING] = TCP_CLOSING,
2255 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2256 };
2257
2258 static int tcp_close_state(struct sock *sk)
2259 {
2260 int next = (int)new_state[sk->sk_state];
2261 int ns = next & TCP_STATE_MASK;
2262
2263 tcp_set_state(sk, ns);
2264
2265 return next & TCP_ACTION_FIN;
2266 }
2267
2268 /*
2269 * Shutdown the sending side of a connection. Much like close except
2270 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2271 */
2272
2273 void tcp_shutdown(struct sock *sk, int how)
2274 {
2275 /* We need to grab some memory, and put together a FIN,
2276 * and then put it into the queue to be sent.
2277 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2278 */
2279 if (!(how & SEND_SHUTDOWN))
2280 return;
2281
2282 /* If we've already sent a FIN, or it's a closed state, skip this. */
2283 if ((1 << sk->sk_state) &
2284 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2285 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2286 /* Clear out any half completed packets. FIN if needed. */
2287 if (tcp_close_state(sk))
2288 tcp_send_fin(sk);
2289 }
2290 }
2291 EXPORT_SYMBOL(tcp_shutdown);
2292
2293 bool tcp_check_oom(struct sock *sk, int shift)
2294 {
2295 bool too_many_orphans, out_of_socket_memory;
2296
2297 too_many_orphans = tcp_too_many_orphans(sk, shift);
2298 out_of_socket_memory = tcp_out_of_memory(sk);
2299
2300 if (too_many_orphans)
2301 net_info_ratelimited("too many orphaned sockets\n");
2302 if (out_of_socket_memory)
2303 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2304 return too_many_orphans || out_of_socket_memory;
2305 }
2306
2307 void tcp_close(struct sock *sk, long timeout)
2308 {
2309 struct sk_buff *skb;
2310 int data_was_unread = 0;
2311 int state;
2312
2313 lock_sock(sk);
2314 sk->sk_shutdown = SHUTDOWN_MASK;
2315
2316 if (sk->sk_state == TCP_LISTEN) {
2317 tcp_set_state(sk, TCP_CLOSE);
2318
2319 /* Special case. */
2320 inet_csk_listen_stop(sk);
2321
2322 goto adjudge_to_death;
2323 }
2324
2325 /* We need to flush the recv. buffs. We do this only on the
2326 * descriptor close, not protocol-sourced closes, because the
2327 * reader process may not have drained the data yet!
2328 */
2329 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2330 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2331
2332 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2333 len--;
2334 data_was_unread += len;
2335 __kfree_skb(skb);
2336 }
2337
2338 sk_mem_reclaim(sk);
2339
2340 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2341 if (sk->sk_state == TCP_CLOSE)
2342 goto adjudge_to_death;
2343
2344 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2345 * data was lost. To witness the awful effects of the old behavior of
2346 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2347 * GET in an FTP client, suspend the process, wait for the client to
2348 * advertise a zero window, then kill -9 the FTP client, wheee...
2349 * Note: timeout is always zero in such a case.
2350 */
2351 if (unlikely(tcp_sk(sk)->repair)) {
2352 sk->sk_prot->disconnect(sk, 0);
2353 } else if (data_was_unread) {
2354 /* Unread data was tossed, zap the connection. */
2355 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2356 tcp_set_state(sk, TCP_CLOSE);
2357 tcp_send_active_reset(sk, sk->sk_allocation);
2358 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2359 /* Check zero linger _after_ checking for unread data. */
2360 sk->sk_prot->disconnect(sk, 0);
2361 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2362 } else if (tcp_close_state(sk)) {
2363 /* We FIN if the application ate all the data before
2364 * zapping the connection.
2365 */
2366
2367 /* RED-PEN. Formally speaking, we have broken TCP state
2368 * machine. State transitions:
2369 *
2370 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2371 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2372 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2373 *
2374 * are legal only when FIN has been sent (i.e. in window),
2375 * rather than queued out of window. Purists blame.
2376 *
2377 * F.e. "RFC state" is ESTABLISHED,
2378 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2379 *
2380 * The visible declinations are that sometimes
2381 * we enter time-wait state, when it is not required really
2382 * (harmless), do not send active resets, when they are
2383 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2384 * they look as CLOSING or LAST_ACK for Linux)
2385 * Probably, I missed some more holelets.
2386 * --ANK
2387 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2388 * in a single packet! (May consider it later but will
2389 * probably need API support or TCP_CORK SYN-ACK until
2390 * data is written and socket is closed.)
2391 */
2392 tcp_send_fin(sk);
2393 }
2394
2395 sk_stream_wait_close(sk, timeout);
2396
2397 adjudge_to_death:
2398 state = sk->sk_state;
2399 sock_hold(sk);
2400 sock_orphan(sk);
2401
2402 /* It is the last release_sock in its life. It will remove backlog. */
2403 release_sock(sk);
2404
2405
2406 /* Now socket is owned by kernel and we acquire BH lock
2407 * to finish close. No need to check for user refs.
2408 */
2409 local_bh_disable();
2410 bh_lock_sock(sk);
2411 WARN_ON(sock_owned_by_user(sk));
2412
2413 percpu_counter_inc(sk->sk_prot->orphan_count);
2414
2415 /* Have we already been destroyed by a softirq or backlog? */
2416 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2417 goto out;
2418
2419 /* This is a (useful) BSD violating of the RFC. There is a
2420 * problem with TCP as specified in that the other end could
2421 * keep a socket open forever with no application left this end.
2422 * We use a 1 minute timeout (about the same as BSD) then kill
2423 * our end. If they send after that then tough - BUT: long enough
2424 * that we won't make the old 4*rto = almost no time - whoops
2425 * reset mistake.
2426 *
2427 * Nope, it was not mistake. It is really desired behaviour
2428 * f.e. on http servers, when such sockets are useless, but
2429 * consume significant resources. Let's do it with special
2430 * linger2 option. --ANK
2431 */
2432
2433 if (sk->sk_state == TCP_FIN_WAIT2) {
2434 struct tcp_sock *tp = tcp_sk(sk);
2435 if (tp->linger2 < 0) {
2436 tcp_set_state(sk, TCP_CLOSE);
2437 tcp_send_active_reset(sk, GFP_ATOMIC);
2438 __NET_INC_STATS(sock_net(sk),
2439 LINUX_MIB_TCPABORTONLINGER);
2440 } else {
2441 const int tmo = tcp_fin_time(sk);
2442
2443 if (tmo > TCP_TIMEWAIT_LEN) {
2444 inet_csk_reset_keepalive_timer(sk,
2445 tmo - TCP_TIMEWAIT_LEN);
2446 } else {
2447 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2448 goto out;
2449 }
2450 }
2451 }
2452 if (sk->sk_state != TCP_CLOSE) {
2453 sk_mem_reclaim(sk);
2454 if (tcp_check_oom(sk, 0)) {
2455 tcp_set_state(sk, TCP_CLOSE);
2456 tcp_send_active_reset(sk, GFP_ATOMIC);
2457 __NET_INC_STATS(sock_net(sk),
2458 LINUX_MIB_TCPABORTONMEMORY);
2459 } else if (!check_net(sock_net(sk))) {
2460 /* Not possible to send reset; just close */
2461 tcp_set_state(sk, TCP_CLOSE);
2462 }
2463 }
2464
2465 if (sk->sk_state == TCP_CLOSE) {
2466 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2467 /* We could get here with a non-NULL req if the socket is
2468 * aborted (e.g., closed with unread data) before 3WHS
2469 * finishes.
2470 */
2471 if (req)
2472 reqsk_fastopen_remove(sk, req, false);
2473 inet_csk_destroy_sock(sk);
2474 }
2475 /* Otherwise, socket is reprieved until protocol close. */
2476
2477 out:
2478 bh_unlock_sock(sk);
2479 local_bh_enable();
2480 sock_put(sk);
2481 }
2482 EXPORT_SYMBOL(tcp_close);
2483
2484 /* These states need RST on ABORT according to RFC793 */
2485
2486 static inline bool tcp_need_reset(int state)
2487 {
2488 return (1 << state) &
2489 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2490 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2491 }
2492
2493 static void tcp_rtx_queue_purge(struct sock *sk)
2494 {
2495 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2496
2497 while (p) {
2498 struct sk_buff *skb = rb_to_skb(p);
2499
2500 p = rb_next(p);
2501 /* Since we are deleting whole queue, no need to
2502 * list_del(&skb->tcp_tsorted_anchor)
2503 */
2504 tcp_rtx_queue_unlink(skb, sk);
2505 sk_wmem_free_skb(sk, skb);
2506 }
2507 }
2508
2509 void tcp_write_queue_purge(struct sock *sk)
2510 {
2511 struct sk_buff *skb;
2512
2513 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2514 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2515 tcp_skb_tsorted_anchor_cleanup(skb);
2516 sk_wmem_free_skb(sk, skb);
2517 }
2518 tcp_rtx_queue_purge(sk);
2519 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2520 sk_mem_reclaim(sk);
2521 tcp_clear_all_retrans_hints(tcp_sk(sk));
2522 tcp_sk(sk)->packets_out = 0;
2523 }
2524
2525 int tcp_disconnect(struct sock *sk, int flags)
2526 {
2527 struct inet_sock *inet = inet_sk(sk);
2528 struct inet_connection_sock *icsk = inet_csk(sk);
2529 struct tcp_sock *tp = tcp_sk(sk);
2530 int err = 0;
2531 int old_state = sk->sk_state;
2532
2533 if (old_state != TCP_CLOSE)
2534 tcp_set_state(sk, TCP_CLOSE);
2535
2536 /* ABORT function of RFC793 */
2537 if (old_state == TCP_LISTEN) {
2538 inet_csk_listen_stop(sk);
2539 } else if (unlikely(tp->repair)) {
2540 sk->sk_err = ECONNABORTED;
2541 } else if (tcp_need_reset(old_state) ||
2542 (tp->snd_nxt != tp->write_seq &&
2543 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2544 /* The last check adjusts for discrepancy of Linux wrt. RFC
2545 * states
2546 */
2547 tcp_send_active_reset(sk, gfp_any());
2548 sk->sk_err = ECONNRESET;
2549 } else if (old_state == TCP_SYN_SENT)
2550 sk->sk_err = ECONNRESET;
2551
2552 tcp_clear_xmit_timers(sk);
2553 __skb_queue_purge(&sk->sk_receive_queue);
2554 tcp_write_queue_purge(sk);
2555 tcp_fastopen_active_disable_ofo_check(sk);
2556 skb_rbtree_purge(&tp->out_of_order_queue);
2557
2558 inet->inet_dport = 0;
2559
2560 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2561 inet_reset_saddr(sk);
2562
2563 sk->sk_shutdown = 0;
2564 sock_reset_flag(sk, SOCK_DONE);
2565 tp->srtt_us = 0;
2566 tp->write_seq += tp->max_window + 2;
2567 if (tp->write_seq == 0)
2568 tp->write_seq = 1;
2569 icsk->icsk_backoff = 0;
2570 tp->snd_cwnd = 2;
2571 icsk->icsk_probes_out = 0;
2572 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2573 tp->snd_cwnd_cnt = 0;
2574 tp->window_clamp = 0;
2575 tp->delivered_ce = 0;
2576 tcp_set_ca_state(sk, TCP_CA_Open);
2577 tp->is_sack_reneg = 0;
2578 tcp_clear_retrans(tp);
2579 inet_csk_delack_init(sk);
2580 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2581 * issue in __tcp_select_window()
2582 */
2583 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2584 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2585 __sk_dst_reset(sk);
2586 dst_release(sk->sk_rx_dst);
2587 sk->sk_rx_dst = NULL;
2588 tcp_saved_syn_free(tp);
2589 tp->compressed_ack = 0;
2590
2591 /* Clean up fastopen related fields */
2592 tcp_free_fastopen_req(tp);
2593 inet->defer_connect = 0;
2594
2595 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2596
2597 if (sk->sk_frag.page) {
2598 put_page(sk->sk_frag.page);
2599 sk->sk_frag.page = NULL;
2600 sk->sk_frag.offset = 0;
2601 }
2602
2603 sk->sk_error_report(sk);
2604 return err;
2605 }
2606 EXPORT_SYMBOL(tcp_disconnect);
2607
2608 static inline bool tcp_can_repair_sock(const struct sock *sk)
2609 {
2610 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2611 (sk->sk_state != TCP_LISTEN);
2612 }
2613
2614 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2615 {
2616 struct tcp_repair_window opt;
2617
2618 if (!tp->repair)
2619 return -EPERM;
2620
2621 if (len != sizeof(opt))
2622 return -EINVAL;
2623
2624 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2625 return -EFAULT;
2626
2627 if (opt.max_window < opt.snd_wnd)
2628 return -EINVAL;
2629
2630 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2631 return -EINVAL;
2632
2633 if (after(opt.rcv_wup, tp->rcv_nxt))
2634 return -EINVAL;
2635
2636 tp->snd_wl1 = opt.snd_wl1;
2637 tp->snd_wnd = opt.snd_wnd;
2638 tp->max_window = opt.max_window;
2639
2640 tp->rcv_wnd = opt.rcv_wnd;
2641 tp->rcv_wup = opt.rcv_wup;
2642
2643 return 0;
2644 }
2645
2646 static int tcp_repair_options_est(struct sock *sk,
2647 struct tcp_repair_opt __user *optbuf, unsigned int len)
2648 {
2649 struct tcp_sock *tp = tcp_sk(sk);
2650 struct tcp_repair_opt opt;
2651
2652 while (len >= sizeof(opt)) {
2653 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2654 return -EFAULT;
2655
2656 optbuf++;
2657 len -= sizeof(opt);
2658
2659 switch (opt.opt_code) {
2660 case TCPOPT_MSS:
2661 tp->rx_opt.mss_clamp = opt.opt_val;
2662 tcp_mtup_init(sk);
2663 break;
2664 case TCPOPT_WINDOW:
2665 {
2666 u16 snd_wscale = opt.opt_val & 0xFFFF;
2667 u16 rcv_wscale = opt.opt_val >> 16;
2668
2669 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2670 return -EFBIG;
2671
2672 tp->rx_opt.snd_wscale = snd_wscale;
2673 tp->rx_opt.rcv_wscale = rcv_wscale;
2674 tp->rx_opt.wscale_ok = 1;
2675 }
2676 break;
2677 case TCPOPT_SACK_PERM:
2678 if (opt.opt_val != 0)
2679 return -EINVAL;
2680
2681 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2682 break;
2683 case TCPOPT_TIMESTAMP:
2684 if (opt.opt_val != 0)
2685 return -EINVAL;
2686
2687 tp->rx_opt.tstamp_ok = 1;
2688 break;
2689 }
2690 }
2691
2692 return 0;
2693 }
2694
2695 /*
2696 * Socket option code for TCP.
2697 */
2698 static int do_tcp_setsockopt(struct sock *sk, int level,
2699 int optname, char __user *optval, unsigned int optlen)
2700 {
2701 struct tcp_sock *tp = tcp_sk(sk);
2702 struct inet_connection_sock *icsk = inet_csk(sk);
2703 struct net *net = sock_net(sk);
2704 int val;
2705 int err = 0;
2706
2707 /* These are data/string values, all the others are ints */
2708 switch (optname) {
2709 case TCP_CONGESTION: {
2710 char name[TCP_CA_NAME_MAX];
2711
2712 if (optlen < 1)
2713 return -EINVAL;
2714
2715 val = strncpy_from_user(name, optval,
2716 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2717 if (val < 0)
2718 return -EFAULT;
2719 name[val] = 0;
2720
2721 lock_sock(sk);
2722 err = tcp_set_congestion_control(sk, name, true, true);
2723 release_sock(sk);
2724 return err;
2725 }
2726 case TCP_ULP: {
2727 char name[TCP_ULP_NAME_MAX];
2728
2729 if (optlen < 1)
2730 return -EINVAL;
2731
2732 val = strncpy_from_user(name, optval,
2733 min_t(long, TCP_ULP_NAME_MAX - 1,
2734 optlen));
2735 if (val < 0)
2736 return -EFAULT;
2737 name[val] = 0;
2738
2739 lock_sock(sk);
2740 err = tcp_set_ulp(sk, name);
2741 release_sock(sk);
2742 return err;
2743 }
2744 case TCP_FASTOPEN_KEY: {
2745 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
2746
2747 if (optlen != sizeof(key))
2748 return -EINVAL;
2749
2750 if (copy_from_user(key, optval, optlen))
2751 return -EFAULT;
2752
2753 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
2754 }
2755 default:
2756 /* fallthru */
2757 break;
2758 }
2759
2760 if (optlen < sizeof(int))
2761 return -EINVAL;
2762
2763 if (get_user(val, (int __user *)optval))
2764 return -EFAULT;
2765
2766 lock_sock(sk);
2767
2768 switch (optname) {
2769 case TCP_MAXSEG:
2770 /* Values greater than interface MTU won't take effect. However
2771 * at the point when this call is done we typically don't yet
2772 * know which interface is going to be used
2773 */
2774 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2775 err = -EINVAL;
2776 break;
2777 }
2778 tp->rx_opt.user_mss = val;
2779 break;
2780
2781 case TCP_NODELAY:
2782 if (val) {
2783 /* TCP_NODELAY is weaker than TCP_CORK, so that
2784 * this option on corked socket is remembered, but
2785 * it is not activated until cork is cleared.
2786 *
2787 * However, when TCP_NODELAY is set we make
2788 * an explicit push, which overrides even TCP_CORK
2789 * for currently queued segments.
2790 */
2791 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2792 tcp_push_pending_frames(sk);
2793 } else {
2794 tp->nonagle &= ~TCP_NAGLE_OFF;
2795 }
2796 break;
2797
2798 case TCP_THIN_LINEAR_TIMEOUTS:
2799 if (val < 0 || val > 1)
2800 err = -EINVAL;
2801 else
2802 tp->thin_lto = val;
2803 break;
2804
2805 case TCP_THIN_DUPACK:
2806 if (val < 0 || val > 1)
2807 err = -EINVAL;
2808 break;
2809
2810 case TCP_REPAIR:
2811 if (!tcp_can_repair_sock(sk))
2812 err = -EPERM;
2813 else if (val == 1) {
2814 tp->repair = 1;
2815 sk->sk_reuse = SK_FORCE_REUSE;
2816 tp->repair_queue = TCP_NO_QUEUE;
2817 } else if (val == 0) {
2818 tp->repair = 0;
2819 sk->sk_reuse = SK_NO_REUSE;
2820 tcp_send_window_probe(sk);
2821 } else
2822 err = -EINVAL;
2823
2824 break;
2825
2826 case TCP_REPAIR_QUEUE:
2827 if (!tp->repair)
2828 err = -EPERM;
2829 else if ((unsigned int)val < TCP_QUEUES_NR)
2830 tp->repair_queue = val;
2831 else
2832 err = -EINVAL;
2833 break;
2834
2835 case TCP_QUEUE_SEQ:
2836 if (sk->sk_state != TCP_CLOSE)
2837 err = -EPERM;
2838 else if (tp->repair_queue == TCP_SEND_QUEUE)
2839 tp->write_seq = val;
2840 else if (tp->repair_queue == TCP_RECV_QUEUE)
2841 tp->rcv_nxt = val;
2842 else
2843 err = -EINVAL;
2844 break;
2845
2846 case TCP_REPAIR_OPTIONS:
2847 if (!tp->repair)
2848 err = -EINVAL;
2849 else if (sk->sk_state == TCP_ESTABLISHED)
2850 err = tcp_repair_options_est(sk,
2851 (struct tcp_repair_opt __user *)optval,
2852 optlen);
2853 else
2854 err = -EPERM;
2855 break;
2856
2857 case TCP_CORK:
2858 /* When set indicates to always queue non-full frames.
2859 * Later the user clears this option and we transmit
2860 * any pending partial frames in the queue. This is
2861 * meant to be used alongside sendfile() to get properly
2862 * filled frames when the user (for example) must write
2863 * out headers with a write() call first and then use
2864 * sendfile to send out the data parts.
2865 *
2866 * TCP_CORK can be set together with TCP_NODELAY and it is
2867 * stronger than TCP_NODELAY.
2868 */
2869 if (val) {
2870 tp->nonagle |= TCP_NAGLE_CORK;
2871 } else {
2872 tp->nonagle &= ~TCP_NAGLE_CORK;
2873 if (tp->nonagle&TCP_NAGLE_OFF)
2874 tp->nonagle |= TCP_NAGLE_PUSH;
2875 tcp_push_pending_frames(sk);
2876 }
2877 break;
2878
2879 case TCP_KEEPIDLE:
2880 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2881 err = -EINVAL;
2882 else {
2883 tp->keepalive_time = val * HZ;
2884 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2885 !((1 << sk->sk_state) &
2886 (TCPF_CLOSE | TCPF_LISTEN))) {
2887 u32 elapsed = keepalive_time_elapsed(tp);
2888 if (tp->keepalive_time > elapsed)
2889 elapsed = tp->keepalive_time - elapsed;
2890 else
2891 elapsed = 0;
2892 inet_csk_reset_keepalive_timer(sk, elapsed);
2893 }
2894 }
2895 break;
2896 case TCP_KEEPINTVL:
2897 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2898 err = -EINVAL;
2899 else
2900 tp->keepalive_intvl = val * HZ;
2901 break;
2902 case TCP_KEEPCNT:
2903 if (val < 1 || val > MAX_TCP_KEEPCNT)
2904 err = -EINVAL;
2905 else
2906 tp->keepalive_probes = val;
2907 break;
2908 case TCP_SYNCNT:
2909 if (val < 1 || val > MAX_TCP_SYNCNT)
2910 err = -EINVAL;
2911 else
2912 icsk->icsk_syn_retries = val;
2913 break;
2914
2915 case TCP_SAVE_SYN:
2916 if (val < 0 || val > 1)
2917 err = -EINVAL;
2918 else
2919 tp->save_syn = val;
2920 break;
2921
2922 case TCP_LINGER2:
2923 if (val < 0)
2924 tp->linger2 = -1;
2925 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2926 tp->linger2 = 0;
2927 else
2928 tp->linger2 = val * HZ;
2929 break;
2930
2931 case TCP_DEFER_ACCEPT:
2932 /* Translate value in seconds to number of retransmits */
2933 icsk->icsk_accept_queue.rskq_defer_accept =
2934 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2935 TCP_RTO_MAX / HZ);
2936 break;
2937
2938 case TCP_WINDOW_CLAMP:
2939 if (!val) {
2940 if (sk->sk_state != TCP_CLOSE) {
2941 err = -EINVAL;
2942 break;
2943 }
2944 tp->window_clamp = 0;
2945 } else
2946 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2947 SOCK_MIN_RCVBUF / 2 : val;
2948 break;
2949
2950 case TCP_QUICKACK:
2951 if (!val) {
2952 icsk->icsk_ack.pingpong = 1;
2953 } else {
2954 icsk->icsk_ack.pingpong = 0;
2955 if ((1 << sk->sk_state) &
2956 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2957 inet_csk_ack_scheduled(sk)) {
2958 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2959 tcp_cleanup_rbuf(sk, 1);
2960 if (!(val & 1))
2961 icsk->icsk_ack.pingpong = 1;
2962 }
2963 }
2964 break;
2965
2966 #ifdef CONFIG_TCP_MD5SIG
2967 case TCP_MD5SIG:
2968 case TCP_MD5SIG_EXT:
2969 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
2970 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2971 else
2972 err = -EINVAL;
2973 break;
2974 #endif
2975 case TCP_USER_TIMEOUT:
2976 /* Cap the max time in ms TCP will retry or probe the window
2977 * before giving up and aborting (ETIMEDOUT) a connection.
2978 */
2979 if (val < 0)
2980 err = -EINVAL;
2981 else
2982 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2983 break;
2984
2985 case TCP_FASTOPEN:
2986 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2987 TCPF_LISTEN))) {
2988 tcp_fastopen_init_key_once(net);
2989
2990 fastopen_queue_tune(sk, val);
2991 } else {
2992 err = -EINVAL;
2993 }
2994 break;
2995 case TCP_FASTOPEN_CONNECT:
2996 if (val > 1 || val < 0) {
2997 err = -EINVAL;
2998 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2999 if (sk->sk_state == TCP_CLOSE)
3000 tp->fastopen_connect = val;
3001 else
3002 err = -EINVAL;
3003 } else {
3004 err = -EOPNOTSUPP;
3005 }
3006 break;
3007 case TCP_FASTOPEN_NO_COOKIE:
3008 if (val > 1 || val < 0)
3009 err = -EINVAL;
3010 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3011 err = -EINVAL;
3012 else
3013 tp->fastopen_no_cookie = val;
3014 break;
3015 case TCP_TIMESTAMP:
3016 if (!tp->repair)
3017 err = -EPERM;
3018 else
3019 tp->tsoffset = val - tcp_time_stamp_raw();
3020 break;
3021 case TCP_REPAIR_WINDOW:
3022 err = tcp_repair_set_window(tp, optval, optlen);
3023 break;
3024 case TCP_NOTSENT_LOWAT:
3025 tp->notsent_lowat = val;
3026 sk->sk_write_space(sk);
3027 break;
3028 case TCP_INQ:
3029 if (val > 1 || val < 0)
3030 err = -EINVAL;
3031 else
3032 tp->recvmsg_inq = val;
3033 break;
3034 default:
3035 err = -ENOPROTOOPT;
3036 break;
3037 }
3038
3039 release_sock(sk);
3040 return err;
3041 }
3042
3043 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
3044 unsigned int optlen)
3045 {
3046 const struct inet_connection_sock *icsk = inet_csk(sk);
3047
3048 if (level != SOL_TCP)
3049 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3050 optval, optlen);
3051 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3052 }
3053 EXPORT_SYMBOL(tcp_setsockopt);
3054
3055 #ifdef CONFIG_COMPAT
3056 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
3057 char __user *optval, unsigned int optlen)
3058 {
3059 if (level != SOL_TCP)
3060 return inet_csk_compat_setsockopt(sk, level, optname,
3061 optval, optlen);
3062 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3063 }
3064 EXPORT_SYMBOL(compat_tcp_setsockopt);
3065 #endif
3066
3067 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3068 struct tcp_info *info)
3069 {
3070 u64 stats[__TCP_CHRONO_MAX], total = 0;
3071 enum tcp_chrono i;
3072
3073 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3074 stats[i] = tp->chrono_stat[i - 1];
3075 if (i == tp->chrono_type)
3076 stats[i] += tcp_jiffies32 - tp->chrono_start;
3077 stats[i] *= USEC_PER_SEC / HZ;
3078 total += stats[i];
3079 }
3080
3081 info->tcpi_busy_time = total;
3082 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3083 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3084 }
3085
3086 /* Return information about state of tcp endpoint in API format. */
3087 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3088 {
3089 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3090 const struct inet_connection_sock *icsk = inet_csk(sk);
3091 u32 now;
3092 u64 rate64;
3093 bool slow;
3094 u32 rate;
3095
3096 memset(info, 0, sizeof(*info));
3097 if (sk->sk_type != SOCK_STREAM)
3098 return;
3099
3100 info->tcpi_state = inet_sk_state_load(sk);
3101
3102 /* Report meaningful fields for all TCP states, including listeners */
3103 rate = READ_ONCE(sk->sk_pacing_rate);
3104 rate64 = rate != ~0U ? rate : ~0ULL;
3105 info->tcpi_pacing_rate = rate64;
3106
3107 rate = READ_ONCE(sk->sk_max_pacing_rate);
3108 rate64 = rate != ~0U ? rate : ~0ULL;
3109 info->tcpi_max_pacing_rate = rate64;
3110
3111 info->tcpi_reordering = tp->reordering;
3112 info->tcpi_snd_cwnd = tp->snd_cwnd;
3113
3114 if (info->tcpi_state == TCP_LISTEN) {
3115 /* listeners aliased fields :
3116 * tcpi_unacked -> Number of children ready for accept()
3117 * tcpi_sacked -> max backlog
3118 */
3119 info->tcpi_unacked = sk->sk_ack_backlog;
3120 info->tcpi_sacked = sk->sk_max_ack_backlog;
3121 return;
3122 }
3123
3124 slow = lock_sock_fast(sk);
3125
3126 info->tcpi_ca_state = icsk->icsk_ca_state;
3127 info->tcpi_retransmits = icsk->icsk_retransmits;
3128 info->tcpi_probes = icsk->icsk_probes_out;
3129 info->tcpi_backoff = icsk->icsk_backoff;
3130
3131 if (tp->rx_opt.tstamp_ok)
3132 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3133 if (tcp_is_sack(tp))
3134 info->tcpi_options |= TCPI_OPT_SACK;
3135 if (tp->rx_opt.wscale_ok) {
3136 info->tcpi_options |= TCPI_OPT_WSCALE;
3137 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3138 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3139 }
3140
3141 if (tp->ecn_flags & TCP_ECN_OK)
3142 info->tcpi_options |= TCPI_OPT_ECN;
3143 if (tp->ecn_flags & TCP_ECN_SEEN)
3144 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3145 if (tp->syn_data_acked)
3146 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3147
3148 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3149 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3150 info->tcpi_snd_mss = tp->mss_cache;
3151 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3152
3153 info->tcpi_unacked = tp->packets_out;
3154 info->tcpi_sacked = tp->sacked_out;
3155
3156 info->tcpi_lost = tp->lost_out;
3157 info->tcpi_retrans = tp->retrans_out;
3158
3159 now = tcp_jiffies32;
3160 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3161 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3162 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3163
3164 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3165 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3166 info->tcpi_rtt = tp->srtt_us >> 3;
3167 info->tcpi_rttvar = tp->mdev_us >> 2;
3168 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3169 info->tcpi_advmss = tp->advmss;
3170
3171 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3172 info->tcpi_rcv_space = tp->rcvq_space.space;
3173
3174 info->tcpi_total_retrans = tp->total_retrans;
3175
3176 info->tcpi_bytes_acked = tp->bytes_acked;
3177 info->tcpi_bytes_received = tp->bytes_received;
3178 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3179 tcp_get_info_chrono_stats(tp, info);
3180
3181 info->tcpi_segs_out = tp->segs_out;
3182 info->tcpi_segs_in = tp->segs_in;
3183
3184 info->tcpi_min_rtt = tcp_min_rtt(tp);
3185 info->tcpi_data_segs_in = tp->data_segs_in;
3186 info->tcpi_data_segs_out = tp->data_segs_out;
3187
3188 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3189 rate64 = tcp_compute_delivery_rate(tp);
3190 if (rate64)
3191 info->tcpi_delivery_rate = rate64;
3192 info->tcpi_delivered = tp->delivered;
3193 info->tcpi_delivered_ce = tp->delivered_ce;
3194 unlock_sock_fast(sk, slow);
3195 }
3196 EXPORT_SYMBOL_GPL(tcp_get_info);
3197
3198 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3199 {
3200 const struct tcp_sock *tp = tcp_sk(sk);
3201 struct sk_buff *stats;
3202 struct tcp_info info;
3203 u64 rate64;
3204 u32 rate;
3205
3206 stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) +
3207 7 * nla_total_size(sizeof(u32)) +
3208 3 * nla_total_size(sizeof(u8)), GFP_ATOMIC);
3209 if (!stats)
3210 return NULL;
3211
3212 tcp_get_info_chrono_stats(tp, &info);
3213 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3214 info.tcpi_busy_time, TCP_NLA_PAD);
3215 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3216 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3217 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3218 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3219 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3220 tp->data_segs_out, TCP_NLA_PAD);
3221 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3222 tp->total_retrans, TCP_NLA_PAD);
3223
3224 rate = READ_ONCE(sk->sk_pacing_rate);
3225 rate64 = rate != ~0U ? rate : ~0ULL;
3226 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3227
3228 rate64 = tcp_compute_delivery_rate(tp);
3229 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3230
3231 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3232 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3233 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3234
3235 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3236 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3237 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3238 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3239 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3240
3241 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3242 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3243
3244 return stats;
3245 }
3246
3247 static int do_tcp_getsockopt(struct sock *sk, int level,
3248 int optname, char __user *optval, int __user *optlen)
3249 {
3250 struct inet_connection_sock *icsk = inet_csk(sk);
3251 struct tcp_sock *tp = tcp_sk(sk);
3252 struct net *net = sock_net(sk);
3253 int val, len;
3254
3255 if (get_user(len, optlen))
3256 return -EFAULT;
3257
3258 len = min_t(unsigned int, len, sizeof(int));
3259
3260 if (len < 0)
3261 return -EINVAL;
3262
3263 switch (optname) {
3264 case TCP_MAXSEG:
3265 val = tp->mss_cache;
3266 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3267 val = tp->rx_opt.user_mss;
3268 if (tp->repair)
3269 val = tp->rx_opt.mss_clamp;
3270 break;
3271 case TCP_NODELAY:
3272 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3273 break;
3274 case TCP_CORK:
3275 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3276 break;
3277 case TCP_KEEPIDLE:
3278 val = keepalive_time_when(tp) / HZ;
3279 break;
3280 case TCP_KEEPINTVL:
3281 val = keepalive_intvl_when(tp) / HZ;
3282 break;
3283 case TCP_KEEPCNT:
3284 val = keepalive_probes(tp);
3285 break;
3286 case TCP_SYNCNT:
3287 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3288 break;
3289 case TCP_LINGER2:
3290 val = tp->linger2;
3291 if (val >= 0)
3292 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3293 break;
3294 case TCP_DEFER_ACCEPT:
3295 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3296 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3297 break;
3298 case TCP_WINDOW_CLAMP:
3299 val = tp->window_clamp;
3300 break;
3301 case TCP_INFO: {
3302 struct tcp_info info;
3303
3304 if (get_user(len, optlen))
3305 return -EFAULT;
3306
3307 tcp_get_info(sk, &info);
3308
3309 len = min_t(unsigned int, len, sizeof(info));
3310 if (put_user(len, optlen))
3311 return -EFAULT;
3312 if (copy_to_user(optval, &info, len))
3313 return -EFAULT;
3314 return 0;
3315 }
3316 case TCP_CC_INFO: {
3317 const struct tcp_congestion_ops *ca_ops;
3318 union tcp_cc_info info;
3319 size_t sz = 0;
3320 int attr;
3321
3322 if (get_user(len, optlen))
3323 return -EFAULT;
3324
3325 ca_ops = icsk->icsk_ca_ops;
3326 if (ca_ops && ca_ops->get_info)
3327 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3328
3329 len = min_t(unsigned int, len, sz);
3330 if (put_user(len, optlen))
3331 return -EFAULT;
3332 if (copy_to_user(optval, &info, len))
3333 return -EFAULT;
3334 return 0;
3335 }
3336 case TCP_QUICKACK:
3337 val = !icsk->icsk_ack.pingpong;
3338 break;
3339
3340 case TCP_CONGESTION:
3341 if (get_user(len, optlen))
3342 return -EFAULT;
3343 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3344 if (put_user(len, optlen))
3345 return -EFAULT;
3346 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3347 return -EFAULT;
3348 return 0;
3349
3350 case TCP_ULP:
3351 if (get_user(len, optlen))
3352 return -EFAULT;
3353 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3354 if (!icsk->icsk_ulp_ops) {
3355 if (put_user(0, optlen))
3356 return -EFAULT;
3357 return 0;
3358 }
3359 if (put_user(len, optlen))
3360 return -EFAULT;
3361 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3362 return -EFAULT;
3363 return 0;
3364
3365 case TCP_FASTOPEN_KEY: {
3366 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
3367 struct tcp_fastopen_context *ctx;
3368
3369 if (get_user(len, optlen))
3370 return -EFAULT;
3371
3372 rcu_read_lock();
3373 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3374 if (ctx)
3375 memcpy(key, ctx->key, sizeof(key));
3376 else
3377 len = 0;
3378 rcu_read_unlock();
3379
3380 len = min_t(unsigned int, len, sizeof(key));
3381 if (put_user(len, optlen))
3382 return -EFAULT;
3383 if (copy_to_user(optval, key, len))
3384 return -EFAULT;
3385 return 0;
3386 }
3387 case TCP_THIN_LINEAR_TIMEOUTS:
3388 val = tp->thin_lto;
3389 break;
3390
3391 case TCP_THIN_DUPACK:
3392 val = 0;
3393 break;
3394
3395 case TCP_REPAIR:
3396 val = tp->repair;
3397 break;
3398
3399 case TCP_REPAIR_QUEUE:
3400 if (tp->repair)
3401 val = tp->repair_queue;
3402 else
3403 return -EINVAL;
3404 break;
3405
3406 case TCP_REPAIR_WINDOW: {
3407 struct tcp_repair_window opt;
3408
3409 if (get_user(len, optlen))
3410 return -EFAULT;
3411
3412 if (len != sizeof(opt))
3413 return -EINVAL;
3414
3415 if (!tp->repair)
3416 return -EPERM;
3417
3418 opt.snd_wl1 = tp->snd_wl1;
3419 opt.snd_wnd = tp->snd_wnd;
3420 opt.max_window = tp->max_window;
3421 opt.rcv_wnd = tp->rcv_wnd;
3422 opt.rcv_wup = tp->rcv_wup;
3423
3424 if (copy_to_user(optval, &opt, len))
3425 return -EFAULT;
3426 return 0;
3427 }
3428 case TCP_QUEUE_SEQ:
3429 if (tp->repair_queue == TCP_SEND_QUEUE)
3430 val = tp->write_seq;
3431 else if (tp->repair_queue == TCP_RECV_QUEUE)
3432 val = tp->rcv_nxt;
3433 else
3434 return -EINVAL;
3435 break;
3436
3437 case TCP_USER_TIMEOUT:
3438 val = jiffies_to_msecs(icsk->icsk_user_timeout);
3439 break;
3440
3441 case TCP_FASTOPEN:
3442 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3443 break;
3444
3445 case TCP_FASTOPEN_CONNECT:
3446 val = tp->fastopen_connect;
3447 break;
3448
3449 case TCP_FASTOPEN_NO_COOKIE:
3450 val = tp->fastopen_no_cookie;
3451 break;
3452
3453 case TCP_TIMESTAMP:
3454 val = tcp_time_stamp_raw() + tp->tsoffset;
3455 break;
3456 case TCP_NOTSENT_LOWAT:
3457 val = tp->notsent_lowat;
3458 break;
3459 case TCP_INQ:
3460 val = tp->recvmsg_inq;
3461 break;
3462 case TCP_SAVE_SYN:
3463 val = tp->save_syn;
3464 break;
3465 case TCP_SAVED_SYN: {
3466 if (get_user(len, optlen))
3467 return -EFAULT;
3468
3469 lock_sock(sk);
3470 if (tp->saved_syn) {
3471 if (len < tp->saved_syn[0]) {
3472 if (put_user(tp->saved_syn[0], optlen)) {
3473 release_sock(sk);
3474 return -EFAULT;
3475 }
3476 release_sock(sk);
3477 return -EINVAL;
3478 }
3479 len = tp->saved_syn[0];
3480 if (put_user(len, optlen)) {
3481 release_sock(sk);
3482 return -EFAULT;
3483 }
3484 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3485 release_sock(sk);
3486 return -EFAULT;
3487 }
3488 tcp_saved_syn_free(tp);
3489 release_sock(sk);
3490 } else {
3491 release_sock(sk);
3492 len = 0;
3493 if (put_user(len, optlen))
3494 return -EFAULT;
3495 }
3496 return 0;
3497 }
3498 #ifdef CONFIG_MMU
3499 case TCP_ZEROCOPY_RECEIVE: {
3500 struct tcp_zerocopy_receive zc;
3501 int err;
3502
3503 if (get_user(len, optlen))
3504 return -EFAULT;
3505 if (len != sizeof(zc))
3506 return -EINVAL;
3507 if (copy_from_user(&zc, optval, len))
3508 return -EFAULT;
3509 lock_sock(sk);
3510 err = tcp_zerocopy_receive(sk, &zc);
3511 release_sock(sk);
3512 if (!err && copy_to_user(optval, &zc, len))
3513 err = -EFAULT;
3514 return err;
3515 }
3516 #endif
3517 default:
3518 return -ENOPROTOOPT;
3519 }
3520
3521 if (put_user(len, optlen))
3522 return -EFAULT;
3523 if (copy_to_user(optval, &val, len))
3524 return -EFAULT;
3525 return 0;
3526 }
3527
3528 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3529 int __user *optlen)
3530 {
3531 struct inet_connection_sock *icsk = inet_csk(sk);
3532
3533 if (level != SOL_TCP)
3534 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3535 optval, optlen);
3536 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3537 }
3538 EXPORT_SYMBOL(tcp_getsockopt);
3539
3540 #ifdef CONFIG_COMPAT
3541 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3542 char __user *optval, int __user *optlen)
3543 {
3544 if (level != SOL_TCP)
3545 return inet_csk_compat_getsockopt(sk, level, optname,
3546 optval, optlen);
3547 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3548 }
3549 EXPORT_SYMBOL(compat_tcp_getsockopt);
3550 #endif
3551
3552 #ifdef CONFIG_TCP_MD5SIG
3553 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3554 static DEFINE_MUTEX(tcp_md5sig_mutex);
3555 static bool tcp_md5sig_pool_populated = false;
3556
3557 static void __tcp_alloc_md5sig_pool(void)
3558 {
3559 struct crypto_ahash *hash;
3560 int cpu;
3561
3562 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3563 if (IS_ERR(hash))
3564 return;
3565
3566 for_each_possible_cpu(cpu) {
3567 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3568 struct ahash_request *req;
3569
3570 if (!scratch) {
3571 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3572 sizeof(struct tcphdr),
3573 GFP_KERNEL,
3574 cpu_to_node(cpu));
3575 if (!scratch)
3576 return;
3577 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3578 }
3579 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3580 continue;
3581
3582 req = ahash_request_alloc(hash, GFP_KERNEL);
3583 if (!req)
3584 return;
3585
3586 ahash_request_set_callback(req, 0, NULL, NULL);
3587
3588 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3589 }
3590 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3591 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3592 */
3593 smp_wmb();
3594 tcp_md5sig_pool_populated = true;
3595 }
3596
3597 bool tcp_alloc_md5sig_pool(void)
3598 {
3599 if (unlikely(!tcp_md5sig_pool_populated)) {
3600 mutex_lock(&tcp_md5sig_mutex);
3601
3602 if (!tcp_md5sig_pool_populated)
3603 __tcp_alloc_md5sig_pool();
3604
3605 mutex_unlock(&tcp_md5sig_mutex);
3606 }
3607 return tcp_md5sig_pool_populated;
3608 }
3609 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3610
3611
3612 /**
3613 * tcp_get_md5sig_pool - get md5sig_pool for this user
3614 *
3615 * We use percpu structure, so if we succeed, we exit with preemption
3616 * and BH disabled, to make sure another thread or softirq handling
3617 * wont try to get same context.
3618 */
3619 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3620 {
3621 local_bh_disable();
3622
3623 if (tcp_md5sig_pool_populated) {
3624 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3625 smp_rmb();
3626 return this_cpu_ptr(&tcp_md5sig_pool);
3627 }
3628 local_bh_enable();
3629 return NULL;
3630 }
3631 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3632
3633 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3634 const struct sk_buff *skb, unsigned int header_len)
3635 {
3636 struct scatterlist sg;
3637 const struct tcphdr *tp = tcp_hdr(skb);
3638 struct ahash_request *req = hp->md5_req;
3639 unsigned int i;
3640 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3641 skb_headlen(skb) - header_len : 0;
3642 const struct skb_shared_info *shi = skb_shinfo(skb);
3643 struct sk_buff *frag_iter;
3644
3645 sg_init_table(&sg, 1);
3646
3647 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3648 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3649 if (crypto_ahash_update(req))
3650 return 1;
3651
3652 for (i = 0; i < shi->nr_frags; ++i) {
3653 const struct skb_frag_struct *f = &shi->frags[i];
3654 unsigned int offset = f->page_offset;
3655 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3656
3657 sg_set_page(&sg, page, skb_frag_size(f),
3658 offset_in_page(offset));
3659 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3660 if (crypto_ahash_update(req))
3661 return 1;
3662 }
3663
3664 skb_walk_frags(skb, frag_iter)
3665 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3666 return 1;
3667
3668 return 0;
3669 }
3670 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3671
3672 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3673 {
3674 struct scatterlist sg;
3675
3676 sg_init_one(&sg, key->key, key->keylen);
3677 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3678 return crypto_ahash_update(hp->md5_req);
3679 }
3680 EXPORT_SYMBOL(tcp_md5_hash_key);
3681
3682 #endif
3683
3684 void tcp_done(struct sock *sk)
3685 {
3686 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3687
3688 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3689 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3690
3691 tcp_set_state(sk, TCP_CLOSE);
3692 tcp_clear_xmit_timers(sk);
3693 if (req)
3694 reqsk_fastopen_remove(sk, req, false);
3695
3696 sk->sk_shutdown = SHUTDOWN_MASK;
3697
3698 if (!sock_flag(sk, SOCK_DEAD))
3699 sk->sk_state_change(sk);
3700 else
3701 inet_csk_destroy_sock(sk);
3702 }
3703 EXPORT_SYMBOL_GPL(tcp_done);
3704
3705 int tcp_abort(struct sock *sk, int err)
3706 {
3707 if (!sk_fullsock(sk)) {
3708 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3709 struct request_sock *req = inet_reqsk(sk);
3710
3711 local_bh_disable();
3712 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3713 req);
3714 local_bh_enable();
3715 return 0;
3716 }
3717 return -EOPNOTSUPP;
3718 }
3719
3720 /* Don't race with userspace socket closes such as tcp_close. */
3721 lock_sock(sk);
3722
3723 if (sk->sk_state == TCP_LISTEN) {
3724 tcp_set_state(sk, TCP_CLOSE);
3725 inet_csk_listen_stop(sk);
3726 }
3727
3728 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3729 local_bh_disable();
3730 bh_lock_sock(sk);
3731
3732 if (!sock_flag(sk, SOCK_DEAD)) {
3733 sk->sk_err = err;
3734 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3735 smp_wmb();
3736 sk->sk_error_report(sk);
3737 if (tcp_need_reset(sk->sk_state))
3738 tcp_send_active_reset(sk, GFP_ATOMIC);
3739 tcp_done(sk);
3740 }
3741
3742 bh_unlock_sock(sk);
3743 local_bh_enable();
3744 tcp_write_queue_purge(sk);
3745 release_sock(sk);
3746 return 0;
3747 }
3748 EXPORT_SYMBOL_GPL(tcp_abort);
3749
3750 extern struct tcp_congestion_ops tcp_reno;
3751
3752 static __initdata unsigned long thash_entries;
3753 static int __init set_thash_entries(char *str)
3754 {
3755 ssize_t ret;
3756
3757 if (!str)
3758 return 0;
3759
3760 ret = kstrtoul(str, 0, &thash_entries);
3761 if (ret)
3762 return 0;
3763
3764 return 1;
3765 }
3766 __setup("thash_entries=", set_thash_entries);
3767
3768 static void __init tcp_init_mem(void)
3769 {
3770 unsigned long limit = nr_free_buffer_pages() / 16;
3771
3772 limit = max(limit, 128UL);
3773 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3774 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3775 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3776 }
3777
3778 void __init tcp_init(void)
3779 {
3780 int max_rshare, max_wshare, cnt;
3781 unsigned long limit;
3782 unsigned int i;
3783
3784 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3785 FIELD_SIZEOF(struct sk_buff, cb));
3786
3787 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3788 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3789 inet_hashinfo_init(&tcp_hashinfo);
3790 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3791 thash_entries, 21, /* one slot per 2 MB*/
3792 0, 64 * 1024);
3793 tcp_hashinfo.bind_bucket_cachep =
3794 kmem_cache_create("tcp_bind_bucket",
3795 sizeof(struct inet_bind_bucket), 0,
3796 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3797
3798 /* Size and allocate the main established and bind bucket
3799 * hash tables.
3800 *
3801 * The methodology is similar to that of the buffer cache.
3802 */
3803 tcp_hashinfo.ehash =
3804 alloc_large_system_hash("TCP established",
3805 sizeof(struct inet_ehash_bucket),
3806 thash_entries,
3807 17, /* one slot per 128 KB of memory */
3808 0,
3809 NULL,
3810 &tcp_hashinfo.ehash_mask,
3811 0,
3812 thash_entries ? 0 : 512 * 1024);
3813 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3814 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3815
3816 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3817 panic("TCP: failed to alloc ehash_locks");
3818 tcp_hashinfo.bhash =
3819 alloc_large_system_hash("TCP bind",
3820 sizeof(struct inet_bind_hashbucket),
3821 tcp_hashinfo.ehash_mask + 1,
3822 17, /* one slot per 128 KB of memory */
3823 0,
3824 &tcp_hashinfo.bhash_size,
3825 NULL,
3826 0,
3827 64 * 1024);
3828 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3829 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3830 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3831 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3832 }
3833
3834
3835 cnt = tcp_hashinfo.ehash_mask + 1;
3836 sysctl_tcp_max_orphans = cnt / 2;
3837
3838 tcp_init_mem();
3839 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3840 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3841 max_wshare = min(4UL*1024*1024, limit);
3842 max_rshare = min(6UL*1024*1024, limit);
3843
3844 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3845 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3846 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3847
3848 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3849 init_net.ipv4.sysctl_tcp_rmem[1] = 87380;
3850 init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare);
3851
3852 pr_info("Hash tables configured (established %u bind %u)\n",
3853 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3854
3855 tcp_v4_init();
3856 tcp_metrics_init();
3857 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3858 tcp_tasklet_init();
3859 }