]> git.ipfire.org Git - thirdparty/linux.git/blob - net/ipv4/tcp.c
Replace <asm/uaccess.h> with <linux/uaccess.h> globally
[thirdparty/linux.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279
280 #include <linux/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283
284 int sysctl_tcp_min_tso_segs __read_mostly = 2;
285
286 int sysctl_tcp_autocorking __read_mostly = 1;
287
288 struct percpu_counter tcp_orphan_count;
289 EXPORT_SYMBOL_GPL(tcp_orphan_count);
290
291 long sysctl_tcp_mem[3] __read_mostly;
292 int sysctl_tcp_wmem[3] __read_mostly;
293 int sysctl_tcp_rmem[3] __read_mostly;
294
295 EXPORT_SYMBOL(sysctl_tcp_mem);
296 EXPORT_SYMBOL(sysctl_tcp_rmem);
297 EXPORT_SYMBOL(sysctl_tcp_wmem);
298
299 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
300 EXPORT_SYMBOL(tcp_memory_allocated);
301
302 /*
303 * Current number of TCP sockets.
304 */
305 struct percpu_counter tcp_sockets_allocated;
306 EXPORT_SYMBOL(tcp_sockets_allocated);
307
308 /*
309 * TCP splice context
310 */
311 struct tcp_splice_state {
312 struct pipe_inode_info *pipe;
313 size_t len;
314 unsigned int flags;
315 };
316
317 /*
318 * Pressure flag: try to collapse.
319 * Technical note: it is used by multiple contexts non atomically.
320 * All the __sk_mem_schedule() is of this nature: accounting
321 * is strict, actions are advisory and have some latency.
322 */
323 int tcp_memory_pressure __read_mostly;
324 EXPORT_SYMBOL(tcp_memory_pressure);
325
326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 if (!tcp_memory_pressure) {
329 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
330 tcp_memory_pressure = 1;
331 }
332 }
333 EXPORT_SYMBOL(tcp_enter_memory_pressure);
334
335 /* Convert seconds to retransmits based on initial and max timeout */
336 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
337 {
338 u8 res = 0;
339
340 if (seconds > 0) {
341 int period = timeout;
342
343 res = 1;
344 while (seconds > period && res < 255) {
345 res++;
346 timeout <<= 1;
347 if (timeout > rto_max)
348 timeout = rto_max;
349 period += timeout;
350 }
351 }
352 return res;
353 }
354
355 /* Convert retransmits to seconds based on initial and max timeout */
356 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
357 {
358 int period = 0;
359
360 if (retrans > 0) {
361 period = timeout;
362 while (--retrans) {
363 timeout <<= 1;
364 if (timeout > rto_max)
365 timeout = rto_max;
366 period += timeout;
367 }
368 }
369 return period;
370 }
371
372 /* Address-family independent initialization for a tcp_sock.
373 *
374 * NOTE: A lot of things set to zero explicitly by call to
375 * sk_alloc() so need not be done here.
376 */
377 void tcp_init_sock(struct sock *sk)
378 {
379 struct inet_connection_sock *icsk = inet_csk(sk);
380 struct tcp_sock *tp = tcp_sk(sk);
381
382 tp->out_of_order_queue = RB_ROOT;
383 tcp_init_xmit_timers(sk);
384 tcp_prequeue_init(tp);
385 INIT_LIST_HEAD(&tp->tsq_node);
386
387 icsk->icsk_rto = TCP_TIMEOUT_INIT;
388 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
389 minmax_reset(&tp->rtt_min, tcp_time_stamp, ~0U);
390
391 /* So many TCP implementations out there (incorrectly) count the
392 * initial SYN frame in their delayed-ACK and congestion control
393 * algorithms that we must have the following bandaid to talk
394 * efficiently to them. -DaveM
395 */
396 tp->snd_cwnd = TCP_INIT_CWND;
397
398 /* There's a bubble in the pipe until at least the first ACK. */
399 tp->app_limited = ~0U;
400
401 /* See draft-stevens-tcpca-spec-01 for discussion of the
402 * initialization of these values.
403 */
404 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
405 tp->snd_cwnd_clamp = ~0;
406 tp->mss_cache = TCP_MSS_DEFAULT;
407
408 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
409 tcp_enable_early_retrans(tp);
410 tcp_assign_congestion_control(sk);
411
412 tp->tsoffset = 0;
413
414 sk->sk_state = TCP_CLOSE;
415
416 sk->sk_write_space = sk_stream_write_space;
417 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
418
419 icsk->icsk_sync_mss = tcp_sync_mss;
420
421 sk->sk_sndbuf = sysctl_tcp_wmem[1];
422 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
423
424 local_bh_disable();
425 sk_sockets_allocated_inc(sk);
426 local_bh_enable();
427 }
428 EXPORT_SYMBOL(tcp_init_sock);
429
430 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb)
431 {
432 if (tsflags) {
433 struct skb_shared_info *shinfo = skb_shinfo(skb);
434 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
435
436 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
437 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
438 tcb->txstamp_ack = 1;
439 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
440 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
441 }
442 }
443
444 /*
445 * Wait for a TCP event.
446 *
447 * Note that we don't need to lock the socket, as the upper poll layers
448 * take care of normal races (between the test and the event) and we don't
449 * go look at any of the socket buffers directly.
450 */
451 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
452 {
453 unsigned int mask;
454 struct sock *sk = sock->sk;
455 const struct tcp_sock *tp = tcp_sk(sk);
456 int state;
457
458 sock_rps_record_flow(sk);
459
460 sock_poll_wait(file, sk_sleep(sk), wait);
461
462 state = sk_state_load(sk);
463 if (state == TCP_LISTEN)
464 return inet_csk_listen_poll(sk);
465
466 /* Socket is not locked. We are protected from async events
467 * by poll logic and correct handling of state changes
468 * made by other threads is impossible in any case.
469 */
470
471 mask = 0;
472
473 /*
474 * POLLHUP is certainly not done right. But poll() doesn't
475 * have a notion of HUP in just one direction, and for a
476 * socket the read side is more interesting.
477 *
478 * Some poll() documentation says that POLLHUP is incompatible
479 * with the POLLOUT/POLLWR flags, so somebody should check this
480 * all. But careful, it tends to be safer to return too many
481 * bits than too few, and you can easily break real applications
482 * if you don't tell them that something has hung up!
483 *
484 * Check-me.
485 *
486 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
487 * our fs/select.c). It means that after we received EOF,
488 * poll always returns immediately, making impossible poll() on write()
489 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
490 * if and only if shutdown has been made in both directions.
491 * Actually, it is interesting to look how Solaris and DUX
492 * solve this dilemma. I would prefer, if POLLHUP were maskable,
493 * then we could set it on SND_SHUTDOWN. BTW examples given
494 * in Stevens' books assume exactly this behaviour, it explains
495 * why POLLHUP is incompatible with POLLOUT. --ANK
496 *
497 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
498 * blocking on fresh not-connected or disconnected socket. --ANK
499 */
500 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
501 mask |= POLLHUP;
502 if (sk->sk_shutdown & RCV_SHUTDOWN)
503 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
504
505 /* Connected or passive Fast Open socket? */
506 if (state != TCP_SYN_SENT &&
507 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
508 int target = sock_rcvlowat(sk, 0, INT_MAX);
509
510 if (tp->urg_seq == tp->copied_seq &&
511 !sock_flag(sk, SOCK_URGINLINE) &&
512 tp->urg_data)
513 target++;
514
515 if (tp->rcv_nxt - tp->copied_seq >= target)
516 mask |= POLLIN | POLLRDNORM;
517
518 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
519 if (sk_stream_is_writeable(sk)) {
520 mask |= POLLOUT | POLLWRNORM;
521 } else { /* send SIGIO later */
522 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
523 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
524
525 /* Race breaker. If space is freed after
526 * wspace test but before the flags are set,
527 * IO signal will be lost. Memory barrier
528 * pairs with the input side.
529 */
530 smp_mb__after_atomic();
531 if (sk_stream_is_writeable(sk))
532 mask |= POLLOUT | POLLWRNORM;
533 }
534 } else
535 mask |= POLLOUT | POLLWRNORM;
536
537 if (tp->urg_data & TCP_URG_VALID)
538 mask |= POLLPRI;
539 }
540 /* This barrier is coupled with smp_wmb() in tcp_reset() */
541 smp_rmb();
542 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
543 mask |= POLLERR;
544
545 return mask;
546 }
547 EXPORT_SYMBOL(tcp_poll);
548
549 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
550 {
551 struct tcp_sock *tp = tcp_sk(sk);
552 int answ;
553 bool slow;
554
555 switch (cmd) {
556 case SIOCINQ:
557 if (sk->sk_state == TCP_LISTEN)
558 return -EINVAL;
559
560 slow = lock_sock_fast(sk);
561 answ = tcp_inq(sk);
562 unlock_sock_fast(sk, slow);
563 break;
564 case SIOCATMARK:
565 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
566 break;
567 case SIOCOUTQ:
568 if (sk->sk_state == TCP_LISTEN)
569 return -EINVAL;
570
571 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
572 answ = 0;
573 else
574 answ = tp->write_seq - tp->snd_una;
575 break;
576 case SIOCOUTQNSD:
577 if (sk->sk_state == TCP_LISTEN)
578 return -EINVAL;
579
580 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
581 answ = 0;
582 else
583 answ = tp->write_seq - tp->snd_nxt;
584 break;
585 default:
586 return -ENOIOCTLCMD;
587 }
588
589 return put_user(answ, (int __user *)arg);
590 }
591 EXPORT_SYMBOL(tcp_ioctl);
592
593 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
594 {
595 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
596 tp->pushed_seq = tp->write_seq;
597 }
598
599 static inline bool forced_push(const struct tcp_sock *tp)
600 {
601 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
602 }
603
604 static void skb_entail(struct sock *sk, struct sk_buff *skb)
605 {
606 struct tcp_sock *tp = tcp_sk(sk);
607 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
608
609 skb->csum = 0;
610 tcb->seq = tcb->end_seq = tp->write_seq;
611 tcb->tcp_flags = TCPHDR_ACK;
612 tcb->sacked = 0;
613 __skb_header_release(skb);
614 tcp_add_write_queue_tail(sk, skb);
615 sk->sk_wmem_queued += skb->truesize;
616 sk_mem_charge(sk, skb->truesize);
617 if (tp->nonagle & TCP_NAGLE_PUSH)
618 tp->nonagle &= ~TCP_NAGLE_PUSH;
619
620 tcp_slow_start_after_idle_check(sk);
621 }
622
623 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
624 {
625 if (flags & MSG_OOB)
626 tp->snd_up = tp->write_seq;
627 }
628
629 /* If a not yet filled skb is pushed, do not send it if
630 * we have data packets in Qdisc or NIC queues :
631 * Because TX completion will happen shortly, it gives a chance
632 * to coalesce future sendmsg() payload into this skb, without
633 * need for a timer, and with no latency trade off.
634 * As packets containing data payload have a bigger truesize
635 * than pure acks (dataless) packets, the last checks prevent
636 * autocorking if we only have an ACK in Qdisc/NIC queues,
637 * or if TX completion was delayed after we processed ACK packet.
638 */
639 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
640 int size_goal)
641 {
642 return skb->len < size_goal &&
643 sysctl_tcp_autocorking &&
644 skb != tcp_write_queue_head(sk) &&
645 atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
646 }
647
648 static void tcp_push(struct sock *sk, int flags, int mss_now,
649 int nonagle, int size_goal)
650 {
651 struct tcp_sock *tp = tcp_sk(sk);
652 struct sk_buff *skb;
653
654 if (!tcp_send_head(sk))
655 return;
656
657 skb = tcp_write_queue_tail(sk);
658 if (!(flags & MSG_MORE) || forced_push(tp))
659 tcp_mark_push(tp, skb);
660
661 tcp_mark_urg(tp, flags);
662
663 if (tcp_should_autocork(sk, skb, size_goal)) {
664
665 /* avoid atomic op if TSQ_THROTTLED bit is already set */
666 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
667 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
668 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
669 }
670 /* It is possible TX completion already happened
671 * before we set TSQ_THROTTLED.
672 */
673 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
674 return;
675 }
676
677 if (flags & MSG_MORE)
678 nonagle = TCP_NAGLE_CORK;
679
680 __tcp_push_pending_frames(sk, mss_now, nonagle);
681 }
682
683 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
684 unsigned int offset, size_t len)
685 {
686 struct tcp_splice_state *tss = rd_desc->arg.data;
687 int ret;
688
689 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
690 min(rd_desc->count, len), tss->flags);
691 if (ret > 0)
692 rd_desc->count -= ret;
693 return ret;
694 }
695
696 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
697 {
698 /* Store TCP splice context information in read_descriptor_t. */
699 read_descriptor_t rd_desc = {
700 .arg.data = tss,
701 .count = tss->len,
702 };
703
704 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
705 }
706
707 /**
708 * tcp_splice_read - splice data from TCP socket to a pipe
709 * @sock: socket to splice from
710 * @ppos: position (not valid)
711 * @pipe: pipe to splice to
712 * @len: number of bytes to splice
713 * @flags: splice modifier flags
714 *
715 * Description:
716 * Will read pages from given socket and fill them into a pipe.
717 *
718 **/
719 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
720 struct pipe_inode_info *pipe, size_t len,
721 unsigned int flags)
722 {
723 struct sock *sk = sock->sk;
724 struct tcp_splice_state tss = {
725 .pipe = pipe,
726 .len = len,
727 .flags = flags,
728 };
729 long timeo;
730 ssize_t spliced;
731 int ret;
732
733 sock_rps_record_flow(sk);
734 /*
735 * We can't seek on a socket input
736 */
737 if (unlikely(*ppos))
738 return -ESPIPE;
739
740 ret = spliced = 0;
741
742 lock_sock(sk);
743
744 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
745 while (tss.len) {
746 ret = __tcp_splice_read(sk, &tss);
747 if (ret < 0)
748 break;
749 else if (!ret) {
750 if (spliced)
751 break;
752 if (sock_flag(sk, SOCK_DONE))
753 break;
754 if (sk->sk_err) {
755 ret = sock_error(sk);
756 break;
757 }
758 if (sk->sk_shutdown & RCV_SHUTDOWN)
759 break;
760 if (sk->sk_state == TCP_CLOSE) {
761 /*
762 * This occurs when user tries to read
763 * from never connected socket.
764 */
765 if (!sock_flag(sk, SOCK_DONE))
766 ret = -ENOTCONN;
767 break;
768 }
769 if (!timeo) {
770 ret = -EAGAIN;
771 break;
772 }
773 sk_wait_data(sk, &timeo, NULL);
774 if (signal_pending(current)) {
775 ret = sock_intr_errno(timeo);
776 break;
777 }
778 continue;
779 }
780 tss.len -= ret;
781 spliced += ret;
782
783 if (!timeo)
784 break;
785 release_sock(sk);
786 lock_sock(sk);
787
788 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
789 (sk->sk_shutdown & RCV_SHUTDOWN) ||
790 signal_pending(current))
791 break;
792 }
793
794 release_sock(sk);
795
796 if (spliced)
797 return spliced;
798
799 return ret;
800 }
801 EXPORT_SYMBOL(tcp_splice_read);
802
803 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
804 bool force_schedule)
805 {
806 struct sk_buff *skb;
807
808 /* The TCP header must be at least 32-bit aligned. */
809 size = ALIGN(size, 4);
810
811 if (unlikely(tcp_under_memory_pressure(sk)))
812 sk_mem_reclaim_partial(sk);
813
814 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
815 if (likely(skb)) {
816 bool mem_scheduled;
817
818 if (force_schedule) {
819 mem_scheduled = true;
820 sk_forced_mem_schedule(sk, skb->truesize);
821 } else {
822 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
823 }
824 if (likely(mem_scheduled)) {
825 skb_reserve(skb, sk->sk_prot->max_header);
826 /*
827 * Make sure that we have exactly size bytes
828 * available to the caller, no more, no less.
829 */
830 skb->reserved_tailroom = skb->end - skb->tail - size;
831 return skb;
832 }
833 __kfree_skb(skb);
834 } else {
835 sk->sk_prot->enter_memory_pressure(sk);
836 sk_stream_moderate_sndbuf(sk);
837 }
838 return NULL;
839 }
840
841 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
842 int large_allowed)
843 {
844 struct tcp_sock *tp = tcp_sk(sk);
845 u32 new_size_goal, size_goal;
846
847 if (!large_allowed || !sk_can_gso(sk))
848 return mss_now;
849
850 /* Note : tcp_tso_autosize() will eventually split this later */
851 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
852 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
853
854 /* We try hard to avoid divides here */
855 size_goal = tp->gso_segs * mss_now;
856 if (unlikely(new_size_goal < size_goal ||
857 new_size_goal >= size_goal + mss_now)) {
858 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
859 sk->sk_gso_max_segs);
860 size_goal = tp->gso_segs * mss_now;
861 }
862
863 return max(size_goal, mss_now);
864 }
865
866 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
867 {
868 int mss_now;
869
870 mss_now = tcp_current_mss(sk);
871 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
872
873 return mss_now;
874 }
875
876 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
877 size_t size, int flags)
878 {
879 struct tcp_sock *tp = tcp_sk(sk);
880 int mss_now, size_goal;
881 int err;
882 ssize_t copied;
883 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
884
885 /* Wait for a connection to finish. One exception is TCP Fast Open
886 * (passive side) where data is allowed to be sent before a connection
887 * is fully established.
888 */
889 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
890 !tcp_passive_fastopen(sk)) {
891 err = sk_stream_wait_connect(sk, &timeo);
892 if (err != 0)
893 goto out_err;
894 }
895
896 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
897
898 mss_now = tcp_send_mss(sk, &size_goal, flags);
899 copied = 0;
900
901 err = -EPIPE;
902 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
903 goto out_err;
904
905 while (size > 0) {
906 struct sk_buff *skb = tcp_write_queue_tail(sk);
907 int copy, i;
908 bool can_coalesce;
909
910 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 ||
911 !tcp_skb_can_collapse_to(skb)) {
912 new_segment:
913 if (!sk_stream_memory_free(sk))
914 goto wait_for_sndbuf;
915
916 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
917 skb_queue_empty(&sk->sk_write_queue));
918 if (!skb)
919 goto wait_for_memory;
920
921 skb_entail(sk, skb);
922 copy = size_goal;
923 }
924
925 if (copy > size)
926 copy = size;
927
928 i = skb_shinfo(skb)->nr_frags;
929 can_coalesce = skb_can_coalesce(skb, i, page, offset);
930 if (!can_coalesce && i >= sysctl_max_skb_frags) {
931 tcp_mark_push(tp, skb);
932 goto new_segment;
933 }
934 if (!sk_wmem_schedule(sk, copy))
935 goto wait_for_memory;
936
937 if (can_coalesce) {
938 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
939 } else {
940 get_page(page);
941 skb_fill_page_desc(skb, i, page, offset, copy);
942 }
943 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
944
945 skb->len += copy;
946 skb->data_len += copy;
947 skb->truesize += copy;
948 sk->sk_wmem_queued += copy;
949 sk_mem_charge(sk, copy);
950 skb->ip_summed = CHECKSUM_PARTIAL;
951 tp->write_seq += copy;
952 TCP_SKB_CB(skb)->end_seq += copy;
953 tcp_skb_pcount_set(skb, 0);
954
955 if (!copied)
956 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
957
958 copied += copy;
959 offset += copy;
960 size -= copy;
961 if (!size) {
962 tcp_tx_timestamp(sk, sk->sk_tsflags, skb);
963 goto out;
964 }
965
966 if (skb->len < size_goal || (flags & MSG_OOB))
967 continue;
968
969 if (forced_push(tp)) {
970 tcp_mark_push(tp, skb);
971 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
972 } else if (skb == tcp_send_head(sk))
973 tcp_push_one(sk, mss_now);
974 continue;
975
976 wait_for_sndbuf:
977 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
978 wait_for_memory:
979 tcp_push(sk, flags & ~MSG_MORE, mss_now,
980 TCP_NAGLE_PUSH, size_goal);
981
982 err = sk_stream_wait_memory(sk, &timeo);
983 if (err != 0)
984 goto do_error;
985
986 mss_now = tcp_send_mss(sk, &size_goal, flags);
987 }
988
989 out:
990 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
991 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
992 return copied;
993
994 do_error:
995 if (copied)
996 goto out;
997 out_err:
998 /* make sure we wake any epoll edge trigger waiter */
999 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1000 err == -EAGAIN)) {
1001 sk->sk_write_space(sk);
1002 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1003 }
1004 return sk_stream_error(sk, flags, err);
1005 }
1006
1007 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1008 size_t size, int flags)
1009 {
1010 ssize_t res;
1011
1012 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1013 !sk_check_csum_caps(sk))
1014 return sock_no_sendpage(sk->sk_socket, page, offset, size,
1015 flags);
1016
1017 lock_sock(sk);
1018
1019 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1020
1021 res = do_tcp_sendpages(sk, page, offset, size, flags);
1022 release_sock(sk);
1023 return res;
1024 }
1025 EXPORT_SYMBOL(tcp_sendpage);
1026
1027 /* Do not bother using a page frag for very small frames.
1028 * But use this heuristic only for the first skb in write queue.
1029 *
1030 * Having no payload in skb->head allows better SACK shifting
1031 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1032 * write queue has less skbs.
1033 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1034 * This also speeds up tso_fragment(), since it wont fallback
1035 * to tcp_fragment().
1036 */
1037 static int linear_payload_sz(bool first_skb)
1038 {
1039 if (first_skb)
1040 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1041 return 0;
1042 }
1043
1044 static int select_size(const struct sock *sk, bool sg, bool first_skb)
1045 {
1046 const struct tcp_sock *tp = tcp_sk(sk);
1047 int tmp = tp->mss_cache;
1048
1049 if (sg) {
1050 if (sk_can_gso(sk)) {
1051 tmp = linear_payload_sz(first_skb);
1052 } else {
1053 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1054
1055 if (tmp >= pgbreak &&
1056 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1057 tmp = pgbreak;
1058 }
1059 }
1060
1061 return tmp;
1062 }
1063
1064 void tcp_free_fastopen_req(struct tcp_sock *tp)
1065 {
1066 if (tp->fastopen_req) {
1067 kfree(tp->fastopen_req);
1068 tp->fastopen_req = NULL;
1069 }
1070 }
1071
1072 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1073 int *copied, size_t size)
1074 {
1075 struct tcp_sock *tp = tcp_sk(sk);
1076 int err, flags;
1077
1078 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1079 return -EOPNOTSUPP;
1080 if (tp->fastopen_req)
1081 return -EALREADY; /* Another Fast Open is in progress */
1082
1083 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1084 sk->sk_allocation);
1085 if (unlikely(!tp->fastopen_req))
1086 return -ENOBUFS;
1087 tp->fastopen_req->data = msg;
1088 tp->fastopen_req->size = size;
1089
1090 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1091 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1092 msg->msg_namelen, flags);
1093 *copied = tp->fastopen_req->copied;
1094 tcp_free_fastopen_req(tp);
1095 return err;
1096 }
1097
1098 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1099 {
1100 struct tcp_sock *tp = tcp_sk(sk);
1101 struct sk_buff *skb;
1102 struct sockcm_cookie sockc;
1103 int flags, err, copied = 0;
1104 int mss_now = 0, size_goal, copied_syn = 0;
1105 bool process_backlog = false;
1106 bool sg;
1107 long timeo;
1108
1109 lock_sock(sk);
1110
1111 flags = msg->msg_flags;
1112 if (flags & MSG_FASTOPEN) {
1113 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1114 if (err == -EINPROGRESS && copied_syn > 0)
1115 goto out;
1116 else if (err)
1117 goto out_err;
1118 }
1119
1120 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1121
1122 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1123
1124 /* Wait for a connection to finish. One exception is TCP Fast Open
1125 * (passive side) where data is allowed to be sent before a connection
1126 * is fully established.
1127 */
1128 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1129 !tcp_passive_fastopen(sk)) {
1130 err = sk_stream_wait_connect(sk, &timeo);
1131 if (err != 0)
1132 goto do_error;
1133 }
1134
1135 if (unlikely(tp->repair)) {
1136 if (tp->repair_queue == TCP_RECV_QUEUE) {
1137 copied = tcp_send_rcvq(sk, msg, size);
1138 goto out_nopush;
1139 }
1140
1141 err = -EINVAL;
1142 if (tp->repair_queue == TCP_NO_QUEUE)
1143 goto out_err;
1144
1145 /* 'common' sending to sendq */
1146 }
1147
1148 sockc.tsflags = sk->sk_tsflags;
1149 if (msg->msg_controllen) {
1150 err = sock_cmsg_send(sk, msg, &sockc);
1151 if (unlikely(err)) {
1152 err = -EINVAL;
1153 goto out_err;
1154 }
1155 }
1156
1157 /* This should be in poll */
1158 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1159
1160 /* Ok commence sending. */
1161 copied = 0;
1162
1163 restart:
1164 mss_now = tcp_send_mss(sk, &size_goal, flags);
1165
1166 err = -EPIPE;
1167 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1168 goto do_error;
1169
1170 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1171
1172 while (msg_data_left(msg)) {
1173 int copy = 0;
1174 int max = size_goal;
1175
1176 skb = tcp_write_queue_tail(sk);
1177 if (tcp_send_head(sk)) {
1178 if (skb->ip_summed == CHECKSUM_NONE)
1179 max = mss_now;
1180 copy = max - skb->len;
1181 }
1182
1183 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1184 bool first_skb;
1185
1186 new_segment:
1187 /* Allocate new segment. If the interface is SG,
1188 * allocate skb fitting to single page.
1189 */
1190 if (!sk_stream_memory_free(sk))
1191 goto wait_for_sndbuf;
1192
1193 if (process_backlog && sk_flush_backlog(sk)) {
1194 process_backlog = false;
1195 goto restart;
1196 }
1197 first_skb = skb_queue_empty(&sk->sk_write_queue);
1198 skb = sk_stream_alloc_skb(sk,
1199 select_size(sk, sg, first_skb),
1200 sk->sk_allocation,
1201 first_skb);
1202 if (!skb)
1203 goto wait_for_memory;
1204
1205 process_backlog = true;
1206 /*
1207 * Check whether we can use HW checksum.
1208 */
1209 if (sk_check_csum_caps(sk))
1210 skb->ip_summed = CHECKSUM_PARTIAL;
1211
1212 skb_entail(sk, skb);
1213 copy = size_goal;
1214 max = size_goal;
1215
1216 /* All packets are restored as if they have
1217 * already been sent. skb_mstamp isn't set to
1218 * avoid wrong rtt estimation.
1219 */
1220 if (tp->repair)
1221 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1222 }
1223
1224 /* Try to append data to the end of skb. */
1225 if (copy > msg_data_left(msg))
1226 copy = msg_data_left(msg);
1227
1228 /* Where to copy to? */
1229 if (skb_availroom(skb) > 0) {
1230 /* We have some space in skb head. Superb! */
1231 copy = min_t(int, copy, skb_availroom(skb));
1232 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1233 if (err)
1234 goto do_fault;
1235 } else {
1236 bool merge = true;
1237 int i = skb_shinfo(skb)->nr_frags;
1238 struct page_frag *pfrag = sk_page_frag(sk);
1239
1240 if (!sk_page_frag_refill(sk, pfrag))
1241 goto wait_for_memory;
1242
1243 if (!skb_can_coalesce(skb, i, pfrag->page,
1244 pfrag->offset)) {
1245 if (i >= sysctl_max_skb_frags || !sg) {
1246 tcp_mark_push(tp, skb);
1247 goto new_segment;
1248 }
1249 merge = false;
1250 }
1251
1252 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1253
1254 if (!sk_wmem_schedule(sk, copy))
1255 goto wait_for_memory;
1256
1257 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1258 pfrag->page,
1259 pfrag->offset,
1260 copy);
1261 if (err)
1262 goto do_error;
1263
1264 /* Update the skb. */
1265 if (merge) {
1266 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1267 } else {
1268 skb_fill_page_desc(skb, i, pfrag->page,
1269 pfrag->offset, copy);
1270 get_page(pfrag->page);
1271 }
1272 pfrag->offset += copy;
1273 }
1274
1275 if (!copied)
1276 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1277
1278 tp->write_seq += copy;
1279 TCP_SKB_CB(skb)->end_seq += copy;
1280 tcp_skb_pcount_set(skb, 0);
1281
1282 copied += copy;
1283 if (!msg_data_left(msg)) {
1284 tcp_tx_timestamp(sk, sockc.tsflags, skb);
1285 if (unlikely(flags & MSG_EOR))
1286 TCP_SKB_CB(skb)->eor = 1;
1287 goto out;
1288 }
1289
1290 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1291 continue;
1292
1293 if (forced_push(tp)) {
1294 tcp_mark_push(tp, skb);
1295 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1296 } else if (skb == tcp_send_head(sk))
1297 tcp_push_one(sk, mss_now);
1298 continue;
1299
1300 wait_for_sndbuf:
1301 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1302 wait_for_memory:
1303 if (copied)
1304 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1305 TCP_NAGLE_PUSH, size_goal);
1306
1307 err = sk_stream_wait_memory(sk, &timeo);
1308 if (err != 0)
1309 goto do_error;
1310
1311 mss_now = tcp_send_mss(sk, &size_goal, flags);
1312 }
1313
1314 out:
1315 if (copied)
1316 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1317 out_nopush:
1318 release_sock(sk);
1319 return copied + copied_syn;
1320
1321 do_fault:
1322 if (!skb->len) {
1323 tcp_unlink_write_queue(skb, sk);
1324 /* It is the one place in all of TCP, except connection
1325 * reset, where we can be unlinking the send_head.
1326 */
1327 tcp_check_send_head(sk, skb);
1328 sk_wmem_free_skb(sk, skb);
1329 }
1330
1331 do_error:
1332 if (copied + copied_syn)
1333 goto out;
1334 out_err:
1335 err = sk_stream_error(sk, flags, err);
1336 /* make sure we wake any epoll edge trigger waiter */
1337 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1338 err == -EAGAIN)) {
1339 sk->sk_write_space(sk);
1340 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1341 }
1342 release_sock(sk);
1343 return err;
1344 }
1345 EXPORT_SYMBOL(tcp_sendmsg);
1346
1347 /*
1348 * Handle reading urgent data. BSD has very simple semantics for
1349 * this, no blocking and very strange errors 8)
1350 */
1351
1352 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1353 {
1354 struct tcp_sock *tp = tcp_sk(sk);
1355
1356 /* No URG data to read. */
1357 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1358 tp->urg_data == TCP_URG_READ)
1359 return -EINVAL; /* Yes this is right ! */
1360
1361 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1362 return -ENOTCONN;
1363
1364 if (tp->urg_data & TCP_URG_VALID) {
1365 int err = 0;
1366 char c = tp->urg_data;
1367
1368 if (!(flags & MSG_PEEK))
1369 tp->urg_data = TCP_URG_READ;
1370
1371 /* Read urgent data. */
1372 msg->msg_flags |= MSG_OOB;
1373
1374 if (len > 0) {
1375 if (!(flags & MSG_TRUNC))
1376 err = memcpy_to_msg(msg, &c, 1);
1377 len = 1;
1378 } else
1379 msg->msg_flags |= MSG_TRUNC;
1380
1381 return err ? -EFAULT : len;
1382 }
1383
1384 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1385 return 0;
1386
1387 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1388 * the available implementations agree in this case:
1389 * this call should never block, independent of the
1390 * blocking state of the socket.
1391 * Mike <pall@rz.uni-karlsruhe.de>
1392 */
1393 return -EAGAIN;
1394 }
1395
1396 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1397 {
1398 struct sk_buff *skb;
1399 int copied = 0, err = 0;
1400
1401 /* XXX -- need to support SO_PEEK_OFF */
1402
1403 skb_queue_walk(&sk->sk_write_queue, skb) {
1404 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1405 if (err)
1406 break;
1407
1408 copied += skb->len;
1409 }
1410
1411 return err ?: copied;
1412 }
1413
1414 /* Clean up the receive buffer for full frames taken by the user,
1415 * then send an ACK if necessary. COPIED is the number of bytes
1416 * tcp_recvmsg has given to the user so far, it speeds up the
1417 * calculation of whether or not we must ACK for the sake of
1418 * a window update.
1419 */
1420 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1421 {
1422 struct tcp_sock *tp = tcp_sk(sk);
1423 bool time_to_ack = false;
1424
1425 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1426
1427 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1428 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1429 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1430
1431 if (inet_csk_ack_scheduled(sk)) {
1432 const struct inet_connection_sock *icsk = inet_csk(sk);
1433 /* Delayed ACKs frequently hit locked sockets during bulk
1434 * receive. */
1435 if (icsk->icsk_ack.blocked ||
1436 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1437 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1438 /*
1439 * If this read emptied read buffer, we send ACK, if
1440 * connection is not bidirectional, user drained
1441 * receive buffer and there was a small segment
1442 * in queue.
1443 */
1444 (copied > 0 &&
1445 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1446 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1447 !icsk->icsk_ack.pingpong)) &&
1448 !atomic_read(&sk->sk_rmem_alloc)))
1449 time_to_ack = true;
1450 }
1451
1452 /* We send an ACK if we can now advertise a non-zero window
1453 * which has been raised "significantly".
1454 *
1455 * Even if window raised up to infinity, do not send window open ACK
1456 * in states, where we will not receive more. It is useless.
1457 */
1458 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1459 __u32 rcv_window_now = tcp_receive_window(tp);
1460
1461 /* Optimize, __tcp_select_window() is not cheap. */
1462 if (2*rcv_window_now <= tp->window_clamp) {
1463 __u32 new_window = __tcp_select_window(sk);
1464
1465 /* Send ACK now, if this read freed lots of space
1466 * in our buffer. Certainly, new_window is new window.
1467 * We can advertise it now, if it is not less than current one.
1468 * "Lots" means "at least twice" here.
1469 */
1470 if (new_window && new_window >= 2 * rcv_window_now)
1471 time_to_ack = true;
1472 }
1473 }
1474 if (time_to_ack)
1475 tcp_send_ack(sk);
1476 }
1477
1478 static void tcp_prequeue_process(struct sock *sk)
1479 {
1480 struct sk_buff *skb;
1481 struct tcp_sock *tp = tcp_sk(sk);
1482
1483 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1484
1485 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1486 sk_backlog_rcv(sk, skb);
1487
1488 /* Clear memory counter. */
1489 tp->ucopy.memory = 0;
1490 }
1491
1492 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1493 {
1494 struct sk_buff *skb;
1495 u32 offset;
1496
1497 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1498 offset = seq - TCP_SKB_CB(skb)->seq;
1499 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1500 pr_err_once("%s: found a SYN, please report !\n", __func__);
1501 offset--;
1502 }
1503 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1504 *off = offset;
1505 return skb;
1506 }
1507 /* This looks weird, but this can happen if TCP collapsing
1508 * splitted a fat GRO packet, while we released socket lock
1509 * in skb_splice_bits()
1510 */
1511 sk_eat_skb(sk, skb);
1512 }
1513 return NULL;
1514 }
1515
1516 /*
1517 * This routine provides an alternative to tcp_recvmsg() for routines
1518 * that would like to handle copying from skbuffs directly in 'sendfile'
1519 * fashion.
1520 * Note:
1521 * - It is assumed that the socket was locked by the caller.
1522 * - The routine does not block.
1523 * - At present, there is no support for reading OOB data
1524 * or for 'peeking' the socket using this routine
1525 * (although both would be easy to implement).
1526 */
1527 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1528 sk_read_actor_t recv_actor)
1529 {
1530 struct sk_buff *skb;
1531 struct tcp_sock *tp = tcp_sk(sk);
1532 u32 seq = tp->copied_seq;
1533 u32 offset;
1534 int copied = 0;
1535
1536 if (sk->sk_state == TCP_LISTEN)
1537 return -ENOTCONN;
1538 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1539 if (offset < skb->len) {
1540 int used;
1541 size_t len;
1542
1543 len = skb->len - offset;
1544 /* Stop reading if we hit a patch of urgent data */
1545 if (tp->urg_data) {
1546 u32 urg_offset = tp->urg_seq - seq;
1547 if (urg_offset < len)
1548 len = urg_offset;
1549 if (!len)
1550 break;
1551 }
1552 used = recv_actor(desc, skb, offset, len);
1553 if (used <= 0) {
1554 if (!copied)
1555 copied = used;
1556 break;
1557 } else if (used <= len) {
1558 seq += used;
1559 copied += used;
1560 offset += used;
1561 }
1562 /* If recv_actor drops the lock (e.g. TCP splice
1563 * receive) the skb pointer might be invalid when
1564 * getting here: tcp_collapse might have deleted it
1565 * while aggregating skbs from the socket queue.
1566 */
1567 skb = tcp_recv_skb(sk, seq - 1, &offset);
1568 if (!skb)
1569 break;
1570 /* TCP coalescing might have appended data to the skb.
1571 * Try to splice more frags
1572 */
1573 if (offset + 1 != skb->len)
1574 continue;
1575 }
1576 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1577 sk_eat_skb(sk, skb);
1578 ++seq;
1579 break;
1580 }
1581 sk_eat_skb(sk, skb);
1582 if (!desc->count)
1583 break;
1584 tp->copied_seq = seq;
1585 }
1586 tp->copied_seq = seq;
1587
1588 tcp_rcv_space_adjust(sk);
1589
1590 /* Clean up data we have read: This will do ACK frames. */
1591 if (copied > 0) {
1592 tcp_recv_skb(sk, seq, &offset);
1593 tcp_cleanup_rbuf(sk, copied);
1594 }
1595 return copied;
1596 }
1597 EXPORT_SYMBOL(tcp_read_sock);
1598
1599 int tcp_peek_len(struct socket *sock)
1600 {
1601 return tcp_inq(sock->sk);
1602 }
1603 EXPORT_SYMBOL(tcp_peek_len);
1604
1605 /*
1606 * This routine copies from a sock struct into the user buffer.
1607 *
1608 * Technical note: in 2.3 we work on _locked_ socket, so that
1609 * tricks with *seq access order and skb->users are not required.
1610 * Probably, code can be easily improved even more.
1611 */
1612
1613 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1614 int flags, int *addr_len)
1615 {
1616 struct tcp_sock *tp = tcp_sk(sk);
1617 int copied = 0;
1618 u32 peek_seq;
1619 u32 *seq;
1620 unsigned long used;
1621 int err;
1622 int target; /* Read at least this many bytes */
1623 long timeo;
1624 struct task_struct *user_recv = NULL;
1625 struct sk_buff *skb, *last;
1626 u32 urg_hole = 0;
1627
1628 if (unlikely(flags & MSG_ERRQUEUE))
1629 return inet_recv_error(sk, msg, len, addr_len);
1630
1631 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1632 (sk->sk_state == TCP_ESTABLISHED))
1633 sk_busy_loop(sk, nonblock);
1634
1635 lock_sock(sk);
1636
1637 err = -ENOTCONN;
1638 if (sk->sk_state == TCP_LISTEN)
1639 goto out;
1640
1641 timeo = sock_rcvtimeo(sk, nonblock);
1642
1643 /* Urgent data needs to be handled specially. */
1644 if (flags & MSG_OOB)
1645 goto recv_urg;
1646
1647 if (unlikely(tp->repair)) {
1648 err = -EPERM;
1649 if (!(flags & MSG_PEEK))
1650 goto out;
1651
1652 if (tp->repair_queue == TCP_SEND_QUEUE)
1653 goto recv_sndq;
1654
1655 err = -EINVAL;
1656 if (tp->repair_queue == TCP_NO_QUEUE)
1657 goto out;
1658
1659 /* 'common' recv queue MSG_PEEK-ing */
1660 }
1661
1662 seq = &tp->copied_seq;
1663 if (flags & MSG_PEEK) {
1664 peek_seq = tp->copied_seq;
1665 seq = &peek_seq;
1666 }
1667
1668 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1669
1670 do {
1671 u32 offset;
1672
1673 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1674 if (tp->urg_data && tp->urg_seq == *seq) {
1675 if (copied)
1676 break;
1677 if (signal_pending(current)) {
1678 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1679 break;
1680 }
1681 }
1682
1683 /* Next get a buffer. */
1684
1685 last = skb_peek_tail(&sk->sk_receive_queue);
1686 skb_queue_walk(&sk->sk_receive_queue, skb) {
1687 last = skb;
1688 /* Now that we have two receive queues this
1689 * shouldn't happen.
1690 */
1691 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1692 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1693 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1694 flags))
1695 break;
1696
1697 offset = *seq - TCP_SKB_CB(skb)->seq;
1698 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1699 pr_err_once("%s: found a SYN, please report !\n", __func__);
1700 offset--;
1701 }
1702 if (offset < skb->len)
1703 goto found_ok_skb;
1704 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1705 goto found_fin_ok;
1706 WARN(!(flags & MSG_PEEK),
1707 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1708 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1709 }
1710
1711 /* Well, if we have backlog, try to process it now yet. */
1712
1713 if (copied >= target && !sk->sk_backlog.tail)
1714 break;
1715
1716 if (copied) {
1717 if (sk->sk_err ||
1718 sk->sk_state == TCP_CLOSE ||
1719 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1720 !timeo ||
1721 signal_pending(current))
1722 break;
1723 } else {
1724 if (sock_flag(sk, SOCK_DONE))
1725 break;
1726
1727 if (sk->sk_err) {
1728 copied = sock_error(sk);
1729 break;
1730 }
1731
1732 if (sk->sk_shutdown & RCV_SHUTDOWN)
1733 break;
1734
1735 if (sk->sk_state == TCP_CLOSE) {
1736 if (!sock_flag(sk, SOCK_DONE)) {
1737 /* This occurs when user tries to read
1738 * from never connected socket.
1739 */
1740 copied = -ENOTCONN;
1741 break;
1742 }
1743 break;
1744 }
1745
1746 if (!timeo) {
1747 copied = -EAGAIN;
1748 break;
1749 }
1750
1751 if (signal_pending(current)) {
1752 copied = sock_intr_errno(timeo);
1753 break;
1754 }
1755 }
1756
1757 tcp_cleanup_rbuf(sk, copied);
1758
1759 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1760 /* Install new reader */
1761 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1762 user_recv = current;
1763 tp->ucopy.task = user_recv;
1764 tp->ucopy.msg = msg;
1765 }
1766
1767 tp->ucopy.len = len;
1768
1769 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1770 !(flags & (MSG_PEEK | MSG_TRUNC)));
1771
1772 /* Ugly... If prequeue is not empty, we have to
1773 * process it before releasing socket, otherwise
1774 * order will be broken at second iteration.
1775 * More elegant solution is required!!!
1776 *
1777 * Look: we have the following (pseudo)queues:
1778 *
1779 * 1. packets in flight
1780 * 2. backlog
1781 * 3. prequeue
1782 * 4. receive_queue
1783 *
1784 * Each queue can be processed only if the next ones
1785 * are empty. At this point we have empty receive_queue.
1786 * But prequeue _can_ be not empty after 2nd iteration,
1787 * when we jumped to start of loop because backlog
1788 * processing added something to receive_queue.
1789 * We cannot release_sock(), because backlog contains
1790 * packets arrived _after_ prequeued ones.
1791 *
1792 * Shortly, algorithm is clear --- to process all
1793 * the queues in order. We could make it more directly,
1794 * requeueing packets from backlog to prequeue, if
1795 * is not empty. It is more elegant, but eats cycles,
1796 * unfortunately.
1797 */
1798 if (!skb_queue_empty(&tp->ucopy.prequeue))
1799 goto do_prequeue;
1800
1801 /* __ Set realtime policy in scheduler __ */
1802 }
1803
1804 if (copied >= target) {
1805 /* Do not sleep, just process backlog. */
1806 release_sock(sk);
1807 lock_sock(sk);
1808 } else {
1809 sk_wait_data(sk, &timeo, last);
1810 }
1811
1812 if (user_recv) {
1813 int chunk;
1814
1815 /* __ Restore normal policy in scheduler __ */
1816
1817 chunk = len - tp->ucopy.len;
1818 if (chunk != 0) {
1819 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1820 len -= chunk;
1821 copied += chunk;
1822 }
1823
1824 if (tp->rcv_nxt == tp->copied_seq &&
1825 !skb_queue_empty(&tp->ucopy.prequeue)) {
1826 do_prequeue:
1827 tcp_prequeue_process(sk);
1828
1829 chunk = len - tp->ucopy.len;
1830 if (chunk != 0) {
1831 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1832 len -= chunk;
1833 copied += chunk;
1834 }
1835 }
1836 }
1837 if ((flags & MSG_PEEK) &&
1838 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1839 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1840 current->comm,
1841 task_pid_nr(current));
1842 peek_seq = tp->copied_seq;
1843 }
1844 continue;
1845
1846 found_ok_skb:
1847 /* Ok so how much can we use? */
1848 used = skb->len - offset;
1849 if (len < used)
1850 used = len;
1851
1852 /* Do we have urgent data here? */
1853 if (tp->urg_data) {
1854 u32 urg_offset = tp->urg_seq - *seq;
1855 if (urg_offset < used) {
1856 if (!urg_offset) {
1857 if (!sock_flag(sk, SOCK_URGINLINE)) {
1858 ++*seq;
1859 urg_hole++;
1860 offset++;
1861 used--;
1862 if (!used)
1863 goto skip_copy;
1864 }
1865 } else
1866 used = urg_offset;
1867 }
1868 }
1869
1870 if (!(flags & MSG_TRUNC)) {
1871 err = skb_copy_datagram_msg(skb, offset, msg, used);
1872 if (err) {
1873 /* Exception. Bailout! */
1874 if (!copied)
1875 copied = -EFAULT;
1876 break;
1877 }
1878 }
1879
1880 *seq += used;
1881 copied += used;
1882 len -= used;
1883
1884 tcp_rcv_space_adjust(sk);
1885
1886 skip_copy:
1887 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1888 tp->urg_data = 0;
1889 tcp_fast_path_check(sk);
1890 }
1891 if (used + offset < skb->len)
1892 continue;
1893
1894 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1895 goto found_fin_ok;
1896 if (!(flags & MSG_PEEK))
1897 sk_eat_skb(sk, skb);
1898 continue;
1899
1900 found_fin_ok:
1901 /* Process the FIN. */
1902 ++*seq;
1903 if (!(flags & MSG_PEEK))
1904 sk_eat_skb(sk, skb);
1905 break;
1906 } while (len > 0);
1907
1908 if (user_recv) {
1909 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1910 int chunk;
1911
1912 tp->ucopy.len = copied > 0 ? len : 0;
1913
1914 tcp_prequeue_process(sk);
1915
1916 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1917 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1918 len -= chunk;
1919 copied += chunk;
1920 }
1921 }
1922
1923 tp->ucopy.task = NULL;
1924 tp->ucopy.len = 0;
1925 }
1926
1927 /* According to UNIX98, msg_name/msg_namelen are ignored
1928 * on connected socket. I was just happy when found this 8) --ANK
1929 */
1930
1931 /* Clean up data we have read: This will do ACK frames. */
1932 tcp_cleanup_rbuf(sk, copied);
1933
1934 release_sock(sk);
1935 return copied;
1936
1937 out:
1938 release_sock(sk);
1939 return err;
1940
1941 recv_urg:
1942 err = tcp_recv_urg(sk, msg, len, flags);
1943 goto out;
1944
1945 recv_sndq:
1946 err = tcp_peek_sndq(sk, msg, len);
1947 goto out;
1948 }
1949 EXPORT_SYMBOL(tcp_recvmsg);
1950
1951 void tcp_set_state(struct sock *sk, int state)
1952 {
1953 int oldstate = sk->sk_state;
1954
1955 switch (state) {
1956 case TCP_ESTABLISHED:
1957 if (oldstate != TCP_ESTABLISHED)
1958 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1959 break;
1960
1961 case TCP_CLOSE:
1962 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1963 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1964
1965 sk->sk_prot->unhash(sk);
1966 if (inet_csk(sk)->icsk_bind_hash &&
1967 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1968 inet_put_port(sk);
1969 /* fall through */
1970 default:
1971 if (oldstate == TCP_ESTABLISHED)
1972 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1973 }
1974
1975 /* Change state AFTER socket is unhashed to avoid closed
1976 * socket sitting in hash tables.
1977 */
1978 sk_state_store(sk, state);
1979
1980 #ifdef STATE_TRACE
1981 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1982 #endif
1983 }
1984 EXPORT_SYMBOL_GPL(tcp_set_state);
1985
1986 /*
1987 * State processing on a close. This implements the state shift for
1988 * sending our FIN frame. Note that we only send a FIN for some
1989 * states. A shutdown() may have already sent the FIN, or we may be
1990 * closed.
1991 */
1992
1993 static const unsigned char new_state[16] = {
1994 /* current state: new state: action: */
1995 [0 /* (Invalid) */] = TCP_CLOSE,
1996 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1997 [TCP_SYN_SENT] = TCP_CLOSE,
1998 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1999 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2000 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2001 [TCP_TIME_WAIT] = TCP_CLOSE,
2002 [TCP_CLOSE] = TCP_CLOSE,
2003 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2004 [TCP_LAST_ACK] = TCP_LAST_ACK,
2005 [TCP_LISTEN] = TCP_CLOSE,
2006 [TCP_CLOSING] = TCP_CLOSING,
2007 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2008 };
2009
2010 static int tcp_close_state(struct sock *sk)
2011 {
2012 int next = (int)new_state[sk->sk_state];
2013 int ns = next & TCP_STATE_MASK;
2014
2015 tcp_set_state(sk, ns);
2016
2017 return next & TCP_ACTION_FIN;
2018 }
2019
2020 /*
2021 * Shutdown the sending side of a connection. Much like close except
2022 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2023 */
2024
2025 void tcp_shutdown(struct sock *sk, int how)
2026 {
2027 /* We need to grab some memory, and put together a FIN,
2028 * and then put it into the queue to be sent.
2029 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2030 */
2031 if (!(how & SEND_SHUTDOWN))
2032 return;
2033
2034 /* If we've already sent a FIN, or it's a closed state, skip this. */
2035 if ((1 << sk->sk_state) &
2036 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2037 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2038 /* Clear out any half completed packets. FIN if needed. */
2039 if (tcp_close_state(sk))
2040 tcp_send_fin(sk);
2041 }
2042 }
2043 EXPORT_SYMBOL(tcp_shutdown);
2044
2045 bool tcp_check_oom(struct sock *sk, int shift)
2046 {
2047 bool too_many_orphans, out_of_socket_memory;
2048
2049 too_many_orphans = tcp_too_many_orphans(sk, shift);
2050 out_of_socket_memory = tcp_out_of_memory(sk);
2051
2052 if (too_many_orphans)
2053 net_info_ratelimited("too many orphaned sockets\n");
2054 if (out_of_socket_memory)
2055 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2056 return too_many_orphans || out_of_socket_memory;
2057 }
2058
2059 void tcp_close(struct sock *sk, long timeout)
2060 {
2061 struct sk_buff *skb;
2062 int data_was_unread = 0;
2063 int state;
2064
2065 lock_sock(sk);
2066 sk->sk_shutdown = SHUTDOWN_MASK;
2067
2068 if (sk->sk_state == TCP_LISTEN) {
2069 tcp_set_state(sk, TCP_CLOSE);
2070
2071 /* Special case. */
2072 inet_csk_listen_stop(sk);
2073
2074 goto adjudge_to_death;
2075 }
2076
2077 /* We need to flush the recv. buffs. We do this only on the
2078 * descriptor close, not protocol-sourced closes, because the
2079 * reader process may not have drained the data yet!
2080 */
2081 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2082 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2083
2084 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2085 len--;
2086 data_was_unread += len;
2087 __kfree_skb(skb);
2088 }
2089
2090 sk_mem_reclaim(sk);
2091
2092 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2093 if (sk->sk_state == TCP_CLOSE)
2094 goto adjudge_to_death;
2095
2096 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2097 * data was lost. To witness the awful effects of the old behavior of
2098 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2099 * GET in an FTP client, suspend the process, wait for the client to
2100 * advertise a zero window, then kill -9 the FTP client, wheee...
2101 * Note: timeout is always zero in such a case.
2102 */
2103 if (unlikely(tcp_sk(sk)->repair)) {
2104 sk->sk_prot->disconnect(sk, 0);
2105 } else if (data_was_unread) {
2106 /* Unread data was tossed, zap the connection. */
2107 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2108 tcp_set_state(sk, TCP_CLOSE);
2109 tcp_send_active_reset(sk, sk->sk_allocation);
2110 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2111 /* Check zero linger _after_ checking for unread data. */
2112 sk->sk_prot->disconnect(sk, 0);
2113 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2114 } else if (tcp_close_state(sk)) {
2115 /* We FIN if the application ate all the data before
2116 * zapping the connection.
2117 */
2118
2119 /* RED-PEN. Formally speaking, we have broken TCP state
2120 * machine. State transitions:
2121 *
2122 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2123 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2124 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2125 *
2126 * are legal only when FIN has been sent (i.e. in window),
2127 * rather than queued out of window. Purists blame.
2128 *
2129 * F.e. "RFC state" is ESTABLISHED,
2130 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2131 *
2132 * The visible declinations are that sometimes
2133 * we enter time-wait state, when it is not required really
2134 * (harmless), do not send active resets, when they are
2135 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2136 * they look as CLOSING or LAST_ACK for Linux)
2137 * Probably, I missed some more holelets.
2138 * --ANK
2139 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2140 * in a single packet! (May consider it later but will
2141 * probably need API support or TCP_CORK SYN-ACK until
2142 * data is written and socket is closed.)
2143 */
2144 tcp_send_fin(sk);
2145 }
2146
2147 sk_stream_wait_close(sk, timeout);
2148
2149 adjudge_to_death:
2150 state = sk->sk_state;
2151 sock_hold(sk);
2152 sock_orphan(sk);
2153
2154 /* It is the last release_sock in its life. It will remove backlog. */
2155 release_sock(sk);
2156
2157
2158 /* Now socket is owned by kernel and we acquire BH lock
2159 to finish close. No need to check for user refs.
2160 */
2161 local_bh_disable();
2162 bh_lock_sock(sk);
2163 WARN_ON(sock_owned_by_user(sk));
2164
2165 percpu_counter_inc(sk->sk_prot->orphan_count);
2166
2167 /* Have we already been destroyed by a softirq or backlog? */
2168 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2169 goto out;
2170
2171 /* This is a (useful) BSD violating of the RFC. There is a
2172 * problem with TCP as specified in that the other end could
2173 * keep a socket open forever with no application left this end.
2174 * We use a 1 minute timeout (about the same as BSD) then kill
2175 * our end. If they send after that then tough - BUT: long enough
2176 * that we won't make the old 4*rto = almost no time - whoops
2177 * reset mistake.
2178 *
2179 * Nope, it was not mistake. It is really desired behaviour
2180 * f.e. on http servers, when such sockets are useless, but
2181 * consume significant resources. Let's do it with special
2182 * linger2 option. --ANK
2183 */
2184
2185 if (sk->sk_state == TCP_FIN_WAIT2) {
2186 struct tcp_sock *tp = tcp_sk(sk);
2187 if (tp->linger2 < 0) {
2188 tcp_set_state(sk, TCP_CLOSE);
2189 tcp_send_active_reset(sk, GFP_ATOMIC);
2190 __NET_INC_STATS(sock_net(sk),
2191 LINUX_MIB_TCPABORTONLINGER);
2192 } else {
2193 const int tmo = tcp_fin_time(sk);
2194
2195 if (tmo > TCP_TIMEWAIT_LEN) {
2196 inet_csk_reset_keepalive_timer(sk,
2197 tmo - TCP_TIMEWAIT_LEN);
2198 } else {
2199 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2200 goto out;
2201 }
2202 }
2203 }
2204 if (sk->sk_state != TCP_CLOSE) {
2205 sk_mem_reclaim(sk);
2206 if (tcp_check_oom(sk, 0)) {
2207 tcp_set_state(sk, TCP_CLOSE);
2208 tcp_send_active_reset(sk, GFP_ATOMIC);
2209 __NET_INC_STATS(sock_net(sk),
2210 LINUX_MIB_TCPABORTONMEMORY);
2211 }
2212 }
2213
2214 if (sk->sk_state == TCP_CLOSE) {
2215 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2216 /* We could get here with a non-NULL req if the socket is
2217 * aborted (e.g., closed with unread data) before 3WHS
2218 * finishes.
2219 */
2220 if (req)
2221 reqsk_fastopen_remove(sk, req, false);
2222 inet_csk_destroy_sock(sk);
2223 }
2224 /* Otherwise, socket is reprieved until protocol close. */
2225
2226 out:
2227 bh_unlock_sock(sk);
2228 local_bh_enable();
2229 sock_put(sk);
2230 }
2231 EXPORT_SYMBOL(tcp_close);
2232
2233 /* These states need RST on ABORT according to RFC793 */
2234
2235 static inline bool tcp_need_reset(int state)
2236 {
2237 return (1 << state) &
2238 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2239 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2240 }
2241
2242 int tcp_disconnect(struct sock *sk, int flags)
2243 {
2244 struct inet_sock *inet = inet_sk(sk);
2245 struct inet_connection_sock *icsk = inet_csk(sk);
2246 struct tcp_sock *tp = tcp_sk(sk);
2247 int err = 0;
2248 int old_state = sk->sk_state;
2249
2250 if (old_state != TCP_CLOSE)
2251 tcp_set_state(sk, TCP_CLOSE);
2252
2253 /* ABORT function of RFC793 */
2254 if (old_state == TCP_LISTEN) {
2255 inet_csk_listen_stop(sk);
2256 } else if (unlikely(tp->repair)) {
2257 sk->sk_err = ECONNABORTED;
2258 } else if (tcp_need_reset(old_state) ||
2259 (tp->snd_nxt != tp->write_seq &&
2260 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2261 /* The last check adjusts for discrepancy of Linux wrt. RFC
2262 * states
2263 */
2264 tcp_send_active_reset(sk, gfp_any());
2265 sk->sk_err = ECONNRESET;
2266 } else if (old_state == TCP_SYN_SENT)
2267 sk->sk_err = ECONNRESET;
2268
2269 tcp_clear_xmit_timers(sk);
2270 __skb_queue_purge(&sk->sk_receive_queue);
2271 tcp_write_queue_purge(sk);
2272 skb_rbtree_purge(&tp->out_of_order_queue);
2273
2274 inet->inet_dport = 0;
2275
2276 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2277 inet_reset_saddr(sk);
2278
2279 sk->sk_shutdown = 0;
2280 sock_reset_flag(sk, SOCK_DONE);
2281 tp->srtt_us = 0;
2282 tp->write_seq += tp->max_window + 2;
2283 if (tp->write_seq == 0)
2284 tp->write_seq = 1;
2285 icsk->icsk_backoff = 0;
2286 tp->snd_cwnd = 2;
2287 icsk->icsk_probes_out = 0;
2288 tp->packets_out = 0;
2289 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2290 tp->snd_cwnd_cnt = 0;
2291 tp->window_clamp = 0;
2292 tcp_set_ca_state(sk, TCP_CA_Open);
2293 tcp_clear_retrans(tp);
2294 inet_csk_delack_init(sk);
2295 tcp_init_send_head(sk);
2296 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2297 __sk_dst_reset(sk);
2298
2299 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2300
2301 sk->sk_error_report(sk);
2302 return err;
2303 }
2304 EXPORT_SYMBOL(tcp_disconnect);
2305
2306 static inline bool tcp_can_repair_sock(const struct sock *sk)
2307 {
2308 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2309 (sk->sk_state != TCP_LISTEN);
2310 }
2311
2312 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2313 {
2314 struct tcp_repair_window opt;
2315
2316 if (!tp->repair)
2317 return -EPERM;
2318
2319 if (len != sizeof(opt))
2320 return -EINVAL;
2321
2322 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2323 return -EFAULT;
2324
2325 if (opt.max_window < opt.snd_wnd)
2326 return -EINVAL;
2327
2328 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2329 return -EINVAL;
2330
2331 if (after(opt.rcv_wup, tp->rcv_nxt))
2332 return -EINVAL;
2333
2334 tp->snd_wl1 = opt.snd_wl1;
2335 tp->snd_wnd = opt.snd_wnd;
2336 tp->max_window = opt.max_window;
2337
2338 tp->rcv_wnd = opt.rcv_wnd;
2339 tp->rcv_wup = opt.rcv_wup;
2340
2341 return 0;
2342 }
2343
2344 static int tcp_repair_options_est(struct tcp_sock *tp,
2345 struct tcp_repair_opt __user *optbuf, unsigned int len)
2346 {
2347 struct tcp_repair_opt opt;
2348
2349 while (len >= sizeof(opt)) {
2350 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2351 return -EFAULT;
2352
2353 optbuf++;
2354 len -= sizeof(opt);
2355
2356 switch (opt.opt_code) {
2357 case TCPOPT_MSS:
2358 tp->rx_opt.mss_clamp = opt.opt_val;
2359 break;
2360 case TCPOPT_WINDOW:
2361 {
2362 u16 snd_wscale = opt.opt_val & 0xFFFF;
2363 u16 rcv_wscale = opt.opt_val >> 16;
2364
2365 if (snd_wscale > 14 || rcv_wscale > 14)
2366 return -EFBIG;
2367
2368 tp->rx_opt.snd_wscale = snd_wscale;
2369 tp->rx_opt.rcv_wscale = rcv_wscale;
2370 tp->rx_opt.wscale_ok = 1;
2371 }
2372 break;
2373 case TCPOPT_SACK_PERM:
2374 if (opt.opt_val != 0)
2375 return -EINVAL;
2376
2377 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2378 if (sysctl_tcp_fack)
2379 tcp_enable_fack(tp);
2380 break;
2381 case TCPOPT_TIMESTAMP:
2382 if (opt.opt_val != 0)
2383 return -EINVAL;
2384
2385 tp->rx_opt.tstamp_ok = 1;
2386 break;
2387 }
2388 }
2389
2390 return 0;
2391 }
2392
2393 /*
2394 * Socket option code for TCP.
2395 */
2396 static int do_tcp_setsockopt(struct sock *sk, int level,
2397 int optname, char __user *optval, unsigned int optlen)
2398 {
2399 struct tcp_sock *tp = tcp_sk(sk);
2400 struct inet_connection_sock *icsk = inet_csk(sk);
2401 struct net *net = sock_net(sk);
2402 int val;
2403 int err = 0;
2404
2405 /* These are data/string values, all the others are ints */
2406 switch (optname) {
2407 case TCP_CONGESTION: {
2408 char name[TCP_CA_NAME_MAX];
2409
2410 if (optlen < 1)
2411 return -EINVAL;
2412
2413 val = strncpy_from_user(name, optval,
2414 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2415 if (val < 0)
2416 return -EFAULT;
2417 name[val] = 0;
2418
2419 lock_sock(sk);
2420 err = tcp_set_congestion_control(sk, name);
2421 release_sock(sk);
2422 return err;
2423 }
2424 default:
2425 /* fallthru */
2426 break;
2427 }
2428
2429 if (optlen < sizeof(int))
2430 return -EINVAL;
2431
2432 if (get_user(val, (int __user *)optval))
2433 return -EFAULT;
2434
2435 lock_sock(sk);
2436
2437 switch (optname) {
2438 case TCP_MAXSEG:
2439 /* Values greater than interface MTU won't take effect. However
2440 * at the point when this call is done we typically don't yet
2441 * know which interface is going to be used */
2442 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2443 err = -EINVAL;
2444 break;
2445 }
2446 tp->rx_opt.user_mss = val;
2447 break;
2448
2449 case TCP_NODELAY:
2450 if (val) {
2451 /* TCP_NODELAY is weaker than TCP_CORK, so that
2452 * this option on corked socket is remembered, but
2453 * it is not activated until cork is cleared.
2454 *
2455 * However, when TCP_NODELAY is set we make
2456 * an explicit push, which overrides even TCP_CORK
2457 * for currently queued segments.
2458 */
2459 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2460 tcp_push_pending_frames(sk);
2461 } else {
2462 tp->nonagle &= ~TCP_NAGLE_OFF;
2463 }
2464 break;
2465
2466 case TCP_THIN_LINEAR_TIMEOUTS:
2467 if (val < 0 || val > 1)
2468 err = -EINVAL;
2469 else
2470 tp->thin_lto = val;
2471 break;
2472
2473 case TCP_THIN_DUPACK:
2474 if (val < 0 || val > 1)
2475 err = -EINVAL;
2476 else {
2477 tp->thin_dupack = val;
2478 if (tp->thin_dupack)
2479 tcp_disable_early_retrans(tp);
2480 }
2481 break;
2482
2483 case TCP_REPAIR:
2484 if (!tcp_can_repair_sock(sk))
2485 err = -EPERM;
2486 else if (val == 1) {
2487 tp->repair = 1;
2488 sk->sk_reuse = SK_FORCE_REUSE;
2489 tp->repair_queue = TCP_NO_QUEUE;
2490 } else if (val == 0) {
2491 tp->repair = 0;
2492 sk->sk_reuse = SK_NO_REUSE;
2493 tcp_send_window_probe(sk);
2494 } else
2495 err = -EINVAL;
2496
2497 break;
2498
2499 case TCP_REPAIR_QUEUE:
2500 if (!tp->repair)
2501 err = -EPERM;
2502 else if (val < TCP_QUEUES_NR)
2503 tp->repair_queue = val;
2504 else
2505 err = -EINVAL;
2506 break;
2507
2508 case TCP_QUEUE_SEQ:
2509 if (sk->sk_state != TCP_CLOSE)
2510 err = -EPERM;
2511 else if (tp->repair_queue == TCP_SEND_QUEUE)
2512 tp->write_seq = val;
2513 else if (tp->repair_queue == TCP_RECV_QUEUE)
2514 tp->rcv_nxt = val;
2515 else
2516 err = -EINVAL;
2517 break;
2518
2519 case TCP_REPAIR_OPTIONS:
2520 if (!tp->repair)
2521 err = -EINVAL;
2522 else if (sk->sk_state == TCP_ESTABLISHED)
2523 err = tcp_repair_options_est(tp,
2524 (struct tcp_repair_opt __user *)optval,
2525 optlen);
2526 else
2527 err = -EPERM;
2528 break;
2529
2530 case TCP_CORK:
2531 /* When set indicates to always queue non-full frames.
2532 * Later the user clears this option and we transmit
2533 * any pending partial frames in the queue. This is
2534 * meant to be used alongside sendfile() to get properly
2535 * filled frames when the user (for example) must write
2536 * out headers with a write() call first and then use
2537 * sendfile to send out the data parts.
2538 *
2539 * TCP_CORK can be set together with TCP_NODELAY and it is
2540 * stronger than TCP_NODELAY.
2541 */
2542 if (val) {
2543 tp->nonagle |= TCP_NAGLE_CORK;
2544 } else {
2545 tp->nonagle &= ~TCP_NAGLE_CORK;
2546 if (tp->nonagle&TCP_NAGLE_OFF)
2547 tp->nonagle |= TCP_NAGLE_PUSH;
2548 tcp_push_pending_frames(sk);
2549 }
2550 break;
2551
2552 case TCP_KEEPIDLE:
2553 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2554 err = -EINVAL;
2555 else {
2556 tp->keepalive_time = val * HZ;
2557 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2558 !((1 << sk->sk_state) &
2559 (TCPF_CLOSE | TCPF_LISTEN))) {
2560 u32 elapsed = keepalive_time_elapsed(tp);
2561 if (tp->keepalive_time > elapsed)
2562 elapsed = tp->keepalive_time - elapsed;
2563 else
2564 elapsed = 0;
2565 inet_csk_reset_keepalive_timer(sk, elapsed);
2566 }
2567 }
2568 break;
2569 case TCP_KEEPINTVL:
2570 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2571 err = -EINVAL;
2572 else
2573 tp->keepalive_intvl = val * HZ;
2574 break;
2575 case TCP_KEEPCNT:
2576 if (val < 1 || val > MAX_TCP_KEEPCNT)
2577 err = -EINVAL;
2578 else
2579 tp->keepalive_probes = val;
2580 break;
2581 case TCP_SYNCNT:
2582 if (val < 1 || val > MAX_TCP_SYNCNT)
2583 err = -EINVAL;
2584 else
2585 icsk->icsk_syn_retries = val;
2586 break;
2587
2588 case TCP_SAVE_SYN:
2589 if (val < 0 || val > 1)
2590 err = -EINVAL;
2591 else
2592 tp->save_syn = val;
2593 break;
2594
2595 case TCP_LINGER2:
2596 if (val < 0)
2597 tp->linger2 = -1;
2598 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2599 tp->linger2 = 0;
2600 else
2601 tp->linger2 = val * HZ;
2602 break;
2603
2604 case TCP_DEFER_ACCEPT:
2605 /* Translate value in seconds to number of retransmits */
2606 icsk->icsk_accept_queue.rskq_defer_accept =
2607 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2608 TCP_RTO_MAX / HZ);
2609 break;
2610
2611 case TCP_WINDOW_CLAMP:
2612 if (!val) {
2613 if (sk->sk_state != TCP_CLOSE) {
2614 err = -EINVAL;
2615 break;
2616 }
2617 tp->window_clamp = 0;
2618 } else
2619 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2620 SOCK_MIN_RCVBUF / 2 : val;
2621 break;
2622
2623 case TCP_QUICKACK:
2624 if (!val) {
2625 icsk->icsk_ack.pingpong = 1;
2626 } else {
2627 icsk->icsk_ack.pingpong = 0;
2628 if ((1 << sk->sk_state) &
2629 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2630 inet_csk_ack_scheduled(sk)) {
2631 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2632 tcp_cleanup_rbuf(sk, 1);
2633 if (!(val & 1))
2634 icsk->icsk_ack.pingpong = 1;
2635 }
2636 }
2637 break;
2638
2639 #ifdef CONFIG_TCP_MD5SIG
2640 case TCP_MD5SIG:
2641 /* Read the IP->Key mappings from userspace */
2642 err = tp->af_specific->md5_parse(sk, optval, optlen);
2643 break;
2644 #endif
2645 case TCP_USER_TIMEOUT:
2646 /* Cap the max time in ms TCP will retry or probe the window
2647 * before giving up and aborting (ETIMEDOUT) a connection.
2648 */
2649 if (val < 0)
2650 err = -EINVAL;
2651 else
2652 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2653 break;
2654
2655 case TCP_FASTOPEN:
2656 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2657 TCPF_LISTEN))) {
2658 tcp_fastopen_init_key_once(true);
2659
2660 fastopen_queue_tune(sk, val);
2661 } else {
2662 err = -EINVAL;
2663 }
2664 break;
2665 case TCP_TIMESTAMP:
2666 if (!tp->repair)
2667 err = -EPERM;
2668 else
2669 tp->tsoffset = val - tcp_time_stamp;
2670 break;
2671 case TCP_REPAIR_WINDOW:
2672 err = tcp_repair_set_window(tp, optval, optlen);
2673 break;
2674 case TCP_NOTSENT_LOWAT:
2675 tp->notsent_lowat = val;
2676 sk->sk_write_space(sk);
2677 break;
2678 default:
2679 err = -ENOPROTOOPT;
2680 break;
2681 }
2682
2683 release_sock(sk);
2684 return err;
2685 }
2686
2687 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2688 unsigned int optlen)
2689 {
2690 const struct inet_connection_sock *icsk = inet_csk(sk);
2691
2692 if (level != SOL_TCP)
2693 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2694 optval, optlen);
2695 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2696 }
2697 EXPORT_SYMBOL(tcp_setsockopt);
2698
2699 #ifdef CONFIG_COMPAT
2700 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2701 char __user *optval, unsigned int optlen)
2702 {
2703 if (level != SOL_TCP)
2704 return inet_csk_compat_setsockopt(sk, level, optname,
2705 optval, optlen);
2706 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2707 }
2708 EXPORT_SYMBOL(compat_tcp_setsockopt);
2709 #endif
2710
2711 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2712 struct tcp_info *info)
2713 {
2714 u64 stats[__TCP_CHRONO_MAX], total = 0;
2715 enum tcp_chrono i;
2716
2717 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2718 stats[i] = tp->chrono_stat[i - 1];
2719 if (i == tp->chrono_type)
2720 stats[i] += tcp_time_stamp - tp->chrono_start;
2721 stats[i] *= USEC_PER_SEC / HZ;
2722 total += stats[i];
2723 }
2724
2725 info->tcpi_busy_time = total;
2726 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2727 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2728 }
2729
2730 /* Return information about state of tcp endpoint in API format. */
2731 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2732 {
2733 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2734 const struct inet_connection_sock *icsk = inet_csk(sk);
2735 u32 now = tcp_time_stamp, intv;
2736 u64 rate64;
2737 bool slow;
2738 u32 rate;
2739
2740 memset(info, 0, sizeof(*info));
2741 if (sk->sk_type != SOCK_STREAM)
2742 return;
2743
2744 info->tcpi_state = sk_state_load(sk);
2745
2746 /* Report meaningful fields for all TCP states, including listeners */
2747 rate = READ_ONCE(sk->sk_pacing_rate);
2748 rate64 = rate != ~0U ? rate : ~0ULL;
2749 info->tcpi_pacing_rate = rate64;
2750
2751 rate = READ_ONCE(sk->sk_max_pacing_rate);
2752 rate64 = rate != ~0U ? rate : ~0ULL;
2753 info->tcpi_max_pacing_rate = rate64;
2754
2755 info->tcpi_reordering = tp->reordering;
2756 info->tcpi_snd_cwnd = tp->snd_cwnd;
2757
2758 if (info->tcpi_state == TCP_LISTEN) {
2759 /* listeners aliased fields :
2760 * tcpi_unacked -> Number of children ready for accept()
2761 * tcpi_sacked -> max backlog
2762 */
2763 info->tcpi_unacked = sk->sk_ack_backlog;
2764 info->tcpi_sacked = sk->sk_max_ack_backlog;
2765 return;
2766 }
2767 info->tcpi_ca_state = icsk->icsk_ca_state;
2768 info->tcpi_retransmits = icsk->icsk_retransmits;
2769 info->tcpi_probes = icsk->icsk_probes_out;
2770 info->tcpi_backoff = icsk->icsk_backoff;
2771
2772 if (tp->rx_opt.tstamp_ok)
2773 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2774 if (tcp_is_sack(tp))
2775 info->tcpi_options |= TCPI_OPT_SACK;
2776 if (tp->rx_opt.wscale_ok) {
2777 info->tcpi_options |= TCPI_OPT_WSCALE;
2778 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2779 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2780 }
2781
2782 if (tp->ecn_flags & TCP_ECN_OK)
2783 info->tcpi_options |= TCPI_OPT_ECN;
2784 if (tp->ecn_flags & TCP_ECN_SEEN)
2785 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2786 if (tp->syn_data_acked)
2787 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2788
2789 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2790 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2791 info->tcpi_snd_mss = tp->mss_cache;
2792 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2793
2794 info->tcpi_unacked = tp->packets_out;
2795 info->tcpi_sacked = tp->sacked_out;
2796
2797 info->tcpi_lost = tp->lost_out;
2798 info->tcpi_retrans = tp->retrans_out;
2799 info->tcpi_fackets = tp->fackets_out;
2800
2801 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2802 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2803 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2804
2805 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2806 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2807 info->tcpi_rtt = tp->srtt_us >> 3;
2808 info->tcpi_rttvar = tp->mdev_us >> 2;
2809 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2810 info->tcpi_advmss = tp->advmss;
2811
2812 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2813 info->tcpi_rcv_space = tp->rcvq_space.space;
2814
2815 info->tcpi_total_retrans = tp->total_retrans;
2816
2817 slow = lock_sock_fast(sk);
2818
2819 info->tcpi_bytes_acked = tp->bytes_acked;
2820 info->tcpi_bytes_received = tp->bytes_received;
2821 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
2822 tcp_get_info_chrono_stats(tp, info);
2823
2824 unlock_sock_fast(sk, slow);
2825
2826 info->tcpi_segs_out = tp->segs_out;
2827 info->tcpi_segs_in = tp->segs_in;
2828
2829 info->tcpi_min_rtt = tcp_min_rtt(tp);
2830 info->tcpi_data_segs_in = tp->data_segs_in;
2831 info->tcpi_data_segs_out = tp->data_segs_out;
2832
2833 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
2834 rate = READ_ONCE(tp->rate_delivered);
2835 intv = READ_ONCE(tp->rate_interval_us);
2836 if (rate && intv) {
2837 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
2838 do_div(rate64, intv);
2839 info->tcpi_delivery_rate = rate64;
2840 }
2841 }
2842 EXPORT_SYMBOL_GPL(tcp_get_info);
2843
2844 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
2845 {
2846 const struct tcp_sock *tp = tcp_sk(sk);
2847 struct sk_buff *stats;
2848 struct tcp_info info;
2849
2850 stats = alloc_skb(3 * nla_total_size_64bit(sizeof(u64)), GFP_ATOMIC);
2851 if (!stats)
2852 return NULL;
2853
2854 tcp_get_info_chrono_stats(tp, &info);
2855 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
2856 info.tcpi_busy_time, TCP_NLA_PAD);
2857 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
2858 info.tcpi_rwnd_limited, TCP_NLA_PAD);
2859 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
2860 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
2861 return stats;
2862 }
2863
2864 static int do_tcp_getsockopt(struct sock *sk, int level,
2865 int optname, char __user *optval, int __user *optlen)
2866 {
2867 struct inet_connection_sock *icsk = inet_csk(sk);
2868 struct tcp_sock *tp = tcp_sk(sk);
2869 struct net *net = sock_net(sk);
2870 int val, len;
2871
2872 if (get_user(len, optlen))
2873 return -EFAULT;
2874
2875 len = min_t(unsigned int, len, sizeof(int));
2876
2877 if (len < 0)
2878 return -EINVAL;
2879
2880 switch (optname) {
2881 case TCP_MAXSEG:
2882 val = tp->mss_cache;
2883 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2884 val = tp->rx_opt.user_mss;
2885 if (tp->repair)
2886 val = tp->rx_opt.mss_clamp;
2887 break;
2888 case TCP_NODELAY:
2889 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2890 break;
2891 case TCP_CORK:
2892 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2893 break;
2894 case TCP_KEEPIDLE:
2895 val = keepalive_time_when(tp) / HZ;
2896 break;
2897 case TCP_KEEPINTVL:
2898 val = keepalive_intvl_when(tp) / HZ;
2899 break;
2900 case TCP_KEEPCNT:
2901 val = keepalive_probes(tp);
2902 break;
2903 case TCP_SYNCNT:
2904 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
2905 break;
2906 case TCP_LINGER2:
2907 val = tp->linger2;
2908 if (val >= 0)
2909 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
2910 break;
2911 case TCP_DEFER_ACCEPT:
2912 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2913 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2914 break;
2915 case TCP_WINDOW_CLAMP:
2916 val = tp->window_clamp;
2917 break;
2918 case TCP_INFO: {
2919 struct tcp_info info;
2920
2921 if (get_user(len, optlen))
2922 return -EFAULT;
2923
2924 tcp_get_info(sk, &info);
2925
2926 len = min_t(unsigned int, len, sizeof(info));
2927 if (put_user(len, optlen))
2928 return -EFAULT;
2929 if (copy_to_user(optval, &info, len))
2930 return -EFAULT;
2931 return 0;
2932 }
2933 case TCP_CC_INFO: {
2934 const struct tcp_congestion_ops *ca_ops;
2935 union tcp_cc_info info;
2936 size_t sz = 0;
2937 int attr;
2938
2939 if (get_user(len, optlen))
2940 return -EFAULT;
2941
2942 ca_ops = icsk->icsk_ca_ops;
2943 if (ca_ops && ca_ops->get_info)
2944 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2945
2946 len = min_t(unsigned int, len, sz);
2947 if (put_user(len, optlen))
2948 return -EFAULT;
2949 if (copy_to_user(optval, &info, len))
2950 return -EFAULT;
2951 return 0;
2952 }
2953 case TCP_QUICKACK:
2954 val = !icsk->icsk_ack.pingpong;
2955 break;
2956
2957 case TCP_CONGESTION:
2958 if (get_user(len, optlen))
2959 return -EFAULT;
2960 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2961 if (put_user(len, optlen))
2962 return -EFAULT;
2963 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2964 return -EFAULT;
2965 return 0;
2966
2967 case TCP_THIN_LINEAR_TIMEOUTS:
2968 val = tp->thin_lto;
2969 break;
2970 case TCP_THIN_DUPACK:
2971 val = tp->thin_dupack;
2972 break;
2973
2974 case TCP_REPAIR:
2975 val = tp->repair;
2976 break;
2977
2978 case TCP_REPAIR_QUEUE:
2979 if (tp->repair)
2980 val = tp->repair_queue;
2981 else
2982 return -EINVAL;
2983 break;
2984
2985 case TCP_REPAIR_WINDOW: {
2986 struct tcp_repair_window opt;
2987
2988 if (get_user(len, optlen))
2989 return -EFAULT;
2990
2991 if (len != sizeof(opt))
2992 return -EINVAL;
2993
2994 if (!tp->repair)
2995 return -EPERM;
2996
2997 opt.snd_wl1 = tp->snd_wl1;
2998 opt.snd_wnd = tp->snd_wnd;
2999 opt.max_window = tp->max_window;
3000 opt.rcv_wnd = tp->rcv_wnd;
3001 opt.rcv_wup = tp->rcv_wup;
3002
3003 if (copy_to_user(optval, &opt, len))
3004 return -EFAULT;
3005 return 0;
3006 }
3007 case TCP_QUEUE_SEQ:
3008 if (tp->repair_queue == TCP_SEND_QUEUE)
3009 val = tp->write_seq;
3010 else if (tp->repair_queue == TCP_RECV_QUEUE)
3011 val = tp->rcv_nxt;
3012 else
3013 return -EINVAL;
3014 break;
3015
3016 case TCP_USER_TIMEOUT:
3017 val = jiffies_to_msecs(icsk->icsk_user_timeout);
3018 break;
3019
3020 case TCP_FASTOPEN:
3021 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3022 break;
3023
3024 case TCP_TIMESTAMP:
3025 val = tcp_time_stamp + tp->tsoffset;
3026 break;
3027 case TCP_NOTSENT_LOWAT:
3028 val = tp->notsent_lowat;
3029 break;
3030 case TCP_SAVE_SYN:
3031 val = tp->save_syn;
3032 break;
3033 case TCP_SAVED_SYN: {
3034 if (get_user(len, optlen))
3035 return -EFAULT;
3036
3037 lock_sock(sk);
3038 if (tp->saved_syn) {
3039 if (len < tp->saved_syn[0]) {
3040 if (put_user(tp->saved_syn[0], optlen)) {
3041 release_sock(sk);
3042 return -EFAULT;
3043 }
3044 release_sock(sk);
3045 return -EINVAL;
3046 }
3047 len = tp->saved_syn[0];
3048 if (put_user(len, optlen)) {
3049 release_sock(sk);
3050 return -EFAULT;
3051 }
3052 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3053 release_sock(sk);
3054 return -EFAULT;
3055 }
3056 tcp_saved_syn_free(tp);
3057 release_sock(sk);
3058 } else {
3059 release_sock(sk);
3060 len = 0;
3061 if (put_user(len, optlen))
3062 return -EFAULT;
3063 }
3064 return 0;
3065 }
3066 default:
3067 return -ENOPROTOOPT;
3068 }
3069
3070 if (put_user(len, optlen))
3071 return -EFAULT;
3072 if (copy_to_user(optval, &val, len))
3073 return -EFAULT;
3074 return 0;
3075 }
3076
3077 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3078 int __user *optlen)
3079 {
3080 struct inet_connection_sock *icsk = inet_csk(sk);
3081
3082 if (level != SOL_TCP)
3083 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3084 optval, optlen);
3085 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3086 }
3087 EXPORT_SYMBOL(tcp_getsockopt);
3088
3089 #ifdef CONFIG_COMPAT
3090 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3091 char __user *optval, int __user *optlen)
3092 {
3093 if (level != SOL_TCP)
3094 return inet_csk_compat_getsockopt(sk, level, optname,
3095 optval, optlen);
3096 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3097 }
3098 EXPORT_SYMBOL(compat_tcp_getsockopt);
3099 #endif
3100
3101 #ifdef CONFIG_TCP_MD5SIG
3102 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3103 static DEFINE_MUTEX(tcp_md5sig_mutex);
3104 static bool tcp_md5sig_pool_populated = false;
3105
3106 static void __tcp_alloc_md5sig_pool(void)
3107 {
3108 struct crypto_ahash *hash;
3109 int cpu;
3110
3111 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3112 if (IS_ERR(hash))
3113 return;
3114
3115 for_each_possible_cpu(cpu) {
3116 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3117 struct ahash_request *req;
3118
3119 if (!scratch) {
3120 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3121 sizeof(struct tcphdr),
3122 GFP_KERNEL,
3123 cpu_to_node(cpu));
3124 if (!scratch)
3125 return;
3126 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3127 }
3128 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3129 continue;
3130
3131 req = ahash_request_alloc(hash, GFP_KERNEL);
3132 if (!req)
3133 return;
3134
3135 ahash_request_set_callback(req, 0, NULL, NULL);
3136
3137 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3138 }
3139 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3140 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3141 */
3142 smp_wmb();
3143 tcp_md5sig_pool_populated = true;
3144 }
3145
3146 bool tcp_alloc_md5sig_pool(void)
3147 {
3148 if (unlikely(!tcp_md5sig_pool_populated)) {
3149 mutex_lock(&tcp_md5sig_mutex);
3150
3151 if (!tcp_md5sig_pool_populated)
3152 __tcp_alloc_md5sig_pool();
3153
3154 mutex_unlock(&tcp_md5sig_mutex);
3155 }
3156 return tcp_md5sig_pool_populated;
3157 }
3158 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3159
3160
3161 /**
3162 * tcp_get_md5sig_pool - get md5sig_pool for this user
3163 *
3164 * We use percpu structure, so if we succeed, we exit with preemption
3165 * and BH disabled, to make sure another thread or softirq handling
3166 * wont try to get same context.
3167 */
3168 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3169 {
3170 local_bh_disable();
3171
3172 if (tcp_md5sig_pool_populated) {
3173 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3174 smp_rmb();
3175 return this_cpu_ptr(&tcp_md5sig_pool);
3176 }
3177 local_bh_enable();
3178 return NULL;
3179 }
3180 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3181
3182 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3183 const struct sk_buff *skb, unsigned int header_len)
3184 {
3185 struct scatterlist sg;
3186 const struct tcphdr *tp = tcp_hdr(skb);
3187 struct ahash_request *req = hp->md5_req;
3188 unsigned int i;
3189 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3190 skb_headlen(skb) - header_len : 0;
3191 const struct skb_shared_info *shi = skb_shinfo(skb);
3192 struct sk_buff *frag_iter;
3193
3194 sg_init_table(&sg, 1);
3195
3196 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3197 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3198 if (crypto_ahash_update(req))
3199 return 1;
3200
3201 for (i = 0; i < shi->nr_frags; ++i) {
3202 const struct skb_frag_struct *f = &shi->frags[i];
3203 unsigned int offset = f->page_offset;
3204 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3205
3206 sg_set_page(&sg, page, skb_frag_size(f),
3207 offset_in_page(offset));
3208 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3209 if (crypto_ahash_update(req))
3210 return 1;
3211 }
3212
3213 skb_walk_frags(skb, frag_iter)
3214 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3215 return 1;
3216
3217 return 0;
3218 }
3219 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3220
3221 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3222 {
3223 struct scatterlist sg;
3224
3225 sg_init_one(&sg, key->key, key->keylen);
3226 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3227 return crypto_ahash_update(hp->md5_req);
3228 }
3229 EXPORT_SYMBOL(tcp_md5_hash_key);
3230
3231 #endif
3232
3233 void tcp_done(struct sock *sk)
3234 {
3235 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3236
3237 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3238 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3239
3240 tcp_set_state(sk, TCP_CLOSE);
3241 tcp_clear_xmit_timers(sk);
3242 if (req)
3243 reqsk_fastopen_remove(sk, req, false);
3244
3245 sk->sk_shutdown = SHUTDOWN_MASK;
3246
3247 if (!sock_flag(sk, SOCK_DEAD))
3248 sk->sk_state_change(sk);
3249 else
3250 inet_csk_destroy_sock(sk);
3251 }
3252 EXPORT_SYMBOL_GPL(tcp_done);
3253
3254 int tcp_abort(struct sock *sk, int err)
3255 {
3256 if (!sk_fullsock(sk)) {
3257 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3258 struct request_sock *req = inet_reqsk(sk);
3259
3260 local_bh_disable();
3261 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3262 req);
3263 local_bh_enable();
3264 return 0;
3265 }
3266 return -EOPNOTSUPP;
3267 }
3268
3269 /* Don't race with userspace socket closes such as tcp_close. */
3270 lock_sock(sk);
3271
3272 if (sk->sk_state == TCP_LISTEN) {
3273 tcp_set_state(sk, TCP_CLOSE);
3274 inet_csk_listen_stop(sk);
3275 }
3276
3277 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3278 local_bh_disable();
3279 bh_lock_sock(sk);
3280
3281 if (!sock_flag(sk, SOCK_DEAD)) {
3282 sk->sk_err = err;
3283 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3284 smp_wmb();
3285 sk->sk_error_report(sk);
3286 if (tcp_need_reset(sk->sk_state))
3287 tcp_send_active_reset(sk, GFP_ATOMIC);
3288 tcp_done(sk);
3289 }
3290
3291 bh_unlock_sock(sk);
3292 local_bh_enable();
3293 release_sock(sk);
3294 return 0;
3295 }
3296 EXPORT_SYMBOL_GPL(tcp_abort);
3297
3298 extern struct tcp_congestion_ops tcp_reno;
3299
3300 static __initdata unsigned long thash_entries;
3301 static int __init set_thash_entries(char *str)
3302 {
3303 ssize_t ret;
3304
3305 if (!str)
3306 return 0;
3307
3308 ret = kstrtoul(str, 0, &thash_entries);
3309 if (ret)
3310 return 0;
3311
3312 return 1;
3313 }
3314 __setup("thash_entries=", set_thash_entries);
3315
3316 static void __init tcp_init_mem(void)
3317 {
3318 unsigned long limit = nr_free_buffer_pages() / 16;
3319
3320 limit = max(limit, 128UL);
3321 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3322 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3323 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3324 }
3325
3326 void __init tcp_init(void)
3327 {
3328 int max_rshare, max_wshare, cnt;
3329 unsigned long limit;
3330 unsigned int i;
3331
3332 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3333 FIELD_SIZEOF(struct sk_buff, cb));
3334
3335 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3336 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3337 tcp_hashinfo.bind_bucket_cachep =
3338 kmem_cache_create("tcp_bind_bucket",
3339 sizeof(struct inet_bind_bucket), 0,
3340 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3341
3342 /* Size and allocate the main established and bind bucket
3343 * hash tables.
3344 *
3345 * The methodology is similar to that of the buffer cache.
3346 */
3347 tcp_hashinfo.ehash =
3348 alloc_large_system_hash("TCP established",
3349 sizeof(struct inet_ehash_bucket),
3350 thash_entries,
3351 17, /* one slot per 128 KB of memory */
3352 0,
3353 NULL,
3354 &tcp_hashinfo.ehash_mask,
3355 0,
3356 thash_entries ? 0 : 512 * 1024);
3357 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3358 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3359
3360 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3361 panic("TCP: failed to alloc ehash_locks");
3362 tcp_hashinfo.bhash =
3363 alloc_large_system_hash("TCP bind",
3364 sizeof(struct inet_bind_hashbucket),
3365 tcp_hashinfo.ehash_mask + 1,
3366 17, /* one slot per 128 KB of memory */
3367 0,
3368 &tcp_hashinfo.bhash_size,
3369 NULL,
3370 0,
3371 64 * 1024);
3372 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3373 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3374 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3375 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3376 }
3377
3378
3379 cnt = tcp_hashinfo.ehash_mask + 1;
3380
3381 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3382 sysctl_tcp_max_orphans = cnt / 2;
3383 sysctl_max_syn_backlog = max(128, cnt / 256);
3384
3385 tcp_init_mem();
3386 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3387 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3388 max_wshare = min(4UL*1024*1024, limit);
3389 max_rshare = min(6UL*1024*1024, limit);
3390
3391 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3392 sysctl_tcp_wmem[1] = 16*1024;
3393 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3394
3395 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3396 sysctl_tcp_rmem[1] = 87380;
3397 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3398
3399 pr_info("Hash tables configured (established %u bind %u)\n",
3400 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3401
3402 tcp_metrics_init();
3403 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3404 tcp_tasklet_init();
3405 }