]> git.ipfire.org Git - thirdparty/linux.git/blob - net/ipv4/tcp.c
Merge branch 'restrict-bpf_probe_read'
[thirdparty/linux.git] / net / ipv4 / tcp.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282
283 struct percpu_counter tcp_orphan_count;
284 EXPORT_SYMBOL_GPL(tcp_orphan_count);
285
286 long sysctl_tcp_mem[3] __read_mostly;
287 EXPORT_SYMBOL(sysctl_tcp_mem);
288
289 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
290 EXPORT_SYMBOL(tcp_memory_allocated);
291
292 #if IS_ENABLED(CONFIG_SMC)
293 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
294 EXPORT_SYMBOL(tcp_have_smc);
295 #endif
296
297 /*
298 * Current number of TCP sockets.
299 */
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
302
303 /*
304 * TCP splice context
305 */
306 struct tcp_splice_state {
307 struct pipe_inode_info *pipe;
308 size_t len;
309 unsigned int flags;
310 };
311
312 /*
313 * Pressure flag: try to collapse.
314 * Technical note: it is used by multiple contexts non atomically.
315 * All the __sk_mem_schedule() is of this nature: accounting
316 * is strict, actions are advisory and have some latency.
317 */
318 unsigned long tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
320
321 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
322 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
323
324 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
325
326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 unsigned long val;
329
330 if (READ_ONCE(tcp_memory_pressure))
331 return;
332 val = jiffies;
333
334 if (!val)
335 val--;
336 if (!cmpxchg(&tcp_memory_pressure, 0, val))
337 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
338 }
339 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
340
341 void tcp_leave_memory_pressure(struct sock *sk)
342 {
343 unsigned long val;
344
345 if (!READ_ONCE(tcp_memory_pressure))
346 return;
347 val = xchg(&tcp_memory_pressure, 0);
348 if (val)
349 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
350 jiffies_to_msecs(jiffies - val));
351 }
352 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
353
354 /* Convert seconds to retransmits based on initial and max timeout */
355 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
356 {
357 u8 res = 0;
358
359 if (seconds > 0) {
360 int period = timeout;
361
362 res = 1;
363 while (seconds > period && res < 255) {
364 res++;
365 timeout <<= 1;
366 if (timeout > rto_max)
367 timeout = rto_max;
368 period += timeout;
369 }
370 }
371 return res;
372 }
373
374 /* Convert retransmits to seconds based on initial and max timeout */
375 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
376 {
377 int period = 0;
378
379 if (retrans > 0) {
380 period = timeout;
381 while (--retrans) {
382 timeout <<= 1;
383 if (timeout > rto_max)
384 timeout = rto_max;
385 period += timeout;
386 }
387 }
388 return period;
389 }
390
391 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
392 {
393 u32 rate = READ_ONCE(tp->rate_delivered);
394 u32 intv = READ_ONCE(tp->rate_interval_us);
395 u64 rate64 = 0;
396
397 if (rate && intv) {
398 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
399 do_div(rate64, intv);
400 }
401 return rate64;
402 }
403
404 /* Address-family independent initialization for a tcp_sock.
405 *
406 * NOTE: A lot of things set to zero explicitly by call to
407 * sk_alloc() so need not be done here.
408 */
409 void tcp_init_sock(struct sock *sk)
410 {
411 struct inet_connection_sock *icsk = inet_csk(sk);
412 struct tcp_sock *tp = tcp_sk(sk);
413
414 tp->out_of_order_queue = RB_ROOT;
415 sk->tcp_rtx_queue = RB_ROOT;
416 tcp_init_xmit_timers(sk);
417 INIT_LIST_HEAD(&tp->tsq_node);
418 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
419
420 icsk->icsk_rto = TCP_TIMEOUT_INIT;
421 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
422 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
423
424 /* So many TCP implementations out there (incorrectly) count the
425 * initial SYN frame in their delayed-ACK and congestion control
426 * algorithms that we must have the following bandaid to talk
427 * efficiently to them. -DaveM
428 */
429 tp->snd_cwnd = TCP_INIT_CWND;
430
431 /* There's a bubble in the pipe until at least the first ACK. */
432 tp->app_limited = ~0U;
433
434 /* See draft-stevens-tcpca-spec-01 for discussion of the
435 * initialization of these values.
436 */
437 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
438 tp->snd_cwnd_clamp = ~0;
439 tp->mss_cache = TCP_MSS_DEFAULT;
440
441 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
442 tcp_assign_congestion_control(sk);
443
444 tp->tsoffset = 0;
445 tp->rack.reo_wnd_steps = 1;
446
447 sk->sk_write_space = sk_stream_write_space;
448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
449
450 icsk->icsk_sync_mss = tcp_sync_mss;
451
452 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
453 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
454
455 sk_sockets_allocated_inc(sk);
456 sk->sk_route_forced_caps = NETIF_F_GSO;
457 }
458 EXPORT_SYMBOL(tcp_init_sock);
459
460 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
461 {
462 struct sk_buff *skb = tcp_write_queue_tail(sk);
463
464 if (tsflags && skb) {
465 struct skb_shared_info *shinfo = skb_shinfo(skb);
466 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
467
468 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
469 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
470 tcb->txstamp_ack = 1;
471 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
472 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
473 }
474 }
475
476 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
477 int target, struct sock *sk)
478 {
479 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
480
481 if (avail > 0) {
482 if (avail >= target)
483 return true;
484 if (tcp_rmem_pressure(sk))
485 return true;
486 }
487 if (sk->sk_prot->stream_memory_read)
488 return sk->sk_prot->stream_memory_read(sk);
489 return false;
490 }
491
492 /*
493 * Wait for a TCP event.
494 *
495 * Note that we don't need to lock the socket, as the upper poll layers
496 * take care of normal races (between the test and the event) and we don't
497 * go look at any of the socket buffers directly.
498 */
499 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
500 {
501 __poll_t mask;
502 struct sock *sk = sock->sk;
503 const struct tcp_sock *tp = tcp_sk(sk);
504 int state;
505
506 sock_poll_wait(file, sock, wait);
507
508 state = inet_sk_state_load(sk);
509 if (state == TCP_LISTEN)
510 return inet_csk_listen_poll(sk);
511
512 /* Socket is not locked. We are protected from async events
513 * by poll logic and correct handling of state changes
514 * made by other threads is impossible in any case.
515 */
516
517 mask = 0;
518
519 /*
520 * EPOLLHUP is certainly not done right. But poll() doesn't
521 * have a notion of HUP in just one direction, and for a
522 * socket the read side is more interesting.
523 *
524 * Some poll() documentation says that EPOLLHUP is incompatible
525 * with the EPOLLOUT/POLLWR flags, so somebody should check this
526 * all. But careful, it tends to be safer to return too many
527 * bits than too few, and you can easily break real applications
528 * if you don't tell them that something has hung up!
529 *
530 * Check-me.
531 *
532 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
533 * our fs/select.c). It means that after we received EOF,
534 * poll always returns immediately, making impossible poll() on write()
535 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
536 * if and only if shutdown has been made in both directions.
537 * Actually, it is interesting to look how Solaris and DUX
538 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
539 * then we could set it on SND_SHUTDOWN. BTW examples given
540 * in Stevens' books assume exactly this behaviour, it explains
541 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
542 *
543 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
544 * blocking on fresh not-connected or disconnected socket. --ANK
545 */
546 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
547 mask |= EPOLLHUP;
548 if (sk->sk_shutdown & RCV_SHUTDOWN)
549 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
550
551 /* Connected or passive Fast Open socket? */
552 if (state != TCP_SYN_SENT &&
553 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
554 int target = sock_rcvlowat(sk, 0, INT_MAX);
555
556 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
557 !sock_flag(sk, SOCK_URGINLINE) &&
558 tp->urg_data)
559 target++;
560
561 if (tcp_stream_is_readable(tp, target, sk))
562 mask |= EPOLLIN | EPOLLRDNORM;
563
564 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
565 if (sk_stream_is_writeable(sk)) {
566 mask |= EPOLLOUT | EPOLLWRNORM;
567 } else { /* send SIGIO later */
568 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
569 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
570
571 /* Race breaker. If space is freed after
572 * wspace test but before the flags are set,
573 * IO signal will be lost. Memory barrier
574 * pairs with the input side.
575 */
576 smp_mb__after_atomic();
577 if (sk_stream_is_writeable(sk))
578 mask |= EPOLLOUT | EPOLLWRNORM;
579 }
580 } else
581 mask |= EPOLLOUT | EPOLLWRNORM;
582
583 if (tp->urg_data & TCP_URG_VALID)
584 mask |= EPOLLPRI;
585 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
586 /* Active TCP fastopen socket with defer_connect
587 * Return EPOLLOUT so application can call write()
588 * in order for kernel to generate SYN+data
589 */
590 mask |= EPOLLOUT | EPOLLWRNORM;
591 }
592 /* This barrier is coupled with smp_wmb() in tcp_reset() */
593 smp_rmb();
594 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
595 mask |= EPOLLERR;
596
597 return mask;
598 }
599 EXPORT_SYMBOL(tcp_poll);
600
601 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
602 {
603 struct tcp_sock *tp = tcp_sk(sk);
604 int answ;
605 bool slow;
606
607 switch (cmd) {
608 case SIOCINQ:
609 if (sk->sk_state == TCP_LISTEN)
610 return -EINVAL;
611
612 slow = lock_sock_fast(sk);
613 answ = tcp_inq(sk);
614 unlock_sock_fast(sk, slow);
615 break;
616 case SIOCATMARK:
617 answ = tp->urg_data &&
618 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
619 break;
620 case SIOCOUTQ:
621 if (sk->sk_state == TCP_LISTEN)
622 return -EINVAL;
623
624 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
625 answ = 0;
626 else
627 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
628 break;
629 case SIOCOUTQNSD:
630 if (sk->sk_state == TCP_LISTEN)
631 return -EINVAL;
632
633 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
634 answ = 0;
635 else
636 answ = READ_ONCE(tp->write_seq) -
637 READ_ONCE(tp->snd_nxt);
638 break;
639 default:
640 return -ENOIOCTLCMD;
641 }
642
643 return put_user(answ, (int __user *)arg);
644 }
645 EXPORT_SYMBOL(tcp_ioctl);
646
647 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
648 {
649 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
650 tp->pushed_seq = tp->write_seq;
651 }
652
653 static inline bool forced_push(const struct tcp_sock *tp)
654 {
655 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
656 }
657
658 static void skb_entail(struct sock *sk, struct sk_buff *skb)
659 {
660 struct tcp_sock *tp = tcp_sk(sk);
661 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
662
663 skb->csum = 0;
664 tcb->seq = tcb->end_seq = tp->write_seq;
665 tcb->tcp_flags = TCPHDR_ACK;
666 tcb->sacked = 0;
667 __skb_header_release(skb);
668 tcp_add_write_queue_tail(sk, skb);
669 sk_wmem_queued_add(sk, skb->truesize);
670 sk_mem_charge(sk, skb->truesize);
671 if (tp->nonagle & TCP_NAGLE_PUSH)
672 tp->nonagle &= ~TCP_NAGLE_PUSH;
673
674 tcp_slow_start_after_idle_check(sk);
675 }
676
677 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
678 {
679 if (flags & MSG_OOB)
680 tp->snd_up = tp->write_seq;
681 }
682
683 /* If a not yet filled skb is pushed, do not send it if
684 * we have data packets in Qdisc or NIC queues :
685 * Because TX completion will happen shortly, it gives a chance
686 * to coalesce future sendmsg() payload into this skb, without
687 * need for a timer, and with no latency trade off.
688 * As packets containing data payload have a bigger truesize
689 * than pure acks (dataless) packets, the last checks prevent
690 * autocorking if we only have an ACK in Qdisc/NIC queues,
691 * or if TX completion was delayed after we processed ACK packet.
692 */
693 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
694 int size_goal)
695 {
696 return skb->len < size_goal &&
697 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
698 !tcp_rtx_queue_empty(sk) &&
699 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
700 }
701
702 void tcp_push(struct sock *sk, int flags, int mss_now,
703 int nonagle, int size_goal)
704 {
705 struct tcp_sock *tp = tcp_sk(sk);
706 struct sk_buff *skb;
707
708 skb = tcp_write_queue_tail(sk);
709 if (!skb)
710 return;
711 if (!(flags & MSG_MORE) || forced_push(tp))
712 tcp_mark_push(tp, skb);
713
714 tcp_mark_urg(tp, flags);
715
716 if (tcp_should_autocork(sk, skb, size_goal)) {
717
718 /* avoid atomic op if TSQ_THROTTLED bit is already set */
719 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
720 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
721 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
722 }
723 /* It is possible TX completion already happened
724 * before we set TSQ_THROTTLED.
725 */
726 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
727 return;
728 }
729
730 if (flags & MSG_MORE)
731 nonagle = TCP_NAGLE_CORK;
732
733 __tcp_push_pending_frames(sk, mss_now, nonagle);
734 }
735
736 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
737 unsigned int offset, size_t len)
738 {
739 struct tcp_splice_state *tss = rd_desc->arg.data;
740 int ret;
741
742 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
743 min(rd_desc->count, len), tss->flags);
744 if (ret > 0)
745 rd_desc->count -= ret;
746 return ret;
747 }
748
749 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
750 {
751 /* Store TCP splice context information in read_descriptor_t. */
752 read_descriptor_t rd_desc = {
753 .arg.data = tss,
754 .count = tss->len,
755 };
756
757 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
758 }
759
760 /**
761 * tcp_splice_read - splice data from TCP socket to a pipe
762 * @sock: socket to splice from
763 * @ppos: position (not valid)
764 * @pipe: pipe to splice to
765 * @len: number of bytes to splice
766 * @flags: splice modifier flags
767 *
768 * Description:
769 * Will read pages from given socket and fill them into a pipe.
770 *
771 **/
772 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
773 struct pipe_inode_info *pipe, size_t len,
774 unsigned int flags)
775 {
776 struct sock *sk = sock->sk;
777 struct tcp_splice_state tss = {
778 .pipe = pipe,
779 .len = len,
780 .flags = flags,
781 };
782 long timeo;
783 ssize_t spliced;
784 int ret;
785
786 sock_rps_record_flow(sk);
787 /*
788 * We can't seek on a socket input
789 */
790 if (unlikely(*ppos))
791 return -ESPIPE;
792
793 ret = spliced = 0;
794
795 lock_sock(sk);
796
797 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
798 while (tss.len) {
799 ret = __tcp_splice_read(sk, &tss);
800 if (ret < 0)
801 break;
802 else if (!ret) {
803 if (spliced)
804 break;
805 if (sock_flag(sk, SOCK_DONE))
806 break;
807 if (sk->sk_err) {
808 ret = sock_error(sk);
809 break;
810 }
811 if (sk->sk_shutdown & RCV_SHUTDOWN)
812 break;
813 if (sk->sk_state == TCP_CLOSE) {
814 /*
815 * This occurs when user tries to read
816 * from never connected socket.
817 */
818 ret = -ENOTCONN;
819 break;
820 }
821 if (!timeo) {
822 ret = -EAGAIN;
823 break;
824 }
825 /* if __tcp_splice_read() got nothing while we have
826 * an skb in receive queue, we do not want to loop.
827 * This might happen with URG data.
828 */
829 if (!skb_queue_empty(&sk->sk_receive_queue))
830 break;
831 sk_wait_data(sk, &timeo, NULL);
832 if (signal_pending(current)) {
833 ret = sock_intr_errno(timeo);
834 break;
835 }
836 continue;
837 }
838 tss.len -= ret;
839 spliced += ret;
840
841 if (!timeo)
842 break;
843 release_sock(sk);
844 lock_sock(sk);
845
846 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
847 (sk->sk_shutdown & RCV_SHUTDOWN) ||
848 signal_pending(current))
849 break;
850 }
851
852 release_sock(sk);
853
854 if (spliced)
855 return spliced;
856
857 return ret;
858 }
859 EXPORT_SYMBOL(tcp_splice_read);
860
861 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
862 bool force_schedule)
863 {
864 struct sk_buff *skb;
865
866 if (likely(!size)) {
867 skb = sk->sk_tx_skb_cache;
868 if (skb) {
869 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
870 sk->sk_tx_skb_cache = NULL;
871 pskb_trim(skb, 0);
872 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
873 skb_shinfo(skb)->tx_flags = 0;
874 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
875 return skb;
876 }
877 }
878 /* The TCP header must be at least 32-bit aligned. */
879 size = ALIGN(size, 4);
880
881 if (unlikely(tcp_under_memory_pressure(sk)))
882 sk_mem_reclaim_partial(sk);
883
884 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
885 if (likely(skb)) {
886 bool mem_scheduled;
887
888 if (force_schedule) {
889 mem_scheduled = true;
890 sk_forced_mem_schedule(sk, skb->truesize);
891 } else {
892 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
893 }
894 if (likely(mem_scheduled)) {
895 skb_reserve(skb, sk->sk_prot->max_header);
896 /*
897 * Make sure that we have exactly size bytes
898 * available to the caller, no more, no less.
899 */
900 skb->reserved_tailroom = skb->end - skb->tail - size;
901 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
902 return skb;
903 }
904 __kfree_skb(skb);
905 } else {
906 sk->sk_prot->enter_memory_pressure(sk);
907 sk_stream_moderate_sndbuf(sk);
908 }
909 return NULL;
910 }
911
912 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
913 int large_allowed)
914 {
915 struct tcp_sock *tp = tcp_sk(sk);
916 u32 new_size_goal, size_goal;
917
918 if (!large_allowed)
919 return mss_now;
920
921 /* Note : tcp_tso_autosize() will eventually split this later */
922 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
923 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
924
925 /* We try hard to avoid divides here */
926 size_goal = tp->gso_segs * mss_now;
927 if (unlikely(new_size_goal < size_goal ||
928 new_size_goal >= size_goal + mss_now)) {
929 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
930 sk->sk_gso_max_segs);
931 size_goal = tp->gso_segs * mss_now;
932 }
933
934 return max(size_goal, mss_now);
935 }
936
937 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
938 {
939 int mss_now;
940
941 mss_now = tcp_current_mss(sk);
942 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
943
944 return mss_now;
945 }
946
947 /* In some cases, both sendpage() and sendmsg() could have added
948 * an skb to the write queue, but failed adding payload on it.
949 * We need to remove it to consume less memory, but more
950 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
951 * users.
952 */
953 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
954 {
955 if (skb && !skb->len) {
956 tcp_unlink_write_queue(skb, sk);
957 if (tcp_write_queue_empty(sk))
958 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
959 sk_wmem_free_skb(sk, skb);
960 }
961 }
962
963 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
964 size_t size, int flags)
965 {
966 struct tcp_sock *tp = tcp_sk(sk);
967 int mss_now, size_goal;
968 int err;
969 ssize_t copied;
970 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
971
972 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
973 WARN_ONCE(PageSlab(page), "page must not be a Slab one"))
974 return -EINVAL;
975
976 /* Wait for a connection to finish. One exception is TCP Fast Open
977 * (passive side) where data is allowed to be sent before a connection
978 * is fully established.
979 */
980 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
981 !tcp_passive_fastopen(sk)) {
982 err = sk_stream_wait_connect(sk, &timeo);
983 if (err != 0)
984 goto out_err;
985 }
986
987 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
988
989 mss_now = tcp_send_mss(sk, &size_goal, flags);
990 copied = 0;
991
992 err = -EPIPE;
993 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
994 goto out_err;
995
996 while (size > 0) {
997 struct sk_buff *skb = tcp_write_queue_tail(sk);
998 int copy, i;
999 bool can_coalesce;
1000
1001 if (!skb || (copy = size_goal - skb->len) <= 0 ||
1002 !tcp_skb_can_collapse_to(skb)) {
1003 new_segment:
1004 if (!sk_stream_memory_free(sk))
1005 goto wait_for_sndbuf;
1006
1007 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1008 tcp_rtx_and_write_queues_empty(sk));
1009 if (!skb)
1010 goto wait_for_memory;
1011
1012 #ifdef CONFIG_TLS_DEVICE
1013 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1014 #endif
1015 skb_entail(sk, skb);
1016 copy = size_goal;
1017 }
1018
1019 if (copy > size)
1020 copy = size;
1021
1022 i = skb_shinfo(skb)->nr_frags;
1023 can_coalesce = skb_can_coalesce(skb, i, page, offset);
1024 if (!can_coalesce && i >= sysctl_max_skb_frags) {
1025 tcp_mark_push(tp, skb);
1026 goto new_segment;
1027 }
1028 if (!sk_wmem_schedule(sk, copy))
1029 goto wait_for_memory;
1030
1031 if (can_coalesce) {
1032 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1033 } else {
1034 get_page(page);
1035 skb_fill_page_desc(skb, i, page, offset, copy);
1036 }
1037
1038 if (!(flags & MSG_NO_SHARED_FRAGS))
1039 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1040
1041 skb->len += copy;
1042 skb->data_len += copy;
1043 skb->truesize += copy;
1044 sk_wmem_queued_add(sk, copy);
1045 sk_mem_charge(sk, copy);
1046 skb->ip_summed = CHECKSUM_PARTIAL;
1047 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1048 TCP_SKB_CB(skb)->end_seq += copy;
1049 tcp_skb_pcount_set(skb, 0);
1050
1051 if (!copied)
1052 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1053
1054 copied += copy;
1055 offset += copy;
1056 size -= copy;
1057 if (!size)
1058 goto out;
1059
1060 if (skb->len < size_goal || (flags & MSG_OOB))
1061 continue;
1062
1063 if (forced_push(tp)) {
1064 tcp_mark_push(tp, skb);
1065 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1066 } else if (skb == tcp_send_head(sk))
1067 tcp_push_one(sk, mss_now);
1068 continue;
1069
1070 wait_for_sndbuf:
1071 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1072 wait_for_memory:
1073 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1074 TCP_NAGLE_PUSH, size_goal);
1075
1076 err = sk_stream_wait_memory(sk, &timeo);
1077 if (err != 0)
1078 goto do_error;
1079
1080 mss_now = tcp_send_mss(sk, &size_goal, flags);
1081 }
1082
1083 out:
1084 if (copied) {
1085 tcp_tx_timestamp(sk, sk->sk_tsflags);
1086 if (!(flags & MSG_SENDPAGE_NOTLAST))
1087 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1088 }
1089 return copied;
1090
1091 do_error:
1092 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1093 if (copied)
1094 goto out;
1095 out_err:
1096 /* make sure we wake any epoll edge trigger waiter */
1097 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1098 sk->sk_write_space(sk);
1099 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1100 }
1101 return sk_stream_error(sk, flags, err);
1102 }
1103 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1104
1105 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1106 size_t size, int flags)
1107 {
1108 if (!(sk->sk_route_caps & NETIF_F_SG))
1109 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1110
1111 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1112
1113 return do_tcp_sendpages(sk, page, offset, size, flags);
1114 }
1115 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1116
1117 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1118 size_t size, int flags)
1119 {
1120 int ret;
1121
1122 lock_sock(sk);
1123 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1124 release_sock(sk);
1125
1126 return ret;
1127 }
1128 EXPORT_SYMBOL(tcp_sendpage);
1129
1130 void tcp_free_fastopen_req(struct tcp_sock *tp)
1131 {
1132 if (tp->fastopen_req) {
1133 kfree(tp->fastopen_req);
1134 tp->fastopen_req = NULL;
1135 }
1136 }
1137
1138 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1139 int *copied, size_t size,
1140 struct ubuf_info *uarg)
1141 {
1142 struct tcp_sock *tp = tcp_sk(sk);
1143 struct inet_sock *inet = inet_sk(sk);
1144 struct sockaddr *uaddr = msg->msg_name;
1145 int err, flags;
1146
1147 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1148 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1149 uaddr->sa_family == AF_UNSPEC))
1150 return -EOPNOTSUPP;
1151 if (tp->fastopen_req)
1152 return -EALREADY; /* Another Fast Open is in progress */
1153
1154 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1155 sk->sk_allocation);
1156 if (unlikely(!tp->fastopen_req))
1157 return -ENOBUFS;
1158 tp->fastopen_req->data = msg;
1159 tp->fastopen_req->size = size;
1160 tp->fastopen_req->uarg = uarg;
1161
1162 if (inet->defer_connect) {
1163 err = tcp_connect(sk);
1164 /* Same failure procedure as in tcp_v4/6_connect */
1165 if (err) {
1166 tcp_set_state(sk, TCP_CLOSE);
1167 inet->inet_dport = 0;
1168 sk->sk_route_caps = 0;
1169 }
1170 }
1171 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1172 err = __inet_stream_connect(sk->sk_socket, uaddr,
1173 msg->msg_namelen, flags, 1);
1174 /* fastopen_req could already be freed in __inet_stream_connect
1175 * if the connection times out or gets rst
1176 */
1177 if (tp->fastopen_req) {
1178 *copied = tp->fastopen_req->copied;
1179 tcp_free_fastopen_req(tp);
1180 inet->defer_connect = 0;
1181 }
1182 return err;
1183 }
1184
1185 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1186 {
1187 struct tcp_sock *tp = tcp_sk(sk);
1188 struct ubuf_info *uarg = NULL;
1189 struct sk_buff *skb;
1190 struct sockcm_cookie sockc;
1191 int flags, err, copied = 0;
1192 int mss_now = 0, size_goal, copied_syn = 0;
1193 int process_backlog = 0;
1194 bool zc = false;
1195 long timeo;
1196
1197 flags = msg->msg_flags;
1198
1199 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1200 skb = tcp_write_queue_tail(sk);
1201 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1202 if (!uarg) {
1203 err = -ENOBUFS;
1204 goto out_err;
1205 }
1206
1207 zc = sk->sk_route_caps & NETIF_F_SG;
1208 if (!zc)
1209 uarg->zerocopy = 0;
1210 }
1211
1212 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1213 !tp->repair) {
1214 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1215 if (err == -EINPROGRESS && copied_syn > 0)
1216 goto out;
1217 else if (err)
1218 goto out_err;
1219 }
1220
1221 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1222
1223 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1224
1225 /* Wait for a connection to finish. One exception is TCP Fast Open
1226 * (passive side) where data is allowed to be sent before a connection
1227 * is fully established.
1228 */
1229 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1230 !tcp_passive_fastopen(sk)) {
1231 err = sk_stream_wait_connect(sk, &timeo);
1232 if (err != 0)
1233 goto do_error;
1234 }
1235
1236 if (unlikely(tp->repair)) {
1237 if (tp->repair_queue == TCP_RECV_QUEUE) {
1238 copied = tcp_send_rcvq(sk, msg, size);
1239 goto out_nopush;
1240 }
1241
1242 err = -EINVAL;
1243 if (tp->repair_queue == TCP_NO_QUEUE)
1244 goto out_err;
1245
1246 /* 'common' sending to sendq */
1247 }
1248
1249 sockcm_init(&sockc, sk);
1250 if (msg->msg_controllen) {
1251 err = sock_cmsg_send(sk, msg, &sockc);
1252 if (unlikely(err)) {
1253 err = -EINVAL;
1254 goto out_err;
1255 }
1256 }
1257
1258 /* This should be in poll */
1259 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1260
1261 /* Ok commence sending. */
1262 copied = 0;
1263
1264 restart:
1265 mss_now = tcp_send_mss(sk, &size_goal, flags);
1266
1267 err = -EPIPE;
1268 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1269 goto do_error;
1270
1271 while (msg_data_left(msg)) {
1272 int copy = 0;
1273
1274 skb = tcp_write_queue_tail(sk);
1275 if (skb)
1276 copy = size_goal - skb->len;
1277
1278 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1279 bool first_skb;
1280
1281 new_segment:
1282 if (!sk_stream_memory_free(sk))
1283 goto wait_for_sndbuf;
1284
1285 if (unlikely(process_backlog >= 16)) {
1286 process_backlog = 0;
1287 if (sk_flush_backlog(sk))
1288 goto restart;
1289 }
1290 first_skb = tcp_rtx_and_write_queues_empty(sk);
1291 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1292 first_skb);
1293 if (!skb)
1294 goto wait_for_memory;
1295
1296 process_backlog++;
1297 skb->ip_summed = CHECKSUM_PARTIAL;
1298
1299 skb_entail(sk, skb);
1300 copy = size_goal;
1301
1302 /* All packets are restored as if they have
1303 * already been sent. skb_mstamp_ns isn't set to
1304 * avoid wrong rtt estimation.
1305 */
1306 if (tp->repair)
1307 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1308 }
1309
1310 /* Try to append data to the end of skb. */
1311 if (copy > msg_data_left(msg))
1312 copy = msg_data_left(msg);
1313
1314 /* Where to copy to? */
1315 if (skb_availroom(skb) > 0 && !zc) {
1316 /* We have some space in skb head. Superb! */
1317 copy = min_t(int, copy, skb_availroom(skb));
1318 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1319 if (err)
1320 goto do_fault;
1321 } else if (!zc) {
1322 bool merge = true;
1323 int i = skb_shinfo(skb)->nr_frags;
1324 struct page_frag *pfrag = sk_page_frag(sk);
1325
1326 if (!sk_page_frag_refill(sk, pfrag))
1327 goto wait_for_memory;
1328
1329 if (!skb_can_coalesce(skb, i, pfrag->page,
1330 pfrag->offset)) {
1331 if (i >= sysctl_max_skb_frags) {
1332 tcp_mark_push(tp, skb);
1333 goto new_segment;
1334 }
1335 merge = false;
1336 }
1337
1338 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1339
1340 if (!sk_wmem_schedule(sk, copy))
1341 goto wait_for_memory;
1342
1343 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1344 pfrag->page,
1345 pfrag->offset,
1346 copy);
1347 if (err)
1348 goto do_error;
1349
1350 /* Update the skb. */
1351 if (merge) {
1352 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1353 } else {
1354 skb_fill_page_desc(skb, i, pfrag->page,
1355 pfrag->offset, copy);
1356 page_ref_inc(pfrag->page);
1357 }
1358 pfrag->offset += copy;
1359 } else {
1360 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1361 if (err == -EMSGSIZE || err == -EEXIST) {
1362 tcp_mark_push(tp, skb);
1363 goto new_segment;
1364 }
1365 if (err < 0)
1366 goto do_error;
1367 copy = err;
1368 }
1369
1370 if (!copied)
1371 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1372
1373 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1374 TCP_SKB_CB(skb)->end_seq += copy;
1375 tcp_skb_pcount_set(skb, 0);
1376
1377 copied += copy;
1378 if (!msg_data_left(msg)) {
1379 if (unlikely(flags & MSG_EOR))
1380 TCP_SKB_CB(skb)->eor = 1;
1381 goto out;
1382 }
1383
1384 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1385 continue;
1386
1387 if (forced_push(tp)) {
1388 tcp_mark_push(tp, skb);
1389 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1390 } else if (skb == tcp_send_head(sk))
1391 tcp_push_one(sk, mss_now);
1392 continue;
1393
1394 wait_for_sndbuf:
1395 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1396 wait_for_memory:
1397 if (copied)
1398 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1399 TCP_NAGLE_PUSH, size_goal);
1400
1401 err = sk_stream_wait_memory(sk, &timeo);
1402 if (err != 0)
1403 goto do_error;
1404
1405 mss_now = tcp_send_mss(sk, &size_goal, flags);
1406 }
1407
1408 out:
1409 if (copied) {
1410 tcp_tx_timestamp(sk, sockc.tsflags);
1411 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1412 }
1413 out_nopush:
1414 sock_zerocopy_put(uarg);
1415 return copied + copied_syn;
1416
1417 do_error:
1418 skb = tcp_write_queue_tail(sk);
1419 do_fault:
1420 tcp_remove_empty_skb(sk, skb);
1421
1422 if (copied + copied_syn)
1423 goto out;
1424 out_err:
1425 sock_zerocopy_put_abort(uarg, true);
1426 err = sk_stream_error(sk, flags, err);
1427 /* make sure we wake any epoll edge trigger waiter */
1428 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1429 sk->sk_write_space(sk);
1430 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1431 }
1432 return err;
1433 }
1434 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1435
1436 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1437 {
1438 int ret;
1439
1440 lock_sock(sk);
1441 ret = tcp_sendmsg_locked(sk, msg, size);
1442 release_sock(sk);
1443
1444 return ret;
1445 }
1446 EXPORT_SYMBOL(tcp_sendmsg);
1447
1448 /*
1449 * Handle reading urgent data. BSD has very simple semantics for
1450 * this, no blocking and very strange errors 8)
1451 */
1452
1453 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1454 {
1455 struct tcp_sock *tp = tcp_sk(sk);
1456
1457 /* No URG data to read. */
1458 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1459 tp->urg_data == TCP_URG_READ)
1460 return -EINVAL; /* Yes this is right ! */
1461
1462 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1463 return -ENOTCONN;
1464
1465 if (tp->urg_data & TCP_URG_VALID) {
1466 int err = 0;
1467 char c = tp->urg_data;
1468
1469 if (!(flags & MSG_PEEK))
1470 tp->urg_data = TCP_URG_READ;
1471
1472 /* Read urgent data. */
1473 msg->msg_flags |= MSG_OOB;
1474
1475 if (len > 0) {
1476 if (!(flags & MSG_TRUNC))
1477 err = memcpy_to_msg(msg, &c, 1);
1478 len = 1;
1479 } else
1480 msg->msg_flags |= MSG_TRUNC;
1481
1482 return err ? -EFAULT : len;
1483 }
1484
1485 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1486 return 0;
1487
1488 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1489 * the available implementations agree in this case:
1490 * this call should never block, independent of the
1491 * blocking state of the socket.
1492 * Mike <pall@rz.uni-karlsruhe.de>
1493 */
1494 return -EAGAIN;
1495 }
1496
1497 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1498 {
1499 struct sk_buff *skb;
1500 int copied = 0, err = 0;
1501
1502 /* XXX -- need to support SO_PEEK_OFF */
1503
1504 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1505 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1506 if (err)
1507 return err;
1508 copied += skb->len;
1509 }
1510
1511 skb_queue_walk(&sk->sk_write_queue, skb) {
1512 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1513 if (err)
1514 break;
1515
1516 copied += skb->len;
1517 }
1518
1519 return err ?: copied;
1520 }
1521
1522 /* Clean up the receive buffer for full frames taken by the user,
1523 * then send an ACK if necessary. COPIED is the number of bytes
1524 * tcp_recvmsg has given to the user so far, it speeds up the
1525 * calculation of whether or not we must ACK for the sake of
1526 * a window update.
1527 */
1528 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1529 {
1530 struct tcp_sock *tp = tcp_sk(sk);
1531 bool time_to_ack = false;
1532
1533 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1534
1535 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1536 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1537 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1538
1539 if (inet_csk_ack_scheduled(sk)) {
1540 const struct inet_connection_sock *icsk = inet_csk(sk);
1541 /* Delayed ACKs frequently hit locked sockets during bulk
1542 * receive. */
1543 if (icsk->icsk_ack.blocked ||
1544 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1545 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1546 /*
1547 * If this read emptied read buffer, we send ACK, if
1548 * connection is not bidirectional, user drained
1549 * receive buffer and there was a small segment
1550 * in queue.
1551 */
1552 (copied > 0 &&
1553 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1554 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1555 !inet_csk_in_pingpong_mode(sk))) &&
1556 !atomic_read(&sk->sk_rmem_alloc)))
1557 time_to_ack = true;
1558 }
1559
1560 /* We send an ACK if we can now advertise a non-zero window
1561 * which has been raised "significantly".
1562 *
1563 * Even if window raised up to infinity, do not send window open ACK
1564 * in states, where we will not receive more. It is useless.
1565 */
1566 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1567 __u32 rcv_window_now = tcp_receive_window(tp);
1568
1569 /* Optimize, __tcp_select_window() is not cheap. */
1570 if (2*rcv_window_now <= tp->window_clamp) {
1571 __u32 new_window = __tcp_select_window(sk);
1572
1573 /* Send ACK now, if this read freed lots of space
1574 * in our buffer. Certainly, new_window is new window.
1575 * We can advertise it now, if it is not less than current one.
1576 * "Lots" means "at least twice" here.
1577 */
1578 if (new_window && new_window >= 2 * rcv_window_now)
1579 time_to_ack = true;
1580 }
1581 }
1582 if (time_to_ack)
1583 tcp_send_ack(sk);
1584 }
1585
1586 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1587 {
1588 struct sk_buff *skb;
1589 u32 offset;
1590
1591 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1592 offset = seq - TCP_SKB_CB(skb)->seq;
1593 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1594 pr_err_once("%s: found a SYN, please report !\n", __func__);
1595 offset--;
1596 }
1597 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1598 *off = offset;
1599 return skb;
1600 }
1601 /* This looks weird, but this can happen if TCP collapsing
1602 * splitted a fat GRO packet, while we released socket lock
1603 * in skb_splice_bits()
1604 */
1605 sk_eat_skb(sk, skb);
1606 }
1607 return NULL;
1608 }
1609
1610 /*
1611 * This routine provides an alternative to tcp_recvmsg() for routines
1612 * that would like to handle copying from skbuffs directly in 'sendfile'
1613 * fashion.
1614 * Note:
1615 * - It is assumed that the socket was locked by the caller.
1616 * - The routine does not block.
1617 * - At present, there is no support for reading OOB data
1618 * or for 'peeking' the socket using this routine
1619 * (although both would be easy to implement).
1620 */
1621 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1622 sk_read_actor_t recv_actor)
1623 {
1624 struct sk_buff *skb;
1625 struct tcp_sock *tp = tcp_sk(sk);
1626 u32 seq = tp->copied_seq;
1627 u32 offset;
1628 int copied = 0;
1629
1630 if (sk->sk_state == TCP_LISTEN)
1631 return -ENOTCONN;
1632 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1633 if (offset < skb->len) {
1634 int used;
1635 size_t len;
1636
1637 len = skb->len - offset;
1638 /* Stop reading if we hit a patch of urgent data */
1639 if (tp->urg_data) {
1640 u32 urg_offset = tp->urg_seq - seq;
1641 if (urg_offset < len)
1642 len = urg_offset;
1643 if (!len)
1644 break;
1645 }
1646 used = recv_actor(desc, skb, offset, len);
1647 if (used <= 0) {
1648 if (!copied)
1649 copied = used;
1650 break;
1651 } else if (used <= len) {
1652 seq += used;
1653 copied += used;
1654 offset += used;
1655 }
1656 /* If recv_actor drops the lock (e.g. TCP splice
1657 * receive) the skb pointer might be invalid when
1658 * getting here: tcp_collapse might have deleted it
1659 * while aggregating skbs from the socket queue.
1660 */
1661 skb = tcp_recv_skb(sk, seq - 1, &offset);
1662 if (!skb)
1663 break;
1664 /* TCP coalescing might have appended data to the skb.
1665 * Try to splice more frags
1666 */
1667 if (offset + 1 != skb->len)
1668 continue;
1669 }
1670 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1671 sk_eat_skb(sk, skb);
1672 ++seq;
1673 break;
1674 }
1675 sk_eat_skb(sk, skb);
1676 if (!desc->count)
1677 break;
1678 WRITE_ONCE(tp->copied_seq, seq);
1679 }
1680 WRITE_ONCE(tp->copied_seq, seq);
1681
1682 tcp_rcv_space_adjust(sk);
1683
1684 /* Clean up data we have read: This will do ACK frames. */
1685 if (copied > 0) {
1686 tcp_recv_skb(sk, seq, &offset);
1687 tcp_cleanup_rbuf(sk, copied);
1688 }
1689 return copied;
1690 }
1691 EXPORT_SYMBOL(tcp_read_sock);
1692
1693 int tcp_peek_len(struct socket *sock)
1694 {
1695 return tcp_inq(sock->sk);
1696 }
1697 EXPORT_SYMBOL(tcp_peek_len);
1698
1699 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1700 int tcp_set_rcvlowat(struct sock *sk, int val)
1701 {
1702 int cap;
1703
1704 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1705 cap = sk->sk_rcvbuf >> 1;
1706 else
1707 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1708 val = min(val, cap);
1709 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1710
1711 /* Check if we need to signal EPOLLIN right now */
1712 tcp_data_ready(sk);
1713
1714 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1715 return 0;
1716
1717 val <<= 1;
1718 if (val > sk->sk_rcvbuf) {
1719 WRITE_ONCE(sk->sk_rcvbuf, val);
1720 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1721 }
1722 return 0;
1723 }
1724 EXPORT_SYMBOL(tcp_set_rcvlowat);
1725
1726 #ifdef CONFIG_MMU
1727 static const struct vm_operations_struct tcp_vm_ops = {
1728 };
1729
1730 int tcp_mmap(struct file *file, struct socket *sock,
1731 struct vm_area_struct *vma)
1732 {
1733 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1734 return -EPERM;
1735 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1736
1737 /* Instruct vm_insert_page() to not down_read(mmap_sem) */
1738 vma->vm_flags |= VM_MIXEDMAP;
1739
1740 vma->vm_ops = &tcp_vm_ops;
1741 return 0;
1742 }
1743 EXPORT_SYMBOL(tcp_mmap);
1744
1745 static int tcp_zerocopy_receive(struct sock *sk,
1746 struct tcp_zerocopy_receive *zc)
1747 {
1748 unsigned long address = (unsigned long)zc->address;
1749 u32 length = 0, seq, offset, zap_len;
1750 const skb_frag_t *frags = NULL;
1751 struct vm_area_struct *vma;
1752 struct sk_buff *skb = NULL;
1753 struct tcp_sock *tp;
1754 int inq;
1755 int ret;
1756
1757 if (address & (PAGE_SIZE - 1) || address != zc->address)
1758 return -EINVAL;
1759
1760 if (sk->sk_state == TCP_LISTEN)
1761 return -ENOTCONN;
1762
1763 sock_rps_record_flow(sk);
1764
1765 down_read(&current->mm->mmap_sem);
1766
1767 ret = -EINVAL;
1768 vma = find_vma(current->mm, address);
1769 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops)
1770 goto out;
1771 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address);
1772
1773 tp = tcp_sk(sk);
1774 seq = tp->copied_seq;
1775 inq = tcp_inq(sk);
1776 zc->length = min_t(u32, zc->length, inq);
1777 zap_len = zc->length & ~(PAGE_SIZE - 1);
1778 if (zap_len) {
1779 zap_page_range(vma, address, zap_len);
1780 zc->recv_skip_hint = 0;
1781 } else {
1782 zc->recv_skip_hint = zc->length;
1783 }
1784 ret = 0;
1785 while (length + PAGE_SIZE <= zc->length) {
1786 if (zc->recv_skip_hint < PAGE_SIZE) {
1787 if (skb) {
1788 if (zc->recv_skip_hint > 0)
1789 break;
1790 skb = skb->next;
1791 offset = seq - TCP_SKB_CB(skb)->seq;
1792 } else {
1793 skb = tcp_recv_skb(sk, seq, &offset);
1794 }
1795
1796 zc->recv_skip_hint = skb->len - offset;
1797 offset -= skb_headlen(skb);
1798 if ((int)offset < 0 || skb_has_frag_list(skb))
1799 break;
1800 frags = skb_shinfo(skb)->frags;
1801 while (offset) {
1802 if (skb_frag_size(frags) > offset)
1803 goto out;
1804 offset -= skb_frag_size(frags);
1805 frags++;
1806 }
1807 }
1808 if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) {
1809 int remaining = zc->recv_skip_hint;
1810
1811 while (remaining && (skb_frag_size(frags) != PAGE_SIZE ||
1812 skb_frag_off(frags))) {
1813 remaining -= skb_frag_size(frags);
1814 frags++;
1815 }
1816 zc->recv_skip_hint -= remaining;
1817 break;
1818 }
1819 ret = vm_insert_page(vma, address + length,
1820 skb_frag_page(frags));
1821 if (ret)
1822 break;
1823 length += PAGE_SIZE;
1824 seq += PAGE_SIZE;
1825 zc->recv_skip_hint -= PAGE_SIZE;
1826 frags++;
1827 }
1828 out:
1829 up_read(&current->mm->mmap_sem);
1830 if (length) {
1831 WRITE_ONCE(tp->copied_seq, seq);
1832 tcp_rcv_space_adjust(sk);
1833
1834 /* Clean up data we have read: This will do ACK frames. */
1835 tcp_recv_skb(sk, seq, &offset);
1836 tcp_cleanup_rbuf(sk, length);
1837 ret = 0;
1838 if (length == zc->length)
1839 zc->recv_skip_hint = 0;
1840 } else {
1841 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1842 ret = -EIO;
1843 }
1844 zc->length = length;
1845 return ret;
1846 }
1847 #endif
1848
1849 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1850 struct scm_timestamping_internal *tss)
1851 {
1852 if (skb->tstamp)
1853 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1854 else
1855 tss->ts[0] = (struct timespec64) {0};
1856
1857 if (skb_hwtstamps(skb)->hwtstamp)
1858 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1859 else
1860 tss->ts[2] = (struct timespec64) {0};
1861 }
1862
1863 /* Similar to __sock_recv_timestamp, but does not require an skb */
1864 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1865 struct scm_timestamping_internal *tss)
1866 {
1867 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
1868 bool has_timestamping = false;
1869
1870 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1871 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1872 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1873 if (new_tstamp) {
1874 struct __kernel_timespec kts = {
1875 .tv_sec = tss->ts[0].tv_sec,
1876 .tv_nsec = tss->ts[0].tv_nsec,
1877 };
1878 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
1879 sizeof(kts), &kts);
1880 } else {
1881 struct __kernel_old_timespec ts_old = {
1882 .tv_sec = tss->ts[0].tv_sec,
1883 .tv_nsec = tss->ts[0].tv_nsec,
1884 };
1885 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
1886 sizeof(ts_old), &ts_old);
1887 }
1888 } else {
1889 if (new_tstamp) {
1890 struct __kernel_sock_timeval stv = {
1891 .tv_sec = tss->ts[0].tv_sec,
1892 .tv_usec = tss->ts[0].tv_nsec / 1000,
1893 };
1894 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
1895 sizeof(stv), &stv);
1896 } else {
1897 struct __kernel_old_timeval tv = {
1898 .tv_sec = tss->ts[0].tv_sec,
1899 .tv_usec = tss->ts[0].tv_nsec / 1000,
1900 };
1901 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
1902 sizeof(tv), &tv);
1903 }
1904 }
1905 }
1906
1907 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1908 has_timestamping = true;
1909 else
1910 tss->ts[0] = (struct timespec64) {0};
1911 }
1912
1913 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1914 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1915 has_timestamping = true;
1916 else
1917 tss->ts[2] = (struct timespec64) {0};
1918 }
1919
1920 if (has_timestamping) {
1921 tss->ts[1] = (struct timespec64) {0};
1922 if (sock_flag(sk, SOCK_TSTAMP_NEW))
1923 put_cmsg_scm_timestamping64(msg, tss);
1924 else
1925 put_cmsg_scm_timestamping(msg, tss);
1926 }
1927 }
1928
1929 static int tcp_inq_hint(struct sock *sk)
1930 {
1931 const struct tcp_sock *tp = tcp_sk(sk);
1932 u32 copied_seq = READ_ONCE(tp->copied_seq);
1933 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
1934 int inq;
1935
1936 inq = rcv_nxt - copied_seq;
1937 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
1938 lock_sock(sk);
1939 inq = tp->rcv_nxt - tp->copied_seq;
1940 release_sock(sk);
1941 }
1942 /* After receiving a FIN, tell the user-space to continue reading
1943 * by returning a non-zero inq.
1944 */
1945 if (inq == 0 && sock_flag(sk, SOCK_DONE))
1946 inq = 1;
1947 return inq;
1948 }
1949
1950 /*
1951 * This routine copies from a sock struct into the user buffer.
1952 *
1953 * Technical note: in 2.3 we work on _locked_ socket, so that
1954 * tricks with *seq access order and skb->users are not required.
1955 * Probably, code can be easily improved even more.
1956 */
1957
1958 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1959 int flags, int *addr_len)
1960 {
1961 struct tcp_sock *tp = tcp_sk(sk);
1962 int copied = 0;
1963 u32 peek_seq;
1964 u32 *seq;
1965 unsigned long used;
1966 int err, inq;
1967 int target; /* Read at least this many bytes */
1968 long timeo;
1969 struct sk_buff *skb, *last;
1970 u32 urg_hole = 0;
1971 struct scm_timestamping_internal tss;
1972 int cmsg_flags;
1973
1974 if (unlikely(flags & MSG_ERRQUEUE))
1975 return inet_recv_error(sk, msg, len, addr_len);
1976
1977 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
1978 (sk->sk_state == TCP_ESTABLISHED))
1979 sk_busy_loop(sk, nonblock);
1980
1981 lock_sock(sk);
1982
1983 err = -ENOTCONN;
1984 if (sk->sk_state == TCP_LISTEN)
1985 goto out;
1986
1987 cmsg_flags = tp->recvmsg_inq ? 1 : 0;
1988 timeo = sock_rcvtimeo(sk, nonblock);
1989
1990 /* Urgent data needs to be handled specially. */
1991 if (flags & MSG_OOB)
1992 goto recv_urg;
1993
1994 if (unlikely(tp->repair)) {
1995 err = -EPERM;
1996 if (!(flags & MSG_PEEK))
1997 goto out;
1998
1999 if (tp->repair_queue == TCP_SEND_QUEUE)
2000 goto recv_sndq;
2001
2002 err = -EINVAL;
2003 if (tp->repair_queue == TCP_NO_QUEUE)
2004 goto out;
2005
2006 /* 'common' recv queue MSG_PEEK-ing */
2007 }
2008
2009 seq = &tp->copied_seq;
2010 if (flags & MSG_PEEK) {
2011 peek_seq = tp->copied_seq;
2012 seq = &peek_seq;
2013 }
2014
2015 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2016
2017 do {
2018 u32 offset;
2019
2020 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2021 if (tp->urg_data && tp->urg_seq == *seq) {
2022 if (copied)
2023 break;
2024 if (signal_pending(current)) {
2025 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2026 break;
2027 }
2028 }
2029
2030 /* Next get a buffer. */
2031
2032 last = skb_peek_tail(&sk->sk_receive_queue);
2033 skb_queue_walk(&sk->sk_receive_queue, skb) {
2034 last = skb;
2035 /* Now that we have two receive queues this
2036 * shouldn't happen.
2037 */
2038 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2039 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2040 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2041 flags))
2042 break;
2043
2044 offset = *seq - TCP_SKB_CB(skb)->seq;
2045 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2046 pr_err_once("%s: found a SYN, please report !\n", __func__);
2047 offset--;
2048 }
2049 if (offset < skb->len)
2050 goto found_ok_skb;
2051 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2052 goto found_fin_ok;
2053 WARN(!(flags & MSG_PEEK),
2054 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2055 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2056 }
2057
2058 /* Well, if we have backlog, try to process it now yet. */
2059
2060 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2061 break;
2062
2063 if (copied) {
2064 if (sk->sk_err ||
2065 sk->sk_state == TCP_CLOSE ||
2066 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2067 !timeo ||
2068 signal_pending(current))
2069 break;
2070 } else {
2071 if (sock_flag(sk, SOCK_DONE))
2072 break;
2073
2074 if (sk->sk_err) {
2075 copied = sock_error(sk);
2076 break;
2077 }
2078
2079 if (sk->sk_shutdown & RCV_SHUTDOWN)
2080 break;
2081
2082 if (sk->sk_state == TCP_CLOSE) {
2083 /* This occurs when user tries to read
2084 * from never connected socket.
2085 */
2086 copied = -ENOTCONN;
2087 break;
2088 }
2089
2090 if (!timeo) {
2091 copied = -EAGAIN;
2092 break;
2093 }
2094
2095 if (signal_pending(current)) {
2096 copied = sock_intr_errno(timeo);
2097 break;
2098 }
2099 }
2100
2101 tcp_cleanup_rbuf(sk, copied);
2102
2103 if (copied >= target) {
2104 /* Do not sleep, just process backlog. */
2105 release_sock(sk);
2106 lock_sock(sk);
2107 } else {
2108 sk_wait_data(sk, &timeo, last);
2109 }
2110
2111 if ((flags & MSG_PEEK) &&
2112 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2113 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2114 current->comm,
2115 task_pid_nr(current));
2116 peek_seq = tp->copied_seq;
2117 }
2118 continue;
2119
2120 found_ok_skb:
2121 /* Ok so how much can we use? */
2122 used = skb->len - offset;
2123 if (len < used)
2124 used = len;
2125
2126 /* Do we have urgent data here? */
2127 if (tp->urg_data) {
2128 u32 urg_offset = tp->urg_seq - *seq;
2129 if (urg_offset < used) {
2130 if (!urg_offset) {
2131 if (!sock_flag(sk, SOCK_URGINLINE)) {
2132 WRITE_ONCE(*seq, *seq + 1);
2133 urg_hole++;
2134 offset++;
2135 used--;
2136 if (!used)
2137 goto skip_copy;
2138 }
2139 } else
2140 used = urg_offset;
2141 }
2142 }
2143
2144 if (!(flags & MSG_TRUNC)) {
2145 err = skb_copy_datagram_msg(skb, offset, msg, used);
2146 if (err) {
2147 /* Exception. Bailout! */
2148 if (!copied)
2149 copied = -EFAULT;
2150 break;
2151 }
2152 }
2153
2154 WRITE_ONCE(*seq, *seq + used);
2155 copied += used;
2156 len -= used;
2157
2158 tcp_rcv_space_adjust(sk);
2159
2160 skip_copy:
2161 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2162 tp->urg_data = 0;
2163 tcp_fast_path_check(sk);
2164 }
2165
2166 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2167 tcp_update_recv_tstamps(skb, &tss);
2168 cmsg_flags |= 2;
2169 }
2170
2171 if (used + offset < skb->len)
2172 continue;
2173
2174 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2175 goto found_fin_ok;
2176 if (!(flags & MSG_PEEK))
2177 sk_eat_skb(sk, skb);
2178 continue;
2179
2180 found_fin_ok:
2181 /* Process the FIN. */
2182 WRITE_ONCE(*seq, *seq + 1);
2183 if (!(flags & MSG_PEEK))
2184 sk_eat_skb(sk, skb);
2185 break;
2186 } while (len > 0);
2187
2188 /* According to UNIX98, msg_name/msg_namelen are ignored
2189 * on connected socket. I was just happy when found this 8) --ANK
2190 */
2191
2192 /* Clean up data we have read: This will do ACK frames. */
2193 tcp_cleanup_rbuf(sk, copied);
2194
2195 release_sock(sk);
2196
2197 if (cmsg_flags) {
2198 if (cmsg_flags & 2)
2199 tcp_recv_timestamp(msg, sk, &tss);
2200 if (cmsg_flags & 1) {
2201 inq = tcp_inq_hint(sk);
2202 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2203 }
2204 }
2205
2206 return copied;
2207
2208 out:
2209 release_sock(sk);
2210 return err;
2211
2212 recv_urg:
2213 err = tcp_recv_urg(sk, msg, len, flags);
2214 goto out;
2215
2216 recv_sndq:
2217 err = tcp_peek_sndq(sk, msg, len);
2218 goto out;
2219 }
2220 EXPORT_SYMBOL(tcp_recvmsg);
2221
2222 void tcp_set_state(struct sock *sk, int state)
2223 {
2224 int oldstate = sk->sk_state;
2225
2226 /* We defined a new enum for TCP states that are exported in BPF
2227 * so as not force the internal TCP states to be frozen. The
2228 * following checks will detect if an internal state value ever
2229 * differs from the BPF value. If this ever happens, then we will
2230 * need to remap the internal value to the BPF value before calling
2231 * tcp_call_bpf_2arg.
2232 */
2233 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2234 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2235 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2236 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2237 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2238 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2239 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2240 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2241 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2242 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2243 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2244 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2245 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2246
2247 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2248 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2249
2250 switch (state) {
2251 case TCP_ESTABLISHED:
2252 if (oldstate != TCP_ESTABLISHED)
2253 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2254 break;
2255
2256 case TCP_CLOSE:
2257 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2258 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2259
2260 sk->sk_prot->unhash(sk);
2261 if (inet_csk(sk)->icsk_bind_hash &&
2262 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2263 inet_put_port(sk);
2264 fallthrough;
2265 default:
2266 if (oldstate == TCP_ESTABLISHED)
2267 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2268 }
2269
2270 /* Change state AFTER socket is unhashed to avoid closed
2271 * socket sitting in hash tables.
2272 */
2273 inet_sk_state_store(sk, state);
2274 }
2275 EXPORT_SYMBOL_GPL(tcp_set_state);
2276
2277 /*
2278 * State processing on a close. This implements the state shift for
2279 * sending our FIN frame. Note that we only send a FIN for some
2280 * states. A shutdown() may have already sent the FIN, or we may be
2281 * closed.
2282 */
2283
2284 static const unsigned char new_state[16] = {
2285 /* current state: new state: action: */
2286 [0 /* (Invalid) */] = TCP_CLOSE,
2287 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2288 [TCP_SYN_SENT] = TCP_CLOSE,
2289 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2290 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2291 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2292 [TCP_TIME_WAIT] = TCP_CLOSE,
2293 [TCP_CLOSE] = TCP_CLOSE,
2294 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2295 [TCP_LAST_ACK] = TCP_LAST_ACK,
2296 [TCP_LISTEN] = TCP_CLOSE,
2297 [TCP_CLOSING] = TCP_CLOSING,
2298 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2299 };
2300
2301 static int tcp_close_state(struct sock *sk)
2302 {
2303 int next = (int)new_state[sk->sk_state];
2304 int ns = next & TCP_STATE_MASK;
2305
2306 tcp_set_state(sk, ns);
2307
2308 return next & TCP_ACTION_FIN;
2309 }
2310
2311 /*
2312 * Shutdown the sending side of a connection. Much like close except
2313 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2314 */
2315
2316 void tcp_shutdown(struct sock *sk, int how)
2317 {
2318 /* We need to grab some memory, and put together a FIN,
2319 * and then put it into the queue to be sent.
2320 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2321 */
2322 if (!(how & SEND_SHUTDOWN))
2323 return;
2324
2325 /* If we've already sent a FIN, or it's a closed state, skip this. */
2326 if ((1 << sk->sk_state) &
2327 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2328 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2329 /* Clear out any half completed packets. FIN if needed. */
2330 if (tcp_close_state(sk))
2331 tcp_send_fin(sk);
2332 }
2333 }
2334 EXPORT_SYMBOL(tcp_shutdown);
2335
2336 bool tcp_check_oom(struct sock *sk, int shift)
2337 {
2338 bool too_many_orphans, out_of_socket_memory;
2339
2340 too_many_orphans = tcp_too_many_orphans(sk, shift);
2341 out_of_socket_memory = tcp_out_of_memory(sk);
2342
2343 if (too_many_orphans)
2344 net_info_ratelimited("too many orphaned sockets\n");
2345 if (out_of_socket_memory)
2346 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2347 return too_many_orphans || out_of_socket_memory;
2348 }
2349
2350 void tcp_close(struct sock *sk, long timeout)
2351 {
2352 struct sk_buff *skb;
2353 int data_was_unread = 0;
2354 int state;
2355
2356 lock_sock(sk);
2357 sk->sk_shutdown = SHUTDOWN_MASK;
2358
2359 if (sk->sk_state == TCP_LISTEN) {
2360 tcp_set_state(sk, TCP_CLOSE);
2361
2362 /* Special case. */
2363 inet_csk_listen_stop(sk);
2364
2365 goto adjudge_to_death;
2366 }
2367
2368 /* We need to flush the recv. buffs. We do this only on the
2369 * descriptor close, not protocol-sourced closes, because the
2370 * reader process may not have drained the data yet!
2371 */
2372 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2373 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2374
2375 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2376 len--;
2377 data_was_unread += len;
2378 __kfree_skb(skb);
2379 }
2380
2381 sk_mem_reclaim(sk);
2382
2383 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2384 if (sk->sk_state == TCP_CLOSE)
2385 goto adjudge_to_death;
2386
2387 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2388 * data was lost. To witness the awful effects of the old behavior of
2389 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2390 * GET in an FTP client, suspend the process, wait for the client to
2391 * advertise a zero window, then kill -9 the FTP client, wheee...
2392 * Note: timeout is always zero in such a case.
2393 */
2394 if (unlikely(tcp_sk(sk)->repair)) {
2395 sk->sk_prot->disconnect(sk, 0);
2396 } else if (data_was_unread) {
2397 /* Unread data was tossed, zap the connection. */
2398 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2399 tcp_set_state(sk, TCP_CLOSE);
2400 tcp_send_active_reset(sk, sk->sk_allocation);
2401 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2402 /* Check zero linger _after_ checking for unread data. */
2403 sk->sk_prot->disconnect(sk, 0);
2404 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2405 } else if (tcp_close_state(sk)) {
2406 /* We FIN if the application ate all the data before
2407 * zapping the connection.
2408 */
2409
2410 /* RED-PEN. Formally speaking, we have broken TCP state
2411 * machine. State transitions:
2412 *
2413 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2414 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2415 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2416 *
2417 * are legal only when FIN has been sent (i.e. in window),
2418 * rather than queued out of window. Purists blame.
2419 *
2420 * F.e. "RFC state" is ESTABLISHED,
2421 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2422 *
2423 * The visible declinations are that sometimes
2424 * we enter time-wait state, when it is not required really
2425 * (harmless), do not send active resets, when they are
2426 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2427 * they look as CLOSING or LAST_ACK for Linux)
2428 * Probably, I missed some more holelets.
2429 * --ANK
2430 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2431 * in a single packet! (May consider it later but will
2432 * probably need API support or TCP_CORK SYN-ACK until
2433 * data is written and socket is closed.)
2434 */
2435 tcp_send_fin(sk);
2436 }
2437
2438 sk_stream_wait_close(sk, timeout);
2439
2440 adjudge_to_death:
2441 state = sk->sk_state;
2442 sock_hold(sk);
2443 sock_orphan(sk);
2444
2445 local_bh_disable();
2446 bh_lock_sock(sk);
2447 /* remove backlog if any, without releasing ownership. */
2448 __release_sock(sk);
2449
2450 percpu_counter_inc(sk->sk_prot->orphan_count);
2451
2452 /* Have we already been destroyed by a softirq or backlog? */
2453 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2454 goto out;
2455
2456 /* This is a (useful) BSD violating of the RFC. There is a
2457 * problem with TCP as specified in that the other end could
2458 * keep a socket open forever with no application left this end.
2459 * We use a 1 minute timeout (about the same as BSD) then kill
2460 * our end. If they send after that then tough - BUT: long enough
2461 * that we won't make the old 4*rto = almost no time - whoops
2462 * reset mistake.
2463 *
2464 * Nope, it was not mistake. It is really desired behaviour
2465 * f.e. on http servers, when such sockets are useless, but
2466 * consume significant resources. Let's do it with special
2467 * linger2 option. --ANK
2468 */
2469
2470 if (sk->sk_state == TCP_FIN_WAIT2) {
2471 struct tcp_sock *tp = tcp_sk(sk);
2472 if (tp->linger2 < 0) {
2473 tcp_set_state(sk, TCP_CLOSE);
2474 tcp_send_active_reset(sk, GFP_ATOMIC);
2475 __NET_INC_STATS(sock_net(sk),
2476 LINUX_MIB_TCPABORTONLINGER);
2477 } else {
2478 const int tmo = tcp_fin_time(sk);
2479
2480 if (tmo > TCP_TIMEWAIT_LEN) {
2481 inet_csk_reset_keepalive_timer(sk,
2482 tmo - TCP_TIMEWAIT_LEN);
2483 } else {
2484 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2485 goto out;
2486 }
2487 }
2488 }
2489 if (sk->sk_state != TCP_CLOSE) {
2490 sk_mem_reclaim(sk);
2491 if (tcp_check_oom(sk, 0)) {
2492 tcp_set_state(sk, TCP_CLOSE);
2493 tcp_send_active_reset(sk, GFP_ATOMIC);
2494 __NET_INC_STATS(sock_net(sk),
2495 LINUX_MIB_TCPABORTONMEMORY);
2496 } else if (!check_net(sock_net(sk))) {
2497 /* Not possible to send reset; just close */
2498 tcp_set_state(sk, TCP_CLOSE);
2499 }
2500 }
2501
2502 if (sk->sk_state == TCP_CLOSE) {
2503 struct request_sock *req;
2504
2505 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2506 lockdep_sock_is_held(sk));
2507 /* We could get here with a non-NULL req if the socket is
2508 * aborted (e.g., closed with unread data) before 3WHS
2509 * finishes.
2510 */
2511 if (req)
2512 reqsk_fastopen_remove(sk, req, false);
2513 inet_csk_destroy_sock(sk);
2514 }
2515 /* Otherwise, socket is reprieved until protocol close. */
2516
2517 out:
2518 bh_unlock_sock(sk);
2519 local_bh_enable();
2520 release_sock(sk);
2521 sock_put(sk);
2522 }
2523 EXPORT_SYMBOL(tcp_close);
2524
2525 /* These states need RST on ABORT according to RFC793 */
2526
2527 static inline bool tcp_need_reset(int state)
2528 {
2529 return (1 << state) &
2530 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2531 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2532 }
2533
2534 static void tcp_rtx_queue_purge(struct sock *sk)
2535 {
2536 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2537
2538 tcp_sk(sk)->highest_sack = NULL;
2539 while (p) {
2540 struct sk_buff *skb = rb_to_skb(p);
2541
2542 p = rb_next(p);
2543 /* Since we are deleting whole queue, no need to
2544 * list_del(&skb->tcp_tsorted_anchor)
2545 */
2546 tcp_rtx_queue_unlink(skb, sk);
2547 sk_wmem_free_skb(sk, skb);
2548 }
2549 }
2550
2551 void tcp_write_queue_purge(struct sock *sk)
2552 {
2553 struct sk_buff *skb;
2554
2555 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2556 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2557 tcp_skb_tsorted_anchor_cleanup(skb);
2558 sk_wmem_free_skb(sk, skb);
2559 }
2560 tcp_rtx_queue_purge(sk);
2561 skb = sk->sk_tx_skb_cache;
2562 if (skb) {
2563 __kfree_skb(skb);
2564 sk->sk_tx_skb_cache = NULL;
2565 }
2566 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2567 sk_mem_reclaim(sk);
2568 tcp_clear_all_retrans_hints(tcp_sk(sk));
2569 tcp_sk(sk)->packets_out = 0;
2570 inet_csk(sk)->icsk_backoff = 0;
2571 }
2572
2573 int tcp_disconnect(struct sock *sk, int flags)
2574 {
2575 struct inet_sock *inet = inet_sk(sk);
2576 struct inet_connection_sock *icsk = inet_csk(sk);
2577 struct tcp_sock *tp = tcp_sk(sk);
2578 int old_state = sk->sk_state;
2579 u32 seq;
2580
2581 if (old_state != TCP_CLOSE)
2582 tcp_set_state(sk, TCP_CLOSE);
2583
2584 /* ABORT function of RFC793 */
2585 if (old_state == TCP_LISTEN) {
2586 inet_csk_listen_stop(sk);
2587 } else if (unlikely(tp->repair)) {
2588 sk->sk_err = ECONNABORTED;
2589 } else if (tcp_need_reset(old_state) ||
2590 (tp->snd_nxt != tp->write_seq &&
2591 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2592 /* The last check adjusts for discrepancy of Linux wrt. RFC
2593 * states
2594 */
2595 tcp_send_active_reset(sk, gfp_any());
2596 sk->sk_err = ECONNRESET;
2597 } else if (old_state == TCP_SYN_SENT)
2598 sk->sk_err = ECONNRESET;
2599
2600 tcp_clear_xmit_timers(sk);
2601 __skb_queue_purge(&sk->sk_receive_queue);
2602 if (sk->sk_rx_skb_cache) {
2603 __kfree_skb(sk->sk_rx_skb_cache);
2604 sk->sk_rx_skb_cache = NULL;
2605 }
2606 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2607 tp->urg_data = 0;
2608 tcp_write_queue_purge(sk);
2609 tcp_fastopen_active_disable_ofo_check(sk);
2610 skb_rbtree_purge(&tp->out_of_order_queue);
2611
2612 inet->inet_dport = 0;
2613
2614 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2615 inet_reset_saddr(sk);
2616
2617 sk->sk_shutdown = 0;
2618 sock_reset_flag(sk, SOCK_DONE);
2619 tp->srtt_us = 0;
2620 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2621 tp->rcv_rtt_last_tsecr = 0;
2622
2623 seq = tp->write_seq + tp->max_window + 2;
2624 if (!seq)
2625 seq = 1;
2626 WRITE_ONCE(tp->write_seq, seq);
2627
2628 icsk->icsk_backoff = 0;
2629 icsk->icsk_probes_out = 0;
2630 icsk->icsk_rto = TCP_TIMEOUT_INIT;
2631 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2632 tp->snd_cwnd = TCP_INIT_CWND;
2633 tp->snd_cwnd_cnt = 0;
2634 tp->window_clamp = 0;
2635 tp->delivered = 0;
2636 tp->delivered_ce = 0;
2637 tcp_set_ca_state(sk, TCP_CA_Open);
2638 tp->is_sack_reneg = 0;
2639 tcp_clear_retrans(tp);
2640 tp->total_retrans = 0;
2641 inet_csk_delack_init(sk);
2642 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2643 * issue in __tcp_select_window()
2644 */
2645 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2646 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2647 __sk_dst_reset(sk);
2648 dst_release(sk->sk_rx_dst);
2649 sk->sk_rx_dst = NULL;
2650 tcp_saved_syn_free(tp);
2651 tp->compressed_ack = 0;
2652 tp->segs_in = 0;
2653 tp->segs_out = 0;
2654 tp->bytes_sent = 0;
2655 tp->bytes_acked = 0;
2656 tp->bytes_received = 0;
2657 tp->bytes_retrans = 0;
2658 tp->data_segs_in = 0;
2659 tp->data_segs_out = 0;
2660 tp->duplicate_sack[0].start_seq = 0;
2661 tp->duplicate_sack[0].end_seq = 0;
2662 tp->dsack_dups = 0;
2663 tp->reord_seen = 0;
2664 tp->retrans_out = 0;
2665 tp->sacked_out = 0;
2666 tp->tlp_high_seq = 0;
2667 tp->last_oow_ack_time = 0;
2668 /* There's a bubble in the pipe until at least the first ACK. */
2669 tp->app_limited = ~0U;
2670 tp->rack.mstamp = 0;
2671 tp->rack.advanced = 0;
2672 tp->rack.reo_wnd_steps = 1;
2673 tp->rack.last_delivered = 0;
2674 tp->rack.reo_wnd_persist = 0;
2675 tp->rack.dsack_seen = 0;
2676 tp->syn_data_acked = 0;
2677 tp->rx_opt.saw_tstamp = 0;
2678 tp->rx_opt.dsack = 0;
2679 tp->rx_opt.num_sacks = 0;
2680 tp->rcv_ooopack = 0;
2681
2682
2683 /* Clean up fastopen related fields */
2684 tcp_free_fastopen_req(tp);
2685 inet->defer_connect = 0;
2686 tp->fastopen_client_fail = 0;
2687
2688 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2689
2690 if (sk->sk_frag.page) {
2691 put_page(sk->sk_frag.page);
2692 sk->sk_frag.page = NULL;
2693 sk->sk_frag.offset = 0;
2694 }
2695
2696 sk->sk_error_report(sk);
2697 return 0;
2698 }
2699 EXPORT_SYMBOL(tcp_disconnect);
2700
2701 static inline bool tcp_can_repair_sock(const struct sock *sk)
2702 {
2703 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2704 (sk->sk_state != TCP_LISTEN);
2705 }
2706
2707 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2708 {
2709 struct tcp_repair_window opt;
2710
2711 if (!tp->repair)
2712 return -EPERM;
2713
2714 if (len != sizeof(opt))
2715 return -EINVAL;
2716
2717 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2718 return -EFAULT;
2719
2720 if (opt.max_window < opt.snd_wnd)
2721 return -EINVAL;
2722
2723 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2724 return -EINVAL;
2725
2726 if (after(opt.rcv_wup, tp->rcv_nxt))
2727 return -EINVAL;
2728
2729 tp->snd_wl1 = opt.snd_wl1;
2730 tp->snd_wnd = opt.snd_wnd;
2731 tp->max_window = opt.max_window;
2732
2733 tp->rcv_wnd = opt.rcv_wnd;
2734 tp->rcv_wup = opt.rcv_wup;
2735
2736 return 0;
2737 }
2738
2739 static int tcp_repair_options_est(struct sock *sk,
2740 struct tcp_repair_opt __user *optbuf, unsigned int len)
2741 {
2742 struct tcp_sock *tp = tcp_sk(sk);
2743 struct tcp_repair_opt opt;
2744
2745 while (len >= sizeof(opt)) {
2746 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2747 return -EFAULT;
2748
2749 optbuf++;
2750 len -= sizeof(opt);
2751
2752 switch (opt.opt_code) {
2753 case TCPOPT_MSS:
2754 tp->rx_opt.mss_clamp = opt.opt_val;
2755 tcp_mtup_init(sk);
2756 break;
2757 case TCPOPT_WINDOW:
2758 {
2759 u16 snd_wscale = opt.opt_val & 0xFFFF;
2760 u16 rcv_wscale = opt.opt_val >> 16;
2761
2762 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2763 return -EFBIG;
2764
2765 tp->rx_opt.snd_wscale = snd_wscale;
2766 tp->rx_opt.rcv_wscale = rcv_wscale;
2767 tp->rx_opt.wscale_ok = 1;
2768 }
2769 break;
2770 case TCPOPT_SACK_PERM:
2771 if (opt.opt_val != 0)
2772 return -EINVAL;
2773
2774 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2775 break;
2776 case TCPOPT_TIMESTAMP:
2777 if (opt.opt_val != 0)
2778 return -EINVAL;
2779
2780 tp->rx_opt.tstamp_ok = 1;
2781 break;
2782 }
2783 }
2784
2785 return 0;
2786 }
2787
2788 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2789 EXPORT_SYMBOL(tcp_tx_delay_enabled);
2790
2791 static void tcp_enable_tx_delay(void)
2792 {
2793 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
2794 static int __tcp_tx_delay_enabled = 0;
2795
2796 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
2797 static_branch_enable(&tcp_tx_delay_enabled);
2798 pr_info("TCP_TX_DELAY enabled\n");
2799 }
2800 }
2801 }
2802
2803 /*
2804 * Socket option code for TCP.
2805 */
2806 static int do_tcp_setsockopt(struct sock *sk, int level,
2807 int optname, char __user *optval, unsigned int optlen)
2808 {
2809 struct tcp_sock *tp = tcp_sk(sk);
2810 struct inet_connection_sock *icsk = inet_csk(sk);
2811 struct net *net = sock_net(sk);
2812 int val;
2813 int err = 0;
2814
2815 /* These are data/string values, all the others are ints */
2816 switch (optname) {
2817 case TCP_CONGESTION: {
2818 char name[TCP_CA_NAME_MAX];
2819
2820 if (optlen < 1)
2821 return -EINVAL;
2822
2823 val = strncpy_from_user(name, optval,
2824 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2825 if (val < 0)
2826 return -EFAULT;
2827 name[val] = 0;
2828
2829 lock_sock(sk);
2830 err = tcp_set_congestion_control(sk, name, true, true,
2831 ns_capable(sock_net(sk)->user_ns,
2832 CAP_NET_ADMIN));
2833 release_sock(sk);
2834 return err;
2835 }
2836 case TCP_ULP: {
2837 char name[TCP_ULP_NAME_MAX];
2838
2839 if (optlen < 1)
2840 return -EINVAL;
2841
2842 val = strncpy_from_user(name, optval,
2843 min_t(long, TCP_ULP_NAME_MAX - 1,
2844 optlen));
2845 if (val < 0)
2846 return -EFAULT;
2847 name[val] = 0;
2848
2849 lock_sock(sk);
2850 err = tcp_set_ulp(sk, name);
2851 release_sock(sk);
2852 return err;
2853 }
2854 case TCP_FASTOPEN_KEY: {
2855 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
2856 __u8 *backup_key = NULL;
2857
2858 /* Allow a backup key as well to facilitate key rotation
2859 * First key is the active one.
2860 */
2861 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
2862 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
2863 return -EINVAL;
2864
2865 if (copy_from_user(key, optval, optlen))
2866 return -EFAULT;
2867
2868 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
2869 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
2870
2871 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
2872 }
2873 default:
2874 /* fallthru */
2875 break;
2876 }
2877
2878 if (optlen < sizeof(int))
2879 return -EINVAL;
2880
2881 if (get_user(val, (int __user *)optval))
2882 return -EFAULT;
2883
2884 lock_sock(sk);
2885
2886 switch (optname) {
2887 case TCP_MAXSEG:
2888 /* Values greater than interface MTU won't take effect. However
2889 * at the point when this call is done we typically don't yet
2890 * know which interface is going to be used
2891 */
2892 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2893 err = -EINVAL;
2894 break;
2895 }
2896 tp->rx_opt.user_mss = val;
2897 break;
2898
2899 case TCP_NODELAY:
2900 if (val) {
2901 /* TCP_NODELAY is weaker than TCP_CORK, so that
2902 * this option on corked socket is remembered, but
2903 * it is not activated until cork is cleared.
2904 *
2905 * However, when TCP_NODELAY is set we make
2906 * an explicit push, which overrides even TCP_CORK
2907 * for currently queued segments.
2908 */
2909 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2910 tcp_push_pending_frames(sk);
2911 } else {
2912 tp->nonagle &= ~TCP_NAGLE_OFF;
2913 }
2914 break;
2915
2916 case TCP_THIN_LINEAR_TIMEOUTS:
2917 if (val < 0 || val > 1)
2918 err = -EINVAL;
2919 else
2920 tp->thin_lto = val;
2921 break;
2922
2923 case TCP_THIN_DUPACK:
2924 if (val < 0 || val > 1)
2925 err = -EINVAL;
2926 break;
2927
2928 case TCP_REPAIR:
2929 if (!tcp_can_repair_sock(sk))
2930 err = -EPERM;
2931 else if (val == TCP_REPAIR_ON) {
2932 tp->repair = 1;
2933 sk->sk_reuse = SK_FORCE_REUSE;
2934 tp->repair_queue = TCP_NO_QUEUE;
2935 } else if (val == TCP_REPAIR_OFF) {
2936 tp->repair = 0;
2937 sk->sk_reuse = SK_NO_REUSE;
2938 tcp_send_window_probe(sk);
2939 } else if (val == TCP_REPAIR_OFF_NO_WP) {
2940 tp->repair = 0;
2941 sk->sk_reuse = SK_NO_REUSE;
2942 } else
2943 err = -EINVAL;
2944
2945 break;
2946
2947 case TCP_REPAIR_QUEUE:
2948 if (!tp->repair)
2949 err = -EPERM;
2950 else if ((unsigned int)val < TCP_QUEUES_NR)
2951 tp->repair_queue = val;
2952 else
2953 err = -EINVAL;
2954 break;
2955
2956 case TCP_QUEUE_SEQ:
2957 if (sk->sk_state != TCP_CLOSE)
2958 err = -EPERM;
2959 else if (tp->repair_queue == TCP_SEND_QUEUE)
2960 WRITE_ONCE(tp->write_seq, val);
2961 else if (tp->repair_queue == TCP_RECV_QUEUE) {
2962 WRITE_ONCE(tp->rcv_nxt, val);
2963 WRITE_ONCE(tp->copied_seq, val);
2964 }
2965 else
2966 err = -EINVAL;
2967 break;
2968
2969 case TCP_REPAIR_OPTIONS:
2970 if (!tp->repair)
2971 err = -EINVAL;
2972 else if (sk->sk_state == TCP_ESTABLISHED)
2973 err = tcp_repair_options_est(sk,
2974 (struct tcp_repair_opt __user *)optval,
2975 optlen);
2976 else
2977 err = -EPERM;
2978 break;
2979
2980 case TCP_CORK:
2981 /* When set indicates to always queue non-full frames.
2982 * Later the user clears this option and we transmit
2983 * any pending partial frames in the queue. This is
2984 * meant to be used alongside sendfile() to get properly
2985 * filled frames when the user (for example) must write
2986 * out headers with a write() call first and then use
2987 * sendfile to send out the data parts.
2988 *
2989 * TCP_CORK can be set together with TCP_NODELAY and it is
2990 * stronger than TCP_NODELAY.
2991 */
2992 if (val) {
2993 tp->nonagle |= TCP_NAGLE_CORK;
2994 } else {
2995 tp->nonagle &= ~TCP_NAGLE_CORK;
2996 if (tp->nonagle&TCP_NAGLE_OFF)
2997 tp->nonagle |= TCP_NAGLE_PUSH;
2998 tcp_push_pending_frames(sk);
2999 }
3000 break;
3001
3002 case TCP_KEEPIDLE:
3003 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3004 err = -EINVAL;
3005 else {
3006 tp->keepalive_time = val * HZ;
3007 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3008 !((1 << sk->sk_state) &
3009 (TCPF_CLOSE | TCPF_LISTEN))) {
3010 u32 elapsed = keepalive_time_elapsed(tp);
3011 if (tp->keepalive_time > elapsed)
3012 elapsed = tp->keepalive_time - elapsed;
3013 else
3014 elapsed = 0;
3015 inet_csk_reset_keepalive_timer(sk, elapsed);
3016 }
3017 }
3018 break;
3019 case TCP_KEEPINTVL:
3020 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3021 err = -EINVAL;
3022 else
3023 tp->keepalive_intvl = val * HZ;
3024 break;
3025 case TCP_KEEPCNT:
3026 if (val < 1 || val > MAX_TCP_KEEPCNT)
3027 err = -EINVAL;
3028 else
3029 tp->keepalive_probes = val;
3030 break;
3031 case TCP_SYNCNT:
3032 if (val < 1 || val > MAX_TCP_SYNCNT)
3033 err = -EINVAL;
3034 else
3035 icsk->icsk_syn_retries = val;
3036 break;
3037
3038 case TCP_SAVE_SYN:
3039 if (val < 0 || val > 1)
3040 err = -EINVAL;
3041 else
3042 tp->save_syn = val;
3043 break;
3044
3045 case TCP_LINGER2:
3046 if (val < 0)
3047 tp->linger2 = -1;
3048 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
3049 tp->linger2 = 0;
3050 else
3051 tp->linger2 = val * HZ;
3052 break;
3053
3054 case TCP_DEFER_ACCEPT:
3055 /* Translate value in seconds to number of retransmits */
3056 icsk->icsk_accept_queue.rskq_defer_accept =
3057 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3058 TCP_RTO_MAX / HZ);
3059 break;
3060
3061 case TCP_WINDOW_CLAMP:
3062 if (!val) {
3063 if (sk->sk_state != TCP_CLOSE) {
3064 err = -EINVAL;
3065 break;
3066 }
3067 tp->window_clamp = 0;
3068 } else
3069 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3070 SOCK_MIN_RCVBUF / 2 : val;
3071 break;
3072
3073 case TCP_QUICKACK:
3074 if (!val) {
3075 inet_csk_enter_pingpong_mode(sk);
3076 } else {
3077 inet_csk_exit_pingpong_mode(sk);
3078 if ((1 << sk->sk_state) &
3079 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3080 inet_csk_ack_scheduled(sk)) {
3081 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
3082 tcp_cleanup_rbuf(sk, 1);
3083 if (!(val & 1))
3084 inet_csk_enter_pingpong_mode(sk);
3085 }
3086 }
3087 break;
3088
3089 #ifdef CONFIG_TCP_MD5SIG
3090 case TCP_MD5SIG:
3091 case TCP_MD5SIG_EXT:
3092 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
3093 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3094 else
3095 err = -EINVAL;
3096 break;
3097 #endif
3098 case TCP_USER_TIMEOUT:
3099 /* Cap the max time in ms TCP will retry or probe the window
3100 * before giving up and aborting (ETIMEDOUT) a connection.
3101 */
3102 if (val < 0)
3103 err = -EINVAL;
3104 else
3105 icsk->icsk_user_timeout = val;
3106 break;
3107
3108 case TCP_FASTOPEN:
3109 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3110 TCPF_LISTEN))) {
3111 tcp_fastopen_init_key_once(net);
3112
3113 fastopen_queue_tune(sk, val);
3114 } else {
3115 err = -EINVAL;
3116 }
3117 break;
3118 case TCP_FASTOPEN_CONNECT:
3119 if (val > 1 || val < 0) {
3120 err = -EINVAL;
3121 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3122 if (sk->sk_state == TCP_CLOSE)
3123 tp->fastopen_connect = val;
3124 else
3125 err = -EINVAL;
3126 } else {
3127 err = -EOPNOTSUPP;
3128 }
3129 break;
3130 case TCP_FASTOPEN_NO_COOKIE:
3131 if (val > 1 || val < 0)
3132 err = -EINVAL;
3133 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3134 err = -EINVAL;
3135 else
3136 tp->fastopen_no_cookie = val;
3137 break;
3138 case TCP_TIMESTAMP:
3139 if (!tp->repair)
3140 err = -EPERM;
3141 else
3142 tp->tsoffset = val - tcp_time_stamp_raw();
3143 break;
3144 case TCP_REPAIR_WINDOW:
3145 err = tcp_repair_set_window(tp, optval, optlen);
3146 break;
3147 case TCP_NOTSENT_LOWAT:
3148 tp->notsent_lowat = val;
3149 sk->sk_write_space(sk);
3150 break;
3151 case TCP_INQ:
3152 if (val > 1 || val < 0)
3153 err = -EINVAL;
3154 else
3155 tp->recvmsg_inq = val;
3156 break;
3157 case TCP_TX_DELAY:
3158 if (val)
3159 tcp_enable_tx_delay();
3160 tp->tcp_tx_delay = val;
3161 break;
3162 default:
3163 err = -ENOPROTOOPT;
3164 break;
3165 }
3166
3167 release_sock(sk);
3168 return err;
3169 }
3170
3171 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
3172 unsigned int optlen)
3173 {
3174 const struct inet_connection_sock *icsk = inet_csk(sk);
3175
3176 if (level != SOL_TCP)
3177 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3178 optval, optlen);
3179 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3180 }
3181 EXPORT_SYMBOL(tcp_setsockopt);
3182
3183 #ifdef CONFIG_COMPAT
3184 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
3185 char __user *optval, unsigned int optlen)
3186 {
3187 if (level != SOL_TCP)
3188 return inet_csk_compat_setsockopt(sk, level, optname,
3189 optval, optlen);
3190 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3191 }
3192 EXPORT_SYMBOL(compat_tcp_setsockopt);
3193 #endif
3194
3195 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3196 struct tcp_info *info)
3197 {
3198 u64 stats[__TCP_CHRONO_MAX], total = 0;
3199 enum tcp_chrono i;
3200
3201 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3202 stats[i] = tp->chrono_stat[i - 1];
3203 if (i == tp->chrono_type)
3204 stats[i] += tcp_jiffies32 - tp->chrono_start;
3205 stats[i] *= USEC_PER_SEC / HZ;
3206 total += stats[i];
3207 }
3208
3209 info->tcpi_busy_time = total;
3210 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3211 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3212 }
3213
3214 /* Return information about state of tcp endpoint in API format. */
3215 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3216 {
3217 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3218 const struct inet_connection_sock *icsk = inet_csk(sk);
3219 unsigned long rate;
3220 u32 now;
3221 u64 rate64;
3222 bool slow;
3223
3224 memset(info, 0, sizeof(*info));
3225 if (sk->sk_type != SOCK_STREAM)
3226 return;
3227
3228 info->tcpi_state = inet_sk_state_load(sk);
3229
3230 /* Report meaningful fields for all TCP states, including listeners */
3231 rate = READ_ONCE(sk->sk_pacing_rate);
3232 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3233 info->tcpi_pacing_rate = rate64;
3234
3235 rate = READ_ONCE(sk->sk_max_pacing_rate);
3236 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3237 info->tcpi_max_pacing_rate = rate64;
3238
3239 info->tcpi_reordering = tp->reordering;
3240 info->tcpi_snd_cwnd = tp->snd_cwnd;
3241
3242 if (info->tcpi_state == TCP_LISTEN) {
3243 /* listeners aliased fields :
3244 * tcpi_unacked -> Number of children ready for accept()
3245 * tcpi_sacked -> max backlog
3246 */
3247 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3248 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3249 return;
3250 }
3251
3252 slow = lock_sock_fast(sk);
3253
3254 info->tcpi_ca_state = icsk->icsk_ca_state;
3255 info->tcpi_retransmits = icsk->icsk_retransmits;
3256 info->tcpi_probes = icsk->icsk_probes_out;
3257 info->tcpi_backoff = icsk->icsk_backoff;
3258
3259 if (tp->rx_opt.tstamp_ok)
3260 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3261 if (tcp_is_sack(tp))
3262 info->tcpi_options |= TCPI_OPT_SACK;
3263 if (tp->rx_opt.wscale_ok) {
3264 info->tcpi_options |= TCPI_OPT_WSCALE;
3265 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3266 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3267 }
3268
3269 if (tp->ecn_flags & TCP_ECN_OK)
3270 info->tcpi_options |= TCPI_OPT_ECN;
3271 if (tp->ecn_flags & TCP_ECN_SEEN)
3272 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3273 if (tp->syn_data_acked)
3274 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3275
3276 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3277 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3278 info->tcpi_snd_mss = tp->mss_cache;
3279 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3280
3281 info->tcpi_unacked = tp->packets_out;
3282 info->tcpi_sacked = tp->sacked_out;
3283
3284 info->tcpi_lost = tp->lost_out;
3285 info->tcpi_retrans = tp->retrans_out;
3286
3287 now = tcp_jiffies32;
3288 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3289 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3290 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3291
3292 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3293 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3294 info->tcpi_rtt = tp->srtt_us >> 3;
3295 info->tcpi_rttvar = tp->mdev_us >> 2;
3296 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3297 info->tcpi_advmss = tp->advmss;
3298
3299 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3300 info->tcpi_rcv_space = tp->rcvq_space.space;
3301
3302 info->tcpi_total_retrans = tp->total_retrans;
3303
3304 info->tcpi_bytes_acked = tp->bytes_acked;
3305 info->tcpi_bytes_received = tp->bytes_received;
3306 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3307 tcp_get_info_chrono_stats(tp, info);
3308
3309 info->tcpi_segs_out = tp->segs_out;
3310 info->tcpi_segs_in = tp->segs_in;
3311
3312 info->tcpi_min_rtt = tcp_min_rtt(tp);
3313 info->tcpi_data_segs_in = tp->data_segs_in;
3314 info->tcpi_data_segs_out = tp->data_segs_out;
3315
3316 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3317 rate64 = tcp_compute_delivery_rate(tp);
3318 if (rate64)
3319 info->tcpi_delivery_rate = rate64;
3320 info->tcpi_delivered = tp->delivered;
3321 info->tcpi_delivered_ce = tp->delivered_ce;
3322 info->tcpi_bytes_sent = tp->bytes_sent;
3323 info->tcpi_bytes_retrans = tp->bytes_retrans;
3324 info->tcpi_dsack_dups = tp->dsack_dups;
3325 info->tcpi_reord_seen = tp->reord_seen;
3326 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3327 info->tcpi_snd_wnd = tp->snd_wnd;
3328 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3329 unlock_sock_fast(sk, slow);
3330 }
3331 EXPORT_SYMBOL_GPL(tcp_get_info);
3332
3333 static size_t tcp_opt_stats_get_size(void)
3334 {
3335 return
3336 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3337 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3338 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3339 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3340 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3341 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3342 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3343 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3344 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3345 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3346 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3347 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3348 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3349 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3350 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3351 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3352 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3353 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3354 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3355 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3356 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3357 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3358 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3359 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3360 0;
3361 }
3362
3363 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3364 {
3365 const struct tcp_sock *tp = tcp_sk(sk);
3366 struct sk_buff *stats;
3367 struct tcp_info info;
3368 unsigned long rate;
3369 u64 rate64;
3370
3371 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3372 if (!stats)
3373 return NULL;
3374
3375 tcp_get_info_chrono_stats(tp, &info);
3376 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3377 info.tcpi_busy_time, TCP_NLA_PAD);
3378 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3379 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3380 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3381 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3382 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3383 tp->data_segs_out, TCP_NLA_PAD);
3384 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3385 tp->total_retrans, TCP_NLA_PAD);
3386
3387 rate = READ_ONCE(sk->sk_pacing_rate);
3388 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3389 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3390
3391 rate64 = tcp_compute_delivery_rate(tp);
3392 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3393
3394 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3395 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3396 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3397
3398 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3399 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3400 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3401 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3402 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3403
3404 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3405 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3406
3407 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3408 TCP_NLA_PAD);
3409 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3410 TCP_NLA_PAD);
3411 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3412 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3413 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3414 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3415 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3416 max_t(int, 0, tp->write_seq - tp->snd_nxt));
3417
3418 return stats;
3419 }
3420
3421 static int do_tcp_getsockopt(struct sock *sk, int level,
3422 int optname, char __user *optval, int __user *optlen)
3423 {
3424 struct inet_connection_sock *icsk = inet_csk(sk);
3425 struct tcp_sock *tp = tcp_sk(sk);
3426 struct net *net = sock_net(sk);
3427 int val, len;
3428
3429 if (get_user(len, optlen))
3430 return -EFAULT;
3431
3432 len = min_t(unsigned int, len, sizeof(int));
3433
3434 if (len < 0)
3435 return -EINVAL;
3436
3437 switch (optname) {
3438 case TCP_MAXSEG:
3439 val = tp->mss_cache;
3440 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3441 val = tp->rx_opt.user_mss;
3442 if (tp->repair)
3443 val = tp->rx_opt.mss_clamp;
3444 break;
3445 case TCP_NODELAY:
3446 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3447 break;
3448 case TCP_CORK:
3449 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3450 break;
3451 case TCP_KEEPIDLE:
3452 val = keepalive_time_when(tp) / HZ;
3453 break;
3454 case TCP_KEEPINTVL:
3455 val = keepalive_intvl_when(tp) / HZ;
3456 break;
3457 case TCP_KEEPCNT:
3458 val = keepalive_probes(tp);
3459 break;
3460 case TCP_SYNCNT:
3461 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3462 break;
3463 case TCP_LINGER2:
3464 val = tp->linger2;
3465 if (val >= 0)
3466 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3467 break;
3468 case TCP_DEFER_ACCEPT:
3469 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3470 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3471 break;
3472 case TCP_WINDOW_CLAMP:
3473 val = tp->window_clamp;
3474 break;
3475 case TCP_INFO: {
3476 struct tcp_info info;
3477
3478 if (get_user(len, optlen))
3479 return -EFAULT;
3480
3481 tcp_get_info(sk, &info);
3482
3483 len = min_t(unsigned int, len, sizeof(info));
3484 if (put_user(len, optlen))
3485 return -EFAULT;
3486 if (copy_to_user(optval, &info, len))
3487 return -EFAULT;
3488 return 0;
3489 }
3490 case TCP_CC_INFO: {
3491 const struct tcp_congestion_ops *ca_ops;
3492 union tcp_cc_info info;
3493 size_t sz = 0;
3494 int attr;
3495
3496 if (get_user(len, optlen))
3497 return -EFAULT;
3498
3499 ca_ops = icsk->icsk_ca_ops;
3500 if (ca_ops && ca_ops->get_info)
3501 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3502
3503 len = min_t(unsigned int, len, sz);
3504 if (put_user(len, optlen))
3505 return -EFAULT;
3506 if (copy_to_user(optval, &info, len))
3507 return -EFAULT;
3508 return 0;
3509 }
3510 case TCP_QUICKACK:
3511 val = !inet_csk_in_pingpong_mode(sk);
3512 break;
3513
3514 case TCP_CONGESTION:
3515 if (get_user(len, optlen))
3516 return -EFAULT;
3517 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3518 if (put_user(len, optlen))
3519 return -EFAULT;
3520 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3521 return -EFAULT;
3522 return 0;
3523
3524 case TCP_ULP:
3525 if (get_user(len, optlen))
3526 return -EFAULT;
3527 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3528 if (!icsk->icsk_ulp_ops) {
3529 if (put_user(0, optlen))
3530 return -EFAULT;
3531 return 0;
3532 }
3533 if (put_user(len, optlen))
3534 return -EFAULT;
3535 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3536 return -EFAULT;
3537 return 0;
3538
3539 case TCP_FASTOPEN_KEY: {
3540 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3541 struct tcp_fastopen_context *ctx;
3542 unsigned int key_len = 0;
3543
3544 if (get_user(len, optlen))
3545 return -EFAULT;
3546
3547 rcu_read_lock();
3548 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3549 if (ctx) {
3550 key_len = tcp_fastopen_context_len(ctx) *
3551 TCP_FASTOPEN_KEY_LENGTH;
3552 memcpy(&key[0], &ctx->key[0], key_len);
3553 }
3554 rcu_read_unlock();
3555
3556 len = min_t(unsigned int, len, key_len);
3557 if (put_user(len, optlen))
3558 return -EFAULT;
3559 if (copy_to_user(optval, key, len))
3560 return -EFAULT;
3561 return 0;
3562 }
3563 case TCP_THIN_LINEAR_TIMEOUTS:
3564 val = tp->thin_lto;
3565 break;
3566
3567 case TCP_THIN_DUPACK:
3568 val = 0;
3569 break;
3570
3571 case TCP_REPAIR:
3572 val = tp->repair;
3573 break;
3574
3575 case TCP_REPAIR_QUEUE:
3576 if (tp->repair)
3577 val = tp->repair_queue;
3578 else
3579 return -EINVAL;
3580 break;
3581
3582 case TCP_REPAIR_WINDOW: {
3583 struct tcp_repair_window opt;
3584
3585 if (get_user(len, optlen))
3586 return -EFAULT;
3587
3588 if (len != sizeof(opt))
3589 return -EINVAL;
3590
3591 if (!tp->repair)
3592 return -EPERM;
3593
3594 opt.snd_wl1 = tp->snd_wl1;
3595 opt.snd_wnd = tp->snd_wnd;
3596 opt.max_window = tp->max_window;
3597 opt.rcv_wnd = tp->rcv_wnd;
3598 opt.rcv_wup = tp->rcv_wup;
3599
3600 if (copy_to_user(optval, &opt, len))
3601 return -EFAULT;
3602 return 0;
3603 }
3604 case TCP_QUEUE_SEQ:
3605 if (tp->repair_queue == TCP_SEND_QUEUE)
3606 val = tp->write_seq;
3607 else if (tp->repair_queue == TCP_RECV_QUEUE)
3608 val = tp->rcv_nxt;
3609 else
3610 return -EINVAL;
3611 break;
3612
3613 case TCP_USER_TIMEOUT:
3614 val = icsk->icsk_user_timeout;
3615 break;
3616
3617 case TCP_FASTOPEN:
3618 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3619 break;
3620
3621 case TCP_FASTOPEN_CONNECT:
3622 val = tp->fastopen_connect;
3623 break;
3624
3625 case TCP_FASTOPEN_NO_COOKIE:
3626 val = tp->fastopen_no_cookie;
3627 break;
3628
3629 case TCP_TX_DELAY:
3630 val = tp->tcp_tx_delay;
3631 break;
3632
3633 case TCP_TIMESTAMP:
3634 val = tcp_time_stamp_raw() + tp->tsoffset;
3635 break;
3636 case TCP_NOTSENT_LOWAT:
3637 val = tp->notsent_lowat;
3638 break;
3639 case TCP_INQ:
3640 val = tp->recvmsg_inq;
3641 break;
3642 case TCP_SAVE_SYN:
3643 val = tp->save_syn;
3644 break;
3645 case TCP_SAVED_SYN: {
3646 if (get_user(len, optlen))
3647 return -EFAULT;
3648
3649 lock_sock(sk);
3650 if (tp->saved_syn) {
3651 if (len < tp->saved_syn[0]) {
3652 if (put_user(tp->saved_syn[0], optlen)) {
3653 release_sock(sk);
3654 return -EFAULT;
3655 }
3656 release_sock(sk);
3657 return -EINVAL;
3658 }
3659 len = tp->saved_syn[0];
3660 if (put_user(len, optlen)) {
3661 release_sock(sk);
3662 return -EFAULT;
3663 }
3664 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3665 release_sock(sk);
3666 return -EFAULT;
3667 }
3668 tcp_saved_syn_free(tp);
3669 release_sock(sk);
3670 } else {
3671 release_sock(sk);
3672 len = 0;
3673 if (put_user(len, optlen))
3674 return -EFAULT;
3675 }
3676 return 0;
3677 }
3678 #ifdef CONFIG_MMU
3679 case TCP_ZEROCOPY_RECEIVE: {
3680 struct tcp_zerocopy_receive zc;
3681 int err;
3682
3683 if (get_user(len, optlen))
3684 return -EFAULT;
3685 if (len < offsetofend(struct tcp_zerocopy_receive, length))
3686 return -EINVAL;
3687 if (len > sizeof(zc)) {
3688 len = sizeof(zc);
3689 if (put_user(len, optlen))
3690 return -EFAULT;
3691 }
3692 if (copy_from_user(&zc, optval, len))
3693 return -EFAULT;
3694 lock_sock(sk);
3695 err = tcp_zerocopy_receive(sk, &zc);
3696 release_sock(sk);
3697 if (len == sizeof(zc))
3698 goto zerocopy_rcv_sk_err;
3699 switch (len) {
3700 case offsetofend(struct tcp_zerocopy_receive, err):
3701 goto zerocopy_rcv_sk_err;
3702 case offsetofend(struct tcp_zerocopy_receive, inq):
3703 goto zerocopy_rcv_inq;
3704 case offsetofend(struct tcp_zerocopy_receive, length):
3705 default:
3706 goto zerocopy_rcv_out;
3707 }
3708 zerocopy_rcv_sk_err:
3709 if (!err)
3710 zc.err = sock_error(sk);
3711 zerocopy_rcv_inq:
3712 zc.inq = tcp_inq_hint(sk);
3713 zerocopy_rcv_out:
3714 if (!err && copy_to_user(optval, &zc, len))
3715 err = -EFAULT;
3716 return err;
3717 }
3718 #endif
3719 default:
3720 return -ENOPROTOOPT;
3721 }
3722
3723 if (put_user(len, optlen))
3724 return -EFAULT;
3725 if (copy_to_user(optval, &val, len))
3726 return -EFAULT;
3727 return 0;
3728 }
3729
3730 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3731 int __user *optlen)
3732 {
3733 struct inet_connection_sock *icsk = inet_csk(sk);
3734
3735 if (level != SOL_TCP)
3736 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3737 optval, optlen);
3738 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3739 }
3740 EXPORT_SYMBOL(tcp_getsockopt);
3741
3742 #ifdef CONFIG_COMPAT
3743 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3744 char __user *optval, int __user *optlen)
3745 {
3746 if (level != SOL_TCP)
3747 return inet_csk_compat_getsockopt(sk, level, optname,
3748 optval, optlen);
3749 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3750 }
3751 EXPORT_SYMBOL(compat_tcp_getsockopt);
3752 #endif
3753
3754 #ifdef CONFIG_TCP_MD5SIG
3755 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3756 static DEFINE_MUTEX(tcp_md5sig_mutex);
3757 static bool tcp_md5sig_pool_populated = false;
3758
3759 static void __tcp_alloc_md5sig_pool(void)
3760 {
3761 struct crypto_ahash *hash;
3762 int cpu;
3763
3764 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3765 if (IS_ERR(hash))
3766 return;
3767
3768 for_each_possible_cpu(cpu) {
3769 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3770 struct ahash_request *req;
3771
3772 if (!scratch) {
3773 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3774 sizeof(struct tcphdr),
3775 GFP_KERNEL,
3776 cpu_to_node(cpu));
3777 if (!scratch)
3778 return;
3779 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3780 }
3781 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3782 continue;
3783
3784 req = ahash_request_alloc(hash, GFP_KERNEL);
3785 if (!req)
3786 return;
3787
3788 ahash_request_set_callback(req, 0, NULL, NULL);
3789
3790 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3791 }
3792 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3793 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3794 */
3795 smp_wmb();
3796 tcp_md5sig_pool_populated = true;
3797 }
3798
3799 bool tcp_alloc_md5sig_pool(void)
3800 {
3801 if (unlikely(!tcp_md5sig_pool_populated)) {
3802 mutex_lock(&tcp_md5sig_mutex);
3803
3804 if (!tcp_md5sig_pool_populated) {
3805 __tcp_alloc_md5sig_pool();
3806 if (tcp_md5sig_pool_populated)
3807 static_branch_inc(&tcp_md5_needed);
3808 }
3809
3810 mutex_unlock(&tcp_md5sig_mutex);
3811 }
3812 return tcp_md5sig_pool_populated;
3813 }
3814 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3815
3816
3817 /**
3818 * tcp_get_md5sig_pool - get md5sig_pool for this user
3819 *
3820 * We use percpu structure, so if we succeed, we exit with preemption
3821 * and BH disabled, to make sure another thread or softirq handling
3822 * wont try to get same context.
3823 */
3824 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3825 {
3826 local_bh_disable();
3827
3828 if (tcp_md5sig_pool_populated) {
3829 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3830 smp_rmb();
3831 return this_cpu_ptr(&tcp_md5sig_pool);
3832 }
3833 local_bh_enable();
3834 return NULL;
3835 }
3836 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3837
3838 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3839 const struct sk_buff *skb, unsigned int header_len)
3840 {
3841 struct scatterlist sg;
3842 const struct tcphdr *tp = tcp_hdr(skb);
3843 struct ahash_request *req = hp->md5_req;
3844 unsigned int i;
3845 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3846 skb_headlen(skb) - header_len : 0;
3847 const struct skb_shared_info *shi = skb_shinfo(skb);
3848 struct sk_buff *frag_iter;
3849
3850 sg_init_table(&sg, 1);
3851
3852 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3853 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3854 if (crypto_ahash_update(req))
3855 return 1;
3856
3857 for (i = 0; i < shi->nr_frags; ++i) {
3858 const skb_frag_t *f = &shi->frags[i];
3859 unsigned int offset = skb_frag_off(f);
3860 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3861
3862 sg_set_page(&sg, page, skb_frag_size(f),
3863 offset_in_page(offset));
3864 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3865 if (crypto_ahash_update(req))
3866 return 1;
3867 }
3868
3869 skb_walk_frags(skb, frag_iter)
3870 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3871 return 1;
3872
3873 return 0;
3874 }
3875 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3876
3877 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3878 {
3879 struct scatterlist sg;
3880
3881 sg_init_one(&sg, key->key, key->keylen);
3882 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3883 return crypto_ahash_update(hp->md5_req);
3884 }
3885 EXPORT_SYMBOL(tcp_md5_hash_key);
3886
3887 #endif
3888
3889 void tcp_done(struct sock *sk)
3890 {
3891 struct request_sock *req;
3892
3893 /* We might be called with a new socket, after
3894 * inet_csk_prepare_forced_close() has been called
3895 * so we can not use lockdep_sock_is_held(sk)
3896 */
3897 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
3898
3899 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3900 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3901
3902 tcp_set_state(sk, TCP_CLOSE);
3903 tcp_clear_xmit_timers(sk);
3904 if (req)
3905 reqsk_fastopen_remove(sk, req, false);
3906
3907 sk->sk_shutdown = SHUTDOWN_MASK;
3908
3909 if (!sock_flag(sk, SOCK_DEAD))
3910 sk->sk_state_change(sk);
3911 else
3912 inet_csk_destroy_sock(sk);
3913 }
3914 EXPORT_SYMBOL_GPL(tcp_done);
3915
3916 int tcp_abort(struct sock *sk, int err)
3917 {
3918 if (!sk_fullsock(sk)) {
3919 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3920 struct request_sock *req = inet_reqsk(sk);
3921
3922 local_bh_disable();
3923 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
3924 local_bh_enable();
3925 return 0;
3926 }
3927 return -EOPNOTSUPP;
3928 }
3929
3930 /* Don't race with userspace socket closes such as tcp_close. */
3931 lock_sock(sk);
3932
3933 if (sk->sk_state == TCP_LISTEN) {
3934 tcp_set_state(sk, TCP_CLOSE);
3935 inet_csk_listen_stop(sk);
3936 }
3937
3938 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3939 local_bh_disable();
3940 bh_lock_sock(sk);
3941
3942 if (!sock_flag(sk, SOCK_DEAD)) {
3943 sk->sk_err = err;
3944 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3945 smp_wmb();
3946 sk->sk_error_report(sk);
3947 if (tcp_need_reset(sk->sk_state))
3948 tcp_send_active_reset(sk, GFP_ATOMIC);
3949 tcp_done(sk);
3950 }
3951
3952 bh_unlock_sock(sk);
3953 local_bh_enable();
3954 tcp_write_queue_purge(sk);
3955 release_sock(sk);
3956 return 0;
3957 }
3958 EXPORT_SYMBOL_GPL(tcp_abort);
3959
3960 extern struct tcp_congestion_ops tcp_reno;
3961
3962 static __initdata unsigned long thash_entries;
3963 static int __init set_thash_entries(char *str)
3964 {
3965 ssize_t ret;
3966
3967 if (!str)
3968 return 0;
3969
3970 ret = kstrtoul(str, 0, &thash_entries);
3971 if (ret)
3972 return 0;
3973
3974 return 1;
3975 }
3976 __setup("thash_entries=", set_thash_entries);
3977
3978 static void __init tcp_init_mem(void)
3979 {
3980 unsigned long limit = nr_free_buffer_pages() / 16;
3981
3982 limit = max(limit, 128UL);
3983 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3984 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3985 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3986 }
3987
3988 void __init tcp_init(void)
3989 {
3990 int max_rshare, max_wshare, cnt;
3991 unsigned long limit;
3992 unsigned int i;
3993
3994 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
3995 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3996 sizeof_field(struct sk_buff, cb));
3997
3998 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3999 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
4000 inet_hashinfo_init(&tcp_hashinfo);
4001 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4002 thash_entries, 21, /* one slot per 2 MB*/
4003 0, 64 * 1024);
4004 tcp_hashinfo.bind_bucket_cachep =
4005 kmem_cache_create("tcp_bind_bucket",
4006 sizeof(struct inet_bind_bucket), 0,
4007 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
4008
4009 /* Size and allocate the main established and bind bucket
4010 * hash tables.
4011 *
4012 * The methodology is similar to that of the buffer cache.
4013 */
4014 tcp_hashinfo.ehash =
4015 alloc_large_system_hash("TCP established",
4016 sizeof(struct inet_ehash_bucket),
4017 thash_entries,
4018 17, /* one slot per 128 KB of memory */
4019 0,
4020 NULL,
4021 &tcp_hashinfo.ehash_mask,
4022 0,
4023 thash_entries ? 0 : 512 * 1024);
4024 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4025 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4026
4027 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4028 panic("TCP: failed to alloc ehash_locks");
4029 tcp_hashinfo.bhash =
4030 alloc_large_system_hash("TCP bind",
4031 sizeof(struct inet_bind_hashbucket),
4032 tcp_hashinfo.ehash_mask + 1,
4033 17, /* one slot per 128 KB of memory */
4034 0,
4035 &tcp_hashinfo.bhash_size,
4036 NULL,
4037 0,
4038 64 * 1024);
4039 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4040 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4041 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4042 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4043 }
4044
4045
4046 cnt = tcp_hashinfo.ehash_mask + 1;
4047 sysctl_tcp_max_orphans = cnt / 2;
4048
4049 tcp_init_mem();
4050 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4051 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4052 max_wshare = min(4UL*1024*1024, limit);
4053 max_rshare = min(6UL*1024*1024, limit);
4054
4055 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4056 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4057 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4058
4059 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4060 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4061 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4062
4063 pr_info("Hash tables configured (established %u bind %u)\n",
4064 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4065
4066 tcp_v4_init();
4067 tcp_metrics_init();
4068 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4069 tcp_tasklet_init();
4070 mptcp_init();
4071 }