]> git.ipfire.org Git - thirdparty/linux.git/blob - net/ipv4/tcp.c
Merge tag 'mm-stable-2023-08-28-18-26' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/linux.git] / net / ipv4 / tcp.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282
283 /* Track pending CMSGs. */
284 enum {
285 TCP_CMSG_INQ = 1,
286 TCP_CMSG_TS = 2
287 };
288
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304
305 /*
306 * Current number of TCP sockets.
307 */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310
311 /*
312 * TCP splice context
313 */
314 struct tcp_splice_state {
315 struct pipe_inode_info *pipe;
316 size_t len;
317 unsigned int flags;
318 };
319
320 /*
321 * Pressure flag: try to collapse.
322 * Technical note: it is used by multiple contexts non atomically.
323 * All the __sk_mem_schedule() is of this nature: accounting
324 * is strict, actions are advisory and have some latency.
325 */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328
329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 unsigned long val;
332
333 if (READ_ONCE(tcp_memory_pressure))
334 return;
335 val = jiffies;
336
337 if (!val)
338 val--;
339 if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343
344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 unsigned long val;
347
348 if (!READ_ONCE(tcp_memory_pressure))
349 return;
350 val = xchg(&tcp_memory_pressure, 0);
351 if (val)
352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356
357 /* Convert seconds to retransmits based on initial and max timeout */
358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 u8 res = 0;
361
362 if (seconds > 0) {
363 int period = timeout;
364
365 res = 1;
366 while (seconds > period && res < 255) {
367 res++;
368 timeout <<= 1;
369 if (timeout > rto_max)
370 timeout = rto_max;
371 period += timeout;
372 }
373 }
374 return res;
375 }
376
377 /* Convert retransmits to seconds based on initial and max timeout */
378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 int period = 0;
381
382 if (retrans > 0) {
383 period = timeout;
384 while (--retrans) {
385 timeout <<= 1;
386 if (timeout > rto_max)
387 timeout = rto_max;
388 period += timeout;
389 }
390 }
391 return period;
392 }
393
394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 u32 rate = READ_ONCE(tp->rate_delivered);
397 u32 intv = READ_ONCE(tp->rate_interval_us);
398 u64 rate64 = 0;
399
400 if (rate && intv) {
401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 do_div(rate64, intv);
403 }
404 return rate64;
405 }
406
407 /* Address-family independent initialization for a tcp_sock.
408 *
409 * NOTE: A lot of things set to zero explicitly by call to
410 * sk_alloc() so need not be done here.
411 */
412 void tcp_init_sock(struct sock *sk)
413 {
414 struct inet_connection_sock *icsk = inet_csk(sk);
415 struct tcp_sock *tp = tcp_sk(sk);
416
417 tp->out_of_order_queue = RB_ROOT;
418 sk->tcp_rtx_queue = RB_ROOT;
419 tcp_init_xmit_timers(sk);
420 INIT_LIST_HEAD(&tp->tsq_node);
421 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422
423 icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 icsk->icsk_rto_min = TCP_RTO_MIN;
425 icsk->icsk_delack_max = TCP_DELACK_MAX;
426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428
429 /* So many TCP implementations out there (incorrectly) count the
430 * initial SYN frame in their delayed-ACK and congestion control
431 * algorithms that we must have the following bandaid to talk
432 * efficiently to them. -DaveM
433 */
434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435
436 /* There's a bubble in the pipe until at least the first ACK. */
437 tp->app_limited = ~0U;
438 tp->rate_app_limited = 1;
439
440 /* See draft-stevens-tcpca-spec-01 for discussion of the
441 * initialization of these values.
442 */
443 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
444 tp->snd_cwnd_clamp = ~0;
445 tp->mss_cache = TCP_MSS_DEFAULT;
446
447 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
448 tcp_assign_congestion_control(sk);
449
450 tp->tsoffset = 0;
451 tp->rack.reo_wnd_steps = 1;
452
453 sk->sk_write_space = sk_stream_write_space;
454 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
455
456 icsk->icsk_sync_mss = tcp_sync_mss;
457
458 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
459 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
460 tcp_scaling_ratio_init(sk);
461
462 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
463 sk_sockets_allocated_inc(sk);
464 }
465 EXPORT_SYMBOL(tcp_init_sock);
466
467 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
468 {
469 struct sk_buff *skb = tcp_write_queue_tail(sk);
470
471 if (tsflags && skb) {
472 struct skb_shared_info *shinfo = skb_shinfo(skb);
473 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
474
475 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
476 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
477 tcb->txstamp_ack = 1;
478 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
479 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
480 }
481 }
482
483 static bool tcp_stream_is_readable(struct sock *sk, int target)
484 {
485 if (tcp_epollin_ready(sk, target))
486 return true;
487 return sk_is_readable(sk);
488 }
489
490 /*
491 * Wait for a TCP event.
492 *
493 * Note that we don't need to lock the socket, as the upper poll layers
494 * take care of normal races (between the test and the event) and we don't
495 * go look at any of the socket buffers directly.
496 */
497 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
498 {
499 __poll_t mask;
500 struct sock *sk = sock->sk;
501 const struct tcp_sock *tp = tcp_sk(sk);
502 u8 shutdown;
503 int state;
504
505 sock_poll_wait(file, sock, wait);
506
507 state = inet_sk_state_load(sk);
508 if (state == TCP_LISTEN)
509 return inet_csk_listen_poll(sk);
510
511 /* Socket is not locked. We are protected from async events
512 * by poll logic and correct handling of state changes
513 * made by other threads is impossible in any case.
514 */
515
516 mask = 0;
517
518 /*
519 * EPOLLHUP is certainly not done right. But poll() doesn't
520 * have a notion of HUP in just one direction, and for a
521 * socket the read side is more interesting.
522 *
523 * Some poll() documentation says that EPOLLHUP is incompatible
524 * with the EPOLLOUT/POLLWR flags, so somebody should check this
525 * all. But careful, it tends to be safer to return too many
526 * bits than too few, and you can easily break real applications
527 * if you don't tell them that something has hung up!
528 *
529 * Check-me.
530 *
531 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
532 * our fs/select.c). It means that after we received EOF,
533 * poll always returns immediately, making impossible poll() on write()
534 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
535 * if and only if shutdown has been made in both directions.
536 * Actually, it is interesting to look how Solaris and DUX
537 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
538 * then we could set it on SND_SHUTDOWN. BTW examples given
539 * in Stevens' books assume exactly this behaviour, it explains
540 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
541 *
542 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
543 * blocking on fresh not-connected or disconnected socket. --ANK
544 */
545 shutdown = READ_ONCE(sk->sk_shutdown);
546 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
547 mask |= EPOLLHUP;
548 if (shutdown & RCV_SHUTDOWN)
549 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
550
551 /* Connected or passive Fast Open socket? */
552 if (state != TCP_SYN_SENT &&
553 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
554 int target = sock_rcvlowat(sk, 0, INT_MAX);
555 u16 urg_data = READ_ONCE(tp->urg_data);
556
557 if (unlikely(urg_data) &&
558 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
559 !sock_flag(sk, SOCK_URGINLINE))
560 target++;
561
562 if (tcp_stream_is_readable(sk, target))
563 mask |= EPOLLIN | EPOLLRDNORM;
564
565 if (!(shutdown & SEND_SHUTDOWN)) {
566 if (__sk_stream_is_writeable(sk, 1)) {
567 mask |= EPOLLOUT | EPOLLWRNORM;
568 } else { /* send SIGIO later */
569 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
570 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
571
572 /* Race breaker. If space is freed after
573 * wspace test but before the flags are set,
574 * IO signal will be lost. Memory barrier
575 * pairs with the input side.
576 */
577 smp_mb__after_atomic();
578 if (__sk_stream_is_writeable(sk, 1))
579 mask |= EPOLLOUT | EPOLLWRNORM;
580 }
581 } else
582 mask |= EPOLLOUT | EPOLLWRNORM;
583
584 if (urg_data & TCP_URG_VALID)
585 mask |= EPOLLPRI;
586 } else if (state == TCP_SYN_SENT &&
587 inet_test_bit(DEFER_CONNECT, sk)) {
588 /* Active TCP fastopen socket with defer_connect
589 * Return EPOLLOUT so application can call write()
590 * in order for kernel to generate SYN+data
591 */
592 mask |= EPOLLOUT | EPOLLWRNORM;
593 }
594 /* This barrier is coupled with smp_wmb() in tcp_reset() */
595 smp_rmb();
596 if (READ_ONCE(sk->sk_err) ||
597 !skb_queue_empty_lockless(&sk->sk_error_queue))
598 mask |= EPOLLERR;
599
600 return mask;
601 }
602 EXPORT_SYMBOL(tcp_poll);
603
604 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
605 {
606 struct tcp_sock *tp = tcp_sk(sk);
607 int answ;
608 bool slow;
609
610 switch (cmd) {
611 case SIOCINQ:
612 if (sk->sk_state == TCP_LISTEN)
613 return -EINVAL;
614
615 slow = lock_sock_fast(sk);
616 answ = tcp_inq(sk);
617 unlock_sock_fast(sk, slow);
618 break;
619 case SIOCATMARK:
620 answ = READ_ONCE(tp->urg_data) &&
621 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
622 break;
623 case SIOCOUTQ:
624 if (sk->sk_state == TCP_LISTEN)
625 return -EINVAL;
626
627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 answ = 0;
629 else
630 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
631 break;
632 case SIOCOUTQNSD:
633 if (sk->sk_state == TCP_LISTEN)
634 return -EINVAL;
635
636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637 answ = 0;
638 else
639 answ = READ_ONCE(tp->write_seq) -
640 READ_ONCE(tp->snd_nxt);
641 break;
642 default:
643 return -ENOIOCTLCMD;
644 }
645
646 *karg = answ;
647 return 0;
648 }
649 EXPORT_SYMBOL(tcp_ioctl);
650
651 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
652 {
653 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
654 tp->pushed_seq = tp->write_seq;
655 }
656
657 static inline bool forced_push(const struct tcp_sock *tp)
658 {
659 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
660 }
661
662 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
663 {
664 struct tcp_sock *tp = tcp_sk(sk);
665 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
666
667 tcb->seq = tcb->end_seq = tp->write_seq;
668 tcb->tcp_flags = TCPHDR_ACK;
669 __skb_header_release(skb);
670 tcp_add_write_queue_tail(sk, skb);
671 sk_wmem_queued_add(sk, skb->truesize);
672 sk_mem_charge(sk, skb->truesize);
673 if (tp->nonagle & TCP_NAGLE_PUSH)
674 tp->nonagle &= ~TCP_NAGLE_PUSH;
675
676 tcp_slow_start_after_idle_check(sk);
677 }
678
679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
680 {
681 if (flags & MSG_OOB)
682 tp->snd_up = tp->write_seq;
683 }
684
685 /* If a not yet filled skb is pushed, do not send it if
686 * we have data packets in Qdisc or NIC queues :
687 * Because TX completion will happen shortly, it gives a chance
688 * to coalesce future sendmsg() payload into this skb, without
689 * need for a timer, and with no latency trade off.
690 * As packets containing data payload have a bigger truesize
691 * than pure acks (dataless) packets, the last checks prevent
692 * autocorking if we only have an ACK in Qdisc/NIC queues,
693 * or if TX completion was delayed after we processed ACK packet.
694 */
695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
696 int size_goal)
697 {
698 return skb->len < size_goal &&
699 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
700 !tcp_rtx_queue_empty(sk) &&
701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
702 tcp_skb_can_collapse_to(skb);
703 }
704
705 void tcp_push(struct sock *sk, int flags, int mss_now,
706 int nonagle, int size_goal)
707 {
708 struct tcp_sock *tp = tcp_sk(sk);
709 struct sk_buff *skb;
710
711 skb = tcp_write_queue_tail(sk);
712 if (!skb)
713 return;
714 if (!(flags & MSG_MORE) || forced_push(tp))
715 tcp_mark_push(tp, skb);
716
717 tcp_mark_urg(tp, flags);
718
719 if (tcp_should_autocork(sk, skb, size_goal)) {
720
721 /* avoid atomic op if TSQ_THROTTLED bit is already set */
722 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
723 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
724 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
725 }
726 /* It is possible TX completion already happened
727 * before we set TSQ_THROTTLED.
728 */
729 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
730 return;
731 }
732
733 if (flags & MSG_MORE)
734 nonagle = TCP_NAGLE_CORK;
735
736 __tcp_push_pending_frames(sk, mss_now, nonagle);
737 }
738
739 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
740 unsigned int offset, size_t len)
741 {
742 struct tcp_splice_state *tss = rd_desc->arg.data;
743 int ret;
744
745 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
746 min(rd_desc->count, len), tss->flags);
747 if (ret > 0)
748 rd_desc->count -= ret;
749 return ret;
750 }
751
752 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
753 {
754 /* Store TCP splice context information in read_descriptor_t. */
755 read_descriptor_t rd_desc = {
756 .arg.data = tss,
757 .count = tss->len,
758 };
759
760 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
761 }
762
763 /**
764 * tcp_splice_read - splice data from TCP socket to a pipe
765 * @sock: socket to splice from
766 * @ppos: position (not valid)
767 * @pipe: pipe to splice to
768 * @len: number of bytes to splice
769 * @flags: splice modifier flags
770 *
771 * Description:
772 * Will read pages from given socket and fill them into a pipe.
773 *
774 **/
775 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
776 struct pipe_inode_info *pipe, size_t len,
777 unsigned int flags)
778 {
779 struct sock *sk = sock->sk;
780 struct tcp_splice_state tss = {
781 .pipe = pipe,
782 .len = len,
783 .flags = flags,
784 };
785 long timeo;
786 ssize_t spliced;
787 int ret;
788
789 sock_rps_record_flow(sk);
790 /*
791 * We can't seek on a socket input
792 */
793 if (unlikely(*ppos))
794 return -ESPIPE;
795
796 ret = spliced = 0;
797
798 lock_sock(sk);
799
800 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
801 while (tss.len) {
802 ret = __tcp_splice_read(sk, &tss);
803 if (ret < 0)
804 break;
805 else if (!ret) {
806 if (spliced)
807 break;
808 if (sock_flag(sk, SOCK_DONE))
809 break;
810 if (sk->sk_err) {
811 ret = sock_error(sk);
812 break;
813 }
814 if (sk->sk_shutdown & RCV_SHUTDOWN)
815 break;
816 if (sk->sk_state == TCP_CLOSE) {
817 /*
818 * This occurs when user tries to read
819 * from never connected socket.
820 */
821 ret = -ENOTCONN;
822 break;
823 }
824 if (!timeo) {
825 ret = -EAGAIN;
826 break;
827 }
828 /* if __tcp_splice_read() got nothing while we have
829 * an skb in receive queue, we do not want to loop.
830 * This might happen with URG data.
831 */
832 if (!skb_queue_empty(&sk->sk_receive_queue))
833 break;
834 sk_wait_data(sk, &timeo, NULL);
835 if (signal_pending(current)) {
836 ret = sock_intr_errno(timeo);
837 break;
838 }
839 continue;
840 }
841 tss.len -= ret;
842 spliced += ret;
843
844 if (!tss.len || !timeo)
845 break;
846 release_sock(sk);
847 lock_sock(sk);
848
849 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
850 (sk->sk_shutdown & RCV_SHUTDOWN) ||
851 signal_pending(current))
852 break;
853 }
854
855 release_sock(sk);
856
857 if (spliced)
858 return spliced;
859
860 return ret;
861 }
862 EXPORT_SYMBOL(tcp_splice_read);
863
864 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
865 bool force_schedule)
866 {
867 struct sk_buff *skb;
868
869 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
870 if (likely(skb)) {
871 bool mem_scheduled;
872
873 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
874 if (force_schedule) {
875 mem_scheduled = true;
876 sk_forced_mem_schedule(sk, skb->truesize);
877 } else {
878 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
879 }
880 if (likely(mem_scheduled)) {
881 skb_reserve(skb, MAX_TCP_HEADER);
882 skb->ip_summed = CHECKSUM_PARTIAL;
883 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
884 return skb;
885 }
886 __kfree_skb(skb);
887 } else {
888 sk->sk_prot->enter_memory_pressure(sk);
889 sk_stream_moderate_sndbuf(sk);
890 }
891 return NULL;
892 }
893
894 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
895 int large_allowed)
896 {
897 struct tcp_sock *tp = tcp_sk(sk);
898 u32 new_size_goal, size_goal;
899
900 if (!large_allowed)
901 return mss_now;
902
903 /* Note : tcp_tso_autosize() will eventually split this later */
904 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
905
906 /* We try hard to avoid divides here */
907 size_goal = tp->gso_segs * mss_now;
908 if (unlikely(new_size_goal < size_goal ||
909 new_size_goal >= size_goal + mss_now)) {
910 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
911 sk->sk_gso_max_segs);
912 size_goal = tp->gso_segs * mss_now;
913 }
914
915 return max(size_goal, mss_now);
916 }
917
918 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
919 {
920 int mss_now;
921
922 mss_now = tcp_current_mss(sk);
923 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
924
925 return mss_now;
926 }
927
928 /* In some cases, both sendmsg() could have added an skb to the write queue,
929 * but failed adding payload on it. We need to remove it to consume less
930 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
931 * epoll() users.
932 */
933 void tcp_remove_empty_skb(struct sock *sk)
934 {
935 struct sk_buff *skb = tcp_write_queue_tail(sk);
936
937 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
938 tcp_unlink_write_queue(skb, sk);
939 if (tcp_write_queue_empty(sk))
940 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
941 tcp_wmem_free_skb(sk, skb);
942 }
943 }
944
945 /* skb changing from pure zc to mixed, must charge zc */
946 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
947 {
948 if (unlikely(skb_zcopy_pure(skb))) {
949 u32 extra = skb->truesize -
950 SKB_TRUESIZE(skb_end_offset(skb));
951
952 if (!sk_wmem_schedule(sk, extra))
953 return -ENOMEM;
954
955 sk_mem_charge(sk, extra);
956 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
957 }
958 return 0;
959 }
960
961
962 int tcp_wmem_schedule(struct sock *sk, int copy)
963 {
964 int left;
965
966 if (likely(sk_wmem_schedule(sk, copy)))
967 return copy;
968
969 /* We could be in trouble if we have nothing queued.
970 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
971 * to guarantee some progress.
972 */
973 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
974 if (left > 0)
975 sk_forced_mem_schedule(sk, min(left, copy));
976 return min(copy, sk->sk_forward_alloc);
977 }
978
979 void tcp_free_fastopen_req(struct tcp_sock *tp)
980 {
981 if (tp->fastopen_req) {
982 kfree(tp->fastopen_req);
983 tp->fastopen_req = NULL;
984 }
985 }
986
987 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
988 size_t size, struct ubuf_info *uarg)
989 {
990 struct tcp_sock *tp = tcp_sk(sk);
991 struct inet_sock *inet = inet_sk(sk);
992 struct sockaddr *uaddr = msg->msg_name;
993 int err, flags;
994
995 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
996 TFO_CLIENT_ENABLE) ||
997 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
998 uaddr->sa_family == AF_UNSPEC))
999 return -EOPNOTSUPP;
1000 if (tp->fastopen_req)
1001 return -EALREADY; /* Another Fast Open is in progress */
1002
1003 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1004 sk->sk_allocation);
1005 if (unlikely(!tp->fastopen_req))
1006 return -ENOBUFS;
1007 tp->fastopen_req->data = msg;
1008 tp->fastopen_req->size = size;
1009 tp->fastopen_req->uarg = uarg;
1010
1011 if (inet_test_bit(DEFER_CONNECT, sk)) {
1012 err = tcp_connect(sk);
1013 /* Same failure procedure as in tcp_v4/6_connect */
1014 if (err) {
1015 tcp_set_state(sk, TCP_CLOSE);
1016 inet->inet_dport = 0;
1017 sk->sk_route_caps = 0;
1018 }
1019 }
1020 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1021 err = __inet_stream_connect(sk->sk_socket, uaddr,
1022 msg->msg_namelen, flags, 1);
1023 /* fastopen_req could already be freed in __inet_stream_connect
1024 * if the connection times out or gets rst
1025 */
1026 if (tp->fastopen_req) {
1027 *copied = tp->fastopen_req->copied;
1028 tcp_free_fastopen_req(tp);
1029 inet_clear_bit(DEFER_CONNECT, sk);
1030 }
1031 return err;
1032 }
1033
1034 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1035 {
1036 struct tcp_sock *tp = tcp_sk(sk);
1037 struct ubuf_info *uarg = NULL;
1038 struct sk_buff *skb;
1039 struct sockcm_cookie sockc;
1040 int flags, err, copied = 0;
1041 int mss_now = 0, size_goal, copied_syn = 0;
1042 int process_backlog = 0;
1043 int zc = 0;
1044 long timeo;
1045
1046 flags = msg->msg_flags;
1047
1048 if ((flags & MSG_ZEROCOPY) && size) {
1049 if (msg->msg_ubuf) {
1050 uarg = msg->msg_ubuf;
1051 if (sk->sk_route_caps & NETIF_F_SG)
1052 zc = MSG_ZEROCOPY;
1053 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1054 skb = tcp_write_queue_tail(sk);
1055 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1056 if (!uarg) {
1057 err = -ENOBUFS;
1058 goto out_err;
1059 }
1060 if (sk->sk_route_caps & NETIF_F_SG)
1061 zc = MSG_ZEROCOPY;
1062 else
1063 uarg_to_msgzc(uarg)->zerocopy = 0;
1064 }
1065 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1066 if (sk->sk_route_caps & NETIF_F_SG)
1067 zc = MSG_SPLICE_PAGES;
1068 }
1069
1070 if (unlikely(flags & MSG_FASTOPEN ||
1071 inet_test_bit(DEFER_CONNECT, sk)) &&
1072 !tp->repair) {
1073 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1074 if (err == -EINPROGRESS && copied_syn > 0)
1075 goto out;
1076 else if (err)
1077 goto out_err;
1078 }
1079
1080 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1081
1082 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1083
1084 /* Wait for a connection to finish. One exception is TCP Fast Open
1085 * (passive side) where data is allowed to be sent before a connection
1086 * is fully established.
1087 */
1088 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1089 !tcp_passive_fastopen(sk)) {
1090 err = sk_stream_wait_connect(sk, &timeo);
1091 if (err != 0)
1092 goto do_error;
1093 }
1094
1095 if (unlikely(tp->repair)) {
1096 if (tp->repair_queue == TCP_RECV_QUEUE) {
1097 copied = tcp_send_rcvq(sk, msg, size);
1098 goto out_nopush;
1099 }
1100
1101 err = -EINVAL;
1102 if (tp->repair_queue == TCP_NO_QUEUE)
1103 goto out_err;
1104
1105 /* 'common' sending to sendq */
1106 }
1107
1108 sockcm_init(&sockc, sk);
1109 if (msg->msg_controllen) {
1110 err = sock_cmsg_send(sk, msg, &sockc);
1111 if (unlikely(err)) {
1112 err = -EINVAL;
1113 goto out_err;
1114 }
1115 }
1116
1117 /* This should be in poll */
1118 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1119
1120 /* Ok commence sending. */
1121 copied = 0;
1122
1123 restart:
1124 mss_now = tcp_send_mss(sk, &size_goal, flags);
1125
1126 err = -EPIPE;
1127 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1128 goto do_error;
1129
1130 while (msg_data_left(msg)) {
1131 ssize_t copy = 0;
1132
1133 skb = tcp_write_queue_tail(sk);
1134 if (skb)
1135 copy = size_goal - skb->len;
1136
1137 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1138 bool first_skb;
1139
1140 new_segment:
1141 if (!sk_stream_memory_free(sk))
1142 goto wait_for_space;
1143
1144 if (unlikely(process_backlog >= 16)) {
1145 process_backlog = 0;
1146 if (sk_flush_backlog(sk))
1147 goto restart;
1148 }
1149 first_skb = tcp_rtx_and_write_queues_empty(sk);
1150 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1151 first_skb);
1152 if (!skb)
1153 goto wait_for_space;
1154
1155 process_backlog++;
1156
1157 tcp_skb_entail(sk, skb);
1158 copy = size_goal;
1159
1160 /* All packets are restored as if they have
1161 * already been sent. skb_mstamp_ns isn't set to
1162 * avoid wrong rtt estimation.
1163 */
1164 if (tp->repair)
1165 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1166 }
1167
1168 /* Try to append data to the end of skb. */
1169 if (copy > msg_data_left(msg))
1170 copy = msg_data_left(msg);
1171
1172 if (zc == 0) {
1173 bool merge = true;
1174 int i = skb_shinfo(skb)->nr_frags;
1175 struct page_frag *pfrag = sk_page_frag(sk);
1176
1177 if (!sk_page_frag_refill(sk, pfrag))
1178 goto wait_for_space;
1179
1180 if (!skb_can_coalesce(skb, i, pfrag->page,
1181 pfrag->offset)) {
1182 if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1183 tcp_mark_push(tp, skb);
1184 goto new_segment;
1185 }
1186 merge = false;
1187 }
1188
1189 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1190
1191 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1192 if (tcp_downgrade_zcopy_pure(sk, skb))
1193 goto wait_for_space;
1194 skb_zcopy_downgrade_managed(skb);
1195 }
1196
1197 copy = tcp_wmem_schedule(sk, copy);
1198 if (!copy)
1199 goto wait_for_space;
1200
1201 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1202 pfrag->page,
1203 pfrag->offset,
1204 copy);
1205 if (err)
1206 goto do_error;
1207
1208 /* Update the skb. */
1209 if (merge) {
1210 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1211 } else {
1212 skb_fill_page_desc(skb, i, pfrag->page,
1213 pfrag->offset, copy);
1214 page_ref_inc(pfrag->page);
1215 }
1216 pfrag->offset += copy;
1217 } else if (zc == MSG_ZEROCOPY) {
1218 /* First append to a fragless skb builds initial
1219 * pure zerocopy skb
1220 */
1221 if (!skb->len)
1222 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1223
1224 if (!skb_zcopy_pure(skb)) {
1225 copy = tcp_wmem_schedule(sk, copy);
1226 if (!copy)
1227 goto wait_for_space;
1228 }
1229
1230 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1231 if (err == -EMSGSIZE || err == -EEXIST) {
1232 tcp_mark_push(tp, skb);
1233 goto new_segment;
1234 }
1235 if (err < 0)
1236 goto do_error;
1237 copy = err;
1238 } else if (zc == MSG_SPLICE_PAGES) {
1239 /* Splice in data if we can; copy if we can't. */
1240 if (tcp_downgrade_zcopy_pure(sk, skb))
1241 goto wait_for_space;
1242 copy = tcp_wmem_schedule(sk, copy);
1243 if (!copy)
1244 goto wait_for_space;
1245
1246 err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1247 sk->sk_allocation);
1248 if (err < 0) {
1249 if (err == -EMSGSIZE) {
1250 tcp_mark_push(tp, skb);
1251 goto new_segment;
1252 }
1253 goto do_error;
1254 }
1255 copy = err;
1256
1257 if (!(flags & MSG_NO_SHARED_FRAGS))
1258 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1259
1260 sk_wmem_queued_add(sk, copy);
1261 sk_mem_charge(sk, copy);
1262 }
1263
1264 if (!copied)
1265 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1266
1267 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1268 TCP_SKB_CB(skb)->end_seq += copy;
1269 tcp_skb_pcount_set(skb, 0);
1270
1271 copied += copy;
1272 if (!msg_data_left(msg)) {
1273 if (unlikely(flags & MSG_EOR))
1274 TCP_SKB_CB(skb)->eor = 1;
1275 goto out;
1276 }
1277
1278 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1279 continue;
1280
1281 if (forced_push(tp)) {
1282 tcp_mark_push(tp, skb);
1283 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1284 } else if (skb == tcp_send_head(sk))
1285 tcp_push_one(sk, mss_now);
1286 continue;
1287
1288 wait_for_space:
1289 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1290 if (copied)
1291 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1292 TCP_NAGLE_PUSH, size_goal);
1293
1294 err = sk_stream_wait_memory(sk, &timeo);
1295 if (err != 0)
1296 goto do_error;
1297
1298 mss_now = tcp_send_mss(sk, &size_goal, flags);
1299 }
1300
1301 out:
1302 if (copied) {
1303 tcp_tx_timestamp(sk, sockc.tsflags);
1304 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1305 }
1306 out_nopush:
1307 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1308 if (uarg && !msg->msg_ubuf)
1309 net_zcopy_put(uarg);
1310 return copied + copied_syn;
1311
1312 do_error:
1313 tcp_remove_empty_skb(sk);
1314
1315 if (copied + copied_syn)
1316 goto out;
1317 out_err:
1318 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1319 if (uarg && !msg->msg_ubuf)
1320 net_zcopy_put_abort(uarg, true);
1321 err = sk_stream_error(sk, flags, err);
1322 /* make sure we wake any epoll edge trigger waiter */
1323 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1324 sk->sk_write_space(sk);
1325 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1326 }
1327 return err;
1328 }
1329 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1330
1331 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1332 {
1333 int ret;
1334
1335 lock_sock(sk);
1336 ret = tcp_sendmsg_locked(sk, msg, size);
1337 release_sock(sk);
1338
1339 return ret;
1340 }
1341 EXPORT_SYMBOL(tcp_sendmsg);
1342
1343 void tcp_splice_eof(struct socket *sock)
1344 {
1345 struct sock *sk = sock->sk;
1346 struct tcp_sock *tp = tcp_sk(sk);
1347 int mss_now, size_goal;
1348
1349 if (!tcp_write_queue_tail(sk))
1350 return;
1351
1352 lock_sock(sk);
1353 mss_now = tcp_send_mss(sk, &size_goal, 0);
1354 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1355 release_sock(sk);
1356 }
1357 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1358
1359 /*
1360 * Handle reading urgent data. BSD has very simple semantics for
1361 * this, no blocking and very strange errors 8)
1362 */
1363
1364 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1365 {
1366 struct tcp_sock *tp = tcp_sk(sk);
1367
1368 /* No URG data to read. */
1369 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1370 tp->urg_data == TCP_URG_READ)
1371 return -EINVAL; /* Yes this is right ! */
1372
1373 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1374 return -ENOTCONN;
1375
1376 if (tp->urg_data & TCP_URG_VALID) {
1377 int err = 0;
1378 char c = tp->urg_data;
1379
1380 if (!(flags & MSG_PEEK))
1381 WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1382
1383 /* Read urgent data. */
1384 msg->msg_flags |= MSG_OOB;
1385
1386 if (len > 0) {
1387 if (!(flags & MSG_TRUNC))
1388 err = memcpy_to_msg(msg, &c, 1);
1389 len = 1;
1390 } else
1391 msg->msg_flags |= MSG_TRUNC;
1392
1393 return err ? -EFAULT : len;
1394 }
1395
1396 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1397 return 0;
1398
1399 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1400 * the available implementations agree in this case:
1401 * this call should never block, independent of the
1402 * blocking state of the socket.
1403 * Mike <pall@rz.uni-karlsruhe.de>
1404 */
1405 return -EAGAIN;
1406 }
1407
1408 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1409 {
1410 struct sk_buff *skb;
1411 int copied = 0, err = 0;
1412
1413 /* XXX -- need to support SO_PEEK_OFF */
1414
1415 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1416 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1417 if (err)
1418 return err;
1419 copied += skb->len;
1420 }
1421
1422 skb_queue_walk(&sk->sk_write_queue, skb) {
1423 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1424 if (err)
1425 break;
1426
1427 copied += skb->len;
1428 }
1429
1430 return err ?: copied;
1431 }
1432
1433 /* Clean up the receive buffer for full frames taken by the user,
1434 * then send an ACK if necessary. COPIED is the number of bytes
1435 * tcp_recvmsg has given to the user so far, it speeds up the
1436 * calculation of whether or not we must ACK for the sake of
1437 * a window update.
1438 */
1439 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1440 {
1441 struct tcp_sock *tp = tcp_sk(sk);
1442 bool time_to_ack = false;
1443
1444 if (inet_csk_ack_scheduled(sk)) {
1445 const struct inet_connection_sock *icsk = inet_csk(sk);
1446
1447 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1448 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1449 /*
1450 * If this read emptied read buffer, we send ACK, if
1451 * connection is not bidirectional, user drained
1452 * receive buffer and there was a small segment
1453 * in queue.
1454 */
1455 (copied > 0 &&
1456 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1457 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1458 !inet_csk_in_pingpong_mode(sk))) &&
1459 !atomic_read(&sk->sk_rmem_alloc)))
1460 time_to_ack = true;
1461 }
1462
1463 /* We send an ACK if we can now advertise a non-zero window
1464 * which has been raised "significantly".
1465 *
1466 * Even if window raised up to infinity, do not send window open ACK
1467 * in states, where we will not receive more. It is useless.
1468 */
1469 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1470 __u32 rcv_window_now = tcp_receive_window(tp);
1471
1472 /* Optimize, __tcp_select_window() is not cheap. */
1473 if (2*rcv_window_now <= tp->window_clamp) {
1474 __u32 new_window = __tcp_select_window(sk);
1475
1476 /* Send ACK now, if this read freed lots of space
1477 * in our buffer. Certainly, new_window is new window.
1478 * We can advertise it now, if it is not less than current one.
1479 * "Lots" means "at least twice" here.
1480 */
1481 if (new_window && new_window >= 2 * rcv_window_now)
1482 time_to_ack = true;
1483 }
1484 }
1485 if (time_to_ack)
1486 tcp_send_ack(sk);
1487 }
1488
1489 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1490 {
1491 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1492 struct tcp_sock *tp = tcp_sk(sk);
1493
1494 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1495 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1496 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1497 __tcp_cleanup_rbuf(sk, copied);
1498 }
1499
1500 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1501 {
1502 __skb_unlink(skb, &sk->sk_receive_queue);
1503 if (likely(skb->destructor == sock_rfree)) {
1504 sock_rfree(skb);
1505 skb->destructor = NULL;
1506 skb->sk = NULL;
1507 return skb_attempt_defer_free(skb);
1508 }
1509 __kfree_skb(skb);
1510 }
1511
1512 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1513 {
1514 struct sk_buff *skb;
1515 u32 offset;
1516
1517 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1518 offset = seq - TCP_SKB_CB(skb)->seq;
1519 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1520 pr_err_once("%s: found a SYN, please report !\n", __func__);
1521 offset--;
1522 }
1523 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1524 *off = offset;
1525 return skb;
1526 }
1527 /* This looks weird, but this can happen if TCP collapsing
1528 * splitted a fat GRO packet, while we released socket lock
1529 * in skb_splice_bits()
1530 */
1531 tcp_eat_recv_skb(sk, skb);
1532 }
1533 return NULL;
1534 }
1535 EXPORT_SYMBOL(tcp_recv_skb);
1536
1537 /*
1538 * This routine provides an alternative to tcp_recvmsg() for routines
1539 * that would like to handle copying from skbuffs directly in 'sendfile'
1540 * fashion.
1541 * Note:
1542 * - It is assumed that the socket was locked by the caller.
1543 * - The routine does not block.
1544 * - At present, there is no support for reading OOB data
1545 * or for 'peeking' the socket using this routine
1546 * (although both would be easy to implement).
1547 */
1548 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1549 sk_read_actor_t recv_actor)
1550 {
1551 struct sk_buff *skb;
1552 struct tcp_sock *tp = tcp_sk(sk);
1553 u32 seq = tp->copied_seq;
1554 u32 offset;
1555 int copied = 0;
1556
1557 if (sk->sk_state == TCP_LISTEN)
1558 return -ENOTCONN;
1559 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1560 if (offset < skb->len) {
1561 int used;
1562 size_t len;
1563
1564 len = skb->len - offset;
1565 /* Stop reading if we hit a patch of urgent data */
1566 if (unlikely(tp->urg_data)) {
1567 u32 urg_offset = tp->urg_seq - seq;
1568 if (urg_offset < len)
1569 len = urg_offset;
1570 if (!len)
1571 break;
1572 }
1573 used = recv_actor(desc, skb, offset, len);
1574 if (used <= 0) {
1575 if (!copied)
1576 copied = used;
1577 break;
1578 }
1579 if (WARN_ON_ONCE(used > len))
1580 used = len;
1581 seq += used;
1582 copied += used;
1583 offset += used;
1584
1585 /* If recv_actor drops the lock (e.g. TCP splice
1586 * receive) the skb pointer might be invalid when
1587 * getting here: tcp_collapse might have deleted it
1588 * while aggregating skbs from the socket queue.
1589 */
1590 skb = tcp_recv_skb(sk, seq - 1, &offset);
1591 if (!skb)
1592 break;
1593 /* TCP coalescing might have appended data to the skb.
1594 * Try to splice more frags
1595 */
1596 if (offset + 1 != skb->len)
1597 continue;
1598 }
1599 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1600 tcp_eat_recv_skb(sk, skb);
1601 ++seq;
1602 break;
1603 }
1604 tcp_eat_recv_skb(sk, skb);
1605 if (!desc->count)
1606 break;
1607 WRITE_ONCE(tp->copied_seq, seq);
1608 }
1609 WRITE_ONCE(tp->copied_seq, seq);
1610
1611 tcp_rcv_space_adjust(sk);
1612
1613 /* Clean up data we have read: This will do ACK frames. */
1614 if (copied > 0) {
1615 tcp_recv_skb(sk, seq, &offset);
1616 tcp_cleanup_rbuf(sk, copied);
1617 }
1618 return copied;
1619 }
1620 EXPORT_SYMBOL(tcp_read_sock);
1621
1622 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1623 {
1624 struct tcp_sock *tp = tcp_sk(sk);
1625 u32 seq = tp->copied_seq;
1626 struct sk_buff *skb;
1627 int copied = 0;
1628 u32 offset;
1629
1630 if (sk->sk_state == TCP_LISTEN)
1631 return -ENOTCONN;
1632
1633 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1634 u8 tcp_flags;
1635 int used;
1636
1637 __skb_unlink(skb, &sk->sk_receive_queue);
1638 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1639 tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1640 used = recv_actor(sk, skb);
1641 if (used < 0) {
1642 if (!copied)
1643 copied = used;
1644 break;
1645 }
1646 seq += used;
1647 copied += used;
1648
1649 if (tcp_flags & TCPHDR_FIN) {
1650 ++seq;
1651 break;
1652 }
1653 }
1654 return copied;
1655 }
1656 EXPORT_SYMBOL(tcp_read_skb);
1657
1658 void tcp_read_done(struct sock *sk, size_t len)
1659 {
1660 struct tcp_sock *tp = tcp_sk(sk);
1661 u32 seq = tp->copied_seq;
1662 struct sk_buff *skb;
1663 size_t left;
1664 u32 offset;
1665
1666 if (sk->sk_state == TCP_LISTEN)
1667 return;
1668
1669 left = len;
1670 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1671 int used;
1672
1673 used = min_t(size_t, skb->len - offset, left);
1674 seq += used;
1675 left -= used;
1676
1677 if (skb->len > offset + used)
1678 break;
1679
1680 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1681 tcp_eat_recv_skb(sk, skb);
1682 ++seq;
1683 break;
1684 }
1685 tcp_eat_recv_skb(sk, skb);
1686 }
1687 WRITE_ONCE(tp->copied_seq, seq);
1688
1689 tcp_rcv_space_adjust(sk);
1690
1691 /* Clean up data we have read: This will do ACK frames. */
1692 if (left != len)
1693 tcp_cleanup_rbuf(sk, len - left);
1694 }
1695 EXPORT_SYMBOL(tcp_read_done);
1696
1697 int tcp_peek_len(struct socket *sock)
1698 {
1699 return tcp_inq(sock->sk);
1700 }
1701 EXPORT_SYMBOL(tcp_peek_len);
1702
1703 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1704 int tcp_set_rcvlowat(struct sock *sk, int val)
1705 {
1706 int space, cap;
1707
1708 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1709 cap = sk->sk_rcvbuf >> 1;
1710 else
1711 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1712 val = min(val, cap);
1713 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1714
1715 /* Check if we need to signal EPOLLIN right now */
1716 tcp_data_ready(sk);
1717
1718 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1719 return 0;
1720
1721 space = tcp_space_from_win(sk, val);
1722 if (space > sk->sk_rcvbuf) {
1723 WRITE_ONCE(sk->sk_rcvbuf, space);
1724 tcp_sk(sk)->window_clamp = val;
1725 }
1726 return 0;
1727 }
1728 EXPORT_SYMBOL(tcp_set_rcvlowat);
1729
1730 void tcp_update_recv_tstamps(struct sk_buff *skb,
1731 struct scm_timestamping_internal *tss)
1732 {
1733 if (skb->tstamp)
1734 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1735 else
1736 tss->ts[0] = (struct timespec64) {0};
1737
1738 if (skb_hwtstamps(skb)->hwtstamp)
1739 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1740 else
1741 tss->ts[2] = (struct timespec64) {0};
1742 }
1743
1744 #ifdef CONFIG_MMU
1745 static const struct vm_operations_struct tcp_vm_ops = {
1746 };
1747
1748 int tcp_mmap(struct file *file, struct socket *sock,
1749 struct vm_area_struct *vma)
1750 {
1751 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1752 return -EPERM;
1753 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1754
1755 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1756 vm_flags_set(vma, VM_MIXEDMAP);
1757
1758 vma->vm_ops = &tcp_vm_ops;
1759 return 0;
1760 }
1761 EXPORT_SYMBOL(tcp_mmap);
1762
1763 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1764 u32 *offset_frag)
1765 {
1766 skb_frag_t *frag;
1767
1768 if (unlikely(offset_skb >= skb->len))
1769 return NULL;
1770
1771 offset_skb -= skb_headlen(skb);
1772 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1773 return NULL;
1774
1775 frag = skb_shinfo(skb)->frags;
1776 while (offset_skb) {
1777 if (skb_frag_size(frag) > offset_skb) {
1778 *offset_frag = offset_skb;
1779 return frag;
1780 }
1781 offset_skb -= skb_frag_size(frag);
1782 ++frag;
1783 }
1784 *offset_frag = 0;
1785 return frag;
1786 }
1787
1788 static bool can_map_frag(const skb_frag_t *frag)
1789 {
1790 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1791 }
1792
1793 static int find_next_mappable_frag(const skb_frag_t *frag,
1794 int remaining_in_skb)
1795 {
1796 int offset = 0;
1797
1798 if (likely(can_map_frag(frag)))
1799 return 0;
1800
1801 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1802 offset += skb_frag_size(frag);
1803 ++frag;
1804 }
1805 return offset;
1806 }
1807
1808 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1809 struct tcp_zerocopy_receive *zc,
1810 struct sk_buff *skb, u32 offset)
1811 {
1812 u32 frag_offset, partial_frag_remainder = 0;
1813 int mappable_offset;
1814 skb_frag_t *frag;
1815
1816 /* worst case: skip to next skb. try to improve on this case below */
1817 zc->recv_skip_hint = skb->len - offset;
1818
1819 /* Find the frag containing this offset (and how far into that frag) */
1820 frag = skb_advance_to_frag(skb, offset, &frag_offset);
1821 if (!frag)
1822 return;
1823
1824 if (frag_offset) {
1825 struct skb_shared_info *info = skb_shinfo(skb);
1826
1827 /* We read part of the last frag, must recvmsg() rest of skb. */
1828 if (frag == &info->frags[info->nr_frags - 1])
1829 return;
1830
1831 /* Else, we must at least read the remainder in this frag. */
1832 partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1833 zc->recv_skip_hint -= partial_frag_remainder;
1834 ++frag;
1835 }
1836
1837 /* partial_frag_remainder: If part way through a frag, must read rest.
1838 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1839 * in partial_frag_remainder.
1840 */
1841 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1842 zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1843 }
1844
1845 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1846 int flags, struct scm_timestamping_internal *tss,
1847 int *cmsg_flags);
1848 static int receive_fallback_to_copy(struct sock *sk,
1849 struct tcp_zerocopy_receive *zc, int inq,
1850 struct scm_timestamping_internal *tss)
1851 {
1852 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1853 struct msghdr msg = {};
1854 struct iovec iov;
1855 int err;
1856
1857 zc->length = 0;
1858 zc->recv_skip_hint = 0;
1859
1860 if (copy_address != zc->copybuf_address)
1861 return -EINVAL;
1862
1863 err = import_single_range(ITER_DEST, (void __user *)copy_address,
1864 inq, &iov, &msg.msg_iter);
1865 if (err)
1866 return err;
1867
1868 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1869 tss, &zc->msg_flags);
1870 if (err < 0)
1871 return err;
1872
1873 zc->copybuf_len = err;
1874 if (likely(zc->copybuf_len)) {
1875 struct sk_buff *skb;
1876 u32 offset;
1877
1878 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1879 if (skb)
1880 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1881 }
1882 return 0;
1883 }
1884
1885 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1886 struct sk_buff *skb, u32 copylen,
1887 u32 *offset, u32 *seq)
1888 {
1889 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1890 struct msghdr msg = {};
1891 struct iovec iov;
1892 int err;
1893
1894 if (copy_address != zc->copybuf_address)
1895 return -EINVAL;
1896
1897 err = import_single_range(ITER_DEST, (void __user *)copy_address,
1898 copylen, &iov, &msg.msg_iter);
1899 if (err)
1900 return err;
1901 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1902 if (err)
1903 return err;
1904 zc->recv_skip_hint -= copylen;
1905 *offset += copylen;
1906 *seq += copylen;
1907 return (__s32)copylen;
1908 }
1909
1910 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1911 struct sock *sk,
1912 struct sk_buff *skb,
1913 u32 *seq,
1914 s32 copybuf_len,
1915 struct scm_timestamping_internal *tss)
1916 {
1917 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1918
1919 if (!copylen)
1920 return 0;
1921 /* skb is null if inq < PAGE_SIZE. */
1922 if (skb) {
1923 offset = *seq - TCP_SKB_CB(skb)->seq;
1924 } else {
1925 skb = tcp_recv_skb(sk, *seq, &offset);
1926 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1927 tcp_update_recv_tstamps(skb, tss);
1928 zc->msg_flags |= TCP_CMSG_TS;
1929 }
1930 }
1931
1932 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1933 seq);
1934 return zc->copybuf_len < 0 ? 0 : copylen;
1935 }
1936
1937 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1938 struct page **pending_pages,
1939 unsigned long pages_remaining,
1940 unsigned long *address,
1941 u32 *length,
1942 u32 *seq,
1943 struct tcp_zerocopy_receive *zc,
1944 u32 total_bytes_to_map,
1945 int err)
1946 {
1947 /* At least one page did not map. Try zapping if we skipped earlier. */
1948 if (err == -EBUSY &&
1949 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1950 u32 maybe_zap_len;
1951
1952 maybe_zap_len = total_bytes_to_map - /* All bytes to map */
1953 *length + /* Mapped or pending */
1954 (pages_remaining * PAGE_SIZE); /* Failed map. */
1955 zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1956 err = 0;
1957 }
1958
1959 if (!err) {
1960 unsigned long leftover_pages = pages_remaining;
1961 int bytes_mapped;
1962
1963 /* We called zap_page_range_single, try to reinsert. */
1964 err = vm_insert_pages(vma, *address,
1965 pending_pages,
1966 &pages_remaining);
1967 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1968 *seq += bytes_mapped;
1969 *address += bytes_mapped;
1970 }
1971 if (err) {
1972 /* Either we were unable to zap, OR we zapped, retried an
1973 * insert, and still had an issue. Either ways, pages_remaining
1974 * is the number of pages we were unable to map, and we unroll
1975 * some state we speculatively touched before.
1976 */
1977 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1978
1979 *length -= bytes_not_mapped;
1980 zc->recv_skip_hint += bytes_not_mapped;
1981 }
1982 return err;
1983 }
1984
1985 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1986 struct page **pages,
1987 unsigned int pages_to_map,
1988 unsigned long *address,
1989 u32 *length,
1990 u32 *seq,
1991 struct tcp_zerocopy_receive *zc,
1992 u32 total_bytes_to_map)
1993 {
1994 unsigned long pages_remaining = pages_to_map;
1995 unsigned int pages_mapped;
1996 unsigned int bytes_mapped;
1997 int err;
1998
1999 err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2000 pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2001 bytes_mapped = PAGE_SIZE * pages_mapped;
2002 /* Even if vm_insert_pages fails, it may have partially succeeded in
2003 * mapping (some but not all of the pages).
2004 */
2005 *seq += bytes_mapped;
2006 *address += bytes_mapped;
2007
2008 if (likely(!err))
2009 return 0;
2010
2011 /* Error: maybe zap and retry + rollback state for failed inserts. */
2012 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2013 pages_remaining, address, length, seq, zc, total_bytes_to_map,
2014 err);
2015 }
2016
2017 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
2018 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2019 struct tcp_zerocopy_receive *zc,
2020 struct scm_timestamping_internal *tss)
2021 {
2022 unsigned long msg_control_addr;
2023 struct msghdr cmsg_dummy;
2024
2025 msg_control_addr = (unsigned long)zc->msg_control;
2026 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2027 cmsg_dummy.msg_controllen =
2028 (__kernel_size_t)zc->msg_controllen;
2029 cmsg_dummy.msg_flags = in_compat_syscall()
2030 ? MSG_CMSG_COMPAT : 0;
2031 cmsg_dummy.msg_control_is_user = true;
2032 zc->msg_flags = 0;
2033 if (zc->msg_control == msg_control_addr &&
2034 zc->msg_controllen == cmsg_dummy.msg_controllen) {
2035 tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2036 zc->msg_control = (__u64)
2037 ((uintptr_t)cmsg_dummy.msg_control_user);
2038 zc->msg_controllen =
2039 (__u64)cmsg_dummy.msg_controllen;
2040 zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2041 }
2042 }
2043
2044 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2045 unsigned long address,
2046 bool *mmap_locked)
2047 {
2048 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2049
2050 if (vma) {
2051 if (vma->vm_ops != &tcp_vm_ops) {
2052 vma_end_read(vma);
2053 return NULL;
2054 }
2055 *mmap_locked = false;
2056 return vma;
2057 }
2058
2059 mmap_read_lock(mm);
2060 vma = vma_lookup(mm, address);
2061 if (!vma || vma->vm_ops != &tcp_vm_ops) {
2062 mmap_read_unlock(mm);
2063 return NULL;
2064 }
2065 *mmap_locked = true;
2066 return vma;
2067 }
2068
2069 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2070 static int tcp_zerocopy_receive(struct sock *sk,
2071 struct tcp_zerocopy_receive *zc,
2072 struct scm_timestamping_internal *tss)
2073 {
2074 u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2075 unsigned long address = (unsigned long)zc->address;
2076 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2077 s32 copybuf_len = zc->copybuf_len;
2078 struct tcp_sock *tp = tcp_sk(sk);
2079 const skb_frag_t *frags = NULL;
2080 unsigned int pages_to_map = 0;
2081 struct vm_area_struct *vma;
2082 struct sk_buff *skb = NULL;
2083 u32 seq = tp->copied_seq;
2084 u32 total_bytes_to_map;
2085 int inq = tcp_inq(sk);
2086 bool mmap_locked;
2087 int ret;
2088
2089 zc->copybuf_len = 0;
2090 zc->msg_flags = 0;
2091
2092 if (address & (PAGE_SIZE - 1) || address != zc->address)
2093 return -EINVAL;
2094
2095 if (sk->sk_state == TCP_LISTEN)
2096 return -ENOTCONN;
2097
2098 sock_rps_record_flow(sk);
2099
2100 if (inq && inq <= copybuf_len)
2101 return receive_fallback_to_copy(sk, zc, inq, tss);
2102
2103 if (inq < PAGE_SIZE) {
2104 zc->length = 0;
2105 zc->recv_skip_hint = inq;
2106 if (!inq && sock_flag(sk, SOCK_DONE))
2107 return -EIO;
2108 return 0;
2109 }
2110
2111 vma = find_tcp_vma(current->mm, address, &mmap_locked);
2112 if (!vma)
2113 return -EINVAL;
2114
2115 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2116 avail_len = min_t(u32, vma_len, inq);
2117 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2118 if (total_bytes_to_map) {
2119 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2120 zap_page_range_single(vma, address, total_bytes_to_map,
2121 NULL);
2122 zc->length = total_bytes_to_map;
2123 zc->recv_skip_hint = 0;
2124 } else {
2125 zc->length = avail_len;
2126 zc->recv_skip_hint = avail_len;
2127 }
2128 ret = 0;
2129 while (length + PAGE_SIZE <= zc->length) {
2130 int mappable_offset;
2131 struct page *page;
2132
2133 if (zc->recv_skip_hint < PAGE_SIZE) {
2134 u32 offset_frag;
2135
2136 if (skb) {
2137 if (zc->recv_skip_hint > 0)
2138 break;
2139 skb = skb->next;
2140 offset = seq - TCP_SKB_CB(skb)->seq;
2141 } else {
2142 skb = tcp_recv_skb(sk, seq, &offset);
2143 }
2144
2145 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2146 tcp_update_recv_tstamps(skb, tss);
2147 zc->msg_flags |= TCP_CMSG_TS;
2148 }
2149 zc->recv_skip_hint = skb->len - offset;
2150 frags = skb_advance_to_frag(skb, offset, &offset_frag);
2151 if (!frags || offset_frag)
2152 break;
2153 }
2154
2155 mappable_offset = find_next_mappable_frag(frags,
2156 zc->recv_skip_hint);
2157 if (mappable_offset) {
2158 zc->recv_skip_hint = mappable_offset;
2159 break;
2160 }
2161 page = skb_frag_page(frags);
2162 prefetchw(page);
2163 pages[pages_to_map++] = page;
2164 length += PAGE_SIZE;
2165 zc->recv_skip_hint -= PAGE_SIZE;
2166 frags++;
2167 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2168 zc->recv_skip_hint < PAGE_SIZE) {
2169 /* Either full batch, or we're about to go to next skb
2170 * (and we cannot unroll failed ops across skbs).
2171 */
2172 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2173 pages_to_map,
2174 &address, &length,
2175 &seq, zc,
2176 total_bytes_to_map);
2177 if (ret)
2178 goto out;
2179 pages_to_map = 0;
2180 }
2181 }
2182 if (pages_to_map) {
2183 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2184 &address, &length, &seq,
2185 zc, total_bytes_to_map);
2186 }
2187 out:
2188 if (mmap_locked)
2189 mmap_read_unlock(current->mm);
2190 else
2191 vma_end_read(vma);
2192 /* Try to copy straggler data. */
2193 if (!ret)
2194 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2195
2196 if (length + copylen) {
2197 WRITE_ONCE(tp->copied_seq, seq);
2198 tcp_rcv_space_adjust(sk);
2199
2200 /* Clean up data we have read: This will do ACK frames. */
2201 tcp_recv_skb(sk, seq, &offset);
2202 tcp_cleanup_rbuf(sk, length + copylen);
2203 ret = 0;
2204 if (length == zc->length)
2205 zc->recv_skip_hint = 0;
2206 } else {
2207 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2208 ret = -EIO;
2209 }
2210 zc->length = length;
2211 return ret;
2212 }
2213 #endif
2214
2215 /* Similar to __sock_recv_timestamp, but does not require an skb */
2216 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2217 struct scm_timestamping_internal *tss)
2218 {
2219 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2220 bool has_timestamping = false;
2221
2222 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2223 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2224 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2225 if (new_tstamp) {
2226 struct __kernel_timespec kts = {
2227 .tv_sec = tss->ts[0].tv_sec,
2228 .tv_nsec = tss->ts[0].tv_nsec,
2229 };
2230 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2231 sizeof(kts), &kts);
2232 } else {
2233 struct __kernel_old_timespec ts_old = {
2234 .tv_sec = tss->ts[0].tv_sec,
2235 .tv_nsec = tss->ts[0].tv_nsec,
2236 };
2237 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2238 sizeof(ts_old), &ts_old);
2239 }
2240 } else {
2241 if (new_tstamp) {
2242 struct __kernel_sock_timeval stv = {
2243 .tv_sec = tss->ts[0].tv_sec,
2244 .tv_usec = tss->ts[0].tv_nsec / 1000,
2245 };
2246 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2247 sizeof(stv), &stv);
2248 } else {
2249 struct __kernel_old_timeval tv = {
2250 .tv_sec = tss->ts[0].tv_sec,
2251 .tv_usec = tss->ts[0].tv_nsec / 1000,
2252 };
2253 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2254 sizeof(tv), &tv);
2255 }
2256 }
2257 }
2258
2259 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2260 has_timestamping = true;
2261 else
2262 tss->ts[0] = (struct timespec64) {0};
2263 }
2264
2265 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2266 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2267 has_timestamping = true;
2268 else
2269 tss->ts[2] = (struct timespec64) {0};
2270 }
2271
2272 if (has_timestamping) {
2273 tss->ts[1] = (struct timespec64) {0};
2274 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2275 put_cmsg_scm_timestamping64(msg, tss);
2276 else
2277 put_cmsg_scm_timestamping(msg, tss);
2278 }
2279 }
2280
2281 static int tcp_inq_hint(struct sock *sk)
2282 {
2283 const struct tcp_sock *tp = tcp_sk(sk);
2284 u32 copied_seq = READ_ONCE(tp->copied_seq);
2285 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2286 int inq;
2287
2288 inq = rcv_nxt - copied_seq;
2289 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2290 lock_sock(sk);
2291 inq = tp->rcv_nxt - tp->copied_seq;
2292 release_sock(sk);
2293 }
2294 /* After receiving a FIN, tell the user-space to continue reading
2295 * by returning a non-zero inq.
2296 */
2297 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2298 inq = 1;
2299 return inq;
2300 }
2301
2302 /*
2303 * This routine copies from a sock struct into the user buffer.
2304 *
2305 * Technical note: in 2.3 we work on _locked_ socket, so that
2306 * tricks with *seq access order and skb->users are not required.
2307 * Probably, code can be easily improved even more.
2308 */
2309
2310 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2311 int flags, struct scm_timestamping_internal *tss,
2312 int *cmsg_flags)
2313 {
2314 struct tcp_sock *tp = tcp_sk(sk);
2315 int copied = 0;
2316 u32 peek_seq;
2317 u32 *seq;
2318 unsigned long used;
2319 int err;
2320 int target; /* Read at least this many bytes */
2321 long timeo;
2322 struct sk_buff *skb, *last;
2323 u32 urg_hole = 0;
2324
2325 err = -ENOTCONN;
2326 if (sk->sk_state == TCP_LISTEN)
2327 goto out;
2328
2329 if (tp->recvmsg_inq) {
2330 *cmsg_flags = TCP_CMSG_INQ;
2331 msg->msg_get_inq = 1;
2332 }
2333 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2334
2335 /* Urgent data needs to be handled specially. */
2336 if (flags & MSG_OOB)
2337 goto recv_urg;
2338
2339 if (unlikely(tp->repair)) {
2340 err = -EPERM;
2341 if (!(flags & MSG_PEEK))
2342 goto out;
2343
2344 if (tp->repair_queue == TCP_SEND_QUEUE)
2345 goto recv_sndq;
2346
2347 err = -EINVAL;
2348 if (tp->repair_queue == TCP_NO_QUEUE)
2349 goto out;
2350
2351 /* 'common' recv queue MSG_PEEK-ing */
2352 }
2353
2354 seq = &tp->copied_seq;
2355 if (flags & MSG_PEEK) {
2356 peek_seq = tp->copied_seq;
2357 seq = &peek_seq;
2358 }
2359
2360 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2361
2362 do {
2363 u32 offset;
2364
2365 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2366 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2367 if (copied)
2368 break;
2369 if (signal_pending(current)) {
2370 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2371 break;
2372 }
2373 }
2374
2375 /* Next get a buffer. */
2376
2377 last = skb_peek_tail(&sk->sk_receive_queue);
2378 skb_queue_walk(&sk->sk_receive_queue, skb) {
2379 last = skb;
2380 /* Now that we have two receive queues this
2381 * shouldn't happen.
2382 */
2383 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2384 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2385 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2386 flags))
2387 break;
2388
2389 offset = *seq - TCP_SKB_CB(skb)->seq;
2390 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2391 pr_err_once("%s: found a SYN, please report !\n", __func__);
2392 offset--;
2393 }
2394 if (offset < skb->len)
2395 goto found_ok_skb;
2396 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2397 goto found_fin_ok;
2398 WARN(!(flags & MSG_PEEK),
2399 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2400 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2401 }
2402
2403 /* Well, if we have backlog, try to process it now yet. */
2404
2405 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2406 break;
2407
2408 if (copied) {
2409 if (!timeo ||
2410 sk->sk_err ||
2411 sk->sk_state == TCP_CLOSE ||
2412 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2413 signal_pending(current))
2414 break;
2415 } else {
2416 if (sock_flag(sk, SOCK_DONE))
2417 break;
2418
2419 if (sk->sk_err) {
2420 copied = sock_error(sk);
2421 break;
2422 }
2423
2424 if (sk->sk_shutdown & RCV_SHUTDOWN)
2425 break;
2426
2427 if (sk->sk_state == TCP_CLOSE) {
2428 /* This occurs when user tries to read
2429 * from never connected socket.
2430 */
2431 copied = -ENOTCONN;
2432 break;
2433 }
2434
2435 if (!timeo) {
2436 copied = -EAGAIN;
2437 break;
2438 }
2439
2440 if (signal_pending(current)) {
2441 copied = sock_intr_errno(timeo);
2442 break;
2443 }
2444 }
2445
2446 if (copied >= target) {
2447 /* Do not sleep, just process backlog. */
2448 __sk_flush_backlog(sk);
2449 } else {
2450 tcp_cleanup_rbuf(sk, copied);
2451 sk_wait_data(sk, &timeo, last);
2452 }
2453
2454 if ((flags & MSG_PEEK) &&
2455 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2456 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2457 current->comm,
2458 task_pid_nr(current));
2459 peek_seq = tp->copied_seq;
2460 }
2461 continue;
2462
2463 found_ok_skb:
2464 /* Ok so how much can we use? */
2465 used = skb->len - offset;
2466 if (len < used)
2467 used = len;
2468
2469 /* Do we have urgent data here? */
2470 if (unlikely(tp->urg_data)) {
2471 u32 urg_offset = tp->urg_seq - *seq;
2472 if (urg_offset < used) {
2473 if (!urg_offset) {
2474 if (!sock_flag(sk, SOCK_URGINLINE)) {
2475 WRITE_ONCE(*seq, *seq + 1);
2476 urg_hole++;
2477 offset++;
2478 used--;
2479 if (!used)
2480 goto skip_copy;
2481 }
2482 } else
2483 used = urg_offset;
2484 }
2485 }
2486
2487 if (!(flags & MSG_TRUNC)) {
2488 err = skb_copy_datagram_msg(skb, offset, msg, used);
2489 if (err) {
2490 /* Exception. Bailout! */
2491 if (!copied)
2492 copied = -EFAULT;
2493 break;
2494 }
2495 }
2496
2497 WRITE_ONCE(*seq, *seq + used);
2498 copied += used;
2499 len -= used;
2500
2501 tcp_rcv_space_adjust(sk);
2502
2503 skip_copy:
2504 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2505 WRITE_ONCE(tp->urg_data, 0);
2506 tcp_fast_path_check(sk);
2507 }
2508
2509 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2510 tcp_update_recv_tstamps(skb, tss);
2511 *cmsg_flags |= TCP_CMSG_TS;
2512 }
2513
2514 if (used + offset < skb->len)
2515 continue;
2516
2517 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2518 goto found_fin_ok;
2519 if (!(flags & MSG_PEEK))
2520 tcp_eat_recv_skb(sk, skb);
2521 continue;
2522
2523 found_fin_ok:
2524 /* Process the FIN. */
2525 WRITE_ONCE(*seq, *seq + 1);
2526 if (!(flags & MSG_PEEK))
2527 tcp_eat_recv_skb(sk, skb);
2528 break;
2529 } while (len > 0);
2530
2531 /* According to UNIX98, msg_name/msg_namelen are ignored
2532 * on connected socket. I was just happy when found this 8) --ANK
2533 */
2534
2535 /* Clean up data we have read: This will do ACK frames. */
2536 tcp_cleanup_rbuf(sk, copied);
2537 return copied;
2538
2539 out:
2540 return err;
2541
2542 recv_urg:
2543 err = tcp_recv_urg(sk, msg, len, flags);
2544 goto out;
2545
2546 recv_sndq:
2547 err = tcp_peek_sndq(sk, msg, len);
2548 goto out;
2549 }
2550
2551 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2552 int *addr_len)
2553 {
2554 int cmsg_flags = 0, ret;
2555 struct scm_timestamping_internal tss;
2556
2557 if (unlikely(flags & MSG_ERRQUEUE))
2558 return inet_recv_error(sk, msg, len, addr_len);
2559
2560 if (sk_can_busy_loop(sk) &&
2561 skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2562 sk->sk_state == TCP_ESTABLISHED)
2563 sk_busy_loop(sk, flags & MSG_DONTWAIT);
2564
2565 lock_sock(sk);
2566 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2567 release_sock(sk);
2568
2569 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2570 if (cmsg_flags & TCP_CMSG_TS)
2571 tcp_recv_timestamp(msg, sk, &tss);
2572 if (msg->msg_get_inq) {
2573 msg->msg_inq = tcp_inq_hint(sk);
2574 if (cmsg_flags & TCP_CMSG_INQ)
2575 put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2576 sizeof(msg->msg_inq), &msg->msg_inq);
2577 }
2578 }
2579 return ret;
2580 }
2581 EXPORT_SYMBOL(tcp_recvmsg);
2582
2583 void tcp_set_state(struct sock *sk, int state)
2584 {
2585 int oldstate = sk->sk_state;
2586
2587 /* We defined a new enum for TCP states that are exported in BPF
2588 * so as not force the internal TCP states to be frozen. The
2589 * following checks will detect if an internal state value ever
2590 * differs from the BPF value. If this ever happens, then we will
2591 * need to remap the internal value to the BPF value before calling
2592 * tcp_call_bpf_2arg.
2593 */
2594 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2595 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2596 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2597 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2598 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2599 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2600 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2601 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2602 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2603 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2604 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2605 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2606 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2607
2608 /* bpf uapi header bpf.h defines an anonymous enum with values
2609 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2610 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2611 * But clang built vmlinux does not have this enum in DWARF
2612 * since clang removes the above code before generating IR/debuginfo.
2613 * Let us explicitly emit the type debuginfo to ensure the
2614 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2615 * regardless of which compiler is used.
2616 */
2617 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2618
2619 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2620 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2621
2622 switch (state) {
2623 case TCP_ESTABLISHED:
2624 if (oldstate != TCP_ESTABLISHED)
2625 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2626 break;
2627
2628 case TCP_CLOSE:
2629 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2630 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2631
2632 sk->sk_prot->unhash(sk);
2633 if (inet_csk(sk)->icsk_bind_hash &&
2634 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2635 inet_put_port(sk);
2636 fallthrough;
2637 default:
2638 if (oldstate == TCP_ESTABLISHED)
2639 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2640 }
2641
2642 /* Change state AFTER socket is unhashed to avoid closed
2643 * socket sitting in hash tables.
2644 */
2645 inet_sk_state_store(sk, state);
2646 }
2647 EXPORT_SYMBOL_GPL(tcp_set_state);
2648
2649 /*
2650 * State processing on a close. This implements the state shift for
2651 * sending our FIN frame. Note that we only send a FIN for some
2652 * states. A shutdown() may have already sent the FIN, or we may be
2653 * closed.
2654 */
2655
2656 static const unsigned char new_state[16] = {
2657 /* current state: new state: action: */
2658 [0 /* (Invalid) */] = TCP_CLOSE,
2659 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2660 [TCP_SYN_SENT] = TCP_CLOSE,
2661 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2662 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2663 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2664 [TCP_TIME_WAIT] = TCP_CLOSE,
2665 [TCP_CLOSE] = TCP_CLOSE,
2666 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2667 [TCP_LAST_ACK] = TCP_LAST_ACK,
2668 [TCP_LISTEN] = TCP_CLOSE,
2669 [TCP_CLOSING] = TCP_CLOSING,
2670 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2671 };
2672
2673 static int tcp_close_state(struct sock *sk)
2674 {
2675 int next = (int)new_state[sk->sk_state];
2676 int ns = next & TCP_STATE_MASK;
2677
2678 tcp_set_state(sk, ns);
2679
2680 return next & TCP_ACTION_FIN;
2681 }
2682
2683 /*
2684 * Shutdown the sending side of a connection. Much like close except
2685 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2686 */
2687
2688 void tcp_shutdown(struct sock *sk, int how)
2689 {
2690 /* We need to grab some memory, and put together a FIN,
2691 * and then put it into the queue to be sent.
2692 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2693 */
2694 if (!(how & SEND_SHUTDOWN))
2695 return;
2696
2697 /* If we've already sent a FIN, or it's a closed state, skip this. */
2698 if ((1 << sk->sk_state) &
2699 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2700 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2701 /* Clear out any half completed packets. FIN if needed. */
2702 if (tcp_close_state(sk))
2703 tcp_send_fin(sk);
2704 }
2705 }
2706 EXPORT_SYMBOL(tcp_shutdown);
2707
2708 int tcp_orphan_count_sum(void)
2709 {
2710 int i, total = 0;
2711
2712 for_each_possible_cpu(i)
2713 total += per_cpu(tcp_orphan_count, i);
2714
2715 return max(total, 0);
2716 }
2717
2718 static int tcp_orphan_cache;
2719 static struct timer_list tcp_orphan_timer;
2720 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2721
2722 static void tcp_orphan_update(struct timer_list *unused)
2723 {
2724 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2725 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2726 }
2727
2728 static bool tcp_too_many_orphans(int shift)
2729 {
2730 return READ_ONCE(tcp_orphan_cache) << shift >
2731 READ_ONCE(sysctl_tcp_max_orphans);
2732 }
2733
2734 bool tcp_check_oom(struct sock *sk, int shift)
2735 {
2736 bool too_many_orphans, out_of_socket_memory;
2737
2738 too_many_orphans = tcp_too_many_orphans(shift);
2739 out_of_socket_memory = tcp_out_of_memory(sk);
2740
2741 if (too_many_orphans)
2742 net_info_ratelimited("too many orphaned sockets\n");
2743 if (out_of_socket_memory)
2744 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2745 return too_many_orphans || out_of_socket_memory;
2746 }
2747
2748 void __tcp_close(struct sock *sk, long timeout)
2749 {
2750 struct sk_buff *skb;
2751 int data_was_unread = 0;
2752 int state;
2753
2754 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2755
2756 if (sk->sk_state == TCP_LISTEN) {
2757 tcp_set_state(sk, TCP_CLOSE);
2758
2759 /* Special case. */
2760 inet_csk_listen_stop(sk);
2761
2762 goto adjudge_to_death;
2763 }
2764
2765 /* We need to flush the recv. buffs. We do this only on the
2766 * descriptor close, not protocol-sourced closes, because the
2767 * reader process may not have drained the data yet!
2768 */
2769 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2770 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2771
2772 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2773 len--;
2774 data_was_unread += len;
2775 __kfree_skb(skb);
2776 }
2777
2778 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2779 if (sk->sk_state == TCP_CLOSE)
2780 goto adjudge_to_death;
2781
2782 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2783 * data was lost. To witness the awful effects of the old behavior of
2784 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2785 * GET in an FTP client, suspend the process, wait for the client to
2786 * advertise a zero window, then kill -9 the FTP client, wheee...
2787 * Note: timeout is always zero in such a case.
2788 */
2789 if (unlikely(tcp_sk(sk)->repair)) {
2790 sk->sk_prot->disconnect(sk, 0);
2791 } else if (data_was_unread) {
2792 /* Unread data was tossed, zap the connection. */
2793 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2794 tcp_set_state(sk, TCP_CLOSE);
2795 tcp_send_active_reset(sk, sk->sk_allocation);
2796 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2797 /* Check zero linger _after_ checking for unread data. */
2798 sk->sk_prot->disconnect(sk, 0);
2799 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2800 } else if (tcp_close_state(sk)) {
2801 /* We FIN if the application ate all the data before
2802 * zapping the connection.
2803 */
2804
2805 /* RED-PEN. Formally speaking, we have broken TCP state
2806 * machine. State transitions:
2807 *
2808 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2809 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2810 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2811 *
2812 * are legal only when FIN has been sent (i.e. in window),
2813 * rather than queued out of window. Purists blame.
2814 *
2815 * F.e. "RFC state" is ESTABLISHED,
2816 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2817 *
2818 * The visible declinations are that sometimes
2819 * we enter time-wait state, when it is not required really
2820 * (harmless), do not send active resets, when they are
2821 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2822 * they look as CLOSING or LAST_ACK for Linux)
2823 * Probably, I missed some more holelets.
2824 * --ANK
2825 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2826 * in a single packet! (May consider it later but will
2827 * probably need API support or TCP_CORK SYN-ACK until
2828 * data is written and socket is closed.)
2829 */
2830 tcp_send_fin(sk);
2831 }
2832
2833 sk_stream_wait_close(sk, timeout);
2834
2835 adjudge_to_death:
2836 state = sk->sk_state;
2837 sock_hold(sk);
2838 sock_orphan(sk);
2839
2840 local_bh_disable();
2841 bh_lock_sock(sk);
2842 /* remove backlog if any, without releasing ownership. */
2843 __release_sock(sk);
2844
2845 this_cpu_inc(tcp_orphan_count);
2846
2847 /* Have we already been destroyed by a softirq or backlog? */
2848 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2849 goto out;
2850
2851 /* This is a (useful) BSD violating of the RFC. There is a
2852 * problem with TCP as specified in that the other end could
2853 * keep a socket open forever with no application left this end.
2854 * We use a 1 minute timeout (about the same as BSD) then kill
2855 * our end. If they send after that then tough - BUT: long enough
2856 * that we won't make the old 4*rto = almost no time - whoops
2857 * reset mistake.
2858 *
2859 * Nope, it was not mistake. It is really desired behaviour
2860 * f.e. on http servers, when such sockets are useless, but
2861 * consume significant resources. Let's do it with special
2862 * linger2 option. --ANK
2863 */
2864
2865 if (sk->sk_state == TCP_FIN_WAIT2) {
2866 struct tcp_sock *tp = tcp_sk(sk);
2867 if (READ_ONCE(tp->linger2) < 0) {
2868 tcp_set_state(sk, TCP_CLOSE);
2869 tcp_send_active_reset(sk, GFP_ATOMIC);
2870 __NET_INC_STATS(sock_net(sk),
2871 LINUX_MIB_TCPABORTONLINGER);
2872 } else {
2873 const int tmo = tcp_fin_time(sk);
2874
2875 if (tmo > TCP_TIMEWAIT_LEN) {
2876 inet_csk_reset_keepalive_timer(sk,
2877 tmo - TCP_TIMEWAIT_LEN);
2878 } else {
2879 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2880 goto out;
2881 }
2882 }
2883 }
2884 if (sk->sk_state != TCP_CLOSE) {
2885 if (tcp_check_oom(sk, 0)) {
2886 tcp_set_state(sk, TCP_CLOSE);
2887 tcp_send_active_reset(sk, GFP_ATOMIC);
2888 __NET_INC_STATS(sock_net(sk),
2889 LINUX_MIB_TCPABORTONMEMORY);
2890 } else if (!check_net(sock_net(sk))) {
2891 /* Not possible to send reset; just close */
2892 tcp_set_state(sk, TCP_CLOSE);
2893 }
2894 }
2895
2896 if (sk->sk_state == TCP_CLOSE) {
2897 struct request_sock *req;
2898
2899 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2900 lockdep_sock_is_held(sk));
2901 /* We could get here with a non-NULL req if the socket is
2902 * aborted (e.g., closed with unread data) before 3WHS
2903 * finishes.
2904 */
2905 if (req)
2906 reqsk_fastopen_remove(sk, req, false);
2907 inet_csk_destroy_sock(sk);
2908 }
2909 /* Otherwise, socket is reprieved until protocol close. */
2910
2911 out:
2912 bh_unlock_sock(sk);
2913 local_bh_enable();
2914 }
2915
2916 void tcp_close(struct sock *sk, long timeout)
2917 {
2918 lock_sock(sk);
2919 __tcp_close(sk, timeout);
2920 release_sock(sk);
2921 sock_put(sk);
2922 }
2923 EXPORT_SYMBOL(tcp_close);
2924
2925 /* These states need RST on ABORT according to RFC793 */
2926
2927 static inline bool tcp_need_reset(int state)
2928 {
2929 return (1 << state) &
2930 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2931 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2932 }
2933
2934 static void tcp_rtx_queue_purge(struct sock *sk)
2935 {
2936 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2937
2938 tcp_sk(sk)->highest_sack = NULL;
2939 while (p) {
2940 struct sk_buff *skb = rb_to_skb(p);
2941
2942 p = rb_next(p);
2943 /* Since we are deleting whole queue, no need to
2944 * list_del(&skb->tcp_tsorted_anchor)
2945 */
2946 tcp_rtx_queue_unlink(skb, sk);
2947 tcp_wmem_free_skb(sk, skb);
2948 }
2949 }
2950
2951 void tcp_write_queue_purge(struct sock *sk)
2952 {
2953 struct sk_buff *skb;
2954
2955 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2956 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2957 tcp_skb_tsorted_anchor_cleanup(skb);
2958 tcp_wmem_free_skb(sk, skb);
2959 }
2960 tcp_rtx_queue_purge(sk);
2961 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2962 tcp_clear_all_retrans_hints(tcp_sk(sk));
2963 tcp_sk(sk)->packets_out = 0;
2964 inet_csk(sk)->icsk_backoff = 0;
2965 }
2966
2967 int tcp_disconnect(struct sock *sk, int flags)
2968 {
2969 struct inet_sock *inet = inet_sk(sk);
2970 struct inet_connection_sock *icsk = inet_csk(sk);
2971 struct tcp_sock *tp = tcp_sk(sk);
2972 int old_state = sk->sk_state;
2973 u32 seq;
2974
2975 /* Deny disconnect if other threads are blocked in sk_wait_event()
2976 * or inet_wait_for_connect().
2977 */
2978 if (sk->sk_wait_pending)
2979 return -EBUSY;
2980
2981 if (old_state != TCP_CLOSE)
2982 tcp_set_state(sk, TCP_CLOSE);
2983
2984 /* ABORT function of RFC793 */
2985 if (old_state == TCP_LISTEN) {
2986 inet_csk_listen_stop(sk);
2987 } else if (unlikely(tp->repair)) {
2988 WRITE_ONCE(sk->sk_err, ECONNABORTED);
2989 } else if (tcp_need_reset(old_state) ||
2990 (tp->snd_nxt != tp->write_seq &&
2991 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2992 /* The last check adjusts for discrepancy of Linux wrt. RFC
2993 * states
2994 */
2995 tcp_send_active_reset(sk, gfp_any());
2996 WRITE_ONCE(sk->sk_err, ECONNRESET);
2997 } else if (old_state == TCP_SYN_SENT)
2998 WRITE_ONCE(sk->sk_err, ECONNRESET);
2999
3000 tcp_clear_xmit_timers(sk);
3001 __skb_queue_purge(&sk->sk_receive_queue);
3002 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3003 WRITE_ONCE(tp->urg_data, 0);
3004 tcp_write_queue_purge(sk);
3005 tcp_fastopen_active_disable_ofo_check(sk);
3006 skb_rbtree_purge(&tp->out_of_order_queue);
3007
3008 inet->inet_dport = 0;
3009
3010 inet_bhash2_reset_saddr(sk);
3011
3012 WRITE_ONCE(sk->sk_shutdown, 0);
3013 sock_reset_flag(sk, SOCK_DONE);
3014 tp->srtt_us = 0;
3015 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3016 tp->rcv_rtt_last_tsecr = 0;
3017
3018 seq = tp->write_seq + tp->max_window + 2;
3019 if (!seq)
3020 seq = 1;
3021 WRITE_ONCE(tp->write_seq, seq);
3022
3023 icsk->icsk_backoff = 0;
3024 icsk->icsk_probes_out = 0;
3025 icsk->icsk_probes_tstamp = 0;
3026 icsk->icsk_rto = TCP_TIMEOUT_INIT;
3027 icsk->icsk_rto_min = TCP_RTO_MIN;
3028 icsk->icsk_delack_max = TCP_DELACK_MAX;
3029 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3030 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3031 tp->snd_cwnd_cnt = 0;
3032 tp->is_cwnd_limited = 0;
3033 tp->max_packets_out = 0;
3034 tp->window_clamp = 0;
3035 tp->delivered = 0;
3036 tp->delivered_ce = 0;
3037 if (icsk->icsk_ca_ops->release)
3038 icsk->icsk_ca_ops->release(sk);
3039 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3040 icsk->icsk_ca_initialized = 0;
3041 tcp_set_ca_state(sk, TCP_CA_Open);
3042 tp->is_sack_reneg = 0;
3043 tcp_clear_retrans(tp);
3044 tp->total_retrans = 0;
3045 inet_csk_delack_init(sk);
3046 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3047 * issue in __tcp_select_window()
3048 */
3049 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3050 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3051 __sk_dst_reset(sk);
3052 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3053 tcp_saved_syn_free(tp);
3054 tp->compressed_ack = 0;
3055 tp->segs_in = 0;
3056 tp->segs_out = 0;
3057 tp->bytes_sent = 0;
3058 tp->bytes_acked = 0;
3059 tp->bytes_received = 0;
3060 tp->bytes_retrans = 0;
3061 tp->data_segs_in = 0;
3062 tp->data_segs_out = 0;
3063 tp->duplicate_sack[0].start_seq = 0;
3064 tp->duplicate_sack[0].end_seq = 0;
3065 tp->dsack_dups = 0;
3066 tp->reord_seen = 0;
3067 tp->retrans_out = 0;
3068 tp->sacked_out = 0;
3069 tp->tlp_high_seq = 0;
3070 tp->last_oow_ack_time = 0;
3071 tp->plb_rehash = 0;
3072 /* There's a bubble in the pipe until at least the first ACK. */
3073 tp->app_limited = ~0U;
3074 tp->rate_app_limited = 1;
3075 tp->rack.mstamp = 0;
3076 tp->rack.advanced = 0;
3077 tp->rack.reo_wnd_steps = 1;
3078 tp->rack.last_delivered = 0;
3079 tp->rack.reo_wnd_persist = 0;
3080 tp->rack.dsack_seen = 0;
3081 tp->syn_data_acked = 0;
3082 tp->rx_opt.saw_tstamp = 0;
3083 tp->rx_opt.dsack = 0;
3084 tp->rx_opt.num_sacks = 0;
3085 tp->rcv_ooopack = 0;
3086
3087
3088 /* Clean up fastopen related fields */
3089 tcp_free_fastopen_req(tp);
3090 inet_clear_bit(DEFER_CONNECT, sk);
3091 tp->fastopen_client_fail = 0;
3092
3093 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3094
3095 if (sk->sk_frag.page) {
3096 put_page(sk->sk_frag.page);
3097 sk->sk_frag.page = NULL;
3098 sk->sk_frag.offset = 0;
3099 }
3100 sk_error_report(sk);
3101 return 0;
3102 }
3103 EXPORT_SYMBOL(tcp_disconnect);
3104
3105 static inline bool tcp_can_repair_sock(const struct sock *sk)
3106 {
3107 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3108 (sk->sk_state != TCP_LISTEN);
3109 }
3110
3111 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3112 {
3113 struct tcp_repair_window opt;
3114
3115 if (!tp->repair)
3116 return -EPERM;
3117
3118 if (len != sizeof(opt))
3119 return -EINVAL;
3120
3121 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3122 return -EFAULT;
3123
3124 if (opt.max_window < opt.snd_wnd)
3125 return -EINVAL;
3126
3127 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3128 return -EINVAL;
3129
3130 if (after(opt.rcv_wup, tp->rcv_nxt))
3131 return -EINVAL;
3132
3133 tp->snd_wl1 = opt.snd_wl1;
3134 tp->snd_wnd = opt.snd_wnd;
3135 tp->max_window = opt.max_window;
3136
3137 tp->rcv_wnd = opt.rcv_wnd;
3138 tp->rcv_wup = opt.rcv_wup;
3139
3140 return 0;
3141 }
3142
3143 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3144 unsigned int len)
3145 {
3146 struct tcp_sock *tp = tcp_sk(sk);
3147 struct tcp_repair_opt opt;
3148 size_t offset = 0;
3149
3150 while (len >= sizeof(opt)) {
3151 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3152 return -EFAULT;
3153
3154 offset += sizeof(opt);
3155 len -= sizeof(opt);
3156
3157 switch (opt.opt_code) {
3158 case TCPOPT_MSS:
3159 tp->rx_opt.mss_clamp = opt.opt_val;
3160 tcp_mtup_init(sk);
3161 break;
3162 case TCPOPT_WINDOW:
3163 {
3164 u16 snd_wscale = opt.opt_val & 0xFFFF;
3165 u16 rcv_wscale = opt.opt_val >> 16;
3166
3167 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3168 return -EFBIG;
3169
3170 tp->rx_opt.snd_wscale = snd_wscale;
3171 tp->rx_opt.rcv_wscale = rcv_wscale;
3172 tp->rx_opt.wscale_ok = 1;
3173 }
3174 break;
3175 case TCPOPT_SACK_PERM:
3176 if (opt.opt_val != 0)
3177 return -EINVAL;
3178
3179 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3180 break;
3181 case TCPOPT_TIMESTAMP:
3182 if (opt.opt_val != 0)
3183 return -EINVAL;
3184
3185 tp->rx_opt.tstamp_ok = 1;
3186 break;
3187 }
3188 }
3189
3190 return 0;
3191 }
3192
3193 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3194 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3195
3196 static void tcp_enable_tx_delay(void)
3197 {
3198 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3199 static int __tcp_tx_delay_enabled = 0;
3200
3201 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3202 static_branch_enable(&tcp_tx_delay_enabled);
3203 pr_info("TCP_TX_DELAY enabled\n");
3204 }
3205 }
3206 }
3207
3208 /* When set indicates to always queue non-full frames. Later the user clears
3209 * this option and we transmit any pending partial frames in the queue. This is
3210 * meant to be used alongside sendfile() to get properly filled frames when the
3211 * user (for example) must write out headers with a write() call first and then
3212 * use sendfile to send out the data parts.
3213 *
3214 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3215 * TCP_NODELAY.
3216 */
3217 void __tcp_sock_set_cork(struct sock *sk, bool on)
3218 {
3219 struct tcp_sock *tp = tcp_sk(sk);
3220
3221 if (on) {
3222 tp->nonagle |= TCP_NAGLE_CORK;
3223 } else {
3224 tp->nonagle &= ~TCP_NAGLE_CORK;
3225 if (tp->nonagle & TCP_NAGLE_OFF)
3226 tp->nonagle |= TCP_NAGLE_PUSH;
3227 tcp_push_pending_frames(sk);
3228 }
3229 }
3230
3231 void tcp_sock_set_cork(struct sock *sk, bool on)
3232 {
3233 lock_sock(sk);
3234 __tcp_sock_set_cork(sk, on);
3235 release_sock(sk);
3236 }
3237 EXPORT_SYMBOL(tcp_sock_set_cork);
3238
3239 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3240 * remembered, but it is not activated until cork is cleared.
3241 *
3242 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3243 * even TCP_CORK for currently queued segments.
3244 */
3245 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3246 {
3247 if (on) {
3248 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3249 tcp_push_pending_frames(sk);
3250 } else {
3251 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3252 }
3253 }
3254
3255 void tcp_sock_set_nodelay(struct sock *sk)
3256 {
3257 lock_sock(sk);
3258 __tcp_sock_set_nodelay(sk, true);
3259 release_sock(sk);
3260 }
3261 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3262
3263 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3264 {
3265 if (!val) {
3266 inet_csk_enter_pingpong_mode(sk);
3267 return;
3268 }
3269
3270 inet_csk_exit_pingpong_mode(sk);
3271 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3272 inet_csk_ack_scheduled(sk)) {
3273 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3274 tcp_cleanup_rbuf(sk, 1);
3275 if (!(val & 1))
3276 inet_csk_enter_pingpong_mode(sk);
3277 }
3278 }
3279
3280 void tcp_sock_set_quickack(struct sock *sk, int val)
3281 {
3282 lock_sock(sk);
3283 __tcp_sock_set_quickack(sk, val);
3284 release_sock(sk);
3285 }
3286 EXPORT_SYMBOL(tcp_sock_set_quickack);
3287
3288 int tcp_sock_set_syncnt(struct sock *sk, int val)
3289 {
3290 if (val < 1 || val > MAX_TCP_SYNCNT)
3291 return -EINVAL;
3292
3293 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3294 return 0;
3295 }
3296 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3297
3298 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3299 {
3300 /* Cap the max time in ms TCP will retry or probe the window
3301 * before giving up and aborting (ETIMEDOUT) a connection.
3302 */
3303 if (val < 0)
3304 return -EINVAL;
3305
3306 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3307 return 0;
3308 }
3309 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3310
3311 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3312 {
3313 struct tcp_sock *tp = tcp_sk(sk);
3314
3315 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3316 return -EINVAL;
3317
3318 /* Paired with WRITE_ONCE() in keepalive_time_when() */
3319 WRITE_ONCE(tp->keepalive_time, val * HZ);
3320 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3321 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3322 u32 elapsed = keepalive_time_elapsed(tp);
3323
3324 if (tp->keepalive_time > elapsed)
3325 elapsed = tp->keepalive_time - elapsed;
3326 else
3327 elapsed = 0;
3328 inet_csk_reset_keepalive_timer(sk, elapsed);
3329 }
3330
3331 return 0;
3332 }
3333
3334 int tcp_sock_set_keepidle(struct sock *sk, int val)
3335 {
3336 int err;
3337
3338 lock_sock(sk);
3339 err = tcp_sock_set_keepidle_locked(sk, val);
3340 release_sock(sk);
3341 return err;
3342 }
3343 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3344
3345 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3346 {
3347 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3348 return -EINVAL;
3349
3350 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3351 return 0;
3352 }
3353 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3354
3355 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3356 {
3357 if (val < 1 || val > MAX_TCP_KEEPCNT)
3358 return -EINVAL;
3359
3360 /* Paired with READ_ONCE() in keepalive_probes() */
3361 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3362 return 0;
3363 }
3364 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3365
3366 int tcp_set_window_clamp(struct sock *sk, int val)
3367 {
3368 struct tcp_sock *tp = tcp_sk(sk);
3369
3370 if (!val) {
3371 if (sk->sk_state != TCP_CLOSE)
3372 return -EINVAL;
3373 tp->window_clamp = 0;
3374 } else {
3375 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3376 SOCK_MIN_RCVBUF / 2 : val;
3377 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3378 }
3379 return 0;
3380 }
3381
3382 /*
3383 * Socket option code for TCP.
3384 */
3385 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3386 sockptr_t optval, unsigned int optlen)
3387 {
3388 struct tcp_sock *tp = tcp_sk(sk);
3389 struct inet_connection_sock *icsk = inet_csk(sk);
3390 struct net *net = sock_net(sk);
3391 int val;
3392 int err = 0;
3393
3394 /* These are data/string values, all the others are ints */
3395 switch (optname) {
3396 case TCP_CONGESTION: {
3397 char name[TCP_CA_NAME_MAX];
3398
3399 if (optlen < 1)
3400 return -EINVAL;
3401
3402 val = strncpy_from_sockptr(name, optval,
3403 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3404 if (val < 0)
3405 return -EFAULT;
3406 name[val] = 0;
3407
3408 sockopt_lock_sock(sk);
3409 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3410 sockopt_ns_capable(sock_net(sk)->user_ns,
3411 CAP_NET_ADMIN));
3412 sockopt_release_sock(sk);
3413 return err;
3414 }
3415 case TCP_ULP: {
3416 char name[TCP_ULP_NAME_MAX];
3417
3418 if (optlen < 1)
3419 return -EINVAL;
3420
3421 val = strncpy_from_sockptr(name, optval,
3422 min_t(long, TCP_ULP_NAME_MAX - 1,
3423 optlen));
3424 if (val < 0)
3425 return -EFAULT;
3426 name[val] = 0;
3427
3428 sockopt_lock_sock(sk);
3429 err = tcp_set_ulp(sk, name);
3430 sockopt_release_sock(sk);
3431 return err;
3432 }
3433 case TCP_FASTOPEN_KEY: {
3434 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3435 __u8 *backup_key = NULL;
3436
3437 /* Allow a backup key as well to facilitate key rotation
3438 * First key is the active one.
3439 */
3440 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3441 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3442 return -EINVAL;
3443
3444 if (copy_from_sockptr(key, optval, optlen))
3445 return -EFAULT;
3446
3447 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3448 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3449
3450 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3451 }
3452 default:
3453 /* fallthru */
3454 break;
3455 }
3456
3457 if (optlen < sizeof(int))
3458 return -EINVAL;
3459
3460 if (copy_from_sockptr(&val, optval, sizeof(val)))
3461 return -EFAULT;
3462
3463 /* Handle options that can be set without locking the socket. */
3464 switch (optname) {
3465 case TCP_SYNCNT:
3466 return tcp_sock_set_syncnt(sk, val);
3467 case TCP_USER_TIMEOUT:
3468 return tcp_sock_set_user_timeout(sk, val);
3469 case TCP_KEEPINTVL:
3470 return tcp_sock_set_keepintvl(sk, val);
3471 case TCP_KEEPCNT:
3472 return tcp_sock_set_keepcnt(sk, val);
3473 case TCP_LINGER2:
3474 if (val < 0)
3475 WRITE_ONCE(tp->linger2, -1);
3476 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3477 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3478 else
3479 WRITE_ONCE(tp->linger2, val * HZ);
3480 return 0;
3481 case TCP_DEFER_ACCEPT:
3482 /* Translate value in seconds to number of retransmits */
3483 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3484 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3485 TCP_RTO_MAX / HZ));
3486 return 0;
3487 }
3488
3489 sockopt_lock_sock(sk);
3490
3491 switch (optname) {
3492 case TCP_MAXSEG:
3493 /* Values greater than interface MTU won't take effect. However
3494 * at the point when this call is done we typically don't yet
3495 * know which interface is going to be used
3496 */
3497 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3498 err = -EINVAL;
3499 break;
3500 }
3501 tp->rx_opt.user_mss = val;
3502 break;
3503
3504 case TCP_NODELAY:
3505 __tcp_sock_set_nodelay(sk, val);
3506 break;
3507
3508 case TCP_THIN_LINEAR_TIMEOUTS:
3509 if (val < 0 || val > 1)
3510 err = -EINVAL;
3511 else
3512 tp->thin_lto = val;
3513 break;
3514
3515 case TCP_THIN_DUPACK:
3516 if (val < 0 || val > 1)
3517 err = -EINVAL;
3518 break;
3519
3520 case TCP_REPAIR:
3521 if (!tcp_can_repair_sock(sk))
3522 err = -EPERM;
3523 else if (val == TCP_REPAIR_ON) {
3524 tp->repair = 1;
3525 sk->sk_reuse = SK_FORCE_REUSE;
3526 tp->repair_queue = TCP_NO_QUEUE;
3527 } else if (val == TCP_REPAIR_OFF) {
3528 tp->repair = 0;
3529 sk->sk_reuse = SK_NO_REUSE;
3530 tcp_send_window_probe(sk);
3531 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3532 tp->repair = 0;
3533 sk->sk_reuse = SK_NO_REUSE;
3534 } else
3535 err = -EINVAL;
3536
3537 break;
3538
3539 case TCP_REPAIR_QUEUE:
3540 if (!tp->repair)
3541 err = -EPERM;
3542 else if ((unsigned int)val < TCP_QUEUES_NR)
3543 tp->repair_queue = val;
3544 else
3545 err = -EINVAL;
3546 break;
3547
3548 case TCP_QUEUE_SEQ:
3549 if (sk->sk_state != TCP_CLOSE) {
3550 err = -EPERM;
3551 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3552 if (!tcp_rtx_queue_empty(sk))
3553 err = -EPERM;
3554 else
3555 WRITE_ONCE(tp->write_seq, val);
3556 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3557 if (tp->rcv_nxt != tp->copied_seq) {
3558 err = -EPERM;
3559 } else {
3560 WRITE_ONCE(tp->rcv_nxt, val);
3561 WRITE_ONCE(tp->copied_seq, val);
3562 }
3563 } else {
3564 err = -EINVAL;
3565 }
3566 break;
3567
3568 case TCP_REPAIR_OPTIONS:
3569 if (!tp->repair)
3570 err = -EINVAL;
3571 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3572 err = tcp_repair_options_est(sk, optval, optlen);
3573 else
3574 err = -EPERM;
3575 break;
3576
3577 case TCP_CORK:
3578 __tcp_sock_set_cork(sk, val);
3579 break;
3580
3581 case TCP_KEEPIDLE:
3582 err = tcp_sock_set_keepidle_locked(sk, val);
3583 break;
3584 case TCP_SAVE_SYN:
3585 /* 0: disable, 1: enable, 2: start from ether_header */
3586 if (val < 0 || val > 2)
3587 err = -EINVAL;
3588 else
3589 tp->save_syn = val;
3590 break;
3591
3592 case TCP_WINDOW_CLAMP:
3593 err = tcp_set_window_clamp(sk, val);
3594 break;
3595
3596 case TCP_QUICKACK:
3597 __tcp_sock_set_quickack(sk, val);
3598 break;
3599
3600 #ifdef CONFIG_TCP_MD5SIG
3601 case TCP_MD5SIG:
3602 case TCP_MD5SIG_EXT:
3603 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3604 break;
3605 #endif
3606 case TCP_FASTOPEN:
3607 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3608 TCPF_LISTEN))) {
3609 tcp_fastopen_init_key_once(net);
3610
3611 fastopen_queue_tune(sk, val);
3612 } else {
3613 err = -EINVAL;
3614 }
3615 break;
3616 case TCP_FASTOPEN_CONNECT:
3617 if (val > 1 || val < 0) {
3618 err = -EINVAL;
3619 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3620 TFO_CLIENT_ENABLE) {
3621 if (sk->sk_state == TCP_CLOSE)
3622 tp->fastopen_connect = val;
3623 else
3624 err = -EINVAL;
3625 } else {
3626 err = -EOPNOTSUPP;
3627 }
3628 break;
3629 case TCP_FASTOPEN_NO_COOKIE:
3630 if (val > 1 || val < 0)
3631 err = -EINVAL;
3632 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3633 err = -EINVAL;
3634 else
3635 tp->fastopen_no_cookie = val;
3636 break;
3637 case TCP_TIMESTAMP:
3638 if (!tp->repair)
3639 err = -EPERM;
3640 else
3641 WRITE_ONCE(tp->tsoffset, val - tcp_time_stamp_raw());
3642 break;
3643 case TCP_REPAIR_WINDOW:
3644 err = tcp_repair_set_window(tp, optval, optlen);
3645 break;
3646 case TCP_NOTSENT_LOWAT:
3647 WRITE_ONCE(tp->notsent_lowat, val);
3648 sk->sk_write_space(sk);
3649 break;
3650 case TCP_INQ:
3651 if (val > 1 || val < 0)
3652 err = -EINVAL;
3653 else
3654 tp->recvmsg_inq = val;
3655 break;
3656 case TCP_TX_DELAY:
3657 if (val)
3658 tcp_enable_tx_delay();
3659 WRITE_ONCE(tp->tcp_tx_delay, val);
3660 break;
3661 default:
3662 err = -ENOPROTOOPT;
3663 break;
3664 }
3665
3666 sockopt_release_sock(sk);
3667 return err;
3668 }
3669
3670 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3671 unsigned int optlen)
3672 {
3673 const struct inet_connection_sock *icsk = inet_csk(sk);
3674
3675 if (level != SOL_TCP)
3676 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3677 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3678 optval, optlen);
3679 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3680 }
3681 EXPORT_SYMBOL(tcp_setsockopt);
3682
3683 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3684 struct tcp_info *info)
3685 {
3686 u64 stats[__TCP_CHRONO_MAX], total = 0;
3687 enum tcp_chrono i;
3688
3689 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3690 stats[i] = tp->chrono_stat[i - 1];
3691 if (i == tp->chrono_type)
3692 stats[i] += tcp_jiffies32 - tp->chrono_start;
3693 stats[i] *= USEC_PER_SEC / HZ;
3694 total += stats[i];
3695 }
3696
3697 info->tcpi_busy_time = total;
3698 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3699 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3700 }
3701
3702 /* Return information about state of tcp endpoint in API format. */
3703 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3704 {
3705 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3706 const struct inet_connection_sock *icsk = inet_csk(sk);
3707 unsigned long rate;
3708 u32 now;
3709 u64 rate64;
3710 bool slow;
3711
3712 memset(info, 0, sizeof(*info));
3713 if (sk->sk_type != SOCK_STREAM)
3714 return;
3715
3716 info->tcpi_state = inet_sk_state_load(sk);
3717
3718 /* Report meaningful fields for all TCP states, including listeners */
3719 rate = READ_ONCE(sk->sk_pacing_rate);
3720 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3721 info->tcpi_pacing_rate = rate64;
3722
3723 rate = READ_ONCE(sk->sk_max_pacing_rate);
3724 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3725 info->tcpi_max_pacing_rate = rate64;
3726
3727 info->tcpi_reordering = tp->reordering;
3728 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3729
3730 if (info->tcpi_state == TCP_LISTEN) {
3731 /* listeners aliased fields :
3732 * tcpi_unacked -> Number of children ready for accept()
3733 * tcpi_sacked -> max backlog
3734 */
3735 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3736 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3737 return;
3738 }
3739
3740 slow = lock_sock_fast(sk);
3741
3742 info->tcpi_ca_state = icsk->icsk_ca_state;
3743 info->tcpi_retransmits = icsk->icsk_retransmits;
3744 info->tcpi_probes = icsk->icsk_probes_out;
3745 info->tcpi_backoff = icsk->icsk_backoff;
3746
3747 if (tp->rx_opt.tstamp_ok)
3748 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3749 if (tcp_is_sack(tp))
3750 info->tcpi_options |= TCPI_OPT_SACK;
3751 if (tp->rx_opt.wscale_ok) {
3752 info->tcpi_options |= TCPI_OPT_WSCALE;
3753 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3754 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3755 }
3756
3757 if (tp->ecn_flags & TCP_ECN_OK)
3758 info->tcpi_options |= TCPI_OPT_ECN;
3759 if (tp->ecn_flags & TCP_ECN_SEEN)
3760 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3761 if (tp->syn_data_acked)
3762 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3763
3764 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3765 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3766 info->tcpi_snd_mss = tp->mss_cache;
3767 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3768
3769 info->tcpi_unacked = tp->packets_out;
3770 info->tcpi_sacked = tp->sacked_out;
3771
3772 info->tcpi_lost = tp->lost_out;
3773 info->tcpi_retrans = tp->retrans_out;
3774
3775 now = tcp_jiffies32;
3776 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3777 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3778 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3779
3780 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3781 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3782 info->tcpi_rtt = tp->srtt_us >> 3;
3783 info->tcpi_rttvar = tp->mdev_us >> 2;
3784 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3785 info->tcpi_advmss = tp->advmss;
3786
3787 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3788 info->tcpi_rcv_space = tp->rcvq_space.space;
3789
3790 info->tcpi_total_retrans = tp->total_retrans;
3791
3792 info->tcpi_bytes_acked = tp->bytes_acked;
3793 info->tcpi_bytes_received = tp->bytes_received;
3794 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3795 tcp_get_info_chrono_stats(tp, info);
3796
3797 info->tcpi_segs_out = tp->segs_out;
3798
3799 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3800 info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3801 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3802
3803 info->tcpi_min_rtt = tcp_min_rtt(tp);
3804 info->tcpi_data_segs_out = tp->data_segs_out;
3805
3806 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3807 rate64 = tcp_compute_delivery_rate(tp);
3808 if (rate64)
3809 info->tcpi_delivery_rate = rate64;
3810 info->tcpi_delivered = tp->delivered;
3811 info->tcpi_delivered_ce = tp->delivered_ce;
3812 info->tcpi_bytes_sent = tp->bytes_sent;
3813 info->tcpi_bytes_retrans = tp->bytes_retrans;
3814 info->tcpi_dsack_dups = tp->dsack_dups;
3815 info->tcpi_reord_seen = tp->reord_seen;
3816 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3817 info->tcpi_snd_wnd = tp->snd_wnd;
3818 info->tcpi_rcv_wnd = tp->rcv_wnd;
3819 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3820 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3821 unlock_sock_fast(sk, slow);
3822 }
3823 EXPORT_SYMBOL_GPL(tcp_get_info);
3824
3825 static size_t tcp_opt_stats_get_size(void)
3826 {
3827 return
3828 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3829 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3830 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3831 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3832 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3833 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3834 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3835 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3836 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3837 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3838 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3839 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3840 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3841 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3842 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3843 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3844 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3845 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3846 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3847 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3848 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3849 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3850 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3851 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3852 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3853 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3854 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3855 0;
3856 }
3857
3858 /* Returns TTL or hop limit of an incoming packet from skb. */
3859 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3860 {
3861 if (skb->protocol == htons(ETH_P_IP))
3862 return ip_hdr(skb)->ttl;
3863 else if (skb->protocol == htons(ETH_P_IPV6))
3864 return ipv6_hdr(skb)->hop_limit;
3865 else
3866 return 0;
3867 }
3868
3869 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3870 const struct sk_buff *orig_skb,
3871 const struct sk_buff *ack_skb)
3872 {
3873 const struct tcp_sock *tp = tcp_sk(sk);
3874 struct sk_buff *stats;
3875 struct tcp_info info;
3876 unsigned long rate;
3877 u64 rate64;
3878
3879 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3880 if (!stats)
3881 return NULL;
3882
3883 tcp_get_info_chrono_stats(tp, &info);
3884 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3885 info.tcpi_busy_time, TCP_NLA_PAD);
3886 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3887 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3888 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3889 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3890 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3891 tp->data_segs_out, TCP_NLA_PAD);
3892 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3893 tp->total_retrans, TCP_NLA_PAD);
3894
3895 rate = READ_ONCE(sk->sk_pacing_rate);
3896 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3897 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3898
3899 rate64 = tcp_compute_delivery_rate(tp);
3900 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3901
3902 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3903 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3904 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3905
3906 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3907 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3908 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3909 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3910 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3911
3912 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3913 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3914
3915 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3916 TCP_NLA_PAD);
3917 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3918 TCP_NLA_PAD);
3919 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3920 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3921 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3922 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3923 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3924 max_t(int, 0, tp->write_seq - tp->snd_nxt));
3925 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3926 TCP_NLA_PAD);
3927 if (ack_skb)
3928 nla_put_u8(stats, TCP_NLA_TTL,
3929 tcp_skb_ttl_or_hop_limit(ack_skb));
3930
3931 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
3932 return stats;
3933 }
3934
3935 int do_tcp_getsockopt(struct sock *sk, int level,
3936 int optname, sockptr_t optval, sockptr_t optlen)
3937 {
3938 struct inet_connection_sock *icsk = inet_csk(sk);
3939 struct tcp_sock *tp = tcp_sk(sk);
3940 struct net *net = sock_net(sk);
3941 int val, len;
3942
3943 if (copy_from_sockptr(&len, optlen, sizeof(int)))
3944 return -EFAULT;
3945
3946 len = min_t(unsigned int, len, sizeof(int));
3947
3948 if (len < 0)
3949 return -EINVAL;
3950
3951 switch (optname) {
3952 case TCP_MAXSEG:
3953 val = tp->mss_cache;
3954 if (tp->rx_opt.user_mss &&
3955 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3956 val = tp->rx_opt.user_mss;
3957 if (tp->repair)
3958 val = tp->rx_opt.mss_clamp;
3959 break;
3960 case TCP_NODELAY:
3961 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3962 break;
3963 case TCP_CORK:
3964 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3965 break;
3966 case TCP_KEEPIDLE:
3967 val = keepalive_time_when(tp) / HZ;
3968 break;
3969 case TCP_KEEPINTVL:
3970 val = keepalive_intvl_when(tp) / HZ;
3971 break;
3972 case TCP_KEEPCNT:
3973 val = keepalive_probes(tp);
3974 break;
3975 case TCP_SYNCNT:
3976 val = READ_ONCE(icsk->icsk_syn_retries) ? :
3977 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
3978 break;
3979 case TCP_LINGER2:
3980 val = READ_ONCE(tp->linger2);
3981 if (val >= 0)
3982 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
3983 break;
3984 case TCP_DEFER_ACCEPT:
3985 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
3986 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
3987 TCP_RTO_MAX / HZ);
3988 break;
3989 case TCP_WINDOW_CLAMP:
3990 val = tp->window_clamp;
3991 break;
3992 case TCP_INFO: {
3993 struct tcp_info info;
3994
3995 if (copy_from_sockptr(&len, optlen, sizeof(int)))
3996 return -EFAULT;
3997
3998 tcp_get_info(sk, &info);
3999
4000 len = min_t(unsigned int, len, sizeof(info));
4001 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4002 return -EFAULT;
4003 if (copy_to_sockptr(optval, &info, len))
4004 return -EFAULT;
4005 return 0;
4006 }
4007 case TCP_CC_INFO: {
4008 const struct tcp_congestion_ops *ca_ops;
4009 union tcp_cc_info info;
4010 size_t sz = 0;
4011 int attr;
4012
4013 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4014 return -EFAULT;
4015
4016 ca_ops = icsk->icsk_ca_ops;
4017 if (ca_ops && ca_ops->get_info)
4018 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4019
4020 len = min_t(unsigned int, len, sz);
4021 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4022 return -EFAULT;
4023 if (copy_to_sockptr(optval, &info, len))
4024 return -EFAULT;
4025 return 0;
4026 }
4027 case TCP_QUICKACK:
4028 val = !inet_csk_in_pingpong_mode(sk);
4029 break;
4030
4031 case TCP_CONGESTION:
4032 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4033 return -EFAULT;
4034 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4035 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4036 return -EFAULT;
4037 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4038 return -EFAULT;
4039 return 0;
4040
4041 case TCP_ULP:
4042 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4043 return -EFAULT;
4044 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4045 if (!icsk->icsk_ulp_ops) {
4046 len = 0;
4047 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4048 return -EFAULT;
4049 return 0;
4050 }
4051 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4052 return -EFAULT;
4053 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4054 return -EFAULT;
4055 return 0;
4056
4057 case TCP_FASTOPEN_KEY: {
4058 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4059 unsigned int key_len;
4060
4061 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4062 return -EFAULT;
4063
4064 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4065 TCP_FASTOPEN_KEY_LENGTH;
4066 len = min_t(unsigned int, len, key_len);
4067 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4068 return -EFAULT;
4069 if (copy_to_sockptr(optval, key, len))
4070 return -EFAULT;
4071 return 0;
4072 }
4073 case TCP_THIN_LINEAR_TIMEOUTS:
4074 val = tp->thin_lto;
4075 break;
4076
4077 case TCP_THIN_DUPACK:
4078 val = 0;
4079 break;
4080
4081 case TCP_REPAIR:
4082 val = tp->repair;
4083 break;
4084
4085 case TCP_REPAIR_QUEUE:
4086 if (tp->repair)
4087 val = tp->repair_queue;
4088 else
4089 return -EINVAL;
4090 break;
4091
4092 case TCP_REPAIR_WINDOW: {
4093 struct tcp_repair_window opt;
4094
4095 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4096 return -EFAULT;
4097
4098 if (len != sizeof(opt))
4099 return -EINVAL;
4100
4101 if (!tp->repair)
4102 return -EPERM;
4103
4104 opt.snd_wl1 = tp->snd_wl1;
4105 opt.snd_wnd = tp->snd_wnd;
4106 opt.max_window = tp->max_window;
4107 opt.rcv_wnd = tp->rcv_wnd;
4108 opt.rcv_wup = tp->rcv_wup;
4109
4110 if (copy_to_sockptr(optval, &opt, len))
4111 return -EFAULT;
4112 return 0;
4113 }
4114 case TCP_QUEUE_SEQ:
4115 if (tp->repair_queue == TCP_SEND_QUEUE)
4116 val = tp->write_seq;
4117 else if (tp->repair_queue == TCP_RECV_QUEUE)
4118 val = tp->rcv_nxt;
4119 else
4120 return -EINVAL;
4121 break;
4122
4123 case TCP_USER_TIMEOUT:
4124 val = READ_ONCE(icsk->icsk_user_timeout);
4125 break;
4126
4127 case TCP_FASTOPEN:
4128 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4129 break;
4130
4131 case TCP_FASTOPEN_CONNECT:
4132 val = tp->fastopen_connect;
4133 break;
4134
4135 case TCP_FASTOPEN_NO_COOKIE:
4136 val = tp->fastopen_no_cookie;
4137 break;
4138
4139 case TCP_TX_DELAY:
4140 val = READ_ONCE(tp->tcp_tx_delay);
4141 break;
4142
4143 case TCP_TIMESTAMP:
4144 val = tcp_time_stamp_raw() + READ_ONCE(tp->tsoffset);
4145 break;
4146 case TCP_NOTSENT_LOWAT:
4147 val = READ_ONCE(tp->notsent_lowat);
4148 break;
4149 case TCP_INQ:
4150 val = tp->recvmsg_inq;
4151 break;
4152 case TCP_SAVE_SYN:
4153 val = tp->save_syn;
4154 break;
4155 case TCP_SAVED_SYN: {
4156 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4157 return -EFAULT;
4158
4159 sockopt_lock_sock(sk);
4160 if (tp->saved_syn) {
4161 if (len < tcp_saved_syn_len(tp->saved_syn)) {
4162 len = tcp_saved_syn_len(tp->saved_syn);
4163 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4164 sockopt_release_sock(sk);
4165 return -EFAULT;
4166 }
4167 sockopt_release_sock(sk);
4168 return -EINVAL;
4169 }
4170 len = tcp_saved_syn_len(tp->saved_syn);
4171 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4172 sockopt_release_sock(sk);
4173 return -EFAULT;
4174 }
4175 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4176 sockopt_release_sock(sk);
4177 return -EFAULT;
4178 }
4179 tcp_saved_syn_free(tp);
4180 sockopt_release_sock(sk);
4181 } else {
4182 sockopt_release_sock(sk);
4183 len = 0;
4184 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4185 return -EFAULT;
4186 }
4187 return 0;
4188 }
4189 #ifdef CONFIG_MMU
4190 case TCP_ZEROCOPY_RECEIVE: {
4191 struct scm_timestamping_internal tss;
4192 struct tcp_zerocopy_receive zc = {};
4193 int err;
4194
4195 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4196 return -EFAULT;
4197 if (len < 0 ||
4198 len < offsetofend(struct tcp_zerocopy_receive, length))
4199 return -EINVAL;
4200 if (unlikely(len > sizeof(zc))) {
4201 err = check_zeroed_sockptr(optval, sizeof(zc),
4202 len - sizeof(zc));
4203 if (err < 1)
4204 return err == 0 ? -EINVAL : err;
4205 len = sizeof(zc);
4206 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4207 return -EFAULT;
4208 }
4209 if (copy_from_sockptr(&zc, optval, len))
4210 return -EFAULT;
4211 if (zc.reserved)
4212 return -EINVAL;
4213 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
4214 return -EINVAL;
4215 sockopt_lock_sock(sk);
4216 err = tcp_zerocopy_receive(sk, &zc, &tss);
4217 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4218 &zc, &len, err);
4219 sockopt_release_sock(sk);
4220 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4221 goto zerocopy_rcv_cmsg;
4222 switch (len) {
4223 case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4224 goto zerocopy_rcv_cmsg;
4225 case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4226 case offsetofend(struct tcp_zerocopy_receive, msg_control):
4227 case offsetofend(struct tcp_zerocopy_receive, flags):
4228 case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4229 case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4230 case offsetofend(struct tcp_zerocopy_receive, err):
4231 goto zerocopy_rcv_sk_err;
4232 case offsetofend(struct tcp_zerocopy_receive, inq):
4233 goto zerocopy_rcv_inq;
4234 case offsetofend(struct tcp_zerocopy_receive, length):
4235 default:
4236 goto zerocopy_rcv_out;
4237 }
4238 zerocopy_rcv_cmsg:
4239 if (zc.msg_flags & TCP_CMSG_TS)
4240 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4241 else
4242 zc.msg_flags = 0;
4243 zerocopy_rcv_sk_err:
4244 if (!err)
4245 zc.err = sock_error(sk);
4246 zerocopy_rcv_inq:
4247 zc.inq = tcp_inq_hint(sk);
4248 zerocopy_rcv_out:
4249 if (!err && copy_to_sockptr(optval, &zc, len))
4250 err = -EFAULT;
4251 return err;
4252 }
4253 #endif
4254 default:
4255 return -ENOPROTOOPT;
4256 }
4257
4258 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4259 return -EFAULT;
4260 if (copy_to_sockptr(optval, &val, len))
4261 return -EFAULT;
4262 return 0;
4263 }
4264
4265 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4266 {
4267 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4268 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4269 */
4270 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4271 return true;
4272
4273 return false;
4274 }
4275 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4276
4277 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4278 int __user *optlen)
4279 {
4280 struct inet_connection_sock *icsk = inet_csk(sk);
4281
4282 if (level != SOL_TCP)
4283 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4284 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4285 optval, optlen);
4286 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4287 USER_SOCKPTR(optlen));
4288 }
4289 EXPORT_SYMBOL(tcp_getsockopt);
4290
4291 #ifdef CONFIG_TCP_MD5SIG
4292 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4293 static DEFINE_MUTEX(tcp_md5sig_mutex);
4294 static bool tcp_md5sig_pool_populated = false;
4295
4296 static void __tcp_alloc_md5sig_pool(void)
4297 {
4298 struct crypto_ahash *hash;
4299 int cpu;
4300
4301 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4302 if (IS_ERR(hash))
4303 return;
4304
4305 for_each_possible_cpu(cpu) {
4306 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4307 struct ahash_request *req;
4308
4309 if (!scratch) {
4310 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4311 sizeof(struct tcphdr),
4312 GFP_KERNEL,
4313 cpu_to_node(cpu));
4314 if (!scratch)
4315 return;
4316 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4317 }
4318 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4319 continue;
4320
4321 req = ahash_request_alloc(hash, GFP_KERNEL);
4322 if (!req)
4323 return;
4324
4325 ahash_request_set_callback(req, 0, NULL, NULL);
4326
4327 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4328 }
4329 /* before setting tcp_md5sig_pool_populated, we must commit all writes
4330 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4331 */
4332 smp_wmb();
4333 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4334 * and tcp_get_md5sig_pool().
4335 */
4336 WRITE_ONCE(tcp_md5sig_pool_populated, true);
4337 }
4338
4339 bool tcp_alloc_md5sig_pool(void)
4340 {
4341 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4342 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4343 mutex_lock(&tcp_md5sig_mutex);
4344
4345 if (!tcp_md5sig_pool_populated)
4346 __tcp_alloc_md5sig_pool();
4347
4348 mutex_unlock(&tcp_md5sig_mutex);
4349 }
4350 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4351 return READ_ONCE(tcp_md5sig_pool_populated);
4352 }
4353 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4354
4355
4356 /**
4357 * tcp_get_md5sig_pool - get md5sig_pool for this user
4358 *
4359 * We use percpu structure, so if we succeed, we exit with preemption
4360 * and BH disabled, to make sure another thread or softirq handling
4361 * wont try to get same context.
4362 */
4363 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4364 {
4365 local_bh_disable();
4366
4367 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4368 if (READ_ONCE(tcp_md5sig_pool_populated)) {
4369 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4370 smp_rmb();
4371 return this_cpu_ptr(&tcp_md5sig_pool);
4372 }
4373 local_bh_enable();
4374 return NULL;
4375 }
4376 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4377
4378 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4379 const struct sk_buff *skb, unsigned int header_len)
4380 {
4381 struct scatterlist sg;
4382 const struct tcphdr *tp = tcp_hdr(skb);
4383 struct ahash_request *req = hp->md5_req;
4384 unsigned int i;
4385 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4386 skb_headlen(skb) - header_len : 0;
4387 const struct skb_shared_info *shi = skb_shinfo(skb);
4388 struct sk_buff *frag_iter;
4389
4390 sg_init_table(&sg, 1);
4391
4392 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4393 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4394 if (crypto_ahash_update(req))
4395 return 1;
4396
4397 for (i = 0; i < shi->nr_frags; ++i) {
4398 const skb_frag_t *f = &shi->frags[i];
4399 unsigned int offset = skb_frag_off(f);
4400 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4401
4402 sg_set_page(&sg, page, skb_frag_size(f),
4403 offset_in_page(offset));
4404 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4405 if (crypto_ahash_update(req))
4406 return 1;
4407 }
4408
4409 skb_walk_frags(skb, frag_iter)
4410 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4411 return 1;
4412
4413 return 0;
4414 }
4415 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4416
4417 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4418 {
4419 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4420 struct scatterlist sg;
4421
4422 sg_init_one(&sg, key->key, keylen);
4423 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4424
4425 /* We use data_race() because tcp_md5_do_add() might change key->key under us */
4426 return data_race(crypto_ahash_update(hp->md5_req));
4427 }
4428 EXPORT_SYMBOL(tcp_md5_hash_key);
4429
4430 /* Called with rcu_read_lock() */
4431 enum skb_drop_reason
4432 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4433 const void *saddr, const void *daddr,
4434 int family, int dif, int sdif)
4435 {
4436 /*
4437 * This gets called for each TCP segment that arrives
4438 * so we want to be efficient.
4439 * We have 3 drop cases:
4440 * o No MD5 hash and one expected.
4441 * o MD5 hash and we're not expecting one.
4442 * o MD5 hash and its wrong.
4443 */
4444 const __u8 *hash_location = NULL;
4445 struct tcp_md5sig_key *hash_expected;
4446 const struct tcphdr *th = tcp_hdr(skb);
4447 const struct tcp_sock *tp = tcp_sk(sk);
4448 int genhash, l3index;
4449 u8 newhash[16];
4450
4451 /* sdif set, means packet ingressed via a device
4452 * in an L3 domain and dif is set to the l3mdev
4453 */
4454 l3index = sdif ? dif : 0;
4455
4456 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4457 hash_location = tcp_parse_md5sig_option(th);
4458
4459 /* We've parsed the options - do we have a hash? */
4460 if (!hash_expected && !hash_location)
4461 return SKB_NOT_DROPPED_YET;
4462
4463 if (hash_expected && !hash_location) {
4464 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4465 return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4466 }
4467
4468 if (!hash_expected && hash_location) {
4469 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4470 return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4471 }
4472
4473 /* Check the signature.
4474 * To support dual stack listeners, we need to handle
4475 * IPv4-mapped case.
4476 */
4477 if (family == AF_INET)
4478 genhash = tcp_v4_md5_hash_skb(newhash,
4479 hash_expected,
4480 NULL, skb);
4481 else
4482 genhash = tp->af_specific->calc_md5_hash(newhash,
4483 hash_expected,
4484 NULL, skb);
4485
4486 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4487 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4488 if (family == AF_INET) {
4489 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4490 saddr, ntohs(th->source),
4491 daddr, ntohs(th->dest),
4492 genhash ? " tcp_v4_calc_md5_hash failed"
4493 : "", l3index);
4494 } else {
4495 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4496 genhash ? "failed" : "mismatch",
4497 saddr, ntohs(th->source),
4498 daddr, ntohs(th->dest), l3index);
4499 }
4500 return SKB_DROP_REASON_TCP_MD5FAILURE;
4501 }
4502 return SKB_NOT_DROPPED_YET;
4503 }
4504 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4505
4506 #endif
4507
4508 void tcp_done(struct sock *sk)
4509 {
4510 struct request_sock *req;
4511
4512 /* We might be called with a new socket, after
4513 * inet_csk_prepare_forced_close() has been called
4514 * so we can not use lockdep_sock_is_held(sk)
4515 */
4516 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4517
4518 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4519 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4520
4521 tcp_set_state(sk, TCP_CLOSE);
4522 tcp_clear_xmit_timers(sk);
4523 if (req)
4524 reqsk_fastopen_remove(sk, req, false);
4525
4526 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4527
4528 if (!sock_flag(sk, SOCK_DEAD))
4529 sk->sk_state_change(sk);
4530 else
4531 inet_csk_destroy_sock(sk);
4532 }
4533 EXPORT_SYMBOL_GPL(tcp_done);
4534
4535 int tcp_abort(struct sock *sk, int err)
4536 {
4537 int state = inet_sk_state_load(sk);
4538
4539 if (state == TCP_NEW_SYN_RECV) {
4540 struct request_sock *req = inet_reqsk(sk);
4541
4542 local_bh_disable();
4543 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4544 local_bh_enable();
4545 return 0;
4546 }
4547 if (state == TCP_TIME_WAIT) {
4548 struct inet_timewait_sock *tw = inet_twsk(sk);
4549
4550 refcount_inc(&tw->tw_refcnt);
4551 local_bh_disable();
4552 inet_twsk_deschedule_put(tw);
4553 local_bh_enable();
4554 return 0;
4555 }
4556
4557 /* BPF context ensures sock locking. */
4558 if (!has_current_bpf_ctx())
4559 /* Don't race with userspace socket closes such as tcp_close. */
4560 lock_sock(sk);
4561
4562 if (sk->sk_state == TCP_LISTEN) {
4563 tcp_set_state(sk, TCP_CLOSE);
4564 inet_csk_listen_stop(sk);
4565 }
4566
4567 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4568 local_bh_disable();
4569 bh_lock_sock(sk);
4570
4571 if (!sock_flag(sk, SOCK_DEAD)) {
4572 WRITE_ONCE(sk->sk_err, err);
4573 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4574 smp_wmb();
4575 sk_error_report(sk);
4576 if (tcp_need_reset(sk->sk_state))
4577 tcp_send_active_reset(sk, GFP_ATOMIC);
4578 tcp_done(sk);
4579 }
4580
4581 bh_unlock_sock(sk);
4582 local_bh_enable();
4583 tcp_write_queue_purge(sk);
4584 if (!has_current_bpf_ctx())
4585 release_sock(sk);
4586 return 0;
4587 }
4588 EXPORT_SYMBOL_GPL(tcp_abort);
4589
4590 extern struct tcp_congestion_ops tcp_reno;
4591
4592 static __initdata unsigned long thash_entries;
4593 static int __init set_thash_entries(char *str)
4594 {
4595 ssize_t ret;
4596
4597 if (!str)
4598 return 0;
4599
4600 ret = kstrtoul(str, 0, &thash_entries);
4601 if (ret)
4602 return 0;
4603
4604 return 1;
4605 }
4606 __setup("thash_entries=", set_thash_entries);
4607
4608 static void __init tcp_init_mem(void)
4609 {
4610 unsigned long limit = nr_free_buffer_pages() / 16;
4611
4612 limit = max(limit, 128UL);
4613 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4614 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4615 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4616 }
4617
4618 void __init tcp_init(void)
4619 {
4620 int max_rshare, max_wshare, cnt;
4621 unsigned long limit;
4622 unsigned int i;
4623
4624 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4625 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4626 sizeof_field(struct sk_buff, cb));
4627
4628 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4629
4630 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4631 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4632
4633 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4634 thash_entries, 21, /* one slot per 2 MB*/
4635 0, 64 * 1024);
4636 tcp_hashinfo.bind_bucket_cachep =
4637 kmem_cache_create("tcp_bind_bucket",
4638 sizeof(struct inet_bind_bucket), 0,
4639 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4640 SLAB_ACCOUNT,
4641 NULL);
4642 tcp_hashinfo.bind2_bucket_cachep =
4643 kmem_cache_create("tcp_bind2_bucket",
4644 sizeof(struct inet_bind2_bucket), 0,
4645 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4646 SLAB_ACCOUNT,
4647 NULL);
4648
4649 /* Size and allocate the main established and bind bucket
4650 * hash tables.
4651 *
4652 * The methodology is similar to that of the buffer cache.
4653 */
4654 tcp_hashinfo.ehash =
4655 alloc_large_system_hash("TCP established",
4656 sizeof(struct inet_ehash_bucket),
4657 thash_entries,
4658 17, /* one slot per 128 KB of memory */
4659 0,
4660 NULL,
4661 &tcp_hashinfo.ehash_mask,
4662 0,
4663 thash_entries ? 0 : 512 * 1024);
4664 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4665 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4666
4667 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4668 panic("TCP: failed to alloc ehash_locks");
4669 tcp_hashinfo.bhash =
4670 alloc_large_system_hash("TCP bind",
4671 2 * sizeof(struct inet_bind_hashbucket),
4672 tcp_hashinfo.ehash_mask + 1,
4673 17, /* one slot per 128 KB of memory */
4674 0,
4675 &tcp_hashinfo.bhash_size,
4676 NULL,
4677 0,
4678 64 * 1024);
4679 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4680 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4681 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4682 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4683 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4684 spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4685 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4686 }
4687
4688 tcp_hashinfo.pernet = false;
4689
4690 cnt = tcp_hashinfo.ehash_mask + 1;
4691 sysctl_tcp_max_orphans = cnt / 2;
4692
4693 tcp_init_mem();
4694 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4695 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4696 max_wshare = min(4UL*1024*1024, limit);
4697 max_rshare = min(6UL*1024*1024, limit);
4698
4699 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4700 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4701 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4702
4703 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4704 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4705 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4706
4707 pr_info("Hash tables configured (established %u bind %u)\n",
4708 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4709
4710 tcp_v4_init();
4711 tcp_metrics_init();
4712 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4713 tcp_tasklet_init();
4714 mptcp_init();
4715 }