1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
56 * Alan Cox : Tidied tcp_data to avoid a potential
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
209 * Description of States:
211 * TCP_SYN_SENT sent a connection request, waiting for ack
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
216 * TCP_ESTABLISHED connection established
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
241 * TCP_CLOSE socket is finished
244 #define pr_fmt(fmt) "TCP: " fmt
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
274 #include <net/mptcp.h>
275 #include <net/proto_memory.h>
276 #include <net/xfrm.h>
278 #include <net/sock.h>
279 #include <net/rstreason.h>
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
284 #include <net/hotdata.h>
285 #include <trace/events/tcp.h>
288 #include "../core/devmem.h"
290 /* Track pending CMSGs. */
296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count
);
297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count
);
299 DEFINE_PER_CPU(u32
, tcp_tw_isn
);
300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn
);
302 long sysctl_tcp_mem
[3] __read_mostly
;
303 EXPORT_IPV6_MOD(sysctl_tcp_mem
);
305 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp
; /* Current allocated memory. */
306 EXPORT_IPV6_MOD(tcp_memory_allocated
);
307 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc
);
308 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc
);
310 #if IS_ENABLED(CONFIG_SMC)
311 DEFINE_STATIC_KEY_FALSE(tcp_have_smc
);
312 EXPORT_SYMBOL(tcp_have_smc
);
316 * Current number of TCP sockets.
318 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp
;
319 EXPORT_IPV6_MOD(tcp_sockets_allocated
);
324 struct tcp_splice_state
{
325 struct pipe_inode_info
*pipe
;
331 * Pressure flag: try to collapse.
332 * Technical note: it is used by multiple contexts non atomically.
333 * All the __sk_mem_schedule() is of this nature: accounting
334 * is strict, actions are advisory and have some latency.
336 unsigned long tcp_memory_pressure __read_mostly
;
337 EXPORT_SYMBOL_GPL(tcp_memory_pressure
);
339 void tcp_enter_memory_pressure(struct sock
*sk
)
343 if (READ_ONCE(tcp_memory_pressure
))
349 if (!cmpxchg(&tcp_memory_pressure
, 0, val
))
350 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMEMORYPRESSURES
);
352 EXPORT_IPV6_MOD_GPL(tcp_enter_memory_pressure
);
354 void tcp_leave_memory_pressure(struct sock
*sk
)
358 if (!READ_ONCE(tcp_memory_pressure
))
360 val
= xchg(&tcp_memory_pressure
, 0);
362 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPMEMORYPRESSURESCHRONO
,
363 jiffies_to_msecs(jiffies
- val
));
365 EXPORT_IPV6_MOD_GPL(tcp_leave_memory_pressure
);
367 /* Convert seconds to retransmits based on initial and max timeout */
368 static u8
secs_to_retrans(int seconds
, int timeout
, int rto_max
)
373 int period
= timeout
;
376 while (seconds
> period
&& res
< 255) {
379 if (timeout
> rto_max
)
387 /* Convert retransmits to seconds based on initial and max timeout */
388 static int retrans_to_secs(u8 retrans
, int timeout
, int rto_max
)
396 if (timeout
> rto_max
)
404 static u64
tcp_compute_delivery_rate(const struct tcp_sock
*tp
)
406 u32 rate
= READ_ONCE(tp
->rate_delivered
);
407 u32 intv
= READ_ONCE(tp
->rate_interval_us
);
411 rate64
= (u64
)rate
* tp
->mss_cache
* USEC_PER_SEC
;
412 do_div(rate64
, intv
);
417 /* Address-family independent initialization for a tcp_sock.
419 * NOTE: A lot of things set to zero explicitly by call to
420 * sk_alloc() so need not be done here.
422 void tcp_init_sock(struct sock
*sk
)
424 struct inet_connection_sock
*icsk
= inet_csk(sk
);
425 struct tcp_sock
*tp
= tcp_sk(sk
);
426 int rto_min_us
, rto_max_ms
;
428 tp
->out_of_order_queue
= RB_ROOT
;
429 sk
->tcp_rtx_queue
= RB_ROOT
;
430 tcp_init_xmit_timers(sk
);
431 INIT_LIST_HEAD(&tp
->tsq_node
);
432 INIT_LIST_HEAD(&tp
->tsorted_sent_queue
);
434 icsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
436 rto_max_ms
= READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_rto_max_ms
);
437 icsk
->icsk_rto_max
= msecs_to_jiffies(rto_max_ms
);
439 rto_min_us
= READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_rto_min_us
);
440 icsk
->icsk_rto_min
= usecs_to_jiffies(rto_min_us
);
441 icsk
->icsk_delack_max
= TCP_DELACK_MAX
;
442 tp
->mdev_us
= jiffies_to_usecs(TCP_TIMEOUT_INIT
);
443 minmax_reset(&tp
->rtt_min
, tcp_jiffies32
, ~0U);
445 /* So many TCP implementations out there (incorrectly) count the
446 * initial SYN frame in their delayed-ACK and congestion control
447 * algorithms that we must have the following bandaid to talk
448 * efficiently to them. -DaveM
450 tcp_snd_cwnd_set(tp
, TCP_INIT_CWND
);
452 /* There's a bubble in the pipe until at least the first ACK. */
453 tp
->app_limited
= ~0U;
454 tp
->rate_app_limited
= 1;
456 /* See draft-stevens-tcpca-spec-01 for discussion of the
457 * initialization of these values.
459 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
460 tp
->snd_cwnd_clamp
= ~0;
461 tp
->mss_cache
= TCP_MSS_DEFAULT
;
463 tp
->reordering
= READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_reordering
);
464 tcp_assign_congestion_control(sk
);
467 tp
->rack
.reo_wnd_steps
= 1;
469 sk
->sk_write_space
= sk_stream_write_space
;
470 sock_set_flag(sk
, SOCK_USE_WRITE_QUEUE
);
472 icsk
->icsk_sync_mss
= tcp_sync_mss
;
474 WRITE_ONCE(sk
->sk_sndbuf
, READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_wmem
[1]));
475 WRITE_ONCE(sk
->sk_rcvbuf
, READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[1]));
476 tcp_scaling_ratio_init(sk
);
478 set_bit(SOCK_SUPPORT_ZC
, &sk
->sk_socket
->flags
);
479 sk_sockets_allocated_inc(sk
);
480 xa_init_flags(&sk
->sk_user_frags
, XA_FLAGS_ALLOC1
);
482 EXPORT_IPV6_MOD(tcp_init_sock
);
484 static void tcp_tx_timestamp(struct sock
*sk
, struct sockcm_cookie
*sockc
)
486 struct sk_buff
*skb
= tcp_write_queue_tail(sk
);
487 u32 tsflags
= sockc
->tsflags
;
489 if (tsflags
&& skb
) {
490 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
491 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
493 sock_tx_timestamp(sk
, sockc
, &shinfo
->tx_flags
);
494 if (tsflags
& SOF_TIMESTAMPING_TX_ACK
)
495 tcb
->txstamp_ack
|= TSTAMP_ACK_SK
;
496 if (tsflags
& SOF_TIMESTAMPING_TX_RECORD_MASK
)
497 shinfo
->tskey
= TCP_SKB_CB(skb
)->seq
+ skb
->len
- 1;
500 if (cgroup_bpf_enabled(CGROUP_SOCK_OPS
) &&
501 SK_BPF_CB_FLAG_TEST(sk
, SK_BPF_CB_TX_TIMESTAMPING
) && skb
)
502 bpf_skops_tx_timestamping(sk
, skb
, BPF_SOCK_OPS_TSTAMP_SENDMSG_CB
);
505 static bool tcp_stream_is_readable(struct sock
*sk
, int target
)
507 if (tcp_epollin_ready(sk
, target
))
509 return sk_is_readable(sk
);
513 * Wait for a TCP event.
515 * Note that we don't need to lock the socket, as the upper poll layers
516 * take care of normal races (between the test and the event) and we don't
517 * go look at any of the socket buffers directly.
519 __poll_t
tcp_poll(struct file
*file
, struct socket
*sock
, poll_table
*wait
)
522 struct sock
*sk
= sock
->sk
;
523 const struct tcp_sock
*tp
= tcp_sk(sk
);
527 sock_poll_wait(file
, sock
, wait
);
529 state
= inet_sk_state_load(sk
);
530 if (state
== TCP_LISTEN
)
531 return inet_csk_listen_poll(sk
);
533 /* Socket is not locked. We are protected from async events
534 * by poll logic and correct handling of state changes
535 * made by other threads is impossible in any case.
541 * EPOLLHUP is certainly not done right. But poll() doesn't
542 * have a notion of HUP in just one direction, and for a
543 * socket the read side is more interesting.
545 * Some poll() documentation says that EPOLLHUP is incompatible
546 * with the EPOLLOUT/POLLWR flags, so somebody should check this
547 * all. But careful, it tends to be safer to return too many
548 * bits than too few, and you can easily break real applications
549 * if you don't tell them that something has hung up!
553 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
554 * our fs/select.c). It means that after we received EOF,
555 * poll always returns immediately, making impossible poll() on write()
556 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
557 * if and only if shutdown has been made in both directions.
558 * Actually, it is interesting to look how Solaris and DUX
559 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
560 * then we could set it on SND_SHUTDOWN. BTW examples given
561 * in Stevens' books assume exactly this behaviour, it explains
562 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
564 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
565 * blocking on fresh not-connected or disconnected socket. --ANK
567 shutdown
= READ_ONCE(sk
->sk_shutdown
);
568 if (shutdown
== SHUTDOWN_MASK
|| state
== TCP_CLOSE
)
570 if (shutdown
& RCV_SHUTDOWN
)
571 mask
|= EPOLLIN
| EPOLLRDNORM
| EPOLLRDHUP
;
573 /* Connected or passive Fast Open socket? */
574 if (state
!= TCP_SYN_SENT
&&
575 (state
!= TCP_SYN_RECV
|| rcu_access_pointer(tp
->fastopen_rsk
))) {
576 int target
= sock_rcvlowat(sk
, 0, INT_MAX
);
577 u16 urg_data
= READ_ONCE(tp
->urg_data
);
579 if (unlikely(urg_data
) &&
580 READ_ONCE(tp
->urg_seq
) == READ_ONCE(tp
->copied_seq
) &&
581 !sock_flag(sk
, SOCK_URGINLINE
))
584 if (tcp_stream_is_readable(sk
, target
))
585 mask
|= EPOLLIN
| EPOLLRDNORM
;
587 if (!(shutdown
& SEND_SHUTDOWN
)) {
588 if (__sk_stream_is_writeable(sk
, 1)) {
589 mask
|= EPOLLOUT
| EPOLLWRNORM
;
590 } else { /* send SIGIO later */
591 sk_set_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
592 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
594 /* Race breaker. If space is freed after
595 * wspace test but before the flags are set,
596 * IO signal will be lost. Memory barrier
597 * pairs with the input side.
599 smp_mb__after_atomic();
600 if (__sk_stream_is_writeable(sk
, 1))
601 mask
|= EPOLLOUT
| EPOLLWRNORM
;
604 mask
|= EPOLLOUT
| EPOLLWRNORM
;
606 if (urg_data
& TCP_URG_VALID
)
608 } else if (state
== TCP_SYN_SENT
&&
609 inet_test_bit(DEFER_CONNECT
, sk
)) {
610 /* Active TCP fastopen socket with defer_connect
611 * Return EPOLLOUT so application can call write()
612 * in order for kernel to generate SYN+data
614 mask
|= EPOLLOUT
| EPOLLWRNORM
;
616 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
618 if (READ_ONCE(sk
->sk_err
) ||
619 !skb_queue_empty_lockless(&sk
->sk_error_queue
))
624 EXPORT_SYMBOL(tcp_poll
);
626 int tcp_ioctl(struct sock
*sk
, int cmd
, int *karg
)
628 struct tcp_sock
*tp
= tcp_sk(sk
);
634 if (sk
->sk_state
== TCP_LISTEN
)
637 slow
= lock_sock_fast(sk
);
639 unlock_sock_fast(sk
, slow
);
642 answ
= READ_ONCE(tp
->urg_data
) &&
643 READ_ONCE(tp
->urg_seq
) == READ_ONCE(tp
->copied_seq
);
646 if (sk
->sk_state
== TCP_LISTEN
)
649 if ((1 << sk
->sk_state
) & (TCPF_SYN_SENT
| TCPF_SYN_RECV
))
652 answ
= READ_ONCE(tp
->write_seq
) - tp
->snd_una
;
655 if (sk
->sk_state
== TCP_LISTEN
)
658 if ((1 << sk
->sk_state
) & (TCPF_SYN_SENT
| TCPF_SYN_RECV
))
661 answ
= READ_ONCE(tp
->write_seq
) -
662 READ_ONCE(tp
->snd_nxt
);
671 EXPORT_IPV6_MOD(tcp_ioctl
);
673 void tcp_mark_push(struct tcp_sock
*tp
, struct sk_buff
*skb
)
675 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
676 tp
->pushed_seq
= tp
->write_seq
;
679 static inline bool forced_push(const struct tcp_sock
*tp
)
681 return after(tp
->write_seq
, tp
->pushed_seq
+ (tp
->max_window
>> 1));
684 void tcp_skb_entail(struct sock
*sk
, struct sk_buff
*skb
)
686 struct tcp_sock
*tp
= tcp_sk(sk
);
687 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
689 tcb
->seq
= tcb
->end_seq
= tp
->write_seq
;
690 tcb
->tcp_flags
= TCPHDR_ACK
;
691 __skb_header_release(skb
);
692 tcp_add_write_queue_tail(sk
, skb
);
693 sk_wmem_queued_add(sk
, skb
->truesize
);
694 sk_mem_charge(sk
, skb
->truesize
);
695 if (tp
->nonagle
& TCP_NAGLE_PUSH
)
696 tp
->nonagle
&= ~TCP_NAGLE_PUSH
;
698 tcp_slow_start_after_idle_check(sk
);
701 static inline void tcp_mark_urg(struct tcp_sock
*tp
, int flags
)
704 tp
->snd_up
= tp
->write_seq
;
707 /* If a not yet filled skb is pushed, do not send it if
708 * we have data packets in Qdisc or NIC queues :
709 * Because TX completion will happen shortly, it gives a chance
710 * to coalesce future sendmsg() payload into this skb, without
711 * need for a timer, and with no latency trade off.
712 * As packets containing data payload have a bigger truesize
713 * than pure acks (dataless) packets, the last checks prevent
714 * autocorking if we only have an ACK in Qdisc/NIC queues,
715 * or if TX completion was delayed after we processed ACK packet.
717 static bool tcp_should_autocork(struct sock
*sk
, struct sk_buff
*skb
,
720 return skb
->len
< size_goal
&&
721 READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_autocorking
) &&
722 !tcp_rtx_queue_empty(sk
) &&
723 refcount_read(&sk
->sk_wmem_alloc
) > skb
->truesize
&&
724 tcp_skb_can_collapse_to(skb
);
727 void tcp_push(struct sock
*sk
, int flags
, int mss_now
,
728 int nonagle
, int size_goal
)
730 struct tcp_sock
*tp
= tcp_sk(sk
);
733 skb
= tcp_write_queue_tail(sk
);
736 if (!(flags
& MSG_MORE
) || forced_push(tp
))
737 tcp_mark_push(tp
, skb
);
739 tcp_mark_urg(tp
, flags
);
741 if (tcp_should_autocork(sk
, skb
, size_goal
)) {
743 /* avoid atomic op if TSQ_THROTTLED bit is already set */
744 if (!test_bit(TSQ_THROTTLED
, &sk
->sk_tsq_flags
)) {
745 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPAUTOCORKING
);
746 set_bit(TSQ_THROTTLED
, &sk
->sk_tsq_flags
);
747 smp_mb__after_atomic();
749 /* It is possible TX completion already happened
750 * before we set TSQ_THROTTLED.
752 if (refcount_read(&sk
->sk_wmem_alloc
) > skb
->truesize
)
756 if (flags
& MSG_MORE
)
757 nonagle
= TCP_NAGLE_CORK
;
759 __tcp_push_pending_frames(sk
, mss_now
, nonagle
);
762 static int tcp_splice_data_recv(read_descriptor_t
*rd_desc
, struct sk_buff
*skb
,
763 unsigned int offset
, size_t len
)
765 struct tcp_splice_state
*tss
= rd_desc
->arg
.data
;
768 ret
= skb_splice_bits(skb
, skb
->sk
, offset
, tss
->pipe
,
769 min(rd_desc
->count
, len
), tss
->flags
);
771 rd_desc
->count
-= ret
;
775 static int __tcp_splice_read(struct sock
*sk
, struct tcp_splice_state
*tss
)
777 /* Store TCP splice context information in read_descriptor_t. */
778 read_descriptor_t rd_desc
= {
783 return tcp_read_sock(sk
, &rd_desc
, tcp_splice_data_recv
);
787 * tcp_splice_read - splice data from TCP socket to a pipe
788 * @sock: socket to splice from
789 * @ppos: position (not valid)
790 * @pipe: pipe to splice to
791 * @len: number of bytes to splice
792 * @flags: splice modifier flags
795 * Will read pages from given socket and fill them into a pipe.
798 ssize_t
tcp_splice_read(struct socket
*sock
, loff_t
*ppos
,
799 struct pipe_inode_info
*pipe
, size_t len
,
802 struct sock
*sk
= sock
->sk
;
803 struct tcp_splice_state tss
= {
812 sock_rps_record_flow(sk
);
814 * We can't seek on a socket input
823 timeo
= sock_rcvtimeo(sk
, sock
->file
->f_flags
& O_NONBLOCK
);
825 ret
= __tcp_splice_read(sk
, &tss
);
831 if (sock_flag(sk
, SOCK_DONE
))
834 ret
= sock_error(sk
);
837 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
839 if (sk
->sk_state
== TCP_CLOSE
) {
841 * This occurs when user tries to read
842 * from never connected socket.
851 /* if __tcp_splice_read() got nothing while we have
852 * an skb in receive queue, we do not want to loop.
853 * This might happen with URG data.
855 if (!skb_queue_empty(&sk
->sk_receive_queue
))
857 ret
= sk_wait_data(sk
, &timeo
, NULL
);
860 if (signal_pending(current
)) {
861 ret
= sock_intr_errno(timeo
);
869 if (!tss
.len
|| !timeo
)
874 if (sk
->sk_err
|| sk
->sk_state
== TCP_CLOSE
||
875 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
876 signal_pending(current
))
887 EXPORT_IPV6_MOD(tcp_splice_read
);
889 struct sk_buff
*tcp_stream_alloc_skb(struct sock
*sk
, gfp_t gfp
,
894 skb
= alloc_skb_fclone(MAX_TCP_HEADER
, gfp
);
898 skb
->truesize
= SKB_TRUESIZE(skb_end_offset(skb
));
899 if (force_schedule
) {
900 mem_scheduled
= true;
901 sk_forced_mem_schedule(sk
, skb
->truesize
);
903 mem_scheduled
= sk_wmem_schedule(sk
, skb
->truesize
);
905 if (likely(mem_scheduled
)) {
906 skb_reserve(skb
, MAX_TCP_HEADER
);
907 skb
->ip_summed
= CHECKSUM_PARTIAL
;
908 INIT_LIST_HEAD(&skb
->tcp_tsorted_anchor
);
913 sk
->sk_prot
->enter_memory_pressure(sk
);
914 sk_stream_moderate_sndbuf(sk
);
919 static unsigned int tcp_xmit_size_goal(struct sock
*sk
, u32 mss_now
,
922 struct tcp_sock
*tp
= tcp_sk(sk
);
923 u32 new_size_goal
, size_goal
;
928 /* Note : tcp_tso_autosize() will eventually split this later */
929 new_size_goal
= tcp_bound_to_half_wnd(tp
, sk
->sk_gso_max_size
);
931 /* We try hard to avoid divides here */
932 size_goal
= tp
->gso_segs
* mss_now
;
933 if (unlikely(new_size_goal
< size_goal
||
934 new_size_goal
>= size_goal
+ mss_now
)) {
935 tp
->gso_segs
= min_t(u16
, new_size_goal
/ mss_now
,
936 sk
->sk_gso_max_segs
);
937 size_goal
= tp
->gso_segs
* mss_now
;
940 return max(size_goal
, mss_now
);
943 int tcp_send_mss(struct sock
*sk
, int *size_goal
, int flags
)
947 mss_now
= tcp_current_mss(sk
);
948 *size_goal
= tcp_xmit_size_goal(sk
, mss_now
, !(flags
& MSG_OOB
));
953 /* In some cases, sendmsg() could have added an skb to the write queue,
954 * but failed adding payload on it. We need to remove it to consume less
955 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
956 * epoll() users. Another reason is that tcp_write_xmit() does not like
957 * finding an empty skb in the write queue.
959 void tcp_remove_empty_skb(struct sock
*sk
)
961 struct sk_buff
*skb
= tcp_write_queue_tail(sk
);
963 if (skb
&& TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
) {
964 tcp_unlink_write_queue(skb
, sk
);
965 if (tcp_write_queue_empty(sk
))
966 tcp_chrono_stop(sk
, TCP_CHRONO_BUSY
);
967 tcp_wmem_free_skb(sk
, skb
);
971 /* skb changing from pure zc to mixed, must charge zc */
972 static int tcp_downgrade_zcopy_pure(struct sock
*sk
, struct sk_buff
*skb
)
974 if (unlikely(skb_zcopy_pure(skb
))) {
975 u32 extra
= skb
->truesize
-
976 SKB_TRUESIZE(skb_end_offset(skb
));
978 if (!sk_wmem_schedule(sk
, extra
))
981 sk_mem_charge(sk
, extra
);
982 skb_shinfo(skb
)->flags
&= ~SKBFL_PURE_ZEROCOPY
;
988 int tcp_wmem_schedule(struct sock
*sk
, int copy
)
992 if (likely(sk_wmem_schedule(sk
, copy
)))
995 /* We could be in trouble if we have nothing queued.
996 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
997 * to guarantee some progress.
999 left
= READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_wmem
[0]) - sk
->sk_wmem_queued
;
1001 sk_forced_mem_schedule(sk
, min(left
, copy
));
1002 return min(copy
, sk
->sk_forward_alloc
);
1005 void tcp_free_fastopen_req(struct tcp_sock
*tp
)
1007 if (tp
->fastopen_req
) {
1008 kfree(tp
->fastopen_req
);
1009 tp
->fastopen_req
= NULL
;
1013 int tcp_sendmsg_fastopen(struct sock
*sk
, struct msghdr
*msg
, int *copied
,
1014 size_t size
, struct ubuf_info
*uarg
)
1016 struct tcp_sock
*tp
= tcp_sk(sk
);
1017 struct inet_sock
*inet
= inet_sk(sk
);
1018 struct sockaddr
*uaddr
= msg
->msg_name
;
1021 if (!(READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_fastopen
) &
1022 TFO_CLIENT_ENABLE
) ||
1023 (uaddr
&& msg
->msg_namelen
>= sizeof(uaddr
->sa_family
) &&
1024 uaddr
->sa_family
== AF_UNSPEC
))
1026 if (tp
->fastopen_req
)
1027 return -EALREADY
; /* Another Fast Open is in progress */
1029 tp
->fastopen_req
= kzalloc(sizeof(struct tcp_fastopen_request
),
1031 if (unlikely(!tp
->fastopen_req
))
1033 tp
->fastopen_req
->data
= msg
;
1034 tp
->fastopen_req
->size
= size
;
1035 tp
->fastopen_req
->uarg
= uarg
;
1037 if (inet_test_bit(DEFER_CONNECT
, sk
)) {
1038 err
= tcp_connect(sk
);
1039 /* Same failure procedure as in tcp_v4/6_connect */
1041 tcp_set_state(sk
, TCP_CLOSE
);
1042 inet
->inet_dport
= 0;
1043 sk
->sk_route_caps
= 0;
1046 flags
= (msg
->msg_flags
& MSG_DONTWAIT
) ? O_NONBLOCK
: 0;
1047 err
= __inet_stream_connect(sk
->sk_socket
, uaddr
,
1048 msg
->msg_namelen
, flags
, 1);
1049 /* fastopen_req could already be freed in __inet_stream_connect
1050 * if the connection times out or gets rst
1052 if (tp
->fastopen_req
) {
1053 *copied
= tp
->fastopen_req
->copied
;
1054 tcp_free_fastopen_req(tp
);
1055 inet_clear_bit(DEFER_CONNECT
, sk
);
1060 int tcp_sendmsg_locked(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
1062 struct net_devmem_dmabuf_binding
*binding
= NULL
;
1063 struct tcp_sock
*tp
= tcp_sk(sk
);
1064 struct ubuf_info
*uarg
= NULL
;
1065 struct sk_buff
*skb
;
1066 struct sockcm_cookie sockc
;
1067 int flags
, err
, copied
= 0;
1068 int mss_now
= 0, size_goal
, copied_syn
= 0;
1069 int process_backlog
= 0;
1074 flags
= msg
->msg_flags
;
1076 sockc
= (struct sockcm_cookie
){ .tsflags
= READ_ONCE(sk
->sk_tsflags
) };
1077 if (msg
->msg_controllen
) {
1078 sockc_err
= sock_cmsg_send(sk
, msg
, &sockc
);
1079 /* Don't return error until MSG_FASTOPEN has been processed;
1080 * that may succeed even if the cmsg is invalid.
1084 if ((flags
& MSG_ZEROCOPY
) && size
) {
1085 if (msg
->msg_ubuf
) {
1086 uarg
= msg
->msg_ubuf
;
1087 if (sk
->sk_route_caps
& NETIF_F_SG
)
1089 } else if (sock_flag(sk
, SOCK_ZEROCOPY
)) {
1090 skb
= tcp_write_queue_tail(sk
);
1091 uarg
= msg_zerocopy_realloc(sk
, size
, skb_zcopy(skb
),
1092 !sockc_err
&& sockc
.dmabuf_id
);
1097 if (sk
->sk_route_caps
& NETIF_F_SG
)
1100 uarg_to_msgzc(uarg
)->zerocopy
= 0;
1102 if (!sockc_err
&& sockc
.dmabuf_id
) {
1103 binding
= net_devmem_get_binding(sk
, sockc
.dmabuf_id
);
1104 if (IS_ERR(binding
)) {
1105 err
= PTR_ERR(binding
);
1111 } else if (unlikely(msg
->msg_flags
& MSG_SPLICE_PAGES
) && size
) {
1112 if (sk
->sk_route_caps
& NETIF_F_SG
)
1113 zc
= MSG_SPLICE_PAGES
;
1116 if (!sockc_err
&& sockc
.dmabuf_id
&&
1117 (!(flags
& MSG_ZEROCOPY
) || !sock_flag(sk
, SOCK_ZEROCOPY
))) {
1122 if (unlikely(flags
& MSG_FASTOPEN
||
1123 inet_test_bit(DEFER_CONNECT
, sk
)) &&
1125 err
= tcp_sendmsg_fastopen(sk
, msg
, &copied_syn
, size
, uarg
);
1126 if (err
== -EINPROGRESS
&& copied_syn
> 0)
1132 timeo
= sock_sndtimeo(sk
, flags
& MSG_DONTWAIT
);
1134 tcp_rate_check_app_limited(sk
); /* is sending application-limited? */
1136 /* Wait for a connection to finish. One exception is TCP Fast Open
1137 * (passive side) where data is allowed to be sent before a connection
1138 * is fully established.
1140 if (((1 << sk
->sk_state
) & ~(TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
)) &&
1141 !tcp_passive_fastopen(sk
)) {
1142 err
= sk_stream_wait_connect(sk
, &timeo
);
1147 if (unlikely(tp
->repair
)) {
1148 if (tp
->repair_queue
== TCP_RECV_QUEUE
) {
1149 copied
= tcp_send_rcvq(sk
, msg
, size
);
1154 if (tp
->repair_queue
== TCP_NO_QUEUE
)
1157 /* 'common' sending to sendq */
1165 /* This should be in poll */
1166 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
1168 /* Ok commence sending. */
1172 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
1175 if (sk
->sk_err
|| (sk
->sk_shutdown
& SEND_SHUTDOWN
))
1178 while (msg_data_left(msg
)) {
1181 skb
= tcp_write_queue_tail(sk
);
1183 copy
= size_goal
- skb
->len
;
1185 trace_tcp_sendmsg_locked(sk
, msg
, skb
, size_goal
);
1187 if (copy
<= 0 || !tcp_skb_can_collapse_to(skb
)) {
1191 if (!sk_stream_memory_free(sk
))
1192 goto wait_for_space
;
1194 if (unlikely(process_backlog
>= 16)) {
1195 process_backlog
= 0;
1196 if (sk_flush_backlog(sk
))
1199 first_skb
= tcp_rtx_and_write_queues_empty(sk
);
1200 skb
= tcp_stream_alloc_skb(sk
, sk
->sk_allocation
,
1203 goto wait_for_space
;
1207 #ifdef CONFIG_SKB_DECRYPTED
1208 skb
->decrypted
= !!(flags
& MSG_SENDPAGE_DECRYPTED
);
1210 tcp_skb_entail(sk
, skb
);
1213 /* All packets are restored as if they have
1214 * already been sent. skb_mstamp_ns isn't set to
1215 * avoid wrong rtt estimation.
1218 TCP_SKB_CB(skb
)->sacked
|= TCPCB_REPAIRED
;
1221 /* Try to append data to the end of skb. */
1222 if (copy
> msg_data_left(msg
))
1223 copy
= msg_data_left(msg
);
1227 int i
= skb_shinfo(skb
)->nr_frags
;
1228 struct page_frag
*pfrag
= sk_page_frag(sk
);
1230 if (!sk_page_frag_refill(sk
, pfrag
))
1231 goto wait_for_space
;
1233 if (!skb_can_coalesce(skb
, i
, pfrag
->page
,
1235 if (i
>= READ_ONCE(net_hotdata
.sysctl_max_skb_frags
)) {
1236 tcp_mark_push(tp
, skb
);
1242 copy
= min_t(int, copy
, pfrag
->size
- pfrag
->offset
);
1244 if (unlikely(skb_zcopy_pure(skb
) || skb_zcopy_managed(skb
))) {
1245 if (tcp_downgrade_zcopy_pure(sk
, skb
))
1246 goto wait_for_space
;
1247 skb_zcopy_downgrade_managed(skb
);
1250 copy
= tcp_wmem_schedule(sk
, copy
);
1252 goto wait_for_space
;
1254 err
= skb_copy_to_page_nocache(sk
, &msg
->msg_iter
, skb
,
1261 /* Update the skb. */
1263 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
1265 skb_fill_page_desc(skb
, i
, pfrag
->page
,
1266 pfrag
->offset
, copy
);
1267 page_ref_inc(pfrag
->page
);
1269 pfrag
->offset
+= copy
;
1270 } else if (zc
== MSG_ZEROCOPY
) {
1271 /* First append to a fragless skb builds initial
1275 skb_shinfo(skb
)->flags
|= SKBFL_PURE_ZEROCOPY
;
1277 if (!skb_zcopy_pure(skb
)) {
1278 copy
= tcp_wmem_schedule(sk
, copy
);
1280 goto wait_for_space
;
1283 err
= skb_zerocopy_iter_stream(sk
, skb
, msg
, copy
, uarg
,
1285 if (err
== -EMSGSIZE
|| err
== -EEXIST
) {
1286 tcp_mark_push(tp
, skb
);
1292 } else if (zc
== MSG_SPLICE_PAGES
) {
1293 /* Splice in data if we can; copy if we can't. */
1294 if (tcp_downgrade_zcopy_pure(sk
, skb
))
1295 goto wait_for_space
;
1296 copy
= tcp_wmem_schedule(sk
, copy
);
1298 goto wait_for_space
;
1300 err
= skb_splice_from_iter(skb
, &msg
->msg_iter
, copy
,
1303 if (err
== -EMSGSIZE
) {
1304 tcp_mark_push(tp
, skb
);
1311 if (!(flags
& MSG_NO_SHARED_FRAGS
))
1312 skb_shinfo(skb
)->flags
|= SKBFL_SHARED_FRAG
;
1314 sk_wmem_queued_add(sk
, copy
);
1315 sk_mem_charge(sk
, copy
);
1319 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_PSH
;
1321 WRITE_ONCE(tp
->write_seq
, tp
->write_seq
+ copy
);
1322 TCP_SKB_CB(skb
)->end_seq
+= copy
;
1323 tcp_skb_pcount_set(skb
, 0);
1326 if (!msg_data_left(msg
)) {
1327 if (unlikely(flags
& MSG_EOR
))
1328 TCP_SKB_CB(skb
)->eor
= 1;
1332 if (skb
->len
< size_goal
|| (flags
& MSG_OOB
) || unlikely(tp
->repair
))
1335 if (forced_push(tp
)) {
1336 tcp_mark_push(tp
, skb
);
1337 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_PUSH
);
1338 } else if (skb
== tcp_send_head(sk
))
1339 tcp_push_one(sk
, mss_now
);
1343 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1344 tcp_remove_empty_skb(sk
);
1346 tcp_push(sk
, flags
& ~MSG_MORE
, mss_now
,
1347 TCP_NAGLE_PUSH
, size_goal
);
1349 err
= sk_stream_wait_memory(sk
, &timeo
);
1353 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
1358 tcp_tx_timestamp(sk
, &sockc
);
1359 tcp_push(sk
, flags
, mss_now
, tp
->nonagle
, size_goal
);
1362 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1363 if (uarg
&& !msg
->msg_ubuf
)
1364 net_zcopy_put(uarg
);
1366 net_devmem_dmabuf_binding_put(binding
);
1367 return copied
+ copied_syn
;
1370 tcp_remove_empty_skb(sk
);
1372 if (copied
+ copied_syn
)
1375 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1376 if (uarg
&& !msg
->msg_ubuf
)
1377 net_zcopy_put_abort(uarg
, true);
1378 err
= sk_stream_error(sk
, flags
, err
);
1379 /* make sure we wake any epoll edge trigger waiter */
1380 if (unlikely(tcp_rtx_and_write_queues_empty(sk
) && err
== -EAGAIN
)) {
1381 sk
->sk_write_space(sk
);
1382 tcp_chrono_stop(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
1385 net_devmem_dmabuf_binding_put(binding
);
1389 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked
);
1391 int tcp_sendmsg(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
1396 ret
= tcp_sendmsg_locked(sk
, msg
, size
);
1401 EXPORT_SYMBOL(tcp_sendmsg
);
1403 void tcp_splice_eof(struct socket
*sock
)
1405 struct sock
*sk
= sock
->sk
;
1406 struct tcp_sock
*tp
= tcp_sk(sk
);
1407 int mss_now
, size_goal
;
1409 if (!tcp_write_queue_tail(sk
))
1413 mss_now
= tcp_send_mss(sk
, &size_goal
, 0);
1414 tcp_push(sk
, 0, mss_now
, tp
->nonagle
, size_goal
);
1417 EXPORT_IPV6_MOD_GPL(tcp_splice_eof
);
1420 * Handle reading urgent data. BSD has very simple semantics for
1421 * this, no blocking and very strange errors 8)
1424 static int tcp_recv_urg(struct sock
*sk
, struct msghdr
*msg
, int len
, int flags
)
1426 struct tcp_sock
*tp
= tcp_sk(sk
);
1428 /* No URG data to read. */
1429 if (sock_flag(sk
, SOCK_URGINLINE
) || !tp
->urg_data
||
1430 tp
->urg_data
== TCP_URG_READ
)
1431 return -EINVAL
; /* Yes this is right ! */
1433 if (sk
->sk_state
== TCP_CLOSE
&& !sock_flag(sk
, SOCK_DONE
))
1436 if (tp
->urg_data
& TCP_URG_VALID
) {
1438 char c
= tp
->urg_data
;
1440 if (!(flags
& MSG_PEEK
))
1441 WRITE_ONCE(tp
->urg_data
, TCP_URG_READ
);
1443 /* Read urgent data. */
1444 msg
->msg_flags
|= MSG_OOB
;
1447 if (!(flags
& MSG_TRUNC
))
1448 err
= memcpy_to_msg(msg
, &c
, 1);
1451 msg
->msg_flags
|= MSG_TRUNC
;
1453 return err
? -EFAULT
: len
;
1456 if (sk
->sk_state
== TCP_CLOSE
|| (sk
->sk_shutdown
& RCV_SHUTDOWN
))
1459 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1460 * the available implementations agree in this case:
1461 * this call should never block, independent of the
1462 * blocking state of the socket.
1463 * Mike <pall@rz.uni-karlsruhe.de>
1468 static int tcp_peek_sndq(struct sock
*sk
, struct msghdr
*msg
, int len
)
1470 struct sk_buff
*skb
;
1471 int copied
= 0, err
= 0;
1473 skb_rbtree_walk(skb
, &sk
->tcp_rtx_queue
) {
1474 err
= skb_copy_datagram_msg(skb
, 0, msg
, skb
->len
);
1480 skb_queue_walk(&sk
->sk_write_queue
, skb
) {
1481 err
= skb_copy_datagram_msg(skb
, 0, msg
, skb
->len
);
1488 return err
?: copied
;
1491 /* Clean up the receive buffer for full frames taken by the user,
1492 * then send an ACK if necessary. COPIED is the number of bytes
1493 * tcp_recvmsg has given to the user so far, it speeds up the
1494 * calculation of whether or not we must ACK for the sake of
1497 void __tcp_cleanup_rbuf(struct sock
*sk
, int copied
)
1499 struct tcp_sock
*tp
= tcp_sk(sk
);
1500 bool time_to_ack
= false;
1502 if (inet_csk_ack_scheduled(sk
)) {
1503 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1505 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1506 tp
->rcv_nxt
- tp
->rcv_wup
> icsk
->icsk_ack
.rcv_mss
||
1508 * If this read emptied read buffer, we send ACK, if
1509 * connection is not bidirectional, user drained
1510 * receive buffer and there was a small segment
1514 ((icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED2
) ||
1515 ((icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
) &&
1516 !inet_csk_in_pingpong_mode(sk
))) &&
1517 !atomic_read(&sk
->sk_rmem_alloc
)))
1521 /* We send an ACK if we can now advertise a non-zero window
1522 * which has been raised "significantly".
1524 * Even if window raised up to infinity, do not send window open ACK
1525 * in states, where we will not receive more. It is useless.
1527 if (copied
> 0 && !time_to_ack
&& !(sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
1528 __u32 rcv_window_now
= tcp_receive_window(tp
);
1530 /* Optimize, __tcp_select_window() is not cheap. */
1531 if (2*rcv_window_now
<= tp
->window_clamp
) {
1532 __u32 new_window
= __tcp_select_window(sk
);
1534 /* Send ACK now, if this read freed lots of space
1535 * in our buffer. Certainly, new_window is new window.
1536 * We can advertise it now, if it is not less than current one.
1537 * "Lots" means "at least twice" here.
1539 if (new_window
&& new_window
>= 2 * rcv_window_now
)
1547 void tcp_cleanup_rbuf(struct sock
*sk
, int copied
)
1549 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
1550 struct tcp_sock
*tp
= tcp_sk(sk
);
1552 WARN(skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
),
1553 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1554 tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
);
1555 __tcp_cleanup_rbuf(sk
, copied
);
1558 static void tcp_eat_recv_skb(struct sock
*sk
, struct sk_buff
*skb
)
1560 __skb_unlink(skb
, &sk
->sk_receive_queue
);
1561 if (likely(skb
->destructor
== sock_rfree
)) {
1563 skb
->destructor
= NULL
;
1565 return skb_attempt_defer_free(skb
);
1570 struct sk_buff
*tcp_recv_skb(struct sock
*sk
, u32 seq
, u32
*off
)
1572 struct sk_buff
*skb
;
1575 while ((skb
= skb_peek(&sk
->sk_receive_queue
)) != NULL
) {
1576 offset
= seq
- TCP_SKB_CB(skb
)->seq
;
1577 if (unlikely(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)) {
1578 pr_err_once("%s: found a SYN, please report !\n", __func__
);
1581 if (offset
< skb
->len
|| (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)) {
1585 /* This looks weird, but this can happen if TCP collapsing
1586 * splitted a fat GRO packet, while we released socket lock
1587 * in skb_splice_bits()
1589 tcp_eat_recv_skb(sk
, skb
);
1593 EXPORT_SYMBOL(tcp_recv_skb
);
1596 * This routine provides an alternative to tcp_recvmsg() for routines
1597 * that would like to handle copying from skbuffs directly in 'sendfile'
1600 * - It is assumed that the socket was locked by the caller.
1601 * - The routine does not block.
1602 * - At present, there is no support for reading OOB data
1603 * or for 'peeking' the socket using this routine
1604 * (although both would be easy to implement).
1606 static int __tcp_read_sock(struct sock
*sk
, read_descriptor_t
*desc
,
1607 sk_read_actor_t recv_actor
, bool noack
,
1610 struct sk_buff
*skb
;
1611 struct tcp_sock
*tp
= tcp_sk(sk
);
1612 u32 seq
= *copied_seq
;
1616 if (sk
->sk_state
== TCP_LISTEN
)
1618 while ((skb
= tcp_recv_skb(sk
, seq
, &offset
)) != NULL
) {
1619 if (offset
< skb
->len
) {
1623 len
= skb
->len
- offset
;
1624 /* Stop reading if we hit a patch of urgent data */
1625 if (unlikely(tp
->urg_data
)) {
1626 u32 urg_offset
= tp
->urg_seq
- seq
;
1627 if (urg_offset
< len
)
1632 used
= recv_actor(desc
, skb
, offset
, len
);
1638 if (WARN_ON_ONCE(used
> len
))
1644 /* If recv_actor drops the lock (e.g. TCP splice
1645 * receive) the skb pointer might be invalid when
1646 * getting here: tcp_collapse might have deleted it
1647 * while aggregating skbs from the socket queue.
1649 skb
= tcp_recv_skb(sk
, seq
- 1, &offset
);
1652 /* TCP coalescing might have appended data to the skb.
1653 * Try to splice more frags
1655 if (offset
+ 1 != skb
->len
)
1658 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
) {
1659 tcp_eat_recv_skb(sk
, skb
);
1663 tcp_eat_recv_skb(sk
, skb
);
1666 WRITE_ONCE(*copied_seq
, seq
);
1668 WRITE_ONCE(*copied_seq
, seq
);
1673 tcp_rcv_space_adjust(sk
);
1675 /* Clean up data we have read: This will do ACK frames. */
1677 tcp_recv_skb(sk
, seq
, &offset
);
1678 tcp_cleanup_rbuf(sk
, copied
);
1684 int tcp_read_sock(struct sock
*sk
, read_descriptor_t
*desc
,
1685 sk_read_actor_t recv_actor
)
1687 return __tcp_read_sock(sk
, desc
, recv_actor
, false,
1688 &tcp_sk(sk
)->copied_seq
);
1690 EXPORT_SYMBOL(tcp_read_sock
);
1692 int tcp_read_sock_noack(struct sock
*sk
, read_descriptor_t
*desc
,
1693 sk_read_actor_t recv_actor
, bool noack
,
1696 return __tcp_read_sock(sk
, desc
, recv_actor
, noack
, copied_seq
);
1699 int tcp_read_skb(struct sock
*sk
, skb_read_actor_t recv_actor
)
1701 struct sk_buff
*skb
;
1704 if (sk
->sk_state
== TCP_LISTEN
)
1707 while ((skb
= skb_peek(&sk
->sk_receive_queue
)) != NULL
) {
1711 __skb_unlink(skb
, &sk
->sk_receive_queue
);
1712 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb
, sk
));
1713 tcp_flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1714 used
= recv_actor(sk
, skb
);
1722 if (tcp_flags
& TCPHDR_FIN
)
1727 EXPORT_IPV6_MOD(tcp_read_skb
);
1729 void tcp_read_done(struct sock
*sk
, size_t len
)
1731 struct tcp_sock
*tp
= tcp_sk(sk
);
1732 u32 seq
= tp
->copied_seq
;
1733 struct sk_buff
*skb
;
1737 if (sk
->sk_state
== TCP_LISTEN
)
1741 while (left
&& (skb
= tcp_recv_skb(sk
, seq
, &offset
)) != NULL
) {
1744 used
= min_t(size_t, skb
->len
- offset
, left
);
1748 if (skb
->len
> offset
+ used
)
1751 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
) {
1752 tcp_eat_recv_skb(sk
, skb
);
1756 tcp_eat_recv_skb(sk
, skb
);
1758 WRITE_ONCE(tp
->copied_seq
, seq
);
1760 tcp_rcv_space_adjust(sk
);
1762 /* Clean up data we have read: This will do ACK frames. */
1764 tcp_cleanup_rbuf(sk
, len
- left
);
1766 EXPORT_SYMBOL(tcp_read_done
);
1768 int tcp_peek_len(struct socket
*sock
)
1770 return tcp_inq(sock
->sk
);
1772 EXPORT_IPV6_MOD(tcp_peek_len
);
1774 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1775 int tcp_set_rcvlowat(struct sock
*sk
, int val
)
1779 if (sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)
1780 cap
= sk
->sk_rcvbuf
>> 1;
1782 cap
= READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[2]) >> 1;
1783 val
= min(val
, cap
);
1784 WRITE_ONCE(sk
->sk_rcvlowat
, val
? : 1);
1786 /* Check if we need to signal EPOLLIN right now */
1789 if (sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)
1792 space
= tcp_space_from_win(sk
, val
);
1793 if (space
> sk
->sk_rcvbuf
) {
1794 WRITE_ONCE(sk
->sk_rcvbuf
, space
);
1795 WRITE_ONCE(tcp_sk(sk
)->window_clamp
, val
);
1799 EXPORT_IPV6_MOD(tcp_set_rcvlowat
);
1801 void tcp_update_recv_tstamps(struct sk_buff
*skb
,
1802 struct scm_timestamping_internal
*tss
)
1805 tss
->ts
[0] = ktime_to_timespec64(skb
->tstamp
);
1807 tss
->ts
[0] = (struct timespec64
) {0};
1809 if (skb_hwtstamps(skb
)->hwtstamp
)
1810 tss
->ts
[2] = ktime_to_timespec64(skb_hwtstamps(skb
)->hwtstamp
);
1812 tss
->ts
[2] = (struct timespec64
) {0};
1816 static const struct vm_operations_struct tcp_vm_ops
= {
1819 int tcp_mmap(struct file
*file
, struct socket
*sock
,
1820 struct vm_area_struct
*vma
)
1822 if (vma
->vm_flags
& (VM_WRITE
| VM_EXEC
))
1824 vm_flags_clear(vma
, VM_MAYWRITE
| VM_MAYEXEC
);
1826 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1827 vm_flags_set(vma
, VM_MIXEDMAP
);
1829 vma
->vm_ops
= &tcp_vm_ops
;
1832 EXPORT_IPV6_MOD(tcp_mmap
);
1834 static skb_frag_t
*skb_advance_to_frag(struct sk_buff
*skb
, u32 offset_skb
,
1839 if (unlikely(offset_skb
>= skb
->len
))
1842 offset_skb
-= skb_headlen(skb
);
1843 if ((int)offset_skb
< 0 || skb_has_frag_list(skb
))
1846 frag
= skb_shinfo(skb
)->frags
;
1847 while (offset_skb
) {
1848 if (skb_frag_size(frag
) > offset_skb
) {
1849 *offset_frag
= offset_skb
;
1852 offset_skb
-= skb_frag_size(frag
);
1859 static bool can_map_frag(const skb_frag_t
*frag
)
1863 if (skb_frag_size(frag
) != PAGE_SIZE
|| skb_frag_off(frag
))
1866 page
= skb_frag_page(frag
);
1868 if (PageCompound(page
) || page
->mapping
)
1874 static int find_next_mappable_frag(const skb_frag_t
*frag
,
1875 int remaining_in_skb
)
1879 if (likely(can_map_frag(frag
)))
1882 while (offset
< remaining_in_skb
&& !can_map_frag(frag
)) {
1883 offset
+= skb_frag_size(frag
);
1889 static void tcp_zerocopy_set_hint_for_skb(struct sock
*sk
,
1890 struct tcp_zerocopy_receive
*zc
,
1891 struct sk_buff
*skb
, u32 offset
)
1893 u32 frag_offset
, partial_frag_remainder
= 0;
1894 int mappable_offset
;
1897 /* worst case: skip to next skb. try to improve on this case below */
1898 zc
->recv_skip_hint
= skb
->len
- offset
;
1900 /* Find the frag containing this offset (and how far into that frag) */
1901 frag
= skb_advance_to_frag(skb
, offset
, &frag_offset
);
1906 struct skb_shared_info
*info
= skb_shinfo(skb
);
1908 /* We read part of the last frag, must recvmsg() rest of skb. */
1909 if (frag
== &info
->frags
[info
->nr_frags
- 1])
1912 /* Else, we must at least read the remainder in this frag. */
1913 partial_frag_remainder
= skb_frag_size(frag
) - frag_offset
;
1914 zc
->recv_skip_hint
-= partial_frag_remainder
;
1918 /* partial_frag_remainder: If part way through a frag, must read rest.
1919 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1920 * in partial_frag_remainder.
1922 mappable_offset
= find_next_mappable_frag(frag
, zc
->recv_skip_hint
);
1923 zc
->recv_skip_hint
= mappable_offset
+ partial_frag_remainder
;
1926 static int tcp_recvmsg_locked(struct sock
*sk
, struct msghdr
*msg
, size_t len
,
1927 int flags
, struct scm_timestamping_internal
*tss
,
1929 static int receive_fallback_to_copy(struct sock
*sk
,
1930 struct tcp_zerocopy_receive
*zc
, int inq
,
1931 struct scm_timestamping_internal
*tss
)
1933 unsigned long copy_address
= (unsigned long)zc
->copybuf_address
;
1934 struct msghdr msg
= {};
1938 zc
->recv_skip_hint
= 0;
1940 if (copy_address
!= zc
->copybuf_address
)
1943 err
= import_ubuf(ITER_DEST
, (void __user
*)copy_address
, inq
,
1948 err
= tcp_recvmsg_locked(sk
, &msg
, inq
, MSG_DONTWAIT
,
1949 tss
, &zc
->msg_flags
);
1953 zc
->copybuf_len
= err
;
1954 if (likely(zc
->copybuf_len
)) {
1955 struct sk_buff
*skb
;
1958 skb
= tcp_recv_skb(sk
, tcp_sk(sk
)->copied_seq
, &offset
);
1960 tcp_zerocopy_set_hint_for_skb(sk
, zc
, skb
, offset
);
1965 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive
*zc
,
1966 struct sk_buff
*skb
, u32 copylen
,
1967 u32
*offset
, u32
*seq
)
1969 unsigned long copy_address
= (unsigned long)zc
->copybuf_address
;
1970 struct msghdr msg
= {};
1973 if (copy_address
!= zc
->copybuf_address
)
1976 err
= import_ubuf(ITER_DEST
, (void __user
*)copy_address
, copylen
,
1980 err
= skb_copy_datagram_msg(skb
, *offset
, &msg
, copylen
);
1983 zc
->recv_skip_hint
-= copylen
;
1986 return (__s32
)copylen
;
1989 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive
*zc
,
1991 struct sk_buff
*skb
,
1994 struct scm_timestamping_internal
*tss
)
1996 u32 offset
, copylen
= min_t(u32
, copybuf_len
, zc
->recv_skip_hint
);
2000 /* skb is null if inq < PAGE_SIZE. */
2002 offset
= *seq
- TCP_SKB_CB(skb
)->seq
;
2004 skb
= tcp_recv_skb(sk
, *seq
, &offset
);
2005 if (TCP_SKB_CB(skb
)->has_rxtstamp
) {
2006 tcp_update_recv_tstamps(skb
, tss
);
2007 zc
->msg_flags
|= TCP_CMSG_TS
;
2011 zc
->copybuf_len
= tcp_copy_straggler_data(zc
, skb
, copylen
, &offset
,
2013 return zc
->copybuf_len
< 0 ? 0 : copylen
;
2016 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct
*vma
,
2017 struct page
**pending_pages
,
2018 unsigned long pages_remaining
,
2019 unsigned long *address
,
2022 struct tcp_zerocopy_receive
*zc
,
2023 u32 total_bytes_to_map
,
2026 /* At least one page did not map. Try zapping if we skipped earlier. */
2027 if (err
== -EBUSY
&&
2028 zc
->flags
& TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT
) {
2031 maybe_zap_len
= total_bytes_to_map
- /* All bytes to map */
2032 *length
+ /* Mapped or pending */
2033 (pages_remaining
* PAGE_SIZE
); /* Failed map. */
2034 zap_page_range_single(vma
, *address
, maybe_zap_len
, NULL
);
2039 unsigned long leftover_pages
= pages_remaining
;
2042 /* We called zap_page_range_single, try to reinsert. */
2043 err
= vm_insert_pages(vma
, *address
,
2046 bytes_mapped
= PAGE_SIZE
* (leftover_pages
- pages_remaining
);
2047 *seq
+= bytes_mapped
;
2048 *address
+= bytes_mapped
;
2051 /* Either we were unable to zap, OR we zapped, retried an
2052 * insert, and still had an issue. Either ways, pages_remaining
2053 * is the number of pages we were unable to map, and we unroll
2054 * some state we speculatively touched before.
2056 const int bytes_not_mapped
= PAGE_SIZE
* pages_remaining
;
2058 *length
-= bytes_not_mapped
;
2059 zc
->recv_skip_hint
+= bytes_not_mapped
;
2064 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct
*vma
,
2065 struct page
**pages
,
2066 unsigned int pages_to_map
,
2067 unsigned long *address
,
2070 struct tcp_zerocopy_receive
*zc
,
2071 u32 total_bytes_to_map
)
2073 unsigned long pages_remaining
= pages_to_map
;
2074 unsigned int pages_mapped
;
2075 unsigned int bytes_mapped
;
2078 err
= vm_insert_pages(vma
, *address
, pages
, &pages_remaining
);
2079 pages_mapped
= pages_to_map
- (unsigned int)pages_remaining
;
2080 bytes_mapped
= PAGE_SIZE
* pages_mapped
;
2081 /* Even if vm_insert_pages fails, it may have partially succeeded in
2082 * mapping (some but not all of the pages).
2084 *seq
+= bytes_mapped
;
2085 *address
+= bytes_mapped
;
2090 /* Error: maybe zap and retry + rollback state for failed inserts. */
2091 return tcp_zerocopy_vm_insert_batch_error(vma
, pages
+ pages_mapped
,
2092 pages_remaining
, address
, length
, seq
, zc
, total_bytes_to_map
,
2096 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
2097 static void tcp_zc_finalize_rx_tstamp(struct sock
*sk
,
2098 struct tcp_zerocopy_receive
*zc
,
2099 struct scm_timestamping_internal
*tss
)
2101 unsigned long msg_control_addr
;
2102 struct msghdr cmsg_dummy
;
2104 msg_control_addr
= (unsigned long)zc
->msg_control
;
2105 cmsg_dummy
.msg_control_user
= (void __user
*)msg_control_addr
;
2106 cmsg_dummy
.msg_controllen
=
2107 (__kernel_size_t
)zc
->msg_controllen
;
2108 cmsg_dummy
.msg_flags
= in_compat_syscall()
2109 ? MSG_CMSG_COMPAT
: 0;
2110 cmsg_dummy
.msg_control_is_user
= true;
2112 if (zc
->msg_control
== msg_control_addr
&&
2113 zc
->msg_controllen
== cmsg_dummy
.msg_controllen
) {
2114 tcp_recv_timestamp(&cmsg_dummy
, sk
, tss
);
2115 zc
->msg_control
= (__u64
)
2116 ((uintptr_t)cmsg_dummy
.msg_control_user
);
2117 zc
->msg_controllen
=
2118 (__u64
)cmsg_dummy
.msg_controllen
;
2119 zc
->msg_flags
= (__u32
)cmsg_dummy
.msg_flags
;
2123 static struct vm_area_struct
*find_tcp_vma(struct mm_struct
*mm
,
2124 unsigned long address
,
2127 struct vm_area_struct
*vma
= lock_vma_under_rcu(mm
, address
);
2130 if (vma
->vm_ops
!= &tcp_vm_ops
) {
2134 *mmap_locked
= false;
2139 vma
= vma_lookup(mm
, address
);
2140 if (!vma
|| vma
->vm_ops
!= &tcp_vm_ops
) {
2141 mmap_read_unlock(mm
);
2144 *mmap_locked
= true;
2148 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2149 static int tcp_zerocopy_receive(struct sock
*sk
,
2150 struct tcp_zerocopy_receive
*zc
,
2151 struct scm_timestamping_internal
*tss
)
2153 u32 length
= 0, offset
, vma_len
, avail_len
, copylen
= 0;
2154 unsigned long address
= (unsigned long)zc
->address
;
2155 struct page
*pages
[TCP_ZEROCOPY_PAGE_BATCH_SIZE
];
2156 s32 copybuf_len
= zc
->copybuf_len
;
2157 struct tcp_sock
*tp
= tcp_sk(sk
);
2158 const skb_frag_t
*frags
= NULL
;
2159 unsigned int pages_to_map
= 0;
2160 struct vm_area_struct
*vma
;
2161 struct sk_buff
*skb
= NULL
;
2162 u32 seq
= tp
->copied_seq
;
2163 u32 total_bytes_to_map
;
2164 int inq
= tcp_inq(sk
);
2168 zc
->copybuf_len
= 0;
2171 if (address
& (PAGE_SIZE
- 1) || address
!= zc
->address
)
2174 if (sk
->sk_state
== TCP_LISTEN
)
2177 sock_rps_record_flow(sk
);
2179 if (inq
&& inq
<= copybuf_len
)
2180 return receive_fallback_to_copy(sk
, zc
, inq
, tss
);
2182 if (inq
< PAGE_SIZE
) {
2184 zc
->recv_skip_hint
= inq
;
2185 if (!inq
&& sock_flag(sk
, SOCK_DONE
))
2190 vma
= find_tcp_vma(current
->mm
, address
, &mmap_locked
);
2194 vma_len
= min_t(unsigned long, zc
->length
, vma
->vm_end
- address
);
2195 avail_len
= min_t(u32
, vma_len
, inq
);
2196 total_bytes_to_map
= avail_len
& ~(PAGE_SIZE
- 1);
2197 if (total_bytes_to_map
) {
2198 if (!(zc
->flags
& TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT
))
2199 zap_page_range_single(vma
, address
, total_bytes_to_map
,
2201 zc
->length
= total_bytes_to_map
;
2202 zc
->recv_skip_hint
= 0;
2204 zc
->length
= avail_len
;
2205 zc
->recv_skip_hint
= avail_len
;
2208 while (length
+ PAGE_SIZE
<= zc
->length
) {
2209 int mappable_offset
;
2212 if (zc
->recv_skip_hint
< PAGE_SIZE
) {
2216 if (zc
->recv_skip_hint
> 0)
2219 offset
= seq
- TCP_SKB_CB(skb
)->seq
;
2221 skb
= tcp_recv_skb(sk
, seq
, &offset
);
2224 if (!skb_frags_readable(skb
))
2227 if (TCP_SKB_CB(skb
)->has_rxtstamp
) {
2228 tcp_update_recv_tstamps(skb
, tss
);
2229 zc
->msg_flags
|= TCP_CMSG_TS
;
2231 zc
->recv_skip_hint
= skb
->len
- offset
;
2232 frags
= skb_advance_to_frag(skb
, offset
, &offset_frag
);
2233 if (!frags
|| offset_frag
)
2237 mappable_offset
= find_next_mappable_frag(frags
,
2238 zc
->recv_skip_hint
);
2239 if (mappable_offset
) {
2240 zc
->recv_skip_hint
= mappable_offset
;
2243 page
= skb_frag_page(frags
);
2244 if (WARN_ON_ONCE(!page
))
2248 pages
[pages_to_map
++] = page
;
2249 length
+= PAGE_SIZE
;
2250 zc
->recv_skip_hint
-= PAGE_SIZE
;
2252 if (pages_to_map
== TCP_ZEROCOPY_PAGE_BATCH_SIZE
||
2253 zc
->recv_skip_hint
< PAGE_SIZE
) {
2254 /* Either full batch, or we're about to go to next skb
2255 * (and we cannot unroll failed ops across skbs).
2257 ret
= tcp_zerocopy_vm_insert_batch(vma
, pages
,
2261 total_bytes_to_map
);
2268 ret
= tcp_zerocopy_vm_insert_batch(vma
, pages
, pages_to_map
,
2269 &address
, &length
, &seq
,
2270 zc
, total_bytes_to_map
);
2274 mmap_read_unlock(current
->mm
);
2277 /* Try to copy straggler data. */
2279 copylen
= tcp_zc_handle_leftover(zc
, sk
, skb
, &seq
, copybuf_len
, tss
);
2281 if (length
+ copylen
) {
2282 WRITE_ONCE(tp
->copied_seq
, seq
);
2283 tcp_rcv_space_adjust(sk
);
2285 /* Clean up data we have read: This will do ACK frames. */
2286 tcp_recv_skb(sk
, seq
, &offset
);
2287 tcp_cleanup_rbuf(sk
, length
+ copylen
);
2289 if (length
== zc
->length
)
2290 zc
->recv_skip_hint
= 0;
2292 if (!zc
->recv_skip_hint
&& sock_flag(sk
, SOCK_DONE
))
2295 zc
->length
= length
;
2300 /* Similar to __sock_recv_timestamp, but does not require an skb */
2301 void tcp_recv_timestamp(struct msghdr
*msg
, const struct sock
*sk
,
2302 struct scm_timestamping_internal
*tss
)
2304 int new_tstamp
= sock_flag(sk
, SOCK_TSTAMP_NEW
);
2305 u32 tsflags
= READ_ONCE(sk
->sk_tsflags
);
2306 bool has_timestamping
= false;
2308 if (tss
->ts
[0].tv_sec
|| tss
->ts
[0].tv_nsec
) {
2309 if (sock_flag(sk
, SOCK_RCVTSTAMP
)) {
2310 if (sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
2312 struct __kernel_timespec kts
= {
2313 .tv_sec
= tss
->ts
[0].tv_sec
,
2314 .tv_nsec
= tss
->ts
[0].tv_nsec
,
2316 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMPNS_NEW
,
2319 struct __kernel_old_timespec ts_old
= {
2320 .tv_sec
= tss
->ts
[0].tv_sec
,
2321 .tv_nsec
= tss
->ts
[0].tv_nsec
,
2323 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMPNS_OLD
,
2324 sizeof(ts_old
), &ts_old
);
2328 struct __kernel_sock_timeval stv
= {
2329 .tv_sec
= tss
->ts
[0].tv_sec
,
2330 .tv_usec
= tss
->ts
[0].tv_nsec
/ 1000,
2332 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMP_NEW
,
2335 struct __kernel_old_timeval tv
= {
2336 .tv_sec
= tss
->ts
[0].tv_sec
,
2337 .tv_usec
= tss
->ts
[0].tv_nsec
/ 1000,
2339 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMP_OLD
,
2345 if (tsflags
& SOF_TIMESTAMPING_SOFTWARE
&&
2346 (tsflags
& SOF_TIMESTAMPING_RX_SOFTWARE
||
2347 !(tsflags
& SOF_TIMESTAMPING_OPT_RX_FILTER
)))
2348 has_timestamping
= true;
2350 tss
->ts
[0] = (struct timespec64
) {0};
2353 if (tss
->ts
[2].tv_sec
|| tss
->ts
[2].tv_nsec
) {
2354 if (tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
&&
2355 (tsflags
& SOF_TIMESTAMPING_RX_HARDWARE
||
2356 !(tsflags
& SOF_TIMESTAMPING_OPT_RX_FILTER
)))
2357 has_timestamping
= true;
2359 tss
->ts
[2] = (struct timespec64
) {0};
2362 if (has_timestamping
) {
2363 tss
->ts
[1] = (struct timespec64
) {0};
2364 if (sock_flag(sk
, SOCK_TSTAMP_NEW
))
2365 put_cmsg_scm_timestamping64(msg
, tss
);
2367 put_cmsg_scm_timestamping(msg
, tss
);
2371 static int tcp_inq_hint(struct sock
*sk
)
2373 const struct tcp_sock
*tp
= tcp_sk(sk
);
2374 u32 copied_seq
= READ_ONCE(tp
->copied_seq
);
2375 u32 rcv_nxt
= READ_ONCE(tp
->rcv_nxt
);
2378 inq
= rcv_nxt
- copied_seq
;
2379 if (unlikely(inq
< 0 || copied_seq
!= READ_ONCE(tp
->copied_seq
))) {
2381 inq
= tp
->rcv_nxt
- tp
->copied_seq
;
2384 /* After receiving a FIN, tell the user-space to continue reading
2385 * by returning a non-zero inq.
2387 if (inq
== 0 && sock_flag(sk
, SOCK_DONE
))
2392 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */
2393 struct tcp_xa_pool
{
2394 u8 max
; /* max <= MAX_SKB_FRAGS */
2395 u8 idx
; /* idx <= max */
2396 __u32 tokens
[MAX_SKB_FRAGS
];
2397 netmem_ref netmems
[MAX_SKB_FRAGS
];
2400 static void tcp_xa_pool_commit_locked(struct sock
*sk
, struct tcp_xa_pool
*p
)
2404 /* Commit part that has been copied to user space. */
2405 for (i
= 0; i
< p
->idx
; i
++)
2406 __xa_cmpxchg(&sk
->sk_user_frags
, p
->tokens
[i
], XA_ZERO_ENTRY
,
2407 (__force
void *)p
->netmems
[i
], GFP_KERNEL
);
2408 /* Rollback what has been pre-allocated and is no longer needed. */
2409 for (; i
< p
->max
; i
++)
2410 __xa_erase(&sk
->sk_user_frags
, p
->tokens
[i
]);
2416 static void tcp_xa_pool_commit(struct sock
*sk
, struct tcp_xa_pool
*p
)
2421 xa_lock_bh(&sk
->sk_user_frags
);
2423 tcp_xa_pool_commit_locked(sk
, p
);
2425 xa_unlock_bh(&sk
->sk_user_frags
);
2428 static int tcp_xa_pool_refill(struct sock
*sk
, struct tcp_xa_pool
*p
,
2429 unsigned int max_frags
)
2433 if (p
->idx
< p
->max
)
2436 xa_lock_bh(&sk
->sk_user_frags
);
2438 tcp_xa_pool_commit_locked(sk
, p
);
2440 for (k
= 0; k
< max_frags
; k
++) {
2441 err
= __xa_alloc(&sk
->sk_user_frags
, &p
->tokens
[k
],
2442 XA_ZERO_ENTRY
, xa_limit_31b
, GFP_KERNEL
);
2447 xa_unlock_bh(&sk
->sk_user_frags
);
2454 /* On error, returns the -errno. On success, returns number of bytes sent to the
2455 * user. May not consume all of @remaining_len.
2457 static int tcp_recvmsg_dmabuf(struct sock
*sk
, const struct sk_buff
*skb
,
2458 unsigned int offset
, struct msghdr
*msg
,
2461 struct dmabuf_cmsg dmabuf_cmsg
= { 0 };
2462 struct tcp_xa_pool tcp_xa_pool
;
2468 tcp_xa_pool
.max
= 0;
2469 tcp_xa_pool
.idx
= 0;
2471 start
= skb_headlen(skb
);
2473 if (skb_frags_readable(skb
)) {
2479 copy
= start
- offset
;
2481 copy
= min(copy
, remaining_len
);
2483 n
= copy_to_iter(skb
->data
+ offset
, copy
,
2491 remaining_len
-= copy
;
2493 /* First a dmabuf_cmsg for # bytes copied to user
2496 memset(&dmabuf_cmsg
, 0, sizeof(dmabuf_cmsg
));
2497 dmabuf_cmsg
.frag_size
= copy
;
2498 err
= put_cmsg_notrunc(msg
, SOL_SOCKET
,
2500 sizeof(dmabuf_cmsg
),
2507 if (remaining_len
== 0)
2511 /* after that, send information of dmabuf pages through a
2514 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2515 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2516 struct net_iov
*niov
;
2520 /* !skb_frags_readable() should indicate that ALL the
2521 * frags in this skb are dmabuf net_iovs. We're checking
2522 * for that flag above, but also check individual frags
2523 * here. If the tcp stack is not setting
2524 * skb_frags_readable() correctly, we still don't want
2527 if (!skb_frag_net_iov(frag
)) {
2528 net_err_ratelimited("Found non-dmabuf skb with net_iov");
2533 niov
= skb_frag_net_iov(frag
);
2534 if (!net_is_devmem_iov(niov
)) {
2539 end
= start
+ skb_frag_size(frag
);
2540 copy
= end
- offset
;
2543 copy
= min(copy
, remaining_len
);
2545 frag_offset
= net_iov_virtual_addr(niov
) +
2546 skb_frag_off(frag
) + offset
-
2548 dmabuf_cmsg
.frag_offset
= frag_offset
;
2549 dmabuf_cmsg
.frag_size
= copy
;
2550 err
= tcp_xa_pool_refill(sk
, &tcp_xa_pool
,
2551 skb_shinfo(skb
)->nr_frags
- i
);
2555 /* Will perform the exchange later */
2556 dmabuf_cmsg
.frag_token
= tcp_xa_pool
.tokens
[tcp_xa_pool
.idx
];
2557 dmabuf_cmsg
.dmabuf_id
= net_devmem_iov_binding_id(niov
);
2560 remaining_len
-= copy
;
2562 err
= put_cmsg_notrunc(msg
, SOL_SOCKET
,
2564 sizeof(dmabuf_cmsg
),
2569 atomic_long_inc(&niov
->pp_ref_count
);
2570 tcp_xa_pool
.netmems
[tcp_xa_pool
.idx
++] = skb_frag_netmem(frag
);
2574 if (remaining_len
== 0)
2580 tcp_xa_pool_commit(sk
, &tcp_xa_pool
);
2584 /* if remaining_len is not satisfied yet, we need to go to the
2585 * next frag in the frag_list to satisfy remaining_len.
2587 skb
= skb_shinfo(skb
)->frag_list
?: skb
->next
;
2589 offset
= offset
- start
;
2592 if (remaining_len
) {
2598 tcp_xa_pool_commit(sk
, &tcp_xa_pool
);
2606 * This routine copies from a sock struct into the user buffer.
2608 * Technical note: in 2.3 we work on _locked_ socket, so that
2609 * tricks with *seq access order and skb->users are not required.
2610 * Probably, code can be easily improved even more.
2613 static int tcp_recvmsg_locked(struct sock
*sk
, struct msghdr
*msg
, size_t len
,
2614 int flags
, struct scm_timestamping_internal
*tss
,
2617 struct tcp_sock
*tp
= tcp_sk(sk
);
2618 int last_copied_dmabuf
= -1; /* uninitialized */
2624 int target
; /* Read at least this many bytes */
2626 struct sk_buff
*skb
, *last
;
2627 u32 peek_offset
= 0;
2631 if (sk
->sk_state
== TCP_LISTEN
)
2634 if (tp
->recvmsg_inq
) {
2635 *cmsg_flags
= TCP_CMSG_INQ
;
2636 msg
->msg_get_inq
= 1;
2638 timeo
= sock_rcvtimeo(sk
, flags
& MSG_DONTWAIT
);
2640 /* Urgent data needs to be handled specially. */
2641 if (flags
& MSG_OOB
)
2644 if (unlikely(tp
->repair
)) {
2646 if (!(flags
& MSG_PEEK
))
2649 if (tp
->repair_queue
== TCP_SEND_QUEUE
)
2653 if (tp
->repair_queue
== TCP_NO_QUEUE
)
2656 /* 'common' recv queue MSG_PEEK-ing */
2659 seq
= &tp
->copied_seq
;
2660 if (flags
& MSG_PEEK
) {
2661 peek_offset
= max(sk_peek_offset(sk
, flags
), 0);
2662 peek_seq
= tp
->copied_seq
+ peek_offset
;
2666 target
= sock_rcvlowat(sk
, flags
& MSG_WAITALL
, len
);
2671 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2672 if (unlikely(tp
->urg_data
) && tp
->urg_seq
== *seq
) {
2675 if (signal_pending(current
)) {
2676 copied
= timeo
? sock_intr_errno(timeo
) : -EAGAIN
;
2681 /* Next get a buffer. */
2683 last
= skb_peek_tail(&sk
->sk_receive_queue
);
2684 skb_queue_walk(&sk
->sk_receive_queue
, skb
) {
2686 /* Now that we have two receive queues this
2689 if (WARN(before(*seq
, TCP_SKB_CB(skb
)->seq
),
2690 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2691 *seq
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
,
2695 offset
= *seq
- TCP_SKB_CB(skb
)->seq
;
2696 if (unlikely(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)) {
2697 pr_err_once("%s: found a SYN, please report !\n", __func__
);
2700 if (offset
< skb
->len
)
2702 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
2704 WARN(!(flags
& MSG_PEEK
),
2705 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2706 *seq
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
, flags
);
2709 /* Well, if we have backlog, try to process it now yet. */
2711 if (copied
>= target
&& !READ_ONCE(sk
->sk_backlog
.tail
))
2717 sk
->sk_state
== TCP_CLOSE
||
2718 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
2719 signal_pending(current
))
2722 if (sock_flag(sk
, SOCK_DONE
))
2726 copied
= sock_error(sk
);
2730 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
2733 if (sk
->sk_state
== TCP_CLOSE
) {
2734 /* This occurs when user tries to read
2735 * from never connected socket.
2746 if (signal_pending(current
)) {
2747 copied
= sock_intr_errno(timeo
);
2752 if (copied
>= target
) {
2753 /* Do not sleep, just process backlog. */
2754 __sk_flush_backlog(sk
);
2756 tcp_cleanup_rbuf(sk
, copied
);
2757 err
= sk_wait_data(sk
, &timeo
, last
);
2759 err
= copied
? : err
;
2764 if ((flags
& MSG_PEEK
) &&
2765 (peek_seq
- peek_offset
- copied
- urg_hole
!= tp
->copied_seq
)) {
2766 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2768 task_pid_nr(current
));
2769 peek_seq
= tp
->copied_seq
+ peek_offset
;
2774 /* Ok so how much can we use? */
2775 used
= skb
->len
- offset
;
2779 /* Do we have urgent data here? */
2780 if (unlikely(tp
->urg_data
)) {
2781 u32 urg_offset
= tp
->urg_seq
- *seq
;
2782 if (urg_offset
< used
) {
2784 if (!sock_flag(sk
, SOCK_URGINLINE
)) {
2785 WRITE_ONCE(*seq
, *seq
+ 1);
2797 if (!(flags
& MSG_TRUNC
)) {
2798 if (last_copied_dmabuf
!= -1 &&
2799 last_copied_dmabuf
!= !skb_frags_readable(skb
))
2802 if (skb_frags_readable(skb
)) {
2803 err
= skb_copy_datagram_msg(skb
, offset
, msg
,
2806 /* Exception. Bailout! */
2812 if (!(flags
& MSG_SOCK_DEVMEM
)) {
2813 /* dmabuf skbs can only be received
2814 * with the MSG_SOCK_DEVMEM flag.
2822 err
= tcp_recvmsg_dmabuf(sk
, skb
, offset
, msg
,
2834 last_copied_dmabuf
= !skb_frags_readable(skb
);
2836 WRITE_ONCE(*seq
, *seq
+ used
);
2839 if (flags
& MSG_PEEK
)
2840 sk_peek_offset_fwd(sk
, used
);
2842 sk_peek_offset_bwd(sk
, used
);
2843 tcp_rcv_space_adjust(sk
);
2846 if (unlikely(tp
->urg_data
) && after(tp
->copied_seq
, tp
->urg_seq
)) {
2847 WRITE_ONCE(tp
->urg_data
, 0);
2848 tcp_fast_path_check(sk
);
2851 if (TCP_SKB_CB(skb
)->has_rxtstamp
) {
2852 tcp_update_recv_tstamps(skb
, tss
);
2853 *cmsg_flags
|= TCP_CMSG_TS
;
2856 if (used
+ offset
< skb
->len
)
2859 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
2861 if (!(flags
& MSG_PEEK
))
2862 tcp_eat_recv_skb(sk
, skb
);
2866 /* Process the FIN. */
2867 WRITE_ONCE(*seq
, *seq
+ 1);
2868 if (!(flags
& MSG_PEEK
))
2869 tcp_eat_recv_skb(sk
, skb
);
2873 /* According to UNIX98, msg_name/msg_namelen are ignored
2874 * on connected socket. I was just happy when found this 8) --ANK
2877 /* Clean up data we have read: This will do ACK frames. */
2878 tcp_cleanup_rbuf(sk
, copied
);
2885 err
= tcp_recv_urg(sk
, msg
, len
, flags
);
2889 err
= tcp_peek_sndq(sk
, msg
, len
);
2893 int tcp_recvmsg(struct sock
*sk
, struct msghdr
*msg
, size_t len
, int flags
,
2896 int cmsg_flags
= 0, ret
;
2897 struct scm_timestamping_internal tss
;
2899 if (unlikely(flags
& MSG_ERRQUEUE
))
2900 return inet_recv_error(sk
, msg
, len
, addr_len
);
2902 if (sk_can_busy_loop(sk
) &&
2903 skb_queue_empty_lockless(&sk
->sk_receive_queue
) &&
2904 sk
->sk_state
== TCP_ESTABLISHED
)
2905 sk_busy_loop(sk
, flags
& MSG_DONTWAIT
);
2908 ret
= tcp_recvmsg_locked(sk
, msg
, len
, flags
, &tss
, &cmsg_flags
);
2911 if ((cmsg_flags
|| msg
->msg_get_inq
) && ret
>= 0) {
2912 if (cmsg_flags
& TCP_CMSG_TS
)
2913 tcp_recv_timestamp(msg
, sk
, &tss
);
2914 if (msg
->msg_get_inq
) {
2915 msg
->msg_inq
= tcp_inq_hint(sk
);
2916 if (cmsg_flags
& TCP_CMSG_INQ
)
2917 put_cmsg(msg
, SOL_TCP
, TCP_CM_INQ
,
2918 sizeof(msg
->msg_inq
), &msg
->msg_inq
);
2923 EXPORT_IPV6_MOD(tcp_recvmsg
);
2925 void tcp_set_state(struct sock
*sk
, int state
)
2927 int oldstate
= sk
->sk_state
;
2929 /* We defined a new enum for TCP states that are exported in BPF
2930 * so as not force the internal TCP states to be frozen. The
2931 * following checks will detect if an internal state value ever
2932 * differs from the BPF value. If this ever happens, then we will
2933 * need to remap the internal value to the BPF value before calling
2934 * tcp_call_bpf_2arg.
2936 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED
!= (int)TCP_ESTABLISHED
);
2937 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT
!= (int)TCP_SYN_SENT
);
2938 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV
!= (int)TCP_SYN_RECV
);
2939 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1
!= (int)TCP_FIN_WAIT1
);
2940 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2
!= (int)TCP_FIN_WAIT2
);
2941 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT
!= (int)TCP_TIME_WAIT
);
2942 BUILD_BUG_ON((int)BPF_TCP_CLOSE
!= (int)TCP_CLOSE
);
2943 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT
!= (int)TCP_CLOSE_WAIT
);
2944 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK
!= (int)TCP_LAST_ACK
);
2945 BUILD_BUG_ON((int)BPF_TCP_LISTEN
!= (int)TCP_LISTEN
);
2946 BUILD_BUG_ON((int)BPF_TCP_CLOSING
!= (int)TCP_CLOSING
);
2947 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV
!= (int)TCP_NEW_SYN_RECV
);
2948 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE
!= (int)TCP_BOUND_INACTIVE
);
2949 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES
!= (int)TCP_MAX_STATES
);
2951 /* bpf uapi header bpf.h defines an anonymous enum with values
2952 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2953 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2954 * But clang built vmlinux does not have this enum in DWARF
2955 * since clang removes the above code before generating IR/debuginfo.
2956 * Let us explicitly emit the type debuginfo to ensure the
2957 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2958 * regardless of which compiler is used.
2960 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED
);
2962 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk
), BPF_SOCK_OPS_STATE_CB_FLAG
))
2963 tcp_call_bpf_2arg(sk
, BPF_SOCK_OPS_STATE_CB
, oldstate
, state
);
2966 case TCP_ESTABLISHED
:
2967 if (oldstate
!= TCP_ESTABLISHED
)
2968 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CURRESTAB
);
2970 case TCP_CLOSE_WAIT
:
2971 if (oldstate
== TCP_SYN_RECV
)
2972 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CURRESTAB
);
2976 if (oldstate
== TCP_CLOSE_WAIT
|| oldstate
== TCP_ESTABLISHED
)
2977 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ESTABRESETS
);
2979 sk
->sk_prot
->unhash(sk
);
2980 if (inet_csk(sk
)->icsk_bind_hash
&&
2981 !(sk
->sk_userlocks
& SOCK_BINDPORT_LOCK
))
2985 if (oldstate
== TCP_ESTABLISHED
|| oldstate
== TCP_CLOSE_WAIT
)
2986 TCP_DEC_STATS(sock_net(sk
), TCP_MIB_CURRESTAB
);
2989 /* Change state AFTER socket is unhashed to avoid closed
2990 * socket sitting in hash tables.
2992 inet_sk_state_store(sk
, state
);
2994 EXPORT_SYMBOL_GPL(tcp_set_state
);
2997 * State processing on a close. This implements the state shift for
2998 * sending our FIN frame. Note that we only send a FIN for some
2999 * states. A shutdown() may have already sent the FIN, or we may be
3003 static const unsigned char new_state
[16] = {
3004 /* current state: new state: action: */
3005 [0 /* (Invalid) */] = TCP_CLOSE
,
3006 [TCP_ESTABLISHED
] = TCP_FIN_WAIT1
| TCP_ACTION_FIN
,
3007 [TCP_SYN_SENT
] = TCP_CLOSE
,
3008 [TCP_SYN_RECV
] = TCP_FIN_WAIT1
| TCP_ACTION_FIN
,
3009 [TCP_FIN_WAIT1
] = TCP_FIN_WAIT1
,
3010 [TCP_FIN_WAIT2
] = TCP_FIN_WAIT2
,
3011 [TCP_TIME_WAIT
] = TCP_CLOSE
,
3012 [TCP_CLOSE
] = TCP_CLOSE
,
3013 [TCP_CLOSE_WAIT
] = TCP_LAST_ACK
| TCP_ACTION_FIN
,
3014 [TCP_LAST_ACK
] = TCP_LAST_ACK
,
3015 [TCP_LISTEN
] = TCP_CLOSE
,
3016 [TCP_CLOSING
] = TCP_CLOSING
,
3017 [TCP_NEW_SYN_RECV
] = TCP_CLOSE
, /* should not happen ! */
3020 static int tcp_close_state(struct sock
*sk
)
3022 int next
= (int)new_state
[sk
->sk_state
];
3023 int ns
= next
& TCP_STATE_MASK
;
3025 tcp_set_state(sk
, ns
);
3027 return next
& TCP_ACTION_FIN
;
3031 * Shutdown the sending side of a connection. Much like close except
3032 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
3035 void tcp_shutdown(struct sock
*sk
, int how
)
3037 /* We need to grab some memory, and put together a FIN,
3038 * and then put it into the queue to be sent.
3039 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
3041 if (!(how
& SEND_SHUTDOWN
))
3044 /* If we've already sent a FIN, or it's a closed state, skip this. */
3045 if ((1 << sk
->sk_state
) &
3046 (TCPF_ESTABLISHED
| TCPF_SYN_SENT
|
3048 /* Clear out any half completed packets. FIN if needed. */
3049 if (tcp_close_state(sk
))
3053 EXPORT_IPV6_MOD(tcp_shutdown
);
3055 int tcp_orphan_count_sum(void)
3059 for_each_possible_cpu(i
)
3060 total
+= per_cpu(tcp_orphan_count
, i
);
3062 return max(total
, 0);
3065 static int tcp_orphan_cache
;
3066 static struct timer_list tcp_orphan_timer
;
3067 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
3069 static void tcp_orphan_update(struct timer_list
*unused
)
3071 WRITE_ONCE(tcp_orphan_cache
, tcp_orphan_count_sum());
3072 mod_timer(&tcp_orphan_timer
, jiffies
+ TCP_ORPHAN_TIMER_PERIOD
);
3075 static bool tcp_too_many_orphans(int shift
)
3077 return READ_ONCE(tcp_orphan_cache
) << shift
>
3078 READ_ONCE(sysctl_tcp_max_orphans
);
3081 static bool tcp_out_of_memory(const struct sock
*sk
)
3083 if (sk
->sk_wmem_queued
> SOCK_MIN_SNDBUF
&&
3084 sk_memory_allocated(sk
) > sk_prot_mem_limits(sk
, 2))
3089 bool tcp_check_oom(const struct sock
*sk
, int shift
)
3091 bool too_many_orphans
, out_of_socket_memory
;
3093 too_many_orphans
= tcp_too_many_orphans(shift
);
3094 out_of_socket_memory
= tcp_out_of_memory(sk
);
3096 if (too_many_orphans
)
3097 net_info_ratelimited("too many orphaned sockets\n");
3098 if (out_of_socket_memory
)
3099 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
3100 return too_many_orphans
|| out_of_socket_memory
;
3103 void __tcp_close(struct sock
*sk
, long timeout
)
3105 struct sk_buff
*skb
;
3106 int data_was_unread
= 0;
3109 WRITE_ONCE(sk
->sk_shutdown
, SHUTDOWN_MASK
);
3111 if (sk
->sk_state
== TCP_LISTEN
) {
3112 tcp_set_state(sk
, TCP_CLOSE
);
3115 inet_csk_listen_stop(sk
);
3117 goto adjudge_to_death
;
3120 /* We need to flush the recv. buffs. We do this only on the
3121 * descriptor close, not protocol-sourced closes, because the
3122 * reader process may not have drained the data yet!
3124 while ((skb
= __skb_dequeue(&sk
->sk_receive_queue
)) != NULL
) {
3125 u32 len
= TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
;
3127 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
3129 data_was_unread
+= len
;
3133 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
3134 if (sk
->sk_state
== TCP_CLOSE
)
3135 goto adjudge_to_death
;
3137 /* As outlined in RFC 2525, section 2.17, we send a RST here because
3138 * data was lost. To witness the awful effects of the old behavior of
3139 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
3140 * GET in an FTP client, suspend the process, wait for the client to
3141 * advertise a zero window, then kill -9 the FTP client, wheee...
3142 * Note: timeout is always zero in such a case.
3144 if (unlikely(tcp_sk(sk
)->repair
)) {
3145 sk
->sk_prot
->disconnect(sk
, 0);
3146 } else if (data_was_unread
) {
3147 /* Unread data was tossed, zap the connection. */
3148 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONCLOSE
);
3149 tcp_set_state(sk
, TCP_CLOSE
);
3150 tcp_send_active_reset(sk
, sk
->sk_allocation
,
3151 SK_RST_REASON_TCP_ABORT_ON_CLOSE
);
3152 } else if (sock_flag(sk
, SOCK_LINGER
) && !sk
->sk_lingertime
) {
3153 /* Check zero linger _after_ checking for unread data. */
3154 sk
->sk_prot
->disconnect(sk
, 0);
3155 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
3156 } else if (tcp_close_state(sk
)) {
3157 /* We FIN if the application ate all the data before
3158 * zapping the connection.
3161 /* RED-PEN. Formally speaking, we have broken TCP state
3162 * machine. State transitions:
3164 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
3165 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult)
3166 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
3168 * are legal only when FIN has been sent (i.e. in window),
3169 * rather than queued out of window. Purists blame.
3171 * F.e. "RFC state" is ESTABLISHED,
3172 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
3174 * The visible declinations are that sometimes
3175 * we enter time-wait state, when it is not required really
3176 * (harmless), do not send active resets, when they are
3177 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
3178 * they look as CLOSING or LAST_ACK for Linux)
3179 * Probably, I missed some more holelets.
3181 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
3182 * in a single packet! (May consider it later but will
3183 * probably need API support or TCP_CORK SYN-ACK until
3184 * data is written and socket is closed.)
3189 sk_stream_wait_close(sk
, timeout
);
3192 state
= sk
->sk_state
;
3198 /* remove backlog if any, without releasing ownership. */
3201 this_cpu_inc(tcp_orphan_count
);
3203 /* Have we already been destroyed by a softirq or backlog? */
3204 if (state
!= TCP_CLOSE
&& sk
->sk_state
== TCP_CLOSE
)
3207 /* This is a (useful) BSD violating of the RFC. There is a
3208 * problem with TCP as specified in that the other end could
3209 * keep a socket open forever with no application left this end.
3210 * We use a 1 minute timeout (about the same as BSD) then kill
3211 * our end. If they send after that then tough - BUT: long enough
3212 * that we won't make the old 4*rto = almost no time - whoops
3215 * Nope, it was not mistake. It is really desired behaviour
3216 * f.e. on http servers, when such sockets are useless, but
3217 * consume significant resources. Let's do it with special
3218 * linger2 option. --ANK
3221 if (sk
->sk_state
== TCP_FIN_WAIT2
) {
3222 struct tcp_sock
*tp
= tcp_sk(sk
);
3223 if (READ_ONCE(tp
->linger2
) < 0) {
3224 tcp_set_state(sk
, TCP_CLOSE
);
3225 tcp_send_active_reset(sk
, GFP_ATOMIC
,
3226 SK_RST_REASON_TCP_ABORT_ON_LINGER
);
3227 __NET_INC_STATS(sock_net(sk
),
3228 LINUX_MIB_TCPABORTONLINGER
);
3230 const int tmo
= tcp_fin_time(sk
);
3232 if (tmo
> TCP_TIMEWAIT_LEN
) {
3233 tcp_reset_keepalive_timer(sk
,
3234 tmo
- TCP_TIMEWAIT_LEN
);
3236 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
3241 if (sk
->sk_state
!= TCP_CLOSE
) {
3242 if (tcp_check_oom(sk
, 0)) {
3243 tcp_set_state(sk
, TCP_CLOSE
);
3244 tcp_send_active_reset(sk
, GFP_ATOMIC
,
3245 SK_RST_REASON_TCP_ABORT_ON_MEMORY
);
3246 __NET_INC_STATS(sock_net(sk
),
3247 LINUX_MIB_TCPABORTONMEMORY
);
3248 } else if (!check_net(sock_net(sk
))) {
3249 /* Not possible to send reset; just close */
3250 tcp_set_state(sk
, TCP_CLOSE
);
3254 if (sk
->sk_state
== TCP_CLOSE
) {
3255 struct request_sock
*req
;
3257 req
= rcu_dereference_protected(tcp_sk(sk
)->fastopen_rsk
,
3258 lockdep_sock_is_held(sk
));
3259 /* We could get here with a non-NULL req if the socket is
3260 * aborted (e.g., closed with unread data) before 3WHS
3264 reqsk_fastopen_remove(sk
, req
, false);
3265 inet_csk_destroy_sock(sk
);
3267 /* Otherwise, socket is reprieved until protocol close. */
3274 void tcp_close(struct sock
*sk
, long timeout
)
3277 __tcp_close(sk
, timeout
);
3279 if (!sk
->sk_net_refcnt
)
3280 inet_csk_clear_xmit_timers_sync(sk
);
3283 EXPORT_SYMBOL(tcp_close
);
3285 /* These states need RST on ABORT according to RFC793 */
3287 static inline bool tcp_need_reset(int state
)
3289 return (1 << state
) &
3290 (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
| TCPF_FIN_WAIT1
|
3291 TCPF_FIN_WAIT2
| TCPF_SYN_RECV
);
3294 static void tcp_rtx_queue_purge(struct sock
*sk
)
3296 struct rb_node
*p
= rb_first(&sk
->tcp_rtx_queue
);
3298 tcp_sk(sk
)->highest_sack
= NULL
;
3300 struct sk_buff
*skb
= rb_to_skb(p
);
3303 /* Since we are deleting whole queue, no need to
3304 * list_del(&skb->tcp_tsorted_anchor)
3306 tcp_rtx_queue_unlink(skb
, sk
);
3307 tcp_wmem_free_skb(sk
, skb
);
3311 void tcp_write_queue_purge(struct sock
*sk
)
3313 struct sk_buff
*skb
;
3315 tcp_chrono_stop(sk
, TCP_CHRONO_BUSY
);
3316 while ((skb
= __skb_dequeue(&sk
->sk_write_queue
)) != NULL
) {
3317 tcp_skb_tsorted_anchor_cleanup(skb
);
3318 tcp_wmem_free_skb(sk
, skb
);
3320 tcp_rtx_queue_purge(sk
);
3321 INIT_LIST_HEAD(&tcp_sk(sk
)->tsorted_sent_queue
);
3322 tcp_clear_all_retrans_hints(tcp_sk(sk
));
3323 tcp_sk(sk
)->packets_out
= 0;
3324 inet_csk(sk
)->icsk_backoff
= 0;
3327 int tcp_disconnect(struct sock
*sk
, int flags
)
3329 struct inet_sock
*inet
= inet_sk(sk
);
3330 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3331 struct tcp_sock
*tp
= tcp_sk(sk
);
3332 int old_state
= sk
->sk_state
;
3335 if (old_state
!= TCP_CLOSE
)
3336 tcp_set_state(sk
, TCP_CLOSE
);
3338 /* ABORT function of RFC793 */
3339 if (old_state
== TCP_LISTEN
) {
3340 inet_csk_listen_stop(sk
);
3341 } else if (unlikely(tp
->repair
)) {
3342 WRITE_ONCE(sk
->sk_err
, ECONNABORTED
);
3343 } else if (tcp_need_reset(old_state
)) {
3344 tcp_send_active_reset(sk
, gfp_any(), SK_RST_REASON_TCP_STATE
);
3345 WRITE_ONCE(sk
->sk_err
, ECONNRESET
);
3346 } else if (tp
->snd_nxt
!= tp
->write_seq
&&
3347 (1 << old_state
) & (TCPF_CLOSING
| TCPF_LAST_ACK
)) {
3348 /* The last check adjusts for discrepancy of Linux wrt. RFC
3351 tcp_send_active_reset(sk
, gfp_any(),
3352 SK_RST_REASON_TCP_DISCONNECT_WITH_DATA
);
3353 WRITE_ONCE(sk
->sk_err
, ECONNRESET
);
3354 } else if (old_state
== TCP_SYN_SENT
)
3355 WRITE_ONCE(sk
->sk_err
, ECONNRESET
);
3357 tcp_clear_xmit_timers(sk
);
3358 __skb_queue_purge(&sk
->sk_receive_queue
);
3359 WRITE_ONCE(tp
->copied_seq
, tp
->rcv_nxt
);
3360 WRITE_ONCE(tp
->urg_data
, 0);
3361 sk_set_peek_off(sk
, -1);
3362 tcp_write_queue_purge(sk
);
3363 tcp_fastopen_active_disable_ofo_check(sk
);
3364 skb_rbtree_purge(&tp
->out_of_order_queue
);
3366 inet
->inet_dport
= 0;
3368 inet_bhash2_reset_saddr(sk
);
3370 WRITE_ONCE(sk
->sk_shutdown
, 0);
3371 sock_reset_flag(sk
, SOCK_DONE
);
3373 tp
->mdev_us
= jiffies_to_usecs(TCP_TIMEOUT_INIT
);
3374 tp
->rcv_rtt_last_tsecr
= 0;
3376 seq
= tp
->write_seq
+ tp
->max_window
+ 2;
3379 WRITE_ONCE(tp
->write_seq
, seq
);
3381 icsk
->icsk_backoff
= 0;
3382 icsk
->icsk_probes_out
= 0;
3383 icsk
->icsk_probes_tstamp
= 0;
3384 icsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
3385 WRITE_ONCE(icsk
->icsk_rto_min
, TCP_RTO_MIN
);
3386 WRITE_ONCE(icsk
->icsk_delack_max
, TCP_DELACK_MAX
);
3387 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
3388 tcp_snd_cwnd_set(tp
, TCP_INIT_CWND
);
3389 tp
->snd_cwnd_cnt
= 0;
3390 tp
->is_cwnd_limited
= 0;
3391 tp
->max_packets_out
= 0;
3392 tp
->window_clamp
= 0;
3394 tp
->delivered_ce
= 0;
3395 if (icsk
->icsk_ca_initialized
&& icsk
->icsk_ca_ops
->release
)
3396 icsk
->icsk_ca_ops
->release(sk
);
3397 memset(icsk
->icsk_ca_priv
, 0, sizeof(icsk
->icsk_ca_priv
));
3398 icsk
->icsk_ca_initialized
= 0;
3399 tcp_set_ca_state(sk
, TCP_CA_Open
);
3400 tp
->is_sack_reneg
= 0;
3401 tcp_clear_retrans(tp
);
3402 tp
->total_retrans
= 0;
3403 inet_csk_delack_init(sk
);
3404 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3405 * issue in __tcp_select_window()
3407 icsk
->icsk_ack
.rcv_mss
= TCP_MIN_MSS
;
3408 memset(&tp
->rx_opt
, 0, sizeof(tp
->rx_opt
));
3410 dst_release(unrcu_pointer(xchg(&sk
->sk_rx_dst
, NULL
)));
3411 tcp_saved_syn_free(tp
);
3412 tp
->compressed_ack
= 0;
3416 tp
->bytes_acked
= 0;
3417 tp
->bytes_received
= 0;
3418 tp
->bytes_retrans
= 0;
3419 tp
->data_segs_in
= 0;
3420 tp
->data_segs_out
= 0;
3421 tp
->duplicate_sack
[0].start_seq
= 0;
3422 tp
->duplicate_sack
[0].end_seq
= 0;
3425 tp
->retrans_out
= 0;
3427 tp
->tlp_high_seq
= 0;
3428 tp
->last_oow_ack_time
= 0;
3430 /* There's a bubble in the pipe until at least the first ACK. */
3431 tp
->app_limited
= ~0U;
3432 tp
->rate_app_limited
= 1;
3433 tp
->rack
.mstamp
= 0;
3434 tp
->rack
.advanced
= 0;
3435 tp
->rack
.reo_wnd_steps
= 1;
3436 tp
->rack
.last_delivered
= 0;
3437 tp
->rack
.reo_wnd_persist
= 0;
3438 tp
->rack
.dsack_seen
= 0;
3439 tp
->syn_data_acked
= 0;
3440 tp
->syn_fastopen_child
= 0;
3441 tp
->rx_opt
.saw_tstamp
= 0;
3442 tp
->rx_opt
.dsack
= 0;
3443 tp
->rx_opt
.num_sacks
= 0;
3444 tp
->rcv_ooopack
= 0;
3447 /* Clean up fastopen related fields */
3448 tcp_free_fastopen_req(tp
);
3449 inet_clear_bit(DEFER_CONNECT
, sk
);
3450 tp
->fastopen_client_fail
= 0;
3452 WARN_ON(inet
->inet_num
&& !icsk
->icsk_bind_hash
);
3454 if (sk
->sk_frag
.page
) {
3455 put_page(sk
->sk_frag
.page
);
3456 sk
->sk_frag
.page
= NULL
;
3457 sk
->sk_frag
.offset
= 0;
3459 sk_error_report(sk
);
3462 EXPORT_SYMBOL(tcp_disconnect
);
3464 static inline bool tcp_can_repair_sock(const struct sock
*sk
)
3466 return sockopt_ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
) &&
3467 (sk
->sk_state
!= TCP_LISTEN
);
3470 static int tcp_repair_set_window(struct tcp_sock
*tp
, sockptr_t optbuf
, int len
)
3472 struct tcp_repair_window opt
;
3477 if (len
!= sizeof(opt
))
3480 if (copy_from_sockptr(&opt
, optbuf
, sizeof(opt
)))
3483 if (opt
.max_window
< opt
.snd_wnd
)
3486 if (after(opt
.snd_wl1
, tp
->rcv_nxt
+ opt
.rcv_wnd
))
3489 if (after(opt
.rcv_wup
, tp
->rcv_nxt
))
3492 tp
->snd_wl1
= opt
.snd_wl1
;
3493 tp
->snd_wnd
= opt
.snd_wnd
;
3494 tp
->max_window
= opt
.max_window
;
3496 tp
->rcv_wnd
= opt
.rcv_wnd
;
3497 tp
->rcv_wup
= opt
.rcv_wup
;
3502 static int tcp_repair_options_est(struct sock
*sk
, sockptr_t optbuf
,
3505 struct tcp_sock
*tp
= tcp_sk(sk
);
3506 struct tcp_repair_opt opt
;
3509 while (len
>= sizeof(opt
)) {
3510 if (copy_from_sockptr_offset(&opt
, optbuf
, offset
, sizeof(opt
)))
3513 offset
+= sizeof(opt
);
3516 switch (opt
.opt_code
) {
3518 tp
->rx_opt
.mss_clamp
= opt
.opt_val
;
3523 u16 snd_wscale
= opt
.opt_val
& 0xFFFF;
3524 u16 rcv_wscale
= opt
.opt_val
>> 16;
3526 if (snd_wscale
> TCP_MAX_WSCALE
|| rcv_wscale
> TCP_MAX_WSCALE
)
3529 tp
->rx_opt
.snd_wscale
= snd_wscale
;
3530 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
3531 tp
->rx_opt
.wscale_ok
= 1;
3534 case TCPOPT_SACK_PERM
:
3535 if (opt
.opt_val
!= 0)
3538 tp
->rx_opt
.sack_ok
|= TCP_SACK_SEEN
;
3540 case TCPOPT_TIMESTAMP
:
3541 if (opt
.opt_val
!= 0)
3544 tp
->rx_opt
.tstamp_ok
= 1;
3552 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled
);
3553 EXPORT_IPV6_MOD(tcp_tx_delay_enabled
);
3555 static void tcp_enable_tx_delay(void)
3557 if (!static_branch_unlikely(&tcp_tx_delay_enabled
)) {
3558 static int __tcp_tx_delay_enabled
= 0;
3560 if (cmpxchg(&__tcp_tx_delay_enabled
, 0, 1) == 0) {
3561 static_branch_enable(&tcp_tx_delay_enabled
);
3562 pr_info("TCP_TX_DELAY enabled\n");
3567 /* When set indicates to always queue non-full frames. Later the user clears
3568 * this option and we transmit any pending partial frames in the queue. This is
3569 * meant to be used alongside sendfile() to get properly filled frames when the
3570 * user (for example) must write out headers with a write() call first and then
3571 * use sendfile to send out the data parts.
3573 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3576 void __tcp_sock_set_cork(struct sock
*sk
, bool on
)
3578 struct tcp_sock
*tp
= tcp_sk(sk
);
3581 tp
->nonagle
|= TCP_NAGLE_CORK
;
3583 tp
->nonagle
&= ~TCP_NAGLE_CORK
;
3584 if (tp
->nonagle
& TCP_NAGLE_OFF
)
3585 tp
->nonagle
|= TCP_NAGLE_PUSH
;
3586 tcp_push_pending_frames(sk
);
3590 void tcp_sock_set_cork(struct sock
*sk
, bool on
)
3593 __tcp_sock_set_cork(sk
, on
);
3596 EXPORT_SYMBOL(tcp_sock_set_cork
);
3598 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3599 * remembered, but it is not activated until cork is cleared.
3601 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3602 * even TCP_CORK for currently queued segments.
3604 void __tcp_sock_set_nodelay(struct sock
*sk
, bool on
)
3607 tcp_sk(sk
)->nonagle
|= TCP_NAGLE_OFF
|TCP_NAGLE_PUSH
;
3608 tcp_push_pending_frames(sk
);
3610 tcp_sk(sk
)->nonagle
&= ~TCP_NAGLE_OFF
;
3614 void tcp_sock_set_nodelay(struct sock
*sk
)
3617 __tcp_sock_set_nodelay(sk
, true);
3620 EXPORT_SYMBOL(tcp_sock_set_nodelay
);
3622 static void __tcp_sock_set_quickack(struct sock
*sk
, int val
)
3625 inet_csk_enter_pingpong_mode(sk
);
3629 inet_csk_exit_pingpong_mode(sk
);
3630 if ((1 << sk
->sk_state
) & (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
) &&
3631 inet_csk_ack_scheduled(sk
)) {
3632 inet_csk(sk
)->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
3633 tcp_cleanup_rbuf(sk
, 1);
3635 inet_csk_enter_pingpong_mode(sk
);
3639 void tcp_sock_set_quickack(struct sock
*sk
, int val
)
3642 __tcp_sock_set_quickack(sk
, val
);
3645 EXPORT_SYMBOL(tcp_sock_set_quickack
);
3647 int tcp_sock_set_syncnt(struct sock
*sk
, int val
)
3649 if (val
< 1 || val
> MAX_TCP_SYNCNT
)
3652 WRITE_ONCE(inet_csk(sk
)->icsk_syn_retries
, val
);
3655 EXPORT_SYMBOL(tcp_sock_set_syncnt
);
3657 int tcp_sock_set_user_timeout(struct sock
*sk
, int val
)
3659 /* Cap the max time in ms TCP will retry or probe the window
3660 * before giving up and aborting (ETIMEDOUT) a connection.
3665 WRITE_ONCE(inet_csk(sk
)->icsk_user_timeout
, val
);
3668 EXPORT_SYMBOL(tcp_sock_set_user_timeout
);
3670 int tcp_sock_set_keepidle_locked(struct sock
*sk
, int val
)
3672 struct tcp_sock
*tp
= tcp_sk(sk
);
3674 if (val
< 1 || val
> MAX_TCP_KEEPIDLE
)
3677 /* Paired with WRITE_ONCE() in keepalive_time_when() */
3678 WRITE_ONCE(tp
->keepalive_time
, val
* HZ
);
3679 if (sock_flag(sk
, SOCK_KEEPOPEN
) &&
3680 !((1 << sk
->sk_state
) & (TCPF_CLOSE
| TCPF_LISTEN
))) {
3681 u32 elapsed
= keepalive_time_elapsed(tp
);
3683 if (tp
->keepalive_time
> elapsed
)
3684 elapsed
= tp
->keepalive_time
- elapsed
;
3687 tcp_reset_keepalive_timer(sk
, elapsed
);
3693 int tcp_sock_set_keepidle(struct sock
*sk
, int val
)
3698 err
= tcp_sock_set_keepidle_locked(sk
, val
);
3702 EXPORT_SYMBOL(tcp_sock_set_keepidle
);
3704 int tcp_sock_set_keepintvl(struct sock
*sk
, int val
)
3706 if (val
< 1 || val
> MAX_TCP_KEEPINTVL
)
3709 WRITE_ONCE(tcp_sk(sk
)->keepalive_intvl
, val
* HZ
);
3712 EXPORT_SYMBOL(tcp_sock_set_keepintvl
);
3714 int tcp_sock_set_keepcnt(struct sock
*sk
, int val
)
3716 if (val
< 1 || val
> MAX_TCP_KEEPCNT
)
3719 /* Paired with READ_ONCE() in keepalive_probes() */
3720 WRITE_ONCE(tcp_sk(sk
)->keepalive_probes
, val
);
3723 EXPORT_SYMBOL(tcp_sock_set_keepcnt
);
3725 int tcp_set_window_clamp(struct sock
*sk
, int val
)
3727 u32 old_window_clamp
, new_window_clamp
, new_rcv_ssthresh
;
3728 struct tcp_sock
*tp
= tcp_sk(sk
);
3731 if (sk
->sk_state
!= TCP_CLOSE
)
3733 WRITE_ONCE(tp
->window_clamp
, 0);
3737 old_window_clamp
= tp
->window_clamp
;
3738 new_window_clamp
= max_t(int, SOCK_MIN_RCVBUF
/ 2, val
);
3740 if (new_window_clamp
== old_window_clamp
)
3743 WRITE_ONCE(tp
->window_clamp
, new_window_clamp
);
3745 /* Need to apply the reserved mem provisioning only
3746 * when shrinking the window clamp.
3748 if (new_window_clamp
< old_window_clamp
) {
3749 __tcp_adjust_rcv_ssthresh(sk
, new_window_clamp
);
3751 new_rcv_ssthresh
= min(tp
->rcv_wnd
, new_window_clamp
);
3752 tp
->rcv_ssthresh
= max(new_rcv_ssthresh
, tp
->rcv_ssthresh
);
3758 * Socket option code for TCP.
3760 int do_tcp_setsockopt(struct sock
*sk
, int level
, int optname
,
3761 sockptr_t optval
, unsigned int optlen
)
3763 struct tcp_sock
*tp
= tcp_sk(sk
);
3764 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3765 struct net
*net
= sock_net(sk
);
3769 /* These are data/string values, all the others are ints */
3771 case TCP_CONGESTION
: {
3772 char name
[TCP_CA_NAME_MAX
];
3777 val
= strncpy_from_sockptr(name
, optval
,
3778 min_t(long, TCP_CA_NAME_MAX
-1, optlen
));
3783 sockopt_lock_sock(sk
);
3784 err
= tcp_set_congestion_control(sk
, name
, !has_current_bpf_ctx(),
3785 sockopt_ns_capable(sock_net(sk
)->user_ns
,
3787 sockopt_release_sock(sk
);
3791 char name
[TCP_ULP_NAME_MAX
];
3796 val
= strncpy_from_sockptr(name
, optval
,
3797 min_t(long, TCP_ULP_NAME_MAX
- 1,
3803 sockopt_lock_sock(sk
);
3804 err
= tcp_set_ulp(sk
, name
);
3805 sockopt_release_sock(sk
);
3808 case TCP_FASTOPEN_KEY
: {
3809 __u8 key
[TCP_FASTOPEN_KEY_BUF_LENGTH
];
3810 __u8
*backup_key
= NULL
;
3812 /* Allow a backup key as well to facilitate key rotation
3813 * First key is the active one.
3815 if (optlen
!= TCP_FASTOPEN_KEY_LENGTH
&&
3816 optlen
!= TCP_FASTOPEN_KEY_BUF_LENGTH
)
3819 if (copy_from_sockptr(key
, optval
, optlen
))
3822 if (optlen
== TCP_FASTOPEN_KEY_BUF_LENGTH
)
3823 backup_key
= key
+ TCP_FASTOPEN_KEY_LENGTH
;
3825 return tcp_fastopen_reset_cipher(net
, sk
, key
, backup_key
);
3832 if (optlen
< sizeof(int))
3835 if (copy_from_sockptr(&val
, optval
, sizeof(val
)))
3838 /* Handle options that can be set without locking the socket. */
3841 return tcp_sock_set_syncnt(sk
, val
);
3842 case TCP_USER_TIMEOUT
:
3843 return tcp_sock_set_user_timeout(sk
, val
);
3845 return tcp_sock_set_keepintvl(sk
, val
);
3847 return tcp_sock_set_keepcnt(sk
, val
);
3850 WRITE_ONCE(tp
->linger2
, -1);
3851 else if (val
> TCP_FIN_TIMEOUT_MAX
/ HZ
)
3852 WRITE_ONCE(tp
->linger2
, TCP_FIN_TIMEOUT_MAX
);
3854 WRITE_ONCE(tp
->linger2
, val
* HZ
);
3856 case TCP_DEFER_ACCEPT
:
3857 /* Translate value in seconds to number of retransmits */
3858 WRITE_ONCE(icsk
->icsk_accept_queue
.rskq_defer_accept
,
3859 secs_to_retrans(val
, TCP_TIMEOUT_INIT
/ HZ
,
3862 case TCP_RTO_MAX_MS
:
3863 if (val
< MSEC_PER_SEC
|| val
> TCP_RTO_MAX_SEC
* MSEC_PER_SEC
)
3865 WRITE_ONCE(inet_csk(sk
)->icsk_rto_max
, msecs_to_jiffies(val
));
3867 case TCP_RTO_MIN_US
: {
3868 int rto_min
= usecs_to_jiffies(val
);
3870 if (rto_min
> TCP_RTO_MIN
|| rto_min
< TCP_TIMEOUT_MIN
)
3872 WRITE_ONCE(inet_csk(sk
)->icsk_rto_min
, rto_min
);
3875 case TCP_DELACK_MAX_US
: {
3876 int delack_max
= usecs_to_jiffies(val
);
3878 if (delack_max
> TCP_DELACK_MAX
|| delack_max
< TCP_TIMEOUT_MIN
)
3880 WRITE_ONCE(inet_csk(sk
)->icsk_delack_max
, delack_max
);
3885 sockopt_lock_sock(sk
);
3889 /* Values greater than interface MTU won't take effect. However
3890 * at the point when this call is done we typically don't yet
3891 * know which interface is going to be used
3893 if (val
&& (val
< TCP_MIN_MSS
|| val
> MAX_TCP_WINDOW
)) {
3897 tp
->rx_opt
.user_mss
= val
;
3901 __tcp_sock_set_nodelay(sk
, val
);
3904 case TCP_THIN_LINEAR_TIMEOUTS
:
3905 if (val
< 0 || val
> 1)
3911 case TCP_THIN_DUPACK
:
3912 if (val
< 0 || val
> 1)
3917 if (!tcp_can_repair_sock(sk
))
3919 else if (val
== TCP_REPAIR_ON
) {
3921 sk
->sk_reuse
= SK_FORCE_REUSE
;
3922 tp
->repair_queue
= TCP_NO_QUEUE
;
3923 } else if (val
== TCP_REPAIR_OFF
) {
3925 sk
->sk_reuse
= SK_NO_REUSE
;
3926 tcp_send_window_probe(sk
);
3927 } else if (val
== TCP_REPAIR_OFF_NO_WP
) {
3929 sk
->sk_reuse
= SK_NO_REUSE
;
3935 case TCP_REPAIR_QUEUE
:
3938 else if ((unsigned int)val
< TCP_QUEUES_NR
)
3939 tp
->repair_queue
= val
;
3945 if (sk
->sk_state
!= TCP_CLOSE
) {
3947 } else if (tp
->repair_queue
== TCP_SEND_QUEUE
) {
3948 if (!tcp_rtx_queue_empty(sk
))
3951 WRITE_ONCE(tp
->write_seq
, val
);
3952 } else if (tp
->repair_queue
== TCP_RECV_QUEUE
) {
3953 if (tp
->rcv_nxt
!= tp
->copied_seq
) {
3956 WRITE_ONCE(tp
->rcv_nxt
, val
);
3957 WRITE_ONCE(tp
->copied_seq
, val
);
3964 case TCP_REPAIR_OPTIONS
:
3967 else if (sk
->sk_state
== TCP_ESTABLISHED
&& !tp
->bytes_sent
)
3968 err
= tcp_repair_options_est(sk
, optval
, optlen
);
3974 __tcp_sock_set_cork(sk
, val
);
3978 err
= tcp_sock_set_keepidle_locked(sk
, val
);
3981 /* 0: disable, 1: enable, 2: start from ether_header */
3982 if (val
< 0 || val
> 2)
3988 case TCP_WINDOW_CLAMP
:
3989 err
= tcp_set_window_clamp(sk
, val
);
3993 __tcp_sock_set_quickack(sk
, val
);
3997 if (!tcp_can_repair_sock(sk
)) {
4001 err
= tcp_ao_set_repair(sk
, optval
, optlen
);
4003 #ifdef CONFIG_TCP_AO
4004 case TCP_AO_ADD_KEY
:
4005 case TCP_AO_DEL_KEY
:
4007 /* If this is the first TCP-AO setsockopt() on the socket,
4008 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
4011 if ((1 << sk
->sk_state
) & (TCPF_LISTEN
| TCPF_CLOSE
))
4013 if (rcu_dereference_protected(tcp_sk(sk
)->ao_info
,
4014 lockdep_sock_is_held(sk
)))
4021 err
= tp
->af_specific
->ao_parse(sk
, optname
, optval
, optlen
);
4025 #ifdef CONFIG_TCP_MD5SIG
4027 case TCP_MD5SIG_EXT
:
4028 err
= tp
->af_specific
->md5_parse(sk
, optname
, optval
, optlen
);
4032 if (val
>= 0 && ((1 << sk
->sk_state
) & (TCPF_CLOSE
|
4034 tcp_fastopen_init_key_once(net
);
4036 fastopen_queue_tune(sk
, val
);
4041 case TCP_FASTOPEN_CONNECT
:
4042 if (val
> 1 || val
< 0) {
4044 } else if (READ_ONCE(net
->ipv4
.sysctl_tcp_fastopen
) &
4045 TFO_CLIENT_ENABLE
) {
4046 if (sk
->sk_state
== TCP_CLOSE
)
4047 tp
->fastopen_connect
= val
;
4054 case TCP_FASTOPEN_NO_COOKIE
:
4055 if (val
> 1 || val
< 0)
4057 else if (!((1 << sk
->sk_state
) & (TCPF_CLOSE
| TCPF_LISTEN
)))
4060 tp
->fastopen_no_cookie
= val
;
4067 /* val is an opaque field,
4068 * and low order bit contains usec_ts enable bit.
4069 * Its a best effort, and we do not care if user makes an error.
4071 tp
->tcp_usec_ts
= val
& 1;
4072 WRITE_ONCE(tp
->tsoffset
, val
- tcp_clock_ts(tp
->tcp_usec_ts
));
4074 case TCP_REPAIR_WINDOW
:
4075 err
= tcp_repair_set_window(tp
, optval
, optlen
);
4077 case TCP_NOTSENT_LOWAT
:
4078 WRITE_ONCE(tp
->notsent_lowat
, val
);
4079 sk
->sk_write_space(sk
);
4082 if (val
> 1 || val
< 0)
4085 tp
->recvmsg_inq
= val
;
4089 tcp_enable_tx_delay();
4090 WRITE_ONCE(tp
->tcp_tx_delay
, val
);
4097 sockopt_release_sock(sk
);
4101 int tcp_setsockopt(struct sock
*sk
, int level
, int optname
, sockptr_t optval
,
4102 unsigned int optlen
)
4104 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
4106 if (level
!= SOL_TCP
)
4107 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4108 return READ_ONCE(icsk
->icsk_af_ops
)->setsockopt(sk
, level
, optname
,
4110 return do_tcp_setsockopt(sk
, level
, optname
, optval
, optlen
);
4112 EXPORT_IPV6_MOD(tcp_setsockopt
);
4114 static void tcp_get_info_chrono_stats(const struct tcp_sock
*tp
,
4115 struct tcp_info
*info
)
4117 u64 stats
[__TCP_CHRONO_MAX
], total
= 0;
4120 for (i
= TCP_CHRONO_BUSY
; i
< __TCP_CHRONO_MAX
; ++i
) {
4121 stats
[i
] = tp
->chrono_stat
[i
- 1];
4122 if (i
== tp
->chrono_type
)
4123 stats
[i
] += tcp_jiffies32
- tp
->chrono_start
;
4124 stats
[i
] *= USEC_PER_SEC
/ HZ
;
4128 info
->tcpi_busy_time
= total
;
4129 info
->tcpi_rwnd_limited
= stats
[TCP_CHRONO_RWND_LIMITED
];
4130 info
->tcpi_sndbuf_limited
= stats
[TCP_CHRONO_SNDBUF_LIMITED
];
4133 /* Return information about state of tcp endpoint in API format. */
4134 void tcp_get_info(struct sock
*sk
, struct tcp_info
*info
)
4136 const struct tcp_sock
*tp
= tcp_sk(sk
); /* iff sk_type == SOCK_STREAM */
4137 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
4143 memset(info
, 0, sizeof(*info
));
4144 if (sk
->sk_type
!= SOCK_STREAM
)
4147 info
->tcpi_state
= inet_sk_state_load(sk
);
4149 /* Report meaningful fields for all TCP states, including listeners */
4150 rate
= READ_ONCE(sk
->sk_pacing_rate
);
4151 rate64
= (rate
!= ~0UL) ? rate
: ~0ULL;
4152 info
->tcpi_pacing_rate
= rate64
;
4154 rate
= READ_ONCE(sk
->sk_max_pacing_rate
);
4155 rate64
= (rate
!= ~0UL) ? rate
: ~0ULL;
4156 info
->tcpi_max_pacing_rate
= rate64
;
4158 info
->tcpi_reordering
= tp
->reordering
;
4159 info
->tcpi_snd_cwnd
= tcp_snd_cwnd(tp
);
4161 if (info
->tcpi_state
== TCP_LISTEN
) {
4162 /* listeners aliased fields :
4163 * tcpi_unacked -> Number of children ready for accept()
4164 * tcpi_sacked -> max backlog
4166 info
->tcpi_unacked
= READ_ONCE(sk
->sk_ack_backlog
);
4167 info
->tcpi_sacked
= READ_ONCE(sk
->sk_max_ack_backlog
);
4171 slow
= lock_sock_fast(sk
);
4173 info
->tcpi_ca_state
= icsk
->icsk_ca_state
;
4174 info
->tcpi_retransmits
= icsk
->icsk_retransmits
;
4175 info
->tcpi_probes
= icsk
->icsk_probes_out
;
4176 info
->tcpi_backoff
= icsk
->icsk_backoff
;
4178 if (tp
->rx_opt
.tstamp_ok
)
4179 info
->tcpi_options
|= TCPI_OPT_TIMESTAMPS
;
4180 if (tcp_is_sack(tp
))
4181 info
->tcpi_options
|= TCPI_OPT_SACK
;
4182 if (tp
->rx_opt
.wscale_ok
) {
4183 info
->tcpi_options
|= TCPI_OPT_WSCALE
;
4184 info
->tcpi_snd_wscale
= tp
->rx_opt
.snd_wscale
;
4185 info
->tcpi_rcv_wscale
= tp
->rx_opt
.rcv_wscale
;
4188 if (tcp_ecn_mode_any(tp
))
4189 info
->tcpi_options
|= TCPI_OPT_ECN
;
4190 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
4191 info
->tcpi_options
|= TCPI_OPT_ECN_SEEN
;
4192 if (tp
->syn_data_acked
)
4193 info
->tcpi_options
|= TCPI_OPT_SYN_DATA
;
4194 if (tp
->tcp_usec_ts
)
4195 info
->tcpi_options
|= TCPI_OPT_USEC_TS
;
4196 if (tp
->syn_fastopen_child
)
4197 info
->tcpi_options
|= TCPI_OPT_TFO_CHILD
;
4199 info
->tcpi_rto
= jiffies_to_usecs(icsk
->icsk_rto
);
4200 info
->tcpi_ato
= jiffies_to_usecs(min_t(u32
, icsk
->icsk_ack
.ato
,
4201 tcp_delack_max(sk
)));
4202 info
->tcpi_snd_mss
= tp
->mss_cache
;
4203 info
->tcpi_rcv_mss
= icsk
->icsk_ack
.rcv_mss
;
4205 info
->tcpi_unacked
= tp
->packets_out
;
4206 info
->tcpi_sacked
= tp
->sacked_out
;
4208 info
->tcpi_lost
= tp
->lost_out
;
4209 info
->tcpi_retrans
= tp
->retrans_out
;
4211 now
= tcp_jiffies32
;
4212 info
->tcpi_last_data_sent
= jiffies_to_msecs(now
- tp
->lsndtime
);
4213 info
->tcpi_last_data_recv
= jiffies_to_msecs(now
- icsk
->icsk_ack
.lrcvtime
);
4214 info
->tcpi_last_ack_recv
= jiffies_to_msecs(now
- tp
->rcv_tstamp
);
4216 info
->tcpi_pmtu
= icsk
->icsk_pmtu_cookie
;
4217 info
->tcpi_rcv_ssthresh
= tp
->rcv_ssthresh
;
4218 info
->tcpi_rtt
= tp
->srtt_us
>> 3;
4219 info
->tcpi_rttvar
= tp
->mdev_us
>> 2;
4220 info
->tcpi_snd_ssthresh
= tp
->snd_ssthresh
;
4221 info
->tcpi_advmss
= tp
->advmss
;
4223 info
->tcpi_rcv_rtt
= tp
->rcv_rtt_est
.rtt_us
>> 3;
4224 info
->tcpi_rcv_space
= tp
->rcvq_space
.space
;
4226 info
->tcpi_total_retrans
= tp
->total_retrans
;
4228 info
->tcpi_bytes_acked
= tp
->bytes_acked
;
4229 info
->tcpi_bytes_received
= tp
->bytes_received
;
4230 info
->tcpi_notsent_bytes
= max_t(int, 0, tp
->write_seq
- tp
->snd_nxt
);
4231 tcp_get_info_chrono_stats(tp
, info
);
4233 info
->tcpi_segs_out
= tp
->segs_out
;
4235 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
4236 info
->tcpi_segs_in
= READ_ONCE(tp
->segs_in
);
4237 info
->tcpi_data_segs_in
= READ_ONCE(tp
->data_segs_in
);
4239 info
->tcpi_min_rtt
= tcp_min_rtt(tp
);
4240 info
->tcpi_data_segs_out
= tp
->data_segs_out
;
4242 info
->tcpi_delivery_rate_app_limited
= tp
->rate_app_limited
? 1 : 0;
4243 rate64
= tcp_compute_delivery_rate(tp
);
4245 info
->tcpi_delivery_rate
= rate64
;
4246 info
->tcpi_delivered
= tp
->delivered
;
4247 info
->tcpi_delivered_ce
= tp
->delivered_ce
;
4248 info
->tcpi_bytes_sent
= tp
->bytes_sent
;
4249 info
->tcpi_bytes_retrans
= tp
->bytes_retrans
;
4250 info
->tcpi_dsack_dups
= tp
->dsack_dups
;
4251 info
->tcpi_reord_seen
= tp
->reord_seen
;
4252 info
->tcpi_rcv_ooopack
= tp
->rcv_ooopack
;
4253 info
->tcpi_snd_wnd
= tp
->snd_wnd
;
4254 info
->tcpi_rcv_wnd
= tp
->rcv_wnd
;
4255 info
->tcpi_rehash
= tp
->plb_rehash
+ tp
->timeout_rehash
;
4256 info
->tcpi_fastopen_client_fail
= tp
->fastopen_client_fail
;
4258 info
->tcpi_total_rto
= tp
->total_rto
;
4259 info
->tcpi_total_rto_recoveries
= tp
->total_rto_recoveries
;
4260 info
->tcpi_total_rto_time
= tp
->total_rto_time
;
4262 info
->tcpi_total_rto_time
+= tcp_clock_ms() - tp
->rto_stamp
;
4264 unlock_sock_fast(sk
, slow
);
4266 EXPORT_SYMBOL_GPL(tcp_get_info
);
4268 static size_t tcp_opt_stats_get_size(void)
4271 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_BUSY */
4272 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_RWND_LIMITED */
4273 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_SNDBUF_LIMITED */
4274 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_DATA_SEGS_OUT */
4275 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_TOTAL_RETRANS */
4276 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_PACING_RATE */
4277 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_DELIVERY_RATE */
4278 nla_total_size(sizeof(u32
)) + /* TCP_NLA_SND_CWND */
4279 nla_total_size(sizeof(u32
)) + /* TCP_NLA_REORDERING */
4280 nla_total_size(sizeof(u32
)) + /* TCP_NLA_MIN_RTT */
4281 nla_total_size(sizeof(u8
)) + /* TCP_NLA_RECUR_RETRANS */
4282 nla_total_size(sizeof(u8
)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
4283 nla_total_size(sizeof(u32
)) + /* TCP_NLA_SNDQ_SIZE */
4284 nla_total_size(sizeof(u8
)) + /* TCP_NLA_CA_STATE */
4285 nla_total_size(sizeof(u32
)) + /* TCP_NLA_SND_SSTHRESH */
4286 nla_total_size(sizeof(u32
)) + /* TCP_NLA_DELIVERED */
4287 nla_total_size(sizeof(u32
)) + /* TCP_NLA_DELIVERED_CE */
4288 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_BYTES_SENT */
4289 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_BYTES_RETRANS */
4290 nla_total_size(sizeof(u32
)) + /* TCP_NLA_DSACK_DUPS */
4291 nla_total_size(sizeof(u32
)) + /* TCP_NLA_REORD_SEEN */
4292 nla_total_size(sizeof(u32
)) + /* TCP_NLA_SRTT */
4293 nla_total_size(sizeof(u16
)) + /* TCP_NLA_TIMEOUT_REHASH */
4294 nla_total_size(sizeof(u32
)) + /* TCP_NLA_BYTES_NOTSENT */
4295 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_EDT */
4296 nla_total_size(sizeof(u8
)) + /* TCP_NLA_TTL */
4297 nla_total_size(sizeof(u32
)) + /* TCP_NLA_REHASH */
4301 /* Returns TTL or hop limit of an incoming packet from skb. */
4302 static u8
tcp_skb_ttl_or_hop_limit(const struct sk_buff
*skb
)
4304 if (skb
->protocol
== htons(ETH_P_IP
))
4305 return ip_hdr(skb
)->ttl
;
4306 else if (skb
->protocol
== htons(ETH_P_IPV6
))
4307 return ipv6_hdr(skb
)->hop_limit
;
4312 struct sk_buff
*tcp_get_timestamping_opt_stats(const struct sock
*sk
,
4313 const struct sk_buff
*orig_skb
,
4314 const struct sk_buff
*ack_skb
)
4316 const struct tcp_sock
*tp
= tcp_sk(sk
);
4317 struct sk_buff
*stats
;
4318 struct tcp_info info
;
4322 stats
= alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC
);
4326 tcp_get_info_chrono_stats(tp
, &info
);
4327 nla_put_u64_64bit(stats
, TCP_NLA_BUSY
,
4328 info
.tcpi_busy_time
, TCP_NLA_PAD
);
4329 nla_put_u64_64bit(stats
, TCP_NLA_RWND_LIMITED
,
4330 info
.tcpi_rwnd_limited
, TCP_NLA_PAD
);
4331 nla_put_u64_64bit(stats
, TCP_NLA_SNDBUF_LIMITED
,
4332 info
.tcpi_sndbuf_limited
, TCP_NLA_PAD
);
4333 nla_put_u64_64bit(stats
, TCP_NLA_DATA_SEGS_OUT
,
4334 tp
->data_segs_out
, TCP_NLA_PAD
);
4335 nla_put_u64_64bit(stats
, TCP_NLA_TOTAL_RETRANS
,
4336 tp
->total_retrans
, TCP_NLA_PAD
);
4338 rate
= READ_ONCE(sk
->sk_pacing_rate
);
4339 rate64
= (rate
!= ~0UL) ? rate
: ~0ULL;
4340 nla_put_u64_64bit(stats
, TCP_NLA_PACING_RATE
, rate64
, TCP_NLA_PAD
);
4342 rate64
= tcp_compute_delivery_rate(tp
);
4343 nla_put_u64_64bit(stats
, TCP_NLA_DELIVERY_RATE
, rate64
, TCP_NLA_PAD
);
4345 nla_put_u32(stats
, TCP_NLA_SND_CWND
, tcp_snd_cwnd(tp
));
4346 nla_put_u32(stats
, TCP_NLA_REORDERING
, tp
->reordering
);
4347 nla_put_u32(stats
, TCP_NLA_MIN_RTT
, tcp_min_rtt(tp
));
4349 nla_put_u8(stats
, TCP_NLA_RECUR_RETRANS
, inet_csk(sk
)->icsk_retransmits
);
4350 nla_put_u8(stats
, TCP_NLA_DELIVERY_RATE_APP_LMT
, !!tp
->rate_app_limited
);
4351 nla_put_u32(stats
, TCP_NLA_SND_SSTHRESH
, tp
->snd_ssthresh
);
4352 nla_put_u32(stats
, TCP_NLA_DELIVERED
, tp
->delivered
);
4353 nla_put_u32(stats
, TCP_NLA_DELIVERED_CE
, tp
->delivered_ce
);
4355 nla_put_u32(stats
, TCP_NLA_SNDQ_SIZE
, tp
->write_seq
- tp
->snd_una
);
4356 nla_put_u8(stats
, TCP_NLA_CA_STATE
, inet_csk(sk
)->icsk_ca_state
);
4358 nla_put_u64_64bit(stats
, TCP_NLA_BYTES_SENT
, tp
->bytes_sent
,
4360 nla_put_u64_64bit(stats
, TCP_NLA_BYTES_RETRANS
, tp
->bytes_retrans
,
4362 nla_put_u32(stats
, TCP_NLA_DSACK_DUPS
, tp
->dsack_dups
);
4363 nla_put_u32(stats
, TCP_NLA_REORD_SEEN
, tp
->reord_seen
);
4364 nla_put_u32(stats
, TCP_NLA_SRTT
, tp
->srtt_us
>> 3);
4365 nla_put_u16(stats
, TCP_NLA_TIMEOUT_REHASH
, tp
->timeout_rehash
);
4366 nla_put_u32(stats
, TCP_NLA_BYTES_NOTSENT
,
4367 max_t(int, 0, tp
->write_seq
- tp
->snd_nxt
));
4368 nla_put_u64_64bit(stats
, TCP_NLA_EDT
, orig_skb
->skb_mstamp_ns
,
4371 nla_put_u8(stats
, TCP_NLA_TTL
,
4372 tcp_skb_ttl_or_hop_limit(ack_skb
));
4374 nla_put_u32(stats
, TCP_NLA_REHASH
, tp
->plb_rehash
+ tp
->timeout_rehash
);
4378 int do_tcp_getsockopt(struct sock
*sk
, int level
,
4379 int optname
, sockptr_t optval
, sockptr_t optlen
)
4381 struct inet_connection_sock
*icsk
= inet_csk(sk
);
4382 struct tcp_sock
*tp
= tcp_sk(sk
);
4383 struct net
*net
= sock_net(sk
);
4386 if (copy_from_sockptr(&len
, optlen
, sizeof(int)))
4392 len
= min_t(unsigned int, len
, sizeof(int));
4396 val
= tp
->mss_cache
;
4397 if (tp
->rx_opt
.user_mss
&&
4398 ((1 << sk
->sk_state
) & (TCPF_CLOSE
| TCPF_LISTEN
)))
4399 val
= tp
->rx_opt
.user_mss
;
4401 val
= tp
->rx_opt
.mss_clamp
;
4404 val
= !!(tp
->nonagle
&TCP_NAGLE_OFF
);
4407 val
= !!(tp
->nonagle
&TCP_NAGLE_CORK
);
4410 val
= keepalive_time_when(tp
) / HZ
;
4413 val
= keepalive_intvl_when(tp
) / HZ
;
4416 val
= keepalive_probes(tp
);
4419 val
= READ_ONCE(icsk
->icsk_syn_retries
) ? :
4420 READ_ONCE(net
->ipv4
.sysctl_tcp_syn_retries
);
4423 val
= READ_ONCE(tp
->linger2
);
4425 val
= (val
? : READ_ONCE(net
->ipv4
.sysctl_tcp_fin_timeout
)) / HZ
;
4427 case TCP_DEFER_ACCEPT
:
4428 val
= READ_ONCE(icsk
->icsk_accept_queue
.rskq_defer_accept
);
4429 val
= retrans_to_secs(val
, TCP_TIMEOUT_INIT
/ HZ
,
4432 case TCP_WINDOW_CLAMP
:
4433 val
= READ_ONCE(tp
->window_clamp
);
4436 struct tcp_info info
;
4438 if (copy_from_sockptr(&len
, optlen
, sizeof(int)))
4441 tcp_get_info(sk
, &info
);
4443 len
= min_t(unsigned int, len
, sizeof(info
));
4444 if (copy_to_sockptr(optlen
, &len
, sizeof(int)))
4446 if (copy_to_sockptr(optval
, &info
, len
))
4451 const struct tcp_congestion_ops
*ca_ops
;
4452 union tcp_cc_info info
;
4456 if (copy_from_sockptr(&len
, optlen
, sizeof(int)))
4459 ca_ops
= icsk
->icsk_ca_ops
;
4460 if (ca_ops
&& ca_ops
->get_info
)
4461 sz
= ca_ops
->get_info(sk
, ~0U, &attr
, &info
);
4463 len
= min_t(unsigned int, len
, sz
);
4464 if (copy_to_sockptr(optlen
, &len
, sizeof(int)))
4466 if (copy_to_sockptr(optval
, &info
, len
))
4471 val
= !inet_csk_in_pingpong_mode(sk
);
4474 case TCP_CONGESTION
:
4475 if (copy_from_sockptr(&len
, optlen
, sizeof(int)))
4477 len
= min_t(unsigned int, len
, TCP_CA_NAME_MAX
);
4478 if (copy_to_sockptr(optlen
, &len
, sizeof(int)))
4480 if (copy_to_sockptr(optval
, icsk
->icsk_ca_ops
->name
, len
))
4485 if (copy_from_sockptr(&len
, optlen
, sizeof(int)))
4487 len
= min_t(unsigned int, len
, TCP_ULP_NAME_MAX
);
4488 if (!icsk
->icsk_ulp_ops
) {
4490 if (copy_to_sockptr(optlen
, &len
, sizeof(int)))
4494 if (copy_to_sockptr(optlen
, &len
, sizeof(int)))
4496 if (copy_to_sockptr(optval
, icsk
->icsk_ulp_ops
->name
, len
))
4500 case TCP_FASTOPEN_KEY
: {
4501 u64 key
[TCP_FASTOPEN_KEY_BUF_LENGTH
/ sizeof(u64
)];
4502 unsigned int key_len
;
4504 if (copy_from_sockptr(&len
, optlen
, sizeof(int)))
4507 key_len
= tcp_fastopen_get_cipher(net
, icsk
, key
) *
4508 TCP_FASTOPEN_KEY_LENGTH
;
4509 len
= min_t(unsigned int, len
, key_len
);
4510 if (copy_to_sockptr(optlen
, &len
, sizeof(int)))
4512 if (copy_to_sockptr(optval
, key
, len
))
4516 case TCP_THIN_LINEAR_TIMEOUTS
:
4520 case TCP_THIN_DUPACK
:
4528 case TCP_REPAIR_QUEUE
:
4530 val
= tp
->repair_queue
;
4535 case TCP_REPAIR_WINDOW
: {
4536 struct tcp_repair_window opt
;
4538 if (copy_from_sockptr(&len
, optlen
, sizeof(int)))
4541 if (len
!= sizeof(opt
))
4547 opt
.snd_wl1
= tp
->snd_wl1
;
4548 opt
.snd_wnd
= tp
->snd_wnd
;
4549 opt
.max_window
= tp
->max_window
;
4550 opt
.rcv_wnd
= tp
->rcv_wnd
;
4551 opt
.rcv_wup
= tp
->rcv_wup
;
4553 if (copy_to_sockptr(optval
, &opt
, len
))
4558 if (tp
->repair_queue
== TCP_SEND_QUEUE
)
4559 val
= tp
->write_seq
;
4560 else if (tp
->repair_queue
== TCP_RECV_QUEUE
)
4566 case TCP_USER_TIMEOUT
:
4567 val
= READ_ONCE(icsk
->icsk_user_timeout
);
4571 val
= READ_ONCE(icsk
->icsk_accept_queue
.fastopenq
.max_qlen
);
4574 case TCP_FASTOPEN_CONNECT
:
4575 val
= tp
->fastopen_connect
;
4578 case TCP_FASTOPEN_NO_COOKIE
:
4579 val
= tp
->fastopen_no_cookie
;
4583 val
= READ_ONCE(tp
->tcp_tx_delay
);
4587 val
= tcp_clock_ts(tp
->tcp_usec_ts
) + READ_ONCE(tp
->tsoffset
);
4588 if (tp
->tcp_usec_ts
)
4593 case TCP_NOTSENT_LOWAT
:
4594 val
= READ_ONCE(tp
->notsent_lowat
);
4597 val
= tp
->recvmsg_inq
;
4602 case TCP_SAVED_SYN
: {
4603 if (copy_from_sockptr(&len
, optlen
, sizeof(int)))
4606 sockopt_lock_sock(sk
);
4607 if (tp
->saved_syn
) {
4608 if (len
< tcp_saved_syn_len(tp
->saved_syn
)) {
4609 len
= tcp_saved_syn_len(tp
->saved_syn
);
4610 if (copy_to_sockptr(optlen
, &len
, sizeof(int))) {
4611 sockopt_release_sock(sk
);
4614 sockopt_release_sock(sk
);
4617 len
= tcp_saved_syn_len(tp
->saved_syn
);
4618 if (copy_to_sockptr(optlen
, &len
, sizeof(int))) {
4619 sockopt_release_sock(sk
);
4622 if (copy_to_sockptr(optval
, tp
->saved_syn
->data
, len
)) {
4623 sockopt_release_sock(sk
);
4626 tcp_saved_syn_free(tp
);
4627 sockopt_release_sock(sk
);
4629 sockopt_release_sock(sk
);
4631 if (copy_to_sockptr(optlen
, &len
, sizeof(int)))
4637 case TCP_ZEROCOPY_RECEIVE
: {
4638 struct scm_timestamping_internal tss
;
4639 struct tcp_zerocopy_receive zc
= {};
4642 if (copy_from_sockptr(&len
, optlen
, sizeof(int)))
4645 len
< offsetofend(struct tcp_zerocopy_receive
, length
))
4647 if (unlikely(len
> sizeof(zc
))) {
4648 err
= check_zeroed_sockptr(optval
, sizeof(zc
),
4651 return err
== 0 ? -EINVAL
: err
;
4653 if (copy_to_sockptr(optlen
, &len
, sizeof(int)))
4656 if (copy_from_sockptr(&zc
, optval
, len
))
4660 if (zc
.msg_flags
& ~(TCP_VALID_ZC_MSG_FLAGS
))
4662 sockopt_lock_sock(sk
);
4663 err
= tcp_zerocopy_receive(sk
, &zc
, &tss
);
4664 err
= BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk
, level
, optname
,
4666 sockopt_release_sock(sk
);
4667 if (len
>= offsetofend(struct tcp_zerocopy_receive
, msg_flags
))
4668 goto zerocopy_rcv_cmsg
;
4670 case offsetofend(struct tcp_zerocopy_receive
, msg_flags
):
4671 goto zerocopy_rcv_cmsg
;
4672 case offsetofend(struct tcp_zerocopy_receive
, msg_controllen
):
4673 case offsetofend(struct tcp_zerocopy_receive
, msg_control
):
4674 case offsetofend(struct tcp_zerocopy_receive
, flags
):
4675 case offsetofend(struct tcp_zerocopy_receive
, copybuf_len
):
4676 case offsetofend(struct tcp_zerocopy_receive
, copybuf_address
):
4677 case offsetofend(struct tcp_zerocopy_receive
, err
):
4678 goto zerocopy_rcv_sk_err
;
4679 case offsetofend(struct tcp_zerocopy_receive
, inq
):
4680 goto zerocopy_rcv_inq
;
4681 case offsetofend(struct tcp_zerocopy_receive
, length
):
4683 goto zerocopy_rcv_out
;
4686 if (zc
.msg_flags
& TCP_CMSG_TS
)
4687 tcp_zc_finalize_rx_tstamp(sk
, &zc
, &tss
);
4690 zerocopy_rcv_sk_err
:
4692 zc
.err
= sock_error(sk
);
4694 zc
.inq
= tcp_inq_hint(sk
);
4696 if (!err
&& copy_to_sockptr(optval
, &zc
, len
))
4702 if (!tcp_can_repair_sock(sk
))
4704 return tcp_ao_get_repair(sk
, optval
, optlen
);
4705 case TCP_AO_GET_KEYS
:
4709 sockopt_lock_sock(sk
);
4710 if (optname
== TCP_AO_GET_KEYS
)
4711 err
= tcp_ao_get_mkts(sk
, optval
, optlen
);
4713 err
= tcp_ao_get_sock_info(sk
, optval
, optlen
);
4714 sockopt_release_sock(sk
);
4721 case TCP_RTO_MAX_MS
:
4722 val
= jiffies_to_msecs(tcp_rto_max(sk
));
4724 case TCP_RTO_MIN_US
:
4725 val
= jiffies_to_usecs(READ_ONCE(inet_csk(sk
)->icsk_rto_min
));
4727 case TCP_DELACK_MAX_US
:
4728 val
= jiffies_to_usecs(READ_ONCE(inet_csk(sk
)->icsk_delack_max
));
4731 return -ENOPROTOOPT
;
4734 if (copy_to_sockptr(optlen
, &len
, sizeof(int)))
4736 if (copy_to_sockptr(optval
, &val
, len
))
4741 bool tcp_bpf_bypass_getsockopt(int level
, int optname
)
4743 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4744 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4746 if (level
== SOL_TCP
&& optname
== TCP_ZEROCOPY_RECEIVE
)
4751 EXPORT_IPV6_MOD(tcp_bpf_bypass_getsockopt
);
4753 int tcp_getsockopt(struct sock
*sk
, int level
, int optname
, char __user
*optval
,
4756 struct inet_connection_sock
*icsk
= inet_csk(sk
);
4758 if (level
!= SOL_TCP
)
4759 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4760 return READ_ONCE(icsk
->icsk_af_ops
)->getsockopt(sk
, level
, optname
,
4762 return do_tcp_getsockopt(sk
, level
, optname
, USER_SOCKPTR(optval
),
4763 USER_SOCKPTR(optlen
));
4765 EXPORT_IPV6_MOD(tcp_getsockopt
);
4767 #ifdef CONFIG_TCP_MD5SIG
4768 int tcp_md5_sigpool_id
= -1;
4769 EXPORT_IPV6_MOD_GPL(tcp_md5_sigpool_id
);
4771 int tcp_md5_alloc_sigpool(void)
4773 size_t scratch_size
;
4776 scratch_size
= sizeof(union tcp_md5sum_block
) + sizeof(struct tcphdr
);
4777 ret
= tcp_sigpool_alloc_ahash("md5", scratch_size
);
4779 /* As long as any md5 sigpool was allocated, the return
4780 * id would stay the same. Re-write the id only for the case
4781 * when previously all MD5 keys were deleted and this call
4782 * allocates the first MD5 key, which may return a different
4783 * sigpool id than was used previously.
4785 WRITE_ONCE(tcp_md5_sigpool_id
, ret
); /* Avoids the compiler potentially being smart here */
4791 void tcp_md5_release_sigpool(void)
4793 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id
));
4796 void tcp_md5_add_sigpool(void)
4798 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id
));
4801 int tcp_md5_hash_key(struct tcp_sigpool
*hp
,
4802 const struct tcp_md5sig_key
*key
)
4804 u8 keylen
= READ_ONCE(key
->keylen
); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4805 struct scatterlist sg
;
4807 sg_init_one(&sg
, key
->key
, keylen
);
4808 ahash_request_set_crypt(hp
->req
, &sg
, NULL
, keylen
);
4810 /* We use data_race() because tcp_md5_do_add() might change
4813 return data_race(crypto_ahash_update(hp
->req
));
4815 EXPORT_IPV6_MOD(tcp_md5_hash_key
);
4817 /* Called with rcu_read_lock() */
4818 static enum skb_drop_reason
4819 tcp_inbound_md5_hash(const struct sock
*sk
, const struct sk_buff
*skb
,
4820 const void *saddr
, const void *daddr
,
4821 int family
, int l3index
, const __u8
*hash_location
)
4823 /* This gets called for each TCP segment that has TCP-MD5 option.
4824 * We have 3 drop cases:
4825 * o No MD5 hash and one expected.
4826 * o MD5 hash and we're not expecting one.
4827 * o MD5 hash and its wrong.
4829 const struct tcp_sock
*tp
= tcp_sk(sk
);
4830 struct tcp_md5sig_key
*key
;
4834 key
= tcp_md5_do_lookup(sk
, l3index
, saddr
, family
);
4836 if (!key
&& hash_location
) {
4837 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMD5UNEXPECTED
);
4838 trace_tcp_hash_md5_unexpected(sk
, skb
);
4839 return SKB_DROP_REASON_TCP_MD5UNEXPECTED
;
4842 /* Check the signature.
4843 * To support dual stack listeners, we need to handle
4846 if (family
== AF_INET
)
4847 genhash
= tcp_v4_md5_hash_skb(newhash
, key
, NULL
, skb
);
4849 genhash
= tp
->af_specific
->calc_md5_hash(newhash
, key
,
4851 if (genhash
|| memcmp(hash_location
, newhash
, 16) != 0) {
4852 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMD5FAILURE
);
4853 trace_tcp_hash_md5_mismatch(sk
, skb
);
4854 return SKB_DROP_REASON_TCP_MD5FAILURE
;
4856 return SKB_NOT_DROPPED_YET
;
4859 static inline enum skb_drop_reason
4860 tcp_inbound_md5_hash(const struct sock
*sk
, const struct sk_buff
*skb
,
4861 const void *saddr
, const void *daddr
,
4862 int family
, int l3index
, const __u8
*hash_location
)
4864 return SKB_NOT_DROPPED_YET
;
4869 /* Called with rcu_read_lock() */
4870 enum skb_drop_reason
4871 tcp_inbound_hash(struct sock
*sk
, const struct request_sock
*req
,
4872 const struct sk_buff
*skb
,
4873 const void *saddr
, const void *daddr
,
4874 int family
, int dif
, int sdif
)
4876 const struct tcphdr
*th
= tcp_hdr(skb
);
4877 const struct tcp_ao_hdr
*aoh
;
4878 const __u8
*md5_location
;
4881 /* Invalid option or two times meet any of auth options */
4882 if (tcp_parse_auth_options(th
, &md5_location
, &aoh
)) {
4883 trace_tcp_hash_bad_header(sk
, skb
);
4884 return SKB_DROP_REASON_TCP_AUTH_HDR
;
4888 if (tcp_rsk_used_ao(req
) != !!aoh
) {
4889 u8 keyid
, rnext
, maclen
;
4893 rnext
= aoh
->rnext_keyid
;
4894 maclen
= tcp_ao_hdr_maclen(aoh
);
4896 keyid
= rnext
= maclen
= 0;
4899 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPAOBAD
);
4900 trace_tcp_ao_handshake_failure(sk
, skb
, keyid
, rnext
, maclen
);
4901 return SKB_DROP_REASON_TCP_AOFAILURE
;
4905 /* sdif set, means packet ingressed via a device
4906 * in an L3 domain and dif is set to the l3mdev
4908 l3index
= sdif
? dif
: 0;
4910 /* Fast path: unsigned segments */
4911 if (likely(!md5_location
&& !aoh
)) {
4912 /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4913 * for the remote peer. On TCP-AO established connection
4914 * the last key is impossible to remove, so there's
4915 * always at least one current_key.
4917 if (tcp_ao_required(sk
, saddr
, family
, l3index
, true)) {
4918 trace_tcp_hash_ao_required(sk
, skb
);
4919 return SKB_DROP_REASON_TCP_AONOTFOUND
;
4921 if (unlikely(tcp_md5_do_lookup(sk
, l3index
, saddr
, family
))) {
4922 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMD5NOTFOUND
);
4923 trace_tcp_hash_md5_required(sk
, skb
);
4924 return SKB_DROP_REASON_TCP_MD5NOTFOUND
;
4926 return SKB_NOT_DROPPED_YET
;
4930 return tcp_inbound_ao_hash(sk
, skb
, family
, req
, l3index
, aoh
);
4932 return tcp_inbound_md5_hash(sk
, skb
, saddr
, daddr
, family
,
4933 l3index
, md5_location
);
4935 EXPORT_IPV6_MOD_GPL(tcp_inbound_hash
);
4937 void tcp_done(struct sock
*sk
)
4939 struct request_sock
*req
;
4941 /* We might be called with a new socket, after
4942 * inet_csk_prepare_forced_close() has been called
4943 * so we can not use lockdep_sock_is_held(sk)
4945 req
= rcu_dereference_protected(tcp_sk(sk
)->fastopen_rsk
, 1);
4947 if (sk
->sk_state
== TCP_SYN_SENT
|| sk
->sk_state
== TCP_SYN_RECV
)
4948 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ATTEMPTFAILS
);
4950 tcp_set_state(sk
, TCP_CLOSE
);
4951 tcp_clear_xmit_timers(sk
);
4953 reqsk_fastopen_remove(sk
, req
, false);
4955 WRITE_ONCE(sk
->sk_shutdown
, SHUTDOWN_MASK
);
4957 if (!sock_flag(sk
, SOCK_DEAD
))
4958 sk
->sk_state_change(sk
);
4960 inet_csk_destroy_sock(sk
);
4962 EXPORT_SYMBOL_GPL(tcp_done
);
4964 int tcp_abort(struct sock
*sk
, int err
)
4966 int state
= inet_sk_state_load(sk
);
4968 if (state
== TCP_NEW_SYN_RECV
) {
4969 struct request_sock
*req
= inet_reqsk(sk
);
4972 inet_csk_reqsk_queue_drop(req
->rsk_listener
, req
);
4976 if (state
== TCP_TIME_WAIT
) {
4977 struct inet_timewait_sock
*tw
= inet_twsk(sk
);
4979 refcount_inc(&tw
->tw_refcnt
);
4981 inet_twsk_deschedule_put(tw
);
4986 /* BPF context ensures sock locking. */
4987 if (!has_current_bpf_ctx())
4988 /* Don't race with userspace socket closes such as tcp_close. */
4991 /* Avoid closing the same socket twice. */
4992 if (sk
->sk_state
== TCP_CLOSE
) {
4993 if (!has_current_bpf_ctx())
4998 if (sk
->sk_state
== TCP_LISTEN
) {
4999 tcp_set_state(sk
, TCP_CLOSE
);
5000 inet_csk_listen_stop(sk
);
5003 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
5007 if (tcp_need_reset(sk
->sk_state
))
5008 tcp_send_active_reset(sk
, GFP_ATOMIC
,
5009 SK_RST_REASON_TCP_STATE
);
5010 tcp_done_with_error(sk
, err
);
5014 if (!has_current_bpf_ctx())
5018 EXPORT_SYMBOL_GPL(tcp_abort
);
5020 extern struct tcp_congestion_ops tcp_reno
;
5022 static __initdata
unsigned long thash_entries
;
5023 static int __init
set_thash_entries(char *str
)
5030 ret
= kstrtoul(str
, 0, &thash_entries
);
5036 __setup("thash_entries=", set_thash_entries
);
5038 static void __init
tcp_init_mem(void)
5040 unsigned long limit
= nr_free_buffer_pages() / 16;
5042 limit
= max(limit
, 128UL);
5043 sysctl_tcp_mem
[0] = limit
/ 4 * 3; /* 4.68 % */
5044 sysctl_tcp_mem
[1] = limit
; /* 6.25 % */
5045 sysctl_tcp_mem
[2] = sysctl_tcp_mem
[0] * 2; /* 9.37 % */
5048 static void __init
tcp_struct_check(void)
5050 /* TX read-mostly hotpath cache lines */
5051 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_tx
, max_window
);
5052 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_tx
, rcv_ssthresh
);
5053 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_tx
, reordering
);
5054 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_tx
, notsent_lowat
);
5055 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_tx
, gso_segs
);
5056 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_tx
, lost_skb_hint
);
5057 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_tx
, retransmit_skb_hint
);
5058 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock
, tcp_sock_read_tx
, 40);
5060 /* TXRX read-mostly hotpath cache lines */
5061 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_txrx
, tsoffset
);
5062 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_txrx
, snd_wnd
);
5063 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_txrx
, mss_cache
);
5064 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_txrx
, snd_cwnd
);
5065 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_txrx
, prr_out
);
5066 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_txrx
, lost_out
);
5067 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_txrx
, sacked_out
);
5068 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_txrx
, scaling_ratio
);
5069 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock
, tcp_sock_read_txrx
, 32);
5071 /* RX read-mostly hotpath cache lines */
5072 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_rx
, copied_seq
);
5073 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_rx
, rcv_tstamp
);
5074 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_rx
, snd_wl1
);
5075 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_rx
, tlp_high_seq
);
5076 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_rx
, rttvar_us
);
5077 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_rx
, retrans_out
);
5078 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_rx
, advmss
);
5079 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_rx
, urg_data
);
5080 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_rx
, lost
);
5081 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_rx
, rtt_min
);
5082 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_rx
, out_of_order_queue
);
5083 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_rx
, snd_ssthresh
);
5084 #if IS_ENABLED(CONFIG_TLS_DEVICE)
5085 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_read_rx
, tcp_clean_acked
);
5086 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock
, tcp_sock_read_rx
, 77);
5088 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock
, tcp_sock_read_rx
, 69);
5091 /* TX read-write hotpath cache lines */
5092 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_tx
, segs_out
);
5093 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_tx
, data_segs_out
);
5094 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_tx
, bytes_sent
);
5095 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_tx
, snd_sml
);
5096 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_tx
, chrono_start
);
5097 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_tx
, chrono_stat
);
5098 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_tx
, write_seq
);
5099 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_tx
, pushed_seq
);
5100 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_tx
, lsndtime
);
5101 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_tx
, mdev_us
);
5102 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_tx
, tcp_wstamp_ns
);
5103 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_tx
, rtt_seq
);
5104 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_tx
, tsorted_sent_queue
);
5105 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_tx
, highest_sack
);
5106 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_tx
, ecn_flags
);
5107 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock
, tcp_sock_write_tx
, 89);
5109 /* TXRX read-write hotpath cache lines */
5110 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_txrx
, pred_flags
);
5111 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_txrx
, tcp_clock_cache
);
5112 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_txrx
, tcp_mstamp
);
5113 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_txrx
, rcv_nxt
);
5114 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_txrx
, snd_nxt
);
5115 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_txrx
, snd_una
);
5116 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_txrx
, window_clamp
);
5117 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_txrx
, srtt_us
);
5118 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_txrx
, packets_out
);
5119 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_txrx
, snd_up
);
5120 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_txrx
, delivered
);
5121 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_txrx
, delivered_ce
);
5122 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_txrx
, app_limited
);
5123 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_txrx
, rcv_wnd
);
5124 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_txrx
, rx_opt
);
5126 /* 32bit arches with 8byte alignment on u64 fields might need padding
5127 * before tcp_clock_cache.
5129 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock
, tcp_sock_write_txrx
, 92 + 4);
5131 /* RX read-write hotpath cache lines */
5132 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_rx
, bytes_received
);
5133 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_rx
, segs_in
);
5134 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_rx
, data_segs_in
);
5135 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_rx
, rcv_wup
);
5136 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_rx
, max_packets_out
);
5137 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_rx
, cwnd_usage_seq
);
5138 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_rx
, rate_delivered
);
5139 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_rx
, rate_interval_us
);
5140 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_rx
, rcv_rtt_last_tsecr
);
5141 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_rx
, first_tx_mstamp
);
5142 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_rx
, delivered_mstamp
);
5143 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_rx
, bytes_acked
);
5144 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_rx
, rcv_rtt_est
);
5145 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock
, tcp_sock_write_rx
, rcvq_space
);
5146 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock
, tcp_sock_write_rx
, 99);
5149 void __init
tcp_init(void)
5151 int max_rshare
, max_wshare
, cnt
;
5152 unsigned long limit
;
5155 BUILD_BUG_ON(TCP_MIN_SND_MSS
<= MAX_TCP_OPTION_SPACE
);
5156 BUILD_BUG_ON(sizeof(struct tcp_skb_cb
) >
5157 sizeof_field(struct sk_buff
, cb
));
5161 percpu_counter_init(&tcp_sockets_allocated
, 0, GFP_KERNEL
);
5163 timer_setup(&tcp_orphan_timer
, tcp_orphan_update
, TIMER_DEFERRABLE
);
5164 mod_timer(&tcp_orphan_timer
, jiffies
+ TCP_ORPHAN_TIMER_PERIOD
);
5166 inet_hashinfo2_init(&tcp_hashinfo
, "tcp_listen_portaddr_hash",
5167 thash_entries
, 21, /* one slot per 2 MB*/
5169 tcp_hashinfo
.bind_bucket_cachep
=
5170 kmem_cache_create("tcp_bind_bucket",
5171 sizeof(struct inet_bind_bucket
), 0,
5172 SLAB_HWCACHE_ALIGN
| SLAB_PANIC
|
5175 tcp_hashinfo
.bind2_bucket_cachep
=
5176 kmem_cache_create("tcp_bind2_bucket",
5177 sizeof(struct inet_bind2_bucket
), 0,
5178 SLAB_HWCACHE_ALIGN
| SLAB_PANIC
|
5182 /* Size and allocate the main established and bind bucket
5185 * The methodology is similar to that of the buffer cache.
5187 tcp_hashinfo
.ehash
=
5188 alloc_large_system_hash("TCP established",
5189 sizeof(struct inet_ehash_bucket
),
5191 17, /* one slot per 128 KB of memory */
5194 &tcp_hashinfo
.ehash_mask
,
5196 thash_entries
? 0 : 512 * 1024);
5197 for (i
= 0; i
<= tcp_hashinfo
.ehash_mask
; i
++)
5198 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo
.ehash
[i
].chain
, i
);
5200 if (inet_ehash_locks_alloc(&tcp_hashinfo
))
5201 panic("TCP: failed to alloc ehash_locks");
5202 tcp_hashinfo
.bhash
=
5203 alloc_large_system_hash("TCP bind",
5204 2 * sizeof(struct inet_bind_hashbucket
),
5205 tcp_hashinfo
.ehash_mask
+ 1,
5206 17, /* one slot per 128 KB of memory */
5208 &tcp_hashinfo
.bhash_size
,
5212 tcp_hashinfo
.bhash_size
= 1U << tcp_hashinfo
.bhash_size
;
5213 tcp_hashinfo
.bhash2
= tcp_hashinfo
.bhash
+ tcp_hashinfo
.bhash_size
;
5214 for (i
= 0; i
< tcp_hashinfo
.bhash_size
; i
++) {
5215 spin_lock_init(&tcp_hashinfo
.bhash
[i
].lock
);
5216 INIT_HLIST_HEAD(&tcp_hashinfo
.bhash
[i
].chain
);
5217 spin_lock_init(&tcp_hashinfo
.bhash2
[i
].lock
);
5218 INIT_HLIST_HEAD(&tcp_hashinfo
.bhash2
[i
].chain
);
5221 tcp_hashinfo
.pernet
= false;
5223 cnt
= tcp_hashinfo
.ehash_mask
+ 1;
5224 sysctl_tcp_max_orphans
= cnt
/ 2;
5227 /* Set per-socket limits to no more than 1/128 the pressure threshold */
5228 limit
= nr_free_buffer_pages() << (PAGE_SHIFT
- 7);
5229 max_wshare
= min(4UL*1024*1024, limit
);
5230 max_rshare
= min(32UL*1024*1024, limit
);
5232 init_net
.ipv4
.sysctl_tcp_wmem
[0] = PAGE_SIZE
;
5233 init_net
.ipv4
.sysctl_tcp_wmem
[1] = 16*1024;
5234 init_net
.ipv4
.sysctl_tcp_wmem
[2] = max(64*1024, max_wshare
);
5236 init_net
.ipv4
.sysctl_tcp_rmem
[0] = PAGE_SIZE
;
5237 init_net
.ipv4
.sysctl_tcp_rmem
[1] = 131072;
5238 init_net
.ipv4
.sysctl_tcp_rmem
[2] = max(131072, max_rshare
);
5240 pr_info("Hash tables configured (established %u bind %u)\n",
5241 tcp_hashinfo
.ehash_mask
+ 1, tcp_hashinfo
.bhash_size
);
5245 BUG_ON(tcp_register_congestion_control(&tcp_reno
) != 0);