]> git.ipfire.org Git - thirdparty/linux.git/blob - net/ipv4/tcp.c
f64f8276a73cdd14aafc4e9e16ae4267e24f1242
[thirdparty/linux.git] / net / ipv4 / tcp.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/proto_memory.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 #include <net/rstreason.h>
280
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
284 #include <net/hotdata.h>
285 #include <trace/events/tcp.h>
286 #include <net/rps.h>
287
288 #include "../core/devmem.h"
289
290 /* Track pending CMSGs. */
291 enum {
292 TCP_CMSG_INQ = 1,
293 TCP_CMSG_TS = 2
294 };
295
296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
298
299 DEFINE_PER_CPU(u32, tcp_tw_isn);
300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
301
302 long sysctl_tcp_mem[3] __read_mostly;
303 EXPORT_IPV6_MOD(sysctl_tcp_mem);
304
305 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */
306 EXPORT_IPV6_MOD(tcp_memory_allocated);
307 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
308 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
309
310 #if IS_ENABLED(CONFIG_SMC)
311 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
312 EXPORT_SYMBOL(tcp_have_smc);
313 #endif
314
315 /*
316 * Current number of TCP sockets.
317 */
318 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
319 EXPORT_IPV6_MOD(tcp_sockets_allocated);
320
321 /*
322 * TCP splice context
323 */
324 struct tcp_splice_state {
325 struct pipe_inode_info *pipe;
326 size_t len;
327 unsigned int flags;
328 };
329
330 /*
331 * Pressure flag: try to collapse.
332 * Technical note: it is used by multiple contexts non atomically.
333 * All the __sk_mem_schedule() is of this nature: accounting
334 * is strict, actions are advisory and have some latency.
335 */
336 unsigned long tcp_memory_pressure __read_mostly;
337 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
338
339 void tcp_enter_memory_pressure(struct sock *sk)
340 {
341 unsigned long val;
342
343 if (READ_ONCE(tcp_memory_pressure))
344 return;
345 val = jiffies;
346
347 if (!val)
348 val--;
349 if (!cmpxchg(&tcp_memory_pressure, 0, val))
350 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
351 }
352 EXPORT_IPV6_MOD_GPL(tcp_enter_memory_pressure);
353
354 void tcp_leave_memory_pressure(struct sock *sk)
355 {
356 unsigned long val;
357
358 if (!READ_ONCE(tcp_memory_pressure))
359 return;
360 val = xchg(&tcp_memory_pressure, 0);
361 if (val)
362 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
363 jiffies_to_msecs(jiffies - val));
364 }
365 EXPORT_IPV6_MOD_GPL(tcp_leave_memory_pressure);
366
367 /* Convert seconds to retransmits based on initial and max timeout */
368 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
369 {
370 u8 res = 0;
371
372 if (seconds > 0) {
373 int period = timeout;
374
375 res = 1;
376 while (seconds > period && res < 255) {
377 res++;
378 timeout <<= 1;
379 if (timeout > rto_max)
380 timeout = rto_max;
381 period += timeout;
382 }
383 }
384 return res;
385 }
386
387 /* Convert retransmits to seconds based on initial and max timeout */
388 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
389 {
390 int period = 0;
391
392 if (retrans > 0) {
393 period = timeout;
394 while (--retrans) {
395 timeout <<= 1;
396 if (timeout > rto_max)
397 timeout = rto_max;
398 period += timeout;
399 }
400 }
401 return period;
402 }
403
404 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
405 {
406 u32 rate = READ_ONCE(tp->rate_delivered);
407 u32 intv = READ_ONCE(tp->rate_interval_us);
408 u64 rate64 = 0;
409
410 if (rate && intv) {
411 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
412 do_div(rate64, intv);
413 }
414 return rate64;
415 }
416
417 /* Address-family independent initialization for a tcp_sock.
418 *
419 * NOTE: A lot of things set to zero explicitly by call to
420 * sk_alloc() so need not be done here.
421 */
422 void tcp_init_sock(struct sock *sk)
423 {
424 struct inet_connection_sock *icsk = inet_csk(sk);
425 struct tcp_sock *tp = tcp_sk(sk);
426 int rto_min_us, rto_max_ms;
427
428 tp->out_of_order_queue = RB_ROOT;
429 sk->tcp_rtx_queue = RB_ROOT;
430 tcp_init_xmit_timers(sk);
431 INIT_LIST_HEAD(&tp->tsq_node);
432 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
433
434 icsk->icsk_rto = TCP_TIMEOUT_INIT;
435
436 rto_max_ms = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_max_ms);
437 icsk->icsk_rto_max = msecs_to_jiffies(rto_max_ms);
438
439 rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
440 icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
441 icsk->icsk_delack_max = TCP_DELACK_MAX;
442 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
443 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
444
445 /* So many TCP implementations out there (incorrectly) count the
446 * initial SYN frame in their delayed-ACK and congestion control
447 * algorithms that we must have the following bandaid to talk
448 * efficiently to them. -DaveM
449 */
450 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
451
452 /* There's a bubble in the pipe until at least the first ACK. */
453 tp->app_limited = ~0U;
454 tp->rate_app_limited = 1;
455
456 /* See draft-stevens-tcpca-spec-01 for discussion of the
457 * initialization of these values.
458 */
459 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
460 tp->snd_cwnd_clamp = ~0;
461 tp->mss_cache = TCP_MSS_DEFAULT;
462
463 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
464 tcp_assign_congestion_control(sk);
465
466 tp->tsoffset = 0;
467 tp->rack.reo_wnd_steps = 1;
468
469 sk->sk_write_space = sk_stream_write_space;
470 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
471
472 icsk->icsk_sync_mss = tcp_sync_mss;
473
474 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
475 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
476 tcp_scaling_ratio_init(sk);
477
478 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
479 sk_sockets_allocated_inc(sk);
480 xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1);
481 }
482 EXPORT_IPV6_MOD(tcp_init_sock);
483
484 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc)
485 {
486 struct sk_buff *skb = tcp_write_queue_tail(sk);
487 u32 tsflags = sockc->tsflags;
488
489 if (tsflags && skb) {
490 struct skb_shared_info *shinfo = skb_shinfo(skb);
491 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
492
493 sock_tx_timestamp(sk, sockc, &shinfo->tx_flags);
494 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
495 tcb->txstamp_ack |= TSTAMP_ACK_SK;
496 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
497 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
498 }
499
500 if (cgroup_bpf_enabled(CGROUP_SOCK_OPS) &&
501 SK_BPF_CB_FLAG_TEST(sk, SK_BPF_CB_TX_TIMESTAMPING) && skb)
502 bpf_skops_tx_timestamping(sk, skb, BPF_SOCK_OPS_TSTAMP_SENDMSG_CB);
503 }
504
505 static bool tcp_stream_is_readable(struct sock *sk, int target)
506 {
507 if (tcp_epollin_ready(sk, target))
508 return true;
509 return sk_is_readable(sk);
510 }
511
512 /*
513 * Wait for a TCP event.
514 *
515 * Note that we don't need to lock the socket, as the upper poll layers
516 * take care of normal races (between the test and the event) and we don't
517 * go look at any of the socket buffers directly.
518 */
519 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
520 {
521 __poll_t mask;
522 struct sock *sk = sock->sk;
523 const struct tcp_sock *tp = tcp_sk(sk);
524 u8 shutdown;
525 int state;
526
527 sock_poll_wait(file, sock, wait);
528
529 state = inet_sk_state_load(sk);
530 if (state == TCP_LISTEN)
531 return inet_csk_listen_poll(sk);
532
533 /* Socket is not locked. We are protected from async events
534 * by poll logic and correct handling of state changes
535 * made by other threads is impossible in any case.
536 */
537
538 mask = 0;
539
540 /*
541 * EPOLLHUP is certainly not done right. But poll() doesn't
542 * have a notion of HUP in just one direction, and for a
543 * socket the read side is more interesting.
544 *
545 * Some poll() documentation says that EPOLLHUP is incompatible
546 * with the EPOLLOUT/POLLWR flags, so somebody should check this
547 * all. But careful, it tends to be safer to return too many
548 * bits than too few, and you can easily break real applications
549 * if you don't tell them that something has hung up!
550 *
551 * Check-me.
552 *
553 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
554 * our fs/select.c). It means that after we received EOF,
555 * poll always returns immediately, making impossible poll() on write()
556 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
557 * if and only if shutdown has been made in both directions.
558 * Actually, it is interesting to look how Solaris and DUX
559 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
560 * then we could set it on SND_SHUTDOWN. BTW examples given
561 * in Stevens' books assume exactly this behaviour, it explains
562 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
563 *
564 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
565 * blocking on fresh not-connected or disconnected socket. --ANK
566 */
567 shutdown = READ_ONCE(sk->sk_shutdown);
568 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
569 mask |= EPOLLHUP;
570 if (shutdown & RCV_SHUTDOWN)
571 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
572
573 /* Connected or passive Fast Open socket? */
574 if (state != TCP_SYN_SENT &&
575 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
576 int target = sock_rcvlowat(sk, 0, INT_MAX);
577 u16 urg_data = READ_ONCE(tp->urg_data);
578
579 if (unlikely(urg_data) &&
580 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
581 !sock_flag(sk, SOCK_URGINLINE))
582 target++;
583
584 if (tcp_stream_is_readable(sk, target))
585 mask |= EPOLLIN | EPOLLRDNORM;
586
587 if (!(shutdown & SEND_SHUTDOWN)) {
588 if (__sk_stream_is_writeable(sk, 1)) {
589 mask |= EPOLLOUT | EPOLLWRNORM;
590 } else { /* send SIGIO later */
591 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
592 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
593
594 /* Race breaker. If space is freed after
595 * wspace test but before the flags are set,
596 * IO signal will be lost. Memory barrier
597 * pairs with the input side.
598 */
599 smp_mb__after_atomic();
600 if (__sk_stream_is_writeable(sk, 1))
601 mask |= EPOLLOUT | EPOLLWRNORM;
602 }
603 } else
604 mask |= EPOLLOUT | EPOLLWRNORM;
605
606 if (urg_data & TCP_URG_VALID)
607 mask |= EPOLLPRI;
608 } else if (state == TCP_SYN_SENT &&
609 inet_test_bit(DEFER_CONNECT, sk)) {
610 /* Active TCP fastopen socket with defer_connect
611 * Return EPOLLOUT so application can call write()
612 * in order for kernel to generate SYN+data
613 */
614 mask |= EPOLLOUT | EPOLLWRNORM;
615 }
616 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
617 smp_rmb();
618 if (READ_ONCE(sk->sk_err) ||
619 !skb_queue_empty_lockless(&sk->sk_error_queue))
620 mask |= EPOLLERR;
621
622 return mask;
623 }
624 EXPORT_SYMBOL(tcp_poll);
625
626 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
627 {
628 struct tcp_sock *tp = tcp_sk(sk);
629 int answ;
630 bool slow;
631
632 switch (cmd) {
633 case SIOCINQ:
634 if (sk->sk_state == TCP_LISTEN)
635 return -EINVAL;
636
637 slow = lock_sock_fast(sk);
638 answ = tcp_inq(sk);
639 unlock_sock_fast(sk, slow);
640 break;
641 case SIOCATMARK:
642 answ = READ_ONCE(tp->urg_data) &&
643 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
644 break;
645 case SIOCOUTQ:
646 if (sk->sk_state == TCP_LISTEN)
647 return -EINVAL;
648
649 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
650 answ = 0;
651 else
652 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
653 break;
654 case SIOCOUTQNSD:
655 if (sk->sk_state == TCP_LISTEN)
656 return -EINVAL;
657
658 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
659 answ = 0;
660 else
661 answ = READ_ONCE(tp->write_seq) -
662 READ_ONCE(tp->snd_nxt);
663 break;
664 default:
665 return -ENOIOCTLCMD;
666 }
667
668 *karg = answ;
669 return 0;
670 }
671 EXPORT_IPV6_MOD(tcp_ioctl);
672
673 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
674 {
675 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
676 tp->pushed_seq = tp->write_seq;
677 }
678
679 static inline bool forced_push(const struct tcp_sock *tp)
680 {
681 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
682 }
683
684 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
685 {
686 struct tcp_sock *tp = tcp_sk(sk);
687 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
688
689 tcb->seq = tcb->end_seq = tp->write_seq;
690 tcb->tcp_flags = TCPHDR_ACK;
691 __skb_header_release(skb);
692 tcp_add_write_queue_tail(sk, skb);
693 sk_wmem_queued_add(sk, skb->truesize);
694 sk_mem_charge(sk, skb->truesize);
695 if (tp->nonagle & TCP_NAGLE_PUSH)
696 tp->nonagle &= ~TCP_NAGLE_PUSH;
697
698 tcp_slow_start_after_idle_check(sk);
699 }
700
701 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
702 {
703 if (flags & MSG_OOB)
704 tp->snd_up = tp->write_seq;
705 }
706
707 /* If a not yet filled skb is pushed, do not send it if
708 * we have data packets in Qdisc or NIC queues :
709 * Because TX completion will happen shortly, it gives a chance
710 * to coalesce future sendmsg() payload into this skb, without
711 * need for a timer, and with no latency trade off.
712 * As packets containing data payload have a bigger truesize
713 * than pure acks (dataless) packets, the last checks prevent
714 * autocorking if we only have an ACK in Qdisc/NIC queues,
715 * or if TX completion was delayed after we processed ACK packet.
716 */
717 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
718 int size_goal)
719 {
720 return skb->len < size_goal &&
721 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
722 !tcp_rtx_queue_empty(sk) &&
723 refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
724 tcp_skb_can_collapse_to(skb);
725 }
726
727 void tcp_push(struct sock *sk, int flags, int mss_now,
728 int nonagle, int size_goal)
729 {
730 struct tcp_sock *tp = tcp_sk(sk);
731 struct sk_buff *skb;
732
733 skb = tcp_write_queue_tail(sk);
734 if (!skb)
735 return;
736 if (!(flags & MSG_MORE) || forced_push(tp))
737 tcp_mark_push(tp, skb);
738
739 tcp_mark_urg(tp, flags);
740
741 if (tcp_should_autocork(sk, skb, size_goal)) {
742
743 /* avoid atomic op if TSQ_THROTTLED bit is already set */
744 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
745 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
746 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
747 smp_mb__after_atomic();
748 }
749 /* It is possible TX completion already happened
750 * before we set TSQ_THROTTLED.
751 */
752 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
753 return;
754 }
755
756 if (flags & MSG_MORE)
757 nonagle = TCP_NAGLE_CORK;
758
759 __tcp_push_pending_frames(sk, mss_now, nonagle);
760 }
761
762 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
763 unsigned int offset, size_t len)
764 {
765 struct tcp_splice_state *tss = rd_desc->arg.data;
766 int ret;
767
768 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
769 min(rd_desc->count, len), tss->flags);
770 if (ret > 0)
771 rd_desc->count -= ret;
772 return ret;
773 }
774
775 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
776 {
777 /* Store TCP splice context information in read_descriptor_t. */
778 read_descriptor_t rd_desc = {
779 .arg.data = tss,
780 .count = tss->len,
781 };
782
783 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
784 }
785
786 /**
787 * tcp_splice_read - splice data from TCP socket to a pipe
788 * @sock: socket to splice from
789 * @ppos: position (not valid)
790 * @pipe: pipe to splice to
791 * @len: number of bytes to splice
792 * @flags: splice modifier flags
793 *
794 * Description:
795 * Will read pages from given socket and fill them into a pipe.
796 *
797 **/
798 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
799 struct pipe_inode_info *pipe, size_t len,
800 unsigned int flags)
801 {
802 struct sock *sk = sock->sk;
803 struct tcp_splice_state tss = {
804 .pipe = pipe,
805 .len = len,
806 .flags = flags,
807 };
808 long timeo;
809 ssize_t spliced;
810 int ret;
811
812 sock_rps_record_flow(sk);
813 /*
814 * We can't seek on a socket input
815 */
816 if (unlikely(*ppos))
817 return -ESPIPE;
818
819 ret = spliced = 0;
820
821 lock_sock(sk);
822
823 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
824 while (tss.len) {
825 ret = __tcp_splice_read(sk, &tss);
826 if (ret < 0)
827 break;
828 else if (!ret) {
829 if (spliced)
830 break;
831 if (sock_flag(sk, SOCK_DONE))
832 break;
833 if (sk->sk_err) {
834 ret = sock_error(sk);
835 break;
836 }
837 if (sk->sk_shutdown & RCV_SHUTDOWN)
838 break;
839 if (sk->sk_state == TCP_CLOSE) {
840 /*
841 * This occurs when user tries to read
842 * from never connected socket.
843 */
844 ret = -ENOTCONN;
845 break;
846 }
847 if (!timeo) {
848 ret = -EAGAIN;
849 break;
850 }
851 /* if __tcp_splice_read() got nothing while we have
852 * an skb in receive queue, we do not want to loop.
853 * This might happen with URG data.
854 */
855 if (!skb_queue_empty(&sk->sk_receive_queue))
856 break;
857 ret = sk_wait_data(sk, &timeo, NULL);
858 if (ret < 0)
859 break;
860 if (signal_pending(current)) {
861 ret = sock_intr_errno(timeo);
862 break;
863 }
864 continue;
865 }
866 tss.len -= ret;
867 spliced += ret;
868
869 if (!tss.len || !timeo)
870 break;
871 release_sock(sk);
872 lock_sock(sk);
873
874 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
875 (sk->sk_shutdown & RCV_SHUTDOWN) ||
876 signal_pending(current))
877 break;
878 }
879
880 release_sock(sk);
881
882 if (spliced)
883 return spliced;
884
885 return ret;
886 }
887 EXPORT_IPV6_MOD(tcp_splice_read);
888
889 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
890 bool force_schedule)
891 {
892 struct sk_buff *skb;
893
894 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
895 if (likely(skb)) {
896 bool mem_scheduled;
897
898 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
899 if (force_schedule) {
900 mem_scheduled = true;
901 sk_forced_mem_schedule(sk, skb->truesize);
902 } else {
903 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
904 }
905 if (likely(mem_scheduled)) {
906 skb_reserve(skb, MAX_TCP_HEADER);
907 skb->ip_summed = CHECKSUM_PARTIAL;
908 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
909 return skb;
910 }
911 __kfree_skb(skb);
912 } else {
913 sk->sk_prot->enter_memory_pressure(sk);
914 sk_stream_moderate_sndbuf(sk);
915 }
916 return NULL;
917 }
918
919 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
920 int large_allowed)
921 {
922 struct tcp_sock *tp = tcp_sk(sk);
923 u32 new_size_goal, size_goal;
924
925 if (!large_allowed)
926 return mss_now;
927
928 /* Note : tcp_tso_autosize() will eventually split this later */
929 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
930
931 /* We try hard to avoid divides here */
932 size_goal = tp->gso_segs * mss_now;
933 if (unlikely(new_size_goal < size_goal ||
934 new_size_goal >= size_goal + mss_now)) {
935 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
936 sk->sk_gso_max_segs);
937 size_goal = tp->gso_segs * mss_now;
938 }
939
940 return max(size_goal, mss_now);
941 }
942
943 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
944 {
945 int mss_now;
946
947 mss_now = tcp_current_mss(sk);
948 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
949
950 return mss_now;
951 }
952
953 /* In some cases, sendmsg() could have added an skb to the write queue,
954 * but failed adding payload on it. We need to remove it to consume less
955 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
956 * epoll() users. Another reason is that tcp_write_xmit() does not like
957 * finding an empty skb in the write queue.
958 */
959 void tcp_remove_empty_skb(struct sock *sk)
960 {
961 struct sk_buff *skb = tcp_write_queue_tail(sk);
962
963 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
964 tcp_unlink_write_queue(skb, sk);
965 if (tcp_write_queue_empty(sk))
966 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
967 tcp_wmem_free_skb(sk, skb);
968 }
969 }
970
971 /* skb changing from pure zc to mixed, must charge zc */
972 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
973 {
974 if (unlikely(skb_zcopy_pure(skb))) {
975 u32 extra = skb->truesize -
976 SKB_TRUESIZE(skb_end_offset(skb));
977
978 if (!sk_wmem_schedule(sk, extra))
979 return -ENOMEM;
980
981 sk_mem_charge(sk, extra);
982 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
983 }
984 return 0;
985 }
986
987
988 int tcp_wmem_schedule(struct sock *sk, int copy)
989 {
990 int left;
991
992 if (likely(sk_wmem_schedule(sk, copy)))
993 return copy;
994
995 /* We could be in trouble if we have nothing queued.
996 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
997 * to guarantee some progress.
998 */
999 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
1000 if (left > 0)
1001 sk_forced_mem_schedule(sk, min(left, copy));
1002 return min(copy, sk->sk_forward_alloc);
1003 }
1004
1005 void tcp_free_fastopen_req(struct tcp_sock *tp)
1006 {
1007 if (tp->fastopen_req) {
1008 kfree(tp->fastopen_req);
1009 tp->fastopen_req = NULL;
1010 }
1011 }
1012
1013 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1014 size_t size, struct ubuf_info *uarg)
1015 {
1016 struct tcp_sock *tp = tcp_sk(sk);
1017 struct inet_sock *inet = inet_sk(sk);
1018 struct sockaddr *uaddr = msg->msg_name;
1019 int err, flags;
1020
1021 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1022 TFO_CLIENT_ENABLE) ||
1023 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1024 uaddr->sa_family == AF_UNSPEC))
1025 return -EOPNOTSUPP;
1026 if (tp->fastopen_req)
1027 return -EALREADY; /* Another Fast Open is in progress */
1028
1029 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1030 sk->sk_allocation);
1031 if (unlikely(!tp->fastopen_req))
1032 return -ENOBUFS;
1033 tp->fastopen_req->data = msg;
1034 tp->fastopen_req->size = size;
1035 tp->fastopen_req->uarg = uarg;
1036
1037 if (inet_test_bit(DEFER_CONNECT, sk)) {
1038 err = tcp_connect(sk);
1039 /* Same failure procedure as in tcp_v4/6_connect */
1040 if (err) {
1041 tcp_set_state(sk, TCP_CLOSE);
1042 inet->inet_dport = 0;
1043 sk->sk_route_caps = 0;
1044 }
1045 }
1046 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1047 err = __inet_stream_connect(sk->sk_socket, uaddr,
1048 msg->msg_namelen, flags, 1);
1049 /* fastopen_req could already be freed in __inet_stream_connect
1050 * if the connection times out or gets rst
1051 */
1052 if (tp->fastopen_req) {
1053 *copied = tp->fastopen_req->copied;
1054 tcp_free_fastopen_req(tp);
1055 inet_clear_bit(DEFER_CONNECT, sk);
1056 }
1057 return err;
1058 }
1059
1060 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1061 {
1062 struct net_devmem_dmabuf_binding *binding = NULL;
1063 struct tcp_sock *tp = tcp_sk(sk);
1064 struct ubuf_info *uarg = NULL;
1065 struct sk_buff *skb;
1066 struct sockcm_cookie sockc;
1067 int flags, err, copied = 0;
1068 int mss_now = 0, size_goal, copied_syn = 0;
1069 int process_backlog = 0;
1070 int sockc_err = 0;
1071 int zc = 0;
1072 long timeo;
1073
1074 flags = msg->msg_flags;
1075
1076 sockc = (struct sockcm_cookie){ .tsflags = READ_ONCE(sk->sk_tsflags) };
1077 if (msg->msg_controllen) {
1078 sockc_err = sock_cmsg_send(sk, msg, &sockc);
1079 /* Don't return error until MSG_FASTOPEN has been processed;
1080 * that may succeed even if the cmsg is invalid.
1081 */
1082 }
1083
1084 if ((flags & MSG_ZEROCOPY) && size) {
1085 if (msg->msg_ubuf) {
1086 uarg = msg->msg_ubuf;
1087 if (sk->sk_route_caps & NETIF_F_SG)
1088 zc = MSG_ZEROCOPY;
1089 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1090 skb = tcp_write_queue_tail(sk);
1091 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb),
1092 !sockc_err && sockc.dmabuf_id);
1093 if (!uarg) {
1094 err = -ENOBUFS;
1095 goto out_err;
1096 }
1097 if (sk->sk_route_caps & NETIF_F_SG)
1098 zc = MSG_ZEROCOPY;
1099 else
1100 uarg_to_msgzc(uarg)->zerocopy = 0;
1101
1102 if (!sockc_err && sockc.dmabuf_id) {
1103 binding = net_devmem_get_binding(sk, sockc.dmabuf_id);
1104 if (IS_ERR(binding)) {
1105 err = PTR_ERR(binding);
1106 binding = NULL;
1107 goto out_err;
1108 }
1109 }
1110 }
1111 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1112 if (sk->sk_route_caps & NETIF_F_SG)
1113 zc = MSG_SPLICE_PAGES;
1114 }
1115
1116 if (!sockc_err && sockc.dmabuf_id &&
1117 (!(flags & MSG_ZEROCOPY) || !sock_flag(sk, SOCK_ZEROCOPY))) {
1118 err = -EINVAL;
1119 goto out_err;
1120 }
1121
1122 if (unlikely(flags & MSG_FASTOPEN ||
1123 inet_test_bit(DEFER_CONNECT, sk)) &&
1124 !tp->repair) {
1125 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1126 if (err == -EINPROGRESS && copied_syn > 0)
1127 goto out;
1128 else if (err)
1129 goto out_err;
1130 }
1131
1132 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1133
1134 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1135
1136 /* Wait for a connection to finish. One exception is TCP Fast Open
1137 * (passive side) where data is allowed to be sent before a connection
1138 * is fully established.
1139 */
1140 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1141 !tcp_passive_fastopen(sk)) {
1142 err = sk_stream_wait_connect(sk, &timeo);
1143 if (err != 0)
1144 goto do_error;
1145 }
1146
1147 if (unlikely(tp->repair)) {
1148 if (tp->repair_queue == TCP_RECV_QUEUE) {
1149 copied = tcp_send_rcvq(sk, msg, size);
1150 goto out_nopush;
1151 }
1152
1153 err = -EINVAL;
1154 if (tp->repair_queue == TCP_NO_QUEUE)
1155 goto out_err;
1156
1157 /* 'common' sending to sendq */
1158 }
1159
1160 if (sockc_err) {
1161 err = sockc_err;
1162 goto out_err;
1163 }
1164
1165 /* This should be in poll */
1166 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1167
1168 /* Ok commence sending. */
1169 copied = 0;
1170
1171 restart:
1172 mss_now = tcp_send_mss(sk, &size_goal, flags);
1173
1174 err = -EPIPE;
1175 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1176 goto do_error;
1177
1178 while (msg_data_left(msg)) {
1179 ssize_t copy = 0;
1180
1181 skb = tcp_write_queue_tail(sk);
1182 if (skb)
1183 copy = size_goal - skb->len;
1184
1185 trace_tcp_sendmsg_locked(sk, msg, skb, size_goal);
1186
1187 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1188 bool first_skb;
1189
1190 new_segment:
1191 if (!sk_stream_memory_free(sk))
1192 goto wait_for_space;
1193
1194 if (unlikely(process_backlog >= 16)) {
1195 process_backlog = 0;
1196 if (sk_flush_backlog(sk))
1197 goto restart;
1198 }
1199 first_skb = tcp_rtx_and_write_queues_empty(sk);
1200 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1201 first_skb);
1202 if (!skb)
1203 goto wait_for_space;
1204
1205 process_backlog++;
1206
1207 #ifdef CONFIG_SKB_DECRYPTED
1208 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1209 #endif
1210 tcp_skb_entail(sk, skb);
1211 copy = size_goal;
1212
1213 /* All packets are restored as if they have
1214 * already been sent. skb_mstamp_ns isn't set to
1215 * avoid wrong rtt estimation.
1216 */
1217 if (tp->repair)
1218 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1219 }
1220
1221 /* Try to append data to the end of skb. */
1222 if (copy > msg_data_left(msg))
1223 copy = msg_data_left(msg);
1224
1225 if (zc == 0) {
1226 bool merge = true;
1227 int i = skb_shinfo(skb)->nr_frags;
1228 struct page_frag *pfrag = sk_page_frag(sk);
1229
1230 if (!sk_page_frag_refill(sk, pfrag))
1231 goto wait_for_space;
1232
1233 if (!skb_can_coalesce(skb, i, pfrag->page,
1234 pfrag->offset)) {
1235 if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1236 tcp_mark_push(tp, skb);
1237 goto new_segment;
1238 }
1239 merge = false;
1240 }
1241
1242 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1243
1244 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1245 if (tcp_downgrade_zcopy_pure(sk, skb))
1246 goto wait_for_space;
1247 skb_zcopy_downgrade_managed(skb);
1248 }
1249
1250 copy = tcp_wmem_schedule(sk, copy);
1251 if (!copy)
1252 goto wait_for_space;
1253
1254 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1255 pfrag->page,
1256 pfrag->offset,
1257 copy);
1258 if (err)
1259 goto do_error;
1260
1261 /* Update the skb. */
1262 if (merge) {
1263 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1264 } else {
1265 skb_fill_page_desc(skb, i, pfrag->page,
1266 pfrag->offset, copy);
1267 page_ref_inc(pfrag->page);
1268 }
1269 pfrag->offset += copy;
1270 } else if (zc == MSG_ZEROCOPY) {
1271 /* First append to a fragless skb builds initial
1272 * pure zerocopy skb
1273 */
1274 if (!skb->len)
1275 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1276
1277 if (!skb_zcopy_pure(skb)) {
1278 copy = tcp_wmem_schedule(sk, copy);
1279 if (!copy)
1280 goto wait_for_space;
1281 }
1282
1283 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg,
1284 binding);
1285 if (err == -EMSGSIZE || err == -EEXIST) {
1286 tcp_mark_push(tp, skb);
1287 goto new_segment;
1288 }
1289 if (err < 0)
1290 goto do_error;
1291 copy = err;
1292 } else if (zc == MSG_SPLICE_PAGES) {
1293 /* Splice in data if we can; copy if we can't. */
1294 if (tcp_downgrade_zcopy_pure(sk, skb))
1295 goto wait_for_space;
1296 copy = tcp_wmem_schedule(sk, copy);
1297 if (!copy)
1298 goto wait_for_space;
1299
1300 err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1301 sk->sk_allocation);
1302 if (err < 0) {
1303 if (err == -EMSGSIZE) {
1304 tcp_mark_push(tp, skb);
1305 goto new_segment;
1306 }
1307 goto do_error;
1308 }
1309 copy = err;
1310
1311 if (!(flags & MSG_NO_SHARED_FRAGS))
1312 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1313
1314 sk_wmem_queued_add(sk, copy);
1315 sk_mem_charge(sk, copy);
1316 }
1317
1318 if (!copied)
1319 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1320
1321 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1322 TCP_SKB_CB(skb)->end_seq += copy;
1323 tcp_skb_pcount_set(skb, 0);
1324
1325 copied += copy;
1326 if (!msg_data_left(msg)) {
1327 if (unlikely(flags & MSG_EOR))
1328 TCP_SKB_CB(skb)->eor = 1;
1329 goto out;
1330 }
1331
1332 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1333 continue;
1334
1335 if (forced_push(tp)) {
1336 tcp_mark_push(tp, skb);
1337 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1338 } else if (skb == tcp_send_head(sk))
1339 tcp_push_one(sk, mss_now);
1340 continue;
1341
1342 wait_for_space:
1343 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1344 tcp_remove_empty_skb(sk);
1345 if (copied)
1346 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1347 TCP_NAGLE_PUSH, size_goal);
1348
1349 err = sk_stream_wait_memory(sk, &timeo);
1350 if (err != 0)
1351 goto do_error;
1352
1353 mss_now = tcp_send_mss(sk, &size_goal, flags);
1354 }
1355
1356 out:
1357 if (copied) {
1358 tcp_tx_timestamp(sk, &sockc);
1359 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1360 }
1361 out_nopush:
1362 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1363 if (uarg && !msg->msg_ubuf)
1364 net_zcopy_put(uarg);
1365 if (binding)
1366 net_devmem_dmabuf_binding_put(binding);
1367 return copied + copied_syn;
1368
1369 do_error:
1370 tcp_remove_empty_skb(sk);
1371
1372 if (copied + copied_syn)
1373 goto out;
1374 out_err:
1375 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1376 if (uarg && !msg->msg_ubuf)
1377 net_zcopy_put_abort(uarg, true);
1378 err = sk_stream_error(sk, flags, err);
1379 /* make sure we wake any epoll edge trigger waiter */
1380 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1381 sk->sk_write_space(sk);
1382 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1383 }
1384 if (binding)
1385 net_devmem_dmabuf_binding_put(binding);
1386
1387 return err;
1388 }
1389 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1390
1391 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1392 {
1393 int ret;
1394
1395 lock_sock(sk);
1396 ret = tcp_sendmsg_locked(sk, msg, size);
1397 release_sock(sk);
1398
1399 return ret;
1400 }
1401 EXPORT_SYMBOL(tcp_sendmsg);
1402
1403 void tcp_splice_eof(struct socket *sock)
1404 {
1405 struct sock *sk = sock->sk;
1406 struct tcp_sock *tp = tcp_sk(sk);
1407 int mss_now, size_goal;
1408
1409 if (!tcp_write_queue_tail(sk))
1410 return;
1411
1412 lock_sock(sk);
1413 mss_now = tcp_send_mss(sk, &size_goal, 0);
1414 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1415 release_sock(sk);
1416 }
1417 EXPORT_IPV6_MOD_GPL(tcp_splice_eof);
1418
1419 /*
1420 * Handle reading urgent data. BSD has very simple semantics for
1421 * this, no blocking and very strange errors 8)
1422 */
1423
1424 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1425 {
1426 struct tcp_sock *tp = tcp_sk(sk);
1427
1428 /* No URG data to read. */
1429 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1430 tp->urg_data == TCP_URG_READ)
1431 return -EINVAL; /* Yes this is right ! */
1432
1433 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1434 return -ENOTCONN;
1435
1436 if (tp->urg_data & TCP_URG_VALID) {
1437 int err = 0;
1438 char c = tp->urg_data;
1439
1440 if (!(flags & MSG_PEEK))
1441 WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1442
1443 /* Read urgent data. */
1444 msg->msg_flags |= MSG_OOB;
1445
1446 if (len > 0) {
1447 if (!(flags & MSG_TRUNC))
1448 err = memcpy_to_msg(msg, &c, 1);
1449 len = 1;
1450 } else
1451 msg->msg_flags |= MSG_TRUNC;
1452
1453 return err ? -EFAULT : len;
1454 }
1455
1456 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1457 return 0;
1458
1459 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1460 * the available implementations agree in this case:
1461 * this call should never block, independent of the
1462 * blocking state of the socket.
1463 * Mike <pall@rz.uni-karlsruhe.de>
1464 */
1465 return -EAGAIN;
1466 }
1467
1468 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1469 {
1470 struct sk_buff *skb;
1471 int copied = 0, err = 0;
1472
1473 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1474 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1475 if (err)
1476 return err;
1477 copied += skb->len;
1478 }
1479
1480 skb_queue_walk(&sk->sk_write_queue, skb) {
1481 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1482 if (err)
1483 break;
1484
1485 copied += skb->len;
1486 }
1487
1488 return err ?: copied;
1489 }
1490
1491 /* Clean up the receive buffer for full frames taken by the user,
1492 * then send an ACK if necessary. COPIED is the number of bytes
1493 * tcp_recvmsg has given to the user so far, it speeds up the
1494 * calculation of whether or not we must ACK for the sake of
1495 * a window update.
1496 */
1497 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1498 {
1499 struct tcp_sock *tp = tcp_sk(sk);
1500 bool time_to_ack = false;
1501
1502 if (inet_csk_ack_scheduled(sk)) {
1503 const struct inet_connection_sock *icsk = inet_csk(sk);
1504
1505 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1506 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1507 /*
1508 * If this read emptied read buffer, we send ACK, if
1509 * connection is not bidirectional, user drained
1510 * receive buffer and there was a small segment
1511 * in queue.
1512 */
1513 (copied > 0 &&
1514 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1515 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1516 !inet_csk_in_pingpong_mode(sk))) &&
1517 !atomic_read(&sk->sk_rmem_alloc)))
1518 time_to_ack = true;
1519 }
1520
1521 /* We send an ACK if we can now advertise a non-zero window
1522 * which has been raised "significantly".
1523 *
1524 * Even if window raised up to infinity, do not send window open ACK
1525 * in states, where we will not receive more. It is useless.
1526 */
1527 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1528 __u32 rcv_window_now = tcp_receive_window(tp);
1529
1530 /* Optimize, __tcp_select_window() is not cheap. */
1531 if (2*rcv_window_now <= tp->window_clamp) {
1532 __u32 new_window = __tcp_select_window(sk);
1533
1534 /* Send ACK now, if this read freed lots of space
1535 * in our buffer. Certainly, new_window is new window.
1536 * We can advertise it now, if it is not less than current one.
1537 * "Lots" means "at least twice" here.
1538 */
1539 if (new_window && new_window >= 2 * rcv_window_now)
1540 time_to_ack = true;
1541 }
1542 }
1543 if (time_to_ack)
1544 tcp_send_ack(sk);
1545 }
1546
1547 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1548 {
1549 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1550 struct tcp_sock *tp = tcp_sk(sk);
1551
1552 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1553 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1554 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1555 __tcp_cleanup_rbuf(sk, copied);
1556 }
1557
1558 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1559 {
1560 __skb_unlink(skb, &sk->sk_receive_queue);
1561 if (likely(skb->destructor == sock_rfree)) {
1562 sock_rfree(skb);
1563 skb->destructor = NULL;
1564 skb->sk = NULL;
1565 return skb_attempt_defer_free(skb);
1566 }
1567 __kfree_skb(skb);
1568 }
1569
1570 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1571 {
1572 struct sk_buff *skb;
1573 u32 offset;
1574
1575 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1576 offset = seq - TCP_SKB_CB(skb)->seq;
1577 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1578 pr_err_once("%s: found a SYN, please report !\n", __func__);
1579 offset--;
1580 }
1581 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1582 *off = offset;
1583 return skb;
1584 }
1585 /* This looks weird, but this can happen if TCP collapsing
1586 * splitted a fat GRO packet, while we released socket lock
1587 * in skb_splice_bits()
1588 */
1589 tcp_eat_recv_skb(sk, skb);
1590 }
1591 return NULL;
1592 }
1593 EXPORT_SYMBOL(tcp_recv_skb);
1594
1595 /*
1596 * This routine provides an alternative to tcp_recvmsg() for routines
1597 * that would like to handle copying from skbuffs directly in 'sendfile'
1598 * fashion.
1599 * Note:
1600 * - It is assumed that the socket was locked by the caller.
1601 * - The routine does not block.
1602 * - At present, there is no support for reading OOB data
1603 * or for 'peeking' the socket using this routine
1604 * (although both would be easy to implement).
1605 */
1606 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1607 sk_read_actor_t recv_actor, bool noack,
1608 u32 *copied_seq)
1609 {
1610 struct sk_buff *skb;
1611 struct tcp_sock *tp = tcp_sk(sk);
1612 u32 seq = *copied_seq;
1613 u32 offset;
1614 int copied = 0;
1615
1616 if (sk->sk_state == TCP_LISTEN)
1617 return -ENOTCONN;
1618 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1619 if (offset < skb->len) {
1620 int used;
1621 size_t len;
1622
1623 len = skb->len - offset;
1624 /* Stop reading if we hit a patch of urgent data */
1625 if (unlikely(tp->urg_data)) {
1626 u32 urg_offset = tp->urg_seq - seq;
1627 if (urg_offset < len)
1628 len = urg_offset;
1629 if (!len)
1630 break;
1631 }
1632 used = recv_actor(desc, skb, offset, len);
1633 if (used <= 0) {
1634 if (!copied)
1635 copied = used;
1636 break;
1637 }
1638 if (WARN_ON_ONCE(used > len))
1639 used = len;
1640 seq += used;
1641 copied += used;
1642 offset += used;
1643
1644 /* If recv_actor drops the lock (e.g. TCP splice
1645 * receive) the skb pointer might be invalid when
1646 * getting here: tcp_collapse might have deleted it
1647 * while aggregating skbs from the socket queue.
1648 */
1649 skb = tcp_recv_skb(sk, seq - 1, &offset);
1650 if (!skb)
1651 break;
1652 /* TCP coalescing might have appended data to the skb.
1653 * Try to splice more frags
1654 */
1655 if (offset + 1 != skb->len)
1656 continue;
1657 }
1658 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1659 tcp_eat_recv_skb(sk, skb);
1660 ++seq;
1661 break;
1662 }
1663 tcp_eat_recv_skb(sk, skb);
1664 if (!desc->count)
1665 break;
1666 WRITE_ONCE(*copied_seq, seq);
1667 }
1668 WRITE_ONCE(*copied_seq, seq);
1669
1670 if (noack)
1671 goto out;
1672
1673 tcp_rcv_space_adjust(sk);
1674
1675 /* Clean up data we have read: This will do ACK frames. */
1676 if (copied > 0) {
1677 tcp_recv_skb(sk, seq, &offset);
1678 tcp_cleanup_rbuf(sk, copied);
1679 }
1680 out:
1681 return copied;
1682 }
1683
1684 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1685 sk_read_actor_t recv_actor)
1686 {
1687 return __tcp_read_sock(sk, desc, recv_actor, false,
1688 &tcp_sk(sk)->copied_seq);
1689 }
1690 EXPORT_SYMBOL(tcp_read_sock);
1691
1692 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
1693 sk_read_actor_t recv_actor, bool noack,
1694 u32 *copied_seq)
1695 {
1696 return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq);
1697 }
1698
1699 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1700 {
1701 struct sk_buff *skb;
1702 int copied = 0;
1703
1704 if (sk->sk_state == TCP_LISTEN)
1705 return -ENOTCONN;
1706
1707 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1708 u8 tcp_flags;
1709 int used;
1710
1711 __skb_unlink(skb, &sk->sk_receive_queue);
1712 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1713 tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1714 used = recv_actor(sk, skb);
1715 if (used < 0) {
1716 if (!copied)
1717 copied = used;
1718 break;
1719 }
1720 copied += used;
1721
1722 if (tcp_flags & TCPHDR_FIN)
1723 break;
1724 }
1725 return copied;
1726 }
1727 EXPORT_IPV6_MOD(tcp_read_skb);
1728
1729 void tcp_read_done(struct sock *sk, size_t len)
1730 {
1731 struct tcp_sock *tp = tcp_sk(sk);
1732 u32 seq = tp->copied_seq;
1733 struct sk_buff *skb;
1734 size_t left;
1735 u32 offset;
1736
1737 if (sk->sk_state == TCP_LISTEN)
1738 return;
1739
1740 left = len;
1741 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1742 int used;
1743
1744 used = min_t(size_t, skb->len - offset, left);
1745 seq += used;
1746 left -= used;
1747
1748 if (skb->len > offset + used)
1749 break;
1750
1751 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1752 tcp_eat_recv_skb(sk, skb);
1753 ++seq;
1754 break;
1755 }
1756 tcp_eat_recv_skb(sk, skb);
1757 }
1758 WRITE_ONCE(tp->copied_seq, seq);
1759
1760 tcp_rcv_space_adjust(sk);
1761
1762 /* Clean up data we have read: This will do ACK frames. */
1763 if (left != len)
1764 tcp_cleanup_rbuf(sk, len - left);
1765 }
1766 EXPORT_SYMBOL(tcp_read_done);
1767
1768 int tcp_peek_len(struct socket *sock)
1769 {
1770 return tcp_inq(sock->sk);
1771 }
1772 EXPORT_IPV6_MOD(tcp_peek_len);
1773
1774 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1775 int tcp_set_rcvlowat(struct sock *sk, int val)
1776 {
1777 int space, cap;
1778
1779 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1780 cap = sk->sk_rcvbuf >> 1;
1781 else
1782 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1783 val = min(val, cap);
1784 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1785
1786 /* Check if we need to signal EPOLLIN right now */
1787 tcp_data_ready(sk);
1788
1789 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1790 return 0;
1791
1792 space = tcp_space_from_win(sk, val);
1793 if (space > sk->sk_rcvbuf) {
1794 WRITE_ONCE(sk->sk_rcvbuf, space);
1795 WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1796 }
1797 return 0;
1798 }
1799 EXPORT_IPV6_MOD(tcp_set_rcvlowat);
1800
1801 void tcp_update_recv_tstamps(struct sk_buff *skb,
1802 struct scm_timestamping_internal *tss)
1803 {
1804 if (skb->tstamp)
1805 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1806 else
1807 tss->ts[0] = (struct timespec64) {0};
1808
1809 if (skb_hwtstamps(skb)->hwtstamp)
1810 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1811 else
1812 tss->ts[2] = (struct timespec64) {0};
1813 }
1814
1815 #ifdef CONFIG_MMU
1816 static const struct vm_operations_struct tcp_vm_ops = {
1817 };
1818
1819 int tcp_mmap(struct file *file, struct socket *sock,
1820 struct vm_area_struct *vma)
1821 {
1822 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1823 return -EPERM;
1824 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1825
1826 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1827 vm_flags_set(vma, VM_MIXEDMAP);
1828
1829 vma->vm_ops = &tcp_vm_ops;
1830 return 0;
1831 }
1832 EXPORT_IPV6_MOD(tcp_mmap);
1833
1834 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1835 u32 *offset_frag)
1836 {
1837 skb_frag_t *frag;
1838
1839 if (unlikely(offset_skb >= skb->len))
1840 return NULL;
1841
1842 offset_skb -= skb_headlen(skb);
1843 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1844 return NULL;
1845
1846 frag = skb_shinfo(skb)->frags;
1847 while (offset_skb) {
1848 if (skb_frag_size(frag) > offset_skb) {
1849 *offset_frag = offset_skb;
1850 return frag;
1851 }
1852 offset_skb -= skb_frag_size(frag);
1853 ++frag;
1854 }
1855 *offset_frag = 0;
1856 return frag;
1857 }
1858
1859 static bool can_map_frag(const skb_frag_t *frag)
1860 {
1861 struct page *page;
1862
1863 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1864 return false;
1865
1866 page = skb_frag_page(frag);
1867
1868 if (PageCompound(page) || page->mapping)
1869 return false;
1870
1871 return true;
1872 }
1873
1874 static int find_next_mappable_frag(const skb_frag_t *frag,
1875 int remaining_in_skb)
1876 {
1877 int offset = 0;
1878
1879 if (likely(can_map_frag(frag)))
1880 return 0;
1881
1882 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1883 offset += skb_frag_size(frag);
1884 ++frag;
1885 }
1886 return offset;
1887 }
1888
1889 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1890 struct tcp_zerocopy_receive *zc,
1891 struct sk_buff *skb, u32 offset)
1892 {
1893 u32 frag_offset, partial_frag_remainder = 0;
1894 int mappable_offset;
1895 skb_frag_t *frag;
1896
1897 /* worst case: skip to next skb. try to improve on this case below */
1898 zc->recv_skip_hint = skb->len - offset;
1899
1900 /* Find the frag containing this offset (and how far into that frag) */
1901 frag = skb_advance_to_frag(skb, offset, &frag_offset);
1902 if (!frag)
1903 return;
1904
1905 if (frag_offset) {
1906 struct skb_shared_info *info = skb_shinfo(skb);
1907
1908 /* We read part of the last frag, must recvmsg() rest of skb. */
1909 if (frag == &info->frags[info->nr_frags - 1])
1910 return;
1911
1912 /* Else, we must at least read the remainder in this frag. */
1913 partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1914 zc->recv_skip_hint -= partial_frag_remainder;
1915 ++frag;
1916 }
1917
1918 /* partial_frag_remainder: If part way through a frag, must read rest.
1919 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1920 * in partial_frag_remainder.
1921 */
1922 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1923 zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1924 }
1925
1926 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1927 int flags, struct scm_timestamping_internal *tss,
1928 int *cmsg_flags);
1929 static int receive_fallback_to_copy(struct sock *sk,
1930 struct tcp_zerocopy_receive *zc, int inq,
1931 struct scm_timestamping_internal *tss)
1932 {
1933 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1934 struct msghdr msg = {};
1935 int err;
1936
1937 zc->length = 0;
1938 zc->recv_skip_hint = 0;
1939
1940 if (copy_address != zc->copybuf_address)
1941 return -EINVAL;
1942
1943 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1944 &msg.msg_iter);
1945 if (err)
1946 return err;
1947
1948 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1949 tss, &zc->msg_flags);
1950 if (err < 0)
1951 return err;
1952
1953 zc->copybuf_len = err;
1954 if (likely(zc->copybuf_len)) {
1955 struct sk_buff *skb;
1956 u32 offset;
1957
1958 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1959 if (skb)
1960 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1961 }
1962 return 0;
1963 }
1964
1965 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1966 struct sk_buff *skb, u32 copylen,
1967 u32 *offset, u32 *seq)
1968 {
1969 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1970 struct msghdr msg = {};
1971 int err;
1972
1973 if (copy_address != zc->copybuf_address)
1974 return -EINVAL;
1975
1976 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1977 &msg.msg_iter);
1978 if (err)
1979 return err;
1980 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1981 if (err)
1982 return err;
1983 zc->recv_skip_hint -= copylen;
1984 *offset += copylen;
1985 *seq += copylen;
1986 return (__s32)copylen;
1987 }
1988
1989 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1990 struct sock *sk,
1991 struct sk_buff *skb,
1992 u32 *seq,
1993 s32 copybuf_len,
1994 struct scm_timestamping_internal *tss)
1995 {
1996 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1997
1998 if (!copylen)
1999 return 0;
2000 /* skb is null if inq < PAGE_SIZE. */
2001 if (skb) {
2002 offset = *seq - TCP_SKB_CB(skb)->seq;
2003 } else {
2004 skb = tcp_recv_skb(sk, *seq, &offset);
2005 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2006 tcp_update_recv_tstamps(skb, tss);
2007 zc->msg_flags |= TCP_CMSG_TS;
2008 }
2009 }
2010
2011 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
2012 seq);
2013 return zc->copybuf_len < 0 ? 0 : copylen;
2014 }
2015
2016 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
2017 struct page **pending_pages,
2018 unsigned long pages_remaining,
2019 unsigned long *address,
2020 u32 *length,
2021 u32 *seq,
2022 struct tcp_zerocopy_receive *zc,
2023 u32 total_bytes_to_map,
2024 int err)
2025 {
2026 /* At least one page did not map. Try zapping if we skipped earlier. */
2027 if (err == -EBUSY &&
2028 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
2029 u32 maybe_zap_len;
2030
2031 maybe_zap_len = total_bytes_to_map - /* All bytes to map */
2032 *length + /* Mapped or pending */
2033 (pages_remaining * PAGE_SIZE); /* Failed map. */
2034 zap_page_range_single(vma, *address, maybe_zap_len, NULL);
2035 err = 0;
2036 }
2037
2038 if (!err) {
2039 unsigned long leftover_pages = pages_remaining;
2040 int bytes_mapped;
2041
2042 /* We called zap_page_range_single, try to reinsert. */
2043 err = vm_insert_pages(vma, *address,
2044 pending_pages,
2045 &pages_remaining);
2046 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2047 *seq += bytes_mapped;
2048 *address += bytes_mapped;
2049 }
2050 if (err) {
2051 /* Either we were unable to zap, OR we zapped, retried an
2052 * insert, and still had an issue. Either ways, pages_remaining
2053 * is the number of pages we were unable to map, and we unroll
2054 * some state we speculatively touched before.
2055 */
2056 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2057
2058 *length -= bytes_not_mapped;
2059 zc->recv_skip_hint += bytes_not_mapped;
2060 }
2061 return err;
2062 }
2063
2064 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2065 struct page **pages,
2066 unsigned int pages_to_map,
2067 unsigned long *address,
2068 u32 *length,
2069 u32 *seq,
2070 struct tcp_zerocopy_receive *zc,
2071 u32 total_bytes_to_map)
2072 {
2073 unsigned long pages_remaining = pages_to_map;
2074 unsigned int pages_mapped;
2075 unsigned int bytes_mapped;
2076 int err;
2077
2078 err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2079 pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2080 bytes_mapped = PAGE_SIZE * pages_mapped;
2081 /* Even if vm_insert_pages fails, it may have partially succeeded in
2082 * mapping (some but not all of the pages).
2083 */
2084 *seq += bytes_mapped;
2085 *address += bytes_mapped;
2086
2087 if (likely(!err))
2088 return 0;
2089
2090 /* Error: maybe zap and retry + rollback state for failed inserts. */
2091 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2092 pages_remaining, address, length, seq, zc, total_bytes_to_map,
2093 err);
2094 }
2095
2096 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
2097 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2098 struct tcp_zerocopy_receive *zc,
2099 struct scm_timestamping_internal *tss)
2100 {
2101 unsigned long msg_control_addr;
2102 struct msghdr cmsg_dummy;
2103
2104 msg_control_addr = (unsigned long)zc->msg_control;
2105 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2106 cmsg_dummy.msg_controllen =
2107 (__kernel_size_t)zc->msg_controllen;
2108 cmsg_dummy.msg_flags = in_compat_syscall()
2109 ? MSG_CMSG_COMPAT : 0;
2110 cmsg_dummy.msg_control_is_user = true;
2111 zc->msg_flags = 0;
2112 if (zc->msg_control == msg_control_addr &&
2113 zc->msg_controllen == cmsg_dummy.msg_controllen) {
2114 tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2115 zc->msg_control = (__u64)
2116 ((uintptr_t)cmsg_dummy.msg_control_user);
2117 zc->msg_controllen =
2118 (__u64)cmsg_dummy.msg_controllen;
2119 zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2120 }
2121 }
2122
2123 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2124 unsigned long address,
2125 bool *mmap_locked)
2126 {
2127 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2128
2129 if (vma) {
2130 if (vma->vm_ops != &tcp_vm_ops) {
2131 vma_end_read(vma);
2132 return NULL;
2133 }
2134 *mmap_locked = false;
2135 return vma;
2136 }
2137
2138 mmap_read_lock(mm);
2139 vma = vma_lookup(mm, address);
2140 if (!vma || vma->vm_ops != &tcp_vm_ops) {
2141 mmap_read_unlock(mm);
2142 return NULL;
2143 }
2144 *mmap_locked = true;
2145 return vma;
2146 }
2147
2148 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2149 static int tcp_zerocopy_receive(struct sock *sk,
2150 struct tcp_zerocopy_receive *zc,
2151 struct scm_timestamping_internal *tss)
2152 {
2153 u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2154 unsigned long address = (unsigned long)zc->address;
2155 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2156 s32 copybuf_len = zc->copybuf_len;
2157 struct tcp_sock *tp = tcp_sk(sk);
2158 const skb_frag_t *frags = NULL;
2159 unsigned int pages_to_map = 0;
2160 struct vm_area_struct *vma;
2161 struct sk_buff *skb = NULL;
2162 u32 seq = tp->copied_seq;
2163 u32 total_bytes_to_map;
2164 int inq = tcp_inq(sk);
2165 bool mmap_locked;
2166 int ret;
2167
2168 zc->copybuf_len = 0;
2169 zc->msg_flags = 0;
2170
2171 if (address & (PAGE_SIZE - 1) || address != zc->address)
2172 return -EINVAL;
2173
2174 if (sk->sk_state == TCP_LISTEN)
2175 return -ENOTCONN;
2176
2177 sock_rps_record_flow(sk);
2178
2179 if (inq && inq <= copybuf_len)
2180 return receive_fallback_to_copy(sk, zc, inq, tss);
2181
2182 if (inq < PAGE_SIZE) {
2183 zc->length = 0;
2184 zc->recv_skip_hint = inq;
2185 if (!inq && sock_flag(sk, SOCK_DONE))
2186 return -EIO;
2187 return 0;
2188 }
2189
2190 vma = find_tcp_vma(current->mm, address, &mmap_locked);
2191 if (!vma)
2192 return -EINVAL;
2193
2194 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2195 avail_len = min_t(u32, vma_len, inq);
2196 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2197 if (total_bytes_to_map) {
2198 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2199 zap_page_range_single(vma, address, total_bytes_to_map,
2200 NULL);
2201 zc->length = total_bytes_to_map;
2202 zc->recv_skip_hint = 0;
2203 } else {
2204 zc->length = avail_len;
2205 zc->recv_skip_hint = avail_len;
2206 }
2207 ret = 0;
2208 while (length + PAGE_SIZE <= zc->length) {
2209 int mappable_offset;
2210 struct page *page;
2211
2212 if (zc->recv_skip_hint < PAGE_SIZE) {
2213 u32 offset_frag;
2214
2215 if (skb) {
2216 if (zc->recv_skip_hint > 0)
2217 break;
2218 skb = skb->next;
2219 offset = seq - TCP_SKB_CB(skb)->seq;
2220 } else {
2221 skb = tcp_recv_skb(sk, seq, &offset);
2222 }
2223
2224 if (!skb_frags_readable(skb))
2225 break;
2226
2227 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2228 tcp_update_recv_tstamps(skb, tss);
2229 zc->msg_flags |= TCP_CMSG_TS;
2230 }
2231 zc->recv_skip_hint = skb->len - offset;
2232 frags = skb_advance_to_frag(skb, offset, &offset_frag);
2233 if (!frags || offset_frag)
2234 break;
2235 }
2236
2237 mappable_offset = find_next_mappable_frag(frags,
2238 zc->recv_skip_hint);
2239 if (mappable_offset) {
2240 zc->recv_skip_hint = mappable_offset;
2241 break;
2242 }
2243 page = skb_frag_page(frags);
2244 if (WARN_ON_ONCE(!page))
2245 break;
2246
2247 prefetchw(page);
2248 pages[pages_to_map++] = page;
2249 length += PAGE_SIZE;
2250 zc->recv_skip_hint -= PAGE_SIZE;
2251 frags++;
2252 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2253 zc->recv_skip_hint < PAGE_SIZE) {
2254 /* Either full batch, or we're about to go to next skb
2255 * (and we cannot unroll failed ops across skbs).
2256 */
2257 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2258 pages_to_map,
2259 &address, &length,
2260 &seq, zc,
2261 total_bytes_to_map);
2262 if (ret)
2263 goto out;
2264 pages_to_map = 0;
2265 }
2266 }
2267 if (pages_to_map) {
2268 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2269 &address, &length, &seq,
2270 zc, total_bytes_to_map);
2271 }
2272 out:
2273 if (mmap_locked)
2274 mmap_read_unlock(current->mm);
2275 else
2276 vma_end_read(vma);
2277 /* Try to copy straggler data. */
2278 if (!ret)
2279 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2280
2281 if (length + copylen) {
2282 WRITE_ONCE(tp->copied_seq, seq);
2283 tcp_rcv_space_adjust(sk);
2284
2285 /* Clean up data we have read: This will do ACK frames. */
2286 tcp_recv_skb(sk, seq, &offset);
2287 tcp_cleanup_rbuf(sk, length + copylen);
2288 ret = 0;
2289 if (length == zc->length)
2290 zc->recv_skip_hint = 0;
2291 } else {
2292 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2293 ret = -EIO;
2294 }
2295 zc->length = length;
2296 return ret;
2297 }
2298 #endif
2299
2300 /* Similar to __sock_recv_timestamp, but does not require an skb */
2301 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2302 struct scm_timestamping_internal *tss)
2303 {
2304 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2305 u32 tsflags = READ_ONCE(sk->sk_tsflags);
2306 bool has_timestamping = false;
2307
2308 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2309 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2310 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2311 if (new_tstamp) {
2312 struct __kernel_timespec kts = {
2313 .tv_sec = tss->ts[0].tv_sec,
2314 .tv_nsec = tss->ts[0].tv_nsec,
2315 };
2316 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2317 sizeof(kts), &kts);
2318 } else {
2319 struct __kernel_old_timespec ts_old = {
2320 .tv_sec = tss->ts[0].tv_sec,
2321 .tv_nsec = tss->ts[0].tv_nsec,
2322 };
2323 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2324 sizeof(ts_old), &ts_old);
2325 }
2326 } else {
2327 if (new_tstamp) {
2328 struct __kernel_sock_timeval stv = {
2329 .tv_sec = tss->ts[0].tv_sec,
2330 .tv_usec = tss->ts[0].tv_nsec / 1000,
2331 };
2332 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2333 sizeof(stv), &stv);
2334 } else {
2335 struct __kernel_old_timeval tv = {
2336 .tv_sec = tss->ts[0].tv_sec,
2337 .tv_usec = tss->ts[0].tv_nsec / 1000,
2338 };
2339 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2340 sizeof(tv), &tv);
2341 }
2342 }
2343 }
2344
2345 if (tsflags & SOF_TIMESTAMPING_SOFTWARE &&
2346 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
2347 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2348 has_timestamping = true;
2349 else
2350 tss->ts[0] = (struct timespec64) {0};
2351 }
2352
2353 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2354 if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
2355 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
2356 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2357 has_timestamping = true;
2358 else
2359 tss->ts[2] = (struct timespec64) {0};
2360 }
2361
2362 if (has_timestamping) {
2363 tss->ts[1] = (struct timespec64) {0};
2364 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2365 put_cmsg_scm_timestamping64(msg, tss);
2366 else
2367 put_cmsg_scm_timestamping(msg, tss);
2368 }
2369 }
2370
2371 static int tcp_inq_hint(struct sock *sk)
2372 {
2373 const struct tcp_sock *tp = tcp_sk(sk);
2374 u32 copied_seq = READ_ONCE(tp->copied_seq);
2375 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2376 int inq;
2377
2378 inq = rcv_nxt - copied_seq;
2379 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2380 lock_sock(sk);
2381 inq = tp->rcv_nxt - tp->copied_seq;
2382 release_sock(sk);
2383 }
2384 /* After receiving a FIN, tell the user-space to continue reading
2385 * by returning a non-zero inq.
2386 */
2387 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2388 inq = 1;
2389 return inq;
2390 }
2391
2392 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */
2393 struct tcp_xa_pool {
2394 u8 max; /* max <= MAX_SKB_FRAGS */
2395 u8 idx; /* idx <= max */
2396 __u32 tokens[MAX_SKB_FRAGS];
2397 netmem_ref netmems[MAX_SKB_FRAGS];
2398 };
2399
2400 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p)
2401 {
2402 int i;
2403
2404 /* Commit part that has been copied to user space. */
2405 for (i = 0; i < p->idx; i++)
2406 __xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY,
2407 (__force void *)p->netmems[i], GFP_KERNEL);
2408 /* Rollback what has been pre-allocated and is no longer needed. */
2409 for (; i < p->max; i++)
2410 __xa_erase(&sk->sk_user_frags, p->tokens[i]);
2411
2412 p->max = 0;
2413 p->idx = 0;
2414 }
2415
2416 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p)
2417 {
2418 if (!p->max)
2419 return;
2420
2421 xa_lock_bh(&sk->sk_user_frags);
2422
2423 tcp_xa_pool_commit_locked(sk, p);
2424
2425 xa_unlock_bh(&sk->sk_user_frags);
2426 }
2427
2428 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p,
2429 unsigned int max_frags)
2430 {
2431 int err, k;
2432
2433 if (p->idx < p->max)
2434 return 0;
2435
2436 xa_lock_bh(&sk->sk_user_frags);
2437
2438 tcp_xa_pool_commit_locked(sk, p);
2439
2440 for (k = 0; k < max_frags; k++) {
2441 err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k],
2442 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL);
2443 if (err)
2444 break;
2445 }
2446
2447 xa_unlock_bh(&sk->sk_user_frags);
2448
2449 p->max = k;
2450 p->idx = 0;
2451 return k ? 0 : err;
2452 }
2453
2454 /* On error, returns the -errno. On success, returns number of bytes sent to the
2455 * user. May not consume all of @remaining_len.
2456 */
2457 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb,
2458 unsigned int offset, struct msghdr *msg,
2459 int remaining_len)
2460 {
2461 struct dmabuf_cmsg dmabuf_cmsg = { 0 };
2462 struct tcp_xa_pool tcp_xa_pool;
2463 unsigned int start;
2464 int i, copy, n;
2465 int sent = 0;
2466 int err = 0;
2467
2468 tcp_xa_pool.max = 0;
2469 tcp_xa_pool.idx = 0;
2470 do {
2471 start = skb_headlen(skb);
2472
2473 if (skb_frags_readable(skb)) {
2474 err = -ENODEV;
2475 goto out;
2476 }
2477
2478 /* Copy header. */
2479 copy = start - offset;
2480 if (copy > 0) {
2481 copy = min(copy, remaining_len);
2482
2483 n = copy_to_iter(skb->data + offset, copy,
2484 &msg->msg_iter);
2485 if (n != copy) {
2486 err = -EFAULT;
2487 goto out;
2488 }
2489
2490 offset += copy;
2491 remaining_len -= copy;
2492
2493 /* First a dmabuf_cmsg for # bytes copied to user
2494 * buffer.
2495 */
2496 memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg));
2497 dmabuf_cmsg.frag_size = copy;
2498 err = put_cmsg_notrunc(msg, SOL_SOCKET,
2499 SO_DEVMEM_LINEAR,
2500 sizeof(dmabuf_cmsg),
2501 &dmabuf_cmsg);
2502 if (err)
2503 goto out;
2504
2505 sent += copy;
2506
2507 if (remaining_len == 0)
2508 goto out;
2509 }
2510
2511 /* after that, send information of dmabuf pages through a
2512 * sequence of cmsg
2513 */
2514 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2516 struct net_iov *niov;
2517 u64 frag_offset;
2518 int end;
2519
2520 /* !skb_frags_readable() should indicate that ALL the
2521 * frags in this skb are dmabuf net_iovs. We're checking
2522 * for that flag above, but also check individual frags
2523 * here. If the tcp stack is not setting
2524 * skb_frags_readable() correctly, we still don't want
2525 * to crash here.
2526 */
2527 if (!skb_frag_net_iov(frag)) {
2528 net_err_ratelimited("Found non-dmabuf skb with net_iov");
2529 err = -ENODEV;
2530 goto out;
2531 }
2532
2533 niov = skb_frag_net_iov(frag);
2534 if (!net_is_devmem_iov(niov)) {
2535 err = -ENODEV;
2536 goto out;
2537 }
2538
2539 end = start + skb_frag_size(frag);
2540 copy = end - offset;
2541
2542 if (copy > 0) {
2543 copy = min(copy, remaining_len);
2544
2545 frag_offset = net_iov_virtual_addr(niov) +
2546 skb_frag_off(frag) + offset -
2547 start;
2548 dmabuf_cmsg.frag_offset = frag_offset;
2549 dmabuf_cmsg.frag_size = copy;
2550 err = tcp_xa_pool_refill(sk, &tcp_xa_pool,
2551 skb_shinfo(skb)->nr_frags - i);
2552 if (err)
2553 goto out;
2554
2555 /* Will perform the exchange later */
2556 dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx];
2557 dmabuf_cmsg.dmabuf_id = net_devmem_iov_binding_id(niov);
2558
2559 offset += copy;
2560 remaining_len -= copy;
2561
2562 err = put_cmsg_notrunc(msg, SOL_SOCKET,
2563 SO_DEVMEM_DMABUF,
2564 sizeof(dmabuf_cmsg),
2565 &dmabuf_cmsg);
2566 if (err)
2567 goto out;
2568
2569 atomic_long_inc(&niov->pp_ref_count);
2570 tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag);
2571
2572 sent += copy;
2573
2574 if (remaining_len == 0)
2575 goto out;
2576 }
2577 start = end;
2578 }
2579
2580 tcp_xa_pool_commit(sk, &tcp_xa_pool);
2581 if (!remaining_len)
2582 goto out;
2583
2584 /* if remaining_len is not satisfied yet, we need to go to the
2585 * next frag in the frag_list to satisfy remaining_len.
2586 */
2587 skb = skb_shinfo(skb)->frag_list ?: skb->next;
2588
2589 offset = offset - start;
2590 } while (skb);
2591
2592 if (remaining_len) {
2593 err = -EFAULT;
2594 goto out;
2595 }
2596
2597 out:
2598 tcp_xa_pool_commit(sk, &tcp_xa_pool);
2599 if (!sent)
2600 sent = err;
2601
2602 return sent;
2603 }
2604
2605 /*
2606 * This routine copies from a sock struct into the user buffer.
2607 *
2608 * Technical note: in 2.3 we work on _locked_ socket, so that
2609 * tricks with *seq access order and skb->users are not required.
2610 * Probably, code can be easily improved even more.
2611 */
2612
2613 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2614 int flags, struct scm_timestamping_internal *tss,
2615 int *cmsg_flags)
2616 {
2617 struct tcp_sock *tp = tcp_sk(sk);
2618 int last_copied_dmabuf = -1; /* uninitialized */
2619 int copied = 0;
2620 u32 peek_seq;
2621 u32 *seq;
2622 unsigned long used;
2623 int err;
2624 int target; /* Read at least this many bytes */
2625 long timeo;
2626 struct sk_buff *skb, *last;
2627 u32 peek_offset = 0;
2628 u32 urg_hole = 0;
2629
2630 err = -ENOTCONN;
2631 if (sk->sk_state == TCP_LISTEN)
2632 goto out;
2633
2634 if (tp->recvmsg_inq) {
2635 *cmsg_flags = TCP_CMSG_INQ;
2636 msg->msg_get_inq = 1;
2637 }
2638 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2639
2640 /* Urgent data needs to be handled specially. */
2641 if (flags & MSG_OOB)
2642 goto recv_urg;
2643
2644 if (unlikely(tp->repair)) {
2645 err = -EPERM;
2646 if (!(flags & MSG_PEEK))
2647 goto out;
2648
2649 if (tp->repair_queue == TCP_SEND_QUEUE)
2650 goto recv_sndq;
2651
2652 err = -EINVAL;
2653 if (tp->repair_queue == TCP_NO_QUEUE)
2654 goto out;
2655
2656 /* 'common' recv queue MSG_PEEK-ing */
2657 }
2658
2659 seq = &tp->copied_seq;
2660 if (flags & MSG_PEEK) {
2661 peek_offset = max(sk_peek_offset(sk, flags), 0);
2662 peek_seq = tp->copied_seq + peek_offset;
2663 seq = &peek_seq;
2664 }
2665
2666 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2667
2668 do {
2669 u32 offset;
2670
2671 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2672 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2673 if (copied)
2674 break;
2675 if (signal_pending(current)) {
2676 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2677 break;
2678 }
2679 }
2680
2681 /* Next get a buffer. */
2682
2683 last = skb_peek_tail(&sk->sk_receive_queue);
2684 skb_queue_walk(&sk->sk_receive_queue, skb) {
2685 last = skb;
2686 /* Now that we have two receive queues this
2687 * shouldn't happen.
2688 */
2689 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2690 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2691 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2692 flags))
2693 break;
2694
2695 offset = *seq - TCP_SKB_CB(skb)->seq;
2696 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2697 pr_err_once("%s: found a SYN, please report !\n", __func__);
2698 offset--;
2699 }
2700 if (offset < skb->len)
2701 goto found_ok_skb;
2702 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2703 goto found_fin_ok;
2704 WARN(!(flags & MSG_PEEK),
2705 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2706 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2707 }
2708
2709 /* Well, if we have backlog, try to process it now yet. */
2710
2711 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2712 break;
2713
2714 if (copied) {
2715 if (!timeo ||
2716 sk->sk_err ||
2717 sk->sk_state == TCP_CLOSE ||
2718 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2719 signal_pending(current))
2720 break;
2721 } else {
2722 if (sock_flag(sk, SOCK_DONE))
2723 break;
2724
2725 if (sk->sk_err) {
2726 copied = sock_error(sk);
2727 break;
2728 }
2729
2730 if (sk->sk_shutdown & RCV_SHUTDOWN)
2731 break;
2732
2733 if (sk->sk_state == TCP_CLOSE) {
2734 /* This occurs when user tries to read
2735 * from never connected socket.
2736 */
2737 copied = -ENOTCONN;
2738 break;
2739 }
2740
2741 if (!timeo) {
2742 copied = -EAGAIN;
2743 break;
2744 }
2745
2746 if (signal_pending(current)) {
2747 copied = sock_intr_errno(timeo);
2748 break;
2749 }
2750 }
2751
2752 if (copied >= target) {
2753 /* Do not sleep, just process backlog. */
2754 __sk_flush_backlog(sk);
2755 } else {
2756 tcp_cleanup_rbuf(sk, copied);
2757 err = sk_wait_data(sk, &timeo, last);
2758 if (err < 0) {
2759 err = copied ? : err;
2760 goto out;
2761 }
2762 }
2763
2764 if ((flags & MSG_PEEK) &&
2765 (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2766 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2767 current->comm,
2768 task_pid_nr(current));
2769 peek_seq = tp->copied_seq + peek_offset;
2770 }
2771 continue;
2772
2773 found_ok_skb:
2774 /* Ok so how much can we use? */
2775 used = skb->len - offset;
2776 if (len < used)
2777 used = len;
2778
2779 /* Do we have urgent data here? */
2780 if (unlikely(tp->urg_data)) {
2781 u32 urg_offset = tp->urg_seq - *seq;
2782 if (urg_offset < used) {
2783 if (!urg_offset) {
2784 if (!sock_flag(sk, SOCK_URGINLINE)) {
2785 WRITE_ONCE(*seq, *seq + 1);
2786 urg_hole++;
2787 offset++;
2788 used--;
2789 if (!used)
2790 goto skip_copy;
2791 }
2792 } else
2793 used = urg_offset;
2794 }
2795 }
2796
2797 if (!(flags & MSG_TRUNC)) {
2798 if (last_copied_dmabuf != -1 &&
2799 last_copied_dmabuf != !skb_frags_readable(skb))
2800 break;
2801
2802 if (skb_frags_readable(skb)) {
2803 err = skb_copy_datagram_msg(skb, offset, msg,
2804 used);
2805 if (err) {
2806 /* Exception. Bailout! */
2807 if (!copied)
2808 copied = -EFAULT;
2809 break;
2810 }
2811 } else {
2812 if (!(flags & MSG_SOCK_DEVMEM)) {
2813 /* dmabuf skbs can only be received
2814 * with the MSG_SOCK_DEVMEM flag.
2815 */
2816 if (!copied)
2817 copied = -EFAULT;
2818
2819 break;
2820 }
2821
2822 err = tcp_recvmsg_dmabuf(sk, skb, offset, msg,
2823 used);
2824 if (err <= 0) {
2825 if (!copied)
2826 copied = -EFAULT;
2827
2828 break;
2829 }
2830 used = err;
2831 }
2832 }
2833
2834 last_copied_dmabuf = !skb_frags_readable(skb);
2835
2836 WRITE_ONCE(*seq, *seq + used);
2837 copied += used;
2838 len -= used;
2839 if (flags & MSG_PEEK)
2840 sk_peek_offset_fwd(sk, used);
2841 else
2842 sk_peek_offset_bwd(sk, used);
2843 tcp_rcv_space_adjust(sk);
2844
2845 skip_copy:
2846 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2847 WRITE_ONCE(tp->urg_data, 0);
2848 tcp_fast_path_check(sk);
2849 }
2850
2851 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2852 tcp_update_recv_tstamps(skb, tss);
2853 *cmsg_flags |= TCP_CMSG_TS;
2854 }
2855
2856 if (used + offset < skb->len)
2857 continue;
2858
2859 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2860 goto found_fin_ok;
2861 if (!(flags & MSG_PEEK))
2862 tcp_eat_recv_skb(sk, skb);
2863 continue;
2864
2865 found_fin_ok:
2866 /* Process the FIN. */
2867 WRITE_ONCE(*seq, *seq + 1);
2868 if (!(flags & MSG_PEEK))
2869 tcp_eat_recv_skb(sk, skb);
2870 break;
2871 } while (len > 0);
2872
2873 /* According to UNIX98, msg_name/msg_namelen are ignored
2874 * on connected socket. I was just happy when found this 8) --ANK
2875 */
2876
2877 /* Clean up data we have read: This will do ACK frames. */
2878 tcp_cleanup_rbuf(sk, copied);
2879 return copied;
2880
2881 out:
2882 return err;
2883
2884 recv_urg:
2885 err = tcp_recv_urg(sk, msg, len, flags);
2886 goto out;
2887
2888 recv_sndq:
2889 err = tcp_peek_sndq(sk, msg, len);
2890 goto out;
2891 }
2892
2893 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2894 int *addr_len)
2895 {
2896 int cmsg_flags = 0, ret;
2897 struct scm_timestamping_internal tss;
2898
2899 if (unlikely(flags & MSG_ERRQUEUE))
2900 return inet_recv_error(sk, msg, len, addr_len);
2901
2902 if (sk_can_busy_loop(sk) &&
2903 skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2904 sk->sk_state == TCP_ESTABLISHED)
2905 sk_busy_loop(sk, flags & MSG_DONTWAIT);
2906
2907 lock_sock(sk);
2908 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2909 release_sock(sk);
2910
2911 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2912 if (cmsg_flags & TCP_CMSG_TS)
2913 tcp_recv_timestamp(msg, sk, &tss);
2914 if (msg->msg_get_inq) {
2915 msg->msg_inq = tcp_inq_hint(sk);
2916 if (cmsg_flags & TCP_CMSG_INQ)
2917 put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2918 sizeof(msg->msg_inq), &msg->msg_inq);
2919 }
2920 }
2921 return ret;
2922 }
2923 EXPORT_IPV6_MOD(tcp_recvmsg);
2924
2925 void tcp_set_state(struct sock *sk, int state)
2926 {
2927 int oldstate = sk->sk_state;
2928
2929 /* We defined a new enum for TCP states that are exported in BPF
2930 * so as not force the internal TCP states to be frozen. The
2931 * following checks will detect if an internal state value ever
2932 * differs from the BPF value. If this ever happens, then we will
2933 * need to remap the internal value to the BPF value before calling
2934 * tcp_call_bpf_2arg.
2935 */
2936 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2937 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2938 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2939 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2940 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2941 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2942 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2943 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2944 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2945 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2946 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2947 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2948 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2949 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2950
2951 /* bpf uapi header bpf.h defines an anonymous enum with values
2952 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2953 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2954 * But clang built vmlinux does not have this enum in DWARF
2955 * since clang removes the above code before generating IR/debuginfo.
2956 * Let us explicitly emit the type debuginfo to ensure the
2957 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2958 * regardless of which compiler is used.
2959 */
2960 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2961
2962 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2963 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2964
2965 switch (state) {
2966 case TCP_ESTABLISHED:
2967 if (oldstate != TCP_ESTABLISHED)
2968 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2969 break;
2970 case TCP_CLOSE_WAIT:
2971 if (oldstate == TCP_SYN_RECV)
2972 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2973 break;
2974
2975 case TCP_CLOSE:
2976 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2977 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2978
2979 sk->sk_prot->unhash(sk);
2980 if (inet_csk(sk)->icsk_bind_hash &&
2981 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2982 inet_put_port(sk);
2983 fallthrough;
2984 default:
2985 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2986 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2987 }
2988
2989 /* Change state AFTER socket is unhashed to avoid closed
2990 * socket sitting in hash tables.
2991 */
2992 inet_sk_state_store(sk, state);
2993 }
2994 EXPORT_SYMBOL_GPL(tcp_set_state);
2995
2996 /*
2997 * State processing on a close. This implements the state shift for
2998 * sending our FIN frame. Note that we only send a FIN for some
2999 * states. A shutdown() may have already sent the FIN, or we may be
3000 * closed.
3001 */
3002
3003 static const unsigned char new_state[16] = {
3004 /* current state: new state: action: */
3005 [0 /* (Invalid) */] = TCP_CLOSE,
3006 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3007 [TCP_SYN_SENT] = TCP_CLOSE,
3008 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3009 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
3010 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
3011 [TCP_TIME_WAIT] = TCP_CLOSE,
3012 [TCP_CLOSE] = TCP_CLOSE,
3013 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
3014 [TCP_LAST_ACK] = TCP_LAST_ACK,
3015 [TCP_LISTEN] = TCP_CLOSE,
3016 [TCP_CLOSING] = TCP_CLOSING,
3017 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
3018 };
3019
3020 static int tcp_close_state(struct sock *sk)
3021 {
3022 int next = (int)new_state[sk->sk_state];
3023 int ns = next & TCP_STATE_MASK;
3024
3025 tcp_set_state(sk, ns);
3026
3027 return next & TCP_ACTION_FIN;
3028 }
3029
3030 /*
3031 * Shutdown the sending side of a connection. Much like close except
3032 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
3033 */
3034
3035 void tcp_shutdown(struct sock *sk, int how)
3036 {
3037 /* We need to grab some memory, and put together a FIN,
3038 * and then put it into the queue to be sent.
3039 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
3040 */
3041 if (!(how & SEND_SHUTDOWN))
3042 return;
3043
3044 /* If we've already sent a FIN, or it's a closed state, skip this. */
3045 if ((1 << sk->sk_state) &
3046 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
3047 TCPF_CLOSE_WAIT)) {
3048 /* Clear out any half completed packets. FIN if needed. */
3049 if (tcp_close_state(sk))
3050 tcp_send_fin(sk);
3051 }
3052 }
3053 EXPORT_IPV6_MOD(tcp_shutdown);
3054
3055 int tcp_orphan_count_sum(void)
3056 {
3057 int i, total = 0;
3058
3059 for_each_possible_cpu(i)
3060 total += per_cpu(tcp_orphan_count, i);
3061
3062 return max(total, 0);
3063 }
3064
3065 static int tcp_orphan_cache;
3066 static struct timer_list tcp_orphan_timer;
3067 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
3068
3069 static void tcp_orphan_update(struct timer_list *unused)
3070 {
3071 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
3072 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
3073 }
3074
3075 static bool tcp_too_many_orphans(int shift)
3076 {
3077 return READ_ONCE(tcp_orphan_cache) << shift >
3078 READ_ONCE(sysctl_tcp_max_orphans);
3079 }
3080
3081 static bool tcp_out_of_memory(const struct sock *sk)
3082 {
3083 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
3084 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
3085 return true;
3086 return false;
3087 }
3088
3089 bool tcp_check_oom(const struct sock *sk, int shift)
3090 {
3091 bool too_many_orphans, out_of_socket_memory;
3092
3093 too_many_orphans = tcp_too_many_orphans(shift);
3094 out_of_socket_memory = tcp_out_of_memory(sk);
3095
3096 if (too_many_orphans)
3097 net_info_ratelimited("too many orphaned sockets\n");
3098 if (out_of_socket_memory)
3099 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
3100 return too_many_orphans || out_of_socket_memory;
3101 }
3102
3103 void __tcp_close(struct sock *sk, long timeout)
3104 {
3105 struct sk_buff *skb;
3106 int data_was_unread = 0;
3107 int state;
3108
3109 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3110
3111 if (sk->sk_state == TCP_LISTEN) {
3112 tcp_set_state(sk, TCP_CLOSE);
3113
3114 /* Special case. */
3115 inet_csk_listen_stop(sk);
3116
3117 goto adjudge_to_death;
3118 }
3119
3120 /* We need to flush the recv. buffs. We do this only on the
3121 * descriptor close, not protocol-sourced closes, because the
3122 * reader process may not have drained the data yet!
3123 */
3124 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
3125 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
3126
3127 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
3128 len--;
3129 data_was_unread += len;
3130 __kfree_skb(skb);
3131 }
3132
3133 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
3134 if (sk->sk_state == TCP_CLOSE)
3135 goto adjudge_to_death;
3136
3137 /* As outlined in RFC 2525, section 2.17, we send a RST here because
3138 * data was lost. To witness the awful effects of the old behavior of
3139 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
3140 * GET in an FTP client, suspend the process, wait for the client to
3141 * advertise a zero window, then kill -9 the FTP client, wheee...
3142 * Note: timeout is always zero in such a case.
3143 */
3144 if (unlikely(tcp_sk(sk)->repair)) {
3145 sk->sk_prot->disconnect(sk, 0);
3146 } else if (data_was_unread) {
3147 /* Unread data was tossed, zap the connection. */
3148 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
3149 tcp_set_state(sk, TCP_CLOSE);
3150 tcp_send_active_reset(sk, sk->sk_allocation,
3151 SK_RST_REASON_TCP_ABORT_ON_CLOSE);
3152 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
3153 /* Check zero linger _after_ checking for unread data. */
3154 sk->sk_prot->disconnect(sk, 0);
3155 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
3156 } else if (tcp_close_state(sk)) {
3157 /* We FIN if the application ate all the data before
3158 * zapping the connection.
3159 */
3160
3161 /* RED-PEN. Formally speaking, we have broken TCP state
3162 * machine. State transitions:
3163 *
3164 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
3165 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult)
3166 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
3167 *
3168 * are legal only when FIN has been sent (i.e. in window),
3169 * rather than queued out of window. Purists blame.
3170 *
3171 * F.e. "RFC state" is ESTABLISHED,
3172 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
3173 *
3174 * The visible declinations are that sometimes
3175 * we enter time-wait state, when it is not required really
3176 * (harmless), do not send active resets, when they are
3177 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
3178 * they look as CLOSING or LAST_ACK for Linux)
3179 * Probably, I missed some more holelets.
3180 * --ANK
3181 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
3182 * in a single packet! (May consider it later but will
3183 * probably need API support or TCP_CORK SYN-ACK until
3184 * data is written and socket is closed.)
3185 */
3186 tcp_send_fin(sk);
3187 }
3188
3189 sk_stream_wait_close(sk, timeout);
3190
3191 adjudge_to_death:
3192 state = sk->sk_state;
3193 sock_hold(sk);
3194 sock_orphan(sk);
3195
3196 local_bh_disable();
3197 bh_lock_sock(sk);
3198 /* remove backlog if any, without releasing ownership. */
3199 __release_sock(sk);
3200
3201 this_cpu_inc(tcp_orphan_count);
3202
3203 /* Have we already been destroyed by a softirq or backlog? */
3204 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
3205 goto out;
3206
3207 /* This is a (useful) BSD violating of the RFC. There is a
3208 * problem with TCP as specified in that the other end could
3209 * keep a socket open forever with no application left this end.
3210 * We use a 1 minute timeout (about the same as BSD) then kill
3211 * our end. If they send after that then tough - BUT: long enough
3212 * that we won't make the old 4*rto = almost no time - whoops
3213 * reset mistake.
3214 *
3215 * Nope, it was not mistake. It is really desired behaviour
3216 * f.e. on http servers, when such sockets are useless, but
3217 * consume significant resources. Let's do it with special
3218 * linger2 option. --ANK
3219 */
3220
3221 if (sk->sk_state == TCP_FIN_WAIT2) {
3222 struct tcp_sock *tp = tcp_sk(sk);
3223 if (READ_ONCE(tp->linger2) < 0) {
3224 tcp_set_state(sk, TCP_CLOSE);
3225 tcp_send_active_reset(sk, GFP_ATOMIC,
3226 SK_RST_REASON_TCP_ABORT_ON_LINGER);
3227 __NET_INC_STATS(sock_net(sk),
3228 LINUX_MIB_TCPABORTONLINGER);
3229 } else {
3230 const int tmo = tcp_fin_time(sk);
3231
3232 if (tmo > TCP_TIMEWAIT_LEN) {
3233 tcp_reset_keepalive_timer(sk,
3234 tmo - TCP_TIMEWAIT_LEN);
3235 } else {
3236 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
3237 goto out;
3238 }
3239 }
3240 }
3241 if (sk->sk_state != TCP_CLOSE) {
3242 if (tcp_check_oom(sk, 0)) {
3243 tcp_set_state(sk, TCP_CLOSE);
3244 tcp_send_active_reset(sk, GFP_ATOMIC,
3245 SK_RST_REASON_TCP_ABORT_ON_MEMORY);
3246 __NET_INC_STATS(sock_net(sk),
3247 LINUX_MIB_TCPABORTONMEMORY);
3248 } else if (!check_net(sock_net(sk))) {
3249 /* Not possible to send reset; just close */
3250 tcp_set_state(sk, TCP_CLOSE);
3251 }
3252 }
3253
3254 if (sk->sk_state == TCP_CLOSE) {
3255 struct request_sock *req;
3256
3257 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3258 lockdep_sock_is_held(sk));
3259 /* We could get here with a non-NULL req if the socket is
3260 * aborted (e.g., closed with unread data) before 3WHS
3261 * finishes.
3262 */
3263 if (req)
3264 reqsk_fastopen_remove(sk, req, false);
3265 inet_csk_destroy_sock(sk);
3266 }
3267 /* Otherwise, socket is reprieved until protocol close. */
3268
3269 out:
3270 bh_unlock_sock(sk);
3271 local_bh_enable();
3272 }
3273
3274 void tcp_close(struct sock *sk, long timeout)
3275 {
3276 lock_sock(sk);
3277 __tcp_close(sk, timeout);
3278 release_sock(sk);
3279 if (!sk->sk_net_refcnt)
3280 inet_csk_clear_xmit_timers_sync(sk);
3281 sock_put(sk);
3282 }
3283 EXPORT_SYMBOL(tcp_close);
3284
3285 /* These states need RST on ABORT according to RFC793 */
3286
3287 static inline bool tcp_need_reset(int state)
3288 {
3289 return (1 << state) &
3290 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3291 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3292 }
3293
3294 static void tcp_rtx_queue_purge(struct sock *sk)
3295 {
3296 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3297
3298 tcp_sk(sk)->highest_sack = NULL;
3299 while (p) {
3300 struct sk_buff *skb = rb_to_skb(p);
3301
3302 p = rb_next(p);
3303 /* Since we are deleting whole queue, no need to
3304 * list_del(&skb->tcp_tsorted_anchor)
3305 */
3306 tcp_rtx_queue_unlink(skb, sk);
3307 tcp_wmem_free_skb(sk, skb);
3308 }
3309 }
3310
3311 void tcp_write_queue_purge(struct sock *sk)
3312 {
3313 struct sk_buff *skb;
3314
3315 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3316 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3317 tcp_skb_tsorted_anchor_cleanup(skb);
3318 tcp_wmem_free_skb(sk, skb);
3319 }
3320 tcp_rtx_queue_purge(sk);
3321 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3322 tcp_clear_all_retrans_hints(tcp_sk(sk));
3323 tcp_sk(sk)->packets_out = 0;
3324 inet_csk(sk)->icsk_backoff = 0;
3325 }
3326
3327 int tcp_disconnect(struct sock *sk, int flags)
3328 {
3329 struct inet_sock *inet = inet_sk(sk);
3330 struct inet_connection_sock *icsk = inet_csk(sk);
3331 struct tcp_sock *tp = tcp_sk(sk);
3332 int old_state = sk->sk_state;
3333 u32 seq;
3334
3335 if (old_state != TCP_CLOSE)
3336 tcp_set_state(sk, TCP_CLOSE);
3337
3338 /* ABORT function of RFC793 */
3339 if (old_state == TCP_LISTEN) {
3340 inet_csk_listen_stop(sk);
3341 } else if (unlikely(tp->repair)) {
3342 WRITE_ONCE(sk->sk_err, ECONNABORTED);
3343 } else if (tcp_need_reset(old_state)) {
3344 tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE);
3345 WRITE_ONCE(sk->sk_err, ECONNRESET);
3346 } else if (tp->snd_nxt != tp->write_seq &&
3347 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
3348 /* The last check adjusts for discrepancy of Linux wrt. RFC
3349 * states
3350 */
3351 tcp_send_active_reset(sk, gfp_any(),
3352 SK_RST_REASON_TCP_DISCONNECT_WITH_DATA);
3353 WRITE_ONCE(sk->sk_err, ECONNRESET);
3354 } else if (old_state == TCP_SYN_SENT)
3355 WRITE_ONCE(sk->sk_err, ECONNRESET);
3356
3357 tcp_clear_xmit_timers(sk);
3358 __skb_queue_purge(&sk->sk_receive_queue);
3359 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3360 WRITE_ONCE(tp->urg_data, 0);
3361 sk_set_peek_off(sk, -1);
3362 tcp_write_queue_purge(sk);
3363 tcp_fastopen_active_disable_ofo_check(sk);
3364 skb_rbtree_purge(&tp->out_of_order_queue);
3365
3366 inet->inet_dport = 0;
3367
3368 inet_bhash2_reset_saddr(sk);
3369
3370 WRITE_ONCE(sk->sk_shutdown, 0);
3371 sock_reset_flag(sk, SOCK_DONE);
3372 tp->srtt_us = 0;
3373 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3374 tp->rcv_rtt_last_tsecr = 0;
3375
3376 seq = tp->write_seq + tp->max_window + 2;
3377 if (!seq)
3378 seq = 1;
3379 WRITE_ONCE(tp->write_seq, seq);
3380
3381 icsk->icsk_backoff = 0;
3382 icsk->icsk_probes_out = 0;
3383 icsk->icsk_probes_tstamp = 0;
3384 icsk->icsk_rto = TCP_TIMEOUT_INIT;
3385 WRITE_ONCE(icsk->icsk_rto_min, TCP_RTO_MIN);
3386 WRITE_ONCE(icsk->icsk_delack_max, TCP_DELACK_MAX);
3387 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3388 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3389 tp->snd_cwnd_cnt = 0;
3390 tp->is_cwnd_limited = 0;
3391 tp->max_packets_out = 0;
3392 tp->window_clamp = 0;
3393 tp->delivered = 0;
3394 tp->delivered_ce = 0;
3395 if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release)
3396 icsk->icsk_ca_ops->release(sk);
3397 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3398 icsk->icsk_ca_initialized = 0;
3399 tcp_set_ca_state(sk, TCP_CA_Open);
3400 tp->is_sack_reneg = 0;
3401 tcp_clear_retrans(tp);
3402 tp->total_retrans = 0;
3403 inet_csk_delack_init(sk);
3404 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3405 * issue in __tcp_select_window()
3406 */
3407 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3408 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3409 __sk_dst_reset(sk);
3410 dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3411 tcp_saved_syn_free(tp);
3412 tp->compressed_ack = 0;
3413 tp->segs_in = 0;
3414 tp->segs_out = 0;
3415 tp->bytes_sent = 0;
3416 tp->bytes_acked = 0;
3417 tp->bytes_received = 0;
3418 tp->bytes_retrans = 0;
3419 tp->data_segs_in = 0;
3420 tp->data_segs_out = 0;
3421 tp->duplicate_sack[0].start_seq = 0;
3422 tp->duplicate_sack[0].end_seq = 0;
3423 tp->dsack_dups = 0;
3424 tp->reord_seen = 0;
3425 tp->retrans_out = 0;
3426 tp->sacked_out = 0;
3427 tp->tlp_high_seq = 0;
3428 tp->last_oow_ack_time = 0;
3429 tp->plb_rehash = 0;
3430 /* There's a bubble in the pipe until at least the first ACK. */
3431 tp->app_limited = ~0U;
3432 tp->rate_app_limited = 1;
3433 tp->rack.mstamp = 0;
3434 tp->rack.advanced = 0;
3435 tp->rack.reo_wnd_steps = 1;
3436 tp->rack.last_delivered = 0;
3437 tp->rack.reo_wnd_persist = 0;
3438 tp->rack.dsack_seen = 0;
3439 tp->syn_data_acked = 0;
3440 tp->syn_fastopen_child = 0;
3441 tp->rx_opt.saw_tstamp = 0;
3442 tp->rx_opt.dsack = 0;
3443 tp->rx_opt.num_sacks = 0;
3444 tp->rcv_ooopack = 0;
3445
3446
3447 /* Clean up fastopen related fields */
3448 tcp_free_fastopen_req(tp);
3449 inet_clear_bit(DEFER_CONNECT, sk);
3450 tp->fastopen_client_fail = 0;
3451
3452 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3453
3454 if (sk->sk_frag.page) {
3455 put_page(sk->sk_frag.page);
3456 sk->sk_frag.page = NULL;
3457 sk->sk_frag.offset = 0;
3458 }
3459 sk_error_report(sk);
3460 return 0;
3461 }
3462 EXPORT_SYMBOL(tcp_disconnect);
3463
3464 static inline bool tcp_can_repair_sock(const struct sock *sk)
3465 {
3466 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3467 (sk->sk_state != TCP_LISTEN);
3468 }
3469
3470 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3471 {
3472 struct tcp_repair_window opt;
3473
3474 if (!tp->repair)
3475 return -EPERM;
3476
3477 if (len != sizeof(opt))
3478 return -EINVAL;
3479
3480 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3481 return -EFAULT;
3482
3483 if (opt.max_window < opt.snd_wnd)
3484 return -EINVAL;
3485
3486 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3487 return -EINVAL;
3488
3489 if (after(opt.rcv_wup, tp->rcv_nxt))
3490 return -EINVAL;
3491
3492 tp->snd_wl1 = opt.snd_wl1;
3493 tp->snd_wnd = opt.snd_wnd;
3494 tp->max_window = opt.max_window;
3495
3496 tp->rcv_wnd = opt.rcv_wnd;
3497 tp->rcv_wup = opt.rcv_wup;
3498
3499 return 0;
3500 }
3501
3502 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3503 unsigned int len)
3504 {
3505 struct tcp_sock *tp = tcp_sk(sk);
3506 struct tcp_repair_opt opt;
3507 size_t offset = 0;
3508
3509 while (len >= sizeof(opt)) {
3510 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3511 return -EFAULT;
3512
3513 offset += sizeof(opt);
3514 len -= sizeof(opt);
3515
3516 switch (opt.opt_code) {
3517 case TCPOPT_MSS:
3518 tp->rx_opt.mss_clamp = opt.opt_val;
3519 tcp_mtup_init(sk);
3520 break;
3521 case TCPOPT_WINDOW:
3522 {
3523 u16 snd_wscale = opt.opt_val & 0xFFFF;
3524 u16 rcv_wscale = opt.opt_val >> 16;
3525
3526 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3527 return -EFBIG;
3528
3529 tp->rx_opt.snd_wscale = snd_wscale;
3530 tp->rx_opt.rcv_wscale = rcv_wscale;
3531 tp->rx_opt.wscale_ok = 1;
3532 }
3533 break;
3534 case TCPOPT_SACK_PERM:
3535 if (opt.opt_val != 0)
3536 return -EINVAL;
3537
3538 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3539 break;
3540 case TCPOPT_TIMESTAMP:
3541 if (opt.opt_val != 0)
3542 return -EINVAL;
3543
3544 tp->rx_opt.tstamp_ok = 1;
3545 break;
3546 }
3547 }
3548
3549 return 0;
3550 }
3551
3552 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3553 EXPORT_IPV6_MOD(tcp_tx_delay_enabled);
3554
3555 static void tcp_enable_tx_delay(void)
3556 {
3557 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3558 static int __tcp_tx_delay_enabled = 0;
3559
3560 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3561 static_branch_enable(&tcp_tx_delay_enabled);
3562 pr_info("TCP_TX_DELAY enabled\n");
3563 }
3564 }
3565 }
3566
3567 /* When set indicates to always queue non-full frames. Later the user clears
3568 * this option and we transmit any pending partial frames in the queue. This is
3569 * meant to be used alongside sendfile() to get properly filled frames when the
3570 * user (for example) must write out headers with a write() call first and then
3571 * use sendfile to send out the data parts.
3572 *
3573 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3574 * TCP_NODELAY.
3575 */
3576 void __tcp_sock_set_cork(struct sock *sk, bool on)
3577 {
3578 struct tcp_sock *tp = tcp_sk(sk);
3579
3580 if (on) {
3581 tp->nonagle |= TCP_NAGLE_CORK;
3582 } else {
3583 tp->nonagle &= ~TCP_NAGLE_CORK;
3584 if (tp->nonagle & TCP_NAGLE_OFF)
3585 tp->nonagle |= TCP_NAGLE_PUSH;
3586 tcp_push_pending_frames(sk);
3587 }
3588 }
3589
3590 void tcp_sock_set_cork(struct sock *sk, bool on)
3591 {
3592 lock_sock(sk);
3593 __tcp_sock_set_cork(sk, on);
3594 release_sock(sk);
3595 }
3596 EXPORT_SYMBOL(tcp_sock_set_cork);
3597
3598 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3599 * remembered, but it is not activated until cork is cleared.
3600 *
3601 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3602 * even TCP_CORK for currently queued segments.
3603 */
3604 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3605 {
3606 if (on) {
3607 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3608 tcp_push_pending_frames(sk);
3609 } else {
3610 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3611 }
3612 }
3613
3614 void tcp_sock_set_nodelay(struct sock *sk)
3615 {
3616 lock_sock(sk);
3617 __tcp_sock_set_nodelay(sk, true);
3618 release_sock(sk);
3619 }
3620 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3621
3622 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3623 {
3624 if (!val) {
3625 inet_csk_enter_pingpong_mode(sk);
3626 return;
3627 }
3628
3629 inet_csk_exit_pingpong_mode(sk);
3630 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3631 inet_csk_ack_scheduled(sk)) {
3632 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3633 tcp_cleanup_rbuf(sk, 1);
3634 if (!(val & 1))
3635 inet_csk_enter_pingpong_mode(sk);
3636 }
3637 }
3638
3639 void tcp_sock_set_quickack(struct sock *sk, int val)
3640 {
3641 lock_sock(sk);
3642 __tcp_sock_set_quickack(sk, val);
3643 release_sock(sk);
3644 }
3645 EXPORT_SYMBOL(tcp_sock_set_quickack);
3646
3647 int tcp_sock_set_syncnt(struct sock *sk, int val)
3648 {
3649 if (val < 1 || val > MAX_TCP_SYNCNT)
3650 return -EINVAL;
3651
3652 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3653 return 0;
3654 }
3655 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3656
3657 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3658 {
3659 /* Cap the max time in ms TCP will retry or probe the window
3660 * before giving up and aborting (ETIMEDOUT) a connection.
3661 */
3662 if (val < 0)
3663 return -EINVAL;
3664
3665 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3666 return 0;
3667 }
3668 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3669
3670 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3671 {
3672 struct tcp_sock *tp = tcp_sk(sk);
3673
3674 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3675 return -EINVAL;
3676
3677 /* Paired with WRITE_ONCE() in keepalive_time_when() */
3678 WRITE_ONCE(tp->keepalive_time, val * HZ);
3679 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3680 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3681 u32 elapsed = keepalive_time_elapsed(tp);
3682
3683 if (tp->keepalive_time > elapsed)
3684 elapsed = tp->keepalive_time - elapsed;
3685 else
3686 elapsed = 0;
3687 tcp_reset_keepalive_timer(sk, elapsed);
3688 }
3689
3690 return 0;
3691 }
3692
3693 int tcp_sock_set_keepidle(struct sock *sk, int val)
3694 {
3695 int err;
3696
3697 lock_sock(sk);
3698 err = tcp_sock_set_keepidle_locked(sk, val);
3699 release_sock(sk);
3700 return err;
3701 }
3702 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3703
3704 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3705 {
3706 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3707 return -EINVAL;
3708
3709 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3710 return 0;
3711 }
3712 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3713
3714 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3715 {
3716 if (val < 1 || val > MAX_TCP_KEEPCNT)
3717 return -EINVAL;
3718
3719 /* Paired with READ_ONCE() in keepalive_probes() */
3720 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3721 return 0;
3722 }
3723 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3724
3725 int tcp_set_window_clamp(struct sock *sk, int val)
3726 {
3727 u32 old_window_clamp, new_window_clamp, new_rcv_ssthresh;
3728 struct tcp_sock *tp = tcp_sk(sk);
3729
3730 if (!val) {
3731 if (sk->sk_state != TCP_CLOSE)
3732 return -EINVAL;
3733 WRITE_ONCE(tp->window_clamp, 0);
3734 return 0;
3735 }
3736
3737 old_window_clamp = tp->window_clamp;
3738 new_window_clamp = max_t(int, SOCK_MIN_RCVBUF / 2, val);
3739
3740 if (new_window_clamp == old_window_clamp)
3741 return 0;
3742
3743 WRITE_ONCE(tp->window_clamp, new_window_clamp);
3744
3745 /* Need to apply the reserved mem provisioning only
3746 * when shrinking the window clamp.
3747 */
3748 if (new_window_clamp < old_window_clamp) {
3749 __tcp_adjust_rcv_ssthresh(sk, new_window_clamp);
3750 } else {
3751 new_rcv_ssthresh = min(tp->rcv_wnd, new_window_clamp);
3752 tp->rcv_ssthresh = max(new_rcv_ssthresh, tp->rcv_ssthresh);
3753 }
3754 return 0;
3755 }
3756
3757 /*
3758 * Socket option code for TCP.
3759 */
3760 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3761 sockptr_t optval, unsigned int optlen)
3762 {
3763 struct tcp_sock *tp = tcp_sk(sk);
3764 struct inet_connection_sock *icsk = inet_csk(sk);
3765 struct net *net = sock_net(sk);
3766 int val;
3767 int err = 0;
3768
3769 /* These are data/string values, all the others are ints */
3770 switch (optname) {
3771 case TCP_CONGESTION: {
3772 char name[TCP_CA_NAME_MAX];
3773
3774 if (optlen < 1)
3775 return -EINVAL;
3776
3777 val = strncpy_from_sockptr(name, optval,
3778 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3779 if (val < 0)
3780 return -EFAULT;
3781 name[val] = 0;
3782
3783 sockopt_lock_sock(sk);
3784 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3785 sockopt_ns_capable(sock_net(sk)->user_ns,
3786 CAP_NET_ADMIN));
3787 sockopt_release_sock(sk);
3788 return err;
3789 }
3790 case TCP_ULP: {
3791 char name[TCP_ULP_NAME_MAX];
3792
3793 if (optlen < 1)
3794 return -EINVAL;
3795
3796 val = strncpy_from_sockptr(name, optval,
3797 min_t(long, TCP_ULP_NAME_MAX - 1,
3798 optlen));
3799 if (val < 0)
3800 return -EFAULT;
3801 name[val] = 0;
3802
3803 sockopt_lock_sock(sk);
3804 err = tcp_set_ulp(sk, name);
3805 sockopt_release_sock(sk);
3806 return err;
3807 }
3808 case TCP_FASTOPEN_KEY: {
3809 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3810 __u8 *backup_key = NULL;
3811
3812 /* Allow a backup key as well to facilitate key rotation
3813 * First key is the active one.
3814 */
3815 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3816 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3817 return -EINVAL;
3818
3819 if (copy_from_sockptr(key, optval, optlen))
3820 return -EFAULT;
3821
3822 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3823 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3824
3825 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3826 }
3827 default:
3828 /* fallthru */
3829 break;
3830 }
3831
3832 if (optlen < sizeof(int))
3833 return -EINVAL;
3834
3835 if (copy_from_sockptr(&val, optval, sizeof(val)))
3836 return -EFAULT;
3837
3838 /* Handle options that can be set without locking the socket. */
3839 switch (optname) {
3840 case TCP_SYNCNT:
3841 return tcp_sock_set_syncnt(sk, val);
3842 case TCP_USER_TIMEOUT:
3843 return tcp_sock_set_user_timeout(sk, val);
3844 case TCP_KEEPINTVL:
3845 return tcp_sock_set_keepintvl(sk, val);
3846 case TCP_KEEPCNT:
3847 return tcp_sock_set_keepcnt(sk, val);
3848 case TCP_LINGER2:
3849 if (val < 0)
3850 WRITE_ONCE(tp->linger2, -1);
3851 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3852 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3853 else
3854 WRITE_ONCE(tp->linger2, val * HZ);
3855 return 0;
3856 case TCP_DEFER_ACCEPT:
3857 /* Translate value in seconds to number of retransmits */
3858 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3859 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3860 TCP_RTO_MAX / HZ));
3861 return 0;
3862 case TCP_RTO_MAX_MS:
3863 if (val < MSEC_PER_SEC || val > TCP_RTO_MAX_SEC * MSEC_PER_SEC)
3864 return -EINVAL;
3865 WRITE_ONCE(inet_csk(sk)->icsk_rto_max, msecs_to_jiffies(val));
3866 return 0;
3867 case TCP_RTO_MIN_US: {
3868 int rto_min = usecs_to_jiffies(val);
3869
3870 if (rto_min > TCP_RTO_MIN || rto_min < TCP_TIMEOUT_MIN)
3871 return -EINVAL;
3872 WRITE_ONCE(inet_csk(sk)->icsk_rto_min, rto_min);
3873 return 0;
3874 }
3875 case TCP_DELACK_MAX_US: {
3876 int delack_max = usecs_to_jiffies(val);
3877
3878 if (delack_max > TCP_DELACK_MAX || delack_max < TCP_TIMEOUT_MIN)
3879 return -EINVAL;
3880 WRITE_ONCE(inet_csk(sk)->icsk_delack_max, delack_max);
3881 return 0;
3882 }
3883 }
3884
3885 sockopt_lock_sock(sk);
3886
3887 switch (optname) {
3888 case TCP_MAXSEG:
3889 /* Values greater than interface MTU won't take effect. However
3890 * at the point when this call is done we typically don't yet
3891 * know which interface is going to be used
3892 */
3893 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3894 err = -EINVAL;
3895 break;
3896 }
3897 tp->rx_opt.user_mss = val;
3898 break;
3899
3900 case TCP_NODELAY:
3901 __tcp_sock_set_nodelay(sk, val);
3902 break;
3903
3904 case TCP_THIN_LINEAR_TIMEOUTS:
3905 if (val < 0 || val > 1)
3906 err = -EINVAL;
3907 else
3908 tp->thin_lto = val;
3909 break;
3910
3911 case TCP_THIN_DUPACK:
3912 if (val < 0 || val > 1)
3913 err = -EINVAL;
3914 break;
3915
3916 case TCP_REPAIR:
3917 if (!tcp_can_repair_sock(sk))
3918 err = -EPERM;
3919 else if (val == TCP_REPAIR_ON) {
3920 tp->repair = 1;
3921 sk->sk_reuse = SK_FORCE_REUSE;
3922 tp->repair_queue = TCP_NO_QUEUE;
3923 } else if (val == TCP_REPAIR_OFF) {
3924 tp->repair = 0;
3925 sk->sk_reuse = SK_NO_REUSE;
3926 tcp_send_window_probe(sk);
3927 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3928 tp->repair = 0;
3929 sk->sk_reuse = SK_NO_REUSE;
3930 } else
3931 err = -EINVAL;
3932
3933 break;
3934
3935 case TCP_REPAIR_QUEUE:
3936 if (!tp->repair)
3937 err = -EPERM;
3938 else if ((unsigned int)val < TCP_QUEUES_NR)
3939 tp->repair_queue = val;
3940 else
3941 err = -EINVAL;
3942 break;
3943
3944 case TCP_QUEUE_SEQ:
3945 if (sk->sk_state != TCP_CLOSE) {
3946 err = -EPERM;
3947 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3948 if (!tcp_rtx_queue_empty(sk))
3949 err = -EPERM;
3950 else
3951 WRITE_ONCE(tp->write_seq, val);
3952 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3953 if (tp->rcv_nxt != tp->copied_seq) {
3954 err = -EPERM;
3955 } else {
3956 WRITE_ONCE(tp->rcv_nxt, val);
3957 WRITE_ONCE(tp->copied_seq, val);
3958 }
3959 } else {
3960 err = -EINVAL;
3961 }
3962 break;
3963
3964 case TCP_REPAIR_OPTIONS:
3965 if (!tp->repair)
3966 err = -EINVAL;
3967 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3968 err = tcp_repair_options_est(sk, optval, optlen);
3969 else
3970 err = -EPERM;
3971 break;
3972
3973 case TCP_CORK:
3974 __tcp_sock_set_cork(sk, val);
3975 break;
3976
3977 case TCP_KEEPIDLE:
3978 err = tcp_sock_set_keepidle_locked(sk, val);
3979 break;
3980 case TCP_SAVE_SYN:
3981 /* 0: disable, 1: enable, 2: start from ether_header */
3982 if (val < 0 || val > 2)
3983 err = -EINVAL;
3984 else
3985 tp->save_syn = val;
3986 break;
3987
3988 case TCP_WINDOW_CLAMP:
3989 err = tcp_set_window_clamp(sk, val);
3990 break;
3991
3992 case TCP_QUICKACK:
3993 __tcp_sock_set_quickack(sk, val);
3994 break;
3995
3996 case TCP_AO_REPAIR:
3997 if (!tcp_can_repair_sock(sk)) {
3998 err = -EPERM;
3999 break;
4000 }
4001 err = tcp_ao_set_repair(sk, optval, optlen);
4002 break;
4003 #ifdef CONFIG_TCP_AO
4004 case TCP_AO_ADD_KEY:
4005 case TCP_AO_DEL_KEY:
4006 case TCP_AO_INFO: {
4007 /* If this is the first TCP-AO setsockopt() on the socket,
4008 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
4009 * in any state.
4010 */
4011 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
4012 goto ao_parse;
4013 if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
4014 lockdep_sock_is_held(sk)))
4015 goto ao_parse;
4016 if (tp->repair)
4017 goto ao_parse;
4018 err = -EISCONN;
4019 break;
4020 ao_parse:
4021 err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
4022 break;
4023 }
4024 #endif
4025 #ifdef CONFIG_TCP_MD5SIG
4026 case TCP_MD5SIG:
4027 case TCP_MD5SIG_EXT:
4028 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
4029 break;
4030 #endif
4031 case TCP_FASTOPEN:
4032 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
4033 TCPF_LISTEN))) {
4034 tcp_fastopen_init_key_once(net);
4035
4036 fastopen_queue_tune(sk, val);
4037 } else {
4038 err = -EINVAL;
4039 }
4040 break;
4041 case TCP_FASTOPEN_CONNECT:
4042 if (val > 1 || val < 0) {
4043 err = -EINVAL;
4044 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
4045 TFO_CLIENT_ENABLE) {
4046 if (sk->sk_state == TCP_CLOSE)
4047 tp->fastopen_connect = val;
4048 else
4049 err = -EINVAL;
4050 } else {
4051 err = -EOPNOTSUPP;
4052 }
4053 break;
4054 case TCP_FASTOPEN_NO_COOKIE:
4055 if (val > 1 || val < 0)
4056 err = -EINVAL;
4057 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4058 err = -EINVAL;
4059 else
4060 tp->fastopen_no_cookie = val;
4061 break;
4062 case TCP_TIMESTAMP:
4063 if (!tp->repair) {
4064 err = -EPERM;
4065 break;
4066 }
4067 /* val is an opaque field,
4068 * and low order bit contains usec_ts enable bit.
4069 * Its a best effort, and we do not care if user makes an error.
4070 */
4071 tp->tcp_usec_ts = val & 1;
4072 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
4073 break;
4074 case TCP_REPAIR_WINDOW:
4075 err = tcp_repair_set_window(tp, optval, optlen);
4076 break;
4077 case TCP_NOTSENT_LOWAT:
4078 WRITE_ONCE(tp->notsent_lowat, val);
4079 sk->sk_write_space(sk);
4080 break;
4081 case TCP_INQ:
4082 if (val > 1 || val < 0)
4083 err = -EINVAL;
4084 else
4085 tp->recvmsg_inq = val;
4086 break;
4087 case TCP_TX_DELAY:
4088 if (val)
4089 tcp_enable_tx_delay();
4090 WRITE_ONCE(tp->tcp_tx_delay, val);
4091 break;
4092 default:
4093 err = -ENOPROTOOPT;
4094 break;
4095 }
4096
4097 sockopt_release_sock(sk);
4098 return err;
4099 }
4100
4101 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
4102 unsigned int optlen)
4103 {
4104 const struct inet_connection_sock *icsk = inet_csk(sk);
4105
4106 if (level != SOL_TCP)
4107 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4108 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
4109 optval, optlen);
4110 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
4111 }
4112 EXPORT_IPV6_MOD(tcp_setsockopt);
4113
4114 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
4115 struct tcp_info *info)
4116 {
4117 u64 stats[__TCP_CHRONO_MAX], total = 0;
4118 enum tcp_chrono i;
4119
4120 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
4121 stats[i] = tp->chrono_stat[i - 1];
4122 if (i == tp->chrono_type)
4123 stats[i] += tcp_jiffies32 - tp->chrono_start;
4124 stats[i] *= USEC_PER_SEC / HZ;
4125 total += stats[i];
4126 }
4127
4128 info->tcpi_busy_time = total;
4129 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
4130 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
4131 }
4132
4133 /* Return information about state of tcp endpoint in API format. */
4134 void tcp_get_info(struct sock *sk, struct tcp_info *info)
4135 {
4136 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
4137 const struct inet_connection_sock *icsk = inet_csk(sk);
4138 unsigned long rate;
4139 u32 now;
4140 u64 rate64;
4141 bool slow;
4142
4143 memset(info, 0, sizeof(*info));
4144 if (sk->sk_type != SOCK_STREAM)
4145 return;
4146
4147 info->tcpi_state = inet_sk_state_load(sk);
4148
4149 /* Report meaningful fields for all TCP states, including listeners */
4150 rate = READ_ONCE(sk->sk_pacing_rate);
4151 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4152 info->tcpi_pacing_rate = rate64;
4153
4154 rate = READ_ONCE(sk->sk_max_pacing_rate);
4155 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4156 info->tcpi_max_pacing_rate = rate64;
4157
4158 info->tcpi_reordering = tp->reordering;
4159 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
4160
4161 if (info->tcpi_state == TCP_LISTEN) {
4162 /* listeners aliased fields :
4163 * tcpi_unacked -> Number of children ready for accept()
4164 * tcpi_sacked -> max backlog
4165 */
4166 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
4167 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
4168 return;
4169 }
4170
4171 slow = lock_sock_fast(sk);
4172
4173 info->tcpi_ca_state = icsk->icsk_ca_state;
4174 info->tcpi_retransmits = icsk->icsk_retransmits;
4175 info->tcpi_probes = icsk->icsk_probes_out;
4176 info->tcpi_backoff = icsk->icsk_backoff;
4177
4178 if (tp->rx_opt.tstamp_ok)
4179 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
4180 if (tcp_is_sack(tp))
4181 info->tcpi_options |= TCPI_OPT_SACK;
4182 if (tp->rx_opt.wscale_ok) {
4183 info->tcpi_options |= TCPI_OPT_WSCALE;
4184 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
4185 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
4186 }
4187
4188 if (tcp_ecn_mode_any(tp))
4189 info->tcpi_options |= TCPI_OPT_ECN;
4190 if (tp->ecn_flags & TCP_ECN_SEEN)
4191 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
4192 if (tp->syn_data_acked)
4193 info->tcpi_options |= TCPI_OPT_SYN_DATA;
4194 if (tp->tcp_usec_ts)
4195 info->tcpi_options |= TCPI_OPT_USEC_TS;
4196 if (tp->syn_fastopen_child)
4197 info->tcpi_options |= TCPI_OPT_TFO_CHILD;
4198
4199 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
4200 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
4201 tcp_delack_max(sk)));
4202 info->tcpi_snd_mss = tp->mss_cache;
4203 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
4204
4205 info->tcpi_unacked = tp->packets_out;
4206 info->tcpi_sacked = tp->sacked_out;
4207
4208 info->tcpi_lost = tp->lost_out;
4209 info->tcpi_retrans = tp->retrans_out;
4210
4211 now = tcp_jiffies32;
4212 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
4213 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
4214 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
4215
4216 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
4217 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
4218 info->tcpi_rtt = tp->srtt_us >> 3;
4219 info->tcpi_rttvar = tp->mdev_us >> 2;
4220 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
4221 info->tcpi_advmss = tp->advmss;
4222
4223 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
4224 info->tcpi_rcv_space = tp->rcvq_space.space;
4225
4226 info->tcpi_total_retrans = tp->total_retrans;
4227
4228 info->tcpi_bytes_acked = tp->bytes_acked;
4229 info->tcpi_bytes_received = tp->bytes_received;
4230 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
4231 tcp_get_info_chrono_stats(tp, info);
4232
4233 info->tcpi_segs_out = tp->segs_out;
4234
4235 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
4236 info->tcpi_segs_in = READ_ONCE(tp->segs_in);
4237 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
4238
4239 info->tcpi_min_rtt = tcp_min_rtt(tp);
4240 info->tcpi_data_segs_out = tp->data_segs_out;
4241
4242 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
4243 rate64 = tcp_compute_delivery_rate(tp);
4244 if (rate64)
4245 info->tcpi_delivery_rate = rate64;
4246 info->tcpi_delivered = tp->delivered;
4247 info->tcpi_delivered_ce = tp->delivered_ce;
4248 info->tcpi_bytes_sent = tp->bytes_sent;
4249 info->tcpi_bytes_retrans = tp->bytes_retrans;
4250 info->tcpi_dsack_dups = tp->dsack_dups;
4251 info->tcpi_reord_seen = tp->reord_seen;
4252 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
4253 info->tcpi_snd_wnd = tp->snd_wnd;
4254 info->tcpi_rcv_wnd = tp->rcv_wnd;
4255 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
4256 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
4257
4258 info->tcpi_total_rto = tp->total_rto;
4259 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
4260 info->tcpi_total_rto_time = tp->total_rto_time;
4261 if (tp->rto_stamp)
4262 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
4263
4264 unlock_sock_fast(sk, slow);
4265 }
4266 EXPORT_SYMBOL_GPL(tcp_get_info);
4267
4268 static size_t tcp_opt_stats_get_size(void)
4269 {
4270 return
4271 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
4272 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
4273 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
4274 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
4275 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
4276 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
4277 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
4278 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
4279 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
4280 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
4281 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
4282 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
4283 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
4284 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
4285 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
4286 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
4287 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
4288 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
4289 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
4290 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
4291 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
4292 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
4293 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
4294 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
4295 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
4296 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
4297 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
4298 0;
4299 }
4300
4301 /* Returns TTL or hop limit of an incoming packet from skb. */
4302 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
4303 {
4304 if (skb->protocol == htons(ETH_P_IP))
4305 return ip_hdr(skb)->ttl;
4306 else if (skb->protocol == htons(ETH_P_IPV6))
4307 return ipv6_hdr(skb)->hop_limit;
4308 else
4309 return 0;
4310 }
4311
4312 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
4313 const struct sk_buff *orig_skb,
4314 const struct sk_buff *ack_skb)
4315 {
4316 const struct tcp_sock *tp = tcp_sk(sk);
4317 struct sk_buff *stats;
4318 struct tcp_info info;
4319 unsigned long rate;
4320 u64 rate64;
4321
4322 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4323 if (!stats)
4324 return NULL;
4325
4326 tcp_get_info_chrono_stats(tp, &info);
4327 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4328 info.tcpi_busy_time, TCP_NLA_PAD);
4329 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4330 info.tcpi_rwnd_limited, TCP_NLA_PAD);
4331 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4332 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4333 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4334 tp->data_segs_out, TCP_NLA_PAD);
4335 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4336 tp->total_retrans, TCP_NLA_PAD);
4337
4338 rate = READ_ONCE(sk->sk_pacing_rate);
4339 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4340 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4341
4342 rate64 = tcp_compute_delivery_rate(tp);
4343 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4344
4345 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4346 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4347 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4348
4349 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4350 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4351 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4352 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4353 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4354
4355 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4356 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4357
4358 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4359 TCP_NLA_PAD);
4360 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4361 TCP_NLA_PAD);
4362 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4363 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4364 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4365 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4366 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4367 max_t(int, 0, tp->write_seq - tp->snd_nxt));
4368 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4369 TCP_NLA_PAD);
4370 if (ack_skb)
4371 nla_put_u8(stats, TCP_NLA_TTL,
4372 tcp_skb_ttl_or_hop_limit(ack_skb));
4373
4374 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4375 return stats;
4376 }
4377
4378 int do_tcp_getsockopt(struct sock *sk, int level,
4379 int optname, sockptr_t optval, sockptr_t optlen)
4380 {
4381 struct inet_connection_sock *icsk = inet_csk(sk);
4382 struct tcp_sock *tp = tcp_sk(sk);
4383 struct net *net = sock_net(sk);
4384 int val, len;
4385
4386 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4387 return -EFAULT;
4388
4389 if (len < 0)
4390 return -EINVAL;
4391
4392 len = min_t(unsigned int, len, sizeof(int));
4393
4394 switch (optname) {
4395 case TCP_MAXSEG:
4396 val = tp->mss_cache;
4397 if (tp->rx_opt.user_mss &&
4398 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4399 val = tp->rx_opt.user_mss;
4400 if (tp->repair)
4401 val = tp->rx_opt.mss_clamp;
4402 break;
4403 case TCP_NODELAY:
4404 val = !!(tp->nonagle&TCP_NAGLE_OFF);
4405 break;
4406 case TCP_CORK:
4407 val = !!(tp->nonagle&TCP_NAGLE_CORK);
4408 break;
4409 case TCP_KEEPIDLE:
4410 val = keepalive_time_when(tp) / HZ;
4411 break;
4412 case TCP_KEEPINTVL:
4413 val = keepalive_intvl_when(tp) / HZ;
4414 break;
4415 case TCP_KEEPCNT:
4416 val = keepalive_probes(tp);
4417 break;
4418 case TCP_SYNCNT:
4419 val = READ_ONCE(icsk->icsk_syn_retries) ? :
4420 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4421 break;
4422 case TCP_LINGER2:
4423 val = READ_ONCE(tp->linger2);
4424 if (val >= 0)
4425 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4426 break;
4427 case TCP_DEFER_ACCEPT:
4428 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4429 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4430 TCP_RTO_MAX / HZ);
4431 break;
4432 case TCP_WINDOW_CLAMP:
4433 val = READ_ONCE(tp->window_clamp);
4434 break;
4435 case TCP_INFO: {
4436 struct tcp_info info;
4437
4438 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4439 return -EFAULT;
4440
4441 tcp_get_info(sk, &info);
4442
4443 len = min_t(unsigned int, len, sizeof(info));
4444 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4445 return -EFAULT;
4446 if (copy_to_sockptr(optval, &info, len))
4447 return -EFAULT;
4448 return 0;
4449 }
4450 case TCP_CC_INFO: {
4451 const struct tcp_congestion_ops *ca_ops;
4452 union tcp_cc_info info;
4453 size_t sz = 0;
4454 int attr;
4455
4456 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4457 return -EFAULT;
4458
4459 ca_ops = icsk->icsk_ca_ops;
4460 if (ca_ops && ca_ops->get_info)
4461 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4462
4463 len = min_t(unsigned int, len, sz);
4464 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4465 return -EFAULT;
4466 if (copy_to_sockptr(optval, &info, len))
4467 return -EFAULT;
4468 return 0;
4469 }
4470 case TCP_QUICKACK:
4471 val = !inet_csk_in_pingpong_mode(sk);
4472 break;
4473
4474 case TCP_CONGESTION:
4475 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4476 return -EFAULT;
4477 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4478 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4479 return -EFAULT;
4480 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4481 return -EFAULT;
4482 return 0;
4483
4484 case TCP_ULP:
4485 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4486 return -EFAULT;
4487 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4488 if (!icsk->icsk_ulp_ops) {
4489 len = 0;
4490 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4491 return -EFAULT;
4492 return 0;
4493 }
4494 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4495 return -EFAULT;
4496 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4497 return -EFAULT;
4498 return 0;
4499
4500 case TCP_FASTOPEN_KEY: {
4501 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4502 unsigned int key_len;
4503
4504 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4505 return -EFAULT;
4506
4507 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4508 TCP_FASTOPEN_KEY_LENGTH;
4509 len = min_t(unsigned int, len, key_len);
4510 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4511 return -EFAULT;
4512 if (copy_to_sockptr(optval, key, len))
4513 return -EFAULT;
4514 return 0;
4515 }
4516 case TCP_THIN_LINEAR_TIMEOUTS:
4517 val = tp->thin_lto;
4518 break;
4519
4520 case TCP_THIN_DUPACK:
4521 val = 0;
4522 break;
4523
4524 case TCP_REPAIR:
4525 val = tp->repair;
4526 break;
4527
4528 case TCP_REPAIR_QUEUE:
4529 if (tp->repair)
4530 val = tp->repair_queue;
4531 else
4532 return -EINVAL;
4533 break;
4534
4535 case TCP_REPAIR_WINDOW: {
4536 struct tcp_repair_window opt;
4537
4538 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4539 return -EFAULT;
4540
4541 if (len != sizeof(opt))
4542 return -EINVAL;
4543
4544 if (!tp->repair)
4545 return -EPERM;
4546
4547 opt.snd_wl1 = tp->snd_wl1;
4548 opt.snd_wnd = tp->snd_wnd;
4549 opt.max_window = tp->max_window;
4550 opt.rcv_wnd = tp->rcv_wnd;
4551 opt.rcv_wup = tp->rcv_wup;
4552
4553 if (copy_to_sockptr(optval, &opt, len))
4554 return -EFAULT;
4555 return 0;
4556 }
4557 case TCP_QUEUE_SEQ:
4558 if (tp->repair_queue == TCP_SEND_QUEUE)
4559 val = tp->write_seq;
4560 else if (tp->repair_queue == TCP_RECV_QUEUE)
4561 val = tp->rcv_nxt;
4562 else
4563 return -EINVAL;
4564 break;
4565
4566 case TCP_USER_TIMEOUT:
4567 val = READ_ONCE(icsk->icsk_user_timeout);
4568 break;
4569
4570 case TCP_FASTOPEN:
4571 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4572 break;
4573
4574 case TCP_FASTOPEN_CONNECT:
4575 val = tp->fastopen_connect;
4576 break;
4577
4578 case TCP_FASTOPEN_NO_COOKIE:
4579 val = tp->fastopen_no_cookie;
4580 break;
4581
4582 case TCP_TX_DELAY:
4583 val = READ_ONCE(tp->tcp_tx_delay);
4584 break;
4585
4586 case TCP_TIMESTAMP:
4587 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4588 if (tp->tcp_usec_ts)
4589 val |= 1;
4590 else
4591 val &= ~1;
4592 break;
4593 case TCP_NOTSENT_LOWAT:
4594 val = READ_ONCE(tp->notsent_lowat);
4595 break;
4596 case TCP_INQ:
4597 val = tp->recvmsg_inq;
4598 break;
4599 case TCP_SAVE_SYN:
4600 val = tp->save_syn;
4601 break;
4602 case TCP_SAVED_SYN: {
4603 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4604 return -EFAULT;
4605
4606 sockopt_lock_sock(sk);
4607 if (tp->saved_syn) {
4608 if (len < tcp_saved_syn_len(tp->saved_syn)) {
4609 len = tcp_saved_syn_len(tp->saved_syn);
4610 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4611 sockopt_release_sock(sk);
4612 return -EFAULT;
4613 }
4614 sockopt_release_sock(sk);
4615 return -EINVAL;
4616 }
4617 len = tcp_saved_syn_len(tp->saved_syn);
4618 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4619 sockopt_release_sock(sk);
4620 return -EFAULT;
4621 }
4622 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4623 sockopt_release_sock(sk);
4624 return -EFAULT;
4625 }
4626 tcp_saved_syn_free(tp);
4627 sockopt_release_sock(sk);
4628 } else {
4629 sockopt_release_sock(sk);
4630 len = 0;
4631 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4632 return -EFAULT;
4633 }
4634 return 0;
4635 }
4636 #ifdef CONFIG_MMU
4637 case TCP_ZEROCOPY_RECEIVE: {
4638 struct scm_timestamping_internal tss;
4639 struct tcp_zerocopy_receive zc = {};
4640 int err;
4641
4642 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4643 return -EFAULT;
4644 if (len < 0 ||
4645 len < offsetofend(struct tcp_zerocopy_receive, length))
4646 return -EINVAL;
4647 if (unlikely(len > sizeof(zc))) {
4648 err = check_zeroed_sockptr(optval, sizeof(zc),
4649 len - sizeof(zc));
4650 if (err < 1)
4651 return err == 0 ? -EINVAL : err;
4652 len = sizeof(zc);
4653 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4654 return -EFAULT;
4655 }
4656 if (copy_from_sockptr(&zc, optval, len))
4657 return -EFAULT;
4658 if (zc.reserved)
4659 return -EINVAL;
4660 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
4661 return -EINVAL;
4662 sockopt_lock_sock(sk);
4663 err = tcp_zerocopy_receive(sk, &zc, &tss);
4664 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4665 &zc, &len, err);
4666 sockopt_release_sock(sk);
4667 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4668 goto zerocopy_rcv_cmsg;
4669 switch (len) {
4670 case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4671 goto zerocopy_rcv_cmsg;
4672 case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4673 case offsetofend(struct tcp_zerocopy_receive, msg_control):
4674 case offsetofend(struct tcp_zerocopy_receive, flags):
4675 case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4676 case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4677 case offsetofend(struct tcp_zerocopy_receive, err):
4678 goto zerocopy_rcv_sk_err;
4679 case offsetofend(struct tcp_zerocopy_receive, inq):
4680 goto zerocopy_rcv_inq;
4681 case offsetofend(struct tcp_zerocopy_receive, length):
4682 default:
4683 goto zerocopy_rcv_out;
4684 }
4685 zerocopy_rcv_cmsg:
4686 if (zc.msg_flags & TCP_CMSG_TS)
4687 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4688 else
4689 zc.msg_flags = 0;
4690 zerocopy_rcv_sk_err:
4691 if (!err)
4692 zc.err = sock_error(sk);
4693 zerocopy_rcv_inq:
4694 zc.inq = tcp_inq_hint(sk);
4695 zerocopy_rcv_out:
4696 if (!err && copy_to_sockptr(optval, &zc, len))
4697 err = -EFAULT;
4698 return err;
4699 }
4700 #endif
4701 case TCP_AO_REPAIR:
4702 if (!tcp_can_repair_sock(sk))
4703 return -EPERM;
4704 return tcp_ao_get_repair(sk, optval, optlen);
4705 case TCP_AO_GET_KEYS:
4706 case TCP_AO_INFO: {
4707 int err;
4708
4709 sockopt_lock_sock(sk);
4710 if (optname == TCP_AO_GET_KEYS)
4711 err = tcp_ao_get_mkts(sk, optval, optlen);
4712 else
4713 err = tcp_ao_get_sock_info(sk, optval, optlen);
4714 sockopt_release_sock(sk);
4715
4716 return err;
4717 }
4718 case TCP_IS_MPTCP:
4719 val = 0;
4720 break;
4721 case TCP_RTO_MAX_MS:
4722 val = jiffies_to_msecs(tcp_rto_max(sk));
4723 break;
4724 case TCP_RTO_MIN_US:
4725 val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_rto_min));
4726 break;
4727 case TCP_DELACK_MAX_US:
4728 val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_delack_max));
4729 break;
4730 default:
4731 return -ENOPROTOOPT;
4732 }
4733
4734 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4735 return -EFAULT;
4736 if (copy_to_sockptr(optval, &val, len))
4737 return -EFAULT;
4738 return 0;
4739 }
4740
4741 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4742 {
4743 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4744 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4745 */
4746 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4747 return true;
4748
4749 return false;
4750 }
4751 EXPORT_IPV6_MOD(tcp_bpf_bypass_getsockopt);
4752
4753 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4754 int __user *optlen)
4755 {
4756 struct inet_connection_sock *icsk = inet_csk(sk);
4757
4758 if (level != SOL_TCP)
4759 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4760 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4761 optval, optlen);
4762 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4763 USER_SOCKPTR(optlen));
4764 }
4765 EXPORT_IPV6_MOD(tcp_getsockopt);
4766
4767 #ifdef CONFIG_TCP_MD5SIG
4768 int tcp_md5_sigpool_id = -1;
4769 EXPORT_IPV6_MOD_GPL(tcp_md5_sigpool_id);
4770
4771 int tcp_md5_alloc_sigpool(void)
4772 {
4773 size_t scratch_size;
4774 int ret;
4775
4776 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4777 ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4778 if (ret >= 0) {
4779 /* As long as any md5 sigpool was allocated, the return
4780 * id would stay the same. Re-write the id only for the case
4781 * when previously all MD5 keys were deleted and this call
4782 * allocates the first MD5 key, which may return a different
4783 * sigpool id than was used previously.
4784 */
4785 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4786 return 0;
4787 }
4788 return ret;
4789 }
4790
4791 void tcp_md5_release_sigpool(void)
4792 {
4793 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4794 }
4795
4796 void tcp_md5_add_sigpool(void)
4797 {
4798 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4799 }
4800
4801 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4802 const struct tcp_md5sig_key *key)
4803 {
4804 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4805 struct scatterlist sg;
4806
4807 sg_init_one(&sg, key->key, keylen);
4808 ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4809
4810 /* We use data_race() because tcp_md5_do_add() might change
4811 * key->key under us
4812 */
4813 return data_race(crypto_ahash_update(hp->req));
4814 }
4815 EXPORT_IPV6_MOD(tcp_md5_hash_key);
4816
4817 /* Called with rcu_read_lock() */
4818 static enum skb_drop_reason
4819 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4820 const void *saddr, const void *daddr,
4821 int family, int l3index, const __u8 *hash_location)
4822 {
4823 /* This gets called for each TCP segment that has TCP-MD5 option.
4824 * We have 3 drop cases:
4825 * o No MD5 hash and one expected.
4826 * o MD5 hash and we're not expecting one.
4827 * o MD5 hash and its wrong.
4828 */
4829 const struct tcp_sock *tp = tcp_sk(sk);
4830 struct tcp_md5sig_key *key;
4831 u8 newhash[16];
4832 int genhash;
4833
4834 key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4835
4836 if (!key && hash_location) {
4837 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4838 trace_tcp_hash_md5_unexpected(sk, skb);
4839 return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4840 }
4841
4842 /* Check the signature.
4843 * To support dual stack listeners, we need to handle
4844 * IPv4-mapped case.
4845 */
4846 if (family == AF_INET)
4847 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4848 else
4849 genhash = tp->af_specific->calc_md5_hash(newhash, key,
4850 NULL, skb);
4851 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4852 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4853 trace_tcp_hash_md5_mismatch(sk, skb);
4854 return SKB_DROP_REASON_TCP_MD5FAILURE;
4855 }
4856 return SKB_NOT_DROPPED_YET;
4857 }
4858 #else
4859 static inline enum skb_drop_reason
4860 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4861 const void *saddr, const void *daddr,
4862 int family, int l3index, const __u8 *hash_location)
4863 {
4864 return SKB_NOT_DROPPED_YET;
4865 }
4866
4867 #endif
4868
4869 /* Called with rcu_read_lock() */
4870 enum skb_drop_reason
4871 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
4872 const struct sk_buff *skb,
4873 const void *saddr, const void *daddr,
4874 int family, int dif, int sdif)
4875 {
4876 const struct tcphdr *th = tcp_hdr(skb);
4877 const struct tcp_ao_hdr *aoh;
4878 const __u8 *md5_location;
4879 int l3index;
4880
4881 /* Invalid option or two times meet any of auth options */
4882 if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
4883 trace_tcp_hash_bad_header(sk, skb);
4884 return SKB_DROP_REASON_TCP_AUTH_HDR;
4885 }
4886
4887 if (req) {
4888 if (tcp_rsk_used_ao(req) != !!aoh) {
4889 u8 keyid, rnext, maclen;
4890
4891 if (aoh) {
4892 keyid = aoh->keyid;
4893 rnext = aoh->rnext_keyid;
4894 maclen = tcp_ao_hdr_maclen(aoh);
4895 } else {
4896 keyid = rnext = maclen = 0;
4897 }
4898
4899 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
4900 trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen);
4901 return SKB_DROP_REASON_TCP_AOFAILURE;
4902 }
4903 }
4904
4905 /* sdif set, means packet ingressed via a device
4906 * in an L3 domain and dif is set to the l3mdev
4907 */
4908 l3index = sdif ? dif : 0;
4909
4910 /* Fast path: unsigned segments */
4911 if (likely(!md5_location && !aoh)) {
4912 /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4913 * for the remote peer. On TCP-AO established connection
4914 * the last key is impossible to remove, so there's
4915 * always at least one current_key.
4916 */
4917 if (tcp_ao_required(sk, saddr, family, l3index, true)) {
4918 trace_tcp_hash_ao_required(sk, skb);
4919 return SKB_DROP_REASON_TCP_AONOTFOUND;
4920 }
4921 if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
4922 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4923 trace_tcp_hash_md5_required(sk, skb);
4924 return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4925 }
4926 return SKB_NOT_DROPPED_YET;
4927 }
4928
4929 if (aoh)
4930 return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
4931
4932 return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
4933 l3index, md5_location);
4934 }
4935 EXPORT_IPV6_MOD_GPL(tcp_inbound_hash);
4936
4937 void tcp_done(struct sock *sk)
4938 {
4939 struct request_sock *req;
4940
4941 /* We might be called with a new socket, after
4942 * inet_csk_prepare_forced_close() has been called
4943 * so we can not use lockdep_sock_is_held(sk)
4944 */
4945 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4946
4947 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4948 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4949
4950 tcp_set_state(sk, TCP_CLOSE);
4951 tcp_clear_xmit_timers(sk);
4952 if (req)
4953 reqsk_fastopen_remove(sk, req, false);
4954
4955 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4956
4957 if (!sock_flag(sk, SOCK_DEAD))
4958 sk->sk_state_change(sk);
4959 else
4960 inet_csk_destroy_sock(sk);
4961 }
4962 EXPORT_SYMBOL_GPL(tcp_done);
4963
4964 int tcp_abort(struct sock *sk, int err)
4965 {
4966 int state = inet_sk_state_load(sk);
4967
4968 if (state == TCP_NEW_SYN_RECV) {
4969 struct request_sock *req = inet_reqsk(sk);
4970
4971 local_bh_disable();
4972 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4973 local_bh_enable();
4974 return 0;
4975 }
4976 if (state == TCP_TIME_WAIT) {
4977 struct inet_timewait_sock *tw = inet_twsk(sk);
4978
4979 refcount_inc(&tw->tw_refcnt);
4980 local_bh_disable();
4981 inet_twsk_deschedule_put(tw);
4982 local_bh_enable();
4983 return 0;
4984 }
4985
4986 /* BPF context ensures sock locking. */
4987 if (!has_current_bpf_ctx())
4988 /* Don't race with userspace socket closes such as tcp_close. */
4989 lock_sock(sk);
4990
4991 /* Avoid closing the same socket twice. */
4992 if (sk->sk_state == TCP_CLOSE) {
4993 if (!has_current_bpf_ctx())
4994 release_sock(sk);
4995 return -ENOENT;
4996 }
4997
4998 if (sk->sk_state == TCP_LISTEN) {
4999 tcp_set_state(sk, TCP_CLOSE);
5000 inet_csk_listen_stop(sk);
5001 }
5002
5003 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
5004 local_bh_disable();
5005 bh_lock_sock(sk);
5006
5007 if (tcp_need_reset(sk->sk_state))
5008 tcp_send_active_reset(sk, GFP_ATOMIC,
5009 SK_RST_REASON_TCP_STATE);
5010 tcp_done_with_error(sk, err);
5011
5012 bh_unlock_sock(sk);
5013 local_bh_enable();
5014 if (!has_current_bpf_ctx())
5015 release_sock(sk);
5016 return 0;
5017 }
5018 EXPORT_SYMBOL_GPL(tcp_abort);
5019
5020 extern struct tcp_congestion_ops tcp_reno;
5021
5022 static __initdata unsigned long thash_entries;
5023 static int __init set_thash_entries(char *str)
5024 {
5025 ssize_t ret;
5026
5027 if (!str)
5028 return 0;
5029
5030 ret = kstrtoul(str, 0, &thash_entries);
5031 if (ret)
5032 return 0;
5033
5034 return 1;
5035 }
5036 __setup("thash_entries=", set_thash_entries);
5037
5038 static void __init tcp_init_mem(void)
5039 {
5040 unsigned long limit = nr_free_buffer_pages() / 16;
5041
5042 limit = max(limit, 128UL);
5043 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
5044 sysctl_tcp_mem[1] = limit; /* 6.25 % */
5045 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
5046 }
5047
5048 static void __init tcp_struct_check(void)
5049 {
5050 /* TX read-mostly hotpath cache lines */
5051 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
5052 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
5053 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
5054 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
5055 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
5056 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
5057 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
5058 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
5059
5060 /* TXRX read-mostly hotpath cache lines */
5061 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
5062 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
5063 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
5064 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
5065 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
5066 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
5067 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
5068 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
5069 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
5070
5071 /* RX read-mostly hotpath cache lines */
5072 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
5073 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
5074 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
5075 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
5076 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
5077 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
5078 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
5079 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
5080 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
5081 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
5082 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
5083 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
5084 #if IS_ENABLED(CONFIG_TLS_DEVICE)
5085 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tcp_clean_acked);
5086 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 77);
5087 #else
5088 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
5089 #endif
5090
5091 /* TX read-write hotpath cache lines */
5092 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
5093 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
5094 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
5095 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
5096 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
5097 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
5098 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
5099 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
5100 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
5101 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
5102 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
5103 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
5104 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
5105 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
5106 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
5107 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
5108
5109 /* TXRX read-write hotpath cache lines */
5110 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
5111 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
5112 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
5113 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
5114 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
5115 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
5116 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
5117 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
5118 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
5119 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
5120 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
5121 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
5122 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
5123 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
5124 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
5125
5126 /* 32bit arches with 8byte alignment on u64 fields might need padding
5127 * before tcp_clock_cache.
5128 */
5129 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
5130
5131 /* RX read-write hotpath cache lines */
5132 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
5133 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
5134 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
5135 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
5136 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
5137 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
5138 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
5139 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
5140 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
5141 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
5142 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
5143 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
5144 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
5145 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
5146 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
5147 }
5148
5149 void __init tcp_init(void)
5150 {
5151 int max_rshare, max_wshare, cnt;
5152 unsigned long limit;
5153 unsigned int i;
5154
5155 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
5156 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
5157 sizeof_field(struct sk_buff, cb));
5158
5159 tcp_struct_check();
5160
5161 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
5162
5163 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
5164 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
5165
5166 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
5167 thash_entries, 21, /* one slot per 2 MB*/
5168 0, 64 * 1024);
5169 tcp_hashinfo.bind_bucket_cachep =
5170 kmem_cache_create("tcp_bind_bucket",
5171 sizeof(struct inet_bind_bucket), 0,
5172 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5173 SLAB_ACCOUNT,
5174 NULL);
5175 tcp_hashinfo.bind2_bucket_cachep =
5176 kmem_cache_create("tcp_bind2_bucket",
5177 sizeof(struct inet_bind2_bucket), 0,
5178 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5179 SLAB_ACCOUNT,
5180 NULL);
5181
5182 /* Size and allocate the main established and bind bucket
5183 * hash tables.
5184 *
5185 * The methodology is similar to that of the buffer cache.
5186 */
5187 tcp_hashinfo.ehash =
5188 alloc_large_system_hash("TCP established",
5189 sizeof(struct inet_ehash_bucket),
5190 thash_entries,
5191 17, /* one slot per 128 KB of memory */
5192 0,
5193 NULL,
5194 &tcp_hashinfo.ehash_mask,
5195 0,
5196 thash_entries ? 0 : 512 * 1024);
5197 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
5198 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
5199
5200 if (inet_ehash_locks_alloc(&tcp_hashinfo))
5201 panic("TCP: failed to alloc ehash_locks");
5202 tcp_hashinfo.bhash =
5203 alloc_large_system_hash("TCP bind",
5204 2 * sizeof(struct inet_bind_hashbucket),
5205 tcp_hashinfo.ehash_mask + 1,
5206 17, /* one slot per 128 KB of memory */
5207 0,
5208 &tcp_hashinfo.bhash_size,
5209 NULL,
5210 0,
5211 64 * 1024);
5212 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
5213 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
5214 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
5215 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
5216 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
5217 spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
5218 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
5219 }
5220
5221 tcp_hashinfo.pernet = false;
5222
5223 cnt = tcp_hashinfo.ehash_mask + 1;
5224 sysctl_tcp_max_orphans = cnt / 2;
5225
5226 tcp_init_mem();
5227 /* Set per-socket limits to no more than 1/128 the pressure threshold */
5228 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
5229 max_wshare = min(4UL*1024*1024, limit);
5230 max_rshare = min(32UL*1024*1024, limit);
5231
5232 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
5233 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
5234 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
5235
5236 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
5237 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
5238 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
5239
5240 pr_info("Hash tables configured (established %u bind %u)\n",
5241 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
5242
5243 tcp_v4_init();
5244 tcp_metrics_init();
5245 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
5246 tcp_tasklet_init();
5247 mptcp_init();
5248 }