]> git.ipfire.org Git - people/arne_f/kernel.git/blob - net/ipv4/tcp_input.c
tcp: RFC7413 option support for Fast Open client
[people/arne_f/kernel.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84 int sysctl_tcp_max_reordering __read_mostly = 300;
85 EXPORT_SYMBOL(sysctl_tcp_reordering);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit = 100;
93
94 int sysctl_tcp_stdurg __read_mostly;
95 int sysctl_tcp_rfc1337 __read_mostly;
96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
97 int sysctl_tcp_frto __read_mostly = 2;
98
99 int sysctl_tcp_thin_dupack __read_mostly;
100
101 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
102 int sysctl_tcp_early_retrans __read_mostly = 3;
103 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
104
105 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
106 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
107 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
108 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
109 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
110 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
111 #define FLAG_ECE 0x40 /* ECE in this ACK */
112 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
113 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
114 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
116 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
117 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
118
119 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
122 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
123
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126
127 /* Adapt the MSS value used to make delayed ack decision to the
128 * real world.
129 */
130 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
131 {
132 struct inet_connection_sock *icsk = inet_csk(sk);
133 const unsigned int lss = icsk->icsk_ack.last_seg_size;
134 unsigned int len;
135
136 icsk->icsk_ack.last_seg_size = 0;
137
138 /* skb->len may jitter because of SACKs, even if peer
139 * sends good full-sized frames.
140 */
141 len = skb_shinfo(skb)->gso_size ? : skb->len;
142 if (len >= icsk->icsk_ack.rcv_mss) {
143 icsk->icsk_ack.rcv_mss = len;
144 } else {
145 /* Otherwise, we make more careful check taking into account,
146 * that SACKs block is variable.
147 *
148 * "len" is invariant segment length, including TCP header.
149 */
150 len += skb->data - skb_transport_header(skb);
151 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
152 /* If PSH is not set, packet should be
153 * full sized, provided peer TCP is not badly broken.
154 * This observation (if it is correct 8)) allows
155 * to handle super-low mtu links fairly.
156 */
157 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
158 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
159 /* Subtract also invariant (if peer is RFC compliant),
160 * tcp header plus fixed timestamp option length.
161 * Resulting "len" is MSS free of SACK jitter.
162 */
163 len -= tcp_sk(sk)->tcp_header_len;
164 icsk->icsk_ack.last_seg_size = len;
165 if (len == lss) {
166 icsk->icsk_ack.rcv_mss = len;
167 return;
168 }
169 }
170 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
172 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
173 }
174 }
175
176 static void tcp_incr_quickack(struct sock *sk)
177 {
178 struct inet_connection_sock *icsk = inet_csk(sk);
179 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
180
181 if (quickacks == 0)
182 quickacks = 2;
183 if (quickacks > icsk->icsk_ack.quick)
184 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185 }
186
187 static void tcp_enter_quickack_mode(struct sock *sk)
188 {
189 struct inet_connection_sock *icsk = inet_csk(sk);
190 tcp_incr_quickack(sk);
191 icsk->icsk_ack.pingpong = 0;
192 icsk->icsk_ack.ato = TCP_ATO_MIN;
193 }
194
195 /* Send ACKs quickly, if "quick" count is not exhausted
196 * and the session is not interactive.
197 */
198
199 static inline bool tcp_in_quickack_mode(const struct sock *sk)
200 {
201 const struct inet_connection_sock *icsk = inet_csk(sk);
202
203 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
204 }
205
206 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
207 {
208 if (tp->ecn_flags & TCP_ECN_OK)
209 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
210 }
211
212 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
213 {
214 if (tcp_hdr(skb)->cwr)
215 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216 }
217
218 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
219 {
220 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
221 }
222
223 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
224 {
225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 case INET_ECN_NOT_ECT:
227 /* Funny extension: if ECT is not set on a segment,
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
230 */
231 if (tp->ecn_flags & TCP_ECN_SEEN)
232 tcp_enter_quickack_mode((struct sock *)tp);
233 break;
234 case INET_ECN_CE:
235 if (tcp_ca_needs_ecn((struct sock *)tp))
236 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
237
238 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
239 /* Better not delay acks, sender can have a very low cwnd */
240 tcp_enter_quickack_mode((struct sock *)tp);
241 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
242 }
243 tp->ecn_flags |= TCP_ECN_SEEN;
244 break;
245 default:
246 if (tcp_ca_needs_ecn((struct sock *)tp))
247 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
248 tp->ecn_flags |= TCP_ECN_SEEN;
249 break;
250 }
251 }
252
253 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
254 {
255 if (tp->ecn_flags & TCP_ECN_OK)
256 __tcp_ecn_check_ce(tp, skb);
257 }
258
259 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
260 {
261 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
262 tp->ecn_flags &= ~TCP_ECN_OK;
263 }
264
265 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
266 {
267 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
268 tp->ecn_flags &= ~TCP_ECN_OK;
269 }
270
271 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
272 {
273 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
274 return true;
275 return false;
276 }
277
278 /* Buffer size and advertised window tuning.
279 *
280 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
281 */
282
283 static void tcp_sndbuf_expand(struct sock *sk)
284 {
285 const struct tcp_sock *tp = tcp_sk(sk);
286 int sndmem, per_mss;
287 u32 nr_segs;
288
289 /* Worst case is non GSO/TSO : each frame consumes one skb
290 * and skb->head is kmalloced using power of two area of memory
291 */
292 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
293 MAX_TCP_HEADER +
294 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
295
296 per_mss = roundup_pow_of_two(per_mss) +
297 SKB_DATA_ALIGN(sizeof(struct sk_buff));
298
299 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
300 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
301
302 /* Fast Recovery (RFC 5681 3.2) :
303 * Cubic needs 1.7 factor, rounded to 2 to include
304 * extra cushion (application might react slowly to POLLOUT)
305 */
306 sndmem = 2 * nr_segs * per_mss;
307
308 if (sk->sk_sndbuf < sndmem)
309 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
310 }
311
312 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
313 *
314 * All tcp_full_space() is split to two parts: "network" buffer, allocated
315 * forward and advertised in receiver window (tp->rcv_wnd) and
316 * "application buffer", required to isolate scheduling/application
317 * latencies from network.
318 * window_clamp is maximal advertised window. It can be less than
319 * tcp_full_space(), in this case tcp_full_space() - window_clamp
320 * is reserved for "application" buffer. The less window_clamp is
321 * the smoother our behaviour from viewpoint of network, but the lower
322 * throughput and the higher sensitivity of the connection to losses. 8)
323 *
324 * rcv_ssthresh is more strict window_clamp used at "slow start"
325 * phase to predict further behaviour of this connection.
326 * It is used for two goals:
327 * - to enforce header prediction at sender, even when application
328 * requires some significant "application buffer". It is check #1.
329 * - to prevent pruning of receive queue because of misprediction
330 * of receiver window. Check #2.
331 *
332 * The scheme does not work when sender sends good segments opening
333 * window and then starts to feed us spaghetti. But it should work
334 * in common situations. Otherwise, we have to rely on queue collapsing.
335 */
336
337 /* Slow part of check#2. */
338 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
339 {
340 struct tcp_sock *tp = tcp_sk(sk);
341 /* Optimize this! */
342 int truesize = tcp_win_from_space(skb->truesize) >> 1;
343 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
344
345 while (tp->rcv_ssthresh <= window) {
346 if (truesize <= skb->len)
347 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
348
349 truesize >>= 1;
350 window >>= 1;
351 }
352 return 0;
353 }
354
355 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
356 {
357 struct tcp_sock *tp = tcp_sk(sk);
358
359 /* Check #1 */
360 if (tp->rcv_ssthresh < tp->window_clamp &&
361 (int)tp->rcv_ssthresh < tcp_space(sk) &&
362 !sk_under_memory_pressure(sk)) {
363 int incr;
364
365 /* Check #2. Increase window, if skb with such overhead
366 * will fit to rcvbuf in future.
367 */
368 if (tcp_win_from_space(skb->truesize) <= skb->len)
369 incr = 2 * tp->advmss;
370 else
371 incr = __tcp_grow_window(sk, skb);
372
373 if (incr) {
374 incr = max_t(int, incr, 2 * skb->len);
375 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
376 tp->window_clamp);
377 inet_csk(sk)->icsk_ack.quick |= 1;
378 }
379 }
380 }
381
382 /* 3. Tuning rcvbuf, when connection enters established state. */
383 static void tcp_fixup_rcvbuf(struct sock *sk)
384 {
385 u32 mss = tcp_sk(sk)->advmss;
386 int rcvmem;
387
388 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
389 tcp_default_init_rwnd(mss);
390
391 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
392 * Allow enough cushion so that sender is not limited by our window
393 */
394 if (sysctl_tcp_moderate_rcvbuf)
395 rcvmem <<= 2;
396
397 if (sk->sk_rcvbuf < rcvmem)
398 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
399 }
400
401 /* 4. Try to fixup all. It is made immediately after connection enters
402 * established state.
403 */
404 void tcp_init_buffer_space(struct sock *sk)
405 {
406 struct tcp_sock *tp = tcp_sk(sk);
407 int maxwin;
408
409 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
410 tcp_fixup_rcvbuf(sk);
411 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
412 tcp_sndbuf_expand(sk);
413
414 tp->rcvq_space.space = tp->rcv_wnd;
415 tp->rcvq_space.time = tcp_time_stamp;
416 tp->rcvq_space.seq = tp->copied_seq;
417
418 maxwin = tcp_full_space(sk);
419
420 if (tp->window_clamp >= maxwin) {
421 tp->window_clamp = maxwin;
422
423 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
424 tp->window_clamp = max(maxwin -
425 (maxwin >> sysctl_tcp_app_win),
426 4 * tp->advmss);
427 }
428
429 /* Force reservation of one segment. */
430 if (sysctl_tcp_app_win &&
431 tp->window_clamp > 2 * tp->advmss &&
432 tp->window_clamp + tp->advmss > maxwin)
433 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
434
435 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
436 tp->snd_cwnd_stamp = tcp_time_stamp;
437 }
438
439 /* 5. Recalculate window clamp after socket hit its memory bounds. */
440 static void tcp_clamp_window(struct sock *sk)
441 {
442 struct tcp_sock *tp = tcp_sk(sk);
443 struct inet_connection_sock *icsk = inet_csk(sk);
444
445 icsk->icsk_ack.quick = 0;
446
447 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
448 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
449 !sk_under_memory_pressure(sk) &&
450 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
451 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
452 sysctl_tcp_rmem[2]);
453 }
454 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
455 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
456 }
457
458 /* Initialize RCV_MSS value.
459 * RCV_MSS is an our guess about MSS used by the peer.
460 * We haven't any direct information about the MSS.
461 * It's better to underestimate the RCV_MSS rather than overestimate.
462 * Overestimations make us ACKing less frequently than needed.
463 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
464 */
465 void tcp_initialize_rcv_mss(struct sock *sk)
466 {
467 const struct tcp_sock *tp = tcp_sk(sk);
468 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
469
470 hint = min(hint, tp->rcv_wnd / 2);
471 hint = min(hint, TCP_MSS_DEFAULT);
472 hint = max(hint, TCP_MIN_MSS);
473
474 inet_csk(sk)->icsk_ack.rcv_mss = hint;
475 }
476 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
477
478 /* Receiver "autotuning" code.
479 *
480 * The algorithm for RTT estimation w/o timestamps is based on
481 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
482 * <http://public.lanl.gov/radiant/pubs.html#DRS>
483 *
484 * More detail on this code can be found at
485 * <http://staff.psc.edu/jheffner/>,
486 * though this reference is out of date. A new paper
487 * is pending.
488 */
489 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
490 {
491 u32 new_sample = tp->rcv_rtt_est.rtt;
492 long m = sample;
493
494 if (m == 0)
495 m = 1;
496
497 if (new_sample != 0) {
498 /* If we sample in larger samples in the non-timestamp
499 * case, we could grossly overestimate the RTT especially
500 * with chatty applications or bulk transfer apps which
501 * are stalled on filesystem I/O.
502 *
503 * Also, since we are only going for a minimum in the
504 * non-timestamp case, we do not smooth things out
505 * else with timestamps disabled convergence takes too
506 * long.
507 */
508 if (!win_dep) {
509 m -= (new_sample >> 3);
510 new_sample += m;
511 } else {
512 m <<= 3;
513 if (m < new_sample)
514 new_sample = m;
515 }
516 } else {
517 /* No previous measure. */
518 new_sample = m << 3;
519 }
520
521 if (tp->rcv_rtt_est.rtt != new_sample)
522 tp->rcv_rtt_est.rtt = new_sample;
523 }
524
525 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
526 {
527 if (tp->rcv_rtt_est.time == 0)
528 goto new_measure;
529 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
530 return;
531 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
532
533 new_measure:
534 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
535 tp->rcv_rtt_est.time = tcp_time_stamp;
536 }
537
538 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
539 const struct sk_buff *skb)
540 {
541 struct tcp_sock *tp = tcp_sk(sk);
542 if (tp->rx_opt.rcv_tsecr &&
543 (TCP_SKB_CB(skb)->end_seq -
544 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
545 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
546 }
547
548 /*
549 * This function should be called every time data is copied to user space.
550 * It calculates the appropriate TCP receive buffer space.
551 */
552 void tcp_rcv_space_adjust(struct sock *sk)
553 {
554 struct tcp_sock *tp = tcp_sk(sk);
555 int time;
556 int copied;
557
558 time = tcp_time_stamp - tp->rcvq_space.time;
559 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
560 return;
561
562 /* Number of bytes copied to user in last RTT */
563 copied = tp->copied_seq - tp->rcvq_space.seq;
564 if (copied <= tp->rcvq_space.space)
565 goto new_measure;
566
567 /* A bit of theory :
568 * copied = bytes received in previous RTT, our base window
569 * To cope with packet losses, we need a 2x factor
570 * To cope with slow start, and sender growing its cwin by 100 %
571 * every RTT, we need a 4x factor, because the ACK we are sending
572 * now is for the next RTT, not the current one :
573 * <prev RTT . ><current RTT .. ><next RTT .... >
574 */
575
576 if (sysctl_tcp_moderate_rcvbuf &&
577 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
578 int rcvwin, rcvmem, rcvbuf;
579
580 /* minimal window to cope with packet losses, assuming
581 * steady state. Add some cushion because of small variations.
582 */
583 rcvwin = (copied << 1) + 16 * tp->advmss;
584
585 /* If rate increased by 25%,
586 * assume slow start, rcvwin = 3 * copied
587 * If rate increased by 50%,
588 * assume sender can use 2x growth, rcvwin = 4 * copied
589 */
590 if (copied >=
591 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
592 if (copied >=
593 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
594 rcvwin <<= 1;
595 else
596 rcvwin += (rcvwin >> 1);
597 }
598
599 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
600 while (tcp_win_from_space(rcvmem) < tp->advmss)
601 rcvmem += 128;
602
603 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
604 if (rcvbuf > sk->sk_rcvbuf) {
605 sk->sk_rcvbuf = rcvbuf;
606
607 /* Make the window clamp follow along. */
608 tp->window_clamp = rcvwin;
609 }
610 }
611 tp->rcvq_space.space = copied;
612
613 new_measure:
614 tp->rcvq_space.seq = tp->copied_seq;
615 tp->rcvq_space.time = tcp_time_stamp;
616 }
617
618 /* There is something which you must keep in mind when you analyze the
619 * behavior of the tp->ato delayed ack timeout interval. When a
620 * connection starts up, we want to ack as quickly as possible. The
621 * problem is that "good" TCP's do slow start at the beginning of data
622 * transmission. The means that until we send the first few ACK's the
623 * sender will sit on his end and only queue most of his data, because
624 * he can only send snd_cwnd unacked packets at any given time. For
625 * each ACK we send, he increments snd_cwnd and transmits more of his
626 * queue. -DaveM
627 */
628 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
629 {
630 struct tcp_sock *tp = tcp_sk(sk);
631 struct inet_connection_sock *icsk = inet_csk(sk);
632 u32 now;
633
634 inet_csk_schedule_ack(sk);
635
636 tcp_measure_rcv_mss(sk, skb);
637
638 tcp_rcv_rtt_measure(tp);
639
640 now = tcp_time_stamp;
641
642 if (!icsk->icsk_ack.ato) {
643 /* The _first_ data packet received, initialize
644 * delayed ACK engine.
645 */
646 tcp_incr_quickack(sk);
647 icsk->icsk_ack.ato = TCP_ATO_MIN;
648 } else {
649 int m = now - icsk->icsk_ack.lrcvtime;
650
651 if (m <= TCP_ATO_MIN / 2) {
652 /* The fastest case is the first. */
653 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
654 } else if (m < icsk->icsk_ack.ato) {
655 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
656 if (icsk->icsk_ack.ato > icsk->icsk_rto)
657 icsk->icsk_ack.ato = icsk->icsk_rto;
658 } else if (m > icsk->icsk_rto) {
659 /* Too long gap. Apparently sender failed to
660 * restart window, so that we send ACKs quickly.
661 */
662 tcp_incr_quickack(sk);
663 sk_mem_reclaim(sk);
664 }
665 }
666 icsk->icsk_ack.lrcvtime = now;
667
668 tcp_ecn_check_ce(tp, skb);
669
670 if (skb->len >= 128)
671 tcp_grow_window(sk, skb);
672 }
673
674 /* Called to compute a smoothed rtt estimate. The data fed to this
675 * routine either comes from timestamps, or from segments that were
676 * known _not_ to have been retransmitted [see Karn/Partridge
677 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
678 * piece by Van Jacobson.
679 * NOTE: the next three routines used to be one big routine.
680 * To save cycles in the RFC 1323 implementation it was better to break
681 * it up into three procedures. -- erics
682 */
683 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
684 {
685 struct tcp_sock *tp = tcp_sk(sk);
686 long m = mrtt_us; /* RTT */
687 u32 srtt = tp->srtt_us;
688
689 /* The following amusing code comes from Jacobson's
690 * article in SIGCOMM '88. Note that rtt and mdev
691 * are scaled versions of rtt and mean deviation.
692 * This is designed to be as fast as possible
693 * m stands for "measurement".
694 *
695 * On a 1990 paper the rto value is changed to:
696 * RTO = rtt + 4 * mdev
697 *
698 * Funny. This algorithm seems to be very broken.
699 * These formulae increase RTO, when it should be decreased, increase
700 * too slowly, when it should be increased quickly, decrease too quickly
701 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
702 * does not matter how to _calculate_ it. Seems, it was trap
703 * that VJ failed to avoid. 8)
704 */
705 if (srtt != 0) {
706 m -= (srtt >> 3); /* m is now error in rtt est */
707 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
708 if (m < 0) {
709 m = -m; /* m is now abs(error) */
710 m -= (tp->mdev_us >> 2); /* similar update on mdev */
711 /* This is similar to one of Eifel findings.
712 * Eifel blocks mdev updates when rtt decreases.
713 * This solution is a bit different: we use finer gain
714 * for mdev in this case (alpha*beta).
715 * Like Eifel it also prevents growth of rto,
716 * but also it limits too fast rto decreases,
717 * happening in pure Eifel.
718 */
719 if (m > 0)
720 m >>= 3;
721 } else {
722 m -= (tp->mdev_us >> 2); /* similar update on mdev */
723 }
724 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
725 if (tp->mdev_us > tp->mdev_max_us) {
726 tp->mdev_max_us = tp->mdev_us;
727 if (tp->mdev_max_us > tp->rttvar_us)
728 tp->rttvar_us = tp->mdev_max_us;
729 }
730 if (after(tp->snd_una, tp->rtt_seq)) {
731 if (tp->mdev_max_us < tp->rttvar_us)
732 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
733 tp->rtt_seq = tp->snd_nxt;
734 tp->mdev_max_us = tcp_rto_min_us(sk);
735 }
736 } else {
737 /* no previous measure. */
738 srtt = m << 3; /* take the measured time to be rtt */
739 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
740 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
741 tp->mdev_max_us = tp->rttvar_us;
742 tp->rtt_seq = tp->snd_nxt;
743 }
744 tp->srtt_us = max(1U, srtt);
745 }
746
747 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
748 * Note: TCP stack does not yet implement pacing.
749 * FQ packet scheduler can be used to implement cheap but effective
750 * TCP pacing, to smooth the burst on large writes when packets
751 * in flight is significantly lower than cwnd (or rwin)
752 */
753 static void tcp_update_pacing_rate(struct sock *sk)
754 {
755 const struct tcp_sock *tp = tcp_sk(sk);
756 u64 rate;
757
758 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
759 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
760
761 rate *= max(tp->snd_cwnd, tp->packets_out);
762
763 if (likely(tp->srtt_us))
764 do_div(rate, tp->srtt_us);
765
766 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
767 * without any lock. We want to make sure compiler wont store
768 * intermediate values in this location.
769 */
770 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
771 sk->sk_max_pacing_rate);
772 }
773
774 /* Calculate rto without backoff. This is the second half of Van Jacobson's
775 * routine referred to above.
776 */
777 static void tcp_set_rto(struct sock *sk)
778 {
779 const struct tcp_sock *tp = tcp_sk(sk);
780 /* Old crap is replaced with new one. 8)
781 *
782 * More seriously:
783 * 1. If rtt variance happened to be less 50msec, it is hallucination.
784 * It cannot be less due to utterly erratic ACK generation made
785 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
786 * to do with delayed acks, because at cwnd>2 true delack timeout
787 * is invisible. Actually, Linux-2.4 also generates erratic
788 * ACKs in some circumstances.
789 */
790 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
791
792 /* 2. Fixups made earlier cannot be right.
793 * If we do not estimate RTO correctly without them,
794 * all the algo is pure shit and should be replaced
795 * with correct one. It is exactly, which we pretend to do.
796 */
797
798 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
799 * guarantees that rto is higher.
800 */
801 tcp_bound_rto(sk);
802 }
803
804 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
805 {
806 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
807
808 if (!cwnd)
809 cwnd = TCP_INIT_CWND;
810 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
811 }
812
813 /*
814 * Packet counting of FACK is based on in-order assumptions, therefore TCP
815 * disables it when reordering is detected
816 */
817 void tcp_disable_fack(struct tcp_sock *tp)
818 {
819 /* RFC3517 uses different metric in lost marker => reset on change */
820 if (tcp_is_fack(tp))
821 tp->lost_skb_hint = NULL;
822 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
823 }
824
825 /* Take a notice that peer is sending D-SACKs */
826 static void tcp_dsack_seen(struct tcp_sock *tp)
827 {
828 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
829 }
830
831 static void tcp_update_reordering(struct sock *sk, const int metric,
832 const int ts)
833 {
834 struct tcp_sock *tp = tcp_sk(sk);
835 if (metric > tp->reordering) {
836 int mib_idx;
837
838 tp->reordering = min(sysctl_tcp_max_reordering, metric);
839
840 /* This exciting event is worth to be remembered. 8) */
841 if (ts)
842 mib_idx = LINUX_MIB_TCPTSREORDER;
843 else if (tcp_is_reno(tp))
844 mib_idx = LINUX_MIB_TCPRENOREORDER;
845 else if (tcp_is_fack(tp))
846 mib_idx = LINUX_MIB_TCPFACKREORDER;
847 else
848 mib_idx = LINUX_MIB_TCPSACKREORDER;
849
850 NET_INC_STATS_BH(sock_net(sk), mib_idx);
851 #if FASTRETRANS_DEBUG > 1
852 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
853 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
854 tp->reordering,
855 tp->fackets_out,
856 tp->sacked_out,
857 tp->undo_marker ? tp->undo_retrans : 0);
858 #endif
859 tcp_disable_fack(tp);
860 }
861
862 if (metric > 0)
863 tcp_disable_early_retrans(tp);
864 }
865
866 /* This must be called before lost_out is incremented */
867 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
868 {
869 if (!tp->retransmit_skb_hint ||
870 before(TCP_SKB_CB(skb)->seq,
871 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
872 tp->retransmit_skb_hint = skb;
873
874 if (!tp->lost_out ||
875 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
876 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
877 }
878
879 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
880 {
881 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
882 tcp_verify_retransmit_hint(tp, skb);
883
884 tp->lost_out += tcp_skb_pcount(skb);
885 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
886 }
887 }
888
889 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
890 struct sk_buff *skb)
891 {
892 tcp_verify_retransmit_hint(tp, skb);
893
894 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
895 tp->lost_out += tcp_skb_pcount(skb);
896 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
897 }
898 }
899
900 /* This procedure tags the retransmission queue when SACKs arrive.
901 *
902 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
903 * Packets in queue with these bits set are counted in variables
904 * sacked_out, retrans_out and lost_out, correspondingly.
905 *
906 * Valid combinations are:
907 * Tag InFlight Description
908 * 0 1 - orig segment is in flight.
909 * S 0 - nothing flies, orig reached receiver.
910 * L 0 - nothing flies, orig lost by net.
911 * R 2 - both orig and retransmit are in flight.
912 * L|R 1 - orig is lost, retransmit is in flight.
913 * S|R 1 - orig reached receiver, retrans is still in flight.
914 * (L|S|R is logically valid, it could occur when L|R is sacked,
915 * but it is equivalent to plain S and code short-curcuits it to S.
916 * L|S is logically invalid, it would mean -1 packet in flight 8))
917 *
918 * These 6 states form finite state machine, controlled by the following events:
919 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
920 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
921 * 3. Loss detection event of two flavors:
922 * A. Scoreboard estimator decided the packet is lost.
923 * A'. Reno "three dupacks" marks head of queue lost.
924 * A''. Its FACK modification, head until snd.fack is lost.
925 * B. SACK arrives sacking SND.NXT at the moment, when the
926 * segment was retransmitted.
927 * 4. D-SACK added new rule: D-SACK changes any tag to S.
928 *
929 * It is pleasant to note, that state diagram turns out to be commutative,
930 * so that we are allowed not to be bothered by order of our actions,
931 * when multiple events arrive simultaneously. (see the function below).
932 *
933 * Reordering detection.
934 * --------------------
935 * Reordering metric is maximal distance, which a packet can be displaced
936 * in packet stream. With SACKs we can estimate it:
937 *
938 * 1. SACK fills old hole and the corresponding segment was not
939 * ever retransmitted -> reordering. Alas, we cannot use it
940 * when segment was retransmitted.
941 * 2. The last flaw is solved with D-SACK. D-SACK arrives
942 * for retransmitted and already SACKed segment -> reordering..
943 * Both of these heuristics are not used in Loss state, when we cannot
944 * account for retransmits accurately.
945 *
946 * SACK block validation.
947 * ----------------------
948 *
949 * SACK block range validation checks that the received SACK block fits to
950 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
951 * Note that SND.UNA is not included to the range though being valid because
952 * it means that the receiver is rather inconsistent with itself reporting
953 * SACK reneging when it should advance SND.UNA. Such SACK block this is
954 * perfectly valid, however, in light of RFC2018 which explicitly states
955 * that "SACK block MUST reflect the newest segment. Even if the newest
956 * segment is going to be discarded ...", not that it looks very clever
957 * in case of head skb. Due to potentional receiver driven attacks, we
958 * choose to avoid immediate execution of a walk in write queue due to
959 * reneging and defer head skb's loss recovery to standard loss recovery
960 * procedure that will eventually trigger (nothing forbids us doing this).
961 *
962 * Implements also blockage to start_seq wrap-around. Problem lies in the
963 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
964 * there's no guarantee that it will be before snd_nxt (n). The problem
965 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
966 * wrap (s_w):
967 *
968 * <- outs wnd -> <- wrapzone ->
969 * u e n u_w e_w s n_w
970 * | | | | | | |
971 * |<------------+------+----- TCP seqno space --------------+---------->|
972 * ...-- <2^31 ->| |<--------...
973 * ...---- >2^31 ------>| |<--------...
974 *
975 * Current code wouldn't be vulnerable but it's better still to discard such
976 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
977 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
978 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
979 * equal to the ideal case (infinite seqno space without wrap caused issues).
980 *
981 * With D-SACK the lower bound is extended to cover sequence space below
982 * SND.UNA down to undo_marker, which is the last point of interest. Yet
983 * again, D-SACK block must not to go across snd_una (for the same reason as
984 * for the normal SACK blocks, explained above). But there all simplicity
985 * ends, TCP might receive valid D-SACKs below that. As long as they reside
986 * fully below undo_marker they do not affect behavior in anyway and can
987 * therefore be safely ignored. In rare cases (which are more or less
988 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
989 * fragmentation and packet reordering past skb's retransmission. To consider
990 * them correctly, the acceptable range must be extended even more though
991 * the exact amount is rather hard to quantify. However, tp->max_window can
992 * be used as an exaggerated estimate.
993 */
994 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
995 u32 start_seq, u32 end_seq)
996 {
997 /* Too far in future, or reversed (interpretation is ambiguous) */
998 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
999 return false;
1000
1001 /* Nasty start_seq wrap-around check (see comments above) */
1002 if (!before(start_seq, tp->snd_nxt))
1003 return false;
1004
1005 /* In outstanding window? ...This is valid exit for D-SACKs too.
1006 * start_seq == snd_una is non-sensical (see comments above)
1007 */
1008 if (after(start_seq, tp->snd_una))
1009 return true;
1010
1011 if (!is_dsack || !tp->undo_marker)
1012 return false;
1013
1014 /* ...Then it's D-SACK, and must reside below snd_una completely */
1015 if (after(end_seq, tp->snd_una))
1016 return false;
1017
1018 if (!before(start_seq, tp->undo_marker))
1019 return true;
1020
1021 /* Too old */
1022 if (!after(end_seq, tp->undo_marker))
1023 return false;
1024
1025 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1026 * start_seq < undo_marker and end_seq >= undo_marker.
1027 */
1028 return !before(start_seq, end_seq - tp->max_window);
1029 }
1030
1031 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1032 * Event "B". Later note: FACK people cheated me again 8), we have to account
1033 * for reordering! Ugly, but should help.
1034 *
1035 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1036 * less than what is now known to be received by the other end (derived from
1037 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1038 * retransmitted skbs to avoid some costly processing per ACKs.
1039 */
1040 static void tcp_mark_lost_retrans(struct sock *sk)
1041 {
1042 const struct inet_connection_sock *icsk = inet_csk(sk);
1043 struct tcp_sock *tp = tcp_sk(sk);
1044 struct sk_buff *skb;
1045 int cnt = 0;
1046 u32 new_low_seq = tp->snd_nxt;
1047 u32 received_upto = tcp_highest_sack_seq(tp);
1048
1049 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1050 !after(received_upto, tp->lost_retrans_low) ||
1051 icsk->icsk_ca_state != TCP_CA_Recovery)
1052 return;
1053
1054 tcp_for_write_queue(skb, sk) {
1055 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1056
1057 if (skb == tcp_send_head(sk))
1058 break;
1059 if (cnt == tp->retrans_out)
1060 break;
1061 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1062 continue;
1063
1064 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1065 continue;
1066
1067 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1068 * constraint here (see above) but figuring out that at
1069 * least tp->reordering SACK blocks reside between ack_seq
1070 * and received_upto is not easy task to do cheaply with
1071 * the available datastructures.
1072 *
1073 * Whether FACK should check here for tp->reordering segs
1074 * in-between one could argue for either way (it would be
1075 * rather simple to implement as we could count fack_count
1076 * during the walk and do tp->fackets_out - fack_count).
1077 */
1078 if (after(received_upto, ack_seq)) {
1079 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1080 tp->retrans_out -= tcp_skb_pcount(skb);
1081
1082 tcp_skb_mark_lost_uncond_verify(tp, skb);
1083 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1084 } else {
1085 if (before(ack_seq, new_low_seq))
1086 new_low_seq = ack_seq;
1087 cnt += tcp_skb_pcount(skb);
1088 }
1089 }
1090
1091 if (tp->retrans_out)
1092 tp->lost_retrans_low = new_low_seq;
1093 }
1094
1095 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1096 struct tcp_sack_block_wire *sp, int num_sacks,
1097 u32 prior_snd_una)
1098 {
1099 struct tcp_sock *tp = tcp_sk(sk);
1100 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1101 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1102 bool dup_sack = false;
1103
1104 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1105 dup_sack = true;
1106 tcp_dsack_seen(tp);
1107 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1108 } else if (num_sacks > 1) {
1109 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1110 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1111
1112 if (!after(end_seq_0, end_seq_1) &&
1113 !before(start_seq_0, start_seq_1)) {
1114 dup_sack = true;
1115 tcp_dsack_seen(tp);
1116 NET_INC_STATS_BH(sock_net(sk),
1117 LINUX_MIB_TCPDSACKOFORECV);
1118 }
1119 }
1120
1121 /* D-SACK for already forgotten data... Do dumb counting. */
1122 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1123 !after(end_seq_0, prior_snd_una) &&
1124 after(end_seq_0, tp->undo_marker))
1125 tp->undo_retrans--;
1126
1127 return dup_sack;
1128 }
1129
1130 struct tcp_sacktag_state {
1131 int reord;
1132 int fack_count;
1133 long rtt_us; /* RTT measured by SACKing never-retransmitted data */
1134 int flag;
1135 };
1136
1137 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1138 * the incoming SACK may not exactly match but we can find smaller MSS
1139 * aligned portion of it that matches. Therefore we might need to fragment
1140 * which may fail and creates some hassle (caller must handle error case
1141 * returns).
1142 *
1143 * FIXME: this could be merged to shift decision code
1144 */
1145 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1146 u32 start_seq, u32 end_seq)
1147 {
1148 int err;
1149 bool in_sack;
1150 unsigned int pkt_len;
1151 unsigned int mss;
1152
1153 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1154 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1155
1156 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1157 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1158 mss = tcp_skb_mss(skb);
1159 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1160
1161 if (!in_sack) {
1162 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1163 if (pkt_len < mss)
1164 pkt_len = mss;
1165 } else {
1166 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1167 if (pkt_len < mss)
1168 return -EINVAL;
1169 }
1170
1171 /* Round if necessary so that SACKs cover only full MSSes
1172 * and/or the remaining small portion (if present)
1173 */
1174 if (pkt_len > mss) {
1175 unsigned int new_len = (pkt_len / mss) * mss;
1176 if (!in_sack && new_len < pkt_len) {
1177 new_len += mss;
1178 if (new_len >= skb->len)
1179 return 0;
1180 }
1181 pkt_len = new_len;
1182 }
1183 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1184 if (err < 0)
1185 return err;
1186 }
1187
1188 return in_sack;
1189 }
1190
1191 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1192 static u8 tcp_sacktag_one(struct sock *sk,
1193 struct tcp_sacktag_state *state, u8 sacked,
1194 u32 start_seq, u32 end_seq,
1195 int dup_sack, int pcount,
1196 const struct skb_mstamp *xmit_time)
1197 {
1198 struct tcp_sock *tp = tcp_sk(sk);
1199 int fack_count = state->fack_count;
1200
1201 /* Account D-SACK for retransmitted packet. */
1202 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1203 if (tp->undo_marker && tp->undo_retrans > 0 &&
1204 after(end_seq, tp->undo_marker))
1205 tp->undo_retrans--;
1206 if (sacked & TCPCB_SACKED_ACKED)
1207 state->reord = min(fack_count, state->reord);
1208 }
1209
1210 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1211 if (!after(end_seq, tp->snd_una))
1212 return sacked;
1213
1214 if (!(sacked & TCPCB_SACKED_ACKED)) {
1215 if (sacked & TCPCB_SACKED_RETRANS) {
1216 /* If the segment is not tagged as lost,
1217 * we do not clear RETRANS, believing
1218 * that retransmission is still in flight.
1219 */
1220 if (sacked & TCPCB_LOST) {
1221 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1222 tp->lost_out -= pcount;
1223 tp->retrans_out -= pcount;
1224 }
1225 } else {
1226 if (!(sacked & TCPCB_RETRANS)) {
1227 /* New sack for not retransmitted frame,
1228 * which was in hole. It is reordering.
1229 */
1230 if (before(start_seq,
1231 tcp_highest_sack_seq(tp)))
1232 state->reord = min(fack_count,
1233 state->reord);
1234 if (!after(end_seq, tp->high_seq))
1235 state->flag |= FLAG_ORIG_SACK_ACKED;
1236 /* Pick the earliest sequence sacked for RTT */
1237 if (state->rtt_us < 0) {
1238 struct skb_mstamp now;
1239
1240 skb_mstamp_get(&now);
1241 state->rtt_us = skb_mstamp_us_delta(&now,
1242 xmit_time);
1243 }
1244 }
1245
1246 if (sacked & TCPCB_LOST) {
1247 sacked &= ~TCPCB_LOST;
1248 tp->lost_out -= pcount;
1249 }
1250 }
1251
1252 sacked |= TCPCB_SACKED_ACKED;
1253 state->flag |= FLAG_DATA_SACKED;
1254 tp->sacked_out += pcount;
1255
1256 fack_count += pcount;
1257
1258 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1259 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1260 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1261 tp->lost_cnt_hint += pcount;
1262
1263 if (fack_count > tp->fackets_out)
1264 tp->fackets_out = fack_count;
1265 }
1266
1267 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1268 * frames and clear it. undo_retrans is decreased above, L|R frames
1269 * are accounted above as well.
1270 */
1271 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1272 sacked &= ~TCPCB_SACKED_RETRANS;
1273 tp->retrans_out -= pcount;
1274 }
1275
1276 return sacked;
1277 }
1278
1279 /* Shift newly-SACKed bytes from this skb to the immediately previous
1280 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1281 */
1282 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1283 struct tcp_sacktag_state *state,
1284 unsigned int pcount, int shifted, int mss,
1285 bool dup_sack)
1286 {
1287 struct tcp_sock *tp = tcp_sk(sk);
1288 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1289 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1290 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1291
1292 BUG_ON(!pcount);
1293
1294 /* Adjust counters and hints for the newly sacked sequence
1295 * range but discard the return value since prev is already
1296 * marked. We must tag the range first because the seq
1297 * advancement below implicitly advances
1298 * tcp_highest_sack_seq() when skb is highest_sack.
1299 */
1300 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1301 start_seq, end_seq, dup_sack, pcount,
1302 &skb->skb_mstamp);
1303
1304 if (skb == tp->lost_skb_hint)
1305 tp->lost_cnt_hint += pcount;
1306
1307 TCP_SKB_CB(prev)->end_seq += shifted;
1308 TCP_SKB_CB(skb)->seq += shifted;
1309
1310 tcp_skb_pcount_add(prev, pcount);
1311 BUG_ON(tcp_skb_pcount(skb) < pcount);
1312 tcp_skb_pcount_add(skb, -pcount);
1313
1314 /* When we're adding to gso_segs == 1, gso_size will be zero,
1315 * in theory this shouldn't be necessary but as long as DSACK
1316 * code can come after this skb later on it's better to keep
1317 * setting gso_size to something.
1318 */
1319 if (!skb_shinfo(prev)->gso_size) {
1320 skb_shinfo(prev)->gso_size = mss;
1321 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1322 }
1323
1324 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1325 if (tcp_skb_pcount(skb) <= 1) {
1326 skb_shinfo(skb)->gso_size = 0;
1327 skb_shinfo(skb)->gso_type = 0;
1328 }
1329
1330 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1331 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1332
1333 if (skb->len > 0) {
1334 BUG_ON(!tcp_skb_pcount(skb));
1335 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1336 return false;
1337 }
1338
1339 /* Whole SKB was eaten :-) */
1340
1341 if (skb == tp->retransmit_skb_hint)
1342 tp->retransmit_skb_hint = prev;
1343 if (skb == tp->lost_skb_hint) {
1344 tp->lost_skb_hint = prev;
1345 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1346 }
1347
1348 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1349 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1350 TCP_SKB_CB(prev)->end_seq++;
1351
1352 if (skb == tcp_highest_sack(sk))
1353 tcp_advance_highest_sack(sk, skb);
1354
1355 tcp_unlink_write_queue(skb, sk);
1356 sk_wmem_free_skb(sk, skb);
1357
1358 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1359
1360 return true;
1361 }
1362
1363 /* I wish gso_size would have a bit more sane initialization than
1364 * something-or-zero which complicates things
1365 */
1366 static int tcp_skb_seglen(const struct sk_buff *skb)
1367 {
1368 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1369 }
1370
1371 /* Shifting pages past head area doesn't work */
1372 static int skb_can_shift(const struct sk_buff *skb)
1373 {
1374 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1375 }
1376
1377 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1378 * skb.
1379 */
1380 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1381 struct tcp_sacktag_state *state,
1382 u32 start_seq, u32 end_seq,
1383 bool dup_sack)
1384 {
1385 struct tcp_sock *tp = tcp_sk(sk);
1386 struct sk_buff *prev;
1387 int mss;
1388 int pcount = 0;
1389 int len;
1390 int in_sack;
1391
1392 if (!sk_can_gso(sk))
1393 goto fallback;
1394
1395 /* Normally R but no L won't result in plain S */
1396 if (!dup_sack &&
1397 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1398 goto fallback;
1399 if (!skb_can_shift(skb))
1400 goto fallback;
1401 /* This frame is about to be dropped (was ACKed). */
1402 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1403 goto fallback;
1404
1405 /* Can only happen with delayed DSACK + discard craziness */
1406 if (unlikely(skb == tcp_write_queue_head(sk)))
1407 goto fallback;
1408 prev = tcp_write_queue_prev(sk, skb);
1409
1410 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1411 goto fallback;
1412
1413 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1414 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1415
1416 if (in_sack) {
1417 len = skb->len;
1418 pcount = tcp_skb_pcount(skb);
1419 mss = tcp_skb_seglen(skb);
1420
1421 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1422 * drop this restriction as unnecessary
1423 */
1424 if (mss != tcp_skb_seglen(prev))
1425 goto fallback;
1426 } else {
1427 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1428 goto noop;
1429 /* CHECKME: This is non-MSS split case only?, this will
1430 * cause skipped skbs due to advancing loop btw, original
1431 * has that feature too
1432 */
1433 if (tcp_skb_pcount(skb) <= 1)
1434 goto noop;
1435
1436 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1437 if (!in_sack) {
1438 /* TODO: head merge to next could be attempted here
1439 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1440 * though it might not be worth of the additional hassle
1441 *
1442 * ...we can probably just fallback to what was done
1443 * previously. We could try merging non-SACKed ones
1444 * as well but it probably isn't going to buy off
1445 * because later SACKs might again split them, and
1446 * it would make skb timestamp tracking considerably
1447 * harder problem.
1448 */
1449 goto fallback;
1450 }
1451
1452 len = end_seq - TCP_SKB_CB(skb)->seq;
1453 BUG_ON(len < 0);
1454 BUG_ON(len > skb->len);
1455
1456 /* MSS boundaries should be honoured or else pcount will
1457 * severely break even though it makes things bit trickier.
1458 * Optimize common case to avoid most of the divides
1459 */
1460 mss = tcp_skb_mss(skb);
1461
1462 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1463 * drop this restriction as unnecessary
1464 */
1465 if (mss != tcp_skb_seglen(prev))
1466 goto fallback;
1467
1468 if (len == mss) {
1469 pcount = 1;
1470 } else if (len < mss) {
1471 goto noop;
1472 } else {
1473 pcount = len / mss;
1474 len = pcount * mss;
1475 }
1476 }
1477
1478 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1479 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1480 goto fallback;
1481
1482 if (!skb_shift(prev, skb, len))
1483 goto fallback;
1484 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1485 goto out;
1486
1487 /* Hole filled allows collapsing with the next as well, this is very
1488 * useful when hole on every nth skb pattern happens
1489 */
1490 if (prev == tcp_write_queue_tail(sk))
1491 goto out;
1492 skb = tcp_write_queue_next(sk, prev);
1493
1494 if (!skb_can_shift(skb) ||
1495 (skb == tcp_send_head(sk)) ||
1496 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1497 (mss != tcp_skb_seglen(skb)))
1498 goto out;
1499
1500 len = skb->len;
1501 if (skb_shift(prev, skb, len)) {
1502 pcount += tcp_skb_pcount(skb);
1503 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1504 }
1505
1506 out:
1507 state->fack_count += pcount;
1508 return prev;
1509
1510 noop:
1511 return skb;
1512
1513 fallback:
1514 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1515 return NULL;
1516 }
1517
1518 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1519 struct tcp_sack_block *next_dup,
1520 struct tcp_sacktag_state *state,
1521 u32 start_seq, u32 end_seq,
1522 bool dup_sack_in)
1523 {
1524 struct tcp_sock *tp = tcp_sk(sk);
1525 struct sk_buff *tmp;
1526
1527 tcp_for_write_queue_from(skb, sk) {
1528 int in_sack = 0;
1529 bool dup_sack = dup_sack_in;
1530
1531 if (skb == tcp_send_head(sk))
1532 break;
1533
1534 /* queue is in-order => we can short-circuit the walk early */
1535 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1536 break;
1537
1538 if (next_dup &&
1539 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1540 in_sack = tcp_match_skb_to_sack(sk, skb,
1541 next_dup->start_seq,
1542 next_dup->end_seq);
1543 if (in_sack > 0)
1544 dup_sack = true;
1545 }
1546
1547 /* skb reference here is a bit tricky to get right, since
1548 * shifting can eat and free both this skb and the next,
1549 * so not even _safe variant of the loop is enough.
1550 */
1551 if (in_sack <= 0) {
1552 tmp = tcp_shift_skb_data(sk, skb, state,
1553 start_seq, end_seq, dup_sack);
1554 if (tmp) {
1555 if (tmp != skb) {
1556 skb = tmp;
1557 continue;
1558 }
1559
1560 in_sack = 0;
1561 } else {
1562 in_sack = tcp_match_skb_to_sack(sk, skb,
1563 start_seq,
1564 end_seq);
1565 }
1566 }
1567
1568 if (unlikely(in_sack < 0))
1569 break;
1570
1571 if (in_sack) {
1572 TCP_SKB_CB(skb)->sacked =
1573 tcp_sacktag_one(sk,
1574 state,
1575 TCP_SKB_CB(skb)->sacked,
1576 TCP_SKB_CB(skb)->seq,
1577 TCP_SKB_CB(skb)->end_seq,
1578 dup_sack,
1579 tcp_skb_pcount(skb),
1580 &skb->skb_mstamp);
1581
1582 if (!before(TCP_SKB_CB(skb)->seq,
1583 tcp_highest_sack_seq(tp)))
1584 tcp_advance_highest_sack(sk, skb);
1585 }
1586
1587 state->fack_count += tcp_skb_pcount(skb);
1588 }
1589 return skb;
1590 }
1591
1592 /* Avoid all extra work that is being done by sacktag while walking in
1593 * a normal way
1594 */
1595 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1596 struct tcp_sacktag_state *state,
1597 u32 skip_to_seq)
1598 {
1599 tcp_for_write_queue_from(skb, sk) {
1600 if (skb == tcp_send_head(sk))
1601 break;
1602
1603 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1604 break;
1605
1606 state->fack_count += tcp_skb_pcount(skb);
1607 }
1608 return skb;
1609 }
1610
1611 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1612 struct sock *sk,
1613 struct tcp_sack_block *next_dup,
1614 struct tcp_sacktag_state *state,
1615 u32 skip_to_seq)
1616 {
1617 if (!next_dup)
1618 return skb;
1619
1620 if (before(next_dup->start_seq, skip_to_seq)) {
1621 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1622 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1623 next_dup->start_seq, next_dup->end_seq,
1624 1);
1625 }
1626
1627 return skb;
1628 }
1629
1630 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1631 {
1632 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1633 }
1634
1635 static int
1636 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1637 u32 prior_snd_una, long *sack_rtt_us)
1638 {
1639 struct tcp_sock *tp = tcp_sk(sk);
1640 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1641 TCP_SKB_CB(ack_skb)->sacked);
1642 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1643 struct tcp_sack_block sp[TCP_NUM_SACKS];
1644 struct tcp_sack_block *cache;
1645 struct tcp_sacktag_state state;
1646 struct sk_buff *skb;
1647 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1648 int used_sacks;
1649 bool found_dup_sack = false;
1650 int i, j;
1651 int first_sack_index;
1652
1653 state.flag = 0;
1654 state.reord = tp->packets_out;
1655 state.rtt_us = -1L;
1656
1657 if (!tp->sacked_out) {
1658 if (WARN_ON(tp->fackets_out))
1659 tp->fackets_out = 0;
1660 tcp_highest_sack_reset(sk);
1661 }
1662
1663 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1664 num_sacks, prior_snd_una);
1665 if (found_dup_sack)
1666 state.flag |= FLAG_DSACKING_ACK;
1667
1668 /* Eliminate too old ACKs, but take into
1669 * account more or less fresh ones, they can
1670 * contain valid SACK info.
1671 */
1672 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1673 return 0;
1674
1675 if (!tp->packets_out)
1676 goto out;
1677
1678 used_sacks = 0;
1679 first_sack_index = 0;
1680 for (i = 0; i < num_sacks; i++) {
1681 bool dup_sack = !i && found_dup_sack;
1682
1683 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1684 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1685
1686 if (!tcp_is_sackblock_valid(tp, dup_sack,
1687 sp[used_sacks].start_seq,
1688 sp[used_sacks].end_seq)) {
1689 int mib_idx;
1690
1691 if (dup_sack) {
1692 if (!tp->undo_marker)
1693 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1694 else
1695 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1696 } else {
1697 /* Don't count olds caused by ACK reordering */
1698 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1699 !after(sp[used_sacks].end_seq, tp->snd_una))
1700 continue;
1701 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1702 }
1703
1704 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1705 if (i == 0)
1706 first_sack_index = -1;
1707 continue;
1708 }
1709
1710 /* Ignore very old stuff early */
1711 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1712 continue;
1713
1714 used_sacks++;
1715 }
1716
1717 /* order SACK blocks to allow in order walk of the retrans queue */
1718 for (i = used_sacks - 1; i > 0; i--) {
1719 for (j = 0; j < i; j++) {
1720 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1721 swap(sp[j], sp[j + 1]);
1722
1723 /* Track where the first SACK block goes to */
1724 if (j == first_sack_index)
1725 first_sack_index = j + 1;
1726 }
1727 }
1728 }
1729
1730 skb = tcp_write_queue_head(sk);
1731 state.fack_count = 0;
1732 i = 0;
1733
1734 if (!tp->sacked_out) {
1735 /* It's already past, so skip checking against it */
1736 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1737 } else {
1738 cache = tp->recv_sack_cache;
1739 /* Skip empty blocks in at head of the cache */
1740 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1741 !cache->end_seq)
1742 cache++;
1743 }
1744
1745 while (i < used_sacks) {
1746 u32 start_seq = sp[i].start_seq;
1747 u32 end_seq = sp[i].end_seq;
1748 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1749 struct tcp_sack_block *next_dup = NULL;
1750
1751 if (found_dup_sack && ((i + 1) == first_sack_index))
1752 next_dup = &sp[i + 1];
1753
1754 /* Skip too early cached blocks */
1755 while (tcp_sack_cache_ok(tp, cache) &&
1756 !before(start_seq, cache->end_seq))
1757 cache++;
1758
1759 /* Can skip some work by looking recv_sack_cache? */
1760 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1761 after(end_seq, cache->start_seq)) {
1762
1763 /* Head todo? */
1764 if (before(start_seq, cache->start_seq)) {
1765 skb = tcp_sacktag_skip(skb, sk, &state,
1766 start_seq);
1767 skb = tcp_sacktag_walk(skb, sk, next_dup,
1768 &state,
1769 start_seq,
1770 cache->start_seq,
1771 dup_sack);
1772 }
1773
1774 /* Rest of the block already fully processed? */
1775 if (!after(end_seq, cache->end_seq))
1776 goto advance_sp;
1777
1778 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1779 &state,
1780 cache->end_seq);
1781
1782 /* ...tail remains todo... */
1783 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1784 /* ...but better entrypoint exists! */
1785 skb = tcp_highest_sack(sk);
1786 if (!skb)
1787 break;
1788 state.fack_count = tp->fackets_out;
1789 cache++;
1790 goto walk;
1791 }
1792
1793 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1794 /* Check overlap against next cached too (past this one already) */
1795 cache++;
1796 continue;
1797 }
1798
1799 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1800 skb = tcp_highest_sack(sk);
1801 if (!skb)
1802 break;
1803 state.fack_count = tp->fackets_out;
1804 }
1805 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1806
1807 walk:
1808 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1809 start_seq, end_seq, dup_sack);
1810
1811 advance_sp:
1812 i++;
1813 }
1814
1815 /* Clear the head of the cache sack blocks so we can skip it next time */
1816 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1817 tp->recv_sack_cache[i].start_seq = 0;
1818 tp->recv_sack_cache[i].end_seq = 0;
1819 }
1820 for (j = 0; j < used_sacks; j++)
1821 tp->recv_sack_cache[i++] = sp[j];
1822
1823 tcp_mark_lost_retrans(sk);
1824
1825 tcp_verify_left_out(tp);
1826
1827 if ((state.reord < tp->fackets_out) &&
1828 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1829 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1830
1831 out:
1832
1833 #if FASTRETRANS_DEBUG > 0
1834 WARN_ON((int)tp->sacked_out < 0);
1835 WARN_ON((int)tp->lost_out < 0);
1836 WARN_ON((int)tp->retrans_out < 0);
1837 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1838 #endif
1839 *sack_rtt_us = state.rtt_us;
1840 return state.flag;
1841 }
1842
1843 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1844 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1845 */
1846 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1847 {
1848 u32 holes;
1849
1850 holes = max(tp->lost_out, 1U);
1851 holes = min(holes, tp->packets_out);
1852
1853 if ((tp->sacked_out + holes) > tp->packets_out) {
1854 tp->sacked_out = tp->packets_out - holes;
1855 return true;
1856 }
1857 return false;
1858 }
1859
1860 /* If we receive more dupacks than we expected counting segments
1861 * in assumption of absent reordering, interpret this as reordering.
1862 * The only another reason could be bug in receiver TCP.
1863 */
1864 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1865 {
1866 struct tcp_sock *tp = tcp_sk(sk);
1867 if (tcp_limit_reno_sacked(tp))
1868 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1869 }
1870
1871 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1872
1873 static void tcp_add_reno_sack(struct sock *sk)
1874 {
1875 struct tcp_sock *tp = tcp_sk(sk);
1876 tp->sacked_out++;
1877 tcp_check_reno_reordering(sk, 0);
1878 tcp_verify_left_out(tp);
1879 }
1880
1881 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1882
1883 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1884 {
1885 struct tcp_sock *tp = tcp_sk(sk);
1886
1887 if (acked > 0) {
1888 /* One ACK acked hole. The rest eat duplicate ACKs. */
1889 if (acked - 1 >= tp->sacked_out)
1890 tp->sacked_out = 0;
1891 else
1892 tp->sacked_out -= acked - 1;
1893 }
1894 tcp_check_reno_reordering(sk, acked);
1895 tcp_verify_left_out(tp);
1896 }
1897
1898 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1899 {
1900 tp->sacked_out = 0;
1901 }
1902
1903 void tcp_clear_retrans(struct tcp_sock *tp)
1904 {
1905 tp->retrans_out = 0;
1906 tp->lost_out = 0;
1907 tp->undo_marker = 0;
1908 tp->undo_retrans = -1;
1909 tp->fackets_out = 0;
1910 tp->sacked_out = 0;
1911 }
1912
1913 static inline void tcp_init_undo(struct tcp_sock *tp)
1914 {
1915 tp->undo_marker = tp->snd_una;
1916 /* Retransmission still in flight may cause DSACKs later. */
1917 tp->undo_retrans = tp->retrans_out ? : -1;
1918 }
1919
1920 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1921 * and reset tags completely, otherwise preserve SACKs. If receiver
1922 * dropped its ofo queue, we will know this due to reneging detection.
1923 */
1924 void tcp_enter_loss(struct sock *sk)
1925 {
1926 const struct inet_connection_sock *icsk = inet_csk(sk);
1927 struct tcp_sock *tp = tcp_sk(sk);
1928 struct sk_buff *skb;
1929 bool new_recovery = false;
1930 bool is_reneg; /* is receiver reneging on SACKs? */
1931
1932 /* Reduce ssthresh if it has not yet been made inside this window. */
1933 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1934 !after(tp->high_seq, tp->snd_una) ||
1935 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1936 new_recovery = true;
1937 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1938 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1939 tcp_ca_event(sk, CA_EVENT_LOSS);
1940 tcp_init_undo(tp);
1941 }
1942 tp->snd_cwnd = 1;
1943 tp->snd_cwnd_cnt = 0;
1944 tp->snd_cwnd_stamp = tcp_time_stamp;
1945
1946 tp->retrans_out = 0;
1947 tp->lost_out = 0;
1948
1949 if (tcp_is_reno(tp))
1950 tcp_reset_reno_sack(tp);
1951
1952 skb = tcp_write_queue_head(sk);
1953 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1954 if (is_reneg) {
1955 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1956 tp->sacked_out = 0;
1957 tp->fackets_out = 0;
1958 }
1959 tcp_clear_all_retrans_hints(tp);
1960
1961 tcp_for_write_queue(skb, sk) {
1962 if (skb == tcp_send_head(sk))
1963 break;
1964
1965 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1966 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1967 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1968 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1969 tp->lost_out += tcp_skb_pcount(skb);
1970 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1971 }
1972 }
1973 tcp_verify_left_out(tp);
1974
1975 /* Timeout in disordered state after receiving substantial DUPACKs
1976 * suggests that the degree of reordering is over-estimated.
1977 */
1978 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1979 tp->sacked_out >= sysctl_tcp_reordering)
1980 tp->reordering = min_t(unsigned int, tp->reordering,
1981 sysctl_tcp_reordering);
1982 tcp_set_ca_state(sk, TCP_CA_Loss);
1983 tp->high_seq = tp->snd_nxt;
1984 tcp_ecn_queue_cwr(tp);
1985
1986 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1987 * loss recovery is underway except recurring timeout(s) on
1988 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1989 */
1990 tp->frto = sysctl_tcp_frto &&
1991 (new_recovery || icsk->icsk_retransmits) &&
1992 !inet_csk(sk)->icsk_mtup.probe_size;
1993 }
1994
1995 /* If ACK arrived pointing to a remembered SACK, it means that our
1996 * remembered SACKs do not reflect real state of receiver i.e.
1997 * receiver _host_ is heavily congested (or buggy).
1998 *
1999 * To avoid big spurious retransmission bursts due to transient SACK
2000 * scoreboard oddities that look like reneging, we give the receiver a
2001 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2002 * restore sanity to the SACK scoreboard. If the apparent reneging
2003 * persists until this RTO then we'll clear the SACK scoreboard.
2004 */
2005 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2006 {
2007 if (flag & FLAG_SACK_RENEGING) {
2008 struct tcp_sock *tp = tcp_sk(sk);
2009 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2010 msecs_to_jiffies(10));
2011
2012 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2013 delay, TCP_RTO_MAX);
2014 return true;
2015 }
2016 return false;
2017 }
2018
2019 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2020 {
2021 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2022 }
2023
2024 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2025 * counter when SACK is enabled (without SACK, sacked_out is used for
2026 * that purpose).
2027 *
2028 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2029 * segments up to the highest received SACK block so far and holes in
2030 * between them.
2031 *
2032 * With reordering, holes may still be in flight, so RFC3517 recovery
2033 * uses pure sacked_out (total number of SACKed segments) even though
2034 * it violates the RFC that uses duplicate ACKs, often these are equal
2035 * but when e.g. out-of-window ACKs or packet duplication occurs,
2036 * they differ. Since neither occurs due to loss, TCP should really
2037 * ignore them.
2038 */
2039 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2040 {
2041 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2042 }
2043
2044 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2045 {
2046 struct tcp_sock *tp = tcp_sk(sk);
2047 unsigned long delay;
2048
2049 /* Delay early retransmit and entering fast recovery for
2050 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2051 * available, or RTO is scheduled to fire first.
2052 */
2053 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2054 (flag & FLAG_ECE) || !tp->srtt_us)
2055 return false;
2056
2057 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2058 msecs_to_jiffies(2));
2059
2060 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2061 return false;
2062
2063 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2064 TCP_RTO_MAX);
2065 return true;
2066 }
2067
2068 /* Linux NewReno/SACK/FACK/ECN state machine.
2069 * --------------------------------------
2070 *
2071 * "Open" Normal state, no dubious events, fast path.
2072 * "Disorder" In all the respects it is "Open",
2073 * but requires a bit more attention. It is entered when
2074 * we see some SACKs or dupacks. It is split of "Open"
2075 * mainly to move some processing from fast path to slow one.
2076 * "CWR" CWND was reduced due to some Congestion Notification event.
2077 * It can be ECN, ICMP source quench, local device congestion.
2078 * "Recovery" CWND was reduced, we are fast-retransmitting.
2079 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2080 *
2081 * tcp_fastretrans_alert() is entered:
2082 * - each incoming ACK, if state is not "Open"
2083 * - when arrived ACK is unusual, namely:
2084 * * SACK
2085 * * Duplicate ACK.
2086 * * ECN ECE.
2087 *
2088 * Counting packets in flight is pretty simple.
2089 *
2090 * in_flight = packets_out - left_out + retrans_out
2091 *
2092 * packets_out is SND.NXT-SND.UNA counted in packets.
2093 *
2094 * retrans_out is number of retransmitted segments.
2095 *
2096 * left_out is number of segments left network, but not ACKed yet.
2097 *
2098 * left_out = sacked_out + lost_out
2099 *
2100 * sacked_out: Packets, which arrived to receiver out of order
2101 * and hence not ACKed. With SACKs this number is simply
2102 * amount of SACKed data. Even without SACKs
2103 * it is easy to give pretty reliable estimate of this number,
2104 * counting duplicate ACKs.
2105 *
2106 * lost_out: Packets lost by network. TCP has no explicit
2107 * "loss notification" feedback from network (for now).
2108 * It means that this number can be only _guessed_.
2109 * Actually, it is the heuristics to predict lossage that
2110 * distinguishes different algorithms.
2111 *
2112 * F.e. after RTO, when all the queue is considered as lost,
2113 * lost_out = packets_out and in_flight = retrans_out.
2114 *
2115 * Essentially, we have now two algorithms counting
2116 * lost packets.
2117 *
2118 * FACK: It is the simplest heuristics. As soon as we decided
2119 * that something is lost, we decide that _all_ not SACKed
2120 * packets until the most forward SACK are lost. I.e.
2121 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2122 * It is absolutely correct estimate, if network does not reorder
2123 * packets. And it loses any connection to reality when reordering
2124 * takes place. We use FACK by default until reordering
2125 * is suspected on the path to this destination.
2126 *
2127 * NewReno: when Recovery is entered, we assume that one segment
2128 * is lost (classic Reno). While we are in Recovery and
2129 * a partial ACK arrives, we assume that one more packet
2130 * is lost (NewReno). This heuristics are the same in NewReno
2131 * and SACK.
2132 *
2133 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2134 * deflation etc. CWND is real congestion window, never inflated, changes
2135 * only according to classic VJ rules.
2136 *
2137 * Really tricky (and requiring careful tuning) part of algorithm
2138 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2139 * The first determines the moment _when_ we should reduce CWND and,
2140 * hence, slow down forward transmission. In fact, it determines the moment
2141 * when we decide that hole is caused by loss, rather than by a reorder.
2142 *
2143 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2144 * holes, caused by lost packets.
2145 *
2146 * And the most logically complicated part of algorithm is undo
2147 * heuristics. We detect false retransmits due to both too early
2148 * fast retransmit (reordering) and underestimated RTO, analyzing
2149 * timestamps and D-SACKs. When we detect that some segments were
2150 * retransmitted by mistake and CWND reduction was wrong, we undo
2151 * window reduction and abort recovery phase. This logic is hidden
2152 * inside several functions named tcp_try_undo_<something>.
2153 */
2154
2155 /* This function decides, when we should leave Disordered state
2156 * and enter Recovery phase, reducing congestion window.
2157 *
2158 * Main question: may we further continue forward transmission
2159 * with the same cwnd?
2160 */
2161 static bool tcp_time_to_recover(struct sock *sk, int flag)
2162 {
2163 struct tcp_sock *tp = tcp_sk(sk);
2164 __u32 packets_out;
2165
2166 /* Trick#1: The loss is proven. */
2167 if (tp->lost_out)
2168 return true;
2169
2170 /* Not-A-Trick#2 : Classic rule... */
2171 if (tcp_dupack_heuristics(tp) > tp->reordering)
2172 return true;
2173
2174 /* Trick#4: It is still not OK... But will it be useful to delay
2175 * recovery more?
2176 */
2177 packets_out = tp->packets_out;
2178 if (packets_out <= tp->reordering &&
2179 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2180 !tcp_may_send_now(sk)) {
2181 /* We have nothing to send. This connection is limited
2182 * either by receiver window or by application.
2183 */
2184 return true;
2185 }
2186
2187 /* If a thin stream is detected, retransmit after first
2188 * received dupack. Employ only if SACK is supported in order
2189 * to avoid possible corner-case series of spurious retransmissions
2190 * Use only if there are no unsent data.
2191 */
2192 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2193 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2194 tcp_is_sack(tp) && !tcp_send_head(sk))
2195 return true;
2196
2197 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2198 * retransmissions due to small network reorderings, we implement
2199 * Mitigation A.3 in the RFC and delay the retransmission for a short
2200 * interval if appropriate.
2201 */
2202 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2203 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2204 !tcp_may_send_now(sk))
2205 return !tcp_pause_early_retransmit(sk, flag);
2206
2207 return false;
2208 }
2209
2210 /* Detect loss in event "A" above by marking head of queue up as lost.
2211 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2212 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2213 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2214 * the maximum SACKed segments to pass before reaching this limit.
2215 */
2216 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2217 {
2218 struct tcp_sock *tp = tcp_sk(sk);
2219 struct sk_buff *skb;
2220 int cnt, oldcnt;
2221 int err;
2222 unsigned int mss;
2223 /* Use SACK to deduce losses of new sequences sent during recovery */
2224 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2225
2226 WARN_ON(packets > tp->packets_out);
2227 if (tp->lost_skb_hint) {
2228 skb = tp->lost_skb_hint;
2229 cnt = tp->lost_cnt_hint;
2230 /* Head already handled? */
2231 if (mark_head && skb != tcp_write_queue_head(sk))
2232 return;
2233 } else {
2234 skb = tcp_write_queue_head(sk);
2235 cnt = 0;
2236 }
2237
2238 tcp_for_write_queue_from(skb, sk) {
2239 if (skb == tcp_send_head(sk))
2240 break;
2241 /* TODO: do this better */
2242 /* this is not the most efficient way to do this... */
2243 tp->lost_skb_hint = skb;
2244 tp->lost_cnt_hint = cnt;
2245
2246 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2247 break;
2248
2249 oldcnt = cnt;
2250 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2251 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2252 cnt += tcp_skb_pcount(skb);
2253
2254 if (cnt > packets) {
2255 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2256 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2257 (oldcnt >= packets))
2258 break;
2259
2260 mss = skb_shinfo(skb)->gso_size;
2261 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
2262 mss, GFP_ATOMIC);
2263 if (err < 0)
2264 break;
2265 cnt = packets;
2266 }
2267
2268 tcp_skb_mark_lost(tp, skb);
2269
2270 if (mark_head)
2271 break;
2272 }
2273 tcp_verify_left_out(tp);
2274 }
2275
2276 /* Account newly detected lost packet(s) */
2277
2278 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2279 {
2280 struct tcp_sock *tp = tcp_sk(sk);
2281
2282 if (tcp_is_reno(tp)) {
2283 tcp_mark_head_lost(sk, 1, 1);
2284 } else if (tcp_is_fack(tp)) {
2285 int lost = tp->fackets_out - tp->reordering;
2286 if (lost <= 0)
2287 lost = 1;
2288 tcp_mark_head_lost(sk, lost, 0);
2289 } else {
2290 int sacked_upto = tp->sacked_out - tp->reordering;
2291 if (sacked_upto >= 0)
2292 tcp_mark_head_lost(sk, sacked_upto, 0);
2293 else if (fast_rexmit)
2294 tcp_mark_head_lost(sk, 1, 1);
2295 }
2296 }
2297
2298 /* CWND moderation, preventing bursts due to too big ACKs
2299 * in dubious situations.
2300 */
2301 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2302 {
2303 tp->snd_cwnd = min(tp->snd_cwnd,
2304 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2305 tp->snd_cwnd_stamp = tcp_time_stamp;
2306 }
2307
2308 /* Nothing was retransmitted or returned timestamp is less
2309 * than timestamp of the first retransmission.
2310 */
2311 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2312 {
2313 return !tp->retrans_stamp ||
2314 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2315 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2316 }
2317
2318 /* Undo procedures. */
2319
2320 /* We can clear retrans_stamp when there are no retransmissions in the
2321 * window. It would seem that it is trivially available for us in
2322 * tp->retrans_out, however, that kind of assumptions doesn't consider
2323 * what will happen if errors occur when sending retransmission for the
2324 * second time. ...It could the that such segment has only
2325 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2326 * the head skb is enough except for some reneging corner cases that
2327 * are not worth the effort.
2328 *
2329 * Main reason for all this complexity is the fact that connection dying
2330 * time now depends on the validity of the retrans_stamp, in particular,
2331 * that successive retransmissions of a segment must not advance
2332 * retrans_stamp under any conditions.
2333 */
2334 static bool tcp_any_retrans_done(const struct sock *sk)
2335 {
2336 const struct tcp_sock *tp = tcp_sk(sk);
2337 struct sk_buff *skb;
2338
2339 if (tp->retrans_out)
2340 return true;
2341
2342 skb = tcp_write_queue_head(sk);
2343 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2344 return true;
2345
2346 return false;
2347 }
2348
2349 #if FASTRETRANS_DEBUG > 1
2350 static void DBGUNDO(struct sock *sk, const char *msg)
2351 {
2352 struct tcp_sock *tp = tcp_sk(sk);
2353 struct inet_sock *inet = inet_sk(sk);
2354
2355 if (sk->sk_family == AF_INET) {
2356 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2357 msg,
2358 &inet->inet_daddr, ntohs(inet->inet_dport),
2359 tp->snd_cwnd, tcp_left_out(tp),
2360 tp->snd_ssthresh, tp->prior_ssthresh,
2361 tp->packets_out);
2362 }
2363 #if IS_ENABLED(CONFIG_IPV6)
2364 else if (sk->sk_family == AF_INET6) {
2365 struct ipv6_pinfo *np = inet6_sk(sk);
2366 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2367 msg,
2368 &np->daddr, ntohs(inet->inet_dport),
2369 tp->snd_cwnd, tcp_left_out(tp),
2370 tp->snd_ssthresh, tp->prior_ssthresh,
2371 tp->packets_out);
2372 }
2373 #endif
2374 }
2375 #else
2376 #define DBGUNDO(x...) do { } while (0)
2377 #endif
2378
2379 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2380 {
2381 struct tcp_sock *tp = tcp_sk(sk);
2382
2383 if (unmark_loss) {
2384 struct sk_buff *skb;
2385
2386 tcp_for_write_queue(skb, sk) {
2387 if (skb == tcp_send_head(sk))
2388 break;
2389 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2390 }
2391 tp->lost_out = 0;
2392 tcp_clear_all_retrans_hints(tp);
2393 }
2394
2395 if (tp->prior_ssthresh) {
2396 const struct inet_connection_sock *icsk = inet_csk(sk);
2397
2398 if (icsk->icsk_ca_ops->undo_cwnd)
2399 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2400 else
2401 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2402
2403 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2404 tp->snd_ssthresh = tp->prior_ssthresh;
2405 tcp_ecn_withdraw_cwr(tp);
2406 }
2407 } else {
2408 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2409 }
2410 tp->snd_cwnd_stamp = tcp_time_stamp;
2411 tp->undo_marker = 0;
2412 }
2413
2414 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2415 {
2416 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2417 }
2418
2419 /* People celebrate: "We love our President!" */
2420 static bool tcp_try_undo_recovery(struct sock *sk)
2421 {
2422 struct tcp_sock *tp = tcp_sk(sk);
2423
2424 if (tcp_may_undo(tp)) {
2425 int mib_idx;
2426
2427 /* Happy end! We did not retransmit anything
2428 * or our original transmission succeeded.
2429 */
2430 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2431 tcp_undo_cwnd_reduction(sk, false);
2432 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2433 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2434 else
2435 mib_idx = LINUX_MIB_TCPFULLUNDO;
2436
2437 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2438 }
2439 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2440 /* Hold old state until something *above* high_seq
2441 * is ACKed. For Reno it is MUST to prevent false
2442 * fast retransmits (RFC2582). SACK TCP is safe. */
2443 tcp_moderate_cwnd(tp);
2444 if (!tcp_any_retrans_done(sk))
2445 tp->retrans_stamp = 0;
2446 return true;
2447 }
2448 tcp_set_ca_state(sk, TCP_CA_Open);
2449 return false;
2450 }
2451
2452 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2453 static bool tcp_try_undo_dsack(struct sock *sk)
2454 {
2455 struct tcp_sock *tp = tcp_sk(sk);
2456
2457 if (tp->undo_marker && !tp->undo_retrans) {
2458 DBGUNDO(sk, "D-SACK");
2459 tcp_undo_cwnd_reduction(sk, false);
2460 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2461 return true;
2462 }
2463 return false;
2464 }
2465
2466 /* Undo during loss recovery after partial ACK or using F-RTO. */
2467 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2468 {
2469 struct tcp_sock *tp = tcp_sk(sk);
2470
2471 if (frto_undo || tcp_may_undo(tp)) {
2472 tcp_undo_cwnd_reduction(sk, true);
2473
2474 DBGUNDO(sk, "partial loss");
2475 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2476 if (frto_undo)
2477 NET_INC_STATS_BH(sock_net(sk),
2478 LINUX_MIB_TCPSPURIOUSRTOS);
2479 inet_csk(sk)->icsk_retransmits = 0;
2480 if (frto_undo || tcp_is_sack(tp))
2481 tcp_set_ca_state(sk, TCP_CA_Open);
2482 return true;
2483 }
2484 return false;
2485 }
2486
2487 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2488 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2489 * It computes the number of packets to send (sndcnt) based on packets newly
2490 * delivered:
2491 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2492 * cwnd reductions across a full RTT.
2493 * 2) If packets in flight is lower than ssthresh (such as due to excess
2494 * losses and/or application stalls), do not perform any further cwnd
2495 * reductions, but instead slow start up to ssthresh.
2496 */
2497 static void tcp_init_cwnd_reduction(struct sock *sk)
2498 {
2499 struct tcp_sock *tp = tcp_sk(sk);
2500
2501 tp->high_seq = tp->snd_nxt;
2502 tp->tlp_high_seq = 0;
2503 tp->snd_cwnd_cnt = 0;
2504 tp->prior_cwnd = tp->snd_cwnd;
2505 tp->prr_delivered = 0;
2506 tp->prr_out = 0;
2507 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2508 tcp_ecn_queue_cwr(tp);
2509 }
2510
2511 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2512 int fast_rexmit)
2513 {
2514 struct tcp_sock *tp = tcp_sk(sk);
2515 int sndcnt = 0;
2516 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2517 int newly_acked_sacked = prior_unsacked -
2518 (tp->packets_out - tp->sacked_out);
2519
2520 tp->prr_delivered += newly_acked_sacked;
2521 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2522 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2523 tp->prior_cwnd - 1;
2524 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2525 } else {
2526 sndcnt = min_t(int, delta,
2527 max_t(int, tp->prr_delivered - tp->prr_out,
2528 newly_acked_sacked) + 1);
2529 }
2530
2531 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2532 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2533 }
2534
2535 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2536 {
2537 struct tcp_sock *tp = tcp_sk(sk);
2538
2539 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2540 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2541 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2542 tp->snd_cwnd = tp->snd_ssthresh;
2543 tp->snd_cwnd_stamp = tcp_time_stamp;
2544 }
2545 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2546 }
2547
2548 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2549 void tcp_enter_cwr(struct sock *sk)
2550 {
2551 struct tcp_sock *tp = tcp_sk(sk);
2552
2553 tp->prior_ssthresh = 0;
2554 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2555 tp->undo_marker = 0;
2556 tcp_init_cwnd_reduction(sk);
2557 tcp_set_ca_state(sk, TCP_CA_CWR);
2558 }
2559 }
2560
2561 static void tcp_try_keep_open(struct sock *sk)
2562 {
2563 struct tcp_sock *tp = tcp_sk(sk);
2564 int state = TCP_CA_Open;
2565
2566 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2567 state = TCP_CA_Disorder;
2568
2569 if (inet_csk(sk)->icsk_ca_state != state) {
2570 tcp_set_ca_state(sk, state);
2571 tp->high_seq = tp->snd_nxt;
2572 }
2573 }
2574
2575 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2576 {
2577 struct tcp_sock *tp = tcp_sk(sk);
2578
2579 tcp_verify_left_out(tp);
2580
2581 if (!tcp_any_retrans_done(sk))
2582 tp->retrans_stamp = 0;
2583
2584 if (flag & FLAG_ECE)
2585 tcp_enter_cwr(sk);
2586
2587 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2588 tcp_try_keep_open(sk);
2589 } else {
2590 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2591 }
2592 }
2593
2594 static void tcp_mtup_probe_failed(struct sock *sk)
2595 {
2596 struct inet_connection_sock *icsk = inet_csk(sk);
2597
2598 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2599 icsk->icsk_mtup.probe_size = 0;
2600 }
2601
2602 static void tcp_mtup_probe_success(struct sock *sk)
2603 {
2604 struct tcp_sock *tp = tcp_sk(sk);
2605 struct inet_connection_sock *icsk = inet_csk(sk);
2606
2607 /* FIXME: breaks with very large cwnd */
2608 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2609 tp->snd_cwnd = tp->snd_cwnd *
2610 tcp_mss_to_mtu(sk, tp->mss_cache) /
2611 icsk->icsk_mtup.probe_size;
2612 tp->snd_cwnd_cnt = 0;
2613 tp->snd_cwnd_stamp = tcp_time_stamp;
2614 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2615
2616 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2617 icsk->icsk_mtup.probe_size = 0;
2618 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2619 }
2620
2621 /* Do a simple retransmit without using the backoff mechanisms in
2622 * tcp_timer. This is used for path mtu discovery.
2623 * The socket is already locked here.
2624 */
2625 void tcp_simple_retransmit(struct sock *sk)
2626 {
2627 const struct inet_connection_sock *icsk = inet_csk(sk);
2628 struct tcp_sock *tp = tcp_sk(sk);
2629 struct sk_buff *skb;
2630 unsigned int mss = tcp_current_mss(sk);
2631 u32 prior_lost = tp->lost_out;
2632
2633 tcp_for_write_queue(skb, sk) {
2634 if (skb == tcp_send_head(sk))
2635 break;
2636 if (tcp_skb_seglen(skb) > mss &&
2637 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2638 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2639 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2640 tp->retrans_out -= tcp_skb_pcount(skb);
2641 }
2642 tcp_skb_mark_lost_uncond_verify(tp, skb);
2643 }
2644 }
2645
2646 tcp_clear_retrans_hints_partial(tp);
2647
2648 if (prior_lost == tp->lost_out)
2649 return;
2650
2651 if (tcp_is_reno(tp))
2652 tcp_limit_reno_sacked(tp);
2653
2654 tcp_verify_left_out(tp);
2655
2656 /* Don't muck with the congestion window here.
2657 * Reason is that we do not increase amount of _data_
2658 * in network, but units changed and effective
2659 * cwnd/ssthresh really reduced now.
2660 */
2661 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2662 tp->high_seq = tp->snd_nxt;
2663 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2664 tp->prior_ssthresh = 0;
2665 tp->undo_marker = 0;
2666 tcp_set_ca_state(sk, TCP_CA_Loss);
2667 }
2668 tcp_xmit_retransmit_queue(sk);
2669 }
2670 EXPORT_SYMBOL(tcp_simple_retransmit);
2671
2672 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2673 {
2674 struct tcp_sock *tp = tcp_sk(sk);
2675 int mib_idx;
2676
2677 if (tcp_is_reno(tp))
2678 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2679 else
2680 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2681
2682 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2683
2684 tp->prior_ssthresh = 0;
2685 tcp_init_undo(tp);
2686
2687 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2688 if (!ece_ack)
2689 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2690 tcp_init_cwnd_reduction(sk);
2691 }
2692 tcp_set_ca_state(sk, TCP_CA_Recovery);
2693 }
2694
2695 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2696 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2697 */
2698 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2699 {
2700 struct tcp_sock *tp = tcp_sk(sk);
2701 bool recovered = !before(tp->snd_una, tp->high_seq);
2702
2703 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2704 /* Step 3.b. A timeout is spurious if not all data are
2705 * lost, i.e., never-retransmitted data are (s)acked.
2706 */
2707 if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED))
2708 return;
2709
2710 if (after(tp->snd_nxt, tp->high_seq) &&
2711 (flag & FLAG_DATA_SACKED || is_dupack)) {
2712 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2713 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2714 tp->high_seq = tp->snd_nxt;
2715 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2716 TCP_NAGLE_OFF);
2717 if (after(tp->snd_nxt, tp->high_seq))
2718 return; /* Step 2.b */
2719 tp->frto = 0;
2720 }
2721 }
2722
2723 if (recovered) {
2724 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2725 tcp_try_undo_recovery(sk);
2726 return;
2727 }
2728 if (tcp_is_reno(tp)) {
2729 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2730 * delivered. Lower inflight to clock out (re)tranmissions.
2731 */
2732 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2733 tcp_add_reno_sack(sk);
2734 else if (flag & FLAG_SND_UNA_ADVANCED)
2735 tcp_reset_reno_sack(tp);
2736 }
2737 if (tcp_try_undo_loss(sk, false))
2738 return;
2739 tcp_xmit_retransmit_queue(sk);
2740 }
2741
2742 /* Undo during fast recovery after partial ACK. */
2743 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2744 const int prior_unsacked)
2745 {
2746 struct tcp_sock *tp = tcp_sk(sk);
2747
2748 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2749 /* Plain luck! Hole if filled with delayed
2750 * packet, rather than with a retransmit.
2751 */
2752 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2753
2754 /* We are getting evidence that the reordering degree is higher
2755 * than we realized. If there are no retransmits out then we
2756 * can undo. Otherwise we clock out new packets but do not
2757 * mark more packets lost or retransmit more.
2758 */
2759 if (tp->retrans_out) {
2760 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2761 return true;
2762 }
2763
2764 if (!tcp_any_retrans_done(sk))
2765 tp->retrans_stamp = 0;
2766
2767 DBGUNDO(sk, "partial recovery");
2768 tcp_undo_cwnd_reduction(sk, true);
2769 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2770 tcp_try_keep_open(sk);
2771 return true;
2772 }
2773 return false;
2774 }
2775
2776 /* Process an event, which can update packets-in-flight not trivially.
2777 * Main goal of this function is to calculate new estimate for left_out,
2778 * taking into account both packets sitting in receiver's buffer and
2779 * packets lost by network.
2780 *
2781 * Besides that it does CWND reduction, when packet loss is detected
2782 * and changes state of machine.
2783 *
2784 * It does _not_ decide what to send, it is made in function
2785 * tcp_xmit_retransmit_queue().
2786 */
2787 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2788 const int prior_unsacked,
2789 bool is_dupack, int flag)
2790 {
2791 struct inet_connection_sock *icsk = inet_csk(sk);
2792 struct tcp_sock *tp = tcp_sk(sk);
2793 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2794 (tcp_fackets_out(tp) > tp->reordering));
2795 int fast_rexmit = 0;
2796
2797 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2798 tp->sacked_out = 0;
2799 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2800 tp->fackets_out = 0;
2801
2802 /* Now state machine starts.
2803 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2804 if (flag & FLAG_ECE)
2805 tp->prior_ssthresh = 0;
2806
2807 /* B. In all the states check for reneging SACKs. */
2808 if (tcp_check_sack_reneging(sk, flag))
2809 return;
2810
2811 /* C. Check consistency of the current state. */
2812 tcp_verify_left_out(tp);
2813
2814 /* D. Check state exit conditions. State can be terminated
2815 * when high_seq is ACKed. */
2816 if (icsk->icsk_ca_state == TCP_CA_Open) {
2817 WARN_ON(tp->retrans_out != 0);
2818 tp->retrans_stamp = 0;
2819 } else if (!before(tp->snd_una, tp->high_seq)) {
2820 switch (icsk->icsk_ca_state) {
2821 case TCP_CA_CWR:
2822 /* CWR is to be held something *above* high_seq
2823 * is ACKed for CWR bit to reach receiver. */
2824 if (tp->snd_una != tp->high_seq) {
2825 tcp_end_cwnd_reduction(sk);
2826 tcp_set_ca_state(sk, TCP_CA_Open);
2827 }
2828 break;
2829
2830 case TCP_CA_Recovery:
2831 if (tcp_is_reno(tp))
2832 tcp_reset_reno_sack(tp);
2833 if (tcp_try_undo_recovery(sk))
2834 return;
2835 tcp_end_cwnd_reduction(sk);
2836 break;
2837 }
2838 }
2839
2840 /* E. Process state. */
2841 switch (icsk->icsk_ca_state) {
2842 case TCP_CA_Recovery:
2843 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2844 if (tcp_is_reno(tp) && is_dupack)
2845 tcp_add_reno_sack(sk);
2846 } else {
2847 if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2848 return;
2849 /* Partial ACK arrived. Force fast retransmit. */
2850 do_lost = tcp_is_reno(tp) ||
2851 tcp_fackets_out(tp) > tp->reordering;
2852 }
2853 if (tcp_try_undo_dsack(sk)) {
2854 tcp_try_keep_open(sk);
2855 return;
2856 }
2857 break;
2858 case TCP_CA_Loss:
2859 tcp_process_loss(sk, flag, is_dupack);
2860 if (icsk->icsk_ca_state != TCP_CA_Open)
2861 return;
2862 /* Fall through to processing in Open state. */
2863 default:
2864 if (tcp_is_reno(tp)) {
2865 if (flag & FLAG_SND_UNA_ADVANCED)
2866 tcp_reset_reno_sack(tp);
2867 if (is_dupack)
2868 tcp_add_reno_sack(sk);
2869 }
2870
2871 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2872 tcp_try_undo_dsack(sk);
2873
2874 if (!tcp_time_to_recover(sk, flag)) {
2875 tcp_try_to_open(sk, flag, prior_unsacked);
2876 return;
2877 }
2878
2879 /* MTU probe failure: don't reduce cwnd */
2880 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2881 icsk->icsk_mtup.probe_size &&
2882 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2883 tcp_mtup_probe_failed(sk);
2884 /* Restores the reduction we did in tcp_mtup_probe() */
2885 tp->snd_cwnd++;
2886 tcp_simple_retransmit(sk);
2887 return;
2888 }
2889
2890 /* Otherwise enter Recovery state */
2891 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2892 fast_rexmit = 1;
2893 }
2894
2895 if (do_lost)
2896 tcp_update_scoreboard(sk, fast_rexmit);
2897 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2898 tcp_xmit_retransmit_queue(sk);
2899 }
2900
2901 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2902 long seq_rtt_us, long sack_rtt_us)
2903 {
2904 const struct tcp_sock *tp = tcp_sk(sk);
2905
2906 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2907 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2908 * Karn's algorithm forbids taking RTT if some retransmitted data
2909 * is acked (RFC6298).
2910 */
2911 if (flag & FLAG_RETRANS_DATA_ACKED)
2912 seq_rtt_us = -1L;
2913
2914 if (seq_rtt_us < 0)
2915 seq_rtt_us = sack_rtt_us;
2916
2917 /* RTTM Rule: A TSecr value received in a segment is used to
2918 * update the averaged RTT measurement only if the segment
2919 * acknowledges some new data, i.e., only if it advances the
2920 * left edge of the send window.
2921 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2922 */
2923 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2924 flag & FLAG_ACKED)
2925 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2926
2927 if (seq_rtt_us < 0)
2928 return false;
2929
2930 tcp_rtt_estimator(sk, seq_rtt_us);
2931 tcp_set_rto(sk);
2932
2933 /* RFC6298: only reset backoff on valid RTT measurement. */
2934 inet_csk(sk)->icsk_backoff = 0;
2935 return true;
2936 }
2937
2938 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2939 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2940 {
2941 struct tcp_sock *tp = tcp_sk(sk);
2942 long seq_rtt_us = -1L;
2943
2944 if (synack_stamp && !tp->total_retrans)
2945 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2946
2947 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2948 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2949 */
2950 if (!tp->srtt_us)
2951 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2952 }
2953
2954 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2955 {
2956 const struct inet_connection_sock *icsk = inet_csk(sk);
2957
2958 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2959 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2960 }
2961
2962 /* Restart timer after forward progress on connection.
2963 * RFC2988 recommends to restart timer to now+rto.
2964 */
2965 void tcp_rearm_rto(struct sock *sk)
2966 {
2967 const struct inet_connection_sock *icsk = inet_csk(sk);
2968 struct tcp_sock *tp = tcp_sk(sk);
2969
2970 /* If the retrans timer is currently being used by Fast Open
2971 * for SYN-ACK retrans purpose, stay put.
2972 */
2973 if (tp->fastopen_rsk)
2974 return;
2975
2976 if (!tp->packets_out) {
2977 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2978 } else {
2979 u32 rto = inet_csk(sk)->icsk_rto;
2980 /* Offset the time elapsed after installing regular RTO */
2981 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2982 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2983 struct sk_buff *skb = tcp_write_queue_head(sk);
2984 const u32 rto_time_stamp =
2985 tcp_skb_timestamp(skb) + rto;
2986 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2987 /* delta may not be positive if the socket is locked
2988 * when the retrans timer fires and is rescheduled.
2989 */
2990 if (delta > 0)
2991 rto = delta;
2992 }
2993 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2994 TCP_RTO_MAX);
2995 }
2996 }
2997
2998 /* This function is called when the delayed ER timer fires. TCP enters
2999 * fast recovery and performs fast-retransmit.
3000 */
3001 void tcp_resume_early_retransmit(struct sock *sk)
3002 {
3003 struct tcp_sock *tp = tcp_sk(sk);
3004
3005 tcp_rearm_rto(sk);
3006
3007 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3008 if (!tp->do_early_retrans)
3009 return;
3010
3011 tcp_enter_recovery(sk, false);
3012 tcp_update_scoreboard(sk, 1);
3013 tcp_xmit_retransmit_queue(sk);
3014 }
3015
3016 /* If we get here, the whole TSO packet has not been acked. */
3017 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3018 {
3019 struct tcp_sock *tp = tcp_sk(sk);
3020 u32 packets_acked;
3021
3022 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3023
3024 packets_acked = tcp_skb_pcount(skb);
3025 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3026 return 0;
3027 packets_acked -= tcp_skb_pcount(skb);
3028
3029 if (packets_acked) {
3030 BUG_ON(tcp_skb_pcount(skb) == 0);
3031 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3032 }
3033
3034 return packets_acked;
3035 }
3036
3037 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3038 u32 prior_snd_una)
3039 {
3040 const struct skb_shared_info *shinfo;
3041
3042 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3043 if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3044 return;
3045
3046 shinfo = skb_shinfo(skb);
3047 if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3048 between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
3049 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3050 }
3051
3052 /* Remove acknowledged frames from the retransmission queue. If our packet
3053 * is before the ack sequence we can discard it as it's confirmed to have
3054 * arrived at the other end.
3055 */
3056 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3057 u32 prior_snd_una, long sack_rtt_us)
3058 {
3059 const struct inet_connection_sock *icsk = inet_csk(sk);
3060 struct skb_mstamp first_ackt, last_ackt, now;
3061 struct tcp_sock *tp = tcp_sk(sk);
3062 u32 prior_sacked = tp->sacked_out;
3063 u32 reord = tp->packets_out;
3064 bool fully_acked = true;
3065 long ca_seq_rtt_us = -1L;
3066 long seq_rtt_us = -1L;
3067 struct sk_buff *skb;
3068 u32 pkts_acked = 0;
3069 bool rtt_update;
3070 int flag = 0;
3071
3072 first_ackt.v64 = 0;
3073
3074 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3075 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3076 u8 sacked = scb->sacked;
3077 u32 acked_pcount;
3078
3079 tcp_ack_tstamp(sk, skb, prior_snd_una);
3080
3081 /* Determine how many packets and what bytes were acked, tso and else */
3082 if (after(scb->end_seq, tp->snd_una)) {
3083 if (tcp_skb_pcount(skb) == 1 ||
3084 !after(tp->snd_una, scb->seq))
3085 break;
3086
3087 acked_pcount = tcp_tso_acked(sk, skb);
3088 if (!acked_pcount)
3089 break;
3090
3091 fully_acked = false;
3092 } else {
3093 /* Speedup tcp_unlink_write_queue() and next loop */
3094 prefetchw(skb->next);
3095 acked_pcount = tcp_skb_pcount(skb);
3096 }
3097
3098 if (unlikely(sacked & TCPCB_RETRANS)) {
3099 if (sacked & TCPCB_SACKED_RETRANS)
3100 tp->retrans_out -= acked_pcount;
3101 flag |= FLAG_RETRANS_DATA_ACKED;
3102 } else {
3103 last_ackt = skb->skb_mstamp;
3104 WARN_ON_ONCE(last_ackt.v64 == 0);
3105 if (!first_ackt.v64)
3106 first_ackt = last_ackt;
3107
3108 if (!(sacked & TCPCB_SACKED_ACKED)) {
3109 reord = min(pkts_acked, reord);
3110 if (!after(scb->end_seq, tp->high_seq))
3111 flag |= FLAG_ORIG_SACK_ACKED;
3112 }
3113 }
3114
3115 if (sacked & TCPCB_SACKED_ACKED)
3116 tp->sacked_out -= acked_pcount;
3117 if (sacked & TCPCB_LOST)
3118 tp->lost_out -= acked_pcount;
3119
3120 tp->packets_out -= acked_pcount;
3121 pkts_acked += acked_pcount;
3122
3123 /* Initial outgoing SYN's get put onto the write_queue
3124 * just like anything else we transmit. It is not
3125 * true data, and if we misinform our callers that
3126 * this ACK acks real data, we will erroneously exit
3127 * connection startup slow start one packet too
3128 * quickly. This is severely frowned upon behavior.
3129 */
3130 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3131 flag |= FLAG_DATA_ACKED;
3132 } else {
3133 flag |= FLAG_SYN_ACKED;
3134 tp->retrans_stamp = 0;
3135 }
3136
3137 if (!fully_acked)
3138 break;
3139
3140 tcp_unlink_write_queue(skb, sk);
3141 sk_wmem_free_skb(sk, skb);
3142 if (unlikely(skb == tp->retransmit_skb_hint))
3143 tp->retransmit_skb_hint = NULL;
3144 if (unlikely(skb == tp->lost_skb_hint))
3145 tp->lost_skb_hint = NULL;
3146 }
3147
3148 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3149 tp->snd_up = tp->snd_una;
3150
3151 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3152 flag |= FLAG_SACK_RENEGING;
3153
3154 skb_mstamp_get(&now);
3155 if (likely(first_ackt.v64)) {
3156 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3157 ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3158 }
3159
3160 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3161
3162 if (flag & FLAG_ACKED) {
3163 const struct tcp_congestion_ops *ca_ops
3164 = inet_csk(sk)->icsk_ca_ops;
3165
3166 tcp_rearm_rto(sk);
3167 if (unlikely(icsk->icsk_mtup.probe_size &&
3168 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3169 tcp_mtup_probe_success(sk);
3170 }
3171
3172 if (tcp_is_reno(tp)) {
3173 tcp_remove_reno_sacks(sk, pkts_acked);
3174 } else {
3175 int delta;
3176
3177 /* Non-retransmitted hole got filled? That's reordering */
3178 if (reord < prior_fackets)
3179 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3180
3181 delta = tcp_is_fack(tp) ? pkts_acked :
3182 prior_sacked - tp->sacked_out;
3183 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3184 }
3185
3186 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3187
3188 if (ca_ops->pkts_acked) {
3189 long rtt_us = min_t(ulong, ca_seq_rtt_us, sack_rtt_us);
3190 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3191 }
3192
3193 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3194 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3195 /* Do not re-arm RTO if the sack RTT is measured from data sent
3196 * after when the head was last (re)transmitted. Otherwise the
3197 * timeout may continue to extend in loss recovery.
3198 */
3199 tcp_rearm_rto(sk);
3200 }
3201
3202 #if FASTRETRANS_DEBUG > 0
3203 WARN_ON((int)tp->sacked_out < 0);
3204 WARN_ON((int)tp->lost_out < 0);
3205 WARN_ON((int)tp->retrans_out < 0);
3206 if (!tp->packets_out && tcp_is_sack(tp)) {
3207 icsk = inet_csk(sk);
3208 if (tp->lost_out) {
3209 pr_debug("Leak l=%u %d\n",
3210 tp->lost_out, icsk->icsk_ca_state);
3211 tp->lost_out = 0;
3212 }
3213 if (tp->sacked_out) {
3214 pr_debug("Leak s=%u %d\n",
3215 tp->sacked_out, icsk->icsk_ca_state);
3216 tp->sacked_out = 0;
3217 }
3218 if (tp->retrans_out) {
3219 pr_debug("Leak r=%u %d\n",
3220 tp->retrans_out, icsk->icsk_ca_state);
3221 tp->retrans_out = 0;
3222 }
3223 }
3224 #endif
3225 return flag;
3226 }
3227
3228 static void tcp_ack_probe(struct sock *sk)
3229 {
3230 const struct tcp_sock *tp = tcp_sk(sk);
3231 struct inet_connection_sock *icsk = inet_csk(sk);
3232
3233 /* Was it a usable window open? */
3234
3235 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3236 icsk->icsk_backoff = 0;
3237 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3238 /* Socket must be waked up by subsequent tcp_data_snd_check().
3239 * This function is not for random using!
3240 */
3241 } else {
3242 unsigned long when = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
3243
3244 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3245 when, TCP_RTO_MAX);
3246 }
3247 }
3248
3249 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3250 {
3251 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3252 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3253 }
3254
3255 /* Decide wheather to run the increase function of congestion control. */
3256 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3257 {
3258 if (tcp_in_cwnd_reduction(sk))
3259 return false;
3260
3261 /* If reordering is high then always grow cwnd whenever data is
3262 * delivered regardless of its ordering. Otherwise stay conservative
3263 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3264 * new SACK or ECE mark may first advance cwnd here and later reduce
3265 * cwnd in tcp_fastretrans_alert() based on more states.
3266 */
3267 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3268 return flag & FLAG_FORWARD_PROGRESS;
3269
3270 return flag & FLAG_DATA_ACKED;
3271 }
3272
3273 /* Check that window update is acceptable.
3274 * The function assumes that snd_una<=ack<=snd_next.
3275 */
3276 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3277 const u32 ack, const u32 ack_seq,
3278 const u32 nwin)
3279 {
3280 return after(ack, tp->snd_una) ||
3281 after(ack_seq, tp->snd_wl1) ||
3282 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3283 }
3284
3285 /* Update our send window.
3286 *
3287 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3288 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3289 */
3290 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3291 u32 ack_seq)
3292 {
3293 struct tcp_sock *tp = tcp_sk(sk);
3294 int flag = 0;
3295 u32 nwin = ntohs(tcp_hdr(skb)->window);
3296
3297 if (likely(!tcp_hdr(skb)->syn))
3298 nwin <<= tp->rx_opt.snd_wscale;
3299
3300 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3301 flag |= FLAG_WIN_UPDATE;
3302 tcp_update_wl(tp, ack_seq);
3303
3304 if (tp->snd_wnd != nwin) {
3305 tp->snd_wnd = nwin;
3306
3307 /* Note, it is the only place, where
3308 * fast path is recovered for sending TCP.
3309 */
3310 tp->pred_flags = 0;
3311 tcp_fast_path_check(sk);
3312
3313 if (nwin > tp->max_window) {
3314 tp->max_window = nwin;
3315 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3316 }
3317 }
3318 }
3319
3320 tp->snd_una = ack;
3321
3322 return flag;
3323 }
3324
3325 /* Return true if we're currently rate-limiting out-of-window ACKs and
3326 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3327 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3328 * attacks that send repeated SYNs or ACKs for the same connection. To
3329 * do this, we do not send a duplicate SYNACK or ACK if the remote
3330 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3331 */
3332 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3333 int mib_idx, u32 *last_oow_ack_time)
3334 {
3335 /* Data packets without SYNs are not likely part of an ACK loop. */
3336 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3337 !tcp_hdr(skb)->syn)
3338 goto not_rate_limited;
3339
3340 if (*last_oow_ack_time) {
3341 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3342
3343 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3344 NET_INC_STATS_BH(net, mib_idx);
3345 return true; /* rate-limited: don't send yet! */
3346 }
3347 }
3348
3349 *last_oow_ack_time = tcp_time_stamp;
3350
3351 not_rate_limited:
3352 return false; /* not rate-limited: go ahead, send dupack now! */
3353 }
3354
3355 /* RFC 5961 7 [ACK Throttling] */
3356 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3357 {
3358 /* unprotected vars, we dont care of overwrites */
3359 static u32 challenge_timestamp;
3360 static unsigned int challenge_count;
3361 struct tcp_sock *tp = tcp_sk(sk);
3362 u32 now;
3363
3364 /* First check our per-socket dupack rate limit. */
3365 if (tcp_oow_rate_limited(sock_net(sk), skb,
3366 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3367 &tp->last_oow_ack_time))
3368 return;
3369
3370 /* Then check the check host-wide RFC 5961 rate limit. */
3371 now = jiffies / HZ;
3372 if (now != challenge_timestamp) {
3373 challenge_timestamp = now;
3374 challenge_count = 0;
3375 }
3376 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3377 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3378 tcp_send_ack(sk);
3379 }
3380 }
3381
3382 static void tcp_store_ts_recent(struct tcp_sock *tp)
3383 {
3384 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3385 tp->rx_opt.ts_recent_stamp = get_seconds();
3386 }
3387
3388 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3389 {
3390 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3391 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3392 * extra check below makes sure this can only happen
3393 * for pure ACK frames. -DaveM
3394 *
3395 * Not only, also it occurs for expired timestamps.
3396 */
3397
3398 if (tcp_paws_check(&tp->rx_opt, 0))
3399 tcp_store_ts_recent(tp);
3400 }
3401 }
3402
3403 /* This routine deals with acks during a TLP episode.
3404 * We mark the end of a TLP episode on receiving TLP dupack or when
3405 * ack is after tlp_high_seq.
3406 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3407 */
3408 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3409 {
3410 struct tcp_sock *tp = tcp_sk(sk);
3411
3412 if (before(ack, tp->tlp_high_seq))
3413 return;
3414
3415 if (flag & FLAG_DSACKING_ACK) {
3416 /* This DSACK means original and TLP probe arrived; no loss */
3417 tp->tlp_high_seq = 0;
3418 } else if (after(ack, tp->tlp_high_seq)) {
3419 /* ACK advances: there was a loss, so reduce cwnd. Reset
3420 * tlp_high_seq in tcp_init_cwnd_reduction()
3421 */
3422 tcp_init_cwnd_reduction(sk);
3423 tcp_set_ca_state(sk, TCP_CA_CWR);
3424 tcp_end_cwnd_reduction(sk);
3425 tcp_try_keep_open(sk);
3426 NET_INC_STATS_BH(sock_net(sk),
3427 LINUX_MIB_TCPLOSSPROBERECOVERY);
3428 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3429 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3430 /* Pure dupack: original and TLP probe arrived; no loss */
3431 tp->tlp_high_seq = 0;
3432 }
3433 }
3434
3435 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3436 {
3437 const struct inet_connection_sock *icsk = inet_csk(sk);
3438
3439 if (icsk->icsk_ca_ops->in_ack_event)
3440 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3441 }
3442
3443 /* This routine deals with incoming acks, but not outgoing ones. */
3444 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3445 {
3446 struct inet_connection_sock *icsk = inet_csk(sk);
3447 struct tcp_sock *tp = tcp_sk(sk);
3448 u32 prior_snd_una = tp->snd_una;
3449 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3450 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3451 bool is_dupack = false;
3452 u32 prior_fackets;
3453 int prior_packets = tp->packets_out;
3454 const int prior_unsacked = tp->packets_out - tp->sacked_out;
3455 int acked = 0; /* Number of packets newly acked */
3456 long sack_rtt_us = -1L;
3457
3458 /* We very likely will need to access write queue head. */
3459 prefetchw(sk->sk_write_queue.next);
3460
3461 /* If the ack is older than previous acks
3462 * then we can probably ignore it.
3463 */
3464 if (before(ack, prior_snd_una)) {
3465 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3466 if (before(ack, prior_snd_una - tp->max_window)) {
3467 tcp_send_challenge_ack(sk, skb);
3468 return -1;
3469 }
3470 goto old_ack;
3471 }
3472
3473 /* If the ack includes data we haven't sent yet, discard
3474 * this segment (RFC793 Section 3.9).
3475 */
3476 if (after(ack, tp->snd_nxt))
3477 goto invalid_ack;
3478
3479 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3480 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3481 tcp_rearm_rto(sk);
3482
3483 if (after(ack, prior_snd_una)) {
3484 flag |= FLAG_SND_UNA_ADVANCED;
3485 icsk->icsk_retransmits = 0;
3486 }
3487
3488 prior_fackets = tp->fackets_out;
3489
3490 /* ts_recent update must be made after we are sure that the packet
3491 * is in window.
3492 */
3493 if (flag & FLAG_UPDATE_TS_RECENT)
3494 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3495
3496 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3497 /* Window is constant, pure forward advance.
3498 * No more checks are required.
3499 * Note, we use the fact that SND.UNA>=SND.WL2.
3500 */
3501 tcp_update_wl(tp, ack_seq);
3502 tp->snd_una = ack;
3503 flag |= FLAG_WIN_UPDATE;
3504
3505 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3506
3507 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3508 } else {
3509 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3510
3511 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3512 flag |= FLAG_DATA;
3513 else
3514 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3515
3516 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3517
3518 if (TCP_SKB_CB(skb)->sacked)
3519 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3520 &sack_rtt_us);
3521
3522 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3523 flag |= FLAG_ECE;
3524 ack_ev_flags |= CA_ACK_ECE;
3525 }
3526
3527 if (flag & FLAG_WIN_UPDATE)
3528 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3529
3530 tcp_in_ack_event(sk, ack_ev_flags);
3531 }
3532
3533 /* We passed data and got it acked, remove any soft error
3534 * log. Something worked...
3535 */
3536 sk->sk_err_soft = 0;
3537 icsk->icsk_probes_out = 0;
3538 tp->rcv_tstamp = tcp_time_stamp;
3539 if (!prior_packets)
3540 goto no_queue;
3541
3542 /* See if we can take anything off of the retransmit queue. */
3543 acked = tp->packets_out;
3544 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3545 sack_rtt_us);
3546 acked -= tp->packets_out;
3547
3548 /* Advance cwnd if state allows */
3549 if (tcp_may_raise_cwnd(sk, flag))
3550 tcp_cong_avoid(sk, ack, acked);
3551
3552 if (tcp_ack_is_dubious(sk, flag)) {
3553 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3554 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3555 is_dupack, flag);
3556 }
3557 if (tp->tlp_high_seq)
3558 tcp_process_tlp_ack(sk, ack, flag);
3559
3560 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3561 struct dst_entry *dst = __sk_dst_get(sk);
3562 if (dst)
3563 dst_confirm(dst);
3564 }
3565
3566 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3567 tcp_schedule_loss_probe(sk);
3568 tcp_update_pacing_rate(sk);
3569 return 1;
3570
3571 no_queue:
3572 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3573 if (flag & FLAG_DSACKING_ACK)
3574 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3575 is_dupack, flag);
3576 /* If this ack opens up a zero window, clear backoff. It was
3577 * being used to time the probes, and is probably far higher than
3578 * it needs to be for normal retransmission.
3579 */
3580 if (tcp_send_head(sk))
3581 tcp_ack_probe(sk);
3582
3583 if (tp->tlp_high_seq)
3584 tcp_process_tlp_ack(sk, ack, flag);
3585 return 1;
3586
3587 invalid_ack:
3588 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3589 return -1;
3590
3591 old_ack:
3592 /* If data was SACKed, tag it and see if we should send more data.
3593 * If data was DSACKed, see if we can undo a cwnd reduction.
3594 */
3595 if (TCP_SKB_CB(skb)->sacked) {
3596 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3597 &sack_rtt_us);
3598 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3599 is_dupack, flag);
3600 }
3601
3602 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3603 return 0;
3604 }
3605
3606 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3607 bool syn, struct tcp_fastopen_cookie *foc,
3608 bool exp_opt)
3609 {
3610 /* Valid only in SYN or SYN-ACK with an even length. */
3611 if (!foc || !syn || len < 0 || (len & 1))
3612 return;
3613
3614 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3615 len <= TCP_FASTOPEN_COOKIE_MAX)
3616 memcpy(foc->val, cookie, len);
3617 else if (len != 0)
3618 len = -1;
3619 foc->len = len;
3620 foc->exp = exp_opt;
3621 }
3622
3623 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3624 * But, this can also be called on packets in the established flow when
3625 * the fast version below fails.
3626 */
3627 void tcp_parse_options(const struct sk_buff *skb,
3628 struct tcp_options_received *opt_rx, int estab,
3629 struct tcp_fastopen_cookie *foc)
3630 {
3631 const unsigned char *ptr;
3632 const struct tcphdr *th = tcp_hdr(skb);
3633 int length = (th->doff * 4) - sizeof(struct tcphdr);
3634
3635 ptr = (const unsigned char *)(th + 1);
3636 opt_rx->saw_tstamp = 0;
3637
3638 while (length > 0) {
3639 int opcode = *ptr++;
3640 int opsize;
3641
3642 switch (opcode) {
3643 case TCPOPT_EOL:
3644 return;
3645 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3646 length--;
3647 continue;
3648 default:
3649 opsize = *ptr++;
3650 if (opsize < 2) /* "silly options" */
3651 return;
3652 if (opsize > length)
3653 return; /* don't parse partial options */
3654 switch (opcode) {
3655 case TCPOPT_MSS:
3656 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3657 u16 in_mss = get_unaligned_be16(ptr);
3658 if (in_mss) {
3659 if (opt_rx->user_mss &&
3660 opt_rx->user_mss < in_mss)
3661 in_mss = opt_rx->user_mss;
3662 opt_rx->mss_clamp = in_mss;
3663 }
3664 }
3665 break;
3666 case TCPOPT_WINDOW:
3667 if (opsize == TCPOLEN_WINDOW && th->syn &&
3668 !estab && sysctl_tcp_window_scaling) {
3669 __u8 snd_wscale = *(__u8 *)ptr;
3670 opt_rx->wscale_ok = 1;
3671 if (snd_wscale > 14) {
3672 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3673 __func__,
3674 snd_wscale);
3675 snd_wscale = 14;
3676 }
3677 opt_rx->snd_wscale = snd_wscale;
3678 }
3679 break;
3680 case TCPOPT_TIMESTAMP:
3681 if ((opsize == TCPOLEN_TIMESTAMP) &&
3682 ((estab && opt_rx->tstamp_ok) ||
3683 (!estab && sysctl_tcp_timestamps))) {
3684 opt_rx->saw_tstamp = 1;
3685 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3686 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3687 }
3688 break;
3689 case TCPOPT_SACK_PERM:
3690 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3691 !estab && sysctl_tcp_sack) {
3692 opt_rx->sack_ok = TCP_SACK_SEEN;
3693 tcp_sack_reset(opt_rx);
3694 }
3695 break;
3696
3697 case TCPOPT_SACK:
3698 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3699 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3700 opt_rx->sack_ok) {
3701 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3702 }
3703 break;
3704 #ifdef CONFIG_TCP_MD5SIG
3705 case TCPOPT_MD5SIG:
3706 /*
3707 * The MD5 Hash has already been
3708 * checked (see tcp_v{4,6}_do_rcv()).
3709 */
3710 break;
3711 #endif
3712 case TCPOPT_FASTOPEN:
3713 tcp_parse_fastopen_option(
3714 opsize - TCPOLEN_FASTOPEN_BASE,
3715 ptr, th->syn, foc, false);
3716 break;
3717
3718 case TCPOPT_EXP:
3719 /* Fast Open option shares code 254 using a
3720 * 16 bits magic number.
3721 */
3722 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3723 get_unaligned_be16(ptr) ==
3724 TCPOPT_FASTOPEN_MAGIC)
3725 tcp_parse_fastopen_option(opsize -
3726 TCPOLEN_EXP_FASTOPEN_BASE,
3727 ptr + 2, th->syn, foc, true);
3728 break;
3729
3730 }
3731 ptr += opsize-2;
3732 length -= opsize;
3733 }
3734 }
3735 }
3736 EXPORT_SYMBOL(tcp_parse_options);
3737
3738 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3739 {
3740 const __be32 *ptr = (const __be32 *)(th + 1);
3741
3742 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3743 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3744 tp->rx_opt.saw_tstamp = 1;
3745 ++ptr;
3746 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3747 ++ptr;
3748 if (*ptr)
3749 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3750 else
3751 tp->rx_opt.rcv_tsecr = 0;
3752 return true;
3753 }
3754 return false;
3755 }
3756
3757 /* Fast parse options. This hopes to only see timestamps.
3758 * If it is wrong it falls back on tcp_parse_options().
3759 */
3760 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3761 const struct tcphdr *th, struct tcp_sock *tp)
3762 {
3763 /* In the spirit of fast parsing, compare doff directly to constant
3764 * values. Because equality is used, short doff can be ignored here.
3765 */
3766 if (th->doff == (sizeof(*th) / 4)) {
3767 tp->rx_opt.saw_tstamp = 0;
3768 return false;
3769 } else if (tp->rx_opt.tstamp_ok &&
3770 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3771 if (tcp_parse_aligned_timestamp(tp, th))
3772 return true;
3773 }
3774
3775 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3776 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3777 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3778
3779 return true;
3780 }
3781
3782 #ifdef CONFIG_TCP_MD5SIG
3783 /*
3784 * Parse MD5 Signature option
3785 */
3786 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3787 {
3788 int length = (th->doff << 2) - sizeof(*th);
3789 const u8 *ptr = (const u8 *)(th + 1);
3790
3791 /* If the TCP option is too short, we can short cut */
3792 if (length < TCPOLEN_MD5SIG)
3793 return NULL;
3794
3795 while (length > 0) {
3796 int opcode = *ptr++;
3797 int opsize;
3798
3799 switch (opcode) {
3800 case TCPOPT_EOL:
3801 return NULL;
3802 case TCPOPT_NOP:
3803 length--;
3804 continue;
3805 default:
3806 opsize = *ptr++;
3807 if (opsize < 2 || opsize > length)
3808 return NULL;
3809 if (opcode == TCPOPT_MD5SIG)
3810 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3811 }
3812 ptr += opsize - 2;
3813 length -= opsize;
3814 }
3815 return NULL;
3816 }
3817 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3818 #endif
3819
3820 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3821 *
3822 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3823 * it can pass through stack. So, the following predicate verifies that
3824 * this segment is not used for anything but congestion avoidance or
3825 * fast retransmit. Moreover, we even are able to eliminate most of such
3826 * second order effects, if we apply some small "replay" window (~RTO)
3827 * to timestamp space.
3828 *
3829 * All these measures still do not guarantee that we reject wrapped ACKs
3830 * on networks with high bandwidth, when sequence space is recycled fastly,
3831 * but it guarantees that such events will be very rare and do not affect
3832 * connection seriously. This doesn't look nice, but alas, PAWS is really
3833 * buggy extension.
3834 *
3835 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3836 * states that events when retransmit arrives after original data are rare.
3837 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3838 * the biggest problem on large power networks even with minor reordering.
3839 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3840 * up to bandwidth of 18Gigabit/sec. 8) ]
3841 */
3842
3843 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3844 {
3845 const struct tcp_sock *tp = tcp_sk(sk);
3846 const struct tcphdr *th = tcp_hdr(skb);
3847 u32 seq = TCP_SKB_CB(skb)->seq;
3848 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3849
3850 return (/* 1. Pure ACK with correct sequence number. */
3851 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3852
3853 /* 2. ... and duplicate ACK. */
3854 ack == tp->snd_una &&
3855
3856 /* 3. ... and does not update window. */
3857 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3858
3859 /* 4. ... and sits in replay window. */
3860 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3861 }
3862
3863 static inline bool tcp_paws_discard(const struct sock *sk,
3864 const struct sk_buff *skb)
3865 {
3866 const struct tcp_sock *tp = tcp_sk(sk);
3867
3868 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3869 !tcp_disordered_ack(sk, skb);
3870 }
3871
3872 /* Check segment sequence number for validity.
3873 *
3874 * Segment controls are considered valid, if the segment
3875 * fits to the window after truncation to the window. Acceptability
3876 * of data (and SYN, FIN, of course) is checked separately.
3877 * See tcp_data_queue(), for example.
3878 *
3879 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3880 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3881 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3882 * (borrowed from freebsd)
3883 */
3884
3885 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3886 {
3887 return !before(end_seq, tp->rcv_wup) &&
3888 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3889 }
3890
3891 /* When we get a reset we do this. */
3892 void tcp_reset(struct sock *sk)
3893 {
3894 /* We want the right error as BSD sees it (and indeed as we do). */
3895 switch (sk->sk_state) {
3896 case TCP_SYN_SENT:
3897 sk->sk_err = ECONNREFUSED;
3898 break;
3899 case TCP_CLOSE_WAIT:
3900 sk->sk_err = EPIPE;
3901 break;
3902 case TCP_CLOSE:
3903 return;
3904 default:
3905 sk->sk_err = ECONNRESET;
3906 }
3907 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3908 smp_wmb();
3909
3910 if (!sock_flag(sk, SOCK_DEAD))
3911 sk->sk_error_report(sk);
3912
3913 tcp_done(sk);
3914 }
3915
3916 /*
3917 * Process the FIN bit. This now behaves as it is supposed to work
3918 * and the FIN takes effect when it is validly part of sequence
3919 * space. Not before when we get holes.
3920 *
3921 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3922 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3923 * TIME-WAIT)
3924 *
3925 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3926 * close and we go into CLOSING (and later onto TIME-WAIT)
3927 *
3928 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3929 */
3930 static void tcp_fin(struct sock *sk)
3931 {
3932 struct tcp_sock *tp = tcp_sk(sk);
3933 const struct dst_entry *dst;
3934
3935 inet_csk_schedule_ack(sk);
3936
3937 sk->sk_shutdown |= RCV_SHUTDOWN;
3938 sock_set_flag(sk, SOCK_DONE);
3939
3940 switch (sk->sk_state) {
3941 case TCP_SYN_RECV:
3942 case TCP_ESTABLISHED:
3943 /* Move to CLOSE_WAIT */
3944 tcp_set_state(sk, TCP_CLOSE_WAIT);
3945 dst = __sk_dst_get(sk);
3946 if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3947 inet_csk(sk)->icsk_ack.pingpong = 1;
3948 break;
3949
3950 case TCP_CLOSE_WAIT:
3951 case TCP_CLOSING:
3952 /* Received a retransmission of the FIN, do
3953 * nothing.
3954 */
3955 break;
3956 case TCP_LAST_ACK:
3957 /* RFC793: Remain in the LAST-ACK state. */
3958 break;
3959
3960 case TCP_FIN_WAIT1:
3961 /* This case occurs when a simultaneous close
3962 * happens, we must ack the received FIN and
3963 * enter the CLOSING state.
3964 */
3965 tcp_send_ack(sk);
3966 tcp_set_state(sk, TCP_CLOSING);
3967 break;
3968 case TCP_FIN_WAIT2:
3969 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3970 tcp_send_ack(sk);
3971 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3972 break;
3973 default:
3974 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3975 * cases we should never reach this piece of code.
3976 */
3977 pr_err("%s: Impossible, sk->sk_state=%d\n",
3978 __func__, sk->sk_state);
3979 break;
3980 }
3981
3982 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3983 * Probably, we should reset in this case. For now drop them.
3984 */
3985 __skb_queue_purge(&tp->out_of_order_queue);
3986 if (tcp_is_sack(tp))
3987 tcp_sack_reset(&tp->rx_opt);
3988 sk_mem_reclaim(sk);
3989
3990 if (!sock_flag(sk, SOCK_DEAD)) {
3991 sk->sk_state_change(sk);
3992
3993 /* Do not send POLL_HUP for half duplex close. */
3994 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3995 sk->sk_state == TCP_CLOSE)
3996 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3997 else
3998 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3999 }
4000 }
4001
4002 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4003 u32 end_seq)
4004 {
4005 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4006 if (before(seq, sp->start_seq))
4007 sp->start_seq = seq;
4008 if (after(end_seq, sp->end_seq))
4009 sp->end_seq = end_seq;
4010 return true;
4011 }
4012 return false;
4013 }
4014
4015 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4016 {
4017 struct tcp_sock *tp = tcp_sk(sk);
4018
4019 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4020 int mib_idx;
4021
4022 if (before(seq, tp->rcv_nxt))
4023 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4024 else
4025 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4026
4027 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4028
4029 tp->rx_opt.dsack = 1;
4030 tp->duplicate_sack[0].start_seq = seq;
4031 tp->duplicate_sack[0].end_seq = end_seq;
4032 }
4033 }
4034
4035 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4036 {
4037 struct tcp_sock *tp = tcp_sk(sk);
4038
4039 if (!tp->rx_opt.dsack)
4040 tcp_dsack_set(sk, seq, end_seq);
4041 else
4042 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4043 }
4044
4045 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4046 {
4047 struct tcp_sock *tp = tcp_sk(sk);
4048
4049 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4050 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4051 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4052 tcp_enter_quickack_mode(sk);
4053
4054 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4055 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4056
4057 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4058 end_seq = tp->rcv_nxt;
4059 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4060 }
4061 }
4062
4063 tcp_send_ack(sk);
4064 }
4065
4066 /* These routines update the SACK block as out-of-order packets arrive or
4067 * in-order packets close up the sequence space.
4068 */
4069 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4070 {
4071 int this_sack;
4072 struct tcp_sack_block *sp = &tp->selective_acks[0];
4073 struct tcp_sack_block *swalk = sp + 1;
4074
4075 /* See if the recent change to the first SACK eats into
4076 * or hits the sequence space of other SACK blocks, if so coalesce.
4077 */
4078 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4079 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4080 int i;
4081
4082 /* Zap SWALK, by moving every further SACK up by one slot.
4083 * Decrease num_sacks.
4084 */
4085 tp->rx_opt.num_sacks--;
4086 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4087 sp[i] = sp[i + 1];
4088 continue;
4089 }
4090 this_sack++, swalk++;
4091 }
4092 }
4093
4094 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4095 {
4096 struct tcp_sock *tp = tcp_sk(sk);
4097 struct tcp_sack_block *sp = &tp->selective_acks[0];
4098 int cur_sacks = tp->rx_opt.num_sacks;
4099 int this_sack;
4100
4101 if (!cur_sacks)
4102 goto new_sack;
4103
4104 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4105 if (tcp_sack_extend(sp, seq, end_seq)) {
4106 /* Rotate this_sack to the first one. */
4107 for (; this_sack > 0; this_sack--, sp--)
4108 swap(*sp, *(sp - 1));
4109 if (cur_sacks > 1)
4110 tcp_sack_maybe_coalesce(tp);
4111 return;
4112 }
4113 }
4114
4115 /* Could not find an adjacent existing SACK, build a new one,
4116 * put it at the front, and shift everyone else down. We
4117 * always know there is at least one SACK present already here.
4118 *
4119 * If the sack array is full, forget about the last one.
4120 */
4121 if (this_sack >= TCP_NUM_SACKS) {
4122 this_sack--;
4123 tp->rx_opt.num_sacks--;
4124 sp--;
4125 }
4126 for (; this_sack > 0; this_sack--, sp--)
4127 *sp = *(sp - 1);
4128
4129 new_sack:
4130 /* Build the new head SACK, and we're done. */
4131 sp->start_seq = seq;
4132 sp->end_seq = end_seq;
4133 tp->rx_opt.num_sacks++;
4134 }
4135
4136 /* RCV.NXT advances, some SACKs should be eaten. */
4137
4138 static void tcp_sack_remove(struct tcp_sock *tp)
4139 {
4140 struct tcp_sack_block *sp = &tp->selective_acks[0];
4141 int num_sacks = tp->rx_opt.num_sacks;
4142 int this_sack;
4143
4144 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4145 if (skb_queue_empty(&tp->out_of_order_queue)) {
4146 tp->rx_opt.num_sacks = 0;
4147 return;
4148 }
4149
4150 for (this_sack = 0; this_sack < num_sacks;) {
4151 /* Check if the start of the sack is covered by RCV.NXT. */
4152 if (!before(tp->rcv_nxt, sp->start_seq)) {
4153 int i;
4154
4155 /* RCV.NXT must cover all the block! */
4156 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4157
4158 /* Zap this SACK, by moving forward any other SACKS. */
4159 for (i = this_sack+1; i < num_sacks; i++)
4160 tp->selective_acks[i-1] = tp->selective_acks[i];
4161 num_sacks--;
4162 continue;
4163 }
4164 this_sack++;
4165 sp++;
4166 }
4167 tp->rx_opt.num_sacks = num_sacks;
4168 }
4169
4170 /**
4171 * tcp_try_coalesce - try to merge skb to prior one
4172 * @sk: socket
4173 * @to: prior buffer
4174 * @from: buffer to add in queue
4175 * @fragstolen: pointer to boolean
4176 *
4177 * Before queueing skb @from after @to, try to merge them
4178 * to reduce overall memory use and queue lengths, if cost is small.
4179 * Packets in ofo or receive queues can stay a long time.
4180 * Better try to coalesce them right now to avoid future collapses.
4181 * Returns true if caller should free @from instead of queueing it
4182 */
4183 static bool tcp_try_coalesce(struct sock *sk,
4184 struct sk_buff *to,
4185 struct sk_buff *from,
4186 bool *fragstolen)
4187 {
4188 int delta;
4189
4190 *fragstolen = false;
4191
4192 /* Its possible this segment overlaps with prior segment in queue */
4193 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4194 return false;
4195
4196 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4197 return false;
4198
4199 atomic_add(delta, &sk->sk_rmem_alloc);
4200 sk_mem_charge(sk, delta);
4201 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4202 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4203 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4204 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4205 return true;
4206 }
4207
4208 /* This one checks to see if we can put data from the
4209 * out_of_order queue into the receive_queue.
4210 */
4211 static void tcp_ofo_queue(struct sock *sk)
4212 {
4213 struct tcp_sock *tp = tcp_sk(sk);
4214 __u32 dsack_high = tp->rcv_nxt;
4215 struct sk_buff *skb, *tail;
4216 bool fragstolen, eaten;
4217
4218 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4219 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4220 break;
4221
4222 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4223 __u32 dsack = dsack_high;
4224 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4225 dsack_high = TCP_SKB_CB(skb)->end_seq;
4226 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4227 }
4228
4229 __skb_unlink(skb, &tp->out_of_order_queue);
4230 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4231 SOCK_DEBUG(sk, "ofo packet was already received\n");
4232 __kfree_skb(skb);
4233 continue;
4234 }
4235 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4236 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4237 TCP_SKB_CB(skb)->end_seq);
4238
4239 tail = skb_peek_tail(&sk->sk_receive_queue);
4240 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4241 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4242 if (!eaten)
4243 __skb_queue_tail(&sk->sk_receive_queue, skb);
4244 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4245 tcp_fin(sk);
4246 if (eaten)
4247 kfree_skb_partial(skb, fragstolen);
4248 }
4249 }
4250
4251 static bool tcp_prune_ofo_queue(struct sock *sk);
4252 static int tcp_prune_queue(struct sock *sk);
4253
4254 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4255 unsigned int size)
4256 {
4257 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4258 !sk_rmem_schedule(sk, skb, size)) {
4259
4260 if (tcp_prune_queue(sk) < 0)
4261 return -1;
4262
4263 if (!sk_rmem_schedule(sk, skb, size)) {
4264 if (!tcp_prune_ofo_queue(sk))
4265 return -1;
4266
4267 if (!sk_rmem_schedule(sk, skb, size))
4268 return -1;
4269 }
4270 }
4271 return 0;
4272 }
4273
4274 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4275 {
4276 struct tcp_sock *tp = tcp_sk(sk);
4277 struct sk_buff *skb1;
4278 u32 seq, end_seq;
4279
4280 tcp_ecn_check_ce(tp, skb);
4281
4282 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4283 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4284 __kfree_skb(skb);
4285 return;
4286 }
4287
4288 /* Disable header prediction. */
4289 tp->pred_flags = 0;
4290 inet_csk_schedule_ack(sk);
4291
4292 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4293 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4294 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4295
4296 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4297 if (!skb1) {
4298 /* Initial out of order segment, build 1 SACK. */
4299 if (tcp_is_sack(tp)) {
4300 tp->rx_opt.num_sacks = 1;
4301 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4302 tp->selective_acks[0].end_seq =
4303 TCP_SKB_CB(skb)->end_seq;
4304 }
4305 __skb_queue_head(&tp->out_of_order_queue, skb);
4306 goto end;
4307 }
4308
4309 seq = TCP_SKB_CB(skb)->seq;
4310 end_seq = TCP_SKB_CB(skb)->end_seq;
4311
4312 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4313 bool fragstolen;
4314
4315 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4316 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4317 } else {
4318 tcp_grow_window(sk, skb);
4319 kfree_skb_partial(skb, fragstolen);
4320 skb = NULL;
4321 }
4322
4323 if (!tp->rx_opt.num_sacks ||
4324 tp->selective_acks[0].end_seq != seq)
4325 goto add_sack;
4326
4327 /* Common case: data arrive in order after hole. */
4328 tp->selective_acks[0].end_seq = end_seq;
4329 goto end;
4330 }
4331
4332 /* Find place to insert this segment. */
4333 while (1) {
4334 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4335 break;
4336 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4337 skb1 = NULL;
4338 break;
4339 }
4340 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4341 }
4342
4343 /* Do skb overlap to previous one? */
4344 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4345 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4346 /* All the bits are present. Drop. */
4347 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4348 __kfree_skb(skb);
4349 skb = NULL;
4350 tcp_dsack_set(sk, seq, end_seq);
4351 goto add_sack;
4352 }
4353 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4354 /* Partial overlap. */
4355 tcp_dsack_set(sk, seq,
4356 TCP_SKB_CB(skb1)->end_seq);
4357 } else {
4358 if (skb_queue_is_first(&tp->out_of_order_queue,
4359 skb1))
4360 skb1 = NULL;
4361 else
4362 skb1 = skb_queue_prev(
4363 &tp->out_of_order_queue,
4364 skb1);
4365 }
4366 }
4367 if (!skb1)
4368 __skb_queue_head(&tp->out_of_order_queue, skb);
4369 else
4370 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4371
4372 /* And clean segments covered by new one as whole. */
4373 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4374 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4375
4376 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4377 break;
4378 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4379 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4380 end_seq);
4381 break;
4382 }
4383 __skb_unlink(skb1, &tp->out_of_order_queue);
4384 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4385 TCP_SKB_CB(skb1)->end_seq);
4386 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4387 __kfree_skb(skb1);
4388 }
4389
4390 add_sack:
4391 if (tcp_is_sack(tp))
4392 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4393 end:
4394 if (skb) {
4395 tcp_grow_window(sk, skb);
4396 skb_set_owner_r(skb, sk);
4397 }
4398 }
4399
4400 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4401 bool *fragstolen)
4402 {
4403 int eaten;
4404 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4405
4406 __skb_pull(skb, hdrlen);
4407 eaten = (tail &&
4408 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4409 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4410 if (!eaten) {
4411 __skb_queue_tail(&sk->sk_receive_queue, skb);
4412 skb_set_owner_r(skb, sk);
4413 }
4414 return eaten;
4415 }
4416
4417 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4418 {
4419 struct sk_buff *skb;
4420 bool fragstolen;
4421
4422 if (size == 0)
4423 return 0;
4424
4425 skb = alloc_skb(size, sk->sk_allocation);
4426 if (!skb)
4427 goto err;
4428
4429 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4430 goto err_free;
4431
4432 if (memcpy_from_msg(skb_put(skb, size), msg, size))
4433 goto err_free;
4434
4435 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4436 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4437 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4438
4439 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4440 WARN_ON_ONCE(fragstolen); /* should not happen */
4441 __kfree_skb(skb);
4442 }
4443 return size;
4444
4445 err_free:
4446 kfree_skb(skb);
4447 err:
4448 return -ENOMEM;
4449 }
4450
4451 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4452 {
4453 struct tcp_sock *tp = tcp_sk(sk);
4454 int eaten = -1;
4455 bool fragstolen = false;
4456
4457 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4458 goto drop;
4459
4460 skb_dst_drop(skb);
4461 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4462
4463 tcp_ecn_accept_cwr(tp, skb);
4464
4465 tp->rx_opt.dsack = 0;
4466
4467 /* Queue data for delivery to the user.
4468 * Packets in sequence go to the receive queue.
4469 * Out of sequence packets to the out_of_order_queue.
4470 */
4471 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4472 if (tcp_receive_window(tp) == 0)
4473 goto out_of_window;
4474
4475 /* Ok. In sequence. In window. */
4476 if (tp->ucopy.task == current &&
4477 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4478 sock_owned_by_user(sk) && !tp->urg_data) {
4479 int chunk = min_t(unsigned int, skb->len,
4480 tp->ucopy.len);
4481
4482 __set_current_state(TASK_RUNNING);
4483
4484 local_bh_enable();
4485 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4486 tp->ucopy.len -= chunk;
4487 tp->copied_seq += chunk;
4488 eaten = (chunk == skb->len);
4489 tcp_rcv_space_adjust(sk);
4490 }
4491 local_bh_disable();
4492 }
4493
4494 if (eaten <= 0) {
4495 queue_and_out:
4496 if (eaten < 0 &&
4497 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4498 goto drop;
4499
4500 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4501 }
4502 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4503 if (skb->len)
4504 tcp_event_data_recv(sk, skb);
4505 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4506 tcp_fin(sk);
4507
4508 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4509 tcp_ofo_queue(sk);
4510
4511 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4512 * gap in queue is filled.
4513 */
4514 if (skb_queue_empty(&tp->out_of_order_queue))
4515 inet_csk(sk)->icsk_ack.pingpong = 0;
4516 }
4517
4518 if (tp->rx_opt.num_sacks)
4519 tcp_sack_remove(tp);
4520
4521 tcp_fast_path_check(sk);
4522
4523 if (eaten > 0)
4524 kfree_skb_partial(skb, fragstolen);
4525 if (!sock_flag(sk, SOCK_DEAD))
4526 sk->sk_data_ready(sk);
4527 return;
4528 }
4529
4530 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4531 /* A retransmit, 2nd most common case. Force an immediate ack. */
4532 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4533 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4534
4535 out_of_window:
4536 tcp_enter_quickack_mode(sk);
4537 inet_csk_schedule_ack(sk);
4538 drop:
4539 __kfree_skb(skb);
4540 return;
4541 }
4542
4543 /* Out of window. F.e. zero window probe. */
4544 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4545 goto out_of_window;
4546
4547 tcp_enter_quickack_mode(sk);
4548
4549 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4550 /* Partial packet, seq < rcv_next < end_seq */
4551 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4552 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4553 TCP_SKB_CB(skb)->end_seq);
4554
4555 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4556
4557 /* If window is closed, drop tail of packet. But after
4558 * remembering D-SACK for its head made in previous line.
4559 */
4560 if (!tcp_receive_window(tp))
4561 goto out_of_window;
4562 goto queue_and_out;
4563 }
4564
4565 tcp_data_queue_ofo(sk, skb);
4566 }
4567
4568 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4569 struct sk_buff_head *list)
4570 {
4571 struct sk_buff *next = NULL;
4572
4573 if (!skb_queue_is_last(list, skb))
4574 next = skb_queue_next(list, skb);
4575
4576 __skb_unlink(skb, list);
4577 __kfree_skb(skb);
4578 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4579
4580 return next;
4581 }
4582
4583 /* Collapse contiguous sequence of skbs head..tail with
4584 * sequence numbers start..end.
4585 *
4586 * If tail is NULL, this means until the end of the list.
4587 *
4588 * Segments with FIN/SYN are not collapsed (only because this
4589 * simplifies code)
4590 */
4591 static void
4592 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4593 struct sk_buff *head, struct sk_buff *tail,
4594 u32 start, u32 end)
4595 {
4596 struct sk_buff *skb, *n;
4597 bool end_of_skbs;
4598
4599 /* First, check that queue is collapsible and find
4600 * the point where collapsing can be useful. */
4601 skb = head;
4602 restart:
4603 end_of_skbs = true;
4604 skb_queue_walk_from_safe(list, skb, n) {
4605 if (skb == tail)
4606 break;
4607 /* No new bits? It is possible on ofo queue. */
4608 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4609 skb = tcp_collapse_one(sk, skb, list);
4610 if (!skb)
4611 break;
4612 goto restart;
4613 }
4614
4615 /* The first skb to collapse is:
4616 * - not SYN/FIN and
4617 * - bloated or contains data before "start" or
4618 * overlaps to the next one.
4619 */
4620 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4621 (tcp_win_from_space(skb->truesize) > skb->len ||
4622 before(TCP_SKB_CB(skb)->seq, start))) {
4623 end_of_skbs = false;
4624 break;
4625 }
4626
4627 if (!skb_queue_is_last(list, skb)) {
4628 struct sk_buff *next = skb_queue_next(list, skb);
4629 if (next != tail &&
4630 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4631 end_of_skbs = false;
4632 break;
4633 }
4634 }
4635
4636 /* Decided to skip this, advance start seq. */
4637 start = TCP_SKB_CB(skb)->end_seq;
4638 }
4639 if (end_of_skbs ||
4640 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4641 return;
4642
4643 while (before(start, end)) {
4644 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4645 struct sk_buff *nskb;
4646
4647 nskb = alloc_skb(copy, GFP_ATOMIC);
4648 if (!nskb)
4649 return;
4650
4651 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4652 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4653 __skb_queue_before(list, skb, nskb);
4654 skb_set_owner_r(nskb, sk);
4655
4656 /* Copy data, releasing collapsed skbs. */
4657 while (copy > 0) {
4658 int offset = start - TCP_SKB_CB(skb)->seq;
4659 int size = TCP_SKB_CB(skb)->end_seq - start;
4660
4661 BUG_ON(offset < 0);
4662 if (size > 0) {
4663 size = min(copy, size);
4664 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4665 BUG();
4666 TCP_SKB_CB(nskb)->end_seq += size;
4667 copy -= size;
4668 start += size;
4669 }
4670 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4671 skb = tcp_collapse_one(sk, skb, list);
4672 if (!skb ||
4673 skb == tail ||
4674 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4675 return;
4676 }
4677 }
4678 }
4679 }
4680
4681 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4682 * and tcp_collapse() them until all the queue is collapsed.
4683 */
4684 static void tcp_collapse_ofo_queue(struct sock *sk)
4685 {
4686 struct tcp_sock *tp = tcp_sk(sk);
4687 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4688 struct sk_buff *head;
4689 u32 start, end;
4690
4691 if (!skb)
4692 return;
4693
4694 start = TCP_SKB_CB(skb)->seq;
4695 end = TCP_SKB_CB(skb)->end_seq;
4696 head = skb;
4697
4698 for (;;) {
4699 struct sk_buff *next = NULL;
4700
4701 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4702 next = skb_queue_next(&tp->out_of_order_queue, skb);
4703 skb = next;
4704
4705 /* Segment is terminated when we see gap or when
4706 * we are at the end of all the queue. */
4707 if (!skb ||
4708 after(TCP_SKB_CB(skb)->seq, end) ||
4709 before(TCP_SKB_CB(skb)->end_seq, start)) {
4710 tcp_collapse(sk, &tp->out_of_order_queue,
4711 head, skb, start, end);
4712 head = skb;
4713 if (!skb)
4714 break;
4715 /* Start new segment */
4716 start = TCP_SKB_CB(skb)->seq;
4717 end = TCP_SKB_CB(skb)->end_seq;
4718 } else {
4719 if (before(TCP_SKB_CB(skb)->seq, start))
4720 start = TCP_SKB_CB(skb)->seq;
4721 if (after(TCP_SKB_CB(skb)->end_seq, end))
4722 end = TCP_SKB_CB(skb)->end_seq;
4723 }
4724 }
4725 }
4726
4727 /*
4728 * Purge the out-of-order queue.
4729 * Return true if queue was pruned.
4730 */
4731 static bool tcp_prune_ofo_queue(struct sock *sk)
4732 {
4733 struct tcp_sock *tp = tcp_sk(sk);
4734 bool res = false;
4735
4736 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4737 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4738 __skb_queue_purge(&tp->out_of_order_queue);
4739
4740 /* Reset SACK state. A conforming SACK implementation will
4741 * do the same at a timeout based retransmit. When a connection
4742 * is in a sad state like this, we care only about integrity
4743 * of the connection not performance.
4744 */
4745 if (tp->rx_opt.sack_ok)
4746 tcp_sack_reset(&tp->rx_opt);
4747 sk_mem_reclaim(sk);
4748 res = true;
4749 }
4750 return res;
4751 }
4752
4753 /* Reduce allocated memory if we can, trying to get
4754 * the socket within its memory limits again.
4755 *
4756 * Return less than zero if we should start dropping frames
4757 * until the socket owning process reads some of the data
4758 * to stabilize the situation.
4759 */
4760 static int tcp_prune_queue(struct sock *sk)
4761 {
4762 struct tcp_sock *tp = tcp_sk(sk);
4763
4764 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4765
4766 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4767
4768 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4769 tcp_clamp_window(sk);
4770 else if (sk_under_memory_pressure(sk))
4771 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4772
4773 tcp_collapse_ofo_queue(sk);
4774 if (!skb_queue_empty(&sk->sk_receive_queue))
4775 tcp_collapse(sk, &sk->sk_receive_queue,
4776 skb_peek(&sk->sk_receive_queue),
4777 NULL,
4778 tp->copied_seq, tp->rcv_nxt);
4779 sk_mem_reclaim(sk);
4780
4781 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4782 return 0;
4783
4784 /* Collapsing did not help, destructive actions follow.
4785 * This must not ever occur. */
4786
4787 tcp_prune_ofo_queue(sk);
4788
4789 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4790 return 0;
4791
4792 /* If we are really being abused, tell the caller to silently
4793 * drop receive data on the floor. It will get retransmitted
4794 * and hopefully then we'll have sufficient space.
4795 */
4796 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4797
4798 /* Massive buffer overcommit. */
4799 tp->pred_flags = 0;
4800 return -1;
4801 }
4802
4803 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4804 {
4805 const struct tcp_sock *tp = tcp_sk(sk);
4806
4807 /* If the user specified a specific send buffer setting, do
4808 * not modify it.
4809 */
4810 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4811 return false;
4812
4813 /* If we are under global TCP memory pressure, do not expand. */
4814 if (sk_under_memory_pressure(sk))
4815 return false;
4816
4817 /* If we are under soft global TCP memory pressure, do not expand. */
4818 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4819 return false;
4820
4821 /* If we filled the congestion window, do not expand. */
4822 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4823 return false;
4824
4825 return true;
4826 }
4827
4828 /* When incoming ACK allowed to free some skb from write_queue,
4829 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4830 * on the exit from tcp input handler.
4831 *
4832 * PROBLEM: sndbuf expansion does not work well with largesend.
4833 */
4834 static void tcp_new_space(struct sock *sk)
4835 {
4836 struct tcp_sock *tp = tcp_sk(sk);
4837
4838 if (tcp_should_expand_sndbuf(sk)) {
4839 tcp_sndbuf_expand(sk);
4840 tp->snd_cwnd_stamp = tcp_time_stamp;
4841 }
4842
4843 sk->sk_write_space(sk);
4844 }
4845
4846 static void tcp_check_space(struct sock *sk)
4847 {
4848 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4849 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4850 if (sk->sk_socket &&
4851 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4852 tcp_new_space(sk);
4853 }
4854 }
4855
4856 static inline void tcp_data_snd_check(struct sock *sk)
4857 {
4858 tcp_push_pending_frames(sk);
4859 tcp_check_space(sk);
4860 }
4861
4862 /*
4863 * Check if sending an ack is needed.
4864 */
4865 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4866 {
4867 struct tcp_sock *tp = tcp_sk(sk);
4868
4869 /* More than one full frame received... */
4870 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4871 /* ... and right edge of window advances far enough.
4872 * (tcp_recvmsg() will send ACK otherwise). Or...
4873 */
4874 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4875 /* We ACK each frame or... */
4876 tcp_in_quickack_mode(sk) ||
4877 /* We have out of order data. */
4878 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4879 /* Then ack it now */
4880 tcp_send_ack(sk);
4881 } else {
4882 /* Else, send delayed ack. */
4883 tcp_send_delayed_ack(sk);
4884 }
4885 }
4886
4887 static inline void tcp_ack_snd_check(struct sock *sk)
4888 {
4889 if (!inet_csk_ack_scheduled(sk)) {
4890 /* We sent a data segment already. */
4891 return;
4892 }
4893 __tcp_ack_snd_check(sk, 1);
4894 }
4895
4896 /*
4897 * This routine is only called when we have urgent data
4898 * signaled. Its the 'slow' part of tcp_urg. It could be
4899 * moved inline now as tcp_urg is only called from one
4900 * place. We handle URGent data wrong. We have to - as
4901 * BSD still doesn't use the correction from RFC961.
4902 * For 1003.1g we should support a new option TCP_STDURG to permit
4903 * either form (or just set the sysctl tcp_stdurg).
4904 */
4905
4906 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4907 {
4908 struct tcp_sock *tp = tcp_sk(sk);
4909 u32 ptr = ntohs(th->urg_ptr);
4910
4911 if (ptr && !sysctl_tcp_stdurg)
4912 ptr--;
4913 ptr += ntohl(th->seq);
4914
4915 /* Ignore urgent data that we've already seen and read. */
4916 if (after(tp->copied_seq, ptr))
4917 return;
4918
4919 /* Do not replay urg ptr.
4920 *
4921 * NOTE: interesting situation not covered by specs.
4922 * Misbehaving sender may send urg ptr, pointing to segment,
4923 * which we already have in ofo queue. We are not able to fetch
4924 * such data and will stay in TCP_URG_NOTYET until will be eaten
4925 * by recvmsg(). Seems, we are not obliged to handle such wicked
4926 * situations. But it is worth to think about possibility of some
4927 * DoSes using some hypothetical application level deadlock.
4928 */
4929 if (before(ptr, tp->rcv_nxt))
4930 return;
4931
4932 /* Do we already have a newer (or duplicate) urgent pointer? */
4933 if (tp->urg_data && !after(ptr, tp->urg_seq))
4934 return;
4935
4936 /* Tell the world about our new urgent pointer. */
4937 sk_send_sigurg(sk);
4938
4939 /* We may be adding urgent data when the last byte read was
4940 * urgent. To do this requires some care. We cannot just ignore
4941 * tp->copied_seq since we would read the last urgent byte again
4942 * as data, nor can we alter copied_seq until this data arrives
4943 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4944 *
4945 * NOTE. Double Dutch. Rendering to plain English: author of comment
4946 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4947 * and expect that both A and B disappear from stream. This is _wrong_.
4948 * Though this happens in BSD with high probability, this is occasional.
4949 * Any application relying on this is buggy. Note also, that fix "works"
4950 * only in this artificial test. Insert some normal data between A and B and we will
4951 * decline of BSD again. Verdict: it is better to remove to trap
4952 * buggy users.
4953 */
4954 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4955 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4956 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4957 tp->copied_seq++;
4958 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4959 __skb_unlink(skb, &sk->sk_receive_queue);
4960 __kfree_skb(skb);
4961 }
4962 }
4963
4964 tp->urg_data = TCP_URG_NOTYET;
4965 tp->urg_seq = ptr;
4966
4967 /* Disable header prediction. */
4968 tp->pred_flags = 0;
4969 }
4970
4971 /* This is the 'fast' part of urgent handling. */
4972 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4973 {
4974 struct tcp_sock *tp = tcp_sk(sk);
4975
4976 /* Check if we get a new urgent pointer - normally not. */
4977 if (th->urg)
4978 tcp_check_urg(sk, th);
4979
4980 /* Do we wait for any urgent data? - normally not... */
4981 if (tp->urg_data == TCP_URG_NOTYET) {
4982 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4983 th->syn;
4984
4985 /* Is the urgent pointer pointing into this packet? */
4986 if (ptr < skb->len) {
4987 u8 tmp;
4988 if (skb_copy_bits(skb, ptr, &tmp, 1))
4989 BUG();
4990 tp->urg_data = TCP_URG_VALID | tmp;
4991 if (!sock_flag(sk, SOCK_DEAD))
4992 sk->sk_data_ready(sk);
4993 }
4994 }
4995 }
4996
4997 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4998 {
4999 struct tcp_sock *tp = tcp_sk(sk);
5000 int chunk = skb->len - hlen;
5001 int err;
5002
5003 local_bh_enable();
5004 if (skb_csum_unnecessary(skb))
5005 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5006 else
5007 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5008
5009 if (!err) {
5010 tp->ucopy.len -= chunk;
5011 tp->copied_seq += chunk;
5012 tcp_rcv_space_adjust(sk);
5013 }
5014
5015 local_bh_disable();
5016 return err;
5017 }
5018
5019 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5020 struct sk_buff *skb)
5021 {
5022 __sum16 result;
5023
5024 if (sock_owned_by_user(sk)) {
5025 local_bh_enable();
5026 result = __tcp_checksum_complete(skb);
5027 local_bh_disable();
5028 } else {
5029 result = __tcp_checksum_complete(skb);
5030 }
5031 return result;
5032 }
5033
5034 static inline bool tcp_checksum_complete_user(struct sock *sk,
5035 struct sk_buff *skb)
5036 {
5037 return !skb_csum_unnecessary(skb) &&
5038 __tcp_checksum_complete_user(sk, skb);
5039 }
5040
5041 /* Does PAWS and seqno based validation of an incoming segment, flags will
5042 * play significant role here.
5043 */
5044 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5045 const struct tcphdr *th, int syn_inerr)
5046 {
5047 struct tcp_sock *tp = tcp_sk(sk);
5048
5049 /* RFC1323: H1. Apply PAWS check first. */
5050 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5051 tcp_paws_discard(sk, skb)) {
5052 if (!th->rst) {
5053 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5054 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5055 LINUX_MIB_TCPACKSKIPPEDPAWS,
5056 &tp->last_oow_ack_time))
5057 tcp_send_dupack(sk, skb);
5058 goto discard;
5059 }
5060 /* Reset is accepted even if it did not pass PAWS. */
5061 }
5062
5063 /* Step 1: check sequence number */
5064 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5065 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5066 * (RST) segments are validated by checking their SEQ-fields."
5067 * And page 69: "If an incoming segment is not acceptable,
5068 * an acknowledgment should be sent in reply (unless the RST
5069 * bit is set, if so drop the segment and return)".
5070 */
5071 if (!th->rst) {
5072 if (th->syn)
5073 goto syn_challenge;
5074 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5075 LINUX_MIB_TCPACKSKIPPEDSEQ,
5076 &tp->last_oow_ack_time))
5077 tcp_send_dupack(sk, skb);
5078 }
5079 goto discard;
5080 }
5081
5082 /* Step 2: check RST bit */
5083 if (th->rst) {
5084 /* RFC 5961 3.2 :
5085 * If sequence number exactly matches RCV.NXT, then
5086 * RESET the connection
5087 * else
5088 * Send a challenge ACK
5089 */
5090 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5091 tcp_reset(sk);
5092 else
5093 tcp_send_challenge_ack(sk, skb);
5094 goto discard;
5095 }
5096
5097 /* step 3: check security and precedence [ignored] */
5098
5099 /* step 4: Check for a SYN
5100 * RFC 5961 4.2 : Send a challenge ack
5101 */
5102 if (th->syn) {
5103 syn_challenge:
5104 if (syn_inerr)
5105 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5106 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5107 tcp_send_challenge_ack(sk, skb);
5108 goto discard;
5109 }
5110
5111 return true;
5112
5113 discard:
5114 __kfree_skb(skb);
5115 return false;
5116 }
5117
5118 /*
5119 * TCP receive function for the ESTABLISHED state.
5120 *
5121 * It is split into a fast path and a slow path. The fast path is
5122 * disabled when:
5123 * - A zero window was announced from us - zero window probing
5124 * is only handled properly in the slow path.
5125 * - Out of order segments arrived.
5126 * - Urgent data is expected.
5127 * - There is no buffer space left
5128 * - Unexpected TCP flags/window values/header lengths are received
5129 * (detected by checking the TCP header against pred_flags)
5130 * - Data is sent in both directions. Fast path only supports pure senders
5131 * or pure receivers (this means either the sequence number or the ack
5132 * value must stay constant)
5133 * - Unexpected TCP option.
5134 *
5135 * When these conditions are not satisfied it drops into a standard
5136 * receive procedure patterned after RFC793 to handle all cases.
5137 * The first three cases are guaranteed by proper pred_flags setting,
5138 * the rest is checked inline. Fast processing is turned on in
5139 * tcp_data_queue when everything is OK.
5140 */
5141 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5142 const struct tcphdr *th, unsigned int len)
5143 {
5144 struct tcp_sock *tp = tcp_sk(sk);
5145
5146 if (unlikely(!sk->sk_rx_dst))
5147 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5148 /*
5149 * Header prediction.
5150 * The code loosely follows the one in the famous
5151 * "30 instruction TCP receive" Van Jacobson mail.
5152 *
5153 * Van's trick is to deposit buffers into socket queue
5154 * on a device interrupt, to call tcp_recv function
5155 * on the receive process context and checksum and copy
5156 * the buffer to user space. smart...
5157 *
5158 * Our current scheme is not silly either but we take the
5159 * extra cost of the net_bh soft interrupt processing...
5160 * We do checksum and copy also but from device to kernel.
5161 */
5162
5163 tp->rx_opt.saw_tstamp = 0;
5164
5165 /* pred_flags is 0xS?10 << 16 + snd_wnd
5166 * if header_prediction is to be made
5167 * 'S' will always be tp->tcp_header_len >> 2
5168 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5169 * turn it off (when there are holes in the receive
5170 * space for instance)
5171 * PSH flag is ignored.
5172 */
5173
5174 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5175 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5176 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5177 int tcp_header_len = tp->tcp_header_len;
5178
5179 /* Timestamp header prediction: tcp_header_len
5180 * is automatically equal to th->doff*4 due to pred_flags
5181 * match.
5182 */
5183
5184 /* Check timestamp */
5185 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5186 /* No? Slow path! */
5187 if (!tcp_parse_aligned_timestamp(tp, th))
5188 goto slow_path;
5189
5190 /* If PAWS failed, check it more carefully in slow path */
5191 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5192 goto slow_path;
5193
5194 /* DO NOT update ts_recent here, if checksum fails
5195 * and timestamp was corrupted part, it will result
5196 * in a hung connection since we will drop all
5197 * future packets due to the PAWS test.
5198 */
5199 }
5200
5201 if (len <= tcp_header_len) {
5202 /* Bulk data transfer: sender */
5203 if (len == tcp_header_len) {
5204 /* Predicted packet is in window by definition.
5205 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5206 * Hence, check seq<=rcv_wup reduces to:
5207 */
5208 if (tcp_header_len ==
5209 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5210 tp->rcv_nxt == tp->rcv_wup)
5211 tcp_store_ts_recent(tp);
5212
5213 /* We know that such packets are checksummed
5214 * on entry.
5215 */
5216 tcp_ack(sk, skb, 0);
5217 __kfree_skb(skb);
5218 tcp_data_snd_check(sk);
5219 return;
5220 } else { /* Header too small */
5221 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5222 goto discard;
5223 }
5224 } else {
5225 int eaten = 0;
5226 bool fragstolen = false;
5227
5228 if (tp->ucopy.task == current &&
5229 tp->copied_seq == tp->rcv_nxt &&
5230 len - tcp_header_len <= tp->ucopy.len &&
5231 sock_owned_by_user(sk)) {
5232 __set_current_state(TASK_RUNNING);
5233
5234 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5235 /* Predicted packet is in window by definition.
5236 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5237 * Hence, check seq<=rcv_wup reduces to:
5238 */
5239 if (tcp_header_len ==
5240 (sizeof(struct tcphdr) +
5241 TCPOLEN_TSTAMP_ALIGNED) &&
5242 tp->rcv_nxt == tp->rcv_wup)
5243 tcp_store_ts_recent(tp);
5244
5245 tcp_rcv_rtt_measure_ts(sk, skb);
5246
5247 __skb_pull(skb, tcp_header_len);
5248 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5249 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5250 eaten = 1;
5251 }
5252 }
5253 if (!eaten) {
5254 if (tcp_checksum_complete_user(sk, skb))
5255 goto csum_error;
5256
5257 if ((int)skb->truesize > sk->sk_forward_alloc)
5258 goto step5;
5259
5260 /* Predicted packet is in window by definition.
5261 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5262 * Hence, check seq<=rcv_wup reduces to:
5263 */
5264 if (tcp_header_len ==
5265 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5266 tp->rcv_nxt == tp->rcv_wup)
5267 tcp_store_ts_recent(tp);
5268
5269 tcp_rcv_rtt_measure_ts(sk, skb);
5270
5271 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5272
5273 /* Bulk data transfer: receiver */
5274 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5275 &fragstolen);
5276 }
5277
5278 tcp_event_data_recv(sk, skb);
5279
5280 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5281 /* Well, only one small jumplet in fast path... */
5282 tcp_ack(sk, skb, FLAG_DATA);
5283 tcp_data_snd_check(sk);
5284 if (!inet_csk_ack_scheduled(sk))
5285 goto no_ack;
5286 }
5287
5288 __tcp_ack_snd_check(sk, 0);
5289 no_ack:
5290 if (eaten)
5291 kfree_skb_partial(skb, fragstolen);
5292 sk->sk_data_ready(sk);
5293 return;
5294 }
5295 }
5296
5297 slow_path:
5298 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5299 goto csum_error;
5300
5301 if (!th->ack && !th->rst && !th->syn)
5302 goto discard;
5303
5304 /*
5305 * Standard slow path.
5306 */
5307
5308 if (!tcp_validate_incoming(sk, skb, th, 1))
5309 return;
5310
5311 step5:
5312 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5313 goto discard;
5314
5315 tcp_rcv_rtt_measure_ts(sk, skb);
5316
5317 /* Process urgent data. */
5318 tcp_urg(sk, skb, th);
5319
5320 /* step 7: process the segment text */
5321 tcp_data_queue(sk, skb);
5322
5323 tcp_data_snd_check(sk);
5324 tcp_ack_snd_check(sk);
5325 return;
5326
5327 csum_error:
5328 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5329 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5330
5331 discard:
5332 __kfree_skb(skb);
5333 }
5334 EXPORT_SYMBOL(tcp_rcv_established);
5335
5336 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5337 {
5338 struct tcp_sock *tp = tcp_sk(sk);
5339 struct inet_connection_sock *icsk = inet_csk(sk);
5340
5341 tcp_set_state(sk, TCP_ESTABLISHED);
5342
5343 if (skb) {
5344 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5345 security_inet_conn_established(sk, skb);
5346 }
5347
5348 /* Make sure socket is routed, for correct metrics. */
5349 icsk->icsk_af_ops->rebuild_header(sk);
5350
5351 tcp_init_metrics(sk);
5352
5353 tcp_init_congestion_control(sk);
5354
5355 /* Prevent spurious tcp_cwnd_restart() on first data
5356 * packet.
5357 */
5358 tp->lsndtime = tcp_time_stamp;
5359
5360 tcp_init_buffer_space(sk);
5361
5362 if (sock_flag(sk, SOCK_KEEPOPEN))
5363 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5364
5365 if (!tp->rx_opt.snd_wscale)
5366 __tcp_fast_path_on(tp, tp->snd_wnd);
5367 else
5368 tp->pred_flags = 0;
5369
5370 if (!sock_flag(sk, SOCK_DEAD)) {
5371 sk->sk_state_change(sk);
5372 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5373 }
5374 }
5375
5376 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5377 struct tcp_fastopen_cookie *cookie)
5378 {
5379 struct tcp_sock *tp = tcp_sk(sk);
5380 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5381 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5382 bool syn_drop = false;
5383
5384 if (mss == tp->rx_opt.user_mss) {
5385 struct tcp_options_received opt;
5386
5387 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5388 tcp_clear_options(&opt);
5389 opt.user_mss = opt.mss_clamp = 0;
5390 tcp_parse_options(synack, &opt, 0, NULL);
5391 mss = opt.mss_clamp;
5392 }
5393
5394 if (!tp->syn_fastopen) {
5395 /* Ignore an unsolicited cookie */
5396 cookie->len = -1;
5397 } else if (tp->total_retrans) {
5398 /* SYN timed out and the SYN-ACK neither has a cookie nor
5399 * acknowledges data. Presumably the remote received only
5400 * the retransmitted (regular) SYNs: either the original
5401 * SYN-data or the corresponding SYN-ACK was dropped.
5402 */
5403 syn_drop = (cookie->len < 0 && data);
5404 } else if (cookie->len < 0 && !tp->syn_data) {
5405 /* We requested a cookie but didn't get it. If we did not use
5406 * the (old) exp opt format then try so next time (try_exp=1).
5407 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5408 */
5409 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5410 }
5411
5412 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5413
5414 if (data) { /* Retransmit unacked data in SYN */
5415 tcp_for_write_queue_from(data, sk) {
5416 if (data == tcp_send_head(sk) ||
5417 __tcp_retransmit_skb(sk, data))
5418 break;
5419 }
5420 tcp_rearm_rto(sk);
5421 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5422 return true;
5423 }
5424 tp->syn_data_acked = tp->syn_data;
5425 if (tp->syn_data_acked)
5426 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5427 return false;
5428 }
5429
5430 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5431 const struct tcphdr *th, unsigned int len)
5432 {
5433 struct inet_connection_sock *icsk = inet_csk(sk);
5434 struct tcp_sock *tp = tcp_sk(sk);
5435 struct tcp_fastopen_cookie foc = { .len = -1 };
5436 int saved_clamp = tp->rx_opt.mss_clamp;
5437
5438 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5439 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5440 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5441
5442 if (th->ack) {
5443 /* rfc793:
5444 * "If the state is SYN-SENT then
5445 * first check the ACK bit
5446 * If the ACK bit is set
5447 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5448 * a reset (unless the RST bit is set, if so drop
5449 * the segment and return)"
5450 */
5451 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5452 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5453 goto reset_and_undo;
5454
5455 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5456 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5457 tcp_time_stamp)) {
5458 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5459 goto reset_and_undo;
5460 }
5461
5462 /* Now ACK is acceptable.
5463 *
5464 * "If the RST bit is set
5465 * If the ACK was acceptable then signal the user "error:
5466 * connection reset", drop the segment, enter CLOSED state,
5467 * delete TCB, and return."
5468 */
5469
5470 if (th->rst) {
5471 tcp_reset(sk);
5472 goto discard;
5473 }
5474
5475 /* rfc793:
5476 * "fifth, if neither of the SYN or RST bits is set then
5477 * drop the segment and return."
5478 *
5479 * See note below!
5480 * --ANK(990513)
5481 */
5482 if (!th->syn)
5483 goto discard_and_undo;
5484
5485 /* rfc793:
5486 * "If the SYN bit is on ...
5487 * are acceptable then ...
5488 * (our SYN has been ACKed), change the connection
5489 * state to ESTABLISHED..."
5490 */
5491
5492 tcp_ecn_rcv_synack(tp, th);
5493
5494 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5495 tcp_ack(sk, skb, FLAG_SLOWPATH);
5496
5497 /* Ok.. it's good. Set up sequence numbers and
5498 * move to established.
5499 */
5500 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5501 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5502
5503 /* RFC1323: The window in SYN & SYN/ACK segments is
5504 * never scaled.
5505 */
5506 tp->snd_wnd = ntohs(th->window);
5507
5508 if (!tp->rx_opt.wscale_ok) {
5509 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5510 tp->window_clamp = min(tp->window_clamp, 65535U);
5511 }
5512
5513 if (tp->rx_opt.saw_tstamp) {
5514 tp->rx_opt.tstamp_ok = 1;
5515 tp->tcp_header_len =
5516 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5517 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5518 tcp_store_ts_recent(tp);
5519 } else {
5520 tp->tcp_header_len = sizeof(struct tcphdr);
5521 }
5522
5523 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5524 tcp_enable_fack(tp);
5525
5526 tcp_mtup_init(sk);
5527 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5528 tcp_initialize_rcv_mss(sk);
5529
5530 /* Remember, tcp_poll() does not lock socket!
5531 * Change state from SYN-SENT only after copied_seq
5532 * is initialized. */
5533 tp->copied_seq = tp->rcv_nxt;
5534
5535 smp_mb();
5536
5537 tcp_finish_connect(sk, skb);
5538
5539 if ((tp->syn_fastopen || tp->syn_data) &&
5540 tcp_rcv_fastopen_synack(sk, skb, &foc))
5541 return -1;
5542
5543 if (sk->sk_write_pending ||
5544 icsk->icsk_accept_queue.rskq_defer_accept ||
5545 icsk->icsk_ack.pingpong) {
5546 /* Save one ACK. Data will be ready after
5547 * several ticks, if write_pending is set.
5548 *
5549 * It may be deleted, but with this feature tcpdumps
5550 * look so _wonderfully_ clever, that I was not able
5551 * to stand against the temptation 8) --ANK
5552 */
5553 inet_csk_schedule_ack(sk);
5554 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5555 tcp_enter_quickack_mode(sk);
5556 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5557 TCP_DELACK_MAX, TCP_RTO_MAX);
5558
5559 discard:
5560 __kfree_skb(skb);
5561 return 0;
5562 } else {
5563 tcp_send_ack(sk);
5564 }
5565 return -1;
5566 }
5567
5568 /* No ACK in the segment */
5569
5570 if (th->rst) {
5571 /* rfc793:
5572 * "If the RST bit is set
5573 *
5574 * Otherwise (no ACK) drop the segment and return."
5575 */
5576
5577 goto discard_and_undo;
5578 }
5579
5580 /* PAWS check. */
5581 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5582 tcp_paws_reject(&tp->rx_opt, 0))
5583 goto discard_and_undo;
5584
5585 if (th->syn) {
5586 /* We see SYN without ACK. It is attempt of
5587 * simultaneous connect with crossed SYNs.
5588 * Particularly, it can be connect to self.
5589 */
5590 tcp_set_state(sk, TCP_SYN_RECV);
5591
5592 if (tp->rx_opt.saw_tstamp) {
5593 tp->rx_opt.tstamp_ok = 1;
5594 tcp_store_ts_recent(tp);
5595 tp->tcp_header_len =
5596 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5597 } else {
5598 tp->tcp_header_len = sizeof(struct tcphdr);
5599 }
5600
5601 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5602 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5603
5604 /* RFC1323: The window in SYN & SYN/ACK segments is
5605 * never scaled.
5606 */
5607 tp->snd_wnd = ntohs(th->window);
5608 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5609 tp->max_window = tp->snd_wnd;
5610
5611 tcp_ecn_rcv_syn(tp, th);
5612
5613 tcp_mtup_init(sk);
5614 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5615 tcp_initialize_rcv_mss(sk);
5616
5617 tcp_send_synack(sk);
5618 #if 0
5619 /* Note, we could accept data and URG from this segment.
5620 * There are no obstacles to make this (except that we must
5621 * either change tcp_recvmsg() to prevent it from returning data
5622 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5623 *
5624 * However, if we ignore data in ACKless segments sometimes,
5625 * we have no reasons to accept it sometimes.
5626 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5627 * is not flawless. So, discard packet for sanity.
5628 * Uncomment this return to process the data.
5629 */
5630 return -1;
5631 #else
5632 goto discard;
5633 #endif
5634 }
5635 /* "fifth, if neither of the SYN or RST bits is set then
5636 * drop the segment and return."
5637 */
5638
5639 discard_and_undo:
5640 tcp_clear_options(&tp->rx_opt);
5641 tp->rx_opt.mss_clamp = saved_clamp;
5642 goto discard;
5643
5644 reset_and_undo:
5645 tcp_clear_options(&tp->rx_opt);
5646 tp->rx_opt.mss_clamp = saved_clamp;
5647 return 1;
5648 }
5649
5650 /*
5651 * This function implements the receiving procedure of RFC 793 for
5652 * all states except ESTABLISHED and TIME_WAIT.
5653 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5654 * address independent.
5655 */
5656
5657 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5658 const struct tcphdr *th, unsigned int len)
5659 {
5660 struct tcp_sock *tp = tcp_sk(sk);
5661 struct inet_connection_sock *icsk = inet_csk(sk);
5662 struct request_sock *req;
5663 int queued = 0;
5664 bool acceptable;
5665 u32 synack_stamp;
5666
5667 tp->rx_opt.saw_tstamp = 0;
5668
5669 switch (sk->sk_state) {
5670 case TCP_CLOSE:
5671 goto discard;
5672
5673 case TCP_LISTEN:
5674 if (th->ack)
5675 return 1;
5676
5677 if (th->rst)
5678 goto discard;
5679
5680 if (th->syn) {
5681 if (th->fin)
5682 goto discard;
5683 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5684 return 1;
5685
5686 /* Now we have several options: In theory there is
5687 * nothing else in the frame. KA9Q has an option to
5688 * send data with the syn, BSD accepts data with the
5689 * syn up to the [to be] advertised window and
5690 * Solaris 2.1 gives you a protocol error. For now
5691 * we just ignore it, that fits the spec precisely
5692 * and avoids incompatibilities. It would be nice in
5693 * future to drop through and process the data.
5694 *
5695 * Now that TTCP is starting to be used we ought to
5696 * queue this data.
5697 * But, this leaves one open to an easy denial of
5698 * service attack, and SYN cookies can't defend
5699 * against this problem. So, we drop the data
5700 * in the interest of security over speed unless
5701 * it's still in use.
5702 */
5703 kfree_skb(skb);
5704 return 0;
5705 }
5706 goto discard;
5707
5708 case TCP_SYN_SENT:
5709 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5710 if (queued >= 0)
5711 return queued;
5712
5713 /* Do step6 onward by hand. */
5714 tcp_urg(sk, skb, th);
5715 __kfree_skb(skb);
5716 tcp_data_snd_check(sk);
5717 return 0;
5718 }
5719
5720 req = tp->fastopen_rsk;
5721 if (req) {
5722 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5723 sk->sk_state != TCP_FIN_WAIT1);
5724
5725 if (!tcp_check_req(sk, skb, req, true))
5726 goto discard;
5727 }
5728
5729 if (!th->ack && !th->rst && !th->syn)
5730 goto discard;
5731
5732 if (!tcp_validate_incoming(sk, skb, th, 0))
5733 return 0;
5734
5735 /* step 5: check the ACK field */
5736 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5737 FLAG_UPDATE_TS_RECENT) > 0;
5738
5739 switch (sk->sk_state) {
5740 case TCP_SYN_RECV:
5741 if (!acceptable)
5742 return 1;
5743
5744 /* Once we leave TCP_SYN_RECV, we no longer need req
5745 * so release it.
5746 */
5747 if (req) {
5748 synack_stamp = tcp_rsk(req)->snt_synack;
5749 tp->total_retrans = req->num_retrans;
5750 reqsk_fastopen_remove(sk, req, false);
5751 } else {
5752 synack_stamp = tp->lsndtime;
5753 /* Make sure socket is routed, for correct metrics. */
5754 icsk->icsk_af_ops->rebuild_header(sk);
5755 tcp_init_congestion_control(sk);
5756
5757 tcp_mtup_init(sk);
5758 tp->copied_seq = tp->rcv_nxt;
5759 tcp_init_buffer_space(sk);
5760 }
5761 smp_mb();
5762 tcp_set_state(sk, TCP_ESTABLISHED);
5763 sk->sk_state_change(sk);
5764
5765 /* Note, that this wakeup is only for marginal crossed SYN case.
5766 * Passively open sockets are not waked up, because
5767 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5768 */
5769 if (sk->sk_socket)
5770 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5771
5772 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5773 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5774 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5775 tcp_synack_rtt_meas(sk, synack_stamp);
5776
5777 if (tp->rx_opt.tstamp_ok)
5778 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5779
5780 if (req) {
5781 /* Re-arm the timer because data may have been sent out.
5782 * This is similar to the regular data transmission case
5783 * when new data has just been ack'ed.
5784 *
5785 * (TFO) - we could try to be more aggressive and
5786 * retransmitting any data sooner based on when they
5787 * are sent out.
5788 */
5789 tcp_rearm_rto(sk);
5790 } else
5791 tcp_init_metrics(sk);
5792
5793 tcp_update_pacing_rate(sk);
5794
5795 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5796 tp->lsndtime = tcp_time_stamp;
5797
5798 tcp_initialize_rcv_mss(sk);
5799 tcp_fast_path_on(tp);
5800 break;
5801
5802 case TCP_FIN_WAIT1: {
5803 struct dst_entry *dst;
5804 int tmo;
5805
5806 /* If we enter the TCP_FIN_WAIT1 state and we are a
5807 * Fast Open socket and this is the first acceptable
5808 * ACK we have received, this would have acknowledged
5809 * our SYNACK so stop the SYNACK timer.
5810 */
5811 if (req) {
5812 /* Return RST if ack_seq is invalid.
5813 * Note that RFC793 only says to generate a
5814 * DUPACK for it but for TCP Fast Open it seems
5815 * better to treat this case like TCP_SYN_RECV
5816 * above.
5817 */
5818 if (!acceptable)
5819 return 1;
5820 /* We no longer need the request sock. */
5821 reqsk_fastopen_remove(sk, req, false);
5822 tcp_rearm_rto(sk);
5823 }
5824 if (tp->snd_una != tp->write_seq)
5825 break;
5826
5827 tcp_set_state(sk, TCP_FIN_WAIT2);
5828 sk->sk_shutdown |= SEND_SHUTDOWN;
5829
5830 dst = __sk_dst_get(sk);
5831 if (dst)
5832 dst_confirm(dst);
5833
5834 if (!sock_flag(sk, SOCK_DEAD)) {
5835 /* Wake up lingering close() */
5836 sk->sk_state_change(sk);
5837 break;
5838 }
5839
5840 if (tp->linger2 < 0 ||
5841 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5842 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5843 tcp_done(sk);
5844 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5845 return 1;
5846 }
5847
5848 tmo = tcp_fin_time(sk);
5849 if (tmo > TCP_TIMEWAIT_LEN) {
5850 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5851 } else if (th->fin || sock_owned_by_user(sk)) {
5852 /* Bad case. We could lose such FIN otherwise.
5853 * It is not a big problem, but it looks confusing
5854 * and not so rare event. We still can lose it now,
5855 * if it spins in bh_lock_sock(), but it is really
5856 * marginal case.
5857 */
5858 inet_csk_reset_keepalive_timer(sk, tmo);
5859 } else {
5860 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5861 goto discard;
5862 }
5863 break;
5864 }
5865
5866 case TCP_CLOSING:
5867 if (tp->snd_una == tp->write_seq) {
5868 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5869 goto discard;
5870 }
5871 break;
5872
5873 case TCP_LAST_ACK:
5874 if (tp->snd_una == tp->write_seq) {
5875 tcp_update_metrics(sk);
5876 tcp_done(sk);
5877 goto discard;
5878 }
5879 break;
5880 }
5881
5882 /* step 6: check the URG bit */
5883 tcp_urg(sk, skb, th);
5884
5885 /* step 7: process the segment text */
5886 switch (sk->sk_state) {
5887 case TCP_CLOSE_WAIT:
5888 case TCP_CLOSING:
5889 case TCP_LAST_ACK:
5890 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5891 break;
5892 case TCP_FIN_WAIT1:
5893 case TCP_FIN_WAIT2:
5894 /* RFC 793 says to queue data in these states,
5895 * RFC 1122 says we MUST send a reset.
5896 * BSD 4.4 also does reset.
5897 */
5898 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5899 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5900 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5901 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5902 tcp_reset(sk);
5903 return 1;
5904 }
5905 }
5906 /* Fall through */
5907 case TCP_ESTABLISHED:
5908 tcp_data_queue(sk, skb);
5909 queued = 1;
5910 break;
5911 }
5912
5913 /* tcp_data could move socket to TIME-WAIT */
5914 if (sk->sk_state != TCP_CLOSE) {
5915 tcp_data_snd_check(sk);
5916 tcp_ack_snd_check(sk);
5917 }
5918
5919 if (!queued) {
5920 discard:
5921 __kfree_skb(skb);
5922 }
5923 return 0;
5924 }
5925 EXPORT_SYMBOL(tcp_rcv_state_process);
5926
5927 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
5928 {
5929 struct inet_request_sock *ireq = inet_rsk(req);
5930
5931 if (family == AF_INET)
5932 net_dbg_ratelimited("drop open request from %pI4/%u\n",
5933 &ireq->ir_rmt_addr, port);
5934 #if IS_ENABLED(CONFIG_IPV6)
5935 else if (family == AF_INET6)
5936 net_dbg_ratelimited("drop open request from %pI6/%u\n",
5937 &ireq->ir_v6_rmt_addr, port);
5938 #endif
5939 }
5940
5941 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
5942 *
5943 * If we receive a SYN packet with these bits set, it means a
5944 * network is playing bad games with TOS bits. In order to
5945 * avoid possible false congestion notifications, we disable
5946 * TCP ECN negotiation.
5947 *
5948 * Exception: tcp_ca wants ECN. This is required for DCTCP
5949 * congestion control: Linux DCTCP asserts ECT on all packets,
5950 * including SYN, which is most optimal solution; however,
5951 * others, such as FreeBSD do not.
5952 */
5953 static void tcp_ecn_create_request(struct request_sock *req,
5954 const struct sk_buff *skb,
5955 const struct sock *listen_sk,
5956 const struct dst_entry *dst)
5957 {
5958 const struct tcphdr *th = tcp_hdr(skb);
5959 const struct net *net = sock_net(listen_sk);
5960 bool th_ecn = th->ece && th->cwr;
5961 bool ect, ecn_ok;
5962
5963 if (!th_ecn)
5964 return;
5965
5966 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
5967 ecn_ok = net->ipv4.sysctl_tcp_ecn || dst_feature(dst, RTAX_FEATURE_ECN);
5968
5969 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk))
5970 inet_rsk(req)->ecn_ok = 1;
5971 }
5972
5973 static void tcp_openreq_init(struct request_sock *req,
5974 const struct tcp_options_received *rx_opt,
5975 struct sk_buff *skb, const struct sock *sk)
5976 {
5977 struct inet_request_sock *ireq = inet_rsk(req);
5978
5979 req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */
5980 req->cookie_ts = 0;
5981 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
5982 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5983 tcp_rsk(req)->snt_synack = tcp_time_stamp;
5984 tcp_rsk(req)->last_oow_ack_time = 0;
5985 req->mss = rx_opt->mss_clamp;
5986 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
5987 ireq->tstamp_ok = rx_opt->tstamp_ok;
5988 ireq->sack_ok = rx_opt->sack_ok;
5989 ireq->snd_wscale = rx_opt->snd_wscale;
5990 ireq->wscale_ok = rx_opt->wscale_ok;
5991 ireq->acked = 0;
5992 ireq->ecn_ok = 0;
5993 ireq->ir_rmt_port = tcp_hdr(skb)->source;
5994 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
5995 ireq->ir_mark = inet_request_mark(sk, skb);
5996 }
5997
5998 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
5999 struct sock *sk_listener)
6000 {
6001 struct request_sock *req = reqsk_alloc(ops, sk_listener);
6002
6003 if (req) {
6004 struct inet_request_sock *ireq = inet_rsk(req);
6005
6006 kmemcheck_annotate_bitfield(ireq, flags);
6007 ireq->opt = NULL;
6008 atomic64_set(&ireq->ir_cookie, 0);
6009 ireq->ireq_state = TCP_NEW_SYN_RECV;
6010 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6011 ireq->ireq_family = sk_listener->sk_family;
6012 }
6013
6014 return req;
6015 }
6016 EXPORT_SYMBOL(inet_reqsk_alloc);
6017
6018 /*
6019 * Return true if a syncookie should be sent
6020 */
6021 static bool tcp_syn_flood_action(struct sock *sk,
6022 const struct sk_buff *skb,
6023 const char *proto)
6024 {
6025 const char *msg = "Dropping request";
6026 bool want_cookie = false;
6027 struct listen_sock *lopt;
6028
6029 #ifdef CONFIG_SYN_COOKIES
6030 if (sysctl_tcp_syncookies) {
6031 msg = "Sending cookies";
6032 want_cookie = true;
6033 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6034 } else
6035 #endif
6036 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6037
6038 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
6039 if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
6040 lopt->synflood_warned = 1;
6041 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6042 proto, ntohs(tcp_hdr(skb)->dest), msg);
6043 }
6044 return want_cookie;
6045 }
6046
6047 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6048 const struct tcp_request_sock_ops *af_ops,
6049 struct sock *sk, struct sk_buff *skb)
6050 {
6051 struct tcp_options_received tmp_opt;
6052 struct request_sock *req;
6053 struct tcp_sock *tp = tcp_sk(sk);
6054 struct dst_entry *dst = NULL;
6055 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6056 bool want_cookie = false, fastopen;
6057 struct flowi fl;
6058 struct tcp_fastopen_cookie foc = { .len = -1 };
6059 int err;
6060
6061
6062 /* TW buckets are converted to open requests without
6063 * limitations, they conserve resources and peer is
6064 * evidently real one.
6065 */
6066 if ((sysctl_tcp_syncookies == 2 ||
6067 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6068 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6069 if (!want_cookie)
6070 goto drop;
6071 }
6072
6073
6074 /* Accept backlog is full. If we have already queued enough
6075 * of warm entries in syn queue, drop request. It is better than
6076 * clogging syn queue with openreqs with exponentially increasing
6077 * timeout.
6078 */
6079 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6080 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6081 goto drop;
6082 }
6083
6084 req = inet_reqsk_alloc(rsk_ops, sk);
6085 if (!req)
6086 goto drop;
6087
6088 tcp_rsk(req)->af_specific = af_ops;
6089
6090 tcp_clear_options(&tmp_opt);
6091 tmp_opt.mss_clamp = af_ops->mss_clamp;
6092 tmp_opt.user_mss = tp->rx_opt.user_mss;
6093 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6094
6095 if (want_cookie && !tmp_opt.saw_tstamp)
6096 tcp_clear_options(&tmp_opt);
6097
6098 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6099 tcp_openreq_init(req, &tmp_opt, skb, sk);
6100
6101 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6102 inet_rsk(req)->ir_iif = sk->sk_bound_dev_if;
6103
6104 af_ops->init_req(req, sk, skb);
6105
6106 if (security_inet_conn_request(sk, skb, req))
6107 goto drop_and_free;
6108
6109 if (!want_cookie && !isn) {
6110 /* VJ's idea. We save last timestamp seen
6111 * from the destination in peer table, when entering
6112 * state TIME-WAIT, and check against it before
6113 * accepting new connection request.
6114 *
6115 * If "isn" is not zero, this request hit alive
6116 * timewait bucket, so that all the necessary checks
6117 * are made in the function processing timewait state.
6118 */
6119 if (tcp_death_row.sysctl_tw_recycle) {
6120 bool strict;
6121
6122 dst = af_ops->route_req(sk, &fl, req, &strict);
6123
6124 if (dst && strict &&
6125 !tcp_peer_is_proven(req, dst, true,
6126 tmp_opt.saw_tstamp)) {
6127 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6128 goto drop_and_release;
6129 }
6130 }
6131 /* Kill the following clause, if you dislike this way. */
6132 else if (!sysctl_tcp_syncookies &&
6133 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6134 (sysctl_max_syn_backlog >> 2)) &&
6135 !tcp_peer_is_proven(req, dst, false,
6136 tmp_opt.saw_tstamp)) {
6137 /* Without syncookies last quarter of
6138 * backlog is filled with destinations,
6139 * proven to be alive.
6140 * It means that we continue to communicate
6141 * to destinations, already remembered
6142 * to the moment of synflood.
6143 */
6144 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6145 rsk_ops->family);
6146 goto drop_and_release;
6147 }
6148
6149 isn = af_ops->init_seq(skb);
6150 }
6151 if (!dst) {
6152 dst = af_ops->route_req(sk, &fl, req, NULL);
6153 if (!dst)
6154 goto drop_and_free;
6155 }
6156
6157 tcp_ecn_create_request(req, skb, sk, dst);
6158
6159 if (want_cookie) {
6160 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6161 req->cookie_ts = tmp_opt.tstamp_ok;
6162 if (!tmp_opt.tstamp_ok)
6163 inet_rsk(req)->ecn_ok = 0;
6164 }
6165
6166 tcp_rsk(req)->snt_isn = isn;
6167 tcp_openreq_init_rwin(req, sk, dst);
6168 fastopen = !want_cookie &&
6169 tcp_try_fastopen(sk, skb, req, &foc, dst);
6170 err = af_ops->send_synack(sk, dst, &fl, req,
6171 skb_get_queue_mapping(skb), &foc);
6172 if (!fastopen) {
6173 if (err || want_cookie)
6174 goto drop_and_free;
6175
6176 tcp_rsk(req)->tfo_listener = false;
6177 af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6178 }
6179
6180 return 0;
6181
6182 drop_and_release:
6183 dst_release(dst);
6184 drop_and_free:
6185 reqsk_free(req);
6186 drop:
6187 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6188 return 0;
6189 }
6190 EXPORT_SYMBOL(tcp_conn_request);