]> git.ipfire.org Git - thirdparty/linux.git/blob - net/ipv4/tcp_input.c
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / net / ipv4 / tcp_input.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85
86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
92 #define FLAG_ECE 0x40 /* ECE in this ACK */
93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
103
104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108
109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
111
112 #define REXMIT_NONE 0 /* no loss recovery to do */
113 #define REXMIT_LOST 1 /* retransmit packets marked lost */
114 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
115
116 #if IS_ENABLED(CONFIG_TLS_DEVICE)
117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
118
119 void clean_acked_data_enable(struct inet_connection_sock *icsk,
120 void (*cad)(struct sock *sk, u32 ack_seq))
121 {
122 icsk->icsk_clean_acked = cad;
123 static_branch_deferred_inc(&clean_acked_data_enabled);
124 }
125 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
126
127 void clean_acked_data_disable(struct inet_connection_sock *icsk)
128 {
129 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
130 icsk->icsk_clean_acked = NULL;
131 }
132 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
133
134 void clean_acked_data_flush(void)
135 {
136 static_key_deferred_flush(&clean_acked_data_enabled);
137 }
138 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
139 #endif
140
141 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
142 unsigned int len)
143 {
144 static bool __once __read_mostly;
145
146 if (!__once) {
147 struct net_device *dev;
148
149 __once = true;
150
151 rcu_read_lock();
152 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
153 if (!dev || len >= dev->mtu)
154 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
155 dev ? dev->name : "Unknown driver");
156 rcu_read_unlock();
157 }
158 }
159
160 /* Adapt the MSS value used to make delayed ack decision to the
161 * real world.
162 */
163 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
164 {
165 struct inet_connection_sock *icsk = inet_csk(sk);
166 const unsigned int lss = icsk->icsk_ack.last_seg_size;
167 unsigned int len;
168
169 icsk->icsk_ack.last_seg_size = 0;
170
171 /* skb->len may jitter because of SACKs, even if peer
172 * sends good full-sized frames.
173 */
174 len = skb_shinfo(skb)->gso_size ? : skb->len;
175 if (len >= icsk->icsk_ack.rcv_mss) {
176 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
177 tcp_sk(sk)->advmss);
178 /* Account for possibly-removed options */
179 if (unlikely(len > icsk->icsk_ack.rcv_mss +
180 MAX_TCP_OPTION_SPACE))
181 tcp_gro_dev_warn(sk, skb, len);
182 } else {
183 /* Otherwise, we make more careful check taking into account,
184 * that SACKs block is variable.
185 *
186 * "len" is invariant segment length, including TCP header.
187 */
188 len += skb->data - skb_transport_header(skb);
189 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
190 /* If PSH is not set, packet should be
191 * full sized, provided peer TCP is not badly broken.
192 * This observation (if it is correct 8)) allows
193 * to handle super-low mtu links fairly.
194 */
195 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
196 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
197 /* Subtract also invariant (if peer is RFC compliant),
198 * tcp header plus fixed timestamp option length.
199 * Resulting "len" is MSS free of SACK jitter.
200 */
201 len -= tcp_sk(sk)->tcp_header_len;
202 icsk->icsk_ack.last_seg_size = len;
203 if (len == lss) {
204 icsk->icsk_ack.rcv_mss = len;
205 return;
206 }
207 }
208 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
209 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
210 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
211 }
212 }
213
214 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
215 {
216 struct inet_connection_sock *icsk = inet_csk(sk);
217 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
218
219 if (quickacks == 0)
220 quickacks = 2;
221 quickacks = min(quickacks, max_quickacks);
222 if (quickacks > icsk->icsk_ack.quick)
223 icsk->icsk_ack.quick = quickacks;
224 }
225
226 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
227 {
228 struct inet_connection_sock *icsk = inet_csk(sk);
229
230 tcp_incr_quickack(sk, max_quickacks);
231 inet_csk_exit_pingpong_mode(sk);
232 icsk->icsk_ack.ato = TCP_ATO_MIN;
233 }
234 EXPORT_SYMBOL(tcp_enter_quickack_mode);
235
236 /* Send ACKs quickly, if "quick" count is not exhausted
237 * and the session is not interactive.
238 */
239
240 static bool tcp_in_quickack_mode(struct sock *sk)
241 {
242 const struct inet_connection_sock *icsk = inet_csk(sk);
243 const struct dst_entry *dst = __sk_dst_get(sk);
244
245 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
246 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
247 }
248
249 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
250 {
251 if (tp->ecn_flags & TCP_ECN_OK)
252 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
253 }
254
255 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
256 {
257 if (tcp_hdr(skb)->cwr) {
258 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
259
260 /* If the sender is telling us it has entered CWR, then its
261 * cwnd may be very low (even just 1 packet), so we should ACK
262 * immediately.
263 */
264 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
265 }
266 }
267
268 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
269 {
270 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
271 }
272
273 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
274 {
275 struct tcp_sock *tp = tcp_sk(sk);
276
277 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
278 case INET_ECN_NOT_ECT:
279 /* Funny extension: if ECT is not set on a segment,
280 * and we already seen ECT on a previous segment,
281 * it is probably a retransmit.
282 */
283 if (tp->ecn_flags & TCP_ECN_SEEN)
284 tcp_enter_quickack_mode(sk, 2);
285 break;
286 case INET_ECN_CE:
287 if (tcp_ca_needs_ecn(sk))
288 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
289
290 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
291 /* Better not delay acks, sender can have a very low cwnd */
292 tcp_enter_quickack_mode(sk, 2);
293 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
294 }
295 tp->ecn_flags |= TCP_ECN_SEEN;
296 break;
297 default:
298 if (tcp_ca_needs_ecn(sk))
299 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
300 tp->ecn_flags |= TCP_ECN_SEEN;
301 break;
302 }
303 }
304
305 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
306 {
307 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
308 __tcp_ecn_check_ce(sk, skb);
309 }
310
311 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
312 {
313 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
314 tp->ecn_flags &= ~TCP_ECN_OK;
315 }
316
317 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
318 {
319 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
320 tp->ecn_flags &= ~TCP_ECN_OK;
321 }
322
323 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
324 {
325 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
326 return true;
327 return false;
328 }
329
330 /* Buffer size and advertised window tuning.
331 *
332 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
333 */
334
335 static void tcp_sndbuf_expand(struct sock *sk)
336 {
337 const struct tcp_sock *tp = tcp_sk(sk);
338 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
339 int sndmem, per_mss;
340 u32 nr_segs;
341
342 /* Worst case is non GSO/TSO : each frame consumes one skb
343 * and skb->head is kmalloced using power of two area of memory
344 */
345 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
346 MAX_TCP_HEADER +
347 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
348
349 per_mss = roundup_pow_of_two(per_mss) +
350 SKB_DATA_ALIGN(sizeof(struct sk_buff));
351
352 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
353 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
354
355 /* Fast Recovery (RFC 5681 3.2) :
356 * Cubic needs 1.7 factor, rounded to 2 to include
357 * extra cushion (application might react slowly to EPOLLOUT)
358 */
359 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
360 sndmem *= nr_segs * per_mss;
361
362 if (sk->sk_sndbuf < sndmem)
363 WRITE_ONCE(sk->sk_sndbuf,
364 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
365 }
366
367 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
368 *
369 * All tcp_full_space() is split to two parts: "network" buffer, allocated
370 * forward and advertised in receiver window (tp->rcv_wnd) and
371 * "application buffer", required to isolate scheduling/application
372 * latencies from network.
373 * window_clamp is maximal advertised window. It can be less than
374 * tcp_full_space(), in this case tcp_full_space() - window_clamp
375 * is reserved for "application" buffer. The less window_clamp is
376 * the smoother our behaviour from viewpoint of network, but the lower
377 * throughput and the higher sensitivity of the connection to losses. 8)
378 *
379 * rcv_ssthresh is more strict window_clamp used at "slow start"
380 * phase to predict further behaviour of this connection.
381 * It is used for two goals:
382 * - to enforce header prediction at sender, even when application
383 * requires some significant "application buffer". It is check #1.
384 * - to prevent pruning of receive queue because of misprediction
385 * of receiver window. Check #2.
386 *
387 * The scheme does not work when sender sends good segments opening
388 * window and then starts to feed us spaghetti. But it should work
389 * in common situations. Otherwise, we have to rely on queue collapsing.
390 */
391
392 /* Slow part of check#2. */
393 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
394 {
395 struct tcp_sock *tp = tcp_sk(sk);
396 /* Optimize this! */
397 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
398 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
399
400 while (tp->rcv_ssthresh <= window) {
401 if (truesize <= skb->len)
402 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
403
404 truesize >>= 1;
405 window >>= 1;
406 }
407 return 0;
408 }
409
410 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
411 {
412 struct tcp_sock *tp = tcp_sk(sk);
413 int room;
414
415 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
416
417 /* Check #1 */
418 if (room > 0 && !tcp_under_memory_pressure(sk)) {
419 int incr;
420
421 /* Check #2. Increase window, if skb with such overhead
422 * will fit to rcvbuf in future.
423 */
424 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
425 incr = 2 * tp->advmss;
426 else
427 incr = __tcp_grow_window(sk, skb);
428
429 if (incr) {
430 incr = max_t(int, incr, 2 * skb->len);
431 tp->rcv_ssthresh += min(room, incr);
432 inet_csk(sk)->icsk_ack.quick |= 1;
433 }
434 }
435 }
436
437 /* 3. Try to fixup all. It is made immediately after connection enters
438 * established state.
439 */
440 void tcp_init_buffer_space(struct sock *sk)
441 {
442 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
443 struct tcp_sock *tp = tcp_sk(sk);
444 int maxwin;
445
446 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
447 tcp_sndbuf_expand(sk);
448
449 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
450 tcp_mstamp_refresh(tp);
451 tp->rcvq_space.time = tp->tcp_mstamp;
452 tp->rcvq_space.seq = tp->copied_seq;
453
454 maxwin = tcp_full_space(sk);
455
456 if (tp->window_clamp >= maxwin) {
457 tp->window_clamp = maxwin;
458
459 if (tcp_app_win && maxwin > 4 * tp->advmss)
460 tp->window_clamp = max(maxwin -
461 (maxwin >> tcp_app_win),
462 4 * tp->advmss);
463 }
464
465 /* Force reservation of one segment. */
466 if (tcp_app_win &&
467 tp->window_clamp > 2 * tp->advmss &&
468 tp->window_clamp + tp->advmss > maxwin)
469 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
470
471 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
472 tp->snd_cwnd_stamp = tcp_jiffies32;
473 }
474
475 /* 4. Recalculate window clamp after socket hit its memory bounds. */
476 static void tcp_clamp_window(struct sock *sk)
477 {
478 struct tcp_sock *tp = tcp_sk(sk);
479 struct inet_connection_sock *icsk = inet_csk(sk);
480 struct net *net = sock_net(sk);
481
482 icsk->icsk_ack.quick = 0;
483
484 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
485 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
486 !tcp_under_memory_pressure(sk) &&
487 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
488 WRITE_ONCE(sk->sk_rcvbuf,
489 min(atomic_read(&sk->sk_rmem_alloc),
490 net->ipv4.sysctl_tcp_rmem[2]));
491 }
492 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
493 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
494 }
495
496 /* Initialize RCV_MSS value.
497 * RCV_MSS is an our guess about MSS used by the peer.
498 * We haven't any direct information about the MSS.
499 * It's better to underestimate the RCV_MSS rather than overestimate.
500 * Overestimations make us ACKing less frequently than needed.
501 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
502 */
503 void tcp_initialize_rcv_mss(struct sock *sk)
504 {
505 const struct tcp_sock *tp = tcp_sk(sk);
506 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
507
508 hint = min(hint, tp->rcv_wnd / 2);
509 hint = min(hint, TCP_MSS_DEFAULT);
510 hint = max(hint, TCP_MIN_MSS);
511
512 inet_csk(sk)->icsk_ack.rcv_mss = hint;
513 }
514 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
515
516 /* Receiver "autotuning" code.
517 *
518 * The algorithm for RTT estimation w/o timestamps is based on
519 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
520 * <http://public.lanl.gov/radiant/pubs.html#DRS>
521 *
522 * More detail on this code can be found at
523 * <http://staff.psc.edu/jheffner/>,
524 * though this reference is out of date. A new paper
525 * is pending.
526 */
527 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
528 {
529 u32 new_sample = tp->rcv_rtt_est.rtt_us;
530 long m = sample;
531
532 if (new_sample != 0) {
533 /* If we sample in larger samples in the non-timestamp
534 * case, we could grossly overestimate the RTT especially
535 * with chatty applications or bulk transfer apps which
536 * are stalled on filesystem I/O.
537 *
538 * Also, since we are only going for a minimum in the
539 * non-timestamp case, we do not smooth things out
540 * else with timestamps disabled convergence takes too
541 * long.
542 */
543 if (!win_dep) {
544 m -= (new_sample >> 3);
545 new_sample += m;
546 } else {
547 m <<= 3;
548 if (m < new_sample)
549 new_sample = m;
550 }
551 } else {
552 /* No previous measure. */
553 new_sample = m << 3;
554 }
555
556 tp->rcv_rtt_est.rtt_us = new_sample;
557 }
558
559 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
560 {
561 u32 delta_us;
562
563 if (tp->rcv_rtt_est.time == 0)
564 goto new_measure;
565 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
566 return;
567 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
568 if (!delta_us)
569 delta_us = 1;
570 tcp_rcv_rtt_update(tp, delta_us, 1);
571
572 new_measure:
573 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
574 tp->rcv_rtt_est.time = tp->tcp_mstamp;
575 }
576
577 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
578 const struct sk_buff *skb)
579 {
580 struct tcp_sock *tp = tcp_sk(sk);
581
582 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
583 return;
584 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
585
586 if (TCP_SKB_CB(skb)->end_seq -
587 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
588 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
589 u32 delta_us;
590
591 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
592 if (!delta)
593 delta = 1;
594 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
595 tcp_rcv_rtt_update(tp, delta_us, 0);
596 }
597 }
598 }
599
600 /*
601 * This function should be called every time data is copied to user space.
602 * It calculates the appropriate TCP receive buffer space.
603 */
604 void tcp_rcv_space_adjust(struct sock *sk)
605 {
606 struct tcp_sock *tp = tcp_sk(sk);
607 u32 copied;
608 int time;
609
610 trace_tcp_rcv_space_adjust(sk);
611
612 tcp_mstamp_refresh(tp);
613 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
614 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
615 return;
616
617 /* Number of bytes copied to user in last RTT */
618 copied = tp->copied_seq - tp->rcvq_space.seq;
619 if (copied <= tp->rcvq_space.space)
620 goto new_measure;
621
622 /* A bit of theory :
623 * copied = bytes received in previous RTT, our base window
624 * To cope with packet losses, we need a 2x factor
625 * To cope with slow start, and sender growing its cwin by 100 %
626 * every RTT, we need a 4x factor, because the ACK we are sending
627 * now is for the next RTT, not the current one :
628 * <prev RTT . ><current RTT .. ><next RTT .... >
629 */
630
631 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
632 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
633 int rcvmem, rcvbuf;
634 u64 rcvwin, grow;
635
636 /* minimal window to cope with packet losses, assuming
637 * steady state. Add some cushion because of small variations.
638 */
639 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
640
641 /* Accommodate for sender rate increase (eg. slow start) */
642 grow = rcvwin * (copied - tp->rcvq_space.space);
643 do_div(grow, tp->rcvq_space.space);
644 rcvwin += (grow << 1);
645
646 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
647 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
648 rcvmem += 128;
649
650 do_div(rcvwin, tp->advmss);
651 rcvbuf = min_t(u64, rcvwin * rcvmem,
652 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
653 if (rcvbuf > sk->sk_rcvbuf) {
654 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
655
656 /* Make the window clamp follow along. */
657 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
658 }
659 }
660 tp->rcvq_space.space = copied;
661
662 new_measure:
663 tp->rcvq_space.seq = tp->copied_seq;
664 tp->rcvq_space.time = tp->tcp_mstamp;
665 }
666
667 /* There is something which you must keep in mind when you analyze the
668 * behavior of the tp->ato delayed ack timeout interval. When a
669 * connection starts up, we want to ack as quickly as possible. The
670 * problem is that "good" TCP's do slow start at the beginning of data
671 * transmission. The means that until we send the first few ACK's the
672 * sender will sit on his end and only queue most of his data, because
673 * he can only send snd_cwnd unacked packets at any given time. For
674 * each ACK we send, he increments snd_cwnd and transmits more of his
675 * queue. -DaveM
676 */
677 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
678 {
679 struct tcp_sock *tp = tcp_sk(sk);
680 struct inet_connection_sock *icsk = inet_csk(sk);
681 u32 now;
682
683 inet_csk_schedule_ack(sk);
684
685 tcp_measure_rcv_mss(sk, skb);
686
687 tcp_rcv_rtt_measure(tp);
688
689 now = tcp_jiffies32;
690
691 if (!icsk->icsk_ack.ato) {
692 /* The _first_ data packet received, initialize
693 * delayed ACK engine.
694 */
695 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
696 icsk->icsk_ack.ato = TCP_ATO_MIN;
697 } else {
698 int m = now - icsk->icsk_ack.lrcvtime;
699
700 if (m <= TCP_ATO_MIN / 2) {
701 /* The fastest case is the first. */
702 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
703 } else if (m < icsk->icsk_ack.ato) {
704 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
705 if (icsk->icsk_ack.ato > icsk->icsk_rto)
706 icsk->icsk_ack.ato = icsk->icsk_rto;
707 } else if (m > icsk->icsk_rto) {
708 /* Too long gap. Apparently sender failed to
709 * restart window, so that we send ACKs quickly.
710 */
711 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
712 sk_mem_reclaim(sk);
713 }
714 }
715 icsk->icsk_ack.lrcvtime = now;
716
717 tcp_ecn_check_ce(sk, skb);
718
719 if (skb->len >= 128)
720 tcp_grow_window(sk, skb);
721 }
722
723 /* Called to compute a smoothed rtt estimate. The data fed to this
724 * routine either comes from timestamps, or from segments that were
725 * known _not_ to have been retransmitted [see Karn/Partridge
726 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
727 * piece by Van Jacobson.
728 * NOTE: the next three routines used to be one big routine.
729 * To save cycles in the RFC 1323 implementation it was better to break
730 * it up into three procedures. -- erics
731 */
732 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
733 {
734 struct tcp_sock *tp = tcp_sk(sk);
735 long m = mrtt_us; /* RTT */
736 u32 srtt = tp->srtt_us;
737
738 /* The following amusing code comes from Jacobson's
739 * article in SIGCOMM '88. Note that rtt and mdev
740 * are scaled versions of rtt and mean deviation.
741 * This is designed to be as fast as possible
742 * m stands for "measurement".
743 *
744 * On a 1990 paper the rto value is changed to:
745 * RTO = rtt + 4 * mdev
746 *
747 * Funny. This algorithm seems to be very broken.
748 * These formulae increase RTO, when it should be decreased, increase
749 * too slowly, when it should be increased quickly, decrease too quickly
750 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
751 * does not matter how to _calculate_ it. Seems, it was trap
752 * that VJ failed to avoid. 8)
753 */
754 if (srtt != 0) {
755 m -= (srtt >> 3); /* m is now error in rtt est */
756 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
757 if (m < 0) {
758 m = -m; /* m is now abs(error) */
759 m -= (tp->mdev_us >> 2); /* similar update on mdev */
760 /* This is similar to one of Eifel findings.
761 * Eifel blocks mdev updates when rtt decreases.
762 * This solution is a bit different: we use finer gain
763 * for mdev in this case (alpha*beta).
764 * Like Eifel it also prevents growth of rto,
765 * but also it limits too fast rto decreases,
766 * happening in pure Eifel.
767 */
768 if (m > 0)
769 m >>= 3;
770 } else {
771 m -= (tp->mdev_us >> 2); /* similar update on mdev */
772 }
773 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
774 if (tp->mdev_us > tp->mdev_max_us) {
775 tp->mdev_max_us = tp->mdev_us;
776 if (tp->mdev_max_us > tp->rttvar_us)
777 tp->rttvar_us = tp->mdev_max_us;
778 }
779 if (after(tp->snd_una, tp->rtt_seq)) {
780 if (tp->mdev_max_us < tp->rttvar_us)
781 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
782 tp->rtt_seq = tp->snd_nxt;
783 tp->mdev_max_us = tcp_rto_min_us(sk);
784
785 tcp_bpf_rtt(sk);
786 }
787 } else {
788 /* no previous measure. */
789 srtt = m << 3; /* take the measured time to be rtt */
790 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
791 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
792 tp->mdev_max_us = tp->rttvar_us;
793 tp->rtt_seq = tp->snd_nxt;
794
795 tcp_bpf_rtt(sk);
796 }
797 tp->srtt_us = max(1U, srtt);
798 }
799
800 static void tcp_update_pacing_rate(struct sock *sk)
801 {
802 const struct tcp_sock *tp = tcp_sk(sk);
803 u64 rate;
804
805 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
806 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
807
808 /* current rate is (cwnd * mss) / srtt
809 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
810 * In Congestion Avoidance phase, set it to 120 % the current rate.
811 *
812 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
813 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
814 * end of slow start and should slow down.
815 */
816 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
817 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
818 else
819 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
820
821 rate *= max(tp->snd_cwnd, tp->packets_out);
822
823 if (likely(tp->srtt_us))
824 do_div(rate, tp->srtt_us);
825
826 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
827 * without any lock. We want to make sure compiler wont store
828 * intermediate values in this location.
829 */
830 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
831 sk->sk_max_pacing_rate));
832 }
833
834 /* Calculate rto without backoff. This is the second half of Van Jacobson's
835 * routine referred to above.
836 */
837 static void tcp_set_rto(struct sock *sk)
838 {
839 const struct tcp_sock *tp = tcp_sk(sk);
840 /* Old crap is replaced with new one. 8)
841 *
842 * More seriously:
843 * 1. If rtt variance happened to be less 50msec, it is hallucination.
844 * It cannot be less due to utterly erratic ACK generation made
845 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
846 * to do with delayed acks, because at cwnd>2 true delack timeout
847 * is invisible. Actually, Linux-2.4 also generates erratic
848 * ACKs in some circumstances.
849 */
850 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
851
852 /* 2. Fixups made earlier cannot be right.
853 * If we do not estimate RTO correctly without them,
854 * all the algo is pure shit and should be replaced
855 * with correct one. It is exactly, which we pretend to do.
856 */
857
858 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
859 * guarantees that rto is higher.
860 */
861 tcp_bound_rto(sk);
862 }
863
864 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
865 {
866 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
867
868 if (!cwnd)
869 cwnd = TCP_INIT_CWND;
870 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
871 }
872
873 /* Take a notice that peer is sending D-SACKs */
874 static void tcp_dsack_seen(struct tcp_sock *tp)
875 {
876 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
877 tp->rack.dsack_seen = 1;
878 tp->dsack_dups++;
879 }
880
881 /* It's reordering when higher sequence was delivered (i.e. sacked) before
882 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
883 * distance is approximated in full-mss packet distance ("reordering").
884 */
885 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
886 const int ts)
887 {
888 struct tcp_sock *tp = tcp_sk(sk);
889 const u32 mss = tp->mss_cache;
890 u32 fack, metric;
891
892 fack = tcp_highest_sack_seq(tp);
893 if (!before(low_seq, fack))
894 return;
895
896 metric = fack - low_seq;
897 if ((metric > tp->reordering * mss) && mss) {
898 #if FASTRETRANS_DEBUG > 1
899 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
900 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
901 tp->reordering,
902 0,
903 tp->sacked_out,
904 tp->undo_marker ? tp->undo_retrans : 0);
905 #endif
906 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
907 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
908 }
909
910 /* This exciting event is worth to be remembered. 8) */
911 tp->reord_seen++;
912 NET_INC_STATS(sock_net(sk),
913 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
914 }
915
916 /* This must be called before lost_out is incremented */
917 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
918 {
919 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
920 (tp->retransmit_skb_hint &&
921 before(TCP_SKB_CB(skb)->seq,
922 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
923 tp->retransmit_skb_hint = skb;
924 }
925
926 /* Sum the number of packets on the wire we have marked as lost.
927 * There are two cases we care about here:
928 * a) Packet hasn't been marked lost (nor retransmitted),
929 * and this is the first loss.
930 * b) Packet has been marked both lost and retransmitted,
931 * and this means we think it was lost again.
932 */
933 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
934 {
935 __u8 sacked = TCP_SKB_CB(skb)->sacked;
936
937 if (!(sacked & TCPCB_LOST) ||
938 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
939 tp->lost += tcp_skb_pcount(skb);
940 }
941
942 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
943 {
944 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
945 tcp_verify_retransmit_hint(tp, skb);
946
947 tp->lost_out += tcp_skb_pcount(skb);
948 tcp_sum_lost(tp, skb);
949 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
950 }
951 }
952
953 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
954 {
955 tcp_verify_retransmit_hint(tp, skb);
956
957 tcp_sum_lost(tp, skb);
958 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
959 tp->lost_out += tcp_skb_pcount(skb);
960 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
961 }
962 }
963
964 /* This procedure tags the retransmission queue when SACKs arrive.
965 *
966 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
967 * Packets in queue with these bits set are counted in variables
968 * sacked_out, retrans_out and lost_out, correspondingly.
969 *
970 * Valid combinations are:
971 * Tag InFlight Description
972 * 0 1 - orig segment is in flight.
973 * S 0 - nothing flies, orig reached receiver.
974 * L 0 - nothing flies, orig lost by net.
975 * R 2 - both orig and retransmit are in flight.
976 * L|R 1 - orig is lost, retransmit is in flight.
977 * S|R 1 - orig reached receiver, retrans is still in flight.
978 * (L|S|R is logically valid, it could occur when L|R is sacked,
979 * but it is equivalent to plain S and code short-curcuits it to S.
980 * L|S is logically invalid, it would mean -1 packet in flight 8))
981 *
982 * These 6 states form finite state machine, controlled by the following events:
983 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
984 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
985 * 3. Loss detection event of two flavors:
986 * A. Scoreboard estimator decided the packet is lost.
987 * A'. Reno "three dupacks" marks head of queue lost.
988 * B. SACK arrives sacking SND.NXT at the moment, when the
989 * segment was retransmitted.
990 * 4. D-SACK added new rule: D-SACK changes any tag to S.
991 *
992 * It is pleasant to note, that state diagram turns out to be commutative,
993 * so that we are allowed not to be bothered by order of our actions,
994 * when multiple events arrive simultaneously. (see the function below).
995 *
996 * Reordering detection.
997 * --------------------
998 * Reordering metric is maximal distance, which a packet can be displaced
999 * in packet stream. With SACKs we can estimate it:
1000 *
1001 * 1. SACK fills old hole and the corresponding segment was not
1002 * ever retransmitted -> reordering. Alas, we cannot use it
1003 * when segment was retransmitted.
1004 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1005 * for retransmitted and already SACKed segment -> reordering..
1006 * Both of these heuristics are not used in Loss state, when we cannot
1007 * account for retransmits accurately.
1008 *
1009 * SACK block validation.
1010 * ----------------------
1011 *
1012 * SACK block range validation checks that the received SACK block fits to
1013 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1014 * Note that SND.UNA is not included to the range though being valid because
1015 * it means that the receiver is rather inconsistent with itself reporting
1016 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1017 * perfectly valid, however, in light of RFC2018 which explicitly states
1018 * that "SACK block MUST reflect the newest segment. Even if the newest
1019 * segment is going to be discarded ...", not that it looks very clever
1020 * in case of head skb. Due to potentional receiver driven attacks, we
1021 * choose to avoid immediate execution of a walk in write queue due to
1022 * reneging and defer head skb's loss recovery to standard loss recovery
1023 * procedure that will eventually trigger (nothing forbids us doing this).
1024 *
1025 * Implements also blockage to start_seq wrap-around. Problem lies in the
1026 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1027 * there's no guarantee that it will be before snd_nxt (n). The problem
1028 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1029 * wrap (s_w):
1030 *
1031 * <- outs wnd -> <- wrapzone ->
1032 * u e n u_w e_w s n_w
1033 * | | | | | | |
1034 * |<------------+------+----- TCP seqno space --------------+---------->|
1035 * ...-- <2^31 ->| |<--------...
1036 * ...---- >2^31 ------>| |<--------...
1037 *
1038 * Current code wouldn't be vulnerable but it's better still to discard such
1039 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1040 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1041 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1042 * equal to the ideal case (infinite seqno space without wrap caused issues).
1043 *
1044 * With D-SACK the lower bound is extended to cover sequence space below
1045 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1046 * again, D-SACK block must not to go across snd_una (for the same reason as
1047 * for the normal SACK blocks, explained above). But there all simplicity
1048 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1049 * fully below undo_marker they do not affect behavior in anyway and can
1050 * therefore be safely ignored. In rare cases (which are more or less
1051 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1052 * fragmentation and packet reordering past skb's retransmission. To consider
1053 * them correctly, the acceptable range must be extended even more though
1054 * the exact amount is rather hard to quantify. However, tp->max_window can
1055 * be used as an exaggerated estimate.
1056 */
1057 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1058 u32 start_seq, u32 end_seq)
1059 {
1060 /* Too far in future, or reversed (interpretation is ambiguous) */
1061 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1062 return false;
1063
1064 /* Nasty start_seq wrap-around check (see comments above) */
1065 if (!before(start_seq, tp->snd_nxt))
1066 return false;
1067
1068 /* In outstanding window? ...This is valid exit for D-SACKs too.
1069 * start_seq == snd_una is non-sensical (see comments above)
1070 */
1071 if (after(start_seq, tp->snd_una))
1072 return true;
1073
1074 if (!is_dsack || !tp->undo_marker)
1075 return false;
1076
1077 /* ...Then it's D-SACK, and must reside below snd_una completely */
1078 if (after(end_seq, tp->snd_una))
1079 return false;
1080
1081 if (!before(start_seq, tp->undo_marker))
1082 return true;
1083
1084 /* Too old */
1085 if (!after(end_seq, tp->undo_marker))
1086 return false;
1087
1088 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1089 * start_seq < undo_marker and end_seq >= undo_marker.
1090 */
1091 return !before(start_seq, end_seq - tp->max_window);
1092 }
1093
1094 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1095 struct tcp_sack_block_wire *sp, int num_sacks,
1096 u32 prior_snd_una)
1097 {
1098 struct tcp_sock *tp = tcp_sk(sk);
1099 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1100 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1101 bool dup_sack = false;
1102
1103 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1104 dup_sack = true;
1105 tcp_dsack_seen(tp);
1106 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1107 } else if (num_sacks > 1) {
1108 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1109 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1110
1111 if (!after(end_seq_0, end_seq_1) &&
1112 !before(start_seq_0, start_seq_1)) {
1113 dup_sack = true;
1114 tcp_dsack_seen(tp);
1115 NET_INC_STATS(sock_net(sk),
1116 LINUX_MIB_TCPDSACKOFORECV);
1117 }
1118 }
1119
1120 /* D-SACK for already forgotten data... Do dumb counting. */
1121 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1122 !after(end_seq_0, prior_snd_una) &&
1123 after(end_seq_0, tp->undo_marker))
1124 tp->undo_retrans--;
1125
1126 return dup_sack;
1127 }
1128
1129 struct tcp_sacktag_state {
1130 u32 reord;
1131 /* Timestamps for earliest and latest never-retransmitted segment
1132 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1133 * but congestion control should still get an accurate delay signal.
1134 */
1135 u64 first_sackt;
1136 u64 last_sackt;
1137 struct rate_sample *rate;
1138 int flag;
1139 unsigned int mss_now;
1140 };
1141
1142 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1143 * the incoming SACK may not exactly match but we can find smaller MSS
1144 * aligned portion of it that matches. Therefore we might need to fragment
1145 * which may fail and creates some hassle (caller must handle error case
1146 * returns).
1147 *
1148 * FIXME: this could be merged to shift decision code
1149 */
1150 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1151 u32 start_seq, u32 end_seq)
1152 {
1153 int err;
1154 bool in_sack;
1155 unsigned int pkt_len;
1156 unsigned int mss;
1157
1158 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1159 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1160
1161 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1162 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1163 mss = tcp_skb_mss(skb);
1164 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1165
1166 if (!in_sack) {
1167 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1168 if (pkt_len < mss)
1169 pkt_len = mss;
1170 } else {
1171 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1172 if (pkt_len < mss)
1173 return -EINVAL;
1174 }
1175
1176 /* Round if necessary so that SACKs cover only full MSSes
1177 * and/or the remaining small portion (if present)
1178 */
1179 if (pkt_len > mss) {
1180 unsigned int new_len = (pkt_len / mss) * mss;
1181 if (!in_sack && new_len < pkt_len)
1182 new_len += mss;
1183 pkt_len = new_len;
1184 }
1185
1186 if (pkt_len >= skb->len && !in_sack)
1187 return 0;
1188
1189 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1190 pkt_len, mss, GFP_ATOMIC);
1191 if (err < 0)
1192 return err;
1193 }
1194
1195 return in_sack;
1196 }
1197
1198 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1199 static u8 tcp_sacktag_one(struct sock *sk,
1200 struct tcp_sacktag_state *state, u8 sacked,
1201 u32 start_seq, u32 end_seq,
1202 int dup_sack, int pcount,
1203 u64 xmit_time)
1204 {
1205 struct tcp_sock *tp = tcp_sk(sk);
1206
1207 /* Account D-SACK for retransmitted packet. */
1208 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1209 if (tp->undo_marker && tp->undo_retrans > 0 &&
1210 after(end_seq, tp->undo_marker))
1211 tp->undo_retrans--;
1212 if ((sacked & TCPCB_SACKED_ACKED) &&
1213 before(start_seq, state->reord))
1214 state->reord = start_seq;
1215 }
1216
1217 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1218 if (!after(end_seq, tp->snd_una))
1219 return sacked;
1220
1221 if (!(sacked & TCPCB_SACKED_ACKED)) {
1222 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1223
1224 if (sacked & TCPCB_SACKED_RETRANS) {
1225 /* If the segment is not tagged as lost,
1226 * we do not clear RETRANS, believing
1227 * that retransmission is still in flight.
1228 */
1229 if (sacked & TCPCB_LOST) {
1230 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1231 tp->lost_out -= pcount;
1232 tp->retrans_out -= pcount;
1233 }
1234 } else {
1235 if (!(sacked & TCPCB_RETRANS)) {
1236 /* New sack for not retransmitted frame,
1237 * which was in hole. It is reordering.
1238 */
1239 if (before(start_seq,
1240 tcp_highest_sack_seq(tp)) &&
1241 before(start_seq, state->reord))
1242 state->reord = start_seq;
1243
1244 if (!after(end_seq, tp->high_seq))
1245 state->flag |= FLAG_ORIG_SACK_ACKED;
1246 if (state->first_sackt == 0)
1247 state->first_sackt = xmit_time;
1248 state->last_sackt = xmit_time;
1249 }
1250
1251 if (sacked & TCPCB_LOST) {
1252 sacked &= ~TCPCB_LOST;
1253 tp->lost_out -= pcount;
1254 }
1255 }
1256
1257 sacked |= TCPCB_SACKED_ACKED;
1258 state->flag |= FLAG_DATA_SACKED;
1259 tp->sacked_out += pcount;
1260 tp->delivered += pcount; /* Out-of-order packets delivered */
1261
1262 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1263 if (tp->lost_skb_hint &&
1264 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1265 tp->lost_cnt_hint += pcount;
1266 }
1267
1268 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1269 * frames and clear it. undo_retrans is decreased above, L|R frames
1270 * are accounted above as well.
1271 */
1272 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1273 sacked &= ~TCPCB_SACKED_RETRANS;
1274 tp->retrans_out -= pcount;
1275 }
1276
1277 return sacked;
1278 }
1279
1280 /* Shift newly-SACKed bytes from this skb to the immediately previous
1281 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1282 */
1283 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1284 struct sk_buff *skb,
1285 struct tcp_sacktag_state *state,
1286 unsigned int pcount, int shifted, int mss,
1287 bool dup_sack)
1288 {
1289 struct tcp_sock *tp = tcp_sk(sk);
1290 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1291 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1292
1293 BUG_ON(!pcount);
1294
1295 /* Adjust counters and hints for the newly sacked sequence
1296 * range but discard the return value since prev is already
1297 * marked. We must tag the range first because the seq
1298 * advancement below implicitly advances
1299 * tcp_highest_sack_seq() when skb is highest_sack.
1300 */
1301 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1302 start_seq, end_seq, dup_sack, pcount,
1303 tcp_skb_timestamp_us(skb));
1304 tcp_rate_skb_delivered(sk, skb, state->rate);
1305
1306 if (skb == tp->lost_skb_hint)
1307 tp->lost_cnt_hint += pcount;
1308
1309 TCP_SKB_CB(prev)->end_seq += shifted;
1310 TCP_SKB_CB(skb)->seq += shifted;
1311
1312 tcp_skb_pcount_add(prev, pcount);
1313 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1314 tcp_skb_pcount_add(skb, -pcount);
1315
1316 /* When we're adding to gso_segs == 1, gso_size will be zero,
1317 * in theory this shouldn't be necessary but as long as DSACK
1318 * code can come after this skb later on it's better to keep
1319 * setting gso_size to something.
1320 */
1321 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1322 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1323
1324 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1325 if (tcp_skb_pcount(skb) <= 1)
1326 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1327
1328 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1329 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1330
1331 if (skb->len > 0) {
1332 BUG_ON(!tcp_skb_pcount(skb));
1333 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1334 return false;
1335 }
1336
1337 /* Whole SKB was eaten :-) */
1338
1339 if (skb == tp->retransmit_skb_hint)
1340 tp->retransmit_skb_hint = prev;
1341 if (skb == tp->lost_skb_hint) {
1342 tp->lost_skb_hint = prev;
1343 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1344 }
1345
1346 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1347 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1348 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1349 TCP_SKB_CB(prev)->end_seq++;
1350
1351 if (skb == tcp_highest_sack(sk))
1352 tcp_advance_highest_sack(sk, skb);
1353
1354 tcp_skb_collapse_tstamp(prev, skb);
1355 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1356 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1357
1358 tcp_rtx_queue_unlink_and_free(skb, sk);
1359
1360 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1361
1362 return true;
1363 }
1364
1365 /* I wish gso_size would have a bit more sane initialization than
1366 * something-or-zero which complicates things
1367 */
1368 static int tcp_skb_seglen(const struct sk_buff *skb)
1369 {
1370 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1371 }
1372
1373 /* Shifting pages past head area doesn't work */
1374 static int skb_can_shift(const struct sk_buff *skb)
1375 {
1376 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1377 }
1378
1379 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1380 int pcount, int shiftlen)
1381 {
1382 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1383 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1384 * to make sure not storing more than 65535 * 8 bytes per skb,
1385 * even if current MSS is bigger.
1386 */
1387 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1388 return 0;
1389 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1390 return 0;
1391 return skb_shift(to, from, shiftlen);
1392 }
1393
1394 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1395 * skb.
1396 */
1397 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1398 struct tcp_sacktag_state *state,
1399 u32 start_seq, u32 end_seq,
1400 bool dup_sack)
1401 {
1402 struct tcp_sock *tp = tcp_sk(sk);
1403 struct sk_buff *prev;
1404 int mss;
1405 int pcount = 0;
1406 int len;
1407 int in_sack;
1408
1409 /* Normally R but no L won't result in plain S */
1410 if (!dup_sack &&
1411 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1412 goto fallback;
1413 if (!skb_can_shift(skb))
1414 goto fallback;
1415 /* This frame is about to be dropped (was ACKed). */
1416 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1417 goto fallback;
1418
1419 /* Can only happen with delayed DSACK + discard craziness */
1420 prev = skb_rb_prev(skb);
1421 if (!prev)
1422 goto fallback;
1423
1424 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1425 goto fallback;
1426
1427 if (!tcp_skb_can_collapse(prev, skb))
1428 goto fallback;
1429
1430 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1431 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1432
1433 if (in_sack) {
1434 len = skb->len;
1435 pcount = tcp_skb_pcount(skb);
1436 mss = tcp_skb_seglen(skb);
1437
1438 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1439 * drop this restriction as unnecessary
1440 */
1441 if (mss != tcp_skb_seglen(prev))
1442 goto fallback;
1443 } else {
1444 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1445 goto noop;
1446 /* CHECKME: This is non-MSS split case only?, this will
1447 * cause skipped skbs due to advancing loop btw, original
1448 * has that feature too
1449 */
1450 if (tcp_skb_pcount(skb) <= 1)
1451 goto noop;
1452
1453 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1454 if (!in_sack) {
1455 /* TODO: head merge to next could be attempted here
1456 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1457 * though it might not be worth of the additional hassle
1458 *
1459 * ...we can probably just fallback to what was done
1460 * previously. We could try merging non-SACKed ones
1461 * as well but it probably isn't going to buy off
1462 * because later SACKs might again split them, and
1463 * it would make skb timestamp tracking considerably
1464 * harder problem.
1465 */
1466 goto fallback;
1467 }
1468
1469 len = end_seq - TCP_SKB_CB(skb)->seq;
1470 BUG_ON(len < 0);
1471 BUG_ON(len > skb->len);
1472
1473 /* MSS boundaries should be honoured or else pcount will
1474 * severely break even though it makes things bit trickier.
1475 * Optimize common case to avoid most of the divides
1476 */
1477 mss = tcp_skb_mss(skb);
1478
1479 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1480 * drop this restriction as unnecessary
1481 */
1482 if (mss != tcp_skb_seglen(prev))
1483 goto fallback;
1484
1485 if (len == mss) {
1486 pcount = 1;
1487 } else if (len < mss) {
1488 goto noop;
1489 } else {
1490 pcount = len / mss;
1491 len = pcount * mss;
1492 }
1493 }
1494
1495 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1496 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1497 goto fallback;
1498
1499 if (!tcp_skb_shift(prev, skb, pcount, len))
1500 goto fallback;
1501 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1502 goto out;
1503
1504 /* Hole filled allows collapsing with the next as well, this is very
1505 * useful when hole on every nth skb pattern happens
1506 */
1507 skb = skb_rb_next(prev);
1508 if (!skb)
1509 goto out;
1510
1511 if (!skb_can_shift(skb) ||
1512 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1513 (mss != tcp_skb_seglen(skb)))
1514 goto out;
1515
1516 len = skb->len;
1517 pcount = tcp_skb_pcount(skb);
1518 if (tcp_skb_shift(prev, skb, pcount, len))
1519 tcp_shifted_skb(sk, prev, skb, state, pcount,
1520 len, mss, 0);
1521
1522 out:
1523 return prev;
1524
1525 noop:
1526 return skb;
1527
1528 fallback:
1529 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1530 return NULL;
1531 }
1532
1533 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1534 struct tcp_sack_block *next_dup,
1535 struct tcp_sacktag_state *state,
1536 u32 start_seq, u32 end_seq,
1537 bool dup_sack_in)
1538 {
1539 struct tcp_sock *tp = tcp_sk(sk);
1540 struct sk_buff *tmp;
1541
1542 skb_rbtree_walk_from(skb) {
1543 int in_sack = 0;
1544 bool dup_sack = dup_sack_in;
1545
1546 /* queue is in-order => we can short-circuit the walk early */
1547 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1548 break;
1549
1550 if (next_dup &&
1551 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1552 in_sack = tcp_match_skb_to_sack(sk, skb,
1553 next_dup->start_seq,
1554 next_dup->end_seq);
1555 if (in_sack > 0)
1556 dup_sack = true;
1557 }
1558
1559 /* skb reference here is a bit tricky to get right, since
1560 * shifting can eat and free both this skb and the next,
1561 * so not even _safe variant of the loop is enough.
1562 */
1563 if (in_sack <= 0) {
1564 tmp = tcp_shift_skb_data(sk, skb, state,
1565 start_seq, end_seq, dup_sack);
1566 if (tmp) {
1567 if (tmp != skb) {
1568 skb = tmp;
1569 continue;
1570 }
1571
1572 in_sack = 0;
1573 } else {
1574 in_sack = tcp_match_skb_to_sack(sk, skb,
1575 start_seq,
1576 end_seq);
1577 }
1578 }
1579
1580 if (unlikely(in_sack < 0))
1581 break;
1582
1583 if (in_sack) {
1584 TCP_SKB_CB(skb)->sacked =
1585 tcp_sacktag_one(sk,
1586 state,
1587 TCP_SKB_CB(skb)->sacked,
1588 TCP_SKB_CB(skb)->seq,
1589 TCP_SKB_CB(skb)->end_seq,
1590 dup_sack,
1591 tcp_skb_pcount(skb),
1592 tcp_skb_timestamp_us(skb));
1593 tcp_rate_skb_delivered(sk, skb, state->rate);
1594 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1595 list_del_init(&skb->tcp_tsorted_anchor);
1596
1597 if (!before(TCP_SKB_CB(skb)->seq,
1598 tcp_highest_sack_seq(tp)))
1599 tcp_advance_highest_sack(sk, skb);
1600 }
1601 }
1602 return skb;
1603 }
1604
1605 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1606 {
1607 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1608 struct sk_buff *skb;
1609
1610 while (*p) {
1611 parent = *p;
1612 skb = rb_to_skb(parent);
1613 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1614 p = &parent->rb_left;
1615 continue;
1616 }
1617 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1618 p = &parent->rb_right;
1619 continue;
1620 }
1621 return skb;
1622 }
1623 return NULL;
1624 }
1625
1626 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1627 u32 skip_to_seq)
1628 {
1629 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1630 return skb;
1631
1632 return tcp_sacktag_bsearch(sk, skip_to_seq);
1633 }
1634
1635 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1636 struct sock *sk,
1637 struct tcp_sack_block *next_dup,
1638 struct tcp_sacktag_state *state,
1639 u32 skip_to_seq)
1640 {
1641 if (!next_dup)
1642 return skb;
1643
1644 if (before(next_dup->start_seq, skip_to_seq)) {
1645 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1646 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1647 next_dup->start_seq, next_dup->end_seq,
1648 1);
1649 }
1650
1651 return skb;
1652 }
1653
1654 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1655 {
1656 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1657 }
1658
1659 static int
1660 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1661 u32 prior_snd_una, struct tcp_sacktag_state *state)
1662 {
1663 struct tcp_sock *tp = tcp_sk(sk);
1664 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1665 TCP_SKB_CB(ack_skb)->sacked);
1666 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1667 struct tcp_sack_block sp[TCP_NUM_SACKS];
1668 struct tcp_sack_block *cache;
1669 struct sk_buff *skb;
1670 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1671 int used_sacks;
1672 bool found_dup_sack = false;
1673 int i, j;
1674 int first_sack_index;
1675
1676 state->flag = 0;
1677 state->reord = tp->snd_nxt;
1678
1679 if (!tp->sacked_out)
1680 tcp_highest_sack_reset(sk);
1681
1682 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1683 num_sacks, prior_snd_una);
1684 if (found_dup_sack) {
1685 state->flag |= FLAG_DSACKING_ACK;
1686 tp->delivered++; /* A spurious retransmission is delivered */
1687 }
1688
1689 /* Eliminate too old ACKs, but take into
1690 * account more or less fresh ones, they can
1691 * contain valid SACK info.
1692 */
1693 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1694 return 0;
1695
1696 if (!tp->packets_out)
1697 goto out;
1698
1699 used_sacks = 0;
1700 first_sack_index = 0;
1701 for (i = 0; i < num_sacks; i++) {
1702 bool dup_sack = !i && found_dup_sack;
1703
1704 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1705 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1706
1707 if (!tcp_is_sackblock_valid(tp, dup_sack,
1708 sp[used_sacks].start_seq,
1709 sp[used_sacks].end_seq)) {
1710 int mib_idx;
1711
1712 if (dup_sack) {
1713 if (!tp->undo_marker)
1714 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1715 else
1716 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1717 } else {
1718 /* Don't count olds caused by ACK reordering */
1719 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1720 !after(sp[used_sacks].end_seq, tp->snd_una))
1721 continue;
1722 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1723 }
1724
1725 NET_INC_STATS(sock_net(sk), mib_idx);
1726 if (i == 0)
1727 first_sack_index = -1;
1728 continue;
1729 }
1730
1731 /* Ignore very old stuff early */
1732 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1733 if (i == 0)
1734 first_sack_index = -1;
1735 continue;
1736 }
1737
1738 used_sacks++;
1739 }
1740
1741 /* order SACK blocks to allow in order walk of the retrans queue */
1742 for (i = used_sacks - 1; i > 0; i--) {
1743 for (j = 0; j < i; j++) {
1744 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1745 swap(sp[j], sp[j + 1]);
1746
1747 /* Track where the first SACK block goes to */
1748 if (j == first_sack_index)
1749 first_sack_index = j + 1;
1750 }
1751 }
1752 }
1753
1754 state->mss_now = tcp_current_mss(sk);
1755 skb = NULL;
1756 i = 0;
1757
1758 if (!tp->sacked_out) {
1759 /* It's already past, so skip checking against it */
1760 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1761 } else {
1762 cache = tp->recv_sack_cache;
1763 /* Skip empty blocks in at head of the cache */
1764 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1765 !cache->end_seq)
1766 cache++;
1767 }
1768
1769 while (i < used_sacks) {
1770 u32 start_seq = sp[i].start_seq;
1771 u32 end_seq = sp[i].end_seq;
1772 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1773 struct tcp_sack_block *next_dup = NULL;
1774
1775 if (found_dup_sack && ((i + 1) == first_sack_index))
1776 next_dup = &sp[i + 1];
1777
1778 /* Skip too early cached blocks */
1779 while (tcp_sack_cache_ok(tp, cache) &&
1780 !before(start_seq, cache->end_seq))
1781 cache++;
1782
1783 /* Can skip some work by looking recv_sack_cache? */
1784 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1785 after(end_seq, cache->start_seq)) {
1786
1787 /* Head todo? */
1788 if (before(start_seq, cache->start_seq)) {
1789 skb = tcp_sacktag_skip(skb, sk, start_seq);
1790 skb = tcp_sacktag_walk(skb, sk, next_dup,
1791 state,
1792 start_seq,
1793 cache->start_seq,
1794 dup_sack);
1795 }
1796
1797 /* Rest of the block already fully processed? */
1798 if (!after(end_seq, cache->end_seq))
1799 goto advance_sp;
1800
1801 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1802 state,
1803 cache->end_seq);
1804
1805 /* ...tail remains todo... */
1806 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1807 /* ...but better entrypoint exists! */
1808 skb = tcp_highest_sack(sk);
1809 if (!skb)
1810 break;
1811 cache++;
1812 goto walk;
1813 }
1814
1815 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1816 /* Check overlap against next cached too (past this one already) */
1817 cache++;
1818 continue;
1819 }
1820
1821 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1822 skb = tcp_highest_sack(sk);
1823 if (!skb)
1824 break;
1825 }
1826 skb = tcp_sacktag_skip(skb, sk, start_seq);
1827
1828 walk:
1829 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1830 start_seq, end_seq, dup_sack);
1831
1832 advance_sp:
1833 i++;
1834 }
1835
1836 /* Clear the head of the cache sack blocks so we can skip it next time */
1837 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1838 tp->recv_sack_cache[i].start_seq = 0;
1839 tp->recv_sack_cache[i].end_seq = 0;
1840 }
1841 for (j = 0; j < used_sacks; j++)
1842 tp->recv_sack_cache[i++] = sp[j];
1843
1844 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1845 tcp_check_sack_reordering(sk, state->reord, 0);
1846
1847 tcp_verify_left_out(tp);
1848 out:
1849
1850 #if FASTRETRANS_DEBUG > 0
1851 WARN_ON((int)tp->sacked_out < 0);
1852 WARN_ON((int)tp->lost_out < 0);
1853 WARN_ON((int)tp->retrans_out < 0);
1854 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1855 #endif
1856 return state->flag;
1857 }
1858
1859 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1860 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1861 */
1862 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1863 {
1864 u32 holes;
1865
1866 holes = max(tp->lost_out, 1U);
1867 holes = min(holes, tp->packets_out);
1868
1869 if ((tp->sacked_out + holes) > tp->packets_out) {
1870 tp->sacked_out = tp->packets_out - holes;
1871 return true;
1872 }
1873 return false;
1874 }
1875
1876 /* If we receive more dupacks than we expected counting segments
1877 * in assumption of absent reordering, interpret this as reordering.
1878 * The only another reason could be bug in receiver TCP.
1879 */
1880 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1881 {
1882 struct tcp_sock *tp = tcp_sk(sk);
1883
1884 if (!tcp_limit_reno_sacked(tp))
1885 return;
1886
1887 tp->reordering = min_t(u32, tp->packets_out + addend,
1888 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1889 tp->reord_seen++;
1890 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1891 }
1892
1893 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1894
1895 static void tcp_add_reno_sack(struct sock *sk, int num_dupack)
1896 {
1897 if (num_dupack) {
1898 struct tcp_sock *tp = tcp_sk(sk);
1899 u32 prior_sacked = tp->sacked_out;
1900 s32 delivered;
1901
1902 tp->sacked_out += num_dupack;
1903 tcp_check_reno_reordering(sk, 0);
1904 delivered = tp->sacked_out - prior_sacked;
1905 if (delivered > 0)
1906 tp->delivered += delivered;
1907 tcp_verify_left_out(tp);
1908 }
1909 }
1910
1911 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1912
1913 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1914 {
1915 struct tcp_sock *tp = tcp_sk(sk);
1916
1917 if (acked > 0) {
1918 /* One ACK acked hole. The rest eat duplicate ACKs. */
1919 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1920 if (acked - 1 >= tp->sacked_out)
1921 tp->sacked_out = 0;
1922 else
1923 tp->sacked_out -= acked - 1;
1924 }
1925 tcp_check_reno_reordering(sk, acked);
1926 tcp_verify_left_out(tp);
1927 }
1928
1929 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1930 {
1931 tp->sacked_out = 0;
1932 }
1933
1934 void tcp_clear_retrans(struct tcp_sock *tp)
1935 {
1936 tp->retrans_out = 0;
1937 tp->lost_out = 0;
1938 tp->undo_marker = 0;
1939 tp->undo_retrans = -1;
1940 tp->sacked_out = 0;
1941 }
1942
1943 static inline void tcp_init_undo(struct tcp_sock *tp)
1944 {
1945 tp->undo_marker = tp->snd_una;
1946 /* Retransmission still in flight may cause DSACKs later. */
1947 tp->undo_retrans = tp->retrans_out ? : -1;
1948 }
1949
1950 static bool tcp_is_rack(const struct sock *sk)
1951 {
1952 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1953 }
1954
1955 /* If we detect SACK reneging, forget all SACK information
1956 * and reset tags completely, otherwise preserve SACKs. If receiver
1957 * dropped its ofo queue, we will know this due to reneging detection.
1958 */
1959 static void tcp_timeout_mark_lost(struct sock *sk)
1960 {
1961 struct tcp_sock *tp = tcp_sk(sk);
1962 struct sk_buff *skb, *head;
1963 bool is_reneg; /* is receiver reneging on SACKs? */
1964
1965 head = tcp_rtx_queue_head(sk);
1966 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1967 if (is_reneg) {
1968 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1969 tp->sacked_out = 0;
1970 /* Mark SACK reneging until we recover from this loss event. */
1971 tp->is_sack_reneg = 1;
1972 } else if (tcp_is_reno(tp)) {
1973 tcp_reset_reno_sack(tp);
1974 }
1975
1976 skb = head;
1977 skb_rbtree_walk_from(skb) {
1978 if (is_reneg)
1979 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1980 else if (tcp_is_rack(sk) && skb != head &&
1981 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1982 continue; /* Don't mark recently sent ones lost yet */
1983 tcp_mark_skb_lost(sk, skb);
1984 }
1985 tcp_verify_left_out(tp);
1986 tcp_clear_all_retrans_hints(tp);
1987 }
1988
1989 /* Enter Loss state. */
1990 void tcp_enter_loss(struct sock *sk)
1991 {
1992 const struct inet_connection_sock *icsk = inet_csk(sk);
1993 struct tcp_sock *tp = tcp_sk(sk);
1994 struct net *net = sock_net(sk);
1995 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1996
1997 tcp_timeout_mark_lost(sk);
1998
1999 /* Reduce ssthresh if it has not yet been made inside this window. */
2000 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2001 !after(tp->high_seq, tp->snd_una) ||
2002 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2003 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2004 tp->prior_cwnd = tp->snd_cwnd;
2005 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2006 tcp_ca_event(sk, CA_EVENT_LOSS);
2007 tcp_init_undo(tp);
2008 }
2009 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1;
2010 tp->snd_cwnd_cnt = 0;
2011 tp->snd_cwnd_stamp = tcp_jiffies32;
2012
2013 /* Timeout in disordered state after receiving substantial DUPACKs
2014 * suggests that the degree of reordering is over-estimated.
2015 */
2016 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2017 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2018 tp->reordering = min_t(unsigned int, tp->reordering,
2019 net->ipv4.sysctl_tcp_reordering);
2020 tcp_set_ca_state(sk, TCP_CA_Loss);
2021 tp->high_seq = tp->snd_nxt;
2022 tcp_ecn_queue_cwr(tp);
2023
2024 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2025 * loss recovery is underway except recurring timeout(s) on
2026 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2027 */
2028 tp->frto = net->ipv4.sysctl_tcp_frto &&
2029 (new_recovery || icsk->icsk_retransmits) &&
2030 !inet_csk(sk)->icsk_mtup.probe_size;
2031 }
2032
2033 /* If ACK arrived pointing to a remembered SACK, it means that our
2034 * remembered SACKs do not reflect real state of receiver i.e.
2035 * receiver _host_ is heavily congested (or buggy).
2036 *
2037 * To avoid big spurious retransmission bursts due to transient SACK
2038 * scoreboard oddities that look like reneging, we give the receiver a
2039 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2040 * restore sanity to the SACK scoreboard. If the apparent reneging
2041 * persists until this RTO then we'll clear the SACK scoreboard.
2042 */
2043 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2044 {
2045 if (flag & FLAG_SACK_RENEGING) {
2046 struct tcp_sock *tp = tcp_sk(sk);
2047 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2048 msecs_to_jiffies(10));
2049
2050 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2051 delay, TCP_RTO_MAX);
2052 return true;
2053 }
2054 return false;
2055 }
2056
2057 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2058 * counter when SACK is enabled (without SACK, sacked_out is used for
2059 * that purpose).
2060 *
2061 * With reordering, holes may still be in flight, so RFC3517 recovery
2062 * uses pure sacked_out (total number of SACKed segments) even though
2063 * it violates the RFC that uses duplicate ACKs, often these are equal
2064 * but when e.g. out-of-window ACKs or packet duplication occurs,
2065 * they differ. Since neither occurs due to loss, TCP should really
2066 * ignore them.
2067 */
2068 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2069 {
2070 return tp->sacked_out + 1;
2071 }
2072
2073 /* Linux NewReno/SACK/ECN state machine.
2074 * --------------------------------------
2075 *
2076 * "Open" Normal state, no dubious events, fast path.
2077 * "Disorder" In all the respects it is "Open",
2078 * but requires a bit more attention. It is entered when
2079 * we see some SACKs or dupacks. It is split of "Open"
2080 * mainly to move some processing from fast path to slow one.
2081 * "CWR" CWND was reduced due to some Congestion Notification event.
2082 * It can be ECN, ICMP source quench, local device congestion.
2083 * "Recovery" CWND was reduced, we are fast-retransmitting.
2084 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2085 *
2086 * tcp_fastretrans_alert() is entered:
2087 * - each incoming ACK, if state is not "Open"
2088 * - when arrived ACK is unusual, namely:
2089 * * SACK
2090 * * Duplicate ACK.
2091 * * ECN ECE.
2092 *
2093 * Counting packets in flight is pretty simple.
2094 *
2095 * in_flight = packets_out - left_out + retrans_out
2096 *
2097 * packets_out is SND.NXT-SND.UNA counted in packets.
2098 *
2099 * retrans_out is number of retransmitted segments.
2100 *
2101 * left_out is number of segments left network, but not ACKed yet.
2102 *
2103 * left_out = sacked_out + lost_out
2104 *
2105 * sacked_out: Packets, which arrived to receiver out of order
2106 * and hence not ACKed. With SACKs this number is simply
2107 * amount of SACKed data. Even without SACKs
2108 * it is easy to give pretty reliable estimate of this number,
2109 * counting duplicate ACKs.
2110 *
2111 * lost_out: Packets lost by network. TCP has no explicit
2112 * "loss notification" feedback from network (for now).
2113 * It means that this number can be only _guessed_.
2114 * Actually, it is the heuristics to predict lossage that
2115 * distinguishes different algorithms.
2116 *
2117 * F.e. after RTO, when all the queue is considered as lost,
2118 * lost_out = packets_out and in_flight = retrans_out.
2119 *
2120 * Essentially, we have now a few algorithms detecting
2121 * lost packets.
2122 *
2123 * If the receiver supports SACK:
2124 *
2125 * RFC6675/3517: It is the conventional algorithm. A packet is
2126 * considered lost if the number of higher sequence packets
2127 * SACKed is greater than or equal the DUPACK thoreshold
2128 * (reordering). This is implemented in tcp_mark_head_lost and
2129 * tcp_update_scoreboard.
2130 *
2131 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2132 * (2017-) that checks timing instead of counting DUPACKs.
2133 * Essentially a packet is considered lost if it's not S/ACKed
2134 * after RTT + reordering_window, where both metrics are
2135 * dynamically measured and adjusted. This is implemented in
2136 * tcp_rack_mark_lost.
2137 *
2138 * If the receiver does not support SACK:
2139 *
2140 * NewReno (RFC6582): in Recovery we assume that one segment
2141 * is lost (classic Reno). While we are in Recovery and
2142 * a partial ACK arrives, we assume that one more packet
2143 * is lost (NewReno). This heuristics are the same in NewReno
2144 * and SACK.
2145 *
2146 * Really tricky (and requiring careful tuning) part of algorithm
2147 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2148 * The first determines the moment _when_ we should reduce CWND and,
2149 * hence, slow down forward transmission. In fact, it determines the moment
2150 * when we decide that hole is caused by loss, rather than by a reorder.
2151 *
2152 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2153 * holes, caused by lost packets.
2154 *
2155 * And the most logically complicated part of algorithm is undo
2156 * heuristics. We detect false retransmits due to both too early
2157 * fast retransmit (reordering) and underestimated RTO, analyzing
2158 * timestamps and D-SACKs. When we detect that some segments were
2159 * retransmitted by mistake and CWND reduction was wrong, we undo
2160 * window reduction and abort recovery phase. This logic is hidden
2161 * inside several functions named tcp_try_undo_<something>.
2162 */
2163
2164 /* This function decides, when we should leave Disordered state
2165 * and enter Recovery phase, reducing congestion window.
2166 *
2167 * Main question: may we further continue forward transmission
2168 * with the same cwnd?
2169 */
2170 static bool tcp_time_to_recover(struct sock *sk, int flag)
2171 {
2172 struct tcp_sock *tp = tcp_sk(sk);
2173
2174 /* Trick#1: The loss is proven. */
2175 if (tp->lost_out)
2176 return true;
2177
2178 /* Not-A-Trick#2 : Classic rule... */
2179 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2180 return true;
2181
2182 return false;
2183 }
2184
2185 /* Detect loss in event "A" above by marking head of queue up as lost.
2186 * For non-SACK(Reno) senders, the first "packets" number of segments
2187 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2188 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2189 * the maximum SACKed segments to pass before reaching this limit.
2190 */
2191 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2192 {
2193 struct tcp_sock *tp = tcp_sk(sk);
2194 struct sk_buff *skb;
2195 int cnt, oldcnt, lost;
2196 unsigned int mss;
2197 /* Use SACK to deduce losses of new sequences sent during recovery */
2198 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2199
2200 WARN_ON(packets > tp->packets_out);
2201 skb = tp->lost_skb_hint;
2202 if (skb) {
2203 /* Head already handled? */
2204 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2205 return;
2206 cnt = tp->lost_cnt_hint;
2207 } else {
2208 skb = tcp_rtx_queue_head(sk);
2209 cnt = 0;
2210 }
2211
2212 skb_rbtree_walk_from(skb) {
2213 /* TODO: do this better */
2214 /* this is not the most efficient way to do this... */
2215 tp->lost_skb_hint = skb;
2216 tp->lost_cnt_hint = cnt;
2217
2218 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2219 break;
2220
2221 oldcnt = cnt;
2222 if (tcp_is_reno(tp) ||
2223 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2224 cnt += tcp_skb_pcount(skb);
2225
2226 if (cnt > packets) {
2227 if (tcp_is_sack(tp) ||
2228 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2229 (oldcnt >= packets))
2230 break;
2231
2232 mss = tcp_skb_mss(skb);
2233 /* If needed, chop off the prefix to mark as lost. */
2234 lost = (packets - oldcnt) * mss;
2235 if (lost < skb->len &&
2236 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2237 lost, mss, GFP_ATOMIC) < 0)
2238 break;
2239 cnt = packets;
2240 }
2241
2242 tcp_skb_mark_lost(tp, skb);
2243
2244 if (mark_head)
2245 break;
2246 }
2247 tcp_verify_left_out(tp);
2248 }
2249
2250 /* Account newly detected lost packet(s) */
2251
2252 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2253 {
2254 struct tcp_sock *tp = tcp_sk(sk);
2255
2256 if (tcp_is_sack(tp)) {
2257 int sacked_upto = tp->sacked_out - tp->reordering;
2258 if (sacked_upto >= 0)
2259 tcp_mark_head_lost(sk, sacked_upto, 0);
2260 else if (fast_rexmit)
2261 tcp_mark_head_lost(sk, 1, 1);
2262 }
2263 }
2264
2265 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2266 {
2267 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2268 before(tp->rx_opt.rcv_tsecr, when);
2269 }
2270
2271 /* skb is spurious retransmitted if the returned timestamp echo
2272 * reply is prior to the skb transmission time
2273 */
2274 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2275 const struct sk_buff *skb)
2276 {
2277 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2278 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2279 }
2280
2281 /* Nothing was retransmitted or returned timestamp is less
2282 * than timestamp of the first retransmission.
2283 */
2284 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2285 {
2286 return tp->retrans_stamp &&
2287 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2288 }
2289
2290 /* Undo procedures. */
2291
2292 /* We can clear retrans_stamp when there are no retransmissions in the
2293 * window. It would seem that it is trivially available for us in
2294 * tp->retrans_out, however, that kind of assumptions doesn't consider
2295 * what will happen if errors occur when sending retransmission for the
2296 * second time. ...It could the that such segment has only
2297 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2298 * the head skb is enough except for some reneging corner cases that
2299 * are not worth the effort.
2300 *
2301 * Main reason for all this complexity is the fact that connection dying
2302 * time now depends on the validity of the retrans_stamp, in particular,
2303 * that successive retransmissions of a segment must not advance
2304 * retrans_stamp under any conditions.
2305 */
2306 static bool tcp_any_retrans_done(const struct sock *sk)
2307 {
2308 const struct tcp_sock *tp = tcp_sk(sk);
2309 struct sk_buff *skb;
2310
2311 if (tp->retrans_out)
2312 return true;
2313
2314 skb = tcp_rtx_queue_head(sk);
2315 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2316 return true;
2317
2318 return false;
2319 }
2320
2321 static void DBGUNDO(struct sock *sk, const char *msg)
2322 {
2323 #if FASTRETRANS_DEBUG > 1
2324 struct tcp_sock *tp = tcp_sk(sk);
2325 struct inet_sock *inet = inet_sk(sk);
2326
2327 if (sk->sk_family == AF_INET) {
2328 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2329 msg,
2330 &inet->inet_daddr, ntohs(inet->inet_dport),
2331 tp->snd_cwnd, tcp_left_out(tp),
2332 tp->snd_ssthresh, tp->prior_ssthresh,
2333 tp->packets_out);
2334 }
2335 #if IS_ENABLED(CONFIG_IPV6)
2336 else if (sk->sk_family == AF_INET6) {
2337 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2338 msg,
2339 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2340 tp->snd_cwnd, tcp_left_out(tp),
2341 tp->snd_ssthresh, tp->prior_ssthresh,
2342 tp->packets_out);
2343 }
2344 #endif
2345 #endif
2346 }
2347
2348 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2349 {
2350 struct tcp_sock *tp = tcp_sk(sk);
2351
2352 if (unmark_loss) {
2353 struct sk_buff *skb;
2354
2355 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2356 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2357 }
2358 tp->lost_out = 0;
2359 tcp_clear_all_retrans_hints(tp);
2360 }
2361
2362 if (tp->prior_ssthresh) {
2363 const struct inet_connection_sock *icsk = inet_csk(sk);
2364
2365 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2366
2367 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2368 tp->snd_ssthresh = tp->prior_ssthresh;
2369 tcp_ecn_withdraw_cwr(tp);
2370 }
2371 }
2372 tp->snd_cwnd_stamp = tcp_jiffies32;
2373 tp->undo_marker = 0;
2374 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2375 }
2376
2377 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2378 {
2379 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2380 }
2381
2382 /* People celebrate: "We love our President!" */
2383 static bool tcp_try_undo_recovery(struct sock *sk)
2384 {
2385 struct tcp_sock *tp = tcp_sk(sk);
2386
2387 if (tcp_may_undo(tp)) {
2388 int mib_idx;
2389
2390 /* Happy end! We did not retransmit anything
2391 * or our original transmission succeeded.
2392 */
2393 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2394 tcp_undo_cwnd_reduction(sk, false);
2395 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2396 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2397 else
2398 mib_idx = LINUX_MIB_TCPFULLUNDO;
2399
2400 NET_INC_STATS(sock_net(sk), mib_idx);
2401 } else if (tp->rack.reo_wnd_persist) {
2402 tp->rack.reo_wnd_persist--;
2403 }
2404 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2405 /* Hold old state until something *above* high_seq
2406 * is ACKed. For Reno it is MUST to prevent false
2407 * fast retransmits (RFC2582). SACK TCP is safe. */
2408 if (!tcp_any_retrans_done(sk))
2409 tp->retrans_stamp = 0;
2410 return true;
2411 }
2412 tcp_set_ca_state(sk, TCP_CA_Open);
2413 tp->is_sack_reneg = 0;
2414 return false;
2415 }
2416
2417 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2418 static bool tcp_try_undo_dsack(struct sock *sk)
2419 {
2420 struct tcp_sock *tp = tcp_sk(sk);
2421
2422 if (tp->undo_marker && !tp->undo_retrans) {
2423 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2424 tp->rack.reo_wnd_persist + 1);
2425 DBGUNDO(sk, "D-SACK");
2426 tcp_undo_cwnd_reduction(sk, false);
2427 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2428 return true;
2429 }
2430 return false;
2431 }
2432
2433 /* Undo during loss recovery after partial ACK or using F-RTO. */
2434 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2435 {
2436 struct tcp_sock *tp = tcp_sk(sk);
2437
2438 if (frto_undo || tcp_may_undo(tp)) {
2439 tcp_undo_cwnd_reduction(sk, true);
2440
2441 DBGUNDO(sk, "partial loss");
2442 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2443 if (frto_undo)
2444 NET_INC_STATS(sock_net(sk),
2445 LINUX_MIB_TCPSPURIOUSRTOS);
2446 inet_csk(sk)->icsk_retransmits = 0;
2447 if (frto_undo || tcp_is_sack(tp)) {
2448 tcp_set_ca_state(sk, TCP_CA_Open);
2449 tp->is_sack_reneg = 0;
2450 }
2451 return true;
2452 }
2453 return false;
2454 }
2455
2456 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2457 * It computes the number of packets to send (sndcnt) based on packets newly
2458 * delivered:
2459 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2460 * cwnd reductions across a full RTT.
2461 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2462 * But when the retransmits are acked without further losses, PRR
2463 * slow starts cwnd up to ssthresh to speed up the recovery.
2464 */
2465 static void tcp_init_cwnd_reduction(struct sock *sk)
2466 {
2467 struct tcp_sock *tp = tcp_sk(sk);
2468
2469 tp->high_seq = tp->snd_nxt;
2470 tp->tlp_high_seq = 0;
2471 tp->snd_cwnd_cnt = 0;
2472 tp->prior_cwnd = tp->snd_cwnd;
2473 tp->prr_delivered = 0;
2474 tp->prr_out = 0;
2475 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2476 tcp_ecn_queue_cwr(tp);
2477 }
2478
2479 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2480 {
2481 struct tcp_sock *tp = tcp_sk(sk);
2482 int sndcnt = 0;
2483 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2484
2485 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2486 return;
2487
2488 tp->prr_delivered += newly_acked_sacked;
2489 if (delta < 0) {
2490 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2491 tp->prior_cwnd - 1;
2492 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2493 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2494 FLAG_RETRANS_DATA_ACKED) {
2495 sndcnt = min_t(int, delta,
2496 max_t(int, tp->prr_delivered - tp->prr_out,
2497 newly_acked_sacked) + 1);
2498 } else {
2499 sndcnt = min(delta, newly_acked_sacked);
2500 }
2501 /* Force a fast retransmit upon entering fast recovery */
2502 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2503 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2504 }
2505
2506 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2507 {
2508 struct tcp_sock *tp = tcp_sk(sk);
2509
2510 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2511 return;
2512
2513 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2514 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2515 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2516 tp->snd_cwnd = tp->snd_ssthresh;
2517 tp->snd_cwnd_stamp = tcp_jiffies32;
2518 }
2519 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2520 }
2521
2522 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2523 void tcp_enter_cwr(struct sock *sk)
2524 {
2525 struct tcp_sock *tp = tcp_sk(sk);
2526
2527 tp->prior_ssthresh = 0;
2528 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2529 tp->undo_marker = 0;
2530 tcp_init_cwnd_reduction(sk);
2531 tcp_set_ca_state(sk, TCP_CA_CWR);
2532 }
2533 }
2534 EXPORT_SYMBOL(tcp_enter_cwr);
2535
2536 static void tcp_try_keep_open(struct sock *sk)
2537 {
2538 struct tcp_sock *tp = tcp_sk(sk);
2539 int state = TCP_CA_Open;
2540
2541 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2542 state = TCP_CA_Disorder;
2543
2544 if (inet_csk(sk)->icsk_ca_state != state) {
2545 tcp_set_ca_state(sk, state);
2546 tp->high_seq = tp->snd_nxt;
2547 }
2548 }
2549
2550 static void tcp_try_to_open(struct sock *sk, int flag)
2551 {
2552 struct tcp_sock *tp = tcp_sk(sk);
2553
2554 tcp_verify_left_out(tp);
2555
2556 if (!tcp_any_retrans_done(sk))
2557 tp->retrans_stamp = 0;
2558
2559 if (flag & FLAG_ECE)
2560 tcp_enter_cwr(sk);
2561
2562 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2563 tcp_try_keep_open(sk);
2564 }
2565 }
2566
2567 static void tcp_mtup_probe_failed(struct sock *sk)
2568 {
2569 struct inet_connection_sock *icsk = inet_csk(sk);
2570
2571 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2572 icsk->icsk_mtup.probe_size = 0;
2573 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2574 }
2575
2576 static void tcp_mtup_probe_success(struct sock *sk)
2577 {
2578 struct tcp_sock *tp = tcp_sk(sk);
2579 struct inet_connection_sock *icsk = inet_csk(sk);
2580
2581 /* FIXME: breaks with very large cwnd */
2582 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2583 tp->snd_cwnd = tp->snd_cwnd *
2584 tcp_mss_to_mtu(sk, tp->mss_cache) /
2585 icsk->icsk_mtup.probe_size;
2586 tp->snd_cwnd_cnt = 0;
2587 tp->snd_cwnd_stamp = tcp_jiffies32;
2588 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2589
2590 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2591 icsk->icsk_mtup.probe_size = 0;
2592 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2593 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2594 }
2595
2596 /* Do a simple retransmit without using the backoff mechanisms in
2597 * tcp_timer. This is used for path mtu discovery.
2598 * The socket is already locked here.
2599 */
2600 void tcp_simple_retransmit(struct sock *sk)
2601 {
2602 const struct inet_connection_sock *icsk = inet_csk(sk);
2603 struct tcp_sock *tp = tcp_sk(sk);
2604 struct sk_buff *skb;
2605 unsigned int mss = tcp_current_mss(sk);
2606
2607 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2608 if (tcp_skb_seglen(skb) > mss &&
2609 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2610 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2611 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2612 tp->retrans_out -= tcp_skb_pcount(skb);
2613 }
2614 tcp_skb_mark_lost_uncond_verify(tp, skb);
2615 }
2616 }
2617
2618 tcp_clear_retrans_hints_partial(tp);
2619
2620 if (!tp->lost_out)
2621 return;
2622
2623 if (tcp_is_reno(tp))
2624 tcp_limit_reno_sacked(tp);
2625
2626 tcp_verify_left_out(tp);
2627
2628 /* Don't muck with the congestion window here.
2629 * Reason is that we do not increase amount of _data_
2630 * in network, but units changed and effective
2631 * cwnd/ssthresh really reduced now.
2632 */
2633 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2634 tp->high_seq = tp->snd_nxt;
2635 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2636 tp->prior_ssthresh = 0;
2637 tp->undo_marker = 0;
2638 tcp_set_ca_state(sk, TCP_CA_Loss);
2639 }
2640 tcp_xmit_retransmit_queue(sk);
2641 }
2642 EXPORT_SYMBOL(tcp_simple_retransmit);
2643
2644 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2645 {
2646 struct tcp_sock *tp = tcp_sk(sk);
2647 int mib_idx;
2648
2649 if (tcp_is_reno(tp))
2650 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2651 else
2652 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2653
2654 NET_INC_STATS(sock_net(sk), mib_idx);
2655
2656 tp->prior_ssthresh = 0;
2657 tcp_init_undo(tp);
2658
2659 if (!tcp_in_cwnd_reduction(sk)) {
2660 if (!ece_ack)
2661 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2662 tcp_init_cwnd_reduction(sk);
2663 }
2664 tcp_set_ca_state(sk, TCP_CA_Recovery);
2665 }
2666
2667 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2668 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2669 */
2670 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2671 int *rexmit)
2672 {
2673 struct tcp_sock *tp = tcp_sk(sk);
2674 bool recovered = !before(tp->snd_una, tp->high_seq);
2675
2676 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2677 tcp_try_undo_loss(sk, false))
2678 return;
2679
2680 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2681 /* Step 3.b. A timeout is spurious if not all data are
2682 * lost, i.e., never-retransmitted data are (s)acked.
2683 */
2684 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2685 tcp_try_undo_loss(sk, true))
2686 return;
2687
2688 if (after(tp->snd_nxt, tp->high_seq)) {
2689 if (flag & FLAG_DATA_SACKED || num_dupack)
2690 tp->frto = 0; /* Step 3.a. loss was real */
2691 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2692 tp->high_seq = tp->snd_nxt;
2693 /* Step 2.b. Try send new data (but deferred until cwnd
2694 * is updated in tcp_ack()). Otherwise fall back to
2695 * the conventional recovery.
2696 */
2697 if (!tcp_write_queue_empty(sk) &&
2698 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2699 *rexmit = REXMIT_NEW;
2700 return;
2701 }
2702 tp->frto = 0;
2703 }
2704 }
2705
2706 if (recovered) {
2707 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2708 tcp_try_undo_recovery(sk);
2709 return;
2710 }
2711 if (tcp_is_reno(tp)) {
2712 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2713 * delivered. Lower inflight to clock out (re)tranmissions.
2714 */
2715 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2716 tcp_add_reno_sack(sk, num_dupack);
2717 else if (flag & FLAG_SND_UNA_ADVANCED)
2718 tcp_reset_reno_sack(tp);
2719 }
2720 *rexmit = REXMIT_LOST;
2721 }
2722
2723 /* Undo during fast recovery after partial ACK. */
2724 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2725 {
2726 struct tcp_sock *tp = tcp_sk(sk);
2727
2728 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2729 /* Plain luck! Hole if filled with delayed
2730 * packet, rather than with a retransmit. Check reordering.
2731 */
2732 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2733
2734 /* We are getting evidence that the reordering degree is higher
2735 * than we realized. If there are no retransmits out then we
2736 * can undo. Otherwise we clock out new packets but do not
2737 * mark more packets lost or retransmit more.
2738 */
2739 if (tp->retrans_out)
2740 return true;
2741
2742 if (!tcp_any_retrans_done(sk))
2743 tp->retrans_stamp = 0;
2744
2745 DBGUNDO(sk, "partial recovery");
2746 tcp_undo_cwnd_reduction(sk, true);
2747 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2748 tcp_try_keep_open(sk);
2749 return true;
2750 }
2751 return false;
2752 }
2753
2754 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2755 {
2756 struct tcp_sock *tp = tcp_sk(sk);
2757
2758 if (tcp_rtx_queue_empty(sk))
2759 return;
2760
2761 if (unlikely(tcp_is_reno(tp))) {
2762 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2763 } else if (tcp_is_rack(sk)) {
2764 u32 prior_retrans = tp->retrans_out;
2765
2766 tcp_rack_mark_lost(sk);
2767 if (prior_retrans > tp->retrans_out)
2768 *ack_flag |= FLAG_LOST_RETRANS;
2769 }
2770 }
2771
2772 static bool tcp_force_fast_retransmit(struct sock *sk)
2773 {
2774 struct tcp_sock *tp = tcp_sk(sk);
2775
2776 return after(tcp_highest_sack_seq(tp),
2777 tp->snd_una + tp->reordering * tp->mss_cache);
2778 }
2779
2780 /* Process an event, which can update packets-in-flight not trivially.
2781 * Main goal of this function is to calculate new estimate for left_out,
2782 * taking into account both packets sitting in receiver's buffer and
2783 * packets lost by network.
2784 *
2785 * Besides that it updates the congestion state when packet loss or ECN
2786 * is detected. But it does not reduce the cwnd, it is done by the
2787 * congestion control later.
2788 *
2789 * It does _not_ decide what to send, it is made in function
2790 * tcp_xmit_retransmit_queue().
2791 */
2792 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2793 int num_dupack, int *ack_flag, int *rexmit)
2794 {
2795 struct inet_connection_sock *icsk = inet_csk(sk);
2796 struct tcp_sock *tp = tcp_sk(sk);
2797 int fast_rexmit = 0, flag = *ack_flag;
2798 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2799 tcp_force_fast_retransmit(sk));
2800
2801 if (!tp->packets_out && tp->sacked_out)
2802 tp->sacked_out = 0;
2803
2804 /* Now state machine starts.
2805 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2806 if (flag & FLAG_ECE)
2807 tp->prior_ssthresh = 0;
2808
2809 /* B. In all the states check for reneging SACKs. */
2810 if (tcp_check_sack_reneging(sk, flag))
2811 return;
2812
2813 /* C. Check consistency of the current state. */
2814 tcp_verify_left_out(tp);
2815
2816 /* D. Check state exit conditions. State can be terminated
2817 * when high_seq is ACKed. */
2818 if (icsk->icsk_ca_state == TCP_CA_Open) {
2819 WARN_ON(tp->retrans_out != 0);
2820 tp->retrans_stamp = 0;
2821 } else if (!before(tp->snd_una, tp->high_seq)) {
2822 switch (icsk->icsk_ca_state) {
2823 case TCP_CA_CWR:
2824 /* CWR is to be held something *above* high_seq
2825 * is ACKed for CWR bit to reach receiver. */
2826 if (tp->snd_una != tp->high_seq) {
2827 tcp_end_cwnd_reduction(sk);
2828 tcp_set_ca_state(sk, TCP_CA_Open);
2829 }
2830 break;
2831
2832 case TCP_CA_Recovery:
2833 if (tcp_is_reno(tp))
2834 tcp_reset_reno_sack(tp);
2835 if (tcp_try_undo_recovery(sk))
2836 return;
2837 tcp_end_cwnd_reduction(sk);
2838 break;
2839 }
2840 }
2841
2842 /* E. Process state. */
2843 switch (icsk->icsk_ca_state) {
2844 case TCP_CA_Recovery:
2845 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2846 if (tcp_is_reno(tp))
2847 tcp_add_reno_sack(sk, num_dupack);
2848 } else {
2849 if (tcp_try_undo_partial(sk, prior_snd_una))
2850 return;
2851 /* Partial ACK arrived. Force fast retransmit. */
2852 do_lost = tcp_is_reno(tp) ||
2853 tcp_force_fast_retransmit(sk);
2854 }
2855 if (tcp_try_undo_dsack(sk)) {
2856 tcp_try_keep_open(sk);
2857 return;
2858 }
2859 tcp_identify_packet_loss(sk, ack_flag);
2860 break;
2861 case TCP_CA_Loss:
2862 tcp_process_loss(sk, flag, num_dupack, rexmit);
2863 tcp_identify_packet_loss(sk, ack_flag);
2864 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2865 (*ack_flag & FLAG_LOST_RETRANS)))
2866 return;
2867 /* Change state if cwnd is undone or retransmits are lost */
2868 fallthrough;
2869 default:
2870 if (tcp_is_reno(tp)) {
2871 if (flag & FLAG_SND_UNA_ADVANCED)
2872 tcp_reset_reno_sack(tp);
2873 tcp_add_reno_sack(sk, num_dupack);
2874 }
2875
2876 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2877 tcp_try_undo_dsack(sk);
2878
2879 tcp_identify_packet_loss(sk, ack_flag);
2880 if (!tcp_time_to_recover(sk, flag)) {
2881 tcp_try_to_open(sk, flag);
2882 return;
2883 }
2884
2885 /* MTU probe failure: don't reduce cwnd */
2886 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2887 icsk->icsk_mtup.probe_size &&
2888 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2889 tcp_mtup_probe_failed(sk);
2890 /* Restores the reduction we did in tcp_mtup_probe() */
2891 tp->snd_cwnd++;
2892 tcp_simple_retransmit(sk);
2893 return;
2894 }
2895
2896 /* Otherwise enter Recovery state */
2897 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2898 fast_rexmit = 1;
2899 }
2900
2901 if (!tcp_is_rack(sk) && do_lost)
2902 tcp_update_scoreboard(sk, fast_rexmit);
2903 *rexmit = REXMIT_LOST;
2904 }
2905
2906 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2907 {
2908 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2909 struct tcp_sock *tp = tcp_sk(sk);
2910
2911 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2912 /* If the remote keeps returning delayed ACKs, eventually
2913 * the min filter would pick it up and overestimate the
2914 * prop. delay when it expires. Skip suspected delayed ACKs.
2915 */
2916 return;
2917 }
2918 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2919 rtt_us ? : jiffies_to_usecs(1));
2920 }
2921
2922 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2923 long seq_rtt_us, long sack_rtt_us,
2924 long ca_rtt_us, struct rate_sample *rs)
2925 {
2926 const struct tcp_sock *tp = tcp_sk(sk);
2927
2928 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2929 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2930 * Karn's algorithm forbids taking RTT if some retransmitted data
2931 * is acked (RFC6298).
2932 */
2933 if (seq_rtt_us < 0)
2934 seq_rtt_us = sack_rtt_us;
2935
2936 /* RTTM Rule: A TSecr value received in a segment is used to
2937 * update the averaged RTT measurement only if the segment
2938 * acknowledges some new data, i.e., only if it advances the
2939 * left edge of the send window.
2940 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2941 */
2942 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2943 flag & FLAG_ACKED) {
2944 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2945
2946 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2947 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2948 ca_rtt_us = seq_rtt_us;
2949 }
2950 }
2951 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2952 if (seq_rtt_us < 0)
2953 return false;
2954
2955 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2956 * always taken together with ACK, SACK, or TS-opts. Any negative
2957 * values will be skipped with the seq_rtt_us < 0 check above.
2958 */
2959 tcp_update_rtt_min(sk, ca_rtt_us, flag);
2960 tcp_rtt_estimator(sk, seq_rtt_us);
2961 tcp_set_rto(sk);
2962
2963 /* RFC6298: only reset backoff on valid RTT measurement. */
2964 inet_csk(sk)->icsk_backoff = 0;
2965 return true;
2966 }
2967
2968 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2969 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2970 {
2971 struct rate_sample rs;
2972 long rtt_us = -1L;
2973
2974 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2975 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2976
2977 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2978 }
2979
2980
2981 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2982 {
2983 const struct inet_connection_sock *icsk = inet_csk(sk);
2984
2985 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2986 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2987 }
2988
2989 /* Restart timer after forward progress on connection.
2990 * RFC2988 recommends to restart timer to now+rto.
2991 */
2992 void tcp_rearm_rto(struct sock *sk)
2993 {
2994 const struct inet_connection_sock *icsk = inet_csk(sk);
2995 struct tcp_sock *tp = tcp_sk(sk);
2996
2997 /* If the retrans timer is currently being used by Fast Open
2998 * for SYN-ACK retrans purpose, stay put.
2999 */
3000 if (rcu_access_pointer(tp->fastopen_rsk))
3001 return;
3002
3003 if (!tp->packets_out) {
3004 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3005 } else {
3006 u32 rto = inet_csk(sk)->icsk_rto;
3007 /* Offset the time elapsed after installing regular RTO */
3008 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3009 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3010 s64 delta_us = tcp_rto_delta_us(sk);
3011 /* delta_us may not be positive if the socket is locked
3012 * when the retrans timer fires and is rescheduled.
3013 */
3014 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3015 }
3016 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3017 TCP_RTO_MAX, tcp_rtx_queue_head(sk));
3018 }
3019 }
3020
3021 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3022 static void tcp_set_xmit_timer(struct sock *sk)
3023 {
3024 if (!tcp_schedule_loss_probe(sk, true))
3025 tcp_rearm_rto(sk);
3026 }
3027
3028 /* If we get here, the whole TSO packet has not been acked. */
3029 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3030 {
3031 struct tcp_sock *tp = tcp_sk(sk);
3032 u32 packets_acked;
3033
3034 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3035
3036 packets_acked = tcp_skb_pcount(skb);
3037 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3038 return 0;
3039 packets_acked -= tcp_skb_pcount(skb);
3040
3041 if (packets_acked) {
3042 BUG_ON(tcp_skb_pcount(skb) == 0);
3043 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3044 }
3045
3046 return packets_acked;
3047 }
3048
3049 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3050 u32 prior_snd_una)
3051 {
3052 const struct skb_shared_info *shinfo;
3053
3054 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3055 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3056 return;
3057
3058 shinfo = skb_shinfo(skb);
3059 if (!before(shinfo->tskey, prior_snd_una) &&
3060 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3061 tcp_skb_tsorted_save(skb) {
3062 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3063 } tcp_skb_tsorted_restore(skb);
3064 }
3065 }
3066
3067 /* Remove acknowledged frames from the retransmission queue. If our packet
3068 * is before the ack sequence we can discard it as it's confirmed to have
3069 * arrived at the other end.
3070 */
3071 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3072 u32 prior_snd_una,
3073 struct tcp_sacktag_state *sack)
3074 {
3075 const struct inet_connection_sock *icsk = inet_csk(sk);
3076 u64 first_ackt, last_ackt;
3077 struct tcp_sock *tp = tcp_sk(sk);
3078 u32 prior_sacked = tp->sacked_out;
3079 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3080 struct sk_buff *skb, *next;
3081 bool fully_acked = true;
3082 long sack_rtt_us = -1L;
3083 long seq_rtt_us = -1L;
3084 long ca_rtt_us = -1L;
3085 u32 pkts_acked = 0;
3086 u32 last_in_flight = 0;
3087 bool rtt_update;
3088 int flag = 0;
3089
3090 first_ackt = 0;
3091
3092 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3093 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3094 const u32 start_seq = scb->seq;
3095 u8 sacked = scb->sacked;
3096 u32 acked_pcount;
3097
3098 tcp_ack_tstamp(sk, skb, prior_snd_una);
3099
3100 /* Determine how many packets and what bytes were acked, tso and else */
3101 if (after(scb->end_seq, tp->snd_una)) {
3102 if (tcp_skb_pcount(skb) == 1 ||
3103 !after(tp->snd_una, scb->seq))
3104 break;
3105
3106 acked_pcount = tcp_tso_acked(sk, skb);
3107 if (!acked_pcount)
3108 break;
3109 fully_acked = false;
3110 } else {
3111 acked_pcount = tcp_skb_pcount(skb);
3112 }
3113
3114 if (unlikely(sacked & TCPCB_RETRANS)) {
3115 if (sacked & TCPCB_SACKED_RETRANS)
3116 tp->retrans_out -= acked_pcount;
3117 flag |= FLAG_RETRANS_DATA_ACKED;
3118 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3119 last_ackt = tcp_skb_timestamp_us(skb);
3120 WARN_ON_ONCE(last_ackt == 0);
3121 if (!first_ackt)
3122 first_ackt = last_ackt;
3123
3124 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3125 if (before(start_seq, reord))
3126 reord = start_seq;
3127 if (!after(scb->end_seq, tp->high_seq))
3128 flag |= FLAG_ORIG_SACK_ACKED;
3129 }
3130
3131 if (sacked & TCPCB_SACKED_ACKED) {
3132 tp->sacked_out -= acked_pcount;
3133 } else if (tcp_is_sack(tp)) {
3134 tp->delivered += acked_pcount;
3135 if (!tcp_skb_spurious_retrans(tp, skb))
3136 tcp_rack_advance(tp, sacked, scb->end_seq,
3137 tcp_skb_timestamp_us(skb));
3138 }
3139 if (sacked & TCPCB_LOST)
3140 tp->lost_out -= acked_pcount;
3141
3142 tp->packets_out -= acked_pcount;
3143 pkts_acked += acked_pcount;
3144 tcp_rate_skb_delivered(sk, skb, sack->rate);
3145
3146 /* Initial outgoing SYN's get put onto the write_queue
3147 * just like anything else we transmit. It is not
3148 * true data, and if we misinform our callers that
3149 * this ACK acks real data, we will erroneously exit
3150 * connection startup slow start one packet too
3151 * quickly. This is severely frowned upon behavior.
3152 */
3153 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3154 flag |= FLAG_DATA_ACKED;
3155 } else {
3156 flag |= FLAG_SYN_ACKED;
3157 tp->retrans_stamp = 0;
3158 }
3159
3160 if (!fully_acked)
3161 break;
3162
3163 next = skb_rb_next(skb);
3164 if (unlikely(skb == tp->retransmit_skb_hint))
3165 tp->retransmit_skb_hint = NULL;
3166 if (unlikely(skb == tp->lost_skb_hint))
3167 tp->lost_skb_hint = NULL;
3168 tcp_highest_sack_replace(sk, skb, next);
3169 tcp_rtx_queue_unlink_and_free(skb, sk);
3170 }
3171
3172 if (!skb)
3173 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3174
3175 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3176 tp->snd_up = tp->snd_una;
3177
3178 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3179 flag |= FLAG_SACK_RENEGING;
3180
3181 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3182 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3183 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3184
3185 if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3186 last_in_flight && !prior_sacked && fully_acked &&
3187 sack->rate->prior_delivered + 1 == tp->delivered &&
3188 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3189 /* Conservatively mark a delayed ACK. It's typically
3190 * from a lone runt packet over the round trip to
3191 * a receiver w/o out-of-order or CE events.
3192 */
3193 flag |= FLAG_ACK_MAYBE_DELAYED;
3194 }
3195 }
3196 if (sack->first_sackt) {
3197 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3198 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3199 }
3200 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3201 ca_rtt_us, sack->rate);
3202
3203 if (flag & FLAG_ACKED) {
3204 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3205 if (unlikely(icsk->icsk_mtup.probe_size &&
3206 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3207 tcp_mtup_probe_success(sk);
3208 }
3209
3210 if (tcp_is_reno(tp)) {
3211 tcp_remove_reno_sacks(sk, pkts_acked);
3212
3213 /* If any of the cumulatively ACKed segments was
3214 * retransmitted, non-SACK case cannot confirm that
3215 * progress was due to original transmission due to
3216 * lack of TCPCB_SACKED_ACKED bits even if some of
3217 * the packets may have been never retransmitted.
3218 */
3219 if (flag & FLAG_RETRANS_DATA_ACKED)
3220 flag &= ~FLAG_ORIG_SACK_ACKED;
3221 } else {
3222 int delta;
3223
3224 /* Non-retransmitted hole got filled? That's reordering */
3225 if (before(reord, prior_fack))
3226 tcp_check_sack_reordering(sk, reord, 0);
3227
3228 delta = prior_sacked - tp->sacked_out;
3229 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3230 }
3231 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3232 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3233 tcp_skb_timestamp_us(skb))) {
3234 /* Do not re-arm RTO if the sack RTT is measured from data sent
3235 * after when the head was last (re)transmitted. Otherwise the
3236 * timeout may continue to extend in loss recovery.
3237 */
3238 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3239 }
3240
3241 if (icsk->icsk_ca_ops->pkts_acked) {
3242 struct ack_sample sample = { .pkts_acked = pkts_acked,
3243 .rtt_us = sack->rate->rtt_us,
3244 .in_flight = last_in_flight };
3245
3246 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3247 }
3248
3249 #if FASTRETRANS_DEBUG > 0
3250 WARN_ON((int)tp->sacked_out < 0);
3251 WARN_ON((int)tp->lost_out < 0);
3252 WARN_ON((int)tp->retrans_out < 0);
3253 if (!tp->packets_out && tcp_is_sack(tp)) {
3254 icsk = inet_csk(sk);
3255 if (tp->lost_out) {
3256 pr_debug("Leak l=%u %d\n",
3257 tp->lost_out, icsk->icsk_ca_state);
3258 tp->lost_out = 0;
3259 }
3260 if (tp->sacked_out) {
3261 pr_debug("Leak s=%u %d\n",
3262 tp->sacked_out, icsk->icsk_ca_state);
3263 tp->sacked_out = 0;
3264 }
3265 if (tp->retrans_out) {
3266 pr_debug("Leak r=%u %d\n",
3267 tp->retrans_out, icsk->icsk_ca_state);
3268 tp->retrans_out = 0;
3269 }
3270 }
3271 #endif
3272 return flag;
3273 }
3274
3275 static void tcp_ack_probe(struct sock *sk)
3276 {
3277 struct inet_connection_sock *icsk = inet_csk(sk);
3278 struct sk_buff *head = tcp_send_head(sk);
3279 const struct tcp_sock *tp = tcp_sk(sk);
3280
3281 /* Was it a usable window open? */
3282 if (!head)
3283 return;
3284 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3285 icsk->icsk_backoff = 0;
3286 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3287 /* Socket must be waked up by subsequent tcp_data_snd_check().
3288 * This function is not for random using!
3289 */
3290 } else {
3291 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3292
3293 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3294 when, TCP_RTO_MAX, NULL);
3295 }
3296 }
3297
3298 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3299 {
3300 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3301 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3302 }
3303
3304 /* Decide wheather to run the increase function of congestion control. */
3305 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3306 {
3307 /* If reordering is high then always grow cwnd whenever data is
3308 * delivered regardless of its ordering. Otherwise stay conservative
3309 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3310 * new SACK or ECE mark may first advance cwnd here and later reduce
3311 * cwnd in tcp_fastretrans_alert() based on more states.
3312 */
3313 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3314 return flag & FLAG_FORWARD_PROGRESS;
3315
3316 return flag & FLAG_DATA_ACKED;
3317 }
3318
3319 /* The "ultimate" congestion control function that aims to replace the rigid
3320 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3321 * It's called toward the end of processing an ACK with precise rate
3322 * information. All transmission or retransmission are delayed afterwards.
3323 */
3324 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3325 int flag, const struct rate_sample *rs)
3326 {
3327 const struct inet_connection_sock *icsk = inet_csk(sk);
3328
3329 if (icsk->icsk_ca_ops->cong_control) {
3330 icsk->icsk_ca_ops->cong_control(sk, rs);
3331 return;
3332 }
3333
3334 if (tcp_in_cwnd_reduction(sk)) {
3335 /* Reduce cwnd if state mandates */
3336 tcp_cwnd_reduction(sk, acked_sacked, flag);
3337 } else if (tcp_may_raise_cwnd(sk, flag)) {
3338 /* Advance cwnd if state allows */
3339 tcp_cong_avoid(sk, ack, acked_sacked);
3340 }
3341 tcp_update_pacing_rate(sk);
3342 }
3343
3344 /* Check that window update is acceptable.
3345 * The function assumes that snd_una<=ack<=snd_next.
3346 */
3347 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3348 const u32 ack, const u32 ack_seq,
3349 const u32 nwin)
3350 {
3351 return after(ack, tp->snd_una) ||
3352 after(ack_seq, tp->snd_wl1) ||
3353 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3354 }
3355
3356 /* If we update tp->snd_una, also update tp->bytes_acked */
3357 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3358 {
3359 u32 delta = ack - tp->snd_una;
3360
3361 sock_owned_by_me((struct sock *)tp);
3362 tp->bytes_acked += delta;
3363 tp->snd_una = ack;
3364 }
3365
3366 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3367 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3368 {
3369 u32 delta = seq - tp->rcv_nxt;
3370
3371 sock_owned_by_me((struct sock *)tp);
3372 tp->bytes_received += delta;
3373 WRITE_ONCE(tp->rcv_nxt, seq);
3374 }
3375
3376 /* Update our send window.
3377 *
3378 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3379 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3380 */
3381 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3382 u32 ack_seq)
3383 {
3384 struct tcp_sock *tp = tcp_sk(sk);
3385 int flag = 0;
3386 u32 nwin = ntohs(tcp_hdr(skb)->window);
3387
3388 if (likely(!tcp_hdr(skb)->syn))
3389 nwin <<= tp->rx_opt.snd_wscale;
3390
3391 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3392 flag |= FLAG_WIN_UPDATE;
3393 tcp_update_wl(tp, ack_seq);
3394
3395 if (tp->snd_wnd != nwin) {
3396 tp->snd_wnd = nwin;
3397
3398 /* Note, it is the only place, where
3399 * fast path is recovered for sending TCP.
3400 */
3401 tp->pred_flags = 0;
3402 tcp_fast_path_check(sk);
3403
3404 if (!tcp_write_queue_empty(sk))
3405 tcp_slow_start_after_idle_check(sk);
3406
3407 if (nwin > tp->max_window) {
3408 tp->max_window = nwin;
3409 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3410 }
3411 }
3412 }
3413
3414 tcp_snd_una_update(tp, ack);
3415
3416 return flag;
3417 }
3418
3419 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3420 u32 *last_oow_ack_time)
3421 {
3422 if (*last_oow_ack_time) {
3423 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3424
3425 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3426 NET_INC_STATS(net, mib_idx);
3427 return true; /* rate-limited: don't send yet! */
3428 }
3429 }
3430
3431 *last_oow_ack_time = tcp_jiffies32;
3432
3433 return false; /* not rate-limited: go ahead, send dupack now! */
3434 }
3435
3436 /* Return true if we're currently rate-limiting out-of-window ACKs and
3437 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3438 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3439 * attacks that send repeated SYNs or ACKs for the same connection. To
3440 * do this, we do not send a duplicate SYNACK or ACK if the remote
3441 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3442 */
3443 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3444 int mib_idx, u32 *last_oow_ack_time)
3445 {
3446 /* Data packets without SYNs are not likely part of an ACK loop. */
3447 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3448 !tcp_hdr(skb)->syn)
3449 return false;
3450
3451 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3452 }
3453
3454 /* RFC 5961 7 [ACK Throttling] */
3455 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3456 {
3457 /* unprotected vars, we dont care of overwrites */
3458 static u32 challenge_timestamp;
3459 static unsigned int challenge_count;
3460 struct tcp_sock *tp = tcp_sk(sk);
3461 struct net *net = sock_net(sk);
3462 u32 count, now;
3463
3464 /* First check our per-socket dupack rate limit. */
3465 if (__tcp_oow_rate_limited(net,
3466 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3467 &tp->last_oow_ack_time))
3468 return;
3469
3470 /* Then check host-wide RFC 5961 rate limit. */
3471 now = jiffies / HZ;
3472 if (now != challenge_timestamp) {
3473 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3474 u32 half = (ack_limit + 1) >> 1;
3475
3476 challenge_timestamp = now;
3477 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3478 }
3479 count = READ_ONCE(challenge_count);
3480 if (count > 0) {
3481 WRITE_ONCE(challenge_count, count - 1);
3482 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3483 tcp_send_ack(sk);
3484 }
3485 }
3486
3487 static void tcp_store_ts_recent(struct tcp_sock *tp)
3488 {
3489 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3490 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3491 }
3492
3493 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3494 {
3495 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3496 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3497 * extra check below makes sure this can only happen
3498 * for pure ACK frames. -DaveM
3499 *
3500 * Not only, also it occurs for expired timestamps.
3501 */
3502
3503 if (tcp_paws_check(&tp->rx_opt, 0))
3504 tcp_store_ts_recent(tp);
3505 }
3506 }
3507
3508 /* This routine deals with acks during a TLP episode.
3509 * We mark the end of a TLP episode on receiving TLP dupack or when
3510 * ack is after tlp_high_seq.
3511 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3512 */
3513 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3514 {
3515 struct tcp_sock *tp = tcp_sk(sk);
3516
3517 if (before(ack, tp->tlp_high_seq))
3518 return;
3519
3520 if (flag & FLAG_DSACKING_ACK) {
3521 /* This DSACK means original and TLP probe arrived; no loss */
3522 tp->tlp_high_seq = 0;
3523 } else if (after(ack, tp->tlp_high_seq)) {
3524 /* ACK advances: there was a loss, so reduce cwnd. Reset
3525 * tlp_high_seq in tcp_init_cwnd_reduction()
3526 */
3527 tcp_init_cwnd_reduction(sk);
3528 tcp_set_ca_state(sk, TCP_CA_CWR);
3529 tcp_end_cwnd_reduction(sk);
3530 tcp_try_keep_open(sk);
3531 NET_INC_STATS(sock_net(sk),
3532 LINUX_MIB_TCPLOSSPROBERECOVERY);
3533 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3534 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3535 /* Pure dupack: original and TLP probe arrived; no loss */
3536 tp->tlp_high_seq = 0;
3537 }
3538 }
3539
3540 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3541 {
3542 const struct inet_connection_sock *icsk = inet_csk(sk);
3543
3544 if (icsk->icsk_ca_ops->in_ack_event)
3545 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3546 }
3547
3548 /* Congestion control has updated the cwnd already. So if we're in
3549 * loss recovery then now we do any new sends (for FRTO) or
3550 * retransmits (for CA_Loss or CA_recovery) that make sense.
3551 */
3552 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3553 {
3554 struct tcp_sock *tp = tcp_sk(sk);
3555
3556 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3557 return;
3558
3559 if (unlikely(rexmit == REXMIT_NEW)) {
3560 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3561 TCP_NAGLE_OFF);
3562 if (after(tp->snd_nxt, tp->high_seq))
3563 return;
3564 tp->frto = 0;
3565 }
3566 tcp_xmit_retransmit_queue(sk);
3567 }
3568
3569 /* Returns the number of packets newly acked or sacked by the current ACK */
3570 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3571 {
3572 const struct net *net = sock_net(sk);
3573 struct tcp_sock *tp = tcp_sk(sk);
3574 u32 delivered;
3575
3576 delivered = tp->delivered - prior_delivered;
3577 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3578 if (flag & FLAG_ECE) {
3579 tp->delivered_ce += delivered;
3580 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3581 }
3582 return delivered;
3583 }
3584
3585 /* This routine deals with incoming acks, but not outgoing ones. */
3586 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3587 {
3588 struct inet_connection_sock *icsk = inet_csk(sk);
3589 struct tcp_sock *tp = tcp_sk(sk);
3590 struct tcp_sacktag_state sack_state;
3591 struct rate_sample rs = { .prior_delivered = 0 };
3592 u32 prior_snd_una = tp->snd_una;
3593 bool is_sack_reneg = tp->is_sack_reneg;
3594 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3595 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3596 int num_dupack = 0;
3597 int prior_packets = tp->packets_out;
3598 u32 delivered = tp->delivered;
3599 u32 lost = tp->lost;
3600 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3601 u32 prior_fack;
3602
3603 sack_state.first_sackt = 0;
3604 sack_state.rate = &rs;
3605
3606 /* We very likely will need to access rtx queue. */
3607 prefetch(sk->tcp_rtx_queue.rb_node);
3608
3609 /* If the ack is older than previous acks
3610 * then we can probably ignore it.
3611 */
3612 if (before(ack, prior_snd_una)) {
3613 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3614 if (before(ack, prior_snd_una - tp->max_window)) {
3615 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3616 tcp_send_challenge_ack(sk, skb);
3617 return -1;
3618 }
3619 goto old_ack;
3620 }
3621
3622 /* If the ack includes data we haven't sent yet, discard
3623 * this segment (RFC793 Section 3.9).
3624 */
3625 if (after(ack, tp->snd_nxt))
3626 return -1;
3627
3628 if (after(ack, prior_snd_una)) {
3629 flag |= FLAG_SND_UNA_ADVANCED;
3630 icsk->icsk_retransmits = 0;
3631
3632 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3633 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3634 if (icsk->icsk_clean_acked)
3635 icsk->icsk_clean_acked(sk, ack);
3636 #endif
3637 }
3638
3639 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3640 rs.prior_in_flight = tcp_packets_in_flight(tp);
3641
3642 /* ts_recent update must be made after we are sure that the packet
3643 * is in window.
3644 */
3645 if (flag & FLAG_UPDATE_TS_RECENT)
3646 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3647
3648 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3649 FLAG_SND_UNA_ADVANCED) {
3650 /* Window is constant, pure forward advance.
3651 * No more checks are required.
3652 * Note, we use the fact that SND.UNA>=SND.WL2.
3653 */
3654 tcp_update_wl(tp, ack_seq);
3655 tcp_snd_una_update(tp, ack);
3656 flag |= FLAG_WIN_UPDATE;
3657
3658 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3659
3660 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3661 } else {
3662 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3663
3664 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3665 flag |= FLAG_DATA;
3666 else
3667 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3668
3669 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3670
3671 if (TCP_SKB_CB(skb)->sacked)
3672 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3673 &sack_state);
3674
3675 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3676 flag |= FLAG_ECE;
3677 ack_ev_flags |= CA_ACK_ECE;
3678 }
3679
3680 if (flag & FLAG_WIN_UPDATE)
3681 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3682
3683 tcp_in_ack_event(sk, ack_ev_flags);
3684 }
3685
3686 /* We passed data and got it acked, remove any soft error
3687 * log. Something worked...
3688 */
3689 sk->sk_err_soft = 0;
3690 icsk->icsk_probes_out = 0;
3691 tp->rcv_tstamp = tcp_jiffies32;
3692 if (!prior_packets)
3693 goto no_queue;
3694
3695 /* See if we can take anything off of the retransmit queue. */
3696 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3697
3698 tcp_rack_update_reo_wnd(sk, &rs);
3699
3700 if (tp->tlp_high_seq)
3701 tcp_process_tlp_ack(sk, ack, flag);
3702 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3703 if (flag & FLAG_SET_XMIT_TIMER)
3704 tcp_set_xmit_timer(sk);
3705
3706 if (tcp_ack_is_dubious(sk, flag)) {
3707 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3708 num_dupack = 1;
3709 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3710 if (!(flag & FLAG_DATA))
3711 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3712 }
3713 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3714 &rexmit);
3715 }
3716
3717 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3718 sk_dst_confirm(sk);
3719
3720 delivered = tcp_newly_delivered(sk, delivered, flag);
3721 lost = tp->lost - lost; /* freshly marked lost */
3722 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3723 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3724 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3725 tcp_xmit_recovery(sk, rexmit);
3726 return 1;
3727
3728 no_queue:
3729 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3730 if (flag & FLAG_DSACKING_ACK) {
3731 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3732 &rexmit);
3733 tcp_newly_delivered(sk, delivered, flag);
3734 }
3735 /* If this ack opens up a zero window, clear backoff. It was
3736 * being used to time the probes, and is probably far higher than
3737 * it needs to be for normal retransmission.
3738 */
3739 tcp_ack_probe(sk);
3740
3741 if (tp->tlp_high_seq)
3742 tcp_process_tlp_ack(sk, ack, flag);
3743 return 1;
3744
3745 old_ack:
3746 /* If data was SACKed, tag it and see if we should send more data.
3747 * If data was DSACKed, see if we can undo a cwnd reduction.
3748 */
3749 if (TCP_SKB_CB(skb)->sacked) {
3750 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3751 &sack_state);
3752 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3753 &rexmit);
3754 tcp_newly_delivered(sk, delivered, flag);
3755 tcp_xmit_recovery(sk, rexmit);
3756 }
3757
3758 return 0;
3759 }
3760
3761 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3762 bool syn, struct tcp_fastopen_cookie *foc,
3763 bool exp_opt)
3764 {
3765 /* Valid only in SYN or SYN-ACK with an even length. */
3766 if (!foc || !syn || len < 0 || (len & 1))
3767 return;
3768
3769 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3770 len <= TCP_FASTOPEN_COOKIE_MAX)
3771 memcpy(foc->val, cookie, len);
3772 else if (len != 0)
3773 len = -1;
3774 foc->len = len;
3775 foc->exp = exp_opt;
3776 }
3777
3778 static void smc_parse_options(const struct tcphdr *th,
3779 struct tcp_options_received *opt_rx,
3780 const unsigned char *ptr,
3781 int opsize)
3782 {
3783 #if IS_ENABLED(CONFIG_SMC)
3784 if (static_branch_unlikely(&tcp_have_smc)) {
3785 if (th->syn && !(opsize & 1) &&
3786 opsize >= TCPOLEN_EXP_SMC_BASE &&
3787 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3788 opt_rx->smc_ok = 1;
3789 }
3790 #endif
3791 }
3792
3793 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3794 * value on success.
3795 */
3796 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3797 {
3798 const unsigned char *ptr = (const unsigned char *)(th + 1);
3799 int length = (th->doff * 4) - sizeof(struct tcphdr);
3800 u16 mss = 0;
3801
3802 while (length > 0) {
3803 int opcode = *ptr++;
3804 int opsize;
3805
3806 switch (opcode) {
3807 case TCPOPT_EOL:
3808 return mss;
3809 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3810 length--;
3811 continue;
3812 default:
3813 if (length < 2)
3814 return mss;
3815 opsize = *ptr++;
3816 if (opsize < 2) /* "silly options" */
3817 return mss;
3818 if (opsize > length)
3819 return mss; /* fail on partial options */
3820 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3821 u16 in_mss = get_unaligned_be16(ptr);
3822
3823 if (in_mss) {
3824 if (user_mss && user_mss < in_mss)
3825 in_mss = user_mss;
3826 mss = in_mss;
3827 }
3828 }
3829 ptr += opsize - 2;
3830 length -= opsize;
3831 }
3832 }
3833 return mss;
3834 }
3835
3836 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3837 * But, this can also be called on packets in the established flow when
3838 * the fast version below fails.
3839 */
3840 void tcp_parse_options(const struct net *net,
3841 const struct sk_buff *skb,
3842 struct tcp_options_received *opt_rx, int estab,
3843 struct tcp_fastopen_cookie *foc)
3844 {
3845 const unsigned char *ptr;
3846 const struct tcphdr *th = tcp_hdr(skb);
3847 int length = (th->doff * 4) - sizeof(struct tcphdr);
3848
3849 ptr = (const unsigned char *)(th + 1);
3850 opt_rx->saw_tstamp = 0;
3851
3852 while (length > 0) {
3853 int opcode = *ptr++;
3854 int opsize;
3855
3856 switch (opcode) {
3857 case TCPOPT_EOL:
3858 return;
3859 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3860 length--;
3861 continue;
3862 default:
3863 if (length < 2)
3864 return;
3865 opsize = *ptr++;
3866 if (opsize < 2) /* "silly options" */
3867 return;
3868 if (opsize > length)
3869 return; /* don't parse partial options */
3870 switch (opcode) {
3871 case TCPOPT_MSS:
3872 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3873 u16 in_mss = get_unaligned_be16(ptr);
3874 if (in_mss) {
3875 if (opt_rx->user_mss &&
3876 opt_rx->user_mss < in_mss)
3877 in_mss = opt_rx->user_mss;
3878 opt_rx->mss_clamp = in_mss;
3879 }
3880 }
3881 break;
3882 case TCPOPT_WINDOW:
3883 if (opsize == TCPOLEN_WINDOW && th->syn &&
3884 !estab && net->ipv4.sysctl_tcp_window_scaling) {
3885 __u8 snd_wscale = *(__u8 *)ptr;
3886 opt_rx->wscale_ok = 1;
3887 if (snd_wscale > TCP_MAX_WSCALE) {
3888 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3889 __func__,
3890 snd_wscale,
3891 TCP_MAX_WSCALE);
3892 snd_wscale = TCP_MAX_WSCALE;
3893 }
3894 opt_rx->snd_wscale = snd_wscale;
3895 }
3896 break;
3897 case TCPOPT_TIMESTAMP:
3898 if ((opsize == TCPOLEN_TIMESTAMP) &&
3899 ((estab && opt_rx->tstamp_ok) ||
3900 (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3901 opt_rx->saw_tstamp = 1;
3902 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3903 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3904 }
3905 break;
3906 case TCPOPT_SACK_PERM:
3907 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3908 !estab && net->ipv4.sysctl_tcp_sack) {
3909 opt_rx->sack_ok = TCP_SACK_SEEN;
3910 tcp_sack_reset(opt_rx);
3911 }
3912 break;
3913
3914 case TCPOPT_SACK:
3915 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3916 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3917 opt_rx->sack_ok) {
3918 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3919 }
3920 break;
3921 #ifdef CONFIG_TCP_MD5SIG
3922 case TCPOPT_MD5SIG:
3923 /*
3924 * The MD5 Hash has already been
3925 * checked (see tcp_v{4,6}_do_rcv()).
3926 */
3927 break;
3928 #endif
3929 case TCPOPT_MPTCP:
3930 mptcp_parse_option(skb, ptr, opsize, opt_rx);
3931 break;
3932
3933 case TCPOPT_FASTOPEN:
3934 tcp_parse_fastopen_option(
3935 opsize - TCPOLEN_FASTOPEN_BASE,
3936 ptr, th->syn, foc, false);
3937 break;
3938
3939 case TCPOPT_EXP:
3940 /* Fast Open option shares code 254 using a
3941 * 16 bits magic number.
3942 */
3943 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3944 get_unaligned_be16(ptr) ==
3945 TCPOPT_FASTOPEN_MAGIC)
3946 tcp_parse_fastopen_option(opsize -
3947 TCPOLEN_EXP_FASTOPEN_BASE,
3948 ptr + 2, th->syn, foc, true);
3949 else
3950 smc_parse_options(th, opt_rx, ptr,
3951 opsize);
3952 break;
3953
3954 }
3955 ptr += opsize-2;
3956 length -= opsize;
3957 }
3958 }
3959 }
3960 EXPORT_SYMBOL(tcp_parse_options);
3961
3962 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3963 {
3964 const __be32 *ptr = (const __be32 *)(th + 1);
3965
3966 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3967 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3968 tp->rx_opt.saw_tstamp = 1;
3969 ++ptr;
3970 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3971 ++ptr;
3972 if (*ptr)
3973 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3974 else
3975 tp->rx_opt.rcv_tsecr = 0;
3976 return true;
3977 }
3978 return false;
3979 }
3980
3981 /* Fast parse options. This hopes to only see timestamps.
3982 * If it is wrong it falls back on tcp_parse_options().
3983 */
3984 static bool tcp_fast_parse_options(const struct net *net,
3985 const struct sk_buff *skb,
3986 const struct tcphdr *th, struct tcp_sock *tp)
3987 {
3988 /* In the spirit of fast parsing, compare doff directly to constant
3989 * values. Because equality is used, short doff can be ignored here.
3990 */
3991 if (th->doff == (sizeof(*th) / 4)) {
3992 tp->rx_opt.saw_tstamp = 0;
3993 return false;
3994 } else if (tp->rx_opt.tstamp_ok &&
3995 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3996 if (tcp_parse_aligned_timestamp(tp, th))
3997 return true;
3998 }
3999
4000 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4001 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4002 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4003
4004 return true;
4005 }
4006
4007 #ifdef CONFIG_TCP_MD5SIG
4008 /*
4009 * Parse MD5 Signature option
4010 */
4011 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4012 {
4013 int length = (th->doff << 2) - sizeof(*th);
4014 const u8 *ptr = (const u8 *)(th + 1);
4015
4016 /* If not enough data remaining, we can short cut */
4017 while (length >= TCPOLEN_MD5SIG) {
4018 int opcode = *ptr++;
4019 int opsize;
4020
4021 switch (opcode) {
4022 case TCPOPT_EOL:
4023 return NULL;
4024 case TCPOPT_NOP:
4025 length--;
4026 continue;
4027 default:
4028 opsize = *ptr++;
4029 if (opsize < 2 || opsize > length)
4030 return NULL;
4031 if (opcode == TCPOPT_MD5SIG)
4032 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4033 }
4034 ptr += opsize - 2;
4035 length -= opsize;
4036 }
4037 return NULL;
4038 }
4039 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4040 #endif
4041
4042 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4043 *
4044 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4045 * it can pass through stack. So, the following predicate verifies that
4046 * this segment is not used for anything but congestion avoidance or
4047 * fast retransmit. Moreover, we even are able to eliminate most of such
4048 * second order effects, if we apply some small "replay" window (~RTO)
4049 * to timestamp space.
4050 *
4051 * All these measures still do not guarantee that we reject wrapped ACKs
4052 * on networks with high bandwidth, when sequence space is recycled fastly,
4053 * but it guarantees that such events will be very rare and do not affect
4054 * connection seriously. This doesn't look nice, but alas, PAWS is really
4055 * buggy extension.
4056 *
4057 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4058 * states that events when retransmit arrives after original data are rare.
4059 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4060 * the biggest problem on large power networks even with minor reordering.
4061 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4062 * up to bandwidth of 18Gigabit/sec. 8) ]
4063 */
4064
4065 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4066 {
4067 const struct tcp_sock *tp = tcp_sk(sk);
4068 const struct tcphdr *th = tcp_hdr(skb);
4069 u32 seq = TCP_SKB_CB(skb)->seq;
4070 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4071
4072 return (/* 1. Pure ACK with correct sequence number. */
4073 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4074
4075 /* 2. ... and duplicate ACK. */
4076 ack == tp->snd_una &&
4077
4078 /* 3. ... and does not update window. */
4079 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4080
4081 /* 4. ... and sits in replay window. */
4082 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4083 }
4084
4085 static inline bool tcp_paws_discard(const struct sock *sk,
4086 const struct sk_buff *skb)
4087 {
4088 const struct tcp_sock *tp = tcp_sk(sk);
4089
4090 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4091 !tcp_disordered_ack(sk, skb);
4092 }
4093
4094 /* Check segment sequence number for validity.
4095 *
4096 * Segment controls are considered valid, if the segment
4097 * fits to the window after truncation to the window. Acceptability
4098 * of data (and SYN, FIN, of course) is checked separately.
4099 * See tcp_data_queue(), for example.
4100 *
4101 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4102 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4103 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4104 * (borrowed from freebsd)
4105 */
4106
4107 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4108 {
4109 return !before(end_seq, tp->rcv_wup) &&
4110 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4111 }
4112
4113 /* When we get a reset we do this. */
4114 void tcp_reset(struct sock *sk)
4115 {
4116 trace_tcp_receive_reset(sk);
4117
4118 /* We want the right error as BSD sees it (and indeed as we do). */
4119 switch (sk->sk_state) {
4120 case TCP_SYN_SENT:
4121 sk->sk_err = ECONNREFUSED;
4122 break;
4123 case TCP_CLOSE_WAIT:
4124 sk->sk_err = EPIPE;
4125 break;
4126 case TCP_CLOSE:
4127 return;
4128 default:
4129 sk->sk_err = ECONNRESET;
4130 }
4131 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4132 smp_wmb();
4133
4134 tcp_write_queue_purge(sk);
4135 tcp_done(sk);
4136
4137 if (!sock_flag(sk, SOCK_DEAD))
4138 sk->sk_error_report(sk);
4139 }
4140
4141 /*
4142 * Process the FIN bit. This now behaves as it is supposed to work
4143 * and the FIN takes effect when it is validly part of sequence
4144 * space. Not before when we get holes.
4145 *
4146 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4147 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4148 * TIME-WAIT)
4149 *
4150 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4151 * close and we go into CLOSING (and later onto TIME-WAIT)
4152 *
4153 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4154 */
4155 void tcp_fin(struct sock *sk)
4156 {
4157 struct tcp_sock *tp = tcp_sk(sk);
4158
4159 inet_csk_schedule_ack(sk);
4160
4161 sk->sk_shutdown |= RCV_SHUTDOWN;
4162 sock_set_flag(sk, SOCK_DONE);
4163
4164 switch (sk->sk_state) {
4165 case TCP_SYN_RECV:
4166 case TCP_ESTABLISHED:
4167 /* Move to CLOSE_WAIT */
4168 tcp_set_state(sk, TCP_CLOSE_WAIT);
4169 inet_csk_enter_pingpong_mode(sk);
4170 break;
4171
4172 case TCP_CLOSE_WAIT:
4173 case TCP_CLOSING:
4174 /* Received a retransmission of the FIN, do
4175 * nothing.
4176 */
4177 break;
4178 case TCP_LAST_ACK:
4179 /* RFC793: Remain in the LAST-ACK state. */
4180 break;
4181
4182 case TCP_FIN_WAIT1:
4183 /* This case occurs when a simultaneous close
4184 * happens, we must ack the received FIN and
4185 * enter the CLOSING state.
4186 */
4187 tcp_send_ack(sk);
4188 tcp_set_state(sk, TCP_CLOSING);
4189 break;
4190 case TCP_FIN_WAIT2:
4191 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4192 tcp_send_ack(sk);
4193 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4194 break;
4195 default:
4196 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4197 * cases we should never reach this piece of code.
4198 */
4199 pr_err("%s: Impossible, sk->sk_state=%d\n",
4200 __func__, sk->sk_state);
4201 break;
4202 }
4203
4204 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4205 * Probably, we should reset in this case. For now drop them.
4206 */
4207 skb_rbtree_purge(&tp->out_of_order_queue);
4208 if (tcp_is_sack(tp))
4209 tcp_sack_reset(&tp->rx_opt);
4210 sk_mem_reclaim(sk);
4211
4212 if (!sock_flag(sk, SOCK_DEAD)) {
4213 sk->sk_state_change(sk);
4214
4215 /* Do not send POLL_HUP for half duplex close. */
4216 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4217 sk->sk_state == TCP_CLOSE)
4218 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4219 else
4220 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4221 }
4222 }
4223
4224 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4225 u32 end_seq)
4226 {
4227 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4228 if (before(seq, sp->start_seq))
4229 sp->start_seq = seq;
4230 if (after(end_seq, sp->end_seq))
4231 sp->end_seq = end_seq;
4232 return true;
4233 }
4234 return false;
4235 }
4236
4237 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4238 {
4239 struct tcp_sock *tp = tcp_sk(sk);
4240
4241 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4242 int mib_idx;
4243
4244 if (before(seq, tp->rcv_nxt))
4245 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4246 else
4247 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4248
4249 NET_INC_STATS(sock_net(sk), mib_idx);
4250
4251 tp->rx_opt.dsack = 1;
4252 tp->duplicate_sack[0].start_seq = seq;
4253 tp->duplicate_sack[0].end_seq = end_seq;
4254 }
4255 }
4256
4257 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4258 {
4259 struct tcp_sock *tp = tcp_sk(sk);
4260
4261 if (!tp->rx_opt.dsack)
4262 tcp_dsack_set(sk, seq, end_seq);
4263 else
4264 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4265 }
4266
4267 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4268 {
4269 /* When the ACK path fails or drops most ACKs, the sender would
4270 * timeout and spuriously retransmit the same segment repeatedly.
4271 * The receiver remembers and reflects via DSACKs. Leverage the
4272 * DSACK state and change the txhash to re-route speculatively.
4273 */
4274 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) {
4275 sk_rethink_txhash(sk);
4276 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4277 }
4278 }
4279
4280 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4281 {
4282 struct tcp_sock *tp = tcp_sk(sk);
4283
4284 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4285 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4286 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4287 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4288
4289 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4290 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4291
4292 tcp_rcv_spurious_retrans(sk, skb);
4293 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4294 end_seq = tp->rcv_nxt;
4295 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4296 }
4297 }
4298
4299 tcp_send_ack(sk);
4300 }
4301
4302 /* These routines update the SACK block as out-of-order packets arrive or
4303 * in-order packets close up the sequence space.
4304 */
4305 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4306 {
4307 int this_sack;
4308 struct tcp_sack_block *sp = &tp->selective_acks[0];
4309 struct tcp_sack_block *swalk = sp + 1;
4310
4311 /* See if the recent change to the first SACK eats into
4312 * or hits the sequence space of other SACK blocks, if so coalesce.
4313 */
4314 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4315 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4316 int i;
4317
4318 /* Zap SWALK, by moving every further SACK up by one slot.
4319 * Decrease num_sacks.
4320 */
4321 tp->rx_opt.num_sacks--;
4322 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4323 sp[i] = sp[i + 1];
4324 continue;
4325 }
4326 this_sack++, swalk++;
4327 }
4328 }
4329
4330 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4331 {
4332 struct tcp_sock *tp = tcp_sk(sk);
4333 struct tcp_sack_block *sp = &tp->selective_acks[0];
4334 int cur_sacks = tp->rx_opt.num_sacks;
4335 int this_sack;
4336
4337 if (!cur_sacks)
4338 goto new_sack;
4339
4340 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4341 if (tcp_sack_extend(sp, seq, end_seq)) {
4342 /* Rotate this_sack to the first one. */
4343 for (; this_sack > 0; this_sack--, sp--)
4344 swap(*sp, *(sp - 1));
4345 if (cur_sacks > 1)
4346 tcp_sack_maybe_coalesce(tp);
4347 return;
4348 }
4349 }
4350
4351 /* Could not find an adjacent existing SACK, build a new one,
4352 * put it at the front, and shift everyone else down. We
4353 * always know there is at least one SACK present already here.
4354 *
4355 * If the sack array is full, forget about the last one.
4356 */
4357 if (this_sack >= TCP_NUM_SACKS) {
4358 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4359 tcp_send_ack(sk);
4360 this_sack--;
4361 tp->rx_opt.num_sacks--;
4362 sp--;
4363 }
4364 for (; this_sack > 0; this_sack--, sp--)
4365 *sp = *(sp - 1);
4366
4367 new_sack:
4368 /* Build the new head SACK, and we're done. */
4369 sp->start_seq = seq;
4370 sp->end_seq = end_seq;
4371 tp->rx_opt.num_sacks++;
4372 }
4373
4374 /* RCV.NXT advances, some SACKs should be eaten. */
4375
4376 static void tcp_sack_remove(struct tcp_sock *tp)
4377 {
4378 struct tcp_sack_block *sp = &tp->selective_acks[0];
4379 int num_sacks = tp->rx_opt.num_sacks;
4380 int this_sack;
4381
4382 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4383 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4384 tp->rx_opt.num_sacks = 0;
4385 return;
4386 }
4387
4388 for (this_sack = 0; this_sack < num_sacks;) {
4389 /* Check if the start of the sack is covered by RCV.NXT. */
4390 if (!before(tp->rcv_nxt, sp->start_seq)) {
4391 int i;
4392
4393 /* RCV.NXT must cover all the block! */
4394 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4395
4396 /* Zap this SACK, by moving forward any other SACKS. */
4397 for (i = this_sack+1; i < num_sacks; i++)
4398 tp->selective_acks[i-1] = tp->selective_acks[i];
4399 num_sacks--;
4400 continue;
4401 }
4402 this_sack++;
4403 sp++;
4404 }
4405 tp->rx_opt.num_sacks = num_sacks;
4406 }
4407
4408 /**
4409 * tcp_try_coalesce - try to merge skb to prior one
4410 * @sk: socket
4411 * @dest: destination queue
4412 * @to: prior buffer
4413 * @from: buffer to add in queue
4414 * @fragstolen: pointer to boolean
4415 *
4416 * Before queueing skb @from after @to, try to merge them
4417 * to reduce overall memory use and queue lengths, if cost is small.
4418 * Packets in ofo or receive queues can stay a long time.
4419 * Better try to coalesce them right now to avoid future collapses.
4420 * Returns true if caller should free @from instead of queueing it
4421 */
4422 static bool tcp_try_coalesce(struct sock *sk,
4423 struct sk_buff *to,
4424 struct sk_buff *from,
4425 bool *fragstolen)
4426 {
4427 int delta;
4428
4429 *fragstolen = false;
4430
4431 /* Its possible this segment overlaps with prior segment in queue */
4432 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4433 return false;
4434
4435 if (!mptcp_skb_can_collapse(to, from))
4436 return false;
4437
4438 #ifdef CONFIG_TLS_DEVICE
4439 if (from->decrypted != to->decrypted)
4440 return false;
4441 #endif
4442
4443 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4444 return false;
4445
4446 atomic_add(delta, &sk->sk_rmem_alloc);
4447 sk_mem_charge(sk, delta);
4448 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4449 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4450 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4451 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4452
4453 if (TCP_SKB_CB(from)->has_rxtstamp) {
4454 TCP_SKB_CB(to)->has_rxtstamp = true;
4455 to->tstamp = from->tstamp;
4456 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4457 }
4458
4459 return true;
4460 }
4461
4462 static bool tcp_ooo_try_coalesce(struct sock *sk,
4463 struct sk_buff *to,
4464 struct sk_buff *from,
4465 bool *fragstolen)
4466 {
4467 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4468
4469 /* In case tcp_drop() is called later, update to->gso_segs */
4470 if (res) {
4471 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4472 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4473
4474 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4475 }
4476 return res;
4477 }
4478
4479 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4480 {
4481 sk_drops_add(sk, skb);
4482 __kfree_skb(skb);
4483 }
4484
4485 /* This one checks to see if we can put data from the
4486 * out_of_order queue into the receive_queue.
4487 */
4488 static void tcp_ofo_queue(struct sock *sk)
4489 {
4490 struct tcp_sock *tp = tcp_sk(sk);
4491 __u32 dsack_high = tp->rcv_nxt;
4492 bool fin, fragstolen, eaten;
4493 struct sk_buff *skb, *tail;
4494 struct rb_node *p;
4495
4496 p = rb_first(&tp->out_of_order_queue);
4497 while (p) {
4498 skb = rb_to_skb(p);
4499 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4500 break;
4501
4502 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4503 __u32 dsack = dsack_high;
4504 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4505 dsack_high = TCP_SKB_CB(skb)->end_seq;
4506 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4507 }
4508 p = rb_next(p);
4509 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4510
4511 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4512 tcp_drop(sk, skb);
4513 continue;
4514 }
4515
4516 tail = skb_peek_tail(&sk->sk_receive_queue);
4517 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4518 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4519 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4520 if (!eaten)
4521 __skb_queue_tail(&sk->sk_receive_queue, skb);
4522 else
4523 kfree_skb_partial(skb, fragstolen);
4524
4525 if (unlikely(fin)) {
4526 tcp_fin(sk);
4527 /* tcp_fin() purges tp->out_of_order_queue,
4528 * so we must end this loop right now.
4529 */
4530 break;
4531 }
4532 }
4533 }
4534
4535 static bool tcp_prune_ofo_queue(struct sock *sk);
4536 static int tcp_prune_queue(struct sock *sk);
4537
4538 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4539 unsigned int size)
4540 {
4541 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4542 !sk_rmem_schedule(sk, skb, size)) {
4543
4544 if (tcp_prune_queue(sk) < 0)
4545 return -1;
4546
4547 while (!sk_rmem_schedule(sk, skb, size)) {
4548 if (!tcp_prune_ofo_queue(sk))
4549 return -1;
4550 }
4551 }
4552 return 0;
4553 }
4554
4555 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4556 {
4557 struct tcp_sock *tp = tcp_sk(sk);
4558 struct rb_node **p, *parent;
4559 struct sk_buff *skb1;
4560 u32 seq, end_seq;
4561 bool fragstolen;
4562
4563 tcp_ecn_check_ce(sk, skb);
4564
4565 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4566 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4567 tcp_drop(sk, skb);
4568 return;
4569 }
4570
4571 /* Disable header prediction. */
4572 tp->pred_flags = 0;
4573 inet_csk_schedule_ack(sk);
4574
4575 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4576 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4577 seq = TCP_SKB_CB(skb)->seq;
4578 end_seq = TCP_SKB_CB(skb)->end_seq;
4579
4580 p = &tp->out_of_order_queue.rb_node;
4581 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4582 /* Initial out of order segment, build 1 SACK. */
4583 if (tcp_is_sack(tp)) {
4584 tp->rx_opt.num_sacks = 1;
4585 tp->selective_acks[0].start_seq = seq;
4586 tp->selective_acks[0].end_seq = end_seq;
4587 }
4588 rb_link_node(&skb->rbnode, NULL, p);
4589 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4590 tp->ooo_last_skb = skb;
4591 goto end;
4592 }
4593
4594 /* In the typical case, we are adding an skb to the end of the list.
4595 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4596 */
4597 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4598 skb, &fragstolen)) {
4599 coalesce_done:
4600 tcp_grow_window(sk, skb);
4601 kfree_skb_partial(skb, fragstolen);
4602 skb = NULL;
4603 goto add_sack;
4604 }
4605 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4606 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4607 parent = &tp->ooo_last_skb->rbnode;
4608 p = &parent->rb_right;
4609 goto insert;
4610 }
4611
4612 /* Find place to insert this segment. Handle overlaps on the way. */
4613 parent = NULL;
4614 while (*p) {
4615 parent = *p;
4616 skb1 = rb_to_skb(parent);
4617 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4618 p = &parent->rb_left;
4619 continue;
4620 }
4621 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4622 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4623 /* All the bits are present. Drop. */
4624 NET_INC_STATS(sock_net(sk),
4625 LINUX_MIB_TCPOFOMERGE);
4626 tcp_drop(sk, skb);
4627 skb = NULL;
4628 tcp_dsack_set(sk, seq, end_seq);
4629 goto add_sack;
4630 }
4631 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4632 /* Partial overlap. */
4633 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4634 } else {
4635 /* skb's seq == skb1's seq and skb covers skb1.
4636 * Replace skb1 with skb.
4637 */
4638 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4639 &tp->out_of_order_queue);
4640 tcp_dsack_extend(sk,
4641 TCP_SKB_CB(skb1)->seq,
4642 TCP_SKB_CB(skb1)->end_seq);
4643 NET_INC_STATS(sock_net(sk),
4644 LINUX_MIB_TCPOFOMERGE);
4645 tcp_drop(sk, skb1);
4646 goto merge_right;
4647 }
4648 } else if (tcp_ooo_try_coalesce(sk, skb1,
4649 skb, &fragstolen)) {
4650 goto coalesce_done;
4651 }
4652 p = &parent->rb_right;
4653 }
4654 insert:
4655 /* Insert segment into RB tree. */
4656 rb_link_node(&skb->rbnode, parent, p);
4657 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4658
4659 merge_right:
4660 /* Remove other segments covered by skb. */
4661 while ((skb1 = skb_rb_next(skb)) != NULL) {
4662 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4663 break;
4664 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4665 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4666 end_seq);
4667 break;
4668 }
4669 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4670 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4671 TCP_SKB_CB(skb1)->end_seq);
4672 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4673 tcp_drop(sk, skb1);
4674 }
4675 /* If there is no skb after us, we are the last_skb ! */
4676 if (!skb1)
4677 tp->ooo_last_skb = skb;
4678
4679 add_sack:
4680 if (tcp_is_sack(tp))
4681 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4682 end:
4683 if (skb) {
4684 tcp_grow_window(sk, skb);
4685 skb_condense(skb);
4686 skb_set_owner_r(skb, sk);
4687 }
4688 }
4689
4690 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4691 bool *fragstolen)
4692 {
4693 int eaten;
4694 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4695
4696 eaten = (tail &&
4697 tcp_try_coalesce(sk, tail,
4698 skb, fragstolen)) ? 1 : 0;
4699 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4700 if (!eaten) {
4701 __skb_queue_tail(&sk->sk_receive_queue, skb);
4702 skb_set_owner_r(skb, sk);
4703 }
4704 return eaten;
4705 }
4706
4707 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4708 {
4709 struct sk_buff *skb;
4710 int err = -ENOMEM;
4711 int data_len = 0;
4712 bool fragstolen;
4713
4714 if (size == 0)
4715 return 0;
4716
4717 if (size > PAGE_SIZE) {
4718 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4719
4720 data_len = npages << PAGE_SHIFT;
4721 size = data_len + (size & ~PAGE_MASK);
4722 }
4723 skb = alloc_skb_with_frags(size - data_len, data_len,
4724 PAGE_ALLOC_COSTLY_ORDER,
4725 &err, sk->sk_allocation);
4726 if (!skb)
4727 goto err;
4728
4729 skb_put(skb, size - data_len);
4730 skb->data_len = data_len;
4731 skb->len = size;
4732
4733 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4734 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4735 goto err_free;
4736 }
4737
4738 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4739 if (err)
4740 goto err_free;
4741
4742 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4743 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4744 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4745
4746 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4747 WARN_ON_ONCE(fragstolen); /* should not happen */
4748 __kfree_skb(skb);
4749 }
4750 return size;
4751
4752 err_free:
4753 kfree_skb(skb);
4754 err:
4755 return err;
4756
4757 }
4758
4759 void tcp_data_ready(struct sock *sk)
4760 {
4761 const struct tcp_sock *tp = tcp_sk(sk);
4762 int avail = tp->rcv_nxt - tp->copied_seq;
4763
4764 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4765 return;
4766
4767 sk->sk_data_ready(sk);
4768 }
4769
4770 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4771 {
4772 struct tcp_sock *tp = tcp_sk(sk);
4773 bool fragstolen;
4774 int eaten;
4775
4776 if (sk_is_mptcp(sk))
4777 mptcp_incoming_options(sk, skb, &tp->rx_opt);
4778
4779 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4780 __kfree_skb(skb);
4781 return;
4782 }
4783 skb_dst_drop(skb);
4784 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4785
4786 tcp_ecn_accept_cwr(sk, skb);
4787
4788 tp->rx_opt.dsack = 0;
4789
4790 /* Queue data for delivery to the user.
4791 * Packets in sequence go to the receive queue.
4792 * Out of sequence packets to the out_of_order_queue.
4793 */
4794 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4795 if (tcp_receive_window(tp) == 0) {
4796 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4797 goto out_of_window;
4798 }
4799
4800 /* Ok. In sequence. In window. */
4801 queue_and_out:
4802 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4803 sk_forced_mem_schedule(sk, skb->truesize);
4804 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4805 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4806 goto drop;
4807 }
4808
4809 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4810 if (skb->len)
4811 tcp_event_data_recv(sk, skb);
4812 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4813 tcp_fin(sk);
4814
4815 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4816 tcp_ofo_queue(sk);
4817
4818 /* RFC5681. 4.2. SHOULD send immediate ACK, when
4819 * gap in queue is filled.
4820 */
4821 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4822 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4823 }
4824
4825 if (tp->rx_opt.num_sacks)
4826 tcp_sack_remove(tp);
4827
4828 tcp_fast_path_check(sk);
4829
4830 if (eaten > 0)
4831 kfree_skb_partial(skb, fragstolen);
4832 if (!sock_flag(sk, SOCK_DEAD))
4833 tcp_data_ready(sk);
4834 return;
4835 }
4836
4837 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4838 tcp_rcv_spurious_retrans(sk, skb);
4839 /* A retransmit, 2nd most common case. Force an immediate ack. */
4840 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4841 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4842
4843 out_of_window:
4844 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4845 inet_csk_schedule_ack(sk);
4846 drop:
4847 tcp_drop(sk, skb);
4848 return;
4849 }
4850
4851 /* Out of window. F.e. zero window probe. */
4852 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4853 goto out_of_window;
4854
4855 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4856 /* Partial packet, seq < rcv_next < end_seq */
4857 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4858
4859 /* If window is closed, drop tail of packet. But after
4860 * remembering D-SACK for its head made in previous line.
4861 */
4862 if (!tcp_receive_window(tp)) {
4863 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4864 goto out_of_window;
4865 }
4866 goto queue_and_out;
4867 }
4868
4869 tcp_data_queue_ofo(sk, skb);
4870 }
4871
4872 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4873 {
4874 if (list)
4875 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4876
4877 return skb_rb_next(skb);
4878 }
4879
4880 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4881 struct sk_buff_head *list,
4882 struct rb_root *root)
4883 {
4884 struct sk_buff *next = tcp_skb_next(skb, list);
4885
4886 if (list)
4887 __skb_unlink(skb, list);
4888 else
4889 rb_erase(&skb->rbnode, root);
4890
4891 __kfree_skb(skb);
4892 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4893
4894 return next;
4895 }
4896
4897 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4898 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4899 {
4900 struct rb_node **p = &root->rb_node;
4901 struct rb_node *parent = NULL;
4902 struct sk_buff *skb1;
4903
4904 while (*p) {
4905 parent = *p;
4906 skb1 = rb_to_skb(parent);
4907 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4908 p = &parent->rb_left;
4909 else
4910 p = &parent->rb_right;
4911 }
4912 rb_link_node(&skb->rbnode, parent, p);
4913 rb_insert_color(&skb->rbnode, root);
4914 }
4915
4916 /* Collapse contiguous sequence of skbs head..tail with
4917 * sequence numbers start..end.
4918 *
4919 * If tail is NULL, this means until the end of the queue.
4920 *
4921 * Segments with FIN/SYN are not collapsed (only because this
4922 * simplifies code)
4923 */
4924 static void
4925 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4926 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4927 {
4928 struct sk_buff *skb = head, *n;
4929 struct sk_buff_head tmp;
4930 bool end_of_skbs;
4931
4932 /* First, check that queue is collapsible and find
4933 * the point where collapsing can be useful.
4934 */
4935 restart:
4936 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4937 n = tcp_skb_next(skb, list);
4938
4939 /* No new bits? It is possible on ofo queue. */
4940 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4941 skb = tcp_collapse_one(sk, skb, list, root);
4942 if (!skb)
4943 break;
4944 goto restart;
4945 }
4946
4947 /* The first skb to collapse is:
4948 * - not SYN/FIN and
4949 * - bloated or contains data before "start" or
4950 * overlaps to the next one and mptcp allow collapsing.
4951 */
4952 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4953 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4954 before(TCP_SKB_CB(skb)->seq, start))) {
4955 end_of_skbs = false;
4956 break;
4957 }
4958
4959 if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
4960 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4961 end_of_skbs = false;
4962 break;
4963 }
4964
4965 /* Decided to skip this, advance start seq. */
4966 start = TCP_SKB_CB(skb)->end_seq;
4967 }
4968 if (end_of_skbs ||
4969 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4970 return;
4971
4972 __skb_queue_head_init(&tmp);
4973
4974 while (before(start, end)) {
4975 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4976 struct sk_buff *nskb;
4977
4978 nskb = alloc_skb(copy, GFP_ATOMIC);
4979 if (!nskb)
4980 break;
4981
4982 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4983 #ifdef CONFIG_TLS_DEVICE
4984 nskb->decrypted = skb->decrypted;
4985 #endif
4986 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4987 if (list)
4988 __skb_queue_before(list, skb, nskb);
4989 else
4990 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4991 skb_set_owner_r(nskb, sk);
4992 mptcp_skb_ext_move(nskb, skb);
4993
4994 /* Copy data, releasing collapsed skbs. */
4995 while (copy > 0) {
4996 int offset = start - TCP_SKB_CB(skb)->seq;
4997 int size = TCP_SKB_CB(skb)->end_seq - start;
4998
4999 BUG_ON(offset < 0);
5000 if (size > 0) {
5001 size = min(copy, size);
5002 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5003 BUG();
5004 TCP_SKB_CB(nskb)->end_seq += size;
5005 copy -= size;
5006 start += size;
5007 }
5008 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5009 skb = tcp_collapse_one(sk, skb, list, root);
5010 if (!skb ||
5011 skb == tail ||
5012 !mptcp_skb_can_collapse(nskb, skb) ||
5013 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5014 goto end;
5015 #ifdef CONFIG_TLS_DEVICE
5016 if (skb->decrypted != nskb->decrypted)
5017 goto end;
5018 #endif
5019 }
5020 }
5021 }
5022 end:
5023 skb_queue_walk_safe(&tmp, skb, n)
5024 tcp_rbtree_insert(root, skb);
5025 }
5026
5027 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5028 * and tcp_collapse() them until all the queue is collapsed.
5029 */
5030 static void tcp_collapse_ofo_queue(struct sock *sk)
5031 {
5032 struct tcp_sock *tp = tcp_sk(sk);
5033 u32 range_truesize, sum_tiny = 0;
5034 struct sk_buff *skb, *head;
5035 u32 start, end;
5036
5037 skb = skb_rb_first(&tp->out_of_order_queue);
5038 new_range:
5039 if (!skb) {
5040 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5041 return;
5042 }
5043 start = TCP_SKB_CB(skb)->seq;
5044 end = TCP_SKB_CB(skb)->end_seq;
5045 range_truesize = skb->truesize;
5046
5047 for (head = skb;;) {
5048 skb = skb_rb_next(skb);
5049
5050 /* Range is terminated when we see a gap or when
5051 * we are at the queue end.
5052 */
5053 if (!skb ||
5054 after(TCP_SKB_CB(skb)->seq, end) ||
5055 before(TCP_SKB_CB(skb)->end_seq, start)) {
5056 /* Do not attempt collapsing tiny skbs */
5057 if (range_truesize != head->truesize ||
5058 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5059 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5060 head, skb, start, end);
5061 } else {
5062 sum_tiny += range_truesize;
5063 if (sum_tiny > sk->sk_rcvbuf >> 3)
5064 return;
5065 }
5066 goto new_range;
5067 }
5068
5069 range_truesize += skb->truesize;
5070 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5071 start = TCP_SKB_CB(skb)->seq;
5072 if (after(TCP_SKB_CB(skb)->end_seq, end))
5073 end = TCP_SKB_CB(skb)->end_seq;
5074 }
5075 }
5076
5077 /*
5078 * Clean the out-of-order queue to make room.
5079 * We drop high sequences packets to :
5080 * 1) Let a chance for holes to be filled.
5081 * 2) not add too big latencies if thousands of packets sit there.
5082 * (But if application shrinks SO_RCVBUF, we could still end up
5083 * freeing whole queue here)
5084 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5085 *
5086 * Return true if queue has shrunk.
5087 */
5088 static bool tcp_prune_ofo_queue(struct sock *sk)
5089 {
5090 struct tcp_sock *tp = tcp_sk(sk);
5091 struct rb_node *node, *prev;
5092 int goal;
5093
5094 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5095 return false;
5096
5097 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5098 goal = sk->sk_rcvbuf >> 3;
5099 node = &tp->ooo_last_skb->rbnode;
5100 do {
5101 prev = rb_prev(node);
5102 rb_erase(node, &tp->out_of_order_queue);
5103 goal -= rb_to_skb(node)->truesize;
5104 tcp_drop(sk, rb_to_skb(node));
5105 if (!prev || goal <= 0) {
5106 sk_mem_reclaim(sk);
5107 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5108 !tcp_under_memory_pressure(sk))
5109 break;
5110 goal = sk->sk_rcvbuf >> 3;
5111 }
5112 node = prev;
5113 } while (node);
5114 tp->ooo_last_skb = rb_to_skb(prev);
5115
5116 /* Reset SACK state. A conforming SACK implementation will
5117 * do the same at a timeout based retransmit. When a connection
5118 * is in a sad state like this, we care only about integrity
5119 * of the connection not performance.
5120 */
5121 if (tp->rx_opt.sack_ok)
5122 tcp_sack_reset(&tp->rx_opt);
5123 return true;
5124 }
5125
5126 /* Reduce allocated memory if we can, trying to get
5127 * the socket within its memory limits again.
5128 *
5129 * Return less than zero if we should start dropping frames
5130 * until the socket owning process reads some of the data
5131 * to stabilize the situation.
5132 */
5133 static int tcp_prune_queue(struct sock *sk)
5134 {
5135 struct tcp_sock *tp = tcp_sk(sk);
5136
5137 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5138
5139 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5140 tcp_clamp_window(sk);
5141 else if (tcp_under_memory_pressure(sk))
5142 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5143
5144 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5145 return 0;
5146
5147 tcp_collapse_ofo_queue(sk);
5148 if (!skb_queue_empty(&sk->sk_receive_queue))
5149 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5150 skb_peek(&sk->sk_receive_queue),
5151 NULL,
5152 tp->copied_seq, tp->rcv_nxt);
5153 sk_mem_reclaim(sk);
5154
5155 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5156 return 0;
5157
5158 /* Collapsing did not help, destructive actions follow.
5159 * This must not ever occur. */
5160
5161 tcp_prune_ofo_queue(sk);
5162
5163 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5164 return 0;
5165
5166 /* If we are really being abused, tell the caller to silently
5167 * drop receive data on the floor. It will get retransmitted
5168 * and hopefully then we'll have sufficient space.
5169 */
5170 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5171
5172 /* Massive buffer overcommit. */
5173 tp->pred_flags = 0;
5174 return -1;
5175 }
5176
5177 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5178 {
5179 const struct tcp_sock *tp = tcp_sk(sk);
5180
5181 /* If the user specified a specific send buffer setting, do
5182 * not modify it.
5183 */
5184 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5185 return false;
5186
5187 /* If we are under global TCP memory pressure, do not expand. */
5188 if (tcp_under_memory_pressure(sk))
5189 return false;
5190
5191 /* If we are under soft global TCP memory pressure, do not expand. */
5192 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5193 return false;
5194
5195 /* If we filled the congestion window, do not expand. */
5196 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5197 return false;
5198
5199 return true;
5200 }
5201
5202 /* When incoming ACK allowed to free some skb from write_queue,
5203 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5204 * on the exit from tcp input handler.
5205 *
5206 * PROBLEM: sndbuf expansion does not work well with largesend.
5207 */
5208 static void tcp_new_space(struct sock *sk)
5209 {
5210 struct tcp_sock *tp = tcp_sk(sk);
5211
5212 if (tcp_should_expand_sndbuf(sk)) {
5213 tcp_sndbuf_expand(sk);
5214 tp->snd_cwnd_stamp = tcp_jiffies32;
5215 }
5216
5217 sk->sk_write_space(sk);
5218 }
5219
5220 static void tcp_check_space(struct sock *sk)
5221 {
5222 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5223 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5224 /* pairs with tcp_poll() */
5225 smp_mb();
5226 if (sk->sk_socket &&
5227 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5228 tcp_new_space(sk);
5229 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5230 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5231 }
5232 }
5233 }
5234
5235 static inline void tcp_data_snd_check(struct sock *sk)
5236 {
5237 tcp_push_pending_frames(sk);
5238 tcp_check_space(sk);
5239 }
5240
5241 /*
5242 * Check if sending an ack is needed.
5243 */
5244 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5245 {
5246 struct tcp_sock *tp = tcp_sk(sk);
5247 unsigned long rtt, delay;
5248
5249 /* More than one full frame received... */
5250 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5251 /* ... and right edge of window advances far enough.
5252 * (tcp_recvmsg() will send ACK otherwise).
5253 * If application uses SO_RCVLOWAT, we want send ack now if
5254 * we have not received enough bytes to satisfy the condition.
5255 */
5256 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5257 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5258 /* We ACK each frame or... */
5259 tcp_in_quickack_mode(sk) ||
5260 /* Protocol state mandates a one-time immediate ACK */
5261 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5262 send_now:
5263 tcp_send_ack(sk);
5264 return;
5265 }
5266
5267 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5268 tcp_send_delayed_ack(sk);
5269 return;
5270 }
5271
5272 if (!tcp_is_sack(tp) ||
5273 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5274 goto send_now;
5275
5276 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5277 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5278 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5279 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5280 tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5281 tp->compressed_ack = 0;
5282 }
5283
5284 if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5285 goto send_now;
5286
5287 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5288 return;
5289
5290 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5291
5292 rtt = tp->rcv_rtt_est.rtt_us;
5293 if (tp->srtt_us && tp->srtt_us < rtt)
5294 rtt = tp->srtt_us;
5295
5296 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5297 rtt * (NSEC_PER_USEC >> 3)/20);
5298 sock_hold(sk);
5299 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5300 HRTIMER_MODE_REL_PINNED_SOFT);
5301 }
5302
5303 static inline void tcp_ack_snd_check(struct sock *sk)
5304 {
5305 if (!inet_csk_ack_scheduled(sk)) {
5306 /* We sent a data segment already. */
5307 return;
5308 }
5309 __tcp_ack_snd_check(sk, 1);
5310 }
5311
5312 /*
5313 * This routine is only called when we have urgent data
5314 * signaled. Its the 'slow' part of tcp_urg. It could be
5315 * moved inline now as tcp_urg is only called from one
5316 * place. We handle URGent data wrong. We have to - as
5317 * BSD still doesn't use the correction from RFC961.
5318 * For 1003.1g we should support a new option TCP_STDURG to permit
5319 * either form (or just set the sysctl tcp_stdurg).
5320 */
5321
5322 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5323 {
5324 struct tcp_sock *tp = tcp_sk(sk);
5325 u32 ptr = ntohs(th->urg_ptr);
5326
5327 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5328 ptr--;
5329 ptr += ntohl(th->seq);
5330
5331 /* Ignore urgent data that we've already seen and read. */
5332 if (after(tp->copied_seq, ptr))
5333 return;
5334
5335 /* Do not replay urg ptr.
5336 *
5337 * NOTE: interesting situation not covered by specs.
5338 * Misbehaving sender may send urg ptr, pointing to segment,
5339 * which we already have in ofo queue. We are not able to fetch
5340 * such data and will stay in TCP_URG_NOTYET until will be eaten
5341 * by recvmsg(). Seems, we are not obliged to handle such wicked
5342 * situations. But it is worth to think about possibility of some
5343 * DoSes using some hypothetical application level deadlock.
5344 */
5345 if (before(ptr, tp->rcv_nxt))
5346 return;
5347
5348 /* Do we already have a newer (or duplicate) urgent pointer? */
5349 if (tp->urg_data && !after(ptr, tp->urg_seq))
5350 return;
5351
5352 /* Tell the world about our new urgent pointer. */
5353 sk_send_sigurg(sk);
5354
5355 /* We may be adding urgent data when the last byte read was
5356 * urgent. To do this requires some care. We cannot just ignore
5357 * tp->copied_seq since we would read the last urgent byte again
5358 * as data, nor can we alter copied_seq until this data arrives
5359 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5360 *
5361 * NOTE. Double Dutch. Rendering to plain English: author of comment
5362 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5363 * and expect that both A and B disappear from stream. This is _wrong_.
5364 * Though this happens in BSD with high probability, this is occasional.
5365 * Any application relying on this is buggy. Note also, that fix "works"
5366 * only in this artificial test. Insert some normal data between A and B and we will
5367 * decline of BSD again. Verdict: it is better to remove to trap
5368 * buggy users.
5369 */
5370 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5371 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5372 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5373 tp->copied_seq++;
5374 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5375 __skb_unlink(skb, &sk->sk_receive_queue);
5376 __kfree_skb(skb);
5377 }
5378 }
5379
5380 tp->urg_data = TCP_URG_NOTYET;
5381 WRITE_ONCE(tp->urg_seq, ptr);
5382
5383 /* Disable header prediction. */
5384 tp->pred_flags = 0;
5385 }
5386
5387 /* This is the 'fast' part of urgent handling. */
5388 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5389 {
5390 struct tcp_sock *tp = tcp_sk(sk);
5391
5392 /* Check if we get a new urgent pointer - normally not. */
5393 if (th->urg)
5394 tcp_check_urg(sk, th);
5395
5396 /* Do we wait for any urgent data? - normally not... */
5397 if (tp->urg_data == TCP_URG_NOTYET) {
5398 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5399 th->syn;
5400
5401 /* Is the urgent pointer pointing into this packet? */
5402 if (ptr < skb->len) {
5403 u8 tmp;
5404 if (skb_copy_bits(skb, ptr, &tmp, 1))
5405 BUG();
5406 tp->urg_data = TCP_URG_VALID | tmp;
5407 if (!sock_flag(sk, SOCK_DEAD))
5408 sk->sk_data_ready(sk);
5409 }
5410 }
5411 }
5412
5413 /* Accept RST for rcv_nxt - 1 after a FIN.
5414 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5415 * FIN is sent followed by a RST packet. The RST is sent with the same
5416 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5417 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5418 * ACKs on the closed socket. In addition middleboxes can drop either the
5419 * challenge ACK or a subsequent RST.
5420 */
5421 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5422 {
5423 struct tcp_sock *tp = tcp_sk(sk);
5424
5425 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5426 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5427 TCPF_CLOSING));
5428 }
5429
5430 /* Does PAWS and seqno based validation of an incoming segment, flags will
5431 * play significant role here.
5432 */
5433 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5434 const struct tcphdr *th, int syn_inerr)
5435 {
5436 struct tcp_sock *tp = tcp_sk(sk);
5437 bool rst_seq_match = false;
5438
5439 /* RFC1323: H1. Apply PAWS check first. */
5440 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5441 tp->rx_opt.saw_tstamp &&
5442 tcp_paws_discard(sk, skb)) {
5443 if (!th->rst) {
5444 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5445 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5446 LINUX_MIB_TCPACKSKIPPEDPAWS,
5447 &tp->last_oow_ack_time))
5448 tcp_send_dupack(sk, skb);
5449 goto discard;
5450 }
5451 /* Reset is accepted even if it did not pass PAWS. */
5452 }
5453
5454 /* Step 1: check sequence number */
5455 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5456 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5457 * (RST) segments are validated by checking their SEQ-fields."
5458 * And page 69: "If an incoming segment is not acceptable,
5459 * an acknowledgment should be sent in reply (unless the RST
5460 * bit is set, if so drop the segment and return)".
5461 */
5462 if (!th->rst) {
5463 if (th->syn)
5464 goto syn_challenge;
5465 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5466 LINUX_MIB_TCPACKSKIPPEDSEQ,
5467 &tp->last_oow_ack_time))
5468 tcp_send_dupack(sk, skb);
5469 } else if (tcp_reset_check(sk, skb)) {
5470 tcp_reset(sk);
5471 }
5472 goto discard;
5473 }
5474
5475 /* Step 2: check RST bit */
5476 if (th->rst) {
5477 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5478 * FIN and SACK too if available):
5479 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5480 * the right-most SACK block,
5481 * then
5482 * RESET the connection
5483 * else
5484 * Send a challenge ACK
5485 */
5486 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5487 tcp_reset_check(sk, skb)) {
5488 rst_seq_match = true;
5489 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5490 struct tcp_sack_block *sp = &tp->selective_acks[0];
5491 int max_sack = sp[0].end_seq;
5492 int this_sack;
5493
5494 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5495 ++this_sack) {
5496 max_sack = after(sp[this_sack].end_seq,
5497 max_sack) ?
5498 sp[this_sack].end_seq : max_sack;
5499 }
5500
5501 if (TCP_SKB_CB(skb)->seq == max_sack)
5502 rst_seq_match = true;
5503 }
5504
5505 if (rst_seq_match)
5506 tcp_reset(sk);
5507 else {
5508 /* Disable TFO if RST is out-of-order
5509 * and no data has been received
5510 * for current active TFO socket
5511 */
5512 if (tp->syn_fastopen && !tp->data_segs_in &&
5513 sk->sk_state == TCP_ESTABLISHED)
5514 tcp_fastopen_active_disable(sk);
5515 tcp_send_challenge_ack(sk, skb);
5516 }
5517 goto discard;
5518 }
5519
5520 /* step 3: check security and precedence [ignored] */
5521
5522 /* step 4: Check for a SYN
5523 * RFC 5961 4.2 : Send a challenge ack
5524 */
5525 if (th->syn) {
5526 syn_challenge:
5527 if (syn_inerr)
5528 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5529 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5530 tcp_send_challenge_ack(sk, skb);
5531 goto discard;
5532 }
5533
5534 return true;
5535
5536 discard:
5537 tcp_drop(sk, skb);
5538 return false;
5539 }
5540
5541 /*
5542 * TCP receive function for the ESTABLISHED state.
5543 *
5544 * It is split into a fast path and a slow path. The fast path is
5545 * disabled when:
5546 * - A zero window was announced from us - zero window probing
5547 * is only handled properly in the slow path.
5548 * - Out of order segments arrived.
5549 * - Urgent data is expected.
5550 * - There is no buffer space left
5551 * - Unexpected TCP flags/window values/header lengths are received
5552 * (detected by checking the TCP header against pred_flags)
5553 * - Data is sent in both directions. Fast path only supports pure senders
5554 * or pure receivers (this means either the sequence number or the ack
5555 * value must stay constant)
5556 * - Unexpected TCP option.
5557 *
5558 * When these conditions are not satisfied it drops into a standard
5559 * receive procedure patterned after RFC793 to handle all cases.
5560 * The first three cases are guaranteed by proper pred_flags setting,
5561 * the rest is checked inline. Fast processing is turned on in
5562 * tcp_data_queue when everything is OK.
5563 */
5564 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5565 {
5566 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5567 struct tcp_sock *tp = tcp_sk(sk);
5568 unsigned int len = skb->len;
5569
5570 /* TCP congestion window tracking */
5571 trace_tcp_probe(sk, skb);
5572
5573 tcp_mstamp_refresh(tp);
5574 if (unlikely(!sk->sk_rx_dst))
5575 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5576 /*
5577 * Header prediction.
5578 * The code loosely follows the one in the famous
5579 * "30 instruction TCP receive" Van Jacobson mail.
5580 *
5581 * Van's trick is to deposit buffers into socket queue
5582 * on a device interrupt, to call tcp_recv function
5583 * on the receive process context and checksum and copy
5584 * the buffer to user space. smart...
5585 *
5586 * Our current scheme is not silly either but we take the
5587 * extra cost of the net_bh soft interrupt processing...
5588 * We do checksum and copy also but from device to kernel.
5589 */
5590
5591 tp->rx_opt.saw_tstamp = 0;
5592
5593 /* pred_flags is 0xS?10 << 16 + snd_wnd
5594 * if header_prediction is to be made
5595 * 'S' will always be tp->tcp_header_len >> 2
5596 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5597 * turn it off (when there are holes in the receive
5598 * space for instance)
5599 * PSH flag is ignored.
5600 */
5601
5602 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5603 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5604 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5605 int tcp_header_len = tp->tcp_header_len;
5606
5607 /* Timestamp header prediction: tcp_header_len
5608 * is automatically equal to th->doff*4 due to pred_flags
5609 * match.
5610 */
5611
5612 /* Check timestamp */
5613 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5614 /* No? Slow path! */
5615 if (!tcp_parse_aligned_timestamp(tp, th))
5616 goto slow_path;
5617
5618 /* If PAWS failed, check it more carefully in slow path */
5619 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5620 goto slow_path;
5621
5622 /* DO NOT update ts_recent here, if checksum fails
5623 * and timestamp was corrupted part, it will result
5624 * in a hung connection since we will drop all
5625 * future packets due to the PAWS test.
5626 */
5627 }
5628
5629 if (len <= tcp_header_len) {
5630 /* Bulk data transfer: sender */
5631 if (len == tcp_header_len) {
5632 /* Predicted packet is in window by definition.
5633 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5634 * Hence, check seq<=rcv_wup reduces to:
5635 */
5636 if (tcp_header_len ==
5637 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5638 tp->rcv_nxt == tp->rcv_wup)
5639 tcp_store_ts_recent(tp);
5640
5641 /* We know that such packets are checksummed
5642 * on entry.
5643 */
5644 tcp_ack(sk, skb, 0);
5645 __kfree_skb(skb);
5646 tcp_data_snd_check(sk);
5647 /* When receiving pure ack in fast path, update
5648 * last ts ecr directly instead of calling
5649 * tcp_rcv_rtt_measure_ts()
5650 */
5651 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5652 return;
5653 } else { /* Header too small */
5654 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5655 goto discard;
5656 }
5657 } else {
5658 int eaten = 0;
5659 bool fragstolen = false;
5660
5661 if (tcp_checksum_complete(skb))
5662 goto csum_error;
5663
5664 if ((int)skb->truesize > sk->sk_forward_alloc)
5665 goto step5;
5666
5667 /* Predicted packet is in window by definition.
5668 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5669 * Hence, check seq<=rcv_wup reduces to:
5670 */
5671 if (tcp_header_len ==
5672 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5673 tp->rcv_nxt == tp->rcv_wup)
5674 tcp_store_ts_recent(tp);
5675
5676 tcp_rcv_rtt_measure_ts(sk, skb);
5677
5678 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5679
5680 /* Bulk data transfer: receiver */
5681 __skb_pull(skb, tcp_header_len);
5682 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5683
5684 tcp_event_data_recv(sk, skb);
5685
5686 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5687 /* Well, only one small jumplet in fast path... */
5688 tcp_ack(sk, skb, FLAG_DATA);
5689 tcp_data_snd_check(sk);
5690 if (!inet_csk_ack_scheduled(sk))
5691 goto no_ack;
5692 }
5693
5694 __tcp_ack_snd_check(sk, 0);
5695 no_ack:
5696 if (eaten)
5697 kfree_skb_partial(skb, fragstolen);
5698 tcp_data_ready(sk);
5699 return;
5700 }
5701 }
5702
5703 slow_path:
5704 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5705 goto csum_error;
5706
5707 if (!th->ack && !th->rst && !th->syn)
5708 goto discard;
5709
5710 /*
5711 * Standard slow path.
5712 */
5713
5714 if (!tcp_validate_incoming(sk, skb, th, 1))
5715 return;
5716
5717 step5:
5718 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5719 goto discard;
5720
5721 tcp_rcv_rtt_measure_ts(sk, skb);
5722
5723 /* Process urgent data. */
5724 tcp_urg(sk, skb, th);
5725
5726 /* step 7: process the segment text */
5727 tcp_data_queue(sk, skb);
5728
5729 tcp_data_snd_check(sk);
5730 tcp_ack_snd_check(sk);
5731 return;
5732
5733 csum_error:
5734 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5735 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5736
5737 discard:
5738 tcp_drop(sk, skb);
5739 }
5740 EXPORT_SYMBOL(tcp_rcv_established);
5741
5742 void tcp_init_transfer(struct sock *sk, int bpf_op)
5743 {
5744 struct inet_connection_sock *icsk = inet_csk(sk);
5745 struct tcp_sock *tp = tcp_sk(sk);
5746
5747 tcp_mtup_init(sk);
5748 icsk->icsk_af_ops->rebuild_header(sk);
5749 tcp_init_metrics(sk);
5750
5751 /* Initialize the congestion window to start the transfer.
5752 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5753 * retransmitted. In light of RFC6298 more aggressive 1sec
5754 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5755 * retransmission has occurred.
5756 */
5757 if (tp->total_retrans > 1 && tp->undo_marker)
5758 tp->snd_cwnd = 1;
5759 else
5760 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5761 tp->snd_cwnd_stamp = tcp_jiffies32;
5762
5763 tcp_call_bpf(sk, bpf_op, 0, NULL);
5764 tcp_init_congestion_control(sk);
5765 tcp_init_buffer_space(sk);
5766 }
5767
5768 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5769 {
5770 struct tcp_sock *tp = tcp_sk(sk);
5771 struct inet_connection_sock *icsk = inet_csk(sk);
5772
5773 tcp_set_state(sk, TCP_ESTABLISHED);
5774 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5775
5776 if (skb) {
5777 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5778 security_inet_conn_established(sk, skb);
5779 sk_mark_napi_id(sk, skb);
5780 }
5781
5782 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5783
5784 /* Prevent spurious tcp_cwnd_restart() on first data
5785 * packet.
5786 */
5787 tp->lsndtime = tcp_jiffies32;
5788
5789 if (sock_flag(sk, SOCK_KEEPOPEN))
5790 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5791
5792 if (!tp->rx_opt.snd_wscale)
5793 __tcp_fast_path_on(tp, tp->snd_wnd);
5794 else
5795 tp->pred_flags = 0;
5796 }
5797
5798 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5799 struct tcp_fastopen_cookie *cookie)
5800 {
5801 struct tcp_sock *tp = tcp_sk(sk);
5802 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5803 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5804 bool syn_drop = false;
5805
5806 if (mss == tp->rx_opt.user_mss) {
5807 struct tcp_options_received opt;
5808
5809 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5810 tcp_clear_options(&opt);
5811 opt.user_mss = opt.mss_clamp = 0;
5812 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5813 mss = opt.mss_clamp;
5814 }
5815
5816 if (!tp->syn_fastopen) {
5817 /* Ignore an unsolicited cookie */
5818 cookie->len = -1;
5819 } else if (tp->total_retrans) {
5820 /* SYN timed out and the SYN-ACK neither has a cookie nor
5821 * acknowledges data. Presumably the remote received only
5822 * the retransmitted (regular) SYNs: either the original
5823 * SYN-data or the corresponding SYN-ACK was dropped.
5824 */
5825 syn_drop = (cookie->len < 0 && data);
5826 } else if (cookie->len < 0 && !tp->syn_data) {
5827 /* We requested a cookie but didn't get it. If we did not use
5828 * the (old) exp opt format then try so next time (try_exp=1).
5829 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5830 */
5831 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5832 }
5833
5834 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5835
5836 if (data) { /* Retransmit unacked data in SYN */
5837 if (tp->total_retrans)
5838 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
5839 else
5840 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
5841 skb_rbtree_walk_from(data) {
5842 if (__tcp_retransmit_skb(sk, data, 1))
5843 break;
5844 }
5845 tcp_rearm_rto(sk);
5846 NET_INC_STATS(sock_net(sk),
5847 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5848 return true;
5849 }
5850 tp->syn_data_acked = tp->syn_data;
5851 if (tp->syn_data_acked) {
5852 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5853 /* SYN-data is counted as two separate packets in tcp_ack() */
5854 if (tp->delivered > 1)
5855 --tp->delivered;
5856 }
5857
5858 tcp_fastopen_add_skb(sk, synack);
5859
5860 return false;
5861 }
5862
5863 static void smc_check_reset_syn(struct tcp_sock *tp)
5864 {
5865 #if IS_ENABLED(CONFIG_SMC)
5866 if (static_branch_unlikely(&tcp_have_smc)) {
5867 if (tp->syn_smc && !tp->rx_opt.smc_ok)
5868 tp->syn_smc = 0;
5869 }
5870 #endif
5871 }
5872
5873 static void tcp_try_undo_spurious_syn(struct sock *sk)
5874 {
5875 struct tcp_sock *tp = tcp_sk(sk);
5876 u32 syn_stamp;
5877
5878 /* undo_marker is set when SYN or SYNACK times out. The timeout is
5879 * spurious if the ACK's timestamp option echo value matches the
5880 * original SYN timestamp.
5881 */
5882 syn_stamp = tp->retrans_stamp;
5883 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5884 syn_stamp == tp->rx_opt.rcv_tsecr)
5885 tp->undo_marker = 0;
5886 }
5887
5888 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5889 const struct tcphdr *th)
5890 {
5891 struct inet_connection_sock *icsk = inet_csk(sk);
5892 struct tcp_sock *tp = tcp_sk(sk);
5893 struct tcp_fastopen_cookie foc = { .len = -1 };
5894 int saved_clamp = tp->rx_opt.mss_clamp;
5895 bool fastopen_fail;
5896
5897 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5898 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5899 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5900
5901 if (th->ack) {
5902 /* rfc793:
5903 * "If the state is SYN-SENT then
5904 * first check the ACK bit
5905 * If the ACK bit is set
5906 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5907 * a reset (unless the RST bit is set, if so drop
5908 * the segment and return)"
5909 */
5910 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5911 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5912 /* Previous FIN/ACK or RST/ACK might be ignored. */
5913 if (icsk->icsk_retransmits == 0)
5914 inet_csk_reset_xmit_timer(sk,
5915 ICSK_TIME_RETRANS,
5916 TCP_TIMEOUT_MIN, TCP_RTO_MAX);
5917 goto reset_and_undo;
5918 }
5919
5920 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5921 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5922 tcp_time_stamp(tp))) {
5923 NET_INC_STATS(sock_net(sk),
5924 LINUX_MIB_PAWSACTIVEREJECTED);
5925 goto reset_and_undo;
5926 }
5927
5928 /* Now ACK is acceptable.
5929 *
5930 * "If the RST bit is set
5931 * If the ACK was acceptable then signal the user "error:
5932 * connection reset", drop the segment, enter CLOSED state,
5933 * delete TCB, and return."
5934 */
5935
5936 if (th->rst) {
5937 tcp_reset(sk);
5938 goto discard;
5939 }
5940
5941 /* rfc793:
5942 * "fifth, if neither of the SYN or RST bits is set then
5943 * drop the segment and return."
5944 *
5945 * See note below!
5946 * --ANK(990513)
5947 */
5948 if (!th->syn)
5949 goto discard_and_undo;
5950
5951 /* rfc793:
5952 * "If the SYN bit is on ...
5953 * are acceptable then ...
5954 * (our SYN has been ACKed), change the connection
5955 * state to ESTABLISHED..."
5956 */
5957
5958 tcp_ecn_rcv_synack(tp, th);
5959
5960 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5961 tcp_try_undo_spurious_syn(sk);
5962 tcp_ack(sk, skb, FLAG_SLOWPATH);
5963
5964 /* Ok.. it's good. Set up sequence numbers and
5965 * move to established.
5966 */
5967 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
5968 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5969
5970 /* RFC1323: The window in SYN & SYN/ACK segments is
5971 * never scaled.
5972 */
5973 tp->snd_wnd = ntohs(th->window);
5974
5975 if (!tp->rx_opt.wscale_ok) {
5976 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5977 tp->window_clamp = min(tp->window_clamp, 65535U);
5978 }
5979
5980 if (tp->rx_opt.saw_tstamp) {
5981 tp->rx_opt.tstamp_ok = 1;
5982 tp->tcp_header_len =
5983 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5984 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5985 tcp_store_ts_recent(tp);
5986 } else {
5987 tp->tcp_header_len = sizeof(struct tcphdr);
5988 }
5989
5990 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5991 tcp_initialize_rcv_mss(sk);
5992
5993 if (sk_is_mptcp(sk))
5994 mptcp_rcv_synsent(sk);
5995
5996 /* Remember, tcp_poll() does not lock socket!
5997 * Change state from SYN-SENT only after copied_seq
5998 * is initialized. */
5999 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6000
6001 smc_check_reset_syn(tp);
6002
6003 smp_mb();
6004
6005 tcp_finish_connect(sk, skb);
6006
6007 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6008 tcp_rcv_fastopen_synack(sk, skb, &foc);
6009
6010 if (!sock_flag(sk, SOCK_DEAD)) {
6011 sk->sk_state_change(sk);
6012 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6013 }
6014 if (fastopen_fail)
6015 return -1;
6016 if (sk->sk_write_pending ||
6017 icsk->icsk_accept_queue.rskq_defer_accept ||
6018 inet_csk_in_pingpong_mode(sk)) {
6019 /* Save one ACK. Data will be ready after
6020 * several ticks, if write_pending is set.
6021 *
6022 * It may be deleted, but with this feature tcpdumps
6023 * look so _wonderfully_ clever, that I was not able
6024 * to stand against the temptation 8) --ANK
6025 */
6026 inet_csk_schedule_ack(sk);
6027 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6028 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6029 TCP_DELACK_MAX, TCP_RTO_MAX);
6030
6031 discard:
6032 tcp_drop(sk, skb);
6033 return 0;
6034 } else {
6035 tcp_send_ack(sk);
6036 }
6037 return -1;
6038 }
6039
6040 /* No ACK in the segment */
6041
6042 if (th->rst) {
6043 /* rfc793:
6044 * "If the RST bit is set
6045 *
6046 * Otherwise (no ACK) drop the segment and return."
6047 */
6048
6049 goto discard_and_undo;
6050 }
6051
6052 /* PAWS check. */
6053 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6054 tcp_paws_reject(&tp->rx_opt, 0))
6055 goto discard_and_undo;
6056
6057 if (th->syn) {
6058 /* We see SYN without ACK. It is attempt of
6059 * simultaneous connect with crossed SYNs.
6060 * Particularly, it can be connect to self.
6061 */
6062 tcp_set_state(sk, TCP_SYN_RECV);
6063
6064 if (tp->rx_opt.saw_tstamp) {
6065 tp->rx_opt.tstamp_ok = 1;
6066 tcp_store_ts_recent(tp);
6067 tp->tcp_header_len =
6068 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6069 } else {
6070 tp->tcp_header_len = sizeof(struct tcphdr);
6071 }
6072
6073 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6074 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6075 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6076
6077 /* RFC1323: The window in SYN & SYN/ACK segments is
6078 * never scaled.
6079 */
6080 tp->snd_wnd = ntohs(th->window);
6081 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6082 tp->max_window = tp->snd_wnd;
6083
6084 tcp_ecn_rcv_syn(tp, th);
6085
6086 tcp_mtup_init(sk);
6087 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6088 tcp_initialize_rcv_mss(sk);
6089
6090 tcp_send_synack(sk);
6091 #if 0
6092 /* Note, we could accept data and URG from this segment.
6093 * There are no obstacles to make this (except that we must
6094 * either change tcp_recvmsg() to prevent it from returning data
6095 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6096 *
6097 * However, if we ignore data in ACKless segments sometimes,
6098 * we have no reasons to accept it sometimes.
6099 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6100 * is not flawless. So, discard packet for sanity.
6101 * Uncomment this return to process the data.
6102 */
6103 return -1;
6104 #else
6105 goto discard;
6106 #endif
6107 }
6108 /* "fifth, if neither of the SYN or RST bits is set then
6109 * drop the segment and return."
6110 */
6111
6112 discard_and_undo:
6113 tcp_clear_options(&tp->rx_opt);
6114 tp->rx_opt.mss_clamp = saved_clamp;
6115 goto discard;
6116
6117 reset_and_undo:
6118 tcp_clear_options(&tp->rx_opt);
6119 tp->rx_opt.mss_clamp = saved_clamp;
6120 return 1;
6121 }
6122
6123 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6124 {
6125 struct request_sock *req;
6126
6127 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6128 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6129 */
6130 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6131 tcp_try_undo_loss(sk, false);
6132
6133 /* Reset rtx states to prevent spurious retransmits_timed_out() */
6134 tcp_sk(sk)->retrans_stamp = 0;
6135 inet_csk(sk)->icsk_retransmits = 0;
6136
6137 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6138 * we no longer need req so release it.
6139 */
6140 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6141 lockdep_sock_is_held(sk));
6142 reqsk_fastopen_remove(sk, req, false);
6143
6144 /* Re-arm the timer because data may have been sent out.
6145 * This is similar to the regular data transmission case
6146 * when new data has just been ack'ed.
6147 *
6148 * (TFO) - we could try to be more aggressive and
6149 * retransmitting any data sooner based on when they
6150 * are sent out.
6151 */
6152 tcp_rearm_rto(sk);
6153 }
6154
6155 /*
6156 * This function implements the receiving procedure of RFC 793 for
6157 * all states except ESTABLISHED and TIME_WAIT.
6158 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6159 * address independent.
6160 */
6161
6162 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6163 {
6164 struct tcp_sock *tp = tcp_sk(sk);
6165 struct inet_connection_sock *icsk = inet_csk(sk);
6166 const struct tcphdr *th = tcp_hdr(skb);
6167 struct request_sock *req;
6168 int queued = 0;
6169 bool acceptable;
6170
6171 switch (sk->sk_state) {
6172 case TCP_CLOSE:
6173 goto discard;
6174
6175 case TCP_LISTEN:
6176 if (th->ack)
6177 return 1;
6178
6179 if (th->rst)
6180 goto discard;
6181
6182 if (th->syn) {
6183 if (th->fin)
6184 goto discard;
6185 /* It is possible that we process SYN packets from backlog,
6186 * so we need to make sure to disable BH and RCU right there.
6187 */
6188 rcu_read_lock();
6189 local_bh_disable();
6190 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6191 local_bh_enable();
6192 rcu_read_unlock();
6193
6194 if (!acceptable)
6195 return 1;
6196 consume_skb(skb);
6197 return 0;
6198 }
6199 goto discard;
6200
6201 case TCP_SYN_SENT:
6202 tp->rx_opt.saw_tstamp = 0;
6203 tcp_mstamp_refresh(tp);
6204 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6205 if (queued >= 0)
6206 return queued;
6207
6208 /* Do step6 onward by hand. */
6209 tcp_urg(sk, skb, th);
6210 __kfree_skb(skb);
6211 tcp_data_snd_check(sk);
6212 return 0;
6213 }
6214
6215 tcp_mstamp_refresh(tp);
6216 tp->rx_opt.saw_tstamp = 0;
6217 req = rcu_dereference_protected(tp->fastopen_rsk,
6218 lockdep_sock_is_held(sk));
6219 if (req) {
6220 bool req_stolen;
6221
6222 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6223 sk->sk_state != TCP_FIN_WAIT1);
6224
6225 if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6226 goto discard;
6227 }
6228
6229 if (!th->ack && !th->rst && !th->syn)
6230 goto discard;
6231
6232 if (!tcp_validate_incoming(sk, skb, th, 0))
6233 return 0;
6234
6235 /* step 5: check the ACK field */
6236 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6237 FLAG_UPDATE_TS_RECENT |
6238 FLAG_NO_CHALLENGE_ACK) > 0;
6239
6240 if (!acceptable) {
6241 if (sk->sk_state == TCP_SYN_RECV)
6242 return 1; /* send one RST */
6243 tcp_send_challenge_ack(sk, skb);
6244 goto discard;
6245 }
6246 switch (sk->sk_state) {
6247 case TCP_SYN_RECV:
6248 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6249 if (!tp->srtt_us)
6250 tcp_synack_rtt_meas(sk, req);
6251
6252 if (req) {
6253 tcp_rcv_synrecv_state_fastopen(sk);
6254 } else {
6255 tcp_try_undo_spurious_syn(sk);
6256 tp->retrans_stamp = 0;
6257 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6258 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6259 }
6260 smp_mb();
6261 tcp_set_state(sk, TCP_ESTABLISHED);
6262 sk->sk_state_change(sk);
6263
6264 /* Note, that this wakeup is only for marginal crossed SYN case.
6265 * Passively open sockets are not waked up, because
6266 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6267 */
6268 if (sk->sk_socket)
6269 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6270
6271 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6272 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6273 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6274
6275 if (tp->rx_opt.tstamp_ok)
6276 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6277
6278 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6279 tcp_update_pacing_rate(sk);
6280
6281 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6282 tp->lsndtime = tcp_jiffies32;
6283
6284 tcp_initialize_rcv_mss(sk);
6285 tcp_fast_path_on(tp);
6286 break;
6287
6288 case TCP_FIN_WAIT1: {
6289 int tmo;
6290
6291 if (req)
6292 tcp_rcv_synrecv_state_fastopen(sk);
6293
6294 if (tp->snd_una != tp->write_seq)
6295 break;
6296
6297 tcp_set_state(sk, TCP_FIN_WAIT2);
6298 sk->sk_shutdown |= SEND_SHUTDOWN;
6299
6300 sk_dst_confirm(sk);
6301
6302 if (!sock_flag(sk, SOCK_DEAD)) {
6303 /* Wake up lingering close() */
6304 sk->sk_state_change(sk);
6305 break;
6306 }
6307
6308 if (tp->linger2 < 0) {
6309 tcp_done(sk);
6310 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6311 return 1;
6312 }
6313 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6314 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6315 /* Receive out of order FIN after close() */
6316 if (tp->syn_fastopen && th->fin)
6317 tcp_fastopen_active_disable(sk);
6318 tcp_done(sk);
6319 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6320 return 1;
6321 }
6322
6323 tmo = tcp_fin_time(sk);
6324 if (tmo > TCP_TIMEWAIT_LEN) {
6325 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6326 } else if (th->fin || sock_owned_by_user(sk)) {
6327 /* Bad case. We could lose such FIN otherwise.
6328 * It is not a big problem, but it looks confusing
6329 * and not so rare event. We still can lose it now,
6330 * if it spins in bh_lock_sock(), but it is really
6331 * marginal case.
6332 */
6333 inet_csk_reset_keepalive_timer(sk, tmo);
6334 } else {
6335 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6336 goto discard;
6337 }
6338 break;
6339 }
6340
6341 case TCP_CLOSING:
6342 if (tp->snd_una == tp->write_seq) {
6343 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6344 goto discard;
6345 }
6346 break;
6347
6348 case TCP_LAST_ACK:
6349 if (tp->snd_una == tp->write_seq) {
6350 tcp_update_metrics(sk);
6351 tcp_done(sk);
6352 goto discard;
6353 }
6354 break;
6355 }
6356
6357 /* step 6: check the URG bit */
6358 tcp_urg(sk, skb, th);
6359
6360 /* step 7: process the segment text */
6361 switch (sk->sk_state) {
6362 case TCP_CLOSE_WAIT:
6363 case TCP_CLOSING:
6364 case TCP_LAST_ACK:
6365 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6366 if (sk_is_mptcp(sk))
6367 mptcp_incoming_options(sk, skb, &tp->rx_opt);
6368 break;
6369 }
6370 fallthrough;
6371 case TCP_FIN_WAIT1:
6372 case TCP_FIN_WAIT2:
6373 /* RFC 793 says to queue data in these states,
6374 * RFC 1122 says we MUST send a reset.
6375 * BSD 4.4 also does reset.
6376 */
6377 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6378 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6379 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6380 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6381 tcp_reset(sk);
6382 return 1;
6383 }
6384 }
6385 fallthrough;
6386 case TCP_ESTABLISHED:
6387 tcp_data_queue(sk, skb);
6388 queued = 1;
6389 break;
6390 }
6391
6392 /* tcp_data could move socket to TIME-WAIT */
6393 if (sk->sk_state != TCP_CLOSE) {
6394 tcp_data_snd_check(sk);
6395 tcp_ack_snd_check(sk);
6396 }
6397
6398 if (!queued) {
6399 discard:
6400 tcp_drop(sk, skb);
6401 }
6402 return 0;
6403 }
6404 EXPORT_SYMBOL(tcp_rcv_state_process);
6405
6406 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6407 {
6408 struct inet_request_sock *ireq = inet_rsk(req);
6409
6410 if (family == AF_INET)
6411 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6412 &ireq->ir_rmt_addr, port);
6413 #if IS_ENABLED(CONFIG_IPV6)
6414 else if (family == AF_INET6)
6415 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6416 &ireq->ir_v6_rmt_addr, port);
6417 #endif
6418 }
6419
6420 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6421 *
6422 * If we receive a SYN packet with these bits set, it means a
6423 * network is playing bad games with TOS bits. In order to
6424 * avoid possible false congestion notifications, we disable
6425 * TCP ECN negotiation.
6426 *
6427 * Exception: tcp_ca wants ECN. This is required for DCTCP
6428 * congestion control: Linux DCTCP asserts ECT on all packets,
6429 * including SYN, which is most optimal solution; however,
6430 * others, such as FreeBSD do not.
6431 *
6432 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6433 * set, indicating the use of a future TCP extension (such as AccECN). See
6434 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6435 * extensions.
6436 */
6437 static void tcp_ecn_create_request(struct request_sock *req,
6438 const struct sk_buff *skb,
6439 const struct sock *listen_sk,
6440 const struct dst_entry *dst)
6441 {
6442 const struct tcphdr *th = tcp_hdr(skb);
6443 const struct net *net = sock_net(listen_sk);
6444 bool th_ecn = th->ece && th->cwr;
6445 bool ect, ecn_ok;
6446 u32 ecn_ok_dst;
6447
6448 if (!th_ecn)
6449 return;
6450
6451 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6452 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6453 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6454
6455 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6456 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6457 tcp_bpf_ca_needs_ecn((struct sock *)req))
6458 inet_rsk(req)->ecn_ok = 1;
6459 }
6460
6461 static void tcp_openreq_init(struct request_sock *req,
6462 const struct tcp_options_received *rx_opt,
6463 struct sk_buff *skb, const struct sock *sk)
6464 {
6465 struct inet_request_sock *ireq = inet_rsk(req);
6466
6467 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6468 req->cookie_ts = 0;
6469 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6470 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6471 tcp_rsk(req)->snt_synack = 0;
6472 tcp_rsk(req)->last_oow_ack_time = 0;
6473 req->mss = rx_opt->mss_clamp;
6474 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6475 ireq->tstamp_ok = rx_opt->tstamp_ok;
6476 ireq->sack_ok = rx_opt->sack_ok;
6477 ireq->snd_wscale = rx_opt->snd_wscale;
6478 ireq->wscale_ok = rx_opt->wscale_ok;
6479 ireq->acked = 0;
6480 ireq->ecn_ok = 0;
6481 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6482 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6483 ireq->ir_mark = inet_request_mark(sk, skb);
6484 #if IS_ENABLED(CONFIG_SMC)
6485 ireq->smc_ok = rx_opt->smc_ok;
6486 #endif
6487 }
6488
6489 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6490 struct sock *sk_listener,
6491 bool attach_listener)
6492 {
6493 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6494 attach_listener);
6495
6496 if (req) {
6497 struct inet_request_sock *ireq = inet_rsk(req);
6498
6499 ireq->ireq_opt = NULL;
6500 #if IS_ENABLED(CONFIG_IPV6)
6501 ireq->pktopts = NULL;
6502 #endif
6503 atomic64_set(&ireq->ir_cookie, 0);
6504 ireq->ireq_state = TCP_NEW_SYN_RECV;
6505 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6506 ireq->ireq_family = sk_listener->sk_family;
6507 }
6508
6509 return req;
6510 }
6511 EXPORT_SYMBOL(inet_reqsk_alloc);
6512
6513 /*
6514 * Return true if a syncookie should be sent
6515 */
6516 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6517 {
6518 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6519 const char *msg = "Dropping request";
6520 bool want_cookie = false;
6521 struct net *net = sock_net(sk);
6522
6523 #ifdef CONFIG_SYN_COOKIES
6524 if (net->ipv4.sysctl_tcp_syncookies) {
6525 msg = "Sending cookies";
6526 want_cookie = true;
6527 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6528 } else
6529 #endif
6530 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6531
6532 if (!queue->synflood_warned &&
6533 net->ipv4.sysctl_tcp_syncookies != 2 &&
6534 xchg(&queue->synflood_warned, 1) == 0)
6535 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6536 proto, sk->sk_num, msg);
6537
6538 return want_cookie;
6539 }
6540
6541 static void tcp_reqsk_record_syn(const struct sock *sk,
6542 struct request_sock *req,
6543 const struct sk_buff *skb)
6544 {
6545 if (tcp_sk(sk)->save_syn) {
6546 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6547 u32 *copy;
6548
6549 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6550 if (copy) {
6551 copy[0] = len;
6552 memcpy(&copy[1], skb_network_header(skb), len);
6553 req->saved_syn = copy;
6554 }
6555 }
6556 }
6557
6558 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6559 * used for SYN cookie generation.
6560 */
6561 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6562 const struct tcp_request_sock_ops *af_ops,
6563 struct sock *sk, struct tcphdr *th)
6564 {
6565 struct tcp_sock *tp = tcp_sk(sk);
6566 u16 mss;
6567
6568 if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6569 !inet_csk_reqsk_queue_is_full(sk))
6570 return 0;
6571
6572 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6573 return 0;
6574
6575 if (sk_acceptq_is_full(sk)) {
6576 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6577 return 0;
6578 }
6579
6580 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6581 if (!mss)
6582 mss = af_ops->mss_clamp;
6583
6584 return mss;
6585 }
6586 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6587
6588 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6589 const struct tcp_request_sock_ops *af_ops,
6590 struct sock *sk, struct sk_buff *skb)
6591 {
6592 struct tcp_fastopen_cookie foc = { .len = -1 };
6593 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6594 struct tcp_options_received tmp_opt;
6595 struct tcp_sock *tp = tcp_sk(sk);
6596 struct net *net = sock_net(sk);
6597 struct sock *fastopen_sk = NULL;
6598 struct request_sock *req;
6599 bool want_cookie = false;
6600 struct dst_entry *dst;
6601 struct flowi fl;
6602
6603 /* TW buckets are converted to open requests without
6604 * limitations, they conserve resources and peer is
6605 * evidently real one.
6606 */
6607 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6608 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6609 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6610 if (!want_cookie)
6611 goto drop;
6612 }
6613
6614 if (sk_acceptq_is_full(sk)) {
6615 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6616 goto drop;
6617 }
6618
6619 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6620 if (!req)
6621 goto drop;
6622
6623 tcp_rsk(req)->af_specific = af_ops;
6624 tcp_rsk(req)->ts_off = 0;
6625 #if IS_ENABLED(CONFIG_MPTCP)
6626 tcp_rsk(req)->is_mptcp = 0;
6627 #endif
6628
6629 tcp_clear_options(&tmp_opt);
6630 tmp_opt.mss_clamp = af_ops->mss_clamp;
6631 tmp_opt.user_mss = tp->rx_opt.user_mss;
6632 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6633 want_cookie ? NULL : &foc);
6634
6635 if (want_cookie && !tmp_opt.saw_tstamp)
6636 tcp_clear_options(&tmp_opt);
6637
6638 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6639 tmp_opt.smc_ok = 0;
6640
6641 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6642 tcp_openreq_init(req, &tmp_opt, skb, sk);
6643 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6644
6645 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6646 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6647
6648 af_ops->init_req(req, sk, skb);
6649
6650 if (IS_ENABLED(CONFIG_MPTCP) && want_cookie)
6651 tcp_rsk(req)->is_mptcp = 0;
6652
6653 if (security_inet_conn_request(sk, skb, req))
6654 goto drop_and_free;
6655
6656 if (tmp_opt.tstamp_ok)
6657 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6658
6659 dst = af_ops->route_req(sk, &fl, req);
6660 if (!dst)
6661 goto drop_and_free;
6662
6663 if (!want_cookie && !isn) {
6664 /* Kill the following clause, if you dislike this way. */
6665 if (!net->ipv4.sysctl_tcp_syncookies &&
6666 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6667 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6668 !tcp_peer_is_proven(req, dst)) {
6669 /* Without syncookies last quarter of
6670 * backlog is filled with destinations,
6671 * proven to be alive.
6672 * It means that we continue to communicate
6673 * to destinations, already remembered
6674 * to the moment of synflood.
6675 */
6676 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6677 rsk_ops->family);
6678 goto drop_and_release;
6679 }
6680
6681 isn = af_ops->init_seq(skb);
6682 }
6683
6684 tcp_ecn_create_request(req, skb, sk, dst);
6685
6686 if (want_cookie) {
6687 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6688 req->cookie_ts = tmp_opt.tstamp_ok;
6689 if (!tmp_opt.tstamp_ok)
6690 inet_rsk(req)->ecn_ok = 0;
6691 }
6692
6693 tcp_rsk(req)->snt_isn = isn;
6694 tcp_rsk(req)->txhash = net_tx_rndhash();
6695 tcp_openreq_init_rwin(req, sk, dst);
6696 sk_rx_queue_set(req_to_sk(req), skb);
6697 if (!want_cookie) {
6698 tcp_reqsk_record_syn(sk, req, skb);
6699 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6700 }
6701 if (fastopen_sk) {
6702 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6703 &foc, TCP_SYNACK_FASTOPEN);
6704 /* Add the child socket directly into the accept queue */
6705 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6706 reqsk_fastopen_remove(fastopen_sk, req, false);
6707 bh_unlock_sock(fastopen_sk);
6708 sock_put(fastopen_sk);
6709 goto drop_and_free;
6710 }
6711 sk->sk_data_ready(sk);
6712 bh_unlock_sock(fastopen_sk);
6713 sock_put(fastopen_sk);
6714 } else {
6715 tcp_rsk(req)->tfo_listener = false;
6716 if (!want_cookie)
6717 inet_csk_reqsk_queue_hash_add(sk, req,
6718 tcp_timeout_init((struct sock *)req));
6719 af_ops->send_synack(sk, dst, &fl, req, &foc,
6720 !want_cookie ? TCP_SYNACK_NORMAL :
6721 TCP_SYNACK_COOKIE);
6722 if (want_cookie) {
6723 reqsk_free(req);
6724 return 0;
6725 }
6726 }
6727 reqsk_put(req);
6728 return 0;
6729
6730 drop_and_release:
6731 dst_release(dst);
6732 drop_and_free:
6733 __reqsk_free(req);
6734 drop:
6735 tcp_listendrop(sk);
6736 return 0;
6737 }
6738 EXPORT_SYMBOL(tcp_conn_request);