]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - net/ipv4/tcp_input.c
tcp: handle inet_csk_reqsk_queue_add() failures
[thirdparty/kernel/stable.git] / net / ipv4 / tcp_input.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79
80 int sysctl_tcp_fack __read_mostly;
81 int sysctl_tcp_max_reordering __read_mostly = 300;
82 int sysctl_tcp_dsack __read_mostly = 1;
83 int sysctl_tcp_app_win __read_mostly = 31;
84 int sysctl_tcp_adv_win_scale __read_mostly = 1;
85 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
86
87 /* rfc5961 challenge ack rate limiting */
88 int sysctl_tcp_challenge_ack_limit = 1000;
89
90 int sysctl_tcp_stdurg __read_mostly;
91 int sysctl_tcp_rfc1337 __read_mostly;
92 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
93 int sysctl_tcp_frto __read_mostly = 2;
94 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
95 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
96 int sysctl_tcp_early_retrans __read_mostly = 3;
97 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
98
99 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
100 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
101 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
102 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
103 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
104 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
105 #define FLAG_ECE 0x40 /* ECE in this ACK */
106 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
107 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
108 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
109 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
110 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
111 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
112 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
113 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
114 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
115
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123
124 #define REXMIT_NONE 0 /* no loss recovery to do */
125 #define REXMIT_LOST 1 /* retransmit packets marked lost */
126 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
127
128 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
129 unsigned int len)
130 {
131 static bool __once __read_mostly;
132
133 if (!__once) {
134 struct net_device *dev;
135
136 __once = true;
137
138 rcu_read_lock();
139 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
140 if (!dev || len >= dev->mtu)
141 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
142 dev ? dev->name : "Unknown driver");
143 rcu_read_unlock();
144 }
145 }
146
147 /* Adapt the MSS value used to make delayed ack decision to the
148 * real world.
149 */
150 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
151 {
152 struct inet_connection_sock *icsk = inet_csk(sk);
153 const unsigned int lss = icsk->icsk_ack.last_seg_size;
154 unsigned int len;
155
156 icsk->icsk_ack.last_seg_size = 0;
157
158 /* skb->len may jitter because of SACKs, even if peer
159 * sends good full-sized frames.
160 */
161 len = skb_shinfo(skb)->gso_size ? : skb->len;
162 if (len >= icsk->icsk_ack.rcv_mss) {
163 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
164 tcp_sk(sk)->advmss);
165 /* Account for possibly-removed options */
166 if (unlikely(len > icsk->icsk_ack.rcv_mss +
167 MAX_TCP_OPTION_SPACE))
168 tcp_gro_dev_warn(sk, skb, len);
169 } else {
170 /* Otherwise, we make more careful check taking into account,
171 * that SACKs block is variable.
172 *
173 * "len" is invariant segment length, including TCP header.
174 */
175 len += skb->data - skb_transport_header(skb);
176 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
177 /* If PSH is not set, packet should be
178 * full sized, provided peer TCP is not badly broken.
179 * This observation (if it is correct 8)) allows
180 * to handle super-low mtu links fairly.
181 */
182 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
183 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
184 /* Subtract also invariant (if peer is RFC compliant),
185 * tcp header plus fixed timestamp option length.
186 * Resulting "len" is MSS free of SACK jitter.
187 */
188 len -= tcp_sk(sk)->tcp_header_len;
189 icsk->icsk_ack.last_seg_size = len;
190 if (len == lss) {
191 icsk->icsk_ack.rcv_mss = len;
192 return;
193 }
194 }
195 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
196 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
197 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
198 }
199 }
200
201 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
202 {
203 struct inet_connection_sock *icsk = inet_csk(sk);
204 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
205
206 if (quickacks == 0)
207 quickacks = 2;
208 quickacks = min(quickacks, max_quickacks);
209 if (quickacks > icsk->icsk_ack.quick)
210 icsk->icsk_ack.quick = quickacks;
211 }
212
213 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
214 {
215 struct inet_connection_sock *icsk = inet_csk(sk);
216
217 tcp_incr_quickack(sk, max_quickacks);
218 icsk->icsk_ack.pingpong = 0;
219 icsk->icsk_ack.ato = TCP_ATO_MIN;
220 }
221 EXPORT_SYMBOL(tcp_enter_quickack_mode);
222
223 /* Send ACKs quickly, if "quick" count is not exhausted
224 * and the session is not interactive.
225 */
226
227 static bool tcp_in_quickack_mode(struct sock *sk)
228 {
229 const struct inet_connection_sock *icsk = inet_csk(sk);
230 const struct dst_entry *dst = __sk_dst_get(sk);
231
232 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
233 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
234 }
235
236 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
237 {
238 if (tp->ecn_flags & TCP_ECN_OK)
239 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
240 }
241
242 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
243 {
244 if (tcp_hdr(skb)->cwr)
245 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
246 }
247
248 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
249 {
250 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
251 }
252
253 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
254 {
255 struct tcp_sock *tp = tcp_sk(sk);
256
257 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
258 case INET_ECN_NOT_ECT:
259 /* Funny extension: if ECT is not set on a segment,
260 * and we already seen ECT on a previous segment,
261 * it is probably a retransmit.
262 */
263 if (tp->ecn_flags & TCP_ECN_SEEN)
264 tcp_enter_quickack_mode(sk, 2);
265 break;
266 case INET_ECN_CE:
267 if (tcp_ca_needs_ecn(sk))
268 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
269
270 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
271 /* Better not delay acks, sender can have a very low cwnd */
272 tcp_enter_quickack_mode(sk, 2);
273 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
274 }
275 tp->ecn_flags |= TCP_ECN_SEEN;
276 break;
277 default:
278 if (tcp_ca_needs_ecn(sk))
279 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
280 tp->ecn_flags |= TCP_ECN_SEEN;
281 break;
282 }
283 }
284
285 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
286 {
287 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
288 __tcp_ecn_check_ce(sk, skb);
289 }
290
291 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
292 {
293 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
294 tp->ecn_flags &= ~TCP_ECN_OK;
295 }
296
297 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
298 {
299 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
300 tp->ecn_flags &= ~TCP_ECN_OK;
301 }
302
303 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
304 {
305 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
306 return true;
307 return false;
308 }
309
310 /* Buffer size and advertised window tuning.
311 *
312 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
313 */
314
315 static void tcp_sndbuf_expand(struct sock *sk)
316 {
317 const struct tcp_sock *tp = tcp_sk(sk);
318 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
319 int sndmem, per_mss;
320 u32 nr_segs;
321
322 /* Worst case is non GSO/TSO : each frame consumes one skb
323 * and skb->head is kmalloced using power of two area of memory
324 */
325 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
326 MAX_TCP_HEADER +
327 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
328
329 per_mss = roundup_pow_of_two(per_mss) +
330 SKB_DATA_ALIGN(sizeof(struct sk_buff));
331
332 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
333 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
334
335 /* Fast Recovery (RFC 5681 3.2) :
336 * Cubic needs 1.7 factor, rounded to 2 to include
337 * extra cushion (application might react slowly to POLLOUT)
338 */
339 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
340 sndmem *= nr_segs * per_mss;
341
342 if (sk->sk_sndbuf < sndmem)
343 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
344 }
345
346 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
347 *
348 * All tcp_full_space() is split to two parts: "network" buffer, allocated
349 * forward and advertised in receiver window (tp->rcv_wnd) and
350 * "application buffer", required to isolate scheduling/application
351 * latencies from network.
352 * window_clamp is maximal advertised window. It can be less than
353 * tcp_full_space(), in this case tcp_full_space() - window_clamp
354 * is reserved for "application" buffer. The less window_clamp is
355 * the smoother our behaviour from viewpoint of network, but the lower
356 * throughput and the higher sensitivity of the connection to losses. 8)
357 *
358 * rcv_ssthresh is more strict window_clamp used at "slow start"
359 * phase to predict further behaviour of this connection.
360 * It is used for two goals:
361 * - to enforce header prediction at sender, even when application
362 * requires some significant "application buffer". It is check #1.
363 * - to prevent pruning of receive queue because of misprediction
364 * of receiver window. Check #2.
365 *
366 * The scheme does not work when sender sends good segments opening
367 * window and then starts to feed us spaghetti. But it should work
368 * in common situations. Otherwise, we have to rely on queue collapsing.
369 */
370
371 /* Slow part of check#2. */
372 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
373 {
374 struct tcp_sock *tp = tcp_sk(sk);
375 /* Optimize this! */
376 int truesize = tcp_win_from_space(skb->truesize) >> 1;
377 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
378
379 while (tp->rcv_ssthresh <= window) {
380 if (truesize <= skb->len)
381 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
382
383 truesize >>= 1;
384 window >>= 1;
385 }
386 return 0;
387 }
388
389 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
390 {
391 struct tcp_sock *tp = tcp_sk(sk);
392
393 /* Check #1 */
394 if (tp->rcv_ssthresh < tp->window_clamp &&
395 (int)tp->rcv_ssthresh < tcp_space(sk) &&
396 !tcp_under_memory_pressure(sk)) {
397 int incr;
398
399 /* Check #2. Increase window, if skb with such overhead
400 * will fit to rcvbuf in future.
401 */
402 if (tcp_win_from_space(skb->truesize) <= skb->len)
403 incr = 2 * tp->advmss;
404 else
405 incr = __tcp_grow_window(sk, skb);
406
407 if (incr) {
408 incr = max_t(int, incr, 2 * skb->len);
409 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
410 tp->window_clamp);
411 inet_csk(sk)->icsk_ack.quick |= 1;
412 }
413 }
414 }
415
416 /* 3. Tuning rcvbuf, when connection enters established state. */
417 static void tcp_fixup_rcvbuf(struct sock *sk)
418 {
419 u32 mss = tcp_sk(sk)->advmss;
420 int rcvmem;
421
422 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
423 tcp_default_init_rwnd(mss);
424
425 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
426 * Allow enough cushion so that sender is not limited by our window
427 */
428 if (sysctl_tcp_moderate_rcvbuf)
429 rcvmem <<= 2;
430
431 if (sk->sk_rcvbuf < rcvmem)
432 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
433 }
434
435 /* 4. Try to fixup all. It is made immediately after connection enters
436 * established state.
437 */
438 void tcp_init_buffer_space(struct sock *sk)
439 {
440 struct tcp_sock *tp = tcp_sk(sk);
441 int maxwin;
442
443 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
444 tcp_fixup_rcvbuf(sk);
445 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
446 tcp_sndbuf_expand(sk);
447
448 tp->rcvq_space.space = tp->rcv_wnd;
449 tcp_mstamp_refresh(tp);
450 tp->rcvq_space.time = tp->tcp_mstamp;
451 tp->rcvq_space.seq = tp->copied_seq;
452
453 maxwin = tcp_full_space(sk);
454
455 if (tp->window_clamp >= maxwin) {
456 tp->window_clamp = maxwin;
457
458 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
459 tp->window_clamp = max(maxwin -
460 (maxwin >> sysctl_tcp_app_win),
461 4 * tp->advmss);
462 }
463
464 /* Force reservation of one segment. */
465 if (sysctl_tcp_app_win &&
466 tp->window_clamp > 2 * tp->advmss &&
467 tp->window_clamp + tp->advmss > maxwin)
468 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
469
470 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
471 tp->snd_cwnd_stamp = tcp_jiffies32;
472 }
473
474 /* 5. Recalculate window clamp after socket hit its memory bounds. */
475 static void tcp_clamp_window(struct sock *sk)
476 {
477 struct tcp_sock *tp = tcp_sk(sk);
478 struct inet_connection_sock *icsk = inet_csk(sk);
479
480 icsk->icsk_ack.quick = 0;
481
482 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
483 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
484 !tcp_under_memory_pressure(sk) &&
485 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
486 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
487 sysctl_tcp_rmem[2]);
488 }
489 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
490 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
491 }
492
493 /* Initialize RCV_MSS value.
494 * RCV_MSS is an our guess about MSS used by the peer.
495 * We haven't any direct information about the MSS.
496 * It's better to underestimate the RCV_MSS rather than overestimate.
497 * Overestimations make us ACKing less frequently than needed.
498 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
499 */
500 void tcp_initialize_rcv_mss(struct sock *sk)
501 {
502 const struct tcp_sock *tp = tcp_sk(sk);
503 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
504
505 hint = min(hint, tp->rcv_wnd / 2);
506 hint = min(hint, TCP_MSS_DEFAULT);
507 hint = max(hint, TCP_MIN_MSS);
508
509 inet_csk(sk)->icsk_ack.rcv_mss = hint;
510 }
511 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
512
513 /* Receiver "autotuning" code.
514 *
515 * The algorithm for RTT estimation w/o timestamps is based on
516 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
517 * <http://public.lanl.gov/radiant/pubs.html#DRS>
518 *
519 * More detail on this code can be found at
520 * <http://staff.psc.edu/jheffner/>,
521 * though this reference is out of date. A new paper
522 * is pending.
523 */
524 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
525 {
526 u32 new_sample = tp->rcv_rtt_est.rtt_us;
527 long m = sample;
528
529 if (new_sample != 0) {
530 /* If we sample in larger samples in the non-timestamp
531 * case, we could grossly overestimate the RTT especially
532 * with chatty applications or bulk transfer apps which
533 * are stalled on filesystem I/O.
534 *
535 * Also, since we are only going for a minimum in the
536 * non-timestamp case, we do not smooth things out
537 * else with timestamps disabled convergence takes too
538 * long.
539 */
540 if (!win_dep) {
541 m -= (new_sample >> 3);
542 new_sample += m;
543 } else {
544 m <<= 3;
545 if (m < new_sample)
546 new_sample = m;
547 }
548 } else {
549 /* No previous measure. */
550 new_sample = m << 3;
551 }
552
553 tp->rcv_rtt_est.rtt_us = new_sample;
554 }
555
556 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
557 {
558 u32 delta_us;
559
560 if (tp->rcv_rtt_est.time == 0)
561 goto new_measure;
562 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
563 return;
564 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
565 if (!delta_us)
566 delta_us = 1;
567 tcp_rcv_rtt_update(tp, delta_us, 1);
568
569 new_measure:
570 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
571 tp->rcv_rtt_est.time = tp->tcp_mstamp;
572 }
573
574 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
575 const struct sk_buff *skb)
576 {
577 struct tcp_sock *tp = tcp_sk(sk);
578
579 if (tp->rx_opt.rcv_tsecr &&
580 (TCP_SKB_CB(skb)->end_seq -
581 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
582 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
583 u32 delta_us;
584
585 if (!delta)
586 delta = 1;
587 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
588 tcp_rcv_rtt_update(tp, delta_us, 0);
589 }
590 }
591
592 /*
593 * This function should be called every time data is copied to user space.
594 * It calculates the appropriate TCP receive buffer space.
595 */
596 void tcp_rcv_space_adjust(struct sock *sk)
597 {
598 struct tcp_sock *tp = tcp_sk(sk);
599 u32 copied;
600 int time;
601
602 tcp_mstamp_refresh(tp);
603 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
604 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
605 return;
606
607 /* Number of bytes copied to user in last RTT */
608 copied = tp->copied_seq - tp->rcvq_space.seq;
609 if (copied <= tp->rcvq_space.space)
610 goto new_measure;
611
612 /* A bit of theory :
613 * copied = bytes received in previous RTT, our base window
614 * To cope with packet losses, we need a 2x factor
615 * To cope with slow start, and sender growing its cwin by 100 %
616 * every RTT, we need a 4x factor, because the ACK we are sending
617 * now is for the next RTT, not the current one :
618 * <prev RTT . ><current RTT .. ><next RTT .... >
619 */
620
621 if (sysctl_tcp_moderate_rcvbuf &&
622 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
623 int rcvmem, rcvbuf;
624 u64 rcvwin;
625
626 /* minimal window to cope with packet losses, assuming
627 * steady state. Add some cushion because of small variations.
628 */
629 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
630
631 /* If rate increased by 25%,
632 * assume slow start, rcvwin = 3 * copied
633 * If rate increased by 50%,
634 * assume sender can use 2x growth, rcvwin = 4 * copied
635 */
636 if (copied >=
637 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
638 if (copied >=
639 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
640 rcvwin <<= 1;
641 else
642 rcvwin += (rcvwin >> 1);
643 }
644
645 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
646 while (tcp_win_from_space(rcvmem) < tp->advmss)
647 rcvmem += 128;
648
649 do_div(rcvwin, tp->advmss);
650 rcvbuf = min_t(u64, rcvwin * rcvmem, sysctl_tcp_rmem[2]);
651 if (rcvbuf > sk->sk_rcvbuf) {
652 sk->sk_rcvbuf = rcvbuf;
653
654 /* Make the window clamp follow along. */
655 tp->window_clamp = tcp_win_from_space(rcvbuf);
656 }
657 }
658 tp->rcvq_space.space = copied;
659
660 new_measure:
661 tp->rcvq_space.seq = tp->copied_seq;
662 tp->rcvq_space.time = tp->tcp_mstamp;
663 }
664
665 /* There is something which you must keep in mind when you analyze the
666 * behavior of the tp->ato delayed ack timeout interval. When a
667 * connection starts up, we want to ack as quickly as possible. The
668 * problem is that "good" TCP's do slow start at the beginning of data
669 * transmission. The means that until we send the first few ACK's the
670 * sender will sit on his end and only queue most of his data, because
671 * he can only send snd_cwnd unacked packets at any given time. For
672 * each ACK we send, he increments snd_cwnd and transmits more of his
673 * queue. -DaveM
674 */
675 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
676 {
677 struct tcp_sock *tp = tcp_sk(sk);
678 struct inet_connection_sock *icsk = inet_csk(sk);
679 u32 now;
680
681 inet_csk_schedule_ack(sk);
682
683 tcp_measure_rcv_mss(sk, skb);
684
685 tcp_rcv_rtt_measure(tp);
686
687 now = tcp_jiffies32;
688
689 if (!icsk->icsk_ack.ato) {
690 /* The _first_ data packet received, initialize
691 * delayed ACK engine.
692 */
693 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
694 icsk->icsk_ack.ato = TCP_ATO_MIN;
695 } else {
696 int m = now - icsk->icsk_ack.lrcvtime;
697
698 if (m <= TCP_ATO_MIN / 2) {
699 /* The fastest case is the first. */
700 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
701 } else if (m < icsk->icsk_ack.ato) {
702 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
703 if (icsk->icsk_ack.ato > icsk->icsk_rto)
704 icsk->icsk_ack.ato = icsk->icsk_rto;
705 } else if (m > icsk->icsk_rto) {
706 /* Too long gap. Apparently sender failed to
707 * restart window, so that we send ACKs quickly.
708 */
709 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
710 sk_mem_reclaim(sk);
711 }
712 }
713 icsk->icsk_ack.lrcvtime = now;
714
715 tcp_ecn_check_ce(sk, skb);
716
717 if (skb->len >= 128)
718 tcp_grow_window(sk, skb);
719 }
720
721 /* Called to compute a smoothed rtt estimate. The data fed to this
722 * routine either comes from timestamps, or from segments that were
723 * known _not_ to have been retransmitted [see Karn/Partridge
724 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
725 * piece by Van Jacobson.
726 * NOTE: the next three routines used to be one big routine.
727 * To save cycles in the RFC 1323 implementation it was better to break
728 * it up into three procedures. -- erics
729 */
730 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
731 {
732 struct tcp_sock *tp = tcp_sk(sk);
733 long m = mrtt_us; /* RTT */
734 u32 srtt = tp->srtt_us;
735
736 /* The following amusing code comes from Jacobson's
737 * article in SIGCOMM '88. Note that rtt and mdev
738 * are scaled versions of rtt and mean deviation.
739 * This is designed to be as fast as possible
740 * m stands for "measurement".
741 *
742 * On a 1990 paper the rto value is changed to:
743 * RTO = rtt + 4 * mdev
744 *
745 * Funny. This algorithm seems to be very broken.
746 * These formulae increase RTO, when it should be decreased, increase
747 * too slowly, when it should be increased quickly, decrease too quickly
748 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
749 * does not matter how to _calculate_ it. Seems, it was trap
750 * that VJ failed to avoid. 8)
751 */
752 if (srtt != 0) {
753 m -= (srtt >> 3); /* m is now error in rtt est */
754 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
755 if (m < 0) {
756 m = -m; /* m is now abs(error) */
757 m -= (tp->mdev_us >> 2); /* similar update on mdev */
758 /* This is similar to one of Eifel findings.
759 * Eifel blocks mdev updates when rtt decreases.
760 * This solution is a bit different: we use finer gain
761 * for mdev in this case (alpha*beta).
762 * Like Eifel it also prevents growth of rto,
763 * but also it limits too fast rto decreases,
764 * happening in pure Eifel.
765 */
766 if (m > 0)
767 m >>= 3;
768 } else {
769 m -= (tp->mdev_us >> 2); /* similar update on mdev */
770 }
771 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
772 if (tp->mdev_us > tp->mdev_max_us) {
773 tp->mdev_max_us = tp->mdev_us;
774 if (tp->mdev_max_us > tp->rttvar_us)
775 tp->rttvar_us = tp->mdev_max_us;
776 }
777 if (after(tp->snd_una, tp->rtt_seq)) {
778 if (tp->mdev_max_us < tp->rttvar_us)
779 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
780 tp->rtt_seq = tp->snd_nxt;
781 tp->mdev_max_us = tcp_rto_min_us(sk);
782 }
783 } else {
784 /* no previous measure. */
785 srtt = m << 3; /* take the measured time to be rtt */
786 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
787 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
788 tp->mdev_max_us = tp->rttvar_us;
789 tp->rtt_seq = tp->snd_nxt;
790 }
791 tp->srtt_us = max(1U, srtt);
792 }
793
794 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
795 * Note: TCP stack does not yet implement pacing.
796 * FQ packet scheduler can be used to implement cheap but effective
797 * TCP pacing, to smooth the burst on large writes when packets
798 * in flight is significantly lower than cwnd (or rwin)
799 */
800 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
801 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
802
803 static void tcp_update_pacing_rate(struct sock *sk)
804 {
805 const struct tcp_sock *tp = tcp_sk(sk);
806 u64 rate;
807
808 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
809 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
810
811 /* current rate is (cwnd * mss) / srtt
812 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
813 * In Congestion Avoidance phase, set it to 120 % the current rate.
814 *
815 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
816 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
817 * end of slow start and should slow down.
818 */
819 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
820 rate *= sysctl_tcp_pacing_ss_ratio;
821 else
822 rate *= sysctl_tcp_pacing_ca_ratio;
823
824 rate *= max(tp->snd_cwnd, tp->packets_out);
825
826 if (likely(tp->srtt_us))
827 do_div(rate, tp->srtt_us);
828
829 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
830 * without any lock. We want to make sure compiler wont store
831 * intermediate values in this location.
832 */
833 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
834 sk->sk_max_pacing_rate);
835 }
836
837 /* Calculate rto without backoff. This is the second half of Van Jacobson's
838 * routine referred to above.
839 */
840 static void tcp_set_rto(struct sock *sk)
841 {
842 const struct tcp_sock *tp = tcp_sk(sk);
843 /* Old crap is replaced with new one. 8)
844 *
845 * More seriously:
846 * 1. If rtt variance happened to be less 50msec, it is hallucination.
847 * It cannot be less due to utterly erratic ACK generation made
848 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
849 * to do with delayed acks, because at cwnd>2 true delack timeout
850 * is invisible. Actually, Linux-2.4 also generates erratic
851 * ACKs in some circumstances.
852 */
853 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
854
855 /* 2. Fixups made earlier cannot be right.
856 * If we do not estimate RTO correctly without them,
857 * all the algo is pure shit and should be replaced
858 * with correct one. It is exactly, which we pretend to do.
859 */
860
861 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
862 * guarantees that rto is higher.
863 */
864 tcp_bound_rto(sk);
865 }
866
867 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
868 {
869 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
870
871 if (!cwnd)
872 cwnd = TCP_INIT_CWND;
873 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
874 }
875
876 /*
877 * Packet counting of FACK is based on in-order assumptions, therefore TCP
878 * disables it when reordering is detected
879 */
880 void tcp_disable_fack(struct tcp_sock *tp)
881 {
882 /* RFC3517 uses different metric in lost marker => reset on change */
883 if (tcp_is_fack(tp))
884 tp->lost_skb_hint = NULL;
885 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
886 }
887
888 /* Take a notice that peer is sending D-SACKs */
889 static void tcp_dsack_seen(struct tcp_sock *tp)
890 {
891 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
892 }
893
894 static void tcp_update_reordering(struct sock *sk, const int metric,
895 const int ts)
896 {
897 struct tcp_sock *tp = tcp_sk(sk);
898 int mib_idx;
899
900 if (WARN_ON_ONCE(metric < 0))
901 return;
902
903 if (metric > tp->reordering) {
904 tp->reordering = min(sysctl_tcp_max_reordering, metric);
905
906 #if FASTRETRANS_DEBUG > 1
907 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
908 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
909 tp->reordering,
910 tp->fackets_out,
911 tp->sacked_out,
912 tp->undo_marker ? tp->undo_retrans : 0);
913 #endif
914 tcp_disable_fack(tp);
915 }
916
917 tp->rack.reord = 1;
918
919 /* This exciting event is worth to be remembered. 8) */
920 if (ts)
921 mib_idx = LINUX_MIB_TCPTSREORDER;
922 else if (tcp_is_reno(tp))
923 mib_idx = LINUX_MIB_TCPRENOREORDER;
924 else if (tcp_is_fack(tp))
925 mib_idx = LINUX_MIB_TCPFACKREORDER;
926 else
927 mib_idx = LINUX_MIB_TCPSACKREORDER;
928
929 NET_INC_STATS(sock_net(sk), mib_idx);
930 }
931
932 /* This must be called before lost_out is incremented */
933 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
934 {
935 if (!tp->retransmit_skb_hint ||
936 before(TCP_SKB_CB(skb)->seq,
937 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
938 tp->retransmit_skb_hint = skb;
939 }
940
941 /* Sum the number of packets on the wire we have marked as lost.
942 * There are two cases we care about here:
943 * a) Packet hasn't been marked lost (nor retransmitted),
944 * and this is the first loss.
945 * b) Packet has been marked both lost and retransmitted,
946 * and this means we think it was lost again.
947 */
948 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
949 {
950 __u8 sacked = TCP_SKB_CB(skb)->sacked;
951
952 if (!(sacked & TCPCB_LOST) ||
953 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
954 tp->lost += tcp_skb_pcount(skb);
955 }
956
957 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
958 {
959 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
960 tcp_verify_retransmit_hint(tp, skb);
961
962 tp->lost_out += tcp_skb_pcount(skb);
963 tcp_sum_lost(tp, skb);
964 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
965 }
966 }
967
968 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
969 {
970 tcp_verify_retransmit_hint(tp, skb);
971
972 tcp_sum_lost(tp, skb);
973 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
974 tp->lost_out += tcp_skb_pcount(skb);
975 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
976 }
977 }
978
979 /* This procedure tags the retransmission queue when SACKs arrive.
980 *
981 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
982 * Packets in queue with these bits set are counted in variables
983 * sacked_out, retrans_out and lost_out, correspondingly.
984 *
985 * Valid combinations are:
986 * Tag InFlight Description
987 * 0 1 - orig segment is in flight.
988 * S 0 - nothing flies, orig reached receiver.
989 * L 0 - nothing flies, orig lost by net.
990 * R 2 - both orig and retransmit are in flight.
991 * L|R 1 - orig is lost, retransmit is in flight.
992 * S|R 1 - orig reached receiver, retrans is still in flight.
993 * (L|S|R is logically valid, it could occur when L|R is sacked,
994 * but it is equivalent to plain S and code short-curcuits it to S.
995 * L|S is logically invalid, it would mean -1 packet in flight 8))
996 *
997 * These 6 states form finite state machine, controlled by the following events:
998 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
999 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1000 * 3. Loss detection event of two flavors:
1001 * A. Scoreboard estimator decided the packet is lost.
1002 * A'. Reno "three dupacks" marks head of queue lost.
1003 * A''. Its FACK modification, head until snd.fack is lost.
1004 * B. SACK arrives sacking SND.NXT at the moment, when the
1005 * segment was retransmitted.
1006 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1007 *
1008 * It is pleasant to note, that state diagram turns out to be commutative,
1009 * so that we are allowed not to be bothered by order of our actions,
1010 * when multiple events arrive simultaneously. (see the function below).
1011 *
1012 * Reordering detection.
1013 * --------------------
1014 * Reordering metric is maximal distance, which a packet can be displaced
1015 * in packet stream. With SACKs we can estimate it:
1016 *
1017 * 1. SACK fills old hole and the corresponding segment was not
1018 * ever retransmitted -> reordering. Alas, we cannot use it
1019 * when segment was retransmitted.
1020 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1021 * for retransmitted and already SACKed segment -> reordering..
1022 * Both of these heuristics are not used in Loss state, when we cannot
1023 * account for retransmits accurately.
1024 *
1025 * SACK block validation.
1026 * ----------------------
1027 *
1028 * SACK block range validation checks that the received SACK block fits to
1029 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1030 * Note that SND.UNA is not included to the range though being valid because
1031 * it means that the receiver is rather inconsistent with itself reporting
1032 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1033 * perfectly valid, however, in light of RFC2018 which explicitly states
1034 * that "SACK block MUST reflect the newest segment. Even if the newest
1035 * segment is going to be discarded ...", not that it looks very clever
1036 * in case of head skb. Due to potentional receiver driven attacks, we
1037 * choose to avoid immediate execution of a walk in write queue due to
1038 * reneging and defer head skb's loss recovery to standard loss recovery
1039 * procedure that will eventually trigger (nothing forbids us doing this).
1040 *
1041 * Implements also blockage to start_seq wrap-around. Problem lies in the
1042 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1043 * there's no guarantee that it will be before snd_nxt (n). The problem
1044 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1045 * wrap (s_w):
1046 *
1047 * <- outs wnd -> <- wrapzone ->
1048 * u e n u_w e_w s n_w
1049 * | | | | | | |
1050 * |<------------+------+----- TCP seqno space --------------+---------->|
1051 * ...-- <2^31 ->| |<--------...
1052 * ...---- >2^31 ------>| |<--------...
1053 *
1054 * Current code wouldn't be vulnerable but it's better still to discard such
1055 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1056 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1057 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1058 * equal to the ideal case (infinite seqno space without wrap caused issues).
1059 *
1060 * With D-SACK the lower bound is extended to cover sequence space below
1061 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1062 * again, D-SACK block must not to go across snd_una (for the same reason as
1063 * for the normal SACK blocks, explained above). But there all simplicity
1064 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1065 * fully below undo_marker they do not affect behavior in anyway and can
1066 * therefore be safely ignored. In rare cases (which are more or less
1067 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1068 * fragmentation and packet reordering past skb's retransmission. To consider
1069 * them correctly, the acceptable range must be extended even more though
1070 * the exact amount is rather hard to quantify. However, tp->max_window can
1071 * be used as an exaggerated estimate.
1072 */
1073 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1074 u32 start_seq, u32 end_seq)
1075 {
1076 /* Too far in future, or reversed (interpretation is ambiguous) */
1077 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1078 return false;
1079
1080 /* Nasty start_seq wrap-around check (see comments above) */
1081 if (!before(start_seq, tp->snd_nxt))
1082 return false;
1083
1084 /* In outstanding window? ...This is valid exit for D-SACKs too.
1085 * start_seq == snd_una is non-sensical (see comments above)
1086 */
1087 if (after(start_seq, tp->snd_una))
1088 return true;
1089
1090 if (!is_dsack || !tp->undo_marker)
1091 return false;
1092
1093 /* ...Then it's D-SACK, and must reside below snd_una completely */
1094 if (after(end_seq, tp->snd_una))
1095 return false;
1096
1097 if (!before(start_seq, tp->undo_marker))
1098 return true;
1099
1100 /* Too old */
1101 if (!after(end_seq, tp->undo_marker))
1102 return false;
1103
1104 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1105 * start_seq < undo_marker and end_seq >= undo_marker.
1106 */
1107 return !before(start_seq, end_seq - tp->max_window);
1108 }
1109
1110 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1111 struct tcp_sack_block_wire *sp, int num_sacks,
1112 u32 prior_snd_una)
1113 {
1114 struct tcp_sock *tp = tcp_sk(sk);
1115 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1116 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1117 bool dup_sack = false;
1118
1119 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1120 dup_sack = true;
1121 tcp_dsack_seen(tp);
1122 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1123 } else if (num_sacks > 1) {
1124 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1125 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1126
1127 if (!after(end_seq_0, end_seq_1) &&
1128 !before(start_seq_0, start_seq_1)) {
1129 dup_sack = true;
1130 tcp_dsack_seen(tp);
1131 NET_INC_STATS(sock_net(sk),
1132 LINUX_MIB_TCPDSACKOFORECV);
1133 }
1134 }
1135
1136 /* D-SACK for already forgotten data... Do dumb counting. */
1137 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1138 !after(end_seq_0, prior_snd_una) &&
1139 after(end_seq_0, tp->undo_marker))
1140 tp->undo_retrans--;
1141
1142 return dup_sack;
1143 }
1144
1145 struct tcp_sacktag_state {
1146 int reord;
1147 int fack_count;
1148 /* Timestamps for earliest and latest never-retransmitted segment
1149 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1150 * but congestion control should still get an accurate delay signal.
1151 */
1152 u64 first_sackt;
1153 u64 last_sackt;
1154 struct rate_sample *rate;
1155 int flag;
1156 };
1157
1158 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1159 * the incoming SACK may not exactly match but we can find smaller MSS
1160 * aligned portion of it that matches. Therefore we might need to fragment
1161 * which may fail and creates some hassle (caller must handle error case
1162 * returns).
1163 *
1164 * FIXME: this could be merged to shift decision code
1165 */
1166 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1167 u32 start_seq, u32 end_seq)
1168 {
1169 int err;
1170 bool in_sack;
1171 unsigned int pkt_len;
1172 unsigned int mss;
1173
1174 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1175 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1176
1177 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1178 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1179 mss = tcp_skb_mss(skb);
1180 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1181
1182 if (!in_sack) {
1183 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1184 if (pkt_len < mss)
1185 pkt_len = mss;
1186 } else {
1187 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1188 if (pkt_len < mss)
1189 return -EINVAL;
1190 }
1191
1192 /* Round if necessary so that SACKs cover only full MSSes
1193 * and/or the remaining small portion (if present)
1194 */
1195 if (pkt_len > mss) {
1196 unsigned int new_len = (pkt_len / mss) * mss;
1197 if (!in_sack && new_len < pkt_len)
1198 new_len += mss;
1199 pkt_len = new_len;
1200 }
1201
1202 if (pkt_len >= skb->len && !in_sack)
1203 return 0;
1204
1205 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1206 if (err < 0)
1207 return err;
1208 }
1209
1210 return in_sack;
1211 }
1212
1213 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1214 static u8 tcp_sacktag_one(struct sock *sk,
1215 struct tcp_sacktag_state *state, u8 sacked,
1216 u32 start_seq, u32 end_seq,
1217 int dup_sack, int pcount,
1218 u64 xmit_time)
1219 {
1220 struct tcp_sock *tp = tcp_sk(sk);
1221 int fack_count = state->fack_count;
1222
1223 /* Account D-SACK for retransmitted packet. */
1224 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1225 if (tp->undo_marker && tp->undo_retrans > 0 &&
1226 after(end_seq, tp->undo_marker))
1227 tp->undo_retrans--;
1228 if (sacked & TCPCB_SACKED_ACKED)
1229 state->reord = min(fack_count, state->reord);
1230 }
1231
1232 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1233 if (!after(end_seq, tp->snd_una))
1234 return sacked;
1235
1236 if (!(sacked & TCPCB_SACKED_ACKED)) {
1237 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1238
1239 if (sacked & TCPCB_SACKED_RETRANS) {
1240 /* If the segment is not tagged as lost,
1241 * we do not clear RETRANS, believing
1242 * that retransmission is still in flight.
1243 */
1244 if (sacked & TCPCB_LOST) {
1245 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1246 tp->lost_out -= pcount;
1247 tp->retrans_out -= pcount;
1248 }
1249 } else {
1250 if (!(sacked & TCPCB_RETRANS)) {
1251 /* New sack for not retransmitted frame,
1252 * which was in hole. It is reordering.
1253 */
1254 if (before(start_seq,
1255 tcp_highest_sack_seq(tp)))
1256 state->reord = min(fack_count,
1257 state->reord);
1258 if (!after(end_seq, tp->high_seq))
1259 state->flag |= FLAG_ORIG_SACK_ACKED;
1260 if (state->first_sackt == 0)
1261 state->first_sackt = xmit_time;
1262 state->last_sackt = xmit_time;
1263 }
1264
1265 if (sacked & TCPCB_LOST) {
1266 sacked &= ~TCPCB_LOST;
1267 tp->lost_out -= pcount;
1268 }
1269 }
1270
1271 sacked |= TCPCB_SACKED_ACKED;
1272 state->flag |= FLAG_DATA_SACKED;
1273 tp->sacked_out += pcount;
1274 tp->delivered += pcount; /* Out-of-order packets delivered */
1275
1276 fack_count += pcount;
1277
1278 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1279 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1280 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1281 tp->lost_cnt_hint += pcount;
1282
1283 if (fack_count > tp->fackets_out)
1284 tp->fackets_out = fack_count;
1285 }
1286
1287 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1288 * frames and clear it. undo_retrans is decreased above, L|R frames
1289 * are accounted above as well.
1290 */
1291 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1292 sacked &= ~TCPCB_SACKED_RETRANS;
1293 tp->retrans_out -= pcount;
1294 }
1295
1296 return sacked;
1297 }
1298
1299 /* Shift newly-SACKed bytes from this skb to the immediately previous
1300 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1301 */
1302 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1303 struct tcp_sacktag_state *state,
1304 unsigned int pcount, int shifted, int mss,
1305 bool dup_sack)
1306 {
1307 struct tcp_sock *tp = tcp_sk(sk);
1308 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1309 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1310 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1311
1312 BUG_ON(!pcount);
1313
1314 /* Adjust counters and hints for the newly sacked sequence
1315 * range but discard the return value since prev is already
1316 * marked. We must tag the range first because the seq
1317 * advancement below implicitly advances
1318 * tcp_highest_sack_seq() when skb is highest_sack.
1319 */
1320 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1321 start_seq, end_seq, dup_sack, pcount,
1322 skb->skb_mstamp);
1323 tcp_rate_skb_delivered(sk, skb, state->rate);
1324
1325 if (skb == tp->lost_skb_hint)
1326 tp->lost_cnt_hint += pcount;
1327
1328 TCP_SKB_CB(prev)->end_seq += shifted;
1329 TCP_SKB_CB(skb)->seq += shifted;
1330
1331 tcp_skb_pcount_add(prev, pcount);
1332 BUG_ON(tcp_skb_pcount(skb) < pcount);
1333 tcp_skb_pcount_add(skb, -pcount);
1334
1335 /* When we're adding to gso_segs == 1, gso_size will be zero,
1336 * in theory this shouldn't be necessary but as long as DSACK
1337 * code can come after this skb later on it's better to keep
1338 * setting gso_size to something.
1339 */
1340 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1341 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1342
1343 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1344 if (tcp_skb_pcount(skb) <= 1)
1345 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1346
1347 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1348 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1349
1350 if (skb->len > 0) {
1351 BUG_ON(!tcp_skb_pcount(skb));
1352 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1353 return false;
1354 }
1355
1356 /* Whole SKB was eaten :-) */
1357
1358 if (skb == tp->retransmit_skb_hint)
1359 tp->retransmit_skb_hint = prev;
1360 if (skb == tp->lost_skb_hint) {
1361 tp->lost_skb_hint = prev;
1362 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1363 }
1364
1365 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1366 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1367 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1368 TCP_SKB_CB(prev)->end_seq++;
1369
1370 if (skb == tcp_highest_sack(sk))
1371 tcp_advance_highest_sack(sk, skb);
1372
1373 tcp_skb_collapse_tstamp(prev, skb);
1374 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1375 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1376
1377 tcp_unlink_write_queue(skb, sk);
1378 sk_wmem_free_skb(sk, skb);
1379
1380 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1381
1382 return true;
1383 }
1384
1385 /* I wish gso_size would have a bit more sane initialization than
1386 * something-or-zero which complicates things
1387 */
1388 static int tcp_skb_seglen(const struct sk_buff *skb)
1389 {
1390 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1391 }
1392
1393 /* Shifting pages past head area doesn't work */
1394 static int skb_can_shift(const struct sk_buff *skb)
1395 {
1396 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1397 }
1398
1399 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1400 * skb.
1401 */
1402 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1403 struct tcp_sacktag_state *state,
1404 u32 start_seq, u32 end_seq,
1405 bool dup_sack)
1406 {
1407 struct tcp_sock *tp = tcp_sk(sk);
1408 struct sk_buff *prev;
1409 int mss;
1410 int pcount = 0;
1411 int len;
1412 int in_sack;
1413
1414 if (!sk_can_gso(sk))
1415 goto fallback;
1416
1417 /* Normally R but no L won't result in plain S */
1418 if (!dup_sack &&
1419 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1420 goto fallback;
1421 if (!skb_can_shift(skb))
1422 goto fallback;
1423 /* This frame is about to be dropped (was ACKed). */
1424 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1425 goto fallback;
1426
1427 /* Can only happen with delayed DSACK + discard craziness */
1428 if (unlikely(skb == tcp_write_queue_head(sk)))
1429 goto fallback;
1430 prev = tcp_write_queue_prev(sk, skb);
1431
1432 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1433 goto fallback;
1434
1435 if (!tcp_skb_can_collapse_to(prev))
1436 goto fallback;
1437
1438 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1439 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1440
1441 if (in_sack) {
1442 len = skb->len;
1443 pcount = tcp_skb_pcount(skb);
1444 mss = tcp_skb_seglen(skb);
1445
1446 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1447 * drop this restriction as unnecessary
1448 */
1449 if (mss != tcp_skb_seglen(prev))
1450 goto fallback;
1451 } else {
1452 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1453 goto noop;
1454 /* CHECKME: This is non-MSS split case only?, this will
1455 * cause skipped skbs due to advancing loop btw, original
1456 * has that feature too
1457 */
1458 if (tcp_skb_pcount(skb) <= 1)
1459 goto noop;
1460
1461 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1462 if (!in_sack) {
1463 /* TODO: head merge to next could be attempted here
1464 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1465 * though it might not be worth of the additional hassle
1466 *
1467 * ...we can probably just fallback to what was done
1468 * previously. We could try merging non-SACKed ones
1469 * as well but it probably isn't going to buy off
1470 * because later SACKs might again split them, and
1471 * it would make skb timestamp tracking considerably
1472 * harder problem.
1473 */
1474 goto fallback;
1475 }
1476
1477 len = end_seq - TCP_SKB_CB(skb)->seq;
1478 BUG_ON(len < 0);
1479 BUG_ON(len > skb->len);
1480
1481 /* MSS boundaries should be honoured or else pcount will
1482 * severely break even though it makes things bit trickier.
1483 * Optimize common case to avoid most of the divides
1484 */
1485 mss = tcp_skb_mss(skb);
1486
1487 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1488 * drop this restriction as unnecessary
1489 */
1490 if (mss != tcp_skb_seglen(prev))
1491 goto fallback;
1492
1493 if (len == mss) {
1494 pcount = 1;
1495 } else if (len < mss) {
1496 goto noop;
1497 } else {
1498 pcount = len / mss;
1499 len = pcount * mss;
1500 }
1501 }
1502
1503 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1504 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1505 goto fallback;
1506
1507 if (!skb_shift(prev, skb, len))
1508 goto fallback;
1509 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1510 goto out;
1511
1512 /* Hole filled allows collapsing with the next as well, this is very
1513 * useful when hole on every nth skb pattern happens
1514 */
1515 if (prev == tcp_write_queue_tail(sk))
1516 goto out;
1517 skb = tcp_write_queue_next(sk, prev);
1518
1519 if (!skb_can_shift(skb) ||
1520 (skb == tcp_send_head(sk)) ||
1521 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1522 (mss != tcp_skb_seglen(skb)))
1523 goto out;
1524
1525 len = skb->len;
1526 if (skb_shift(prev, skb, len)) {
1527 pcount += tcp_skb_pcount(skb);
1528 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1529 }
1530
1531 out:
1532 state->fack_count += pcount;
1533 return prev;
1534
1535 noop:
1536 return skb;
1537
1538 fallback:
1539 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1540 return NULL;
1541 }
1542
1543 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1544 struct tcp_sack_block *next_dup,
1545 struct tcp_sacktag_state *state,
1546 u32 start_seq, u32 end_seq,
1547 bool dup_sack_in)
1548 {
1549 struct tcp_sock *tp = tcp_sk(sk);
1550 struct sk_buff *tmp;
1551
1552 tcp_for_write_queue_from(skb, sk) {
1553 int in_sack = 0;
1554 bool dup_sack = dup_sack_in;
1555
1556 if (skb == tcp_send_head(sk))
1557 break;
1558
1559 /* queue is in-order => we can short-circuit the walk early */
1560 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1561 break;
1562
1563 if (next_dup &&
1564 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1565 in_sack = tcp_match_skb_to_sack(sk, skb,
1566 next_dup->start_seq,
1567 next_dup->end_seq);
1568 if (in_sack > 0)
1569 dup_sack = true;
1570 }
1571
1572 /* skb reference here is a bit tricky to get right, since
1573 * shifting can eat and free both this skb and the next,
1574 * so not even _safe variant of the loop is enough.
1575 */
1576 if (in_sack <= 0) {
1577 tmp = tcp_shift_skb_data(sk, skb, state,
1578 start_seq, end_seq, dup_sack);
1579 if (tmp) {
1580 if (tmp != skb) {
1581 skb = tmp;
1582 continue;
1583 }
1584
1585 in_sack = 0;
1586 } else {
1587 in_sack = tcp_match_skb_to_sack(sk, skb,
1588 start_seq,
1589 end_seq);
1590 }
1591 }
1592
1593 if (unlikely(in_sack < 0))
1594 break;
1595
1596 if (in_sack) {
1597 TCP_SKB_CB(skb)->sacked =
1598 tcp_sacktag_one(sk,
1599 state,
1600 TCP_SKB_CB(skb)->sacked,
1601 TCP_SKB_CB(skb)->seq,
1602 TCP_SKB_CB(skb)->end_seq,
1603 dup_sack,
1604 tcp_skb_pcount(skb),
1605 skb->skb_mstamp);
1606 tcp_rate_skb_delivered(sk, skb, state->rate);
1607
1608 if (!before(TCP_SKB_CB(skb)->seq,
1609 tcp_highest_sack_seq(tp)))
1610 tcp_advance_highest_sack(sk, skb);
1611 }
1612
1613 state->fack_count += tcp_skb_pcount(skb);
1614 }
1615 return skb;
1616 }
1617
1618 /* Avoid all extra work that is being done by sacktag while walking in
1619 * a normal way
1620 */
1621 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1622 struct tcp_sacktag_state *state,
1623 u32 skip_to_seq)
1624 {
1625 tcp_for_write_queue_from(skb, sk) {
1626 if (skb == tcp_send_head(sk))
1627 break;
1628
1629 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1630 break;
1631
1632 state->fack_count += tcp_skb_pcount(skb);
1633 }
1634 return skb;
1635 }
1636
1637 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1638 struct sock *sk,
1639 struct tcp_sack_block *next_dup,
1640 struct tcp_sacktag_state *state,
1641 u32 skip_to_seq)
1642 {
1643 if (!next_dup)
1644 return skb;
1645
1646 if (before(next_dup->start_seq, skip_to_seq)) {
1647 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1648 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1649 next_dup->start_seq, next_dup->end_seq,
1650 1);
1651 }
1652
1653 return skb;
1654 }
1655
1656 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1657 {
1658 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1659 }
1660
1661 static int
1662 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1663 u32 prior_snd_una, struct tcp_sacktag_state *state)
1664 {
1665 struct tcp_sock *tp = tcp_sk(sk);
1666 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1667 TCP_SKB_CB(ack_skb)->sacked);
1668 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1669 struct tcp_sack_block sp[TCP_NUM_SACKS];
1670 struct tcp_sack_block *cache;
1671 struct sk_buff *skb;
1672 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1673 int used_sacks;
1674 bool found_dup_sack = false;
1675 int i, j;
1676 int first_sack_index;
1677
1678 state->flag = 0;
1679 state->reord = tp->packets_out;
1680
1681 if (!tp->sacked_out) {
1682 if (WARN_ON(tp->fackets_out))
1683 tp->fackets_out = 0;
1684 tcp_highest_sack_reset(sk);
1685 }
1686
1687 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1688 num_sacks, prior_snd_una);
1689 if (found_dup_sack) {
1690 state->flag |= FLAG_DSACKING_ACK;
1691 tp->delivered++; /* A spurious retransmission is delivered */
1692 }
1693
1694 /* Eliminate too old ACKs, but take into
1695 * account more or less fresh ones, they can
1696 * contain valid SACK info.
1697 */
1698 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1699 return 0;
1700
1701 if (!tp->packets_out)
1702 goto out;
1703
1704 used_sacks = 0;
1705 first_sack_index = 0;
1706 for (i = 0; i < num_sacks; i++) {
1707 bool dup_sack = !i && found_dup_sack;
1708
1709 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1710 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1711
1712 if (!tcp_is_sackblock_valid(tp, dup_sack,
1713 sp[used_sacks].start_seq,
1714 sp[used_sacks].end_seq)) {
1715 int mib_idx;
1716
1717 if (dup_sack) {
1718 if (!tp->undo_marker)
1719 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1720 else
1721 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1722 } else {
1723 /* Don't count olds caused by ACK reordering */
1724 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1725 !after(sp[used_sacks].end_seq, tp->snd_una))
1726 continue;
1727 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1728 }
1729
1730 NET_INC_STATS(sock_net(sk), mib_idx);
1731 if (i == 0)
1732 first_sack_index = -1;
1733 continue;
1734 }
1735
1736 /* Ignore very old stuff early */
1737 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1738 continue;
1739
1740 used_sacks++;
1741 }
1742
1743 /* order SACK blocks to allow in order walk of the retrans queue */
1744 for (i = used_sacks - 1; i > 0; i--) {
1745 for (j = 0; j < i; j++) {
1746 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1747 swap(sp[j], sp[j + 1]);
1748
1749 /* Track where the first SACK block goes to */
1750 if (j == first_sack_index)
1751 first_sack_index = j + 1;
1752 }
1753 }
1754 }
1755
1756 skb = tcp_write_queue_head(sk);
1757 state->fack_count = 0;
1758 i = 0;
1759
1760 if (!tp->sacked_out) {
1761 /* It's already past, so skip checking against it */
1762 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1763 } else {
1764 cache = tp->recv_sack_cache;
1765 /* Skip empty blocks in at head of the cache */
1766 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1767 !cache->end_seq)
1768 cache++;
1769 }
1770
1771 while (i < used_sacks) {
1772 u32 start_seq = sp[i].start_seq;
1773 u32 end_seq = sp[i].end_seq;
1774 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1775 struct tcp_sack_block *next_dup = NULL;
1776
1777 if (found_dup_sack && ((i + 1) == first_sack_index))
1778 next_dup = &sp[i + 1];
1779
1780 /* Skip too early cached blocks */
1781 while (tcp_sack_cache_ok(tp, cache) &&
1782 !before(start_seq, cache->end_seq))
1783 cache++;
1784
1785 /* Can skip some work by looking recv_sack_cache? */
1786 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1787 after(end_seq, cache->start_seq)) {
1788
1789 /* Head todo? */
1790 if (before(start_seq, cache->start_seq)) {
1791 skb = tcp_sacktag_skip(skb, sk, state,
1792 start_seq);
1793 skb = tcp_sacktag_walk(skb, sk, next_dup,
1794 state,
1795 start_seq,
1796 cache->start_seq,
1797 dup_sack);
1798 }
1799
1800 /* Rest of the block already fully processed? */
1801 if (!after(end_seq, cache->end_seq))
1802 goto advance_sp;
1803
1804 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1805 state,
1806 cache->end_seq);
1807
1808 /* ...tail remains todo... */
1809 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1810 /* ...but better entrypoint exists! */
1811 skb = tcp_highest_sack(sk);
1812 if (!skb)
1813 break;
1814 state->fack_count = tp->fackets_out;
1815 cache++;
1816 goto walk;
1817 }
1818
1819 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1820 /* Check overlap against next cached too (past this one already) */
1821 cache++;
1822 continue;
1823 }
1824
1825 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1826 skb = tcp_highest_sack(sk);
1827 if (!skb)
1828 break;
1829 state->fack_count = tp->fackets_out;
1830 }
1831 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1832
1833 walk:
1834 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1835 start_seq, end_seq, dup_sack);
1836
1837 advance_sp:
1838 i++;
1839 }
1840
1841 /* Clear the head of the cache sack blocks so we can skip it next time */
1842 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1843 tp->recv_sack_cache[i].start_seq = 0;
1844 tp->recv_sack_cache[i].end_seq = 0;
1845 }
1846 for (j = 0; j < used_sacks; j++)
1847 tp->recv_sack_cache[i++] = sp[j];
1848
1849 if ((state->reord < tp->fackets_out) &&
1850 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1851 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1852
1853 tcp_verify_left_out(tp);
1854 out:
1855
1856 #if FASTRETRANS_DEBUG > 0
1857 WARN_ON((int)tp->sacked_out < 0);
1858 WARN_ON((int)tp->lost_out < 0);
1859 WARN_ON((int)tp->retrans_out < 0);
1860 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1861 #endif
1862 return state->flag;
1863 }
1864
1865 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1866 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1867 */
1868 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1869 {
1870 u32 holes;
1871
1872 holes = max(tp->lost_out, 1U);
1873 holes = min(holes, tp->packets_out);
1874
1875 if ((tp->sacked_out + holes) > tp->packets_out) {
1876 tp->sacked_out = tp->packets_out - holes;
1877 return true;
1878 }
1879 return false;
1880 }
1881
1882 /* If we receive more dupacks than we expected counting segments
1883 * in assumption of absent reordering, interpret this as reordering.
1884 * The only another reason could be bug in receiver TCP.
1885 */
1886 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1887 {
1888 struct tcp_sock *tp = tcp_sk(sk);
1889 if (tcp_limit_reno_sacked(tp))
1890 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1891 }
1892
1893 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1894
1895 static void tcp_add_reno_sack(struct sock *sk)
1896 {
1897 struct tcp_sock *tp = tcp_sk(sk);
1898 u32 prior_sacked = tp->sacked_out;
1899
1900 tp->sacked_out++;
1901 tcp_check_reno_reordering(sk, 0);
1902 if (tp->sacked_out > prior_sacked)
1903 tp->delivered++; /* Some out-of-order packet is delivered */
1904 tcp_verify_left_out(tp);
1905 }
1906
1907 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1908
1909 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1910 {
1911 struct tcp_sock *tp = tcp_sk(sk);
1912
1913 if (acked > 0) {
1914 /* One ACK acked hole. The rest eat duplicate ACKs. */
1915 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1916 if (acked - 1 >= tp->sacked_out)
1917 tp->sacked_out = 0;
1918 else
1919 tp->sacked_out -= acked - 1;
1920 }
1921 tcp_check_reno_reordering(sk, acked);
1922 tcp_verify_left_out(tp);
1923 }
1924
1925 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1926 {
1927 tp->sacked_out = 0;
1928 }
1929
1930 void tcp_clear_retrans(struct tcp_sock *tp)
1931 {
1932 tp->retrans_out = 0;
1933 tp->lost_out = 0;
1934 tp->undo_marker = 0;
1935 tp->undo_retrans = -1;
1936 tp->fackets_out = 0;
1937 tp->sacked_out = 0;
1938 }
1939
1940 static inline void tcp_init_undo(struct tcp_sock *tp)
1941 {
1942 tp->undo_marker = tp->snd_una;
1943 /* Retransmission still in flight may cause DSACKs later. */
1944 tp->undo_retrans = tp->retrans_out ? : -1;
1945 }
1946
1947 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1948 * and reset tags completely, otherwise preserve SACKs. If receiver
1949 * dropped its ofo queue, we will know this due to reneging detection.
1950 */
1951 void tcp_enter_loss(struct sock *sk)
1952 {
1953 const struct inet_connection_sock *icsk = inet_csk(sk);
1954 struct tcp_sock *tp = tcp_sk(sk);
1955 struct net *net = sock_net(sk);
1956 struct sk_buff *skb;
1957 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1958 bool is_reneg; /* is receiver reneging on SACKs? */
1959 bool mark_lost;
1960
1961 /* Reduce ssthresh if it has not yet been made inside this window. */
1962 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1963 !after(tp->high_seq, tp->snd_una) ||
1964 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1965 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1966 tp->prior_cwnd = tp->snd_cwnd;
1967 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1968 tcp_ca_event(sk, CA_EVENT_LOSS);
1969 tcp_init_undo(tp);
1970 }
1971 tp->snd_cwnd = 1;
1972 tp->snd_cwnd_cnt = 0;
1973 tp->snd_cwnd_stamp = tcp_jiffies32;
1974
1975 tp->retrans_out = 0;
1976 tp->lost_out = 0;
1977
1978 if (tcp_is_reno(tp))
1979 tcp_reset_reno_sack(tp);
1980
1981 skb = tcp_write_queue_head(sk);
1982 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1983 if (is_reneg) {
1984 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1985 tp->sacked_out = 0;
1986 tp->fackets_out = 0;
1987 /* Mark SACK reneging until we recover from this loss event. */
1988 tp->is_sack_reneg = 1;
1989 }
1990 tcp_clear_all_retrans_hints(tp);
1991
1992 tcp_for_write_queue(skb, sk) {
1993 if (skb == tcp_send_head(sk))
1994 break;
1995
1996 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1997 is_reneg);
1998 if (mark_lost)
1999 tcp_sum_lost(tp, skb);
2000 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2001 if (mark_lost) {
2002 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2003 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2004 tp->lost_out += tcp_skb_pcount(skb);
2005 }
2006 }
2007 tcp_verify_left_out(tp);
2008
2009 /* Timeout in disordered state after receiving substantial DUPACKs
2010 * suggests that the degree of reordering is over-estimated.
2011 */
2012 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2013 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2014 tp->reordering = min_t(unsigned int, tp->reordering,
2015 net->ipv4.sysctl_tcp_reordering);
2016 tcp_set_ca_state(sk, TCP_CA_Loss);
2017 tp->high_seq = tp->snd_nxt;
2018 tcp_ecn_queue_cwr(tp);
2019
2020 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2021 * loss recovery is underway except recurring timeout(s) on
2022 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2023 */
2024 tp->frto = sysctl_tcp_frto &&
2025 (new_recovery || icsk->icsk_retransmits) &&
2026 !inet_csk(sk)->icsk_mtup.probe_size;
2027 }
2028
2029 /* If ACK arrived pointing to a remembered SACK, it means that our
2030 * remembered SACKs do not reflect real state of receiver i.e.
2031 * receiver _host_ is heavily congested (or buggy).
2032 *
2033 * To avoid big spurious retransmission bursts due to transient SACK
2034 * scoreboard oddities that look like reneging, we give the receiver a
2035 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2036 * restore sanity to the SACK scoreboard. If the apparent reneging
2037 * persists until this RTO then we'll clear the SACK scoreboard.
2038 */
2039 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2040 {
2041 if (flag & FLAG_SACK_RENEGING) {
2042 struct tcp_sock *tp = tcp_sk(sk);
2043 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2044 msecs_to_jiffies(10));
2045
2046 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2047 delay, TCP_RTO_MAX);
2048 return true;
2049 }
2050 return false;
2051 }
2052
2053 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2054 {
2055 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2056 }
2057
2058 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2059 * counter when SACK is enabled (without SACK, sacked_out is used for
2060 * that purpose).
2061 *
2062 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2063 * segments up to the highest received SACK block so far and holes in
2064 * between them.
2065 *
2066 * With reordering, holes may still be in flight, so RFC3517 recovery
2067 * uses pure sacked_out (total number of SACKed segments) even though
2068 * it violates the RFC that uses duplicate ACKs, often these are equal
2069 * but when e.g. out-of-window ACKs or packet duplication occurs,
2070 * they differ. Since neither occurs due to loss, TCP should really
2071 * ignore them.
2072 */
2073 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2074 {
2075 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2076 }
2077
2078 /* Linux NewReno/SACK/FACK/ECN state machine.
2079 * --------------------------------------
2080 *
2081 * "Open" Normal state, no dubious events, fast path.
2082 * "Disorder" In all the respects it is "Open",
2083 * but requires a bit more attention. It is entered when
2084 * we see some SACKs or dupacks. It is split of "Open"
2085 * mainly to move some processing from fast path to slow one.
2086 * "CWR" CWND was reduced due to some Congestion Notification event.
2087 * It can be ECN, ICMP source quench, local device congestion.
2088 * "Recovery" CWND was reduced, we are fast-retransmitting.
2089 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2090 *
2091 * tcp_fastretrans_alert() is entered:
2092 * - each incoming ACK, if state is not "Open"
2093 * - when arrived ACK is unusual, namely:
2094 * * SACK
2095 * * Duplicate ACK.
2096 * * ECN ECE.
2097 *
2098 * Counting packets in flight is pretty simple.
2099 *
2100 * in_flight = packets_out - left_out + retrans_out
2101 *
2102 * packets_out is SND.NXT-SND.UNA counted in packets.
2103 *
2104 * retrans_out is number of retransmitted segments.
2105 *
2106 * left_out is number of segments left network, but not ACKed yet.
2107 *
2108 * left_out = sacked_out + lost_out
2109 *
2110 * sacked_out: Packets, which arrived to receiver out of order
2111 * and hence not ACKed. With SACKs this number is simply
2112 * amount of SACKed data. Even without SACKs
2113 * it is easy to give pretty reliable estimate of this number,
2114 * counting duplicate ACKs.
2115 *
2116 * lost_out: Packets lost by network. TCP has no explicit
2117 * "loss notification" feedback from network (for now).
2118 * It means that this number can be only _guessed_.
2119 * Actually, it is the heuristics to predict lossage that
2120 * distinguishes different algorithms.
2121 *
2122 * F.e. after RTO, when all the queue is considered as lost,
2123 * lost_out = packets_out and in_flight = retrans_out.
2124 *
2125 * Essentially, we have now a few algorithms detecting
2126 * lost packets.
2127 *
2128 * If the receiver supports SACK:
2129 *
2130 * RFC6675/3517: It is the conventional algorithm. A packet is
2131 * considered lost if the number of higher sequence packets
2132 * SACKed is greater than or equal the DUPACK thoreshold
2133 * (reordering). This is implemented in tcp_mark_head_lost and
2134 * tcp_update_scoreboard.
2135 *
2136 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2137 * (2017-) that checks timing instead of counting DUPACKs.
2138 * Essentially a packet is considered lost if it's not S/ACKed
2139 * after RTT + reordering_window, where both metrics are
2140 * dynamically measured and adjusted. This is implemented in
2141 * tcp_rack_mark_lost.
2142 *
2143 * FACK (Disabled by default. Subsumbed by RACK):
2144 * It is the simplest heuristics. As soon as we decided
2145 * that something is lost, we decide that _all_ not SACKed
2146 * packets until the most forward SACK are lost. I.e.
2147 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2148 * It is absolutely correct estimate, if network does not reorder
2149 * packets. And it loses any connection to reality when reordering
2150 * takes place. We use FACK by default until reordering
2151 * is suspected on the path to this destination.
2152 *
2153 * If the receiver does not support SACK:
2154 *
2155 * NewReno (RFC6582): in Recovery we assume that one segment
2156 * is lost (classic Reno). While we are in Recovery and
2157 * a partial ACK arrives, we assume that one more packet
2158 * is lost (NewReno). This heuristics are the same in NewReno
2159 * and SACK.
2160 *
2161 * Really tricky (and requiring careful tuning) part of algorithm
2162 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2163 * The first determines the moment _when_ we should reduce CWND and,
2164 * hence, slow down forward transmission. In fact, it determines the moment
2165 * when we decide that hole is caused by loss, rather than by a reorder.
2166 *
2167 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2168 * holes, caused by lost packets.
2169 *
2170 * And the most logically complicated part of algorithm is undo
2171 * heuristics. We detect false retransmits due to both too early
2172 * fast retransmit (reordering) and underestimated RTO, analyzing
2173 * timestamps and D-SACKs. When we detect that some segments were
2174 * retransmitted by mistake and CWND reduction was wrong, we undo
2175 * window reduction and abort recovery phase. This logic is hidden
2176 * inside several functions named tcp_try_undo_<something>.
2177 */
2178
2179 /* This function decides, when we should leave Disordered state
2180 * and enter Recovery phase, reducing congestion window.
2181 *
2182 * Main question: may we further continue forward transmission
2183 * with the same cwnd?
2184 */
2185 static bool tcp_time_to_recover(struct sock *sk, int flag)
2186 {
2187 struct tcp_sock *tp = tcp_sk(sk);
2188
2189 /* Trick#1: The loss is proven. */
2190 if (tp->lost_out)
2191 return true;
2192
2193 /* Not-A-Trick#2 : Classic rule... */
2194 if (tcp_dupack_heuristics(tp) > tp->reordering)
2195 return true;
2196
2197 return false;
2198 }
2199
2200 /* Detect loss in event "A" above by marking head of queue up as lost.
2201 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2202 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2203 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2204 * the maximum SACKed segments to pass before reaching this limit.
2205 */
2206 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2207 {
2208 struct tcp_sock *tp = tcp_sk(sk);
2209 struct sk_buff *skb;
2210 int cnt, oldcnt, lost;
2211 unsigned int mss;
2212 /* Use SACK to deduce losses of new sequences sent during recovery */
2213 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2214
2215 WARN_ON(packets > tp->packets_out);
2216 if (tp->lost_skb_hint) {
2217 skb = tp->lost_skb_hint;
2218 cnt = tp->lost_cnt_hint;
2219 /* Head already handled? */
2220 if (mark_head && skb != tcp_write_queue_head(sk))
2221 return;
2222 } else {
2223 skb = tcp_write_queue_head(sk);
2224 cnt = 0;
2225 }
2226
2227 tcp_for_write_queue_from(skb, sk) {
2228 if (skb == tcp_send_head(sk))
2229 break;
2230 /* TODO: do this better */
2231 /* this is not the most efficient way to do this... */
2232 tp->lost_skb_hint = skb;
2233 tp->lost_cnt_hint = cnt;
2234
2235 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2236 break;
2237
2238 oldcnt = cnt;
2239 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2240 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2241 cnt += tcp_skb_pcount(skb);
2242
2243 if (cnt > packets) {
2244 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2245 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2246 (oldcnt >= packets))
2247 break;
2248
2249 mss = tcp_skb_mss(skb);
2250 /* If needed, chop off the prefix to mark as lost. */
2251 lost = (packets - oldcnt) * mss;
2252 if (lost < skb->len &&
2253 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2254 break;
2255 cnt = packets;
2256 }
2257
2258 tcp_skb_mark_lost(tp, skb);
2259
2260 if (mark_head)
2261 break;
2262 }
2263 tcp_verify_left_out(tp);
2264 }
2265
2266 /* Account newly detected lost packet(s) */
2267
2268 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2269 {
2270 struct tcp_sock *tp = tcp_sk(sk);
2271
2272 if (tcp_is_reno(tp)) {
2273 tcp_mark_head_lost(sk, 1, 1);
2274 } else if (tcp_is_fack(tp)) {
2275 int lost = tp->fackets_out - tp->reordering;
2276 if (lost <= 0)
2277 lost = 1;
2278 tcp_mark_head_lost(sk, lost, 0);
2279 } else {
2280 int sacked_upto = tp->sacked_out - tp->reordering;
2281 if (sacked_upto >= 0)
2282 tcp_mark_head_lost(sk, sacked_upto, 0);
2283 else if (fast_rexmit)
2284 tcp_mark_head_lost(sk, 1, 1);
2285 }
2286 }
2287
2288 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2289 {
2290 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2291 before(tp->rx_opt.rcv_tsecr, when);
2292 }
2293
2294 /* skb is spurious retransmitted if the returned timestamp echo
2295 * reply is prior to the skb transmission time
2296 */
2297 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2298 const struct sk_buff *skb)
2299 {
2300 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2301 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2302 }
2303
2304 /* Nothing was retransmitted or returned timestamp is less
2305 * than timestamp of the first retransmission.
2306 */
2307 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2308 {
2309 return !tp->retrans_stamp ||
2310 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2311 }
2312
2313 /* Undo procedures. */
2314
2315 /* We can clear retrans_stamp when there are no retransmissions in the
2316 * window. It would seem that it is trivially available for us in
2317 * tp->retrans_out, however, that kind of assumptions doesn't consider
2318 * what will happen if errors occur when sending retransmission for the
2319 * second time. ...It could the that such segment has only
2320 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2321 * the head skb is enough except for some reneging corner cases that
2322 * are not worth the effort.
2323 *
2324 * Main reason for all this complexity is the fact that connection dying
2325 * time now depends on the validity of the retrans_stamp, in particular,
2326 * that successive retransmissions of a segment must not advance
2327 * retrans_stamp under any conditions.
2328 */
2329 static bool tcp_any_retrans_done(const struct sock *sk)
2330 {
2331 const struct tcp_sock *tp = tcp_sk(sk);
2332 struct sk_buff *skb;
2333
2334 if (tp->retrans_out)
2335 return true;
2336
2337 skb = tcp_write_queue_head(sk);
2338 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2339 return true;
2340
2341 return false;
2342 }
2343
2344 #if FASTRETRANS_DEBUG > 1
2345 static void DBGUNDO(struct sock *sk, const char *msg)
2346 {
2347 struct tcp_sock *tp = tcp_sk(sk);
2348 struct inet_sock *inet = inet_sk(sk);
2349
2350 if (sk->sk_family == AF_INET) {
2351 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2352 msg,
2353 &inet->inet_daddr, ntohs(inet->inet_dport),
2354 tp->snd_cwnd, tcp_left_out(tp),
2355 tp->snd_ssthresh, tp->prior_ssthresh,
2356 tp->packets_out);
2357 }
2358 #if IS_ENABLED(CONFIG_IPV6)
2359 else if (sk->sk_family == AF_INET6) {
2360 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2361 msg,
2362 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2363 tp->snd_cwnd, tcp_left_out(tp),
2364 tp->snd_ssthresh, tp->prior_ssthresh,
2365 tp->packets_out);
2366 }
2367 #endif
2368 }
2369 #else
2370 #define DBGUNDO(x...) do { } while (0)
2371 #endif
2372
2373 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2374 {
2375 struct tcp_sock *tp = tcp_sk(sk);
2376
2377 if (unmark_loss) {
2378 struct sk_buff *skb;
2379
2380 tcp_for_write_queue(skb, sk) {
2381 if (skb == tcp_send_head(sk))
2382 break;
2383 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2384 }
2385 tp->lost_out = 0;
2386 tcp_clear_all_retrans_hints(tp);
2387 }
2388
2389 if (tp->prior_ssthresh) {
2390 const struct inet_connection_sock *icsk = inet_csk(sk);
2391
2392 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2393
2394 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2395 tp->snd_ssthresh = tp->prior_ssthresh;
2396 tcp_ecn_withdraw_cwr(tp);
2397 }
2398 }
2399 tp->snd_cwnd_stamp = tcp_jiffies32;
2400 tp->undo_marker = 0;
2401 }
2402
2403 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2404 {
2405 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2406 }
2407
2408 /* People celebrate: "We love our President!" */
2409 static bool tcp_try_undo_recovery(struct sock *sk)
2410 {
2411 struct tcp_sock *tp = tcp_sk(sk);
2412
2413 if (tcp_may_undo(tp)) {
2414 int mib_idx;
2415
2416 /* Happy end! We did not retransmit anything
2417 * or our original transmission succeeded.
2418 */
2419 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2420 tcp_undo_cwnd_reduction(sk, false);
2421 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2422 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2423 else
2424 mib_idx = LINUX_MIB_TCPFULLUNDO;
2425
2426 NET_INC_STATS(sock_net(sk), mib_idx);
2427 }
2428 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2429 /* Hold old state until something *above* high_seq
2430 * is ACKed. For Reno it is MUST to prevent false
2431 * fast retransmits (RFC2582). SACK TCP is safe. */
2432 if (!tcp_any_retrans_done(sk))
2433 tp->retrans_stamp = 0;
2434 return true;
2435 }
2436 tcp_set_ca_state(sk, TCP_CA_Open);
2437 tp->is_sack_reneg = 0;
2438 return false;
2439 }
2440
2441 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2442 static bool tcp_try_undo_dsack(struct sock *sk)
2443 {
2444 struct tcp_sock *tp = tcp_sk(sk);
2445
2446 if (tp->undo_marker && !tp->undo_retrans) {
2447 DBGUNDO(sk, "D-SACK");
2448 tcp_undo_cwnd_reduction(sk, false);
2449 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2450 return true;
2451 }
2452 return false;
2453 }
2454
2455 /* Undo during loss recovery after partial ACK or using F-RTO. */
2456 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2457 {
2458 struct tcp_sock *tp = tcp_sk(sk);
2459
2460 if (frto_undo || tcp_may_undo(tp)) {
2461 tcp_undo_cwnd_reduction(sk, true);
2462
2463 DBGUNDO(sk, "partial loss");
2464 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2465 if (frto_undo)
2466 NET_INC_STATS(sock_net(sk),
2467 LINUX_MIB_TCPSPURIOUSRTOS);
2468 inet_csk(sk)->icsk_retransmits = 0;
2469 if (frto_undo || tcp_is_sack(tp)) {
2470 tcp_set_ca_state(sk, TCP_CA_Open);
2471 tp->is_sack_reneg = 0;
2472 }
2473 return true;
2474 }
2475 return false;
2476 }
2477
2478 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2479 * It computes the number of packets to send (sndcnt) based on packets newly
2480 * delivered:
2481 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2482 * cwnd reductions across a full RTT.
2483 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2484 * But when the retransmits are acked without further losses, PRR
2485 * slow starts cwnd up to ssthresh to speed up the recovery.
2486 */
2487 static void tcp_init_cwnd_reduction(struct sock *sk)
2488 {
2489 struct tcp_sock *tp = tcp_sk(sk);
2490
2491 tp->high_seq = tp->snd_nxt;
2492 tp->tlp_high_seq = 0;
2493 tp->snd_cwnd_cnt = 0;
2494 tp->prior_cwnd = tp->snd_cwnd;
2495 tp->prr_delivered = 0;
2496 tp->prr_out = 0;
2497 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2498 tcp_ecn_queue_cwr(tp);
2499 }
2500
2501 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2502 {
2503 struct tcp_sock *tp = tcp_sk(sk);
2504 int sndcnt = 0;
2505 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2506
2507 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2508 return;
2509
2510 tp->prr_delivered += newly_acked_sacked;
2511 if (delta < 0) {
2512 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2513 tp->prior_cwnd - 1;
2514 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2515 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2516 !(flag & FLAG_LOST_RETRANS)) {
2517 sndcnt = min_t(int, delta,
2518 max_t(int, tp->prr_delivered - tp->prr_out,
2519 newly_acked_sacked) + 1);
2520 } else {
2521 sndcnt = min(delta, newly_acked_sacked);
2522 }
2523 /* Force a fast retransmit upon entering fast recovery */
2524 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2525 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2526 }
2527
2528 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2529 {
2530 struct tcp_sock *tp = tcp_sk(sk);
2531
2532 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2533 return;
2534
2535 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2536 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2537 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2538 tp->snd_cwnd = tp->snd_ssthresh;
2539 tp->snd_cwnd_stamp = tcp_jiffies32;
2540 }
2541 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2542 }
2543
2544 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2545 void tcp_enter_cwr(struct sock *sk)
2546 {
2547 struct tcp_sock *tp = tcp_sk(sk);
2548
2549 tp->prior_ssthresh = 0;
2550 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2551 tp->undo_marker = 0;
2552 tcp_init_cwnd_reduction(sk);
2553 tcp_set_ca_state(sk, TCP_CA_CWR);
2554 }
2555 }
2556 EXPORT_SYMBOL(tcp_enter_cwr);
2557
2558 static void tcp_try_keep_open(struct sock *sk)
2559 {
2560 struct tcp_sock *tp = tcp_sk(sk);
2561 int state = TCP_CA_Open;
2562
2563 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2564 state = TCP_CA_Disorder;
2565
2566 if (inet_csk(sk)->icsk_ca_state != state) {
2567 tcp_set_ca_state(sk, state);
2568 tp->high_seq = tp->snd_nxt;
2569 }
2570 }
2571
2572 static void tcp_try_to_open(struct sock *sk, int flag)
2573 {
2574 struct tcp_sock *tp = tcp_sk(sk);
2575
2576 tcp_verify_left_out(tp);
2577
2578 if (!tcp_any_retrans_done(sk))
2579 tp->retrans_stamp = 0;
2580
2581 if (flag & FLAG_ECE)
2582 tcp_enter_cwr(sk);
2583
2584 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2585 tcp_try_keep_open(sk);
2586 }
2587 }
2588
2589 static void tcp_mtup_probe_failed(struct sock *sk)
2590 {
2591 struct inet_connection_sock *icsk = inet_csk(sk);
2592
2593 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2594 icsk->icsk_mtup.probe_size = 0;
2595 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2596 }
2597
2598 static void tcp_mtup_probe_success(struct sock *sk)
2599 {
2600 struct tcp_sock *tp = tcp_sk(sk);
2601 struct inet_connection_sock *icsk = inet_csk(sk);
2602
2603 /* FIXME: breaks with very large cwnd */
2604 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2605 tp->snd_cwnd = tp->snd_cwnd *
2606 tcp_mss_to_mtu(sk, tp->mss_cache) /
2607 icsk->icsk_mtup.probe_size;
2608 tp->snd_cwnd_cnt = 0;
2609 tp->snd_cwnd_stamp = tcp_jiffies32;
2610 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2611
2612 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2613 icsk->icsk_mtup.probe_size = 0;
2614 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2615 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2616 }
2617
2618 /* Do a simple retransmit without using the backoff mechanisms in
2619 * tcp_timer. This is used for path mtu discovery.
2620 * The socket is already locked here.
2621 */
2622 void tcp_simple_retransmit(struct sock *sk)
2623 {
2624 const struct inet_connection_sock *icsk = inet_csk(sk);
2625 struct tcp_sock *tp = tcp_sk(sk);
2626 struct sk_buff *skb;
2627 unsigned int mss = tcp_current_mss(sk);
2628
2629 tcp_for_write_queue(skb, sk) {
2630 if (skb == tcp_send_head(sk))
2631 break;
2632 if (tcp_skb_seglen(skb) > mss &&
2633 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2634 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2635 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2636 tp->retrans_out -= tcp_skb_pcount(skb);
2637 }
2638 tcp_skb_mark_lost_uncond_verify(tp, skb);
2639 }
2640 }
2641
2642 tcp_clear_retrans_hints_partial(tp);
2643
2644 if (!tp->lost_out)
2645 return;
2646
2647 if (tcp_is_reno(tp))
2648 tcp_limit_reno_sacked(tp);
2649
2650 tcp_verify_left_out(tp);
2651
2652 /* Don't muck with the congestion window here.
2653 * Reason is that we do not increase amount of _data_
2654 * in network, but units changed and effective
2655 * cwnd/ssthresh really reduced now.
2656 */
2657 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2658 tp->high_seq = tp->snd_nxt;
2659 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2660 tp->prior_ssthresh = 0;
2661 tp->undo_marker = 0;
2662 tcp_set_ca_state(sk, TCP_CA_Loss);
2663 }
2664 tcp_xmit_retransmit_queue(sk);
2665 }
2666 EXPORT_SYMBOL(tcp_simple_retransmit);
2667
2668 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2669 {
2670 struct tcp_sock *tp = tcp_sk(sk);
2671 int mib_idx;
2672
2673 if (tcp_is_reno(tp))
2674 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2675 else
2676 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2677
2678 NET_INC_STATS(sock_net(sk), mib_idx);
2679
2680 tp->prior_ssthresh = 0;
2681 tcp_init_undo(tp);
2682
2683 if (!tcp_in_cwnd_reduction(sk)) {
2684 if (!ece_ack)
2685 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2686 tcp_init_cwnd_reduction(sk);
2687 }
2688 tcp_set_ca_state(sk, TCP_CA_Recovery);
2689 }
2690
2691 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2692 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2693 */
2694 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2695 int *rexmit)
2696 {
2697 struct tcp_sock *tp = tcp_sk(sk);
2698 bool recovered = !before(tp->snd_una, tp->high_seq);
2699
2700 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2701 tcp_try_undo_loss(sk, false))
2702 return;
2703
2704 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2705 /* Step 3.b. A timeout is spurious if not all data are
2706 * lost, i.e., never-retransmitted data are (s)acked.
2707 */
2708 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2709 tcp_try_undo_loss(sk, true))
2710 return;
2711
2712 if (after(tp->snd_nxt, tp->high_seq)) {
2713 if (flag & FLAG_DATA_SACKED || is_dupack)
2714 tp->frto = 0; /* Step 3.a. loss was real */
2715 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2716 tp->high_seq = tp->snd_nxt;
2717 /* Step 2.b. Try send new data (but deferred until cwnd
2718 * is updated in tcp_ack()). Otherwise fall back to
2719 * the conventional recovery.
2720 */
2721 if (tcp_send_head(sk) &&
2722 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2723 *rexmit = REXMIT_NEW;
2724 return;
2725 }
2726 tp->frto = 0;
2727 }
2728 }
2729
2730 if (recovered) {
2731 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2732 tcp_try_undo_recovery(sk);
2733 return;
2734 }
2735 if (tcp_is_reno(tp)) {
2736 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2737 * delivered. Lower inflight to clock out (re)tranmissions.
2738 */
2739 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2740 tcp_add_reno_sack(sk);
2741 else if (flag & FLAG_SND_UNA_ADVANCED)
2742 tcp_reset_reno_sack(tp);
2743 }
2744 *rexmit = REXMIT_LOST;
2745 }
2746
2747 /* Undo during fast recovery after partial ACK. */
2748 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2749 {
2750 struct tcp_sock *tp = tcp_sk(sk);
2751
2752 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2753 /* Plain luck! Hole if filled with delayed
2754 * packet, rather than with a retransmit.
2755 */
2756 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2757
2758 /* We are getting evidence that the reordering degree is higher
2759 * than we realized. If there are no retransmits out then we
2760 * can undo. Otherwise we clock out new packets but do not
2761 * mark more packets lost or retransmit more.
2762 */
2763 if (tp->retrans_out)
2764 return true;
2765
2766 if (!tcp_any_retrans_done(sk))
2767 tp->retrans_stamp = 0;
2768
2769 DBGUNDO(sk, "partial recovery");
2770 tcp_undo_cwnd_reduction(sk, true);
2771 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2772 tcp_try_keep_open(sk);
2773 return true;
2774 }
2775 return false;
2776 }
2777
2778 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2779 {
2780 struct tcp_sock *tp = tcp_sk(sk);
2781
2782 /* Use RACK to detect loss */
2783 if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2784 u32 prior_retrans = tp->retrans_out;
2785
2786 tcp_rack_mark_lost(sk);
2787 if (prior_retrans > tp->retrans_out)
2788 *ack_flag |= FLAG_LOST_RETRANS;
2789 }
2790 }
2791
2792 /* Process an event, which can update packets-in-flight not trivially.
2793 * Main goal of this function is to calculate new estimate for left_out,
2794 * taking into account both packets sitting in receiver's buffer and
2795 * packets lost by network.
2796 *
2797 * Besides that it updates the congestion state when packet loss or ECN
2798 * is detected. But it does not reduce the cwnd, it is done by the
2799 * congestion control later.
2800 *
2801 * It does _not_ decide what to send, it is made in function
2802 * tcp_xmit_retransmit_queue().
2803 */
2804 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2805 bool is_dupack, int *ack_flag, int *rexmit)
2806 {
2807 struct inet_connection_sock *icsk = inet_csk(sk);
2808 struct tcp_sock *tp = tcp_sk(sk);
2809 int fast_rexmit = 0, flag = *ack_flag;
2810 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2811 (tcp_fackets_out(tp) > tp->reordering));
2812
2813 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2814 tp->sacked_out = 0;
2815 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2816 tp->fackets_out = 0;
2817
2818 /* Now state machine starts.
2819 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2820 if (flag & FLAG_ECE)
2821 tp->prior_ssthresh = 0;
2822
2823 /* B. In all the states check for reneging SACKs. */
2824 if (tcp_check_sack_reneging(sk, flag))
2825 return;
2826
2827 /* C. Check consistency of the current state. */
2828 tcp_verify_left_out(tp);
2829
2830 /* D. Check state exit conditions. State can be terminated
2831 * when high_seq is ACKed. */
2832 if (icsk->icsk_ca_state == TCP_CA_Open) {
2833 WARN_ON(tp->retrans_out != 0);
2834 tp->retrans_stamp = 0;
2835 } else if (!before(tp->snd_una, tp->high_seq)) {
2836 switch (icsk->icsk_ca_state) {
2837 case TCP_CA_CWR:
2838 /* CWR is to be held something *above* high_seq
2839 * is ACKed for CWR bit to reach receiver. */
2840 if (tp->snd_una != tp->high_seq) {
2841 tcp_end_cwnd_reduction(sk);
2842 tcp_set_ca_state(sk, TCP_CA_Open);
2843 }
2844 break;
2845
2846 case TCP_CA_Recovery:
2847 if (tcp_is_reno(tp))
2848 tcp_reset_reno_sack(tp);
2849 if (tcp_try_undo_recovery(sk))
2850 return;
2851 tcp_end_cwnd_reduction(sk);
2852 break;
2853 }
2854 }
2855
2856 /* E. Process state. */
2857 switch (icsk->icsk_ca_state) {
2858 case TCP_CA_Recovery:
2859 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2860 if (tcp_is_reno(tp) && is_dupack)
2861 tcp_add_reno_sack(sk);
2862 } else {
2863 if (tcp_try_undo_partial(sk, acked))
2864 return;
2865 /* Partial ACK arrived. Force fast retransmit. */
2866 do_lost = tcp_is_reno(tp) ||
2867 tcp_fackets_out(tp) > tp->reordering;
2868 }
2869 if (tcp_try_undo_dsack(sk)) {
2870 tcp_try_keep_open(sk);
2871 return;
2872 }
2873 tcp_rack_identify_loss(sk, ack_flag);
2874 break;
2875 case TCP_CA_Loss:
2876 tcp_process_loss(sk, flag, is_dupack, rexmit);
2877 tcp_rack_identify_loss(sk, ack_flag);
2878 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2879 (*ack_flag & FLAG_LOST_RETRANS)))
2880 return;
2881 /* Change state if cwnd is undone or retransmits are lost */
2882 default:
2883 if (tcp_is_reno(tp)) {
2884 if (flag & FLAG_SND_UNA_ADVANCED)
2885 tcp_reset_reno_sack(tp);
2886 if (is_dupack)
2887 tcp_add_reno_sack(sk);
2888 }
2889
2890 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2891 tcp_try_undo_dsack(sk);
2892
2893 tcp_rack_identify_loss(sk, ack_flag);
2894 if (!tcp_time_to_recover(sk, flag)) {
2895 tcp_try_to_open(sk, flag);
2896 return;
2897 }
2898
2899 /* MTU probe failure: don't reduce cwnd */
2900 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2901 icsk->icsk_mtup.probe_size &&
2902 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2903 tcp_mtup_probe_failed(sk);
2904 /* Restores the reduction we did in tcp_mtup_probe() */
2905 tp->snd_cwnd++;
2906 tcp_simple_retransmit(sk);
2907 return;
2908 }
2909
2910 /* Otherwise enter Recovery state */
2911 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2912 fast_rexmit = 1;
2913 }
2914
2915 if (do_lost)
2916 tcp_update_scoreboard(sk, fast_rexmit);
2917 *rexmit = REXMIT_LOST;
2918 }
2919
2920 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2921 {
2922 struct tcp_sock *tp = tcp_sk(sk);
2923 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2924
2925 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2926 rtt_us ? : jiffies_to_usecs(1));
2927 }
2928
2929 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2930 long seq_rtt_us, long sack_rtt_us,
2931 long ca_rtt_us, struct rate_sample *rs)
2932 {
2933 const struct tcp_sock *tp = tcp_sk(sk);
2934
2935 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2936 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2937 * Karn's algorithm forbids taking RTT if some retransmitted data
2938 * is acked (RFC6298).
2939 */
2940 if (seq_rtt_us < 0)
2941 seq_rtt_us = sack_rtt_us;
2942
2943 /* RTTM Rule: A TSecr value received in a segment is used to
2944 * update the averaged RTT measurement only if the segment
2945 * acknowledges some new data, i.e., only if it advances the
2946 * left edge of the send window.
2947 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2948 */
2949 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2950 flag & FLAG_ACKED) {
2951 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2952 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2953
2954 seq_rtt_us = ca_rtt_us = delta_us;
2955 }
2956 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2957 if (seq_rtt_us < 0)
2958 return false;
2959
2960 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2961 * always taken together with ACK, SACK, or TS-opts. Any negative
2962 * values will be skipped with the seq_rtt_us < 0 check above.
2963 */
2964 tcp_update_rtt_min(sk, ca_rtt_us);
2965 tcp_rtt_estimator(sk, seq_rtt_us);
2966 tcp_set_rto(sk);
2967
2968 /* RFC6298: only reset backoff on valid RTT measurement. */
2969 inet_csk(sk)->icsk_backoff = 0;
2970 return true;
2971 }
2972
2973 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2974 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2975 {
2976 struct rate_sample rs;
2977 long rtt_us = -1L;
2978
2979 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2980 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2981
2982 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2983 }
2984
2985
2986 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2987 {
2988 const struct inet_connection_sock *icsk = inet_csk(sk);
2989
2990 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2991 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2992 }
2993
2994 /* Restart timer after forward progress on connection.
2995 * RFC2988 recommends to restart timer to now+rto.
2996 */
2997 void tcp_rearm_rto(struct sock *sk)
2998 {
2999 const struct inet_connection_sock *icsk = inet_csk(sk);
3000 struct tcp_sock *tp = tcp_sk(sk);
3001
3002 /* If the retrans timer is currently being used by Fast Open
3003 * for SYN-ACK retrans purpose, stay put.
3004 */
3005 if (tp->fastopen_rsk)
3006 return;
3007
3008 if (!tp->packets_out) {
3009 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3010 } else {
3011 u32 rto = inet_csk(sk)->icsk_rto;
3012 /* Offset the time elapsed after installing regular RTO */
3013 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3014 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3015 s64 delta_us = tcp_rto_delta_us(sk);
3016 /* delta_us may not be positive if the socket is locked
3017 * when the retrans timer fires and is rescheduled.
3018 */
3019 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3020 }
3021 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3022 TCP_RTO_MAX);
3023 }
3024 }
3025
3026 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3027 static void tcp_set_xmit_timer(struct sock *sk)
3028 {
3029 if (!tcp_schedule_loss_probe(sk, true))
3030 tcp_rearm_rto(sk);
3031 }
3032
3033 /* If we get here, the whole TSO packet has not been acked. */
3034 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3035 {
3036 struct tcp_sock *tp = tcp_sk(sk);
3037 u32 packets_acked;
3038
3039 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3040
3041 packets_acked = tcp_skb_pcount(skb);
3042 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3043 return 0;
3044 packets_acked -= tcp_skb_pcount(skb);
3045
3046 if (packets_acked) {
3047 BUG_ON(tcp_skb_pcount(skb) == 0);
3048 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3049 }
3050
3051 return packets_acked;
3052 }
3053
3054 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3055 u32 prior_snd_una)
3056 {
3057 const struct skb_shared_info *shinfo;
3058
3059 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3060 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3061 return;
3062
3063 shinfo = skb_shinfo(skb);
3064 if (!before(shinfo->tskey, prior_snd_una) &&
3065 before(shinfo->tskey, tcp_sk(sk)->snd_una))
3066 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3067 }
3068
3069 /* Remove acknowledged frames from the retransmission queue. If our packet
3070 * is before the ack sequence we can discard it as it's confirmed to have
3071 * arrived at the other end.
3072 */
3073 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3074 u32 prior_snd_una, int *acked,
3075 struct tcp_sacktag_state *sack)
3076 {
3077 const struct inet_connection_sock *icsk = inet_csk(sk);
3078 u64 first_ackt, last_ackt;
3079 struct tcp_sock *tp = tcp_sk(sk);
3080 u32 prior_sacked = tp->sacked_out;
3081 u32 reord = tp->packets_out;
3082 bool fully_acked = true;
3083 long sack_rtt_us = -1L;
3084 long seq_rtt_us = -1L;
3085 long ca_rtt_us = -1L;
3086 struct sk_buff *skb;
3087 u32 pkts_acked = 0;
3088 u32 last_in_flight = 0;
3089 bool rtt_update;
3090 int flag = 0;
3091
3092 first_ackt = 0;
3093
3094 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3095 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3096 u8 sacked = scb->sacked;
3097 u32 acked_pcount;
3098
3099 tcp_ack_tstamp(sk, skb, prior_snd_una);
3100
3101 /* Determine how many packets and what bytes were acked, tso and else */
3102 if (after(scb->end_seq, tp->snd_una)) {
3103 if (tcp_skb_pcount(skb) == 1 ||
3104 !after(tp->snd_una, scb->seq))
3105 break;
3106
3107 acked_pcount = tcp_tso_acked(sk, skb);
3108 if (!acked_pcount)
3109 break;
3110 fully_acked = false;
3111 } else {
3112 /* Speedup tcp_unlink_write_queue() and next loop */
3113 prefetchw(skb->next);
3114 acked_pcount = tcp_skb_pcount(skb);
3115 }
3116
3117 if (unlikely(sacked & TCPCB_RETRANS)) {
3118 if (sacked & TCPCB_SACKED_RETRANS)
3119 tp->retrans_out -= acked_pcount;
3120 flag |= FLAG_RETRANS_DATA_ACKED;
3121 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3122 last_ackt = skb->skb_mstamp;
3123 WARN_ON_ONCE(last_ackt == 0);
3124 if (!first_ackt)
3125 first_ackt = last_ackt;
3126
3127 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3128 reord = min(pkts_acked, reord);
3129 if (!after(scb->end_seq, tp->high_seq))
3130 flag |= FLAG_ORIG_SACK_ACKED;
3131 }
3132
3133 if (sacked & TCPCB_SACKED_ACKED) {
3134 tp->sacked_out -= acked_pcount;
3135 } else if (tcp_is_sack(tp)) {
3136 tp->delivered += acked_pcount;
3137 if (!tcp_skb_spurious_retrans(tp, skb))
3138 tcp_rack_advance(tp, sacked, scb->end_seq,
3139 skb->skb_mstamp);
3140 }
3141 if (sacked & TCPCB_LOST)
3142 tp->lost_out -= acked_pcount;
3143
3144 tp->packets_out -= acked_pcount;
3145 pkts_acked += acked_pcount;
3146 tcp_rate_skb_delivered(sk, skb, sack->rate);
3147
3148 /* Initial outgoing SYN's get put onto the write_queue
3149 * just like anything else we transmit. It is not
3150 * true data, and if we misinform our callers that
3151 * this ACK acks real data, we will erroneously exit
3152 * connection startup slow start one packet too
3153 * quickly. This is severely frowned upon behavior.
3154 */
3155 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3156 flag |= FLAG_DATA_ACKED;
3157 } else {
3158 flag |= FLAG_SYN_ACKED;
3159 tp->retrans_stamp = 0;
3160 }
3161
3162 if (!fully_acked)
3163 break;
3164
3165 tcp_unlink_write_queue(skb, sk);
3166 sk_wmem_free_skb(sk, skb);
3167 if (unlikely(skb == tp->retransmit_skb_hint))
3168 tp->retransmit_skb_hint = NULL;
3169 if (unlikely(skb == tp->lost_skb_hint))
3170 tp->lost_skb_hint = NULL;
3171 }
3172
3173 if (!skb)
3174 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3175
3176 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3177 tp->snd_up = tp->snd_una;
3178
3179 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3180 flag |= FLAG_SACK_RENEGING;
3181
3182 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3183 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3184 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3185 }
3186 if (sack->first_sackt) {
3187 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3188 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3189 }
3190 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3191 ca_rtt_us, sack->rate);
3192
3193 if (flag & FLAG_ACKED) {
3194 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3195 if (unlikely(icsk->icsk_mtup.probe_size &&
3196 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3197 tcp_mtup_probe_success(sk);
3198 }
3199
3200 if (tcp_is_reno(tp)) {
3201 tcp_remove_reno_sacks(sk, pkts_acked);
3202
3203 /* If any of the cumulatively ACKed segments was
3204 * retransmitted, non-SACK case cannot confirm that
3205 * progress was due to original transmission due to
3206 * lack of TCPCB_SACKED_ACKED bits even if some of
3207 * the packets may have been never retransmitted.
3208 */
3209 if (flag & FLAG_RETRANS_DATA_ACKED)
3210 flag &= ~FLAG_ORIG_SACK_ACKED;
3211 } else {
3212 int delta;
3213
3214 /* Non-retransmitted hole got filled? That's reordering */
3215 if (reord < prior_fackets && reord <= tp->fackets_out)
3216 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3217
3218 delta = tcp_is_fack(tp) ? pkts_acked :
3219 prior_sacked - tp->sacked_out;
3220 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3221 }
3222
3223 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3224
3225 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3226 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3227 /* Do not re-arm RTO if the sack RTT is measured from data sent
3228 * after when the head was last (re)transmitted. Otherwise the
3229 * timeout may continue to extend in loss recovery.
3230 */
3231 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3232 }
3233
3234 if (icsk->icsk_ca_ops->pkts_acked) {
3235 struct ack_sample sample = { .pkts_acked = pkts_acked,
3236 .rtt_us = sack->rate->rtt_us,
3237 .in_flight = last_in_flight };
3238
3239 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3240 }
3241
3242 #if FASTRETRANS_DEBUG > 0
3243 WARN_ON((int)tp->sacked_out < 0);
3244 WARN_ON((int)tp->lost_out < 0);
3245 WARN_ON((int)tp->retrans_out < 0);
3246 if (!tp->packets_out && tcp_is_sack(tp)) {
3247 icsk = inet_csk(sk);
3248 if (tp->lost_out) {
3249 pr_debug("Leak l=%u %d\n",
3250 tp->lost_out, icsk->icsk_ca_state);
3251 tp->lost_out = 0;
3252 }
3253 if (tp->sacked_out) {
3254 pr_debug("Leak s=%u %d\n",
3255 tp->sacked_out, icsk->icsk_ca_state);
3256 tp->sacked_out = 0;
3257 }
3258 if (tp->retrans_out) {
3259 pr_debug("Leak r=%u %d\n",
3260 tp->retrans_out, icsk->icsk_ca_state);
3261 tp->retrans_out = 0;
3262 }
3263 }
3264 #endif
3265 *acked = pkts_acked;
3266 return flag;
3267 }
3268
3269 static void tcp_ack_probe(struct sock *sk)
3270 {
3271 const struct tcp_sock *tp = tcp_sk(sk);
3272 struct inet_connection_sock *icsk = inet_csk(sk);
3273
3274 /* Was it a usable window open? */
3275
3276 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3277 icsk->icsk_backoff = 0;
3278 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3279 /* Socket must be waked up by subsequent tcp_data_snd_check().
3280 * This function is not for random using!
3281 */
3282 } else {
3283 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3284
3285 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3286 when, TCP_RTO_MAX);
3287 }
3288 }
3289
3290 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3291 {
3292 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3293 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3294 }
3295
3296 /* Decide wheather to run the increase function of congestion control. */
3297 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3298 {
3299 /* If reordering is high then always grow cwnd whenever data is
3300 * delivered regardless of its ordering. Otherwise stay conservative
3301 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3302 * new SACK or ECE mark may first advance cwnd here and later reduce
3303 * cwnd in tcp_fastretrans_alert() based on more states.
3304 */
3305 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3306 return flag & FLAG_FORWARD_PROGRESS;
3307
3308 return flag & FLAG_DATA_ACKED;
3309 }
3310
3311 /* The "ultimate" congestion control function that aims to replace the rigid
3312 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3313 * It's called toward the end of processing an ACK with precise rate
3314 * information. All transmission or retransmission are delayed afterwards.
3315 */
3316 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3317 int flag, const struct rate_sample *rs)
3318 {
3319 const struct inet_connection_sock *icsk = inet_csk(sk);
3320
3321 if (icsk->icsk_ca_ops->cong_control) {
3322 icsk->icsk_ca_ops->cong_control(sk, rs);
3323 return;
3324 }
3325
3326 if (tcp_in_cwnd_reduction(sk)) {
3327 /* Reduce cwnd if state mandates */
3328 tcp_cwnd_reduction(sk, acked_sacked, flag);
3329 } else if (tcp_may_raise_cwnd(sk, flag)) {
3330 /* Advance cwnd if state allows */
3331 tcp_cong_avoid(sk, ack, acked_sacked);
3332 }
3333 tcp_update_pacing_rate(sk);
3334 }
3335
3336 /* Check that window update is acceptable.
3337 * The function assumes that snd_una<=ack<=snd_next.
3338 */
3339 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3340 const u32 ack, const u32 ack_seq,
3341 const u32 nwin)
3342 {
3343 return after(ack, tp->snd_una) ||
3344 after(ack_seq, tp->snd_wl1) ||
3345 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3346 }
3347
3348 /* If we update tp->snd_una, also update tp->bytes_acked */
3349 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3350 {
3351 u32 delta = ack - tp->snd_una;
3352
3353 sock_owned_by_me((struct sock *)tp);
3354 tp->bytes_acked += delta;
3355 tp->snd_una = ack;
3356 }
3357
3358 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3359 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3360 {
3361 u32 delta = seq - tp->rcv_nxt;
3362
3363 sock_owned_by_me((struct sock *)tp);
3364 tp->bytes_received += delta;
3365 tp->rcv_nxt = seq;
3366 }
3367
3368 /* Update our send window.
3369 *
3370 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3371 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3372 */
3373 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3374 u32 ack_seq)
3375 {
3376 struct tcp_sock *tp = tcp_sk(sk);
3377 int flag = 0;
3378 u32 nwin = ntohs(tcp_hdr(skb)->window);
3379
3380 if (likely(!tcp_hdr(skb)->syn))
3381 nwin <<= tp->rx_opt.snd_wscale;
3382
3383 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3384 flag |= FLAG_WIN_UPDATE;
3385 tcp_update_wl(tp, ack_seq);
3386
3387 if (tp->snd_wnd != nwin) {
3388 tp->snd_wnd = nwin;
3389
3390 /* Note, it is the only place, where
3391 * fast path is recovered for sending TCP.
3392 */
3393 tp->pred_flags = 0;
3394 tcp_fast_path_check(sk);
3395
3396 if (tcp_send_head(sk))
3397 tcp_slow_start_after_idle_check(sk);
3398
3399 if (nwin > tp->max_window) {
3400 tp->max_window = nwin;
3401 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3402 }
3403 }
3404 }
3405
3406 tcp_snd_una_update(tp, ack);
3407
3408 return flag;
3409 }
3410
3411 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3412 u32 *last_oow_ack_time)
3413 {
3414 if (*last_oow_ack_time) {
3415 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3416
3417 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3418 NET_INC_STATS(net, mib_idx);
3419 return true; /* rate-limited: don't send yet! */
3420 }
3421 }
3422
3423 *last_oow_ack_time = tcp_jiffies32;
3424
3425 return false; /* not rate-limited: go ahead, send dupack now! */
3426 }
3427
3428 /* Return true if we're currently rate-limiting out-of-window ACKs and
3429 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3430 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3431 * attacks that send repeated SYNs or ACKs for the same connection. To
3432 * do this, we do not send a duplicate SYNACK or ACK if the remote
3433 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3434 */
3435 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3436 int mib_idx, u32 *last_oow_ack_time)
3437 {
3438 /* Data packets without SYNs are not likely part of an ACK loop. */
3439 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3440 !tcp_hdr(skb)->syn)
3441 return false;
3442
3443 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3444 }
3445
3446 /* RFC 5961 7 [ACK Throttling] */
3447 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3448 {
3449 /* unprotected vars, we dont care of overwrites */
3450 static u32 challenge_timestamp;
3451 static unsigned int challenge_count;
3452 struct tcp_sock *tp = tcp_sk(sk);
3453 u32 count, now;
3454
3455 /* First check our per-socket dupack rate limit. */
3456 if (__tcp_oow_rate_limited(sock_net(sk),
3457 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3458 &tp->last_oow_ack_time))
3459 return;
3460
3461 /* Then check host-wide RFC 5961 rate limit. */
3462 now = jiffies / HZ;
3463 if (now != challenge_timestamp) {
3464 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3465
3466 challenge_timestamp = now;
3467 WRITE_ONCE(challenge_count, half +
3468 prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3469 }
3470 count = READ_ONCE(challenge_count);
3471 if (count > 0) {
3472 WRITE_ONCE(challenge_count, count - 1);
3473 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3474 tcp_send_ack(sk);
3475 }
3476 }
3477
3478 static void tcp_store_ts_recent(struct tcp_sock *tp)
3479 {
3480 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3481 tp->rx_opt.ts_recent_stamp = get_seconds();
3482 }
3483
3484 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3485 {
3486 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3487 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3488 * extra check below makes sure this can only happen
3489 * for pure ACK frames. -DaveM
3490 *
3491 * Not only, also it occurs for expired timestamps.
3492 */
3493
3494 if (tcp_paws_check(&tp->rx_opt, 0))
3495 tcp_store_ts_recent(tp);
3496 }
3497 }
3498
3499 /* This routine deals with acks during a TLP episode.
3500 * We mark the end of a TLP episode on receiving TLP dupack or when
3501 * ack is after tlp_high_seq.
3502 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3503 */
3504 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3505 {
3506 struct tcp_sock *tp = tcp_sk(sk);
3507
3508 if (before(ack, tp->tlp_high_seq))
3509 return;
3510
3511 if (flag & FLAG_DSACKING_ACK) {
3512 /* This DSACK means original and TLP probe arrived; no loss */
3513 tp->tlp_high_seq = 0;
3514 } else if (after(ack, tp->tlp_high_seq)) {
3515 /* ACK advances: there was a loss, so reduce cwnd. Reset
3516 * tlp_high_seq in tcp_init_cwnd_reduction()
3517 */
3518 tcp_init_cwnd_reduction(sk);
3519 tcp_set_ca_state(sk, TCP_CA_CWR);
3520 tcp_end_cwnd_reduction(sk);
3521 tcp_try_keep_open(sk);
3522 NET_INC_STATS(sock_net(sk),
3523 LINUX_MIB_TCPLOSSPROBERECOVERY);
3524 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3525 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3526 /* Pure dupack: original and TLP probe arrived; no loss */
3527 tp->tlp_high_seq = 0;
3528 }
3529 }
3530
3531 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3532 {
3533 const struct inet_connection_sock *icsk = inet_csk(sk);
3534
3535 if (icsk->icsk_ca_ops->in_ack_event)
3536 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3537 }
3538
3539 /* Congestion control has updated the cwnd already. So if we're in
3540 * loss recovery then now we do any new sends (for FRTO) or
3541 * retransmits (for CA_Loss or CA_recovery) that make sense.
3542 */
3543 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3544 {
3545 struct tcp_sock *tp = tcp_sk(sk);
3546
3547 if (rexmit == REXMIT_NONE)
3548 return;
3549
3550 if (unlikely(rexmit == 2)) {
3551 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3552 TCP_NAGLE_OFF);
3553 if (after(tp->snd_nxt, tp->high_seq))
3554 return;
3555 tp->frto = 0;
3556 }
3557 tcp_xmit_retransmit_queue(sk);
3558 }
3559
3560 /* This routine deals with incoming acks, but not outgoing ones. */
3561 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3562 {
3563 struct inet_connection_sock *icsk = inet_csk(sk);
3564 struct tcp_sock *tp = tcp_sk(sk);
3565 struct tcp_sacktag_state sack_state;
3566 struct rate_sample rs = { .prior_delivered = 0 };
3567 u32 prior_snd_una = tp->snd_una;
3568 bool is_sack_reneg = tp->is_sack_reneg;
3569 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3570 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3571 bool is_dupack = false;
3572 u32 prior_fackets;
3573 int prior_packets = tp->packets_out;
3574 u32 delivered = tp->delivered;
3575 u32 lost = tp->lost;
3576 int acked = 0; /* Number of packets newly acked */
3577 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3578
3579 sack_state.first_sackt = 0;
3580 sack_state.rate = &rs;
3581
3582 /* We very likely will need to access write queue head. */
3583 prefetchw(sk->sk_write_queue.next);
3584
3585 /* If the ack is older than previous acks
3586 * then we can probably ignore it.
3587 */
3588 if (before(ack, prior_snd_una)) {
3589 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3590 if (before(ack, prior_snd_una - tp->max_window)) {
3591 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3592 tcp_send_challenge_ack(sk, skb);
3593 return -1;
3594 }
3595 goto old_ack;
3596 }
3597
3598 /* If the ack includes data we haven't sent yet, discard
3599 * this segment (RFC793 Section 3.9).
3600 */
3601 if (after(ack, tp->snd_nxt))
3602 goto invalid_ack;
3603
3604 if (after(ack, prior_snd_una)) {
3605 flag |= FLAG_SND_UNA_ADVANCED;
3606 icsk->icsk_retransmits = 0;
3607 }
3608
3609 prior_fackets = tp->fackets_out;
3610 rs.prior_in_flight = tcp_packets_in_flight(tp);
3611
3612 /* ts_recent update must be made after we are sure that the packet
3613 * is in window.
3614 */
3615 if (flag & FLAG_UPDATE_TS_RECENT)
3616 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3617
3618 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3619 /* Window is constant, pure forward advance.
3620 * No more checks are required.
3621 * Note, we use the fact that SND.UNA>=SND.WL2.
3622 */
3623 tcp_update_wl(tp, ack_seq);
3624 tcp_snd_una_update(tp, ack);
3625 flag |= FLAG_WIN_UPDATE;
3626
3627 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3628
3629 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3630 } else {
3631 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3632
3633 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3634 flag |= FLAG_DATA;
3635 else
3636 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3637
3638 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3639
3640 if (TCP_SKB_CB(skb)->sacked)
3641 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3642 &sack_state);
3643
3644 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3645 flag |= FLAG_ECE;
3646 ack_ev_flags |= CA_ACK_ECE;
3647 }
3648
3649 if (flag & FLAG_WIN_UPDATE)
3650 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3651
3652 tcp_in_ack_event(sk, ack_ev_flags);
3653 }
3654
3655 /* We passed data and got it acked, remove any soft error
3656 * log. Something worked...
3657 */
3658 sk->sk_err_soft = 0;
3659 icsk->icsk_probes_out = 0;
3660 tp->rcv_tstamp = tcp_jiffies32;
3661 if (!prior_packets)
3662 goto no_queue;
3663
3664 /* See if we can take anything off of the retransmit queue. */
3665 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3666 &sack_state);
3667
3668 if (tp->tlp_high_seq)
3669 tcp_process_tlp_ack(sk, ack, flag);
3670 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3671 if (flag & FLAG_SET_XMIT_TIMER)
3672 tcp_set_xmit_timer(sk);
3673
3674 if (tcp_ack_is_dubious(sk, flag)) {
3675 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3676 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3677 }
3678
3679 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3680 sk_dst_confirm(sk);
3681
3682 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
3683 lost = tp->lost - lost; /* freshly marked lost */
3684 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3685 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3686 tcp_xmit_recovery(sk, rexmit);
3687 return 1;
3688
3689 no_queue:
3690 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3691 if (flag & FLAG_DSACKING_ACK)
3692 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3693 /* If this ack opens up a zero window, clear backoff. It was
3694 * being used to time the probes, and is probably far higher than
3695 * it needs to be for normal retransmission.
3696 */
3697 if (tcp_send_head(sk))
3698 tcp_ack_probe(sk);
3699
3700 if (tp->tlp_high_seq)
3701 tcp_process_tlp_ack(sk, ack, flag);
3702 return 1;
3703
3704 invalid_ack:
3705 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3706 return -1;
3707
3708 old_ack:
3709 /* If data was SACKed, tag it and see if we should send more data.
3710 * If data was DSACKed, see if we can undo a cwnd reduction.
3711 */
3712 if (TCP_SKB_CB(skb)->sacked) {
3713 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3714 &sack_state);
3715 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3716 tcp_xmit_recovery(sk, rexmit);
3717 }
3718
3719 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3720 return 0;
3721 }
3722
3723 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3724 bool syn, struct tcp_fastopen_cookie *foc,
3725 bool exp_opt)
3726 {
3727 /* Valid only in SYN or SYN-ACK with an even length. */
3728 if (!foc || !syn || len < 0 || (len & 1))
3729 return;
3730
3731 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3732 len <= TCP_FASTOPEN_COOKIE_MAX)
3733 memcpy(foc->val, cookie, len);
3734 else if (len != 0)
3735 len = -1;
3736 foc->len = len;
3737 foc->exp = exp_opt;
3738 }
3739
3740 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3741 * But, this can also be called on packets in the established flow when
3742 * the fast version below fails.
3743 */
3744 void tcp_parse_options(const struct net *net,
3745 const struct sk_buff *skb,
3746 struct tcp_options_received *opt_rx, int estab,
3747 struct tcp_fastopen_cookie *foc)
3748 {
3749 const unsigned char *ptr;
3750 const struct tcphdr *th = tcp_hdr(skb);
3751 int length = (th->doff * 4) - sizeof(struct tcphdr);
3752
3753 ptr = (const unsigned char *)(th + 1);
3754 opt_rx->saw_tstamp = 0;
3755
3756 while (length > 0) {
3757 int opcode = *ptr++;
3758 int opsize;
3759
3760 switch (opcode) {
3761 case TCPOPT_EOL:
3762 return;
3763 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3764 length--;
3765 continue;
3766 default:
3767 opsize = *ptr++;
3768 if (opsize < 2) /* "silly options" */
3769 return;
3770 if (opsize > length)
3771 return; /* don't parse partial options */
3772 switch (opcode) {
3773 case TCPOPT_MSS:
3774 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3775 u16 in_mss = get_unaligned_be16(ptr);
3776 if (in_mss) {
3777 if (opt_rx->user_mss &&
3778 opt_rx->user_mss < in_mss)
3779 in_mss = opt_rx->user_mss;
3780 opt_rx->mss_clamp = in_mss;
3781 }
3782 }
3783 break;
3784 case TCPOPT_WINDOW:
3785 if (opsize == TCPOLEN_WINDOW && th->syn &&
3786 !estab && net->ipv4.sysctl_tcp_window_scaling) {
3787 __u8 snd_wscale = *(__u8 *)ptr;
3788 opt_rx->wscale_ok = 1;
3789 if (snd_wscale > TCP_MAX_WSCALE) {
3790 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3791 __func__,
3792 snd_wscale,
3793 TCP_MAX_WSCALE);
3794 snd_wscale = TCP_MAX_WSCALE;
3795 }
3796 opt_rx->snd_wscale = snd_wscale;
3797 }
3798 break;
3799 case TCPOPT_TIMESTAMP:
3800 if ((opsize == TCPOLEN_TIMESTAMP) &&
3801 ((estab && opt_rx->tstamp_ok) ||
3802 (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3803 opt_rx->saw_tstamp = 1;
3804 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3805 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3806 }
3807 break;
3808 case TCPOPT_SACK_PERM:
3809 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3810 !estab && net->ipv4.sysctl_tcp_sack) {
3811 opt_rx->sack_ok = TCP_SACK_SEEN;
3812 tcp_sack_reset(opt_rx);
3813 }
3814 break;
3815
3816 case TCPOPT_SACK:
3817 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3818 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3819 opt_rx->sack_ok) {
3820 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3821 }
3822 break;
3823 #ifdef CONFIG_TCP_MD5SIG
3824 case TCPOPT_MD5SIG:
3825 /*
3826 * The MD5 Hash has already been
3827 * checked (see tcp_v{4,6}_do_rcv()).
3828 */
3829 break;
3830 #endif
3831 case TCPOPT_FASTOPEN:
3832 tcp_parse_fastopen_option(
3833 opsize - TCPOLEN_FASTOPEN_BASE,
3834 ptr, th->syn, foc, false);
3835 break;
3836
3837 case TCPOPT_EXP:
3838 /* Fast Open option shares code 254 using a
3839 * 16 bits magic number.
3840 */
3841 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3842 get_unaligned_be16(ptr) ==
3843 TCPOPT_FASTOPEN_MAGIC)
3844 tcp_parse_fastopen_option(opsize -
3845 TCPOLEN_EXP_FASTOPEN_BASE,
3846 ptr + 2, th->syn, foc, true);
3847 break;
3848
3849 }
3850 ptr += opsize-2;
3851 length -= opsize;
3852 }
3853 }
3854 }
3855 EXPORT_SYMBOL(tcp_parse_options);
3856
3857 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3858 {
3859 const __be32 *ptr = (const __be32 *)(th + 1);
3860
3861 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3862 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3863 tp->rx_opt.saw_tstamp = 1;
3864 ++ptr;
3865 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3866 ++ptr;
3867 if (*ptr)
3868 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3869 else
3870 tp->rx_opt.rcv_tsecr = 0;
3871 return true;
3872 }
3873 return false;
3874 }
3875
3876 /* Fast parse options. This hopes to only see timestamps.
3877 * If it is wrong it falls back on tcp_parse_options().
3878 */
3879 static bool tcp_fast_parse_options(const struct net *net,
3880 const struct sk_buff *skb,
3881 const struct tcphdr *th, struct tcp_sock *tp)
3882 {
3883 /* In the spirit of fast parsing, compare doff directly to constant
3884 * values. Because equality is used, short doff can be ignored here.
3885 */
3886 if (th->doff == (sizeof(*th) / 4)) {
3887 tp->rx_opt.saw_tstamp = 0;
3888 return false;
3889 } else if (tp->rx_opt.tstamp_ok &&
3890 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3891 if (tcp_parse_aligned_timestamp(tp, th))
3892 return true;
3893 }
3894
3895 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3896 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3897 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3898
3899 return true;
3900 }
3901
3902 #ifdef CONFIG_TCP_MD5SIG
3903 /*
3904 * Parse MD5 Signature option
3905 */
3906 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3907 {
3908 int length = (th->doff << 2) - sizeof(*th);
3909 const u8 *ptr = (const u8 *)(th + 1);
3910
3911 /* If not enough data remaining, we can short cut */
3912 while (length >= TCPOLEN_MD5SIG) {
3913 int opcode = *ptr++;
3914 int opsize;
3915
3916 switch (opcode) {
3917 case TCPOPT_EOL:
3918 return NULL;
3919 case TCPOPT_NOP:
3920 length--;
3921 continue;
3922 default:
3923 opsize = *ptr++;
3924 if (opsize < 2 || opsize > length)
3925 return NULL;
3926 if (opcode == TCPOPT_MD5SIG)
3927 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3928 }
3929 ptr += opsize - 2;
3930 length -= opsize;
3931 }
3932 return NULL;
3933 }
3934 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3935 #endif
3936
3937 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3938 *
3939 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3940 * it can pass through stack. So, the following predicate verifies that
3941 * this segment is not used for anything but congestion avoidance or
3942 * fast retransmit. Moreover, we even are able to eliminate most of such
3943 * second order effects, if we apply some small "replay" window (~RTO)
3944 * to timestamp space.
3945 *
3946 * All these measures still do not guarantee that we reject wrapped ACKs
3947 * on networks with high bandwidth, when sequence space is recycled fastly,
3948 * but it guarantees that such events will be very rare and do not affect
3949 * connection seriously. This doesn't look nice, but alas, PAWS is really
3950 * buggy extension.
3951 *
3952 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3953 * states that events when retransmit arrives after original data are rare.
3954 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3955 * the biggest problem on large power networks even with minor reordering.
3956 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3957 * up to bandwidth of 18Gigabit/sec. 8) ]
3958 */
3959
3960 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3961 {
3962 const struct tcp_sock *tp = tcp_sk(sk);
3963 const struct tcphdr *th = tcp_hdr(skb);
3964 u32 seq = TCP_SKB_CB(skb)->seq;
3965 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3966
3967 return (/* 1. Pure ACK with correct sequence number. */
3968 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3969
3970 /* 2. ... and duplicate ACK. */
3971 ack == tp->snd_una &&
3972
3973 /* 3. ... and does not update window. */
3974 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3975
3976 /* 4. ... and sits in replay window. */
3977 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3978 }
3979
3980 static inline bool tcp_paws_discard(const struct sock *sk,
3981 const struct sk_buff *skb)
3982 {
3983 const struct tcp_sock *tp = tcp_sk(sk);
3984
3985 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3986 !tcp_disordered_ack(sk, skb);
3987 }
3988
3989 /* Check segment sequence number for validity.
3990 *
3991 * Segment controls are considered valid, if the segment
3992 * fits to the window after truncation to the window. Acceptability
3993 * of data (and SYN, FIN, of course) is checked separately.
3994 * See tcp_data_queue(), for example.
3995 *
3996 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3997 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3998 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3999 * (borrowed from freebsd)
4000 */
4001
4002 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4003 {
4004 return !before(end_seq, tp->rcv_wup) &&
4005 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4006 }
4007
4008 /* When we get a reset we do this. */
4009 void tcp_reset(struct sock *sk)
4010 {
4011 /* We want the right error as BSD sees it (and indeed as we do). */
4012 switch (sk->sk_state) {
4013 case TCP_SYN_SENT:
4014 sk->sk_err = ECONNREFUSED;
4015 break;
4016 case TCP_CLOSE_WAIT:
4017 sk->sk_err = EPIPE;
4018 break;
4019 case TCP_CLOSE:
4020 return;
4021 default:
4022 sk->sk_err = ECONNRESET;
4023 }
4024 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4025 smp_wmb();
4026
4027 tcp_write_queue_purge(sk);
4028 tcp_done(sk);
4029
4030 if (!sock_flag(sk, SOCK_DEAD))
4031 sk->sk_error_report(sk);
4032 }
4033
4034 /*
4035 * Process the FIN bit. This now behaves as it is supposed to work
4036 * and the FIN takes effect when it is validly part of sequence
4037 * space. Not before when we get holes.
4038 *
4039 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4040 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4041 * TIME-WAIT)
4042 *
4043 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4044 * close and we go into CLOSING (and later onto TIME-WAIT)
4045 *
4046 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4047 */
4048 void tcp_fin(struct sock *sk)
4049 {
4050 struct tcp_sock *tp = tcp_sk(sk);
4051
4052 inet_csk_schedule_ack(sk);
4053
4054 sk->sk_shutdown |= RCV_SHUTDOWN;
4055 sock_set_flag(sk, SOCK_DONE);
4056
4057 switch (sk->sk_state) {
4058 case TCP_SYN_RECV:
4059 case TCP_ESTABLISHED:
4060 /* Move to CLOSE_WAIT */
4061 tcp_set_state(sk, TCP_CLOSE_WAIT);
4062 inet_csk(sk)->icsk_ack.pingpong = 1;
4063 break;
4064
4065 case TCP_CLOSE_WAIT:
4066 case TCP_CLOSING:
4067 /* Received a retransmission of the FIN, do
4068 * nothing.
4069 */
4070 break;
4071 case TCP_LAST_ACK:
4072 /* RFC793: Remain in the LAST-ACK state. */
4073 break;
4074
4075 case TCP_FIN_WAIT1:
4076 /* This case occurs when a simultaneous close
4077 * happens, we must ack the received FIN and
4078 * enter the CLOSING state.
4079 */
4080 tcp_send_ack(sk);
4081 tcp_set_state(sk, TCP_CLOSING);
4082 break;
4083 case TCP_FIN_WAIT2:
4084 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4085 tcp_send_ack(sk);
4086 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4087 break;
4088 default:
4089 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4090 * cases we should never reach this piece of code.
4091 */
4092 pr_err("%s: Impossible, sk->sk_state=%d\n",
4093 __func__, sk->sk_state);
4094 break;
4095 }
4096
4097 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4098 * Probably, we should reset in this case. For now drop them.
4099 */
4100 skb_rbtree_purge(&tp->out_of_order_queue);
4101 if (tcp_is_sack(tp))
4102 tcp_sack_reset(&tp->rx_opt);
4103 sk_mem_reclaim(sk);
4104
4105 if (!sock_flag(sk, SOCK_DEAD)) {
4106 sk->sk_state_change(sk);
4107
4108 /* Do not send POLL_HUP for half duplex close. */
4109 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4110 sk->sk_state == TCP_CLOSE)
4111 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4112 else
4113 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4114 }
4115 }
4116
4117 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4118 u32 end_seq)
4119 {
4120 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4121 if (before(seq, sp->start_seq))
4122 sp->start_seq = seq;
4123 if (after(end_seq, sp->end_seq))
4124 sp->end_seq = end_seq;
4125 return true;
4126 }
4127 return false;
4128 }
4129
4130 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4131 {
4132 struct tcp_sock *tp = tcp_sk(sk);
4133
4134 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4135 int mib_idx;
4136
4137 if (before(seq, tp->rcv_nxt))
4138 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4139 else
4140 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4141
4142 NET_INC_STATS(sock_net(sk), mib_idx);
4143
4144 tp->rx_opt.dsack = 1;
4145 tp->duplicate_sack[0].start_seq = seq;
4146 tp->duplicate_sack[0].end_seq = end_seq;
4147 }
4148 }
4149
4150 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4151 {
4152 struct tcp_sock *tp = tcp_sk(sk);
4153
4154 if (!tp->rx_opt.dsack)
4155 tcp_dsack_set(sk, seq, end_seq);
4156 else
4157 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4158 }
4159
4160 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4161 {
4162 struct tcp_sock *tp = tcp_sk(sk);
4163
4164 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4165 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4166 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4167 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4168
4169 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4170 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4171
4172 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4173 end_seq = tp->rcv_nxt;
4174 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4175 }
4176 }
4177
4178 tcp_send_ack(sk);
4179 }
4180
4181 /* These routines update the SACK block as out-of-order packets arrive or
4182 * in-order packets close up the sequence space.
4183 */
4184 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4185 {
4186 int this_sack;
4187 struct tcp_sack_block *sp = &tp->selective_acks[0];
4188 struct tcp_sack_block *swalk = sp + 1;
4189
4190 /* See if the recent change to the first SACK eats into
4191 * or hits the sequence space of other SACK blocks, if so coalesce.
4192 */
4193 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4194 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4195 int i;
4196
4197 /* Zap SWALK, by moving every further SACK up by one slot.
4198 * Decrease num_sacks.
4199 */
4200 tp->rx_opt.num_sacks--;
4201 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4202 sp[i] = sp[i + 1];
4203 continue;
4204 }
4205 this_sack++, swalk++;
4206 }
4207 }
4208
4209 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4210 {
4211 struct tcp_sock *tp = tcp_sk(sk);
4212 struct tcp_sack_block *sp = &tp->selective_acks[0];
4213 int cur_sacks = tp->rx_opt.num_sacks;
4214 int this_sack;
4215
4216 if (!cur_sacks)
4217 goto new_sack;
4218
4219 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4220 if (tcp_sack_extend(sp, seq, end_seq)) {
4221 /* Rotate this_sack to the first one. */
4222 for (; this_sack > 0; this_sack--, sp--)
4223 swap(*sp, *(sp - 1));
4224 if (cur_sacks > 1)
4225 tcp_sack_maybe_coalesce(tp);
4226 return;
4227 }
4228 }
4229
4230 /* Could not find an adjacent existing SACK, build a new one,
4231 * put it at the front, and shift everyone else down. We
4232 * always know there is at least one SACK present already here.
4233 *
4234 * If the sack array is full, forget about the last one.
4235 */
4236 if (this_sack >= TCP_NUM_SACKS) {
4237 this_sack--;
4238 tp->rx_opt.num_sacks--;
4239 sp--;
4240 }
4241 for (; this_sack > 0; this_sack--, sp--)
4242 *sp = *(sp - 1);
4243
4244 new_sack:
4245 /* Build the new head SACK, and we're done. */
4246 sp->start_seq = seq;
4247 sp->end_seq = end_seq;
4248 tp->rx_opt.num_sacks++;
4249 }
4250
4251 /* RCV.NXT advances, some SACKs should be eaten. */
4252
4253 static void tcp_sack_remove(struct tcp_sock *tp)
4254 {
4255 struct tcp_sack_block *sp = &tp->selective_acks[0];
4256 int num_sacks = tp->rx_opt.num_sacks;
4257 int this_sack;
4258
4259 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4260 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4261 tp->rx_opt.num_sacks = 0;
4262 return;
4263 }
4264
4265 for (this_sack = 0; this_sack < num_sacks;) {
4266 /* Check if the start of the sack is covered by RCV.NXT. */
4267 if (!before(tp->rcv_nxt, sp->start_seq)) {
4268 int i;
4269
4270 /* RCV.NXT must cover all the block! */
4271 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4272
4273 /* Zap this SACK, by moving forward any other SACKS. */
4274 for (i = this_sack+1; i < num_sacks; i++)
4275 tp->selective_acks[i-1] = tp->selective_acks[i];
4276 num_sacks--;
4277 continue;
4278 }
4279 this_sack++;
4280 sp++;
4281 }
4282 tp->rx_opt.num_sacks = num_sacks;
4283 }
4284
4285 enum tcp_queue {
4286 OOO_QUEUE,
4287 RCV_QUEUE,
4288 };
4289
4290 /**
4291 * tcp_try_coalesce - try to merge skb to prior one
4292 * @sk: socket
4293 * @dest: destination queue
4294 * @to: prior buffer
4295 * @from: buffer to add in queue
4296 * @fragstolen: pointer to boolean
4297 *
4298 * Before queueing skb @from after @to, try to merge them
4299 * to reduce overall memory use and queue lengths, if cost is small.
4300 * Packets in ofo or receive queues can stay a long time.
4301 * Better try to coalesce them right now to avoid future collapses.
4302 * Returns true if caller should free @from instead of queueing it
4303 */
4304 static bool tcp_try_coalesce(struct sock *sk,
4305 enum tcp_queue dest,
4306 struct sk_buff *to,
4307 struct sk_buff *from,
4308 bool *fragstolen)
4309 {
4310 int delta;
4311
4312 *fragstolen = false;
4313
4314 /* Its possible this segment overlaps with prior segment in queue */
4315 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4316 return false;
4317
4318 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4319 return false;
4320
4321 atomic_add(delta, &sk->sk_rmem_alloc);
4322 sk_mem_charge(sk, delta);
4323 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4324 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4325 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4326 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4327
4328 if (TCP_SKB_CB(from)->has_rxtstamp) {
4329 TCP_SKB_CB(to)->has_rxtstamp = true;
4330 if (dest == OOO_QUEUE)
4331 TCP_SKB_CB(to)->swtstamp = TCP_SKB_CB(from)->swtstamp;
4332 else
4333 to->tstamp = from->tstamp;
4334 }
4335
4336 return true;
4337 }
4338
4339 static bool tcp_ooo_try_coalesce(struct sock *sk,
4340 struct sk_buff *to,
4341 struct sk_buff *from,
4342 bool *fragstolen)
4343 {
4344 bool res = tcp_try_coalesce(sk, OOO_QUEUE, to, from, fragstolen);
4345
4346 /* In case tcp_drop() is called later, update to->gso_segs */
4347 if (res) {
4348 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4349 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4350
4351 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4352 }
4353 return res;
4354 }
4355
4356 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4357 {
4358 sk_drops_add(sk, skb);
4359 __kfree_skb(skb);
4360 }
4361
4362 /* This one checks to see if we can put data from the
4363 * out_of_order queue into the receive_queue.
4364 */
4365 static void tcp_ofo_queue(struct sock *sk)
4366 {
4367 struct tcp_sock *tp = tcp_sk(sk);
4368 __u32 dsack_high = tp->rcv_nxt;
4369 bool fin, fragstolen, eaten;
4370 struct sk_buff *skb, *tail;
4371 struct rb_node *p;
4372
4373 p = rb_first(&tp->out_of_order_queue);
4374 while (p) {
4375 skb = rb_to_skb(p);
4376 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4377 break;
4378
4379 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4380 __u32 dsack = dsack_high;
4381 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4382 dsack_high = TCP_SKB_CB(skb)->end_seq;
4383 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4384 }
4385 p = rb_next(p);
4386 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4387 /* Replace tstamp which was stomped by rbnode */
4388 if (TCP_SKB_CB(skb)->has_rxtstamp)
4389 skb->tstamp = TCP_SKB_CB(skb)->swtstamp;
4390
4391 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4392 SOCK_DEBUG(sk, "ofo packet was already received\n");
4393 tcp_drop(sk, skb);
4394 continue;
4395 }
4396 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4397 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4398 TCP_SKB_CB(skb)->end_seq);
4399
4400 tail = skb_peek_tail(&sk->sk_receive_queue);
4401 eaten = tail && tcp_try_coalesce(sk, RCV_QUEUE,
4402 tail, skb, &fragstolen);
4403 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4404 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4405 if (!eaten)
4406 __skb_queue_tail(&sk->sk_receive_queue, skb);
4407 else
4408 kfree_skb_partial(skb, fragstolen);
4409
4410 if (unlikely(fin)) {
4411 tcp_fin(sk);
4412 /* tcp_fin() purges tp->out_of_order_queue,
4413 * so we must end this loop right now.
4414 */
4415 break;
4416 }
4417 }
4418 }
4419
4420 static bool tcp_prune_ofo_queue(struct sock *sk);
4421 static int tcp_prune_queue(struct sock *sk);
4422
4423 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4424 unsigned int size)
4425 {
4426 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4427 !sk_rmem_schedule(sk, skb, size)) {
4428
4429 if (tcp_prune_queue(sk) < 0)
4430 return -1;
4431
4432 while (!sk_rmem_schedule(sk, skb, size)) {
4433 if (!tcp_prune_ofo_queue(sk))
4434 return -1;
4435 }
4436 }
4437 return 0;
4438 }
4439
4440 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4441 {
4442 struct tcp_sock *tp = tcp_sk(sk);
4443 struct rb_node **p, *parent;
4444 struct sk_buff *skb1;
4445 u32 seq, end_seq;
4446 bool fragstolen;
4447
4448 tcp_ecn_check_ce(sk, skb);
4449
4450 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4451 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4452 tcp_drop(sk, skb);
4453 return;
4454 }
4455
4456 /* Stash tstamp to avoid being stomped on by rbnode */
4457 if (TCP_SKB_CB(skb)->has_rxtstamp)
4458 TCP_SKB_CB(skb)->swtstamp = skb->tstamp;
4459
4460 /* Disable header prediction. */
4461 tp->pred_flags = 0;
4462 inet_csk_schedule_ack(sk);
4463
4464 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4465 seq = TCP_SKB_CB(skb)->seq;
4466 end_seq = TCP_SKB_CB(skb)->end_seq;
4467 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4468 tp->rcv_nxt, seq, end_seq);
4469
4470 p = &tp->out_of_order_queue.rb_node;
4471 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4472 /* Initial out of order segment, build 1 SACK. */
4473 if (tcp_is_sack(tp)) {
4474 tp->rx_opt.num_sacks = 1;
4475 tp->selective_acks[0].start_seq = seq;
4476 tp->selective_acks[0].end_seq = end_seq;
4477 }
4478 rb_link_node(&skb->rbnode, NULL, p);
4479 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4480 tp->ooo_last_skb = skb;
4481 goto end;
4482 }
4483
4484 /* In the typical case, we are adding an skb to the end of the list.
4485 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4486 */
4487 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4488 skb, &fragstolen)) {
4489 coalesce_done:
4490 tcp_grow_window(sk, skb);
4491 kfree_skb_partial(skb, fragstolen);
4492 skb = NULL;
4493 goto add_sack;
4494 }
4495 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4496 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4497 parent = &tp->ooo_last_skb->rbnode;
4498 p = &parent->rb_right;
4499 goto insert;
4500 }
4501
4502 /* Find place to insert this segment. Handle overlaps on the way. */
4503 parent = NULL;
4504 while (*p) {
4505 parent = *p;
4506 skb1 = rb_to_skb(parent);
4507 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4508 p = &parent->rb_left;
4509 continue;
4510 }
4511 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4512 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4513 /* All the bits are present. Drop. */
4514 NET_INC_STATS(sock_net(sk),
4515 LINUX_MIB_TCPOFOMERGE);
4516 tcp_drop(sk, skb);
4517 skb = NULL;
4518 tcp_dsack_set(sk, seq, end_seq);
4519 goto add_sack;
4520 }
4521 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4522 /* Partial overlap. */
4523 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4524 } else {
4525 /* skb's seq == skb1's seq and skb covers skb1.
4526 * Replace skb1 with skb.
4527 */
4528 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4529 &tp->out_of_order_queue);
4530 tcp_dsack_extend(sk,
4531 TCP_SKB_CB(skb1)->seq,
4532 TCP_SKB_CB(skb1)->end_seq);
4533 NET_INC_STATS(sock_net(sk),
4534 LINUX_MIB_TCPOFOMERGE);
4535 tcp_drop(sk, skb1);
4536 goto merge_right;
4537 }
4538 } else if (tcp_ooo_try_coalesce(sk, skb1,
4539 skb, &fragstolen)) {
4540 goto coalesce_done;
4541 }
4542 p = &parent->rb_right;
4543 }
4544 insert:
4545 /* Insert segment into RB tree. */
4546 rb_link_node(&skb->rbnode, parent, p);
4547 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4548
4549 merge_right:
4550 /* Remove other segments covered by skb. */
4551 while ((skb1 = skb_rb_next(skb)) != NULL) {
4552 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4553 break;
4554 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4555 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4556 end_seq);
4557 break;
4558 }
4559 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4560 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4561 TCP_SKB_CB(skb1)->end_seq);
4562 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4563 tcp_drop(sk, skb1);
4564 }
4565 /* If there is no skb after us, we are the last_skb ! */
4566 if (!skb1)
4567 tp->ooo_last_skb = skb;
4568
4569 add_sack:
4570 if (tcp_is_sack(tp))
4571 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4572 end:
4573 if (skb) {
4574 tcp_grow_window(sk, skb);
4575 skb_condense(skb);
4576 skb_set_owner_r(skb, sk);
4577 }
4578 }
4579
4580 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4581 bool *fragstolen)
4582 {
4583 int eaten;
4584 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4585
4586 __skb_pull(skb, hdrlen);
4587 eaten = (tail &&
4588 tcp_try_coalesce(sk, RCV_QUEUE, tail,
4589 skb, fragstolen)) ? 1 : 0;
4590 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4591 if (!eaten) {
4592 __skb_queue_tail(&sk->sk_receive_queue, skb);
4593 skb_set_owner_r(skb, sk);
4594 }
4595 return eaten;
4596 }
4597
4598 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4599 {
4600 struct sk_buff *skb;
4601 int err = -ENOMEM;
4602 int data_len = 0;
4603 bool fragstolen;
4604
4605 if (size == 0)
4606 return 0;
4607
4608 if (size > PAGE_SIZE) {
4609 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4610
4611 data_len = npages << PAGE_SHIFT;
4612 size = data_len + (size & ~PAGE_MASK);
4613 }
4614 skb = alloc_skb_with_frags(size - data_len, data_len,
4615 PAGE_ALLOC_COSTLY_ORDER,
4616 &err, sk->sk_allocation);
4617 if (!skb)
4618 goto err;
4619
4620 skb_put(skb, size - data_len);
4621 skb->data_len = data_len;
4622 skb->len = size;
4623
4624 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4625 goto err_free;
4626
4627 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4628 if (err)
4629 goto err_free;
4630
4631 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4632 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4633 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4634
4635 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4636 WARN_ON_ONCE(fragstolen); /* should not happen */
4637 __kfree_skb(skb);
4638 }
4639 return size;
4640
4641 err_free:
4642 kfree_skb(skb);
4643 err:
4644 return err;
4645
4646 }
4647
4648 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4649 {
4650 struct tcp_sock *tp = tcp_sk(sk);
4651 bool fragstolen;
4652 int eaten;
4653
4654 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4655 __kfree_skb(skb);
4656 return;
4657 }
4658 skb_dst_drop(skb);
4659 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4660
4661 tcp_ecn_accept_cwr(tp, skb);
4662
4663 tp->rx_opt.dsack = 0;
4664
4665 /* Queue data for delivery to the user.
4666 * Packets in sequence go to the receive queue.
4667 * Out of sequence packets to the out_of_order_queue.
4668 */
4669 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4670 if (tcp_receive_window(tp) == 0)
4671 goto out_of_window;
4672
4673 /* Ok. In sequence. In window. */
4674 queue_and_out:
4675 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4676 sk_forced_mem_schedule(sk, skb->truesize);
4677 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4678 goto drop;
4679
4680 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4681 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4682 if (skb->len)
4683 tcp_event_data_recv(sk, skb);
4684 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4685 tcp_fin(sk);
4686
4687 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4688 tcp_ofo_queue(sk);
4689
4690 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4691 * gap in queue is filled.
4692 */
4693 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4694 inet_csk(sk)->icsk_ack.pingpong = 0;
4695 }
4696
4697 if (tp->rx_opt.num_sacks)
4698 tcp_sack_remove(tp);
4699
4700 tcp_fast_path_check(sk);
4701
4702 if (eaten > 0)
4703 kfree_skb_partial(skb, fragstolen);
4704 if (!sock_flag(sk, SOCK_DEAD))
4705 sk->sk_data_ready(sk);
4706 return;
4707 }
4708
4709 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4710 /* A retransmit, 2nd most common case. Force an immediate ack. */
4711 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4712 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4713
4714 out_of_window:
4715 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4716 inet_csk_schedule_ack(sk);
4717 drop:
4718 tcp_drop(sk, skb);
4719 return;
4720 }
4721
4722 /* Out of window. F.e. zero window probe. */
4723 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4724 goto out_of_window;
4725
4726 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4727 /* Partial packet, seq < rcv_next < end_seq */
4728 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4729 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4730 TCP_SKB_CB(skb)->end_seq);
4731
4732 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4733
4734 /* If window is closed, drop tail of packet. But after
4735 * remembering D-SACK for its head made in previous line.
4736 */
4737 if (!tcp_receive_window(tp))
4738 goto out_of_window;
4739 goto queue_and_out;
4740 }
4741
4742 tcp_data_queue_ofo(sk, skb);
4743 }
4744
4745 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4746 {
4747 if (list)
4748 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4749
4750 return skb_rb_next(skb);
4751 }
4752
4753 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4754 struct sk_buff_head *list,
4755 struct rb_root *root)
4756 {
4757 struct sk_buff *next = tcp_skb_next(skb, list);
4758
4759 if (list)
4760 __skb_unlink(skb, list);
4761 else
4762 rb_erase(&skb->rbnode, root);
4763
4764 __kfree_skb(skb);
4765 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4766
4767 return next;
4768 }
4769
4770 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4771 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4772 {
4773 struct rb_node **p = &root->rb_node;
4774 struct rb_node *parent = NULL;
4775 struct sk_buff *skb1;
4776
4777 while (*p) {
4778 parent = *p;
4779 skb1 = rb_to_skb(parent);
4780 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4781 p = &parent->rb_left;
4782 else
4783 p = &parent->rb_right;
4784 }
4785 rb_link_node(&skb->rbnode, parent, p);
4786 rb_insert_color(&skb->rbnode, root);
4787 }
4788
4789 /* Collapse contiguous sequence of skbs head..tail with
4790 * sequence numbers start..end.
4791 *
4792 * If tail is NULL, this means until the end of the queue.
4793 *
4794 * Segments with FIN/SYN are not collapsed (only because this
4795 * simplifies code)
4796 */
4797 static void
4798 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4799 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4800 {
4801 struct sk_buff *skb = head, *n;
4802 struct sk_buff_head tmp;
4803 bool end_of_skbs;
4804
4805 /* First, check that queue is collapsible and find
4806 * the point where collapsing can be useful.
4807 */
4808 restart:
4809 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4810 n = tcp_skb_next(skb, list);
4811
4812 /* No new bits? It is possible on ofo queue. */
4813 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4814 skb = tcp_collapse_one(sk, skb, list, root);
4815 if (!skb)
4816 break;
4817 goto restart;
4818 }
4819
4820 /* The first skb to collapse is:
4821 * - not SYN/FIN and
4822 * - bloated or contains data before "start" or
4823 * overlaps to the next one.
4824 */
4825 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4826 (tcp_win_from_space(skb->truesize) > skb->len ||
4827 before(TCP_SKB_CB(skb)->seq, start))) {
4828 end_of_skbs = false;
4829 break;
4830 }
4831
4832 if (n && n != tail &&
4833 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4834 end_of_skbs = false;
4835 break;
4836 }
4837
4838 /* Decided to skip this, advance start seq. */
4839 start = TCP_SKB_CB(skb)->end_seq;
4840 }
4841 if (end_of_skbs ||
4842 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4843 return;
4844
4845 __skb_queue_head_init(&tmp);
4846
4847 while (before(start, end)) {
4848 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4849 struct sk_buff *nskb;
4850
4851 nskb = alloc_skb(copy, GFP_ATOMIC);
4852 if (!nskb)
4853 break;
4854
4855 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4856 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4857 if (list)
4858 __skb_queue_before(list, skb, nskb);
4859 else
4860 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4861 skb_set_owner_r(nskb, sk);
4862
4863 /* Copy data, releasing collapsed skbs. */
4864 while (copy > 0) {
4865 int offset = start - TCP_SKB_CB(skb)->seq;
4866 int size = TCP_SKB_CB(skb)->end_seq - start;
4867
4868 BUG_ON(offset < 0);
4869 if (size > 0) {
4870 size = min(copy, size);
4871 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4872 BUG();
4873 TCP_SKB_CB(nskb)->end_seq += size;
4874 copy -= size;
4875 start += size;
4876 }
4877 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4878 skb = tcp_collapse_one(sk, skb, list, root);
4879 if (!skb ||
4880 skb == tail ||
4881 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4882 goto end;
4883 }
4884 }
4885 }
4886 end:
4887 skb_queue_walk_safe(&tmp, skb, n)
4888 tcp_rbtree_insert(root, skb);
4889 }
4890
4891 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4892 * and tcp_collapse() them until all the queue is collapsed.
4893 */
4894 static void tcp_collapse_ofo_queue(struct sock *sk)
4895 {
4896 struct tcp_sock *tp = tcp_sk(sk);
4897 u32 range_truesize, sum_tiny = 0;
4898 struct sk_buff *skb, *head;
4899 u32 start, end;
4900
4901 skb = skb_rb_first(&tp->out_of_order_queue);
4902 new_range:
4903 if (!skb) {
4904 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4905 return;
4906 }
4907 start = TCP_SKB_CB(skb)->seq;
4908 end = TCP_SKB_CB(skb)->end_seq;
4909 range_truesize = skb->truesize;
4910
4911 for (head = skb;;) {
4912 skb = skb_rb_next(skb);
4913
4914 /* Range is terminated when we see a gap or when
4915 * we are at the queue end.
4916 */
4917 if (!skb ||
4918 after(TCP_SKB_CB(skb)->seq, end) ||
4919 before(TCP_SKB_CB(skb)->end_seq, start)) {
4920 /* Do not attempt collapsing tiny skbs */
4921 if (range_truesize != head->truesize ||
4922 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
4923 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4924 head, skb, start, end);
4925 } else {
4926 sum_tiny += range_truesize;
4927 if (sum_tiny > sk->sk_rcvbuf >> 3)
4928 return;
4929 }
4930 goto new_range;
4931 }
4932
4933 range_truesize += skb->truesize;
4934 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4935 start = TCP_SKB_CB(skb)->seq;
4936 if (after(TCP_SKB_CB(skb)->end_seq, end))
4937 end = TCP_SKB_CB(skb)->end_seq;
4938 }
4939 }
4940
4941 /*
4942 * Clean the out-of-order queue to make room.
4943 * We drop high sequences packets to :
4944 * 1) Let a chance for holes to be filled.
4945 * 2) not add too big latencies if thousands of packets sit there.
4946 * (But if application shrinks SO_RCVBUF, we could still end up
4947 * freeing whole queue here)
4948 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
4949 *
4950 * Return true if queue has shrunk.
4951 */
4952 static bool tcp_prune_ofo_queue(struct sock *sk)
4953 {
4954 struct tcp_sock *tp = tcp_sk(sk);
4955 struct rb_node *node, *prev;
4956 int goal;
4957
4958 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4959 return false;
4960
4961 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4962 goal = sk->sk_rcvbuf >> 3;
4963 node = &tp->ooo_last_skb->rbnode;
4964 do {
4965 prev = rb_prev(node);
4966 rb_erase(node, &tp->out_of_order_queue);
4967 goal -= rb_to_skb(node)->truesize;
4968 tcp_drop(sk, rb_to_skb(node));
4969 if (!prev || goal <= 0) {
4970 sk_mem_reclaim(sk);
4971 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4972 !tcp_under_memory_pressure(sk))
4973 break;
4974 goal = sk->sk_rcvbuf >> 3;
4975 }
4976 node = prev;
4977 } while (node);
4978 tp->ooo_last_skb = rb_to_skb(prev);
4979
4980 /* Reset SACK state. A conforming SACK implementation will
4981 * do the same at a timeout based retransmit. When a connection
4982 * is in a sad state like this, we care only about integrity
4983 * of the connection not performance.
4984 */
4985 if (tp->rx_opt.sack_ok)
4986 tcp_sack_reset(&tp->rx_opt);
4987 return true;
4988 }
4989
4990 /* Reduce allocated memory if we can, trying to get
4991 * the socket within its memory limits again.
4992 *
4993 * Return less than zero if we should start dropping frames
4994 * until the socket owning process reads some of the data
4995 * to stabilize the situation.
4996 */
4997 static int tcp_prune_queue(struct sock *sk)
4998 {
4999 struct tcp_sock *tp = tcp_sk(sk);
5000
5001 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5002
5003 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5004
5005 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5006 tcp_clamp_window(sk);
5007 else if (tcp_under_memory_pressure(sk))
5008 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5009
5010 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5011 return 0;
5012
5013 tcp_collapse_ofo_queue(sk);
5014 if (!skb_queue_empty(&sk->sk_receive_queue))
5015 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5016 skb_peek(&sk->sk_receive_queue),
5017 NULL,
5018 tp->copied_seq, tp->rcv_nxt);
5019 sk_mem_reclaim(sk);
5020
5021 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5022 return 0;
5023
5024 /* Collapsing did not help, destructive actions follow.
5025 * This must not ever occur. */
5026
5027 tcp_prune_ofo_queue(sk);
5028
5029 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5030 return 0;
5031
5032 /* If we are really being abused, tell the caller to silently
5033 * drop receive data on the floor. It will get retransmitted
5034 * and hopefully then we'll have sufficient space.
5035 */
5036 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5037
5038 /* Massive buffer overcommit. */
5039 tp->pred_flags = 0;
5040 return -1;
5041 }
5042
5043 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5044 {
5045 const struct tcp_sock *tp = tcp_sk(sk);
5046
5047 /* If the user specified a specific send buffer setting, do
5048 * not modify it.
5049 */
5050 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5051 return false;
5052
5053 /* If we are under global TCP memory pressure, do not expand. */
5054 if (tcp_under_memory_pressure(sk))
5055 return false;
5056
5057 /* If we are under soft global TCP memory pressure, do not expand. */
5058 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5059 return false;
5060
5061 /* If we filled the congestion window, do not expand. */
5062 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5063 return false;
5064
5065 return true;
5066 }
5067
5068 /* When incoming ACK allowed to free some skb from write_queue,
5069 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5070 * on the exit from tcp input handler.
5071 *
5072 * PROBLEM: sndbuf expansion does not work well with largesend.
5073 */
5074 static void tcp_new_space(struct sock *sk)
5075 {
5076 struct tcp_sock *tp = tcp_sk(sk);
5077
5078 if (tcp_should_expand_sndbuf(sk)) {
5079 tcp_sndbuf_expand(sk);
5080 tp->snd_cwnd_stamp = tcp_jiffies32;
5081 }
5082
5083 sk->sk_write_space(sk);
5084 }
5085
5086 static void tcp_check_space(struct sock *sk)
5087 {
5088 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5089 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5090 /* pairs with tcp_poll() */
5091 smp_mb();
5092 if (sk->sk_socket &&
5093 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5094 tcp_new_space(sk);
5095 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5096 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5097 }
5098 }
5099 }
5100
5101 static inline void tcp_data_snd_check(struct sock *sk)
5102 {
5103 tcp_push_pending_frames(sk);
5104 tcp_check_space(sk);
5105 }
5106
5107 /*
5108 * Check if sending an ack is needed.
5109 */
5110 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5111 {
5112 struct tcp_sock *tp = tcp_sk(sk);
5113
5114 /* More than one full frame received... */
5115 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5116 /* ... and right edge of window advances far enough.
5117 * (tcp_recvmsg() will send ACK otherwise). Or...
5118 */
5119 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5120 /* We ACK each frame or... */
5121 tcp_in_quickack_mode(sk) ||
5122 /* We have out of order data. */
5123 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5124 /* Then ack it now */
5125 tcp_send_ack(sk);
5126 } else {
5127 /* Else, send delayed ack. */
5128 tcp_send_delayed_ack(sk);
5129 }
5130 }
5131
5132 static inline void tcp_ack_snd_check(struct sock *sk)
5133 {
5134 if (!inet_csk_ack_scheduled(sk)) {
5135 /* We sent a data segment already. */
5136 return;
5137 }
5138 __tcp_ack_snd_check(sk, 1);
5139 }
5140
5141 /*
5142 * This routine is only called when we have urgent data
5143 * signaled. Its the 'slow' part of tcp_urg. It could be
5144 * moved inline now as tcp_urg is only called from one
5145 * place. We handle URGent data wrong. We have to - as
5146 * BSD still doesn't use the correction from RFC961.
5147 * For 1003.1g we should support a new option TCP_STDURG to permit
5148 * either form (or just set the sysctl tcp_stdurg).
5149 */
5150
5151 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5152 {
5153 struct tcp_sock *tp = tcp_sk(sk);
5154 u32 ptr = ntohs(th->urg_ptr);
5155
5156 if (ptr && !sysctl_tcp_stdurg)
5157 ptr--;
5158 ptr += ntohl(th->seq);
5159
5160 /* Ignore urgent data that we've already seen and read. */
5161 if (after(tp->copied_seq, ptr))
5162 return;
5163
5164 /* Do not replay urg ptr.
5165 *
5166 * NOTE: interesting situation not covered by specs.
5167 * Misbehaving sender may send urg ptr, pointing to segment,
5168 * which we already have in ofo queue. We are not able to fetch
5169 * such data and will stay in TCP_URG_NOTYET until will be eaten
5170 * by recvmsg(). Seems, we are not obliged to handle such wicked
5171 * situations. But it is worth to think about possibility of some
5172 * DoSes using some hypothetical application level deadlock.
5173 */
5174 if (before(ptr, tp->rcv_nxt))
5175 return;
5176
5177 /* Do we already have a newer (or duplicate) urgent pointer? */
5178 if (tp->urg_data && !after(ptr, tp->urg_seq))
5179 return;
5180
5181 /* Tell the world about our new urgent pointer. */
5182 sk_send_sigurg(sk);
5183
5184 /* We may be adding urgent data when the last byte read was
5185 * urgent. To do this requires some care. We cannot just ignore
5186 * tp->copied_seq since we would read the last urgent byte again
5187 * as data, nor can we alter copied_seq until this data arrives
5188 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5189 *
5190 * NOTE. Double Dutch. Rendering to plain English: author of comment
5191 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5192 * and expect that both A and B disappear from stream. This is _wrong_.
5193 * Though this happens in BSD with high probability, this is occasional.
5194 * Any application relying on this is buggy. Note also, that fix "works"
5195 * only in this artificial test. Insert some normal data between A and B and we will
5196 * decline of BSD again. Verdict: it is better to remove to trap
5197 * buggy users.
5198 */
5199 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5200 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5201 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5202 tp->copied_seq++;
5203 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5204 __skb_unlink(skb, &sk->sk_receive_queue);
5205 __kfree_skb(skb);
5206 }
5207 }
5208
5209 tp->urg_data = TCP_URG_NOTYET;
5210 tp->urg_seq = ptr;
5211
5212 /* Disable header prediction. */
5213 tp->pred_flags = 0;
5214 }
5215
5216 /* This is the 'fast' part of urgent handling. */
5217 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5218 {
5219 struct tcp_sock *tp = tcp_sk(sk);
5220
5221 /* Check if we get a new urgent pointer - normally not. */
5222 if (th->urg)
5223 tcp_check_urg(sk, th);
5224
5225 /* Do we wait for any urgent data? - normally not... */
5226 if (tp->urg_data == TCP_URG_NOTYET) {
5227 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5228 th->syn;
5229
5230 /* Is the urgent pointer pointing into this packet? */
5231 if (ptr < skb->len) {
5232 u8 tmp;
5233 if (skb_copy_bits(skb, ptr, &tmp, 1))
5234 BUG();
5235 tp->urg_data = TCP_URG_VALID | tmp;
5236 if (!sock_flag(sk, SOCK_DEAD))
5237 sk->sk_data_ready(sk);
5238 }
5239 }
5240 }
5241
5242 /* Accept RST for rcv_nxt - 1 after a FIN.
5243 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5244 * FIN is sent followed by a RST packet. The RST is sent with the same
5245 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5246 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5247 * ACKs on the closed socket. In addition middleboxes can drop either the
5248 * challenge ACK or a subsequent RST.
5249 */
5250 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5251 {
5252 struct tcp_sock *tp = tcp_sk(sk);
5253
5254 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5255 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5256 TCPF_CLOSING));
5257 }
5258
5259 /* Does PAWS and seqno based validation of an incoming segment, flags will
5260 * play significant role here.
5261 */
5262 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5263 const struct tcphdr *th, int syn_inerr)
5264 {
5265 struct tcp_sock *tp = tcp_sk(sk);
5266 bool rst_seq_match = false;
5267
5268 /* RFC1323: H1. Apply PAWS check first. */
5269 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5270 tp->rx_opt.saw_tstamp &&
5271 tcp_paws_discard(sk, skb)) {
5272 if (!th->rst) {
5273 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5274 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5275 LINUX_MIB_TCPACKSKIPPEDPAWS,
5276 &tp->last_oow_ack_time))
5277 tcp_send_dupack(sk, skb);
5278 goto discard;
5279 }
5280 /* Reset is accepted even if it did not pass PAWS. */
5281 }
5282
5283 /* Step 1: check sequence number */
5284 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5285 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5286 * (RST) segments are validated by checking their SEQ-fields."
5287 * And page 69: "If an incoming segment is not acceptable,
5288 * an acknowledgment should be sent in reply (unless the RST
5289 * bit is set, if so drop the segment and return)".
5290 */
5291 if (!th->rst) {
5292 if (th->syn)
5293 goto syn_challenge;
5294 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5295 LINUX_MIB_TCPACKSKIPPEDSEQ,
5296 &tp->last_oow_ack_time))
5297 tcp_send_dupack(sk, skb);
5298 } else if (tcp_reset_check(sk, skb)) {
5299 tcp_reset(sk);
5300 }
5301 goto discard;
5302 }
5303
5304 /* Step 2: check RST bit */
5305 if (th->rst) {
5306 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5307 * FIN and SACK too if available):
5308 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5309 * the right-most SACK block,
5310 * then
5311 * RESET the connection
5312 * else
5313 * Send a challenge ACK
5314 */
5315 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5316 tcp_reset_check(sk, skb)) {
5317 rst_seq_match = true;
5318 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5319 struct tcp_sack_block *sp = &tp->selective_acks[0];
5320 int max_sack = sp[0].end_seq;
5321 int this_sack;
5322
5323 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5324 ++this_sack) {
5325 max_sack = after(sp[this_sack].end_seq,
5326 max_sack) ?
5327 sp[this_sack].end_seq : max_sack;
5328 }
5329
5330 if (TCP_SKB_CB(skb)->seq == max_sack)
5331 rst_seq_match = true;
5332 }
5333
5334 if (rst_seq_match)
5335 tcp_reset(sk);
5336 else {
5337 /* Disable TFO if RST is out-of-order
5338 * and no data has been received
5339 * for current active TFO socket
5340 */
5341 if (tp->syn_fastopen && !tp->data_segs_in &&
5342 sk->sk_state == TCP_ESTABLISHED)
5343 tcp_fastopen_active_disable(sk);
5344 tcp_send_challenge_ack(sk, skb);
5345 }
5346 goto discard;
5347 }
5348
5349 /* step 3: check security and precedence [ignored] */
5350
5351 /* step 4: Check for a SYN
5352 * RFC 5961 4.2 : Send a challenge ack
5353 */
5354 if (th->syn) {
5355 syn_challenge:
5356 if (syn_inerr)
5357 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5358 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5359 tcp_send_challenge_ack(sk, skb);
5360 goto discard;
5361 }
5362
5363 return true;
5364
5365 discard:
5366 tcp_drop(sk, skb);
5367 return false;
5368 }
5369
5370 /*
5371 * TCP receive function for the ESTABLISHED state.
5372 *
5373 * It is split into a fast path and a slow path. The fast path is
5374 * disabled when:
5375 * - A zero window was announced from us - zero window probing
5376 * is only handled properly in the slow path.
5377 * - Out of order segments arrived.
5378 * - Urgent data is expected.
5379 * - There is no buffer space left
5380 * - Unexpected TCP flags/window values/header lengths are received
5381 * (detected by checking the TCP header against pred_flags)
5382 * - Data is sent in both directions. Fast path only supports pure senders
5383 * or pure receivers (this means either the sequence number or the ack
5384 * value must stay constant)
5385 * - Unexpected TCP option.
5386 *
5387 * When these conditions are not satisfied it drops into a standard
5388 * receive procedure patterned after RFC793 to handle all cases.
5389 * The first three cases are guaranteed by proper pred_flags setting,
5390 * the rest is checked inline. Fast processing is turned on in
5391 * tcp_data_queue when everything is OK.
5392 */
5393 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5394 const struct tcphdr *th)
5395 {
5396 unsigned int len = skb->len;
5397 struct tcp_sock *tp = tcp_sk(sk);
5398
5399 tcp_mstamp_refresh(tp);
5400 if (unlikely(!sk->sk_rx_dst))
5401 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5402 /*
5403 * Header prediction.
5404 * The code loosely follows the one in the famous
5405 * "30 instruction TCP receive" Van Jacobson mail.
5406 *
5407 * Van's trick is to deposit buffers into socket queue
5408 * on a device interrupt, to call tcp_recv function
5409 * on the receive process context and checksum and copy
5410 * the buffer to user space. smart...
5411 *
5412 * Our current scheme is not silly either but we take the
5413 * extra cost of the net_bh soft interrupt processing...
5414 * We do checksum and copy also but from device to kernel.
5415 */
5416
5417 tp->rx_opt.saw_tstamp = 0;
5418
5419 /* pred_flags is 0xS?10 << 16 + snd_wnd
5420 * if header_prediction is to be made
5421 * 'S' will always be tp->tcp_header_len >> 2
5422 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5423 * turn it off (when there are holes in the receive
5424 * space for instance)
5425 * PSH flag is ignored.
5426 */
5427
5428 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5429 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5430 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5431 int tcp_header_len = tp->tcp_header_len;
5432
5433 /* Timestamp header prediction: tcp_header_len
5434 * is automatically equal to th->doff*4 due to pred_flags
5435 * match.
5436 */
5437
5438 /* Check timestamp */
5439 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5440 /* No? Slow path! */
5441 if (!tcp_parse_aligned_timestamp(tp, th))
5442 goto slow_path;
5443
5444 /* If PAWS failed, check it more carefully in slow path */
5445 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5446 goto slow_path;
5447
5448 /* DO NOT update ts_recent here, if checksum fails
5449 * and timestamp was corrupted part, it will result
5450 * in a hung connection since we will drop all
5451 * future packets due to the PAWS test.
5452 */
5453 }
5454
5455 if (len <= tcp_header_len) {
5456 /* Bulk data transfer: sender */
5457 if (len == tcp_header_len) {
5458 /* Predicted packet is in window by definition.
5459 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5460 * Hence, check seq<=rcv_wup reduces to:
5461 */
5462 if (tcp_header_len ==
5463 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5464 tp->rcv_nxt == tp->rcv_wup)
5465 tcp_store_ts_recent(tp);
5466
5467 /* We know that such packets are checksummed
5468 * on entry.
5469 */
5470 tcp_ack(sk, skb, 0);
5471 __kfree_skb(skb);
5472 tcp_data_snd_check(sk);
5473 return;
5474 } else { /* Header too small */
5475 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5476 goto discard;
5477 }
5478 } else {
5479 int eaten = 0;
5480 bool fragstolen = false;
5481
5482 if (tcp_checksum_complete(skb))
5483 goto csum_error;
5484
5485 if ((int)skb->truesize > sk->sk_forward_alloc)
5486 goto step5;
5487
5488 /* Predicted packet is in window by definition.
5489 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5490 * Hence, check seq<=rcv_wup reduces to:
5491 */
5492 if (tcp_header_len ==
5493 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5494 tp->rcv_nxt == tp->rcv_wup)
5495 tcp_store_ts_recent(tp);
5496
5497 tcp_rcv_rtt_measure_ts(sk, skb);
5498
5499 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5500
5501 /* Bulk data transfer: receiver */
5502 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5503 &fragstolen);
5504
5505 tcp_event_data_recv(sk, skb);
5506
5507 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5508 /* Well, only one small jumplet in fast path... */
5509 tcp_ack(sk, skb, FLAG_DATA);
5510 tcp_data_snd_check(sk);
5511 if (!inet_csk_ack_scheduled(sk))
5512 goto no_ack;
5513 }
5514
5515 __tcp_ack_snd_check(sk, 0);
5516 no_ack:
5517 if (eaten)
5518 kfree_skb_partial(skb, fragstolen);
5519 sk->sk_data_ready(sk);
5520 return;
5521 }
5522 }
5523
5524 slow_path:
5525 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5526 goto csum_error;
5527
5528 if (!th->ack && !th->rst && !th->syn)
5529 goto discard;
5530
5531 /*
5532 * Standard slow path.
5533 */
5534
5535 if (!tcp_validate_incoming(sk, skb, th, 1))
5536 return;
5537
5538 step5:
5539 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5540 goto discard;
5541
5542 tcp_rcv_rtt_measure_ts(sk, skb);
5543
5544 /* Process urgent data. */
5545 tcp_urg(sk, skb, th);
5546
5547 /* step 7: process the segment text */
5548 tcp_data_queue(sk, skb);
5549
5550 tcp_data_snd_check(sk);
5551 tcp_ack_snd_check(sk);
5552 return;
5553
5554 csum_error:
5555 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5556 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5557
5558 discard:
5559 tcp_drop(sk, skb);
5560 }
5561 EXPORT_SYMBOL(tcp_rcv_established);
5562
5563 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5564 {
5565 struct tcp_sock *tp = tcp_sk(sk);
5566 struct inet_connection_sock *icsk = inet_csk(sk);
5567
5568 tcp_set_state(sk, TCP_ESTABLISHED);
5569 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5570
5571 if (skb) {
5572 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5573 security_inet_conn_established(sk, skb);
5574 }
5575
5576 /* Make sure socket is routed, for correct metrics. */
5577 icsk->icsk_af_ops->rebuild_header(sk);
5578
5579 tcp_init_metrics(sk);
5580 tcp_call_bpf(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5581 tcp_init_congestion_control(sk);
5582
5583 /* Prevent spurious tcp_cwnd_restart() on first data
5584 * packet.
5585 */
5586 tp->lsndtime = tcp_jiffies32;
5587
5588 tcp_init_buffer_space(sk);
5589
5590 if (sock_flag(sk, SOCK_KEEPOPEN))
5591 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5592
5593 if (!tp->rx_opt.snd_wscale)
5594 __tcp_fast_path_on(tp, tp->snd_wnd);
5595 else
5596 tp->pred_flags = 0;
5597 }
5598
5599 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5600 struct tcp_fastopen_cookie *cookie)
5601 {
5602 struct tcp_sock *tp = tcp_sk(sk);
5603 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5604 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5605 bool syn_drop = false;
5606
5607 if (mss == tp->rx_opt.user_mss) {
5608 struct tcp_options_received opt;
5609
5610 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5611 tcp_clear_options(&opt);
5612 opt.user_mss = opt.mss_clamp = 0;
5613 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5614 mss = opt.mss_clamp;
5615 }
5616
5617 if (!tp->syn_fastopen) {
5618 /* Ignore an unsolicited cookie */
5619 cookie->len = -1;
5620 } else if (tp->total_retrans) {
5621 /* SYN timed out and the SYN-ACK neither has a cookie nor
5622 * acknowledges data. Presumably the remote received only
5623 * the retransmitted (regular) SYNs: either the original
5624 * SYN-data or the corresponding SYN-ACK was dropped.
5625 */
5626 syn_drop = (cookie->len < 0 && data);
5627 } else if (cookie->len < 0 && !tp->syn_data) {
5628 /* We requested a cookie but didn't get it. If we did not use
5629 * the (old) exp opt format then try so next time (try_exp=1).
5630 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5631 */
5632 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5633 }
5634
5635 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5636
5637 if (data) { /* Retransmit unacked data in SYN */
5638 tcp_for_write_queue_from(data, sk) {
5639 if (data == tcp_send_head(sk) ||
5640 __tcp_retransmit_skb(sk, data, 1))
5641 break;
5642 }
5643 tcp_rearm_rto(sk);
5644 NET_INC_STATS(sock_net(sk),
5645 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5646 return true;
5647 }
5648 tp->syn_data_acked = tp->syn_data;
5649 if (tp->syn_data_acked)
5650 NET_INC_STATS(sock_net(sk),
5651 LINUX_MIB_TCPFASTOPENACTIVE);
5652
5653 tcp_fastopen_add_skb(sk, synack);
5654
5655 return false;
5656 }
5657
5658 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5659 const struct tcphdr *th)
5660 {
5661 struct inet_connection_sock *icsk = inet_csk(sk);
5662 struct tcp_sock *tp = tcp_sk(sk);
5663 struct tcp_fastopen_cookie foc = { .len = -1 };
5664 int saved_clamp = tp->rx_opt.mss_clamp;
5665 bool fastopen_fail;
5666
5667 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5668 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5669 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5670
5671 if (th->ack) {
5672 /* rfc793:
5673 * "If the state is SYN-SENT then
5674 * first check the ACK bit
5675 * If the ACK bit is set
5676 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5677 * a reset (unless the RST bit is set, if so drop
5678 * the segment and return)"
5679 */
5680 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5681 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5682 goto reset_and_undo;
5683
5684 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5685 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5686 tcp_time_stamp(tp))) {
5687 NET_INC_STATS(sock_net(sk),
5688 LINUX_MIB_PAWSACTIVEREJECTED);
5689 goto reset_and_undo;
5690 }
5691
5692 /* Now ACK is acceptable.
5693 *
5694 * "If the RST bit is set
5695 * If the ACK was acceptable then signal the user "error:
5696 * connection reset", drop the segment, enter CLOSED state,
5697 * delete TCB, and return."
5698 */
5699
5700 if (th->rst) {
5701 tcp_reset(sk);
5702 goto discard;
5703 }
5704
5705 /* rfc793:
5706 * "fifth, if neither of the SYN or RST bits is set then
5707 * drop the segment and return."
5708 *
5709 * See note below!
5710 * --ANK(990513)
5711 */
5712 if (!th->syn)
5713 goto discard_and_undo;
5714
5715 /* rfc793:
5716 * "If the SYN bit is on ...
5717 * are acceptable then ...
5718 * (our SYN has been ACKed), change the connection
5719 * state to ESTABLISHED..."
5720 */
5721
5722 tcp_ecn_rcv_synack(tp, th);
5723
5724 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5725 tcp_ack(sk, skb, FLAG_SLOWPATH);
5726
5727 /* Ok.. it's good. Set up sequence numbers and
5728 * move to established.
5729 */
5730 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5731 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5732
5733 /* RFC1323: The window in SYN & SYN/ACK segments is
5734 * never scaled.
5735 */
5736 tp->snd_wnd = ntohs(th->window);
5737
5738 if (!tp->rx_opt.wscale_ok) {
5739 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5740 tp->window_clamp = min(tp->window_clamp, 65535U);
5741 }
5742
5743 if (tp->rx_opt.saw_tstamp) {
5744 tp->rx_opt.tstamp_ok = 1;
5745 tp->tcp_header_len =
5746 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5747 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5748 tcp_store_ts_recent(tp);
5749 } else {
5750 tp->tcp_header_len = sizeof(struct tcphdr);
5751 }
5752
5753 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5754 tcp_enable_fack(tp);
5755
5756 tcp_mtup_init(sk);
5757 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5758 tcp_initialize_rcv_mss(sk);
5759
5760 /* Remember, tcp_poll() does not lock socket!
5761 * Change state from SYN-SENT only after copied_seq
5762 * is initialized. */
5763 tp->copied_seq = tp->rcv_nxt;
5764
5765 smp_mb();
5766
5767 tcp_finish_connect(sk, skb);
5768
5769 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5770 tcp_rcv_fastopen_synack(sk, skb, &foc);
5771
5772 if (!sock_flag(sk, SOCK_DEAD)) {
5773 sk->sk_state_change(sk);
5774 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5775 }
5776 if (fastopen_fail)
5777 return -1;
5778 if (sk->sk_write_pending ||
5779 icsk->icsk_accept_queue.rskq_defer_accept ||
5780 icsk->icsk_ack.pingpong) {
5781 /* Save one ACK. Data will be ready after
5782 * several ticks, if write_pending is set.
5783 *
5784 * It may be deleted, but with this feature tcpdumps
5785 * look so _wonderfully_ clever, that I was not able
5786 * to stand against the temptation 8) --ANK
5787 */
5788 inet_csk_schedule_ack(sk);
5789 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5790 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5791 TCP_DELACK_MAX, TCP_RTO_MAX);
5792
5793 discard:
5794 tcp_drop(sk, skb);
5795 return 0;
5796 } else {
5797 tcp_send_ack(sk);
5798 }
5799 return -1;
5800 }
5801
5802 /* No ACK in the segment */
5803
5804 if (th->rst) {
5805 /* rfc793:
5806 * "If the RST bit is set
5807 *
5808 * Otherwise (no ACK) drop the segment and return."
5809 */
5810
5811 goto discard_and_undo;
5812 }
5813
5814 /* PAWS check. */
5815 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5816 tcp_paws_reject(&tp->rx_opt, 0))
5817 goto discard_and_undo;
5818
5819 if (th->syn) {
5820 /* We see SYN without ACK. It is attempt of
5821 * simultaneous connect with crossed SYNs.
5822 * Particularly, it can be connect to self.
5823 */
5824 tcp_set_state(sk, TCP_SYN_RECV);
5825
5826 if (tp->rx_opt.saw_tstamp) {
5827 tp->rx_opt.tstamp_ok = 1;
5828 tcp_store_ts_recent(tp);
5829 tp->tcp_header_len =
5830 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5831 } else {
5832 tp->tcp_header_len = sizeof(struct tcphdr);
5833 }
5834
5835 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5836 tp->copied_seq = tp->rcv_nxt;
5837 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5838
5839 /* RFC1323: The window in SYN & SYN/ACK segments is
5840 * never scaled.
5841 */
5842 tp->snd_wnd = ntohs(th->window);
5843 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5844 tp->max_window = tp->snd_wnd;
5845
5846 tcp_ecn_rcv_syn(tp, th);
5847
5848 tcp_mtup_init(sk);
5849 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5850 tcp_initialize_rcv_mss(sk);
5851
5852 tcp_send_synack(sk);
5853 #if 0
5854 /* Note, we could accept data and URG from this segment.
5855 * There are no obstacles to make this (except that we must
5856 * either change tcp_recvmsg() to prevent it from returning data
5857 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5858 *
5859 * However, if we ignore data in ACKless segments sometimes,
5860 * we have no reasons to accept it sometimes.
5861 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5862 * is not flawless. So, discard packet for sanity.
5863 * Uncomment this return to process the data.
5864 */
5865 return -1;
5866 #else
5867 goto discard;
5868 #endif
5869 }
5870 /* "fifth, if neither of the SYN or RST bits is set then
5871 * drop the segment and return."
5872 */
5873
5874 discard_and_undo:
5875 tcp_clear_options(&tp->rx_opt);
5876 tp->rx_opt.mss_clamp = saved_clamp;
5877 goto discard;
5878
5879 reset_and_undo:
5880 tcp_clear_options(&tp->rx_opt);
5881 tp->rx_opt.mss_clamp = saved_clamp;
5882 return 1;
5883 }
5884
5885 /*
5886 * This function implements the receiving procedure of RFC 793 for
5887 * all states except ESTABLISHED and TIME_WAIT.
5888 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5889 * address independent.
5890 */
5891
5892 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5893 {
5894 struct tcp_sock *tp = tcp_sk(sk);
5895 struct inet_connection_sock *icsk = inet_csk(sk);
5896 const struct tcphdr *th = tcp_hdr(skb);
5897 struct request_sock *req;
5898 int queued = 0;
5899 bool acceptable;
5900
5901 switch (sk->sk_state) {
5902 case TCP_CLOSE:
5903 goto discard;
5904
5905 case TCP_LISTEN:
5906 if (th->ack)
5907 return 1;
5908
5909 if (th->rst)
5910 goto discard;
5911
5912 if (th->syn) {
5913 if (th->fin)
5914 goto discard;
5915 /* It is possible that we process SYN packets from backlog,
5916 * so we need to make sure to disable BH and RCU right there.
5917 */
5918 rcu_read_lock();
5919 local_bh_disable();
5920 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5921 local_bh_enable();
5922 rcu_read_unlock();
5923
5924 if (!acceptable)
5925 return 1;
5926 consume_skb(skb);
5927 return 0;
5928 }
5929 goto discard;
5930
5931 case TCP_SYN_SENT:
5932 tp->rx_opt.saw_tstamp = 0;
5933 tcp_mstamp_refresh(tp);
5934 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5935 if (queued >= 0)
5936 return queued;
5937
5938 /* Do step6 onward by hand. */
5939 tcp_urg(sk, skb, th);
5940 __kfree_skb(skb);
5941 tcp_data_snd_check(sk);
5942 return 0;
5943 }
5944
5945 tcp_mstamp_refresh(tp);
5946 tp->rx_opt.saw_tstamp = 0;
5947 req = tp->fastopen_rsk;
5948 if (req) {
5949 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5950 sk->sk_state != TCP_FIN_WAIT1);
5951
5952 if (!tcp_check_req(sk, skb, req, true))
5953 goto discard;
5954 }
5955
5956 if (!th->ack && !th->rst && !th->syn)
5957 goto discard;
5958
5959 if (!tcp_validate_incoming(sk, skb, th, 0))
5960 return 0;
5961
5962 /* step 5: check the ACK field */
5963 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5964 FLAG_UPDATE_TS_RECENT |
5965 FLAG_NO_CHALLENGE_ACK) > 0;
5966
5967 if (!acceptable) {
5968 if (sk->sk_state == TCP_SYN_RECV)
5969 return 1; /* send one RST */
5970 tcp_send_challenge_ack(sk, skb);
5971 goto discard;
5972 }
5973 switch (sk->sk_state) {
5974 case TCP_SYN_RECV:
5975 if (!tp->srtt_us)
5976 tcp_synack_rtt_meas(sk, req);
5977
5978 /* Once we leave TCP_SYN_RECV, we no longer need req
5979 * so release it.
5980 */
5981 if (req) {
5982 inet_csk(sk)->icsk_retransmits = 0;
5983 reqsk_fastopen_remove(sk, req, false);
5984 } else {
5985 /* Make sure socket is routed, for correct metrics. */
5986 icsk->icsk_af_ops->rebuild_header(sk);
5987 tcp_call_bpf(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
5988 tcp_init_congestion_control(sk);
5989
5990 tcp_mtup_init(sk);
5991 tp->copied_seq = tp->rcv_nxt;
5992 tcp_init_buffer_space(sk);
5993 }
5994 smp_mb();
5995 tcp_set_state(sk, TCP_ESTABLISHED);
5996 sk->sk_state_change(sk);
5997
5998 /* Note, that this wakeup is only for marginal crossed SYN case.
5999 * Passively open sockets are not waked up, because
6000 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6001 */
6002 if (sk->sk_socket)
6003 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6004
6005 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6006 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6007 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6008
6009 if (tp->rx_opt.tstamp_ok)
6010 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6011
6012 if (req) {
6013 /* Re-arm the timer because data may have been sent out.
6014 * This is similar to the regular data transmission case
6015 * when new data has just been ack'ed.
6016 *
6017 * (TFO) - we could try to be more aggressive and
6018 * retransmitting any data sooner based on when they
6019 * are sent out.
6020 */
6021 tcp_rearm_rto(sk);
6022 } else
6023 tcp_init_metrics(sk);
6024
6025 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6026 tcp_update_pacing_rate(sk);
6027
6028 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6029 tp->lsndtime = tcp_jiffies32;
6030
6031 tcp_initialize_rcv_mss(sk);
6032 tcp_fast_path_on(tp);
6033 break;
6034
6035 case TCP_FIN_WAIT1: {
6036 int tmo;
6037
6038 /* If we enter the TCP_FIN_WAIT1 state and we are a
6039 * Fast Open socket and this is the first acceptable
6040 * ACK we have received, this would have acknowledged
6041 * our SYNACK so stop the SYNACK timer.
6042 */
6043 if (req) {
6044 /* We no longer need the request sock. */
6045 reqsk_fastopen_remove(sk, req, false);
6046 tcp_rearm_rto(sk);
6047 }
6048 if (tp->snd_una != tp->write_seq)
6049 break;
6050
6051 tcp_set_state(sk, TCP_FIN_WAIT2);
6052 sk->sk_shutdown |= SEND_SHUTDOWN;
6053
6054 sk_dst_confirm(sk);
6055
6056 if (!sock_flag(sk, SOCK_DEAD)) {
6057 /* Wake up lingering close() */
6058 sk->sk_state_change(sk);
6059 break;
6060 }
6061
6062 if (tp->linger2 < 0) {
6063 tcp_done(sk);
6064 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6065 return 1;
6066 }
6067 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6068 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6069 /* Receive out of order FIN after close() */
6070 if (tp->syn_fastopen && th->fin)
6071 tcp_fastopen_active_disable(sk);
6072 tcp_done(sk);
6073 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6074 return 1;
6075 }
6076
6077 tmo = tcp_fin_time(sk);
6078 if (tmo > TCP_TIMEWAIT_LEN) {
6079 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6080 } else if (th->fin || sock_owned_by_user(sk)) {
6081 /* Bad case. We could lose such FIN otherwise.
6082 * It is not a big problem, but it looks confusing
6083 * and not so rare event. We still can lose it now,
6084 * if it spins in bh_lock_sock(), but it is really
6085 * marginal case.
6086 */
6087 inet_csk_reset_keepalive_timer(sk, tmo);
6088 } else {
6089 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6090 goto discard;
6091 }
6092 break;
6093 }
6094
6095 case TCP_CLOSING:
6096 if (tp->snd_una == tp->write_seq) {
6097 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6098 goto discard;
6099 }
6100 break;
6101
6102 case TCP_LAST_ACK:
6103 if (tp->snd_una == tp->write_seq) {
6104 tcp_update_metrics(sk);
6105 tcp_done(sk);
6106 goto discard;
6107 }
6108 break;
6109 }
6110
6111 /* step 6: check the URG bit */
6112 tcp_urg(sk, skb, th);
6113
6114 /* step 7: process the segment text */
6115 switch (sk->sk_state) {
6116 case TCP_CLOSE_WAIT:
6117 case TCP_CLOSING:
6118 case TCP_LAST_ACK:
6119 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6120 break;
6121 case TCP_FIN_WAIT1:
6122 case TCP_FIN_WAIT2:
6123 /* RFC 793 says to queue data in these states,
6124 * RFC 1122 says we MUST send a reset.
6125 * BSD 4.4 also does reset.
6126 */
6127 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6128 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6129 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6130 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6131 tcp_reset(sk);
6132 return 1;
6133 }
6134 }
6135 /* Fall through */
6136 case TCP_ESTABLISHED:
6137 tcp_data_queue(sk, skb);
6138 queued = 1;
6139 break;
6140 }
6141
6142 /* tcp_data could move socket to TIME-WAIT */
6143 if (sk->sk_state != TCP_CLOSE) {
6144 tcp_data_snd_check(sk);
6145 tcp_ack_snd_check(sk);
6146 }
6147
6148 if (!queued) {
6149 discard:
6150 tcp_drop(sk, skb);
6151 }
6152 return 0;
6153 }
6154 EXPORT_SYMBOL(tcp_rcv_state_process);
6155
6156 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6157 {
6158 struct inet_request_sock *ireq = inet_rsk(req);
6159
6160 if (family == AF_INET)
6161 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6162 &ireq->ir_rmt_addr, port);
6163 #if IS_ENABLED(CONFIG_IPV6)
6164 else if (family == AF_INET6)
6165 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6166 &ireq->ir_v6_rmt_addr, port);
6167 #endif
6168 }
6169
6170 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6171 *
6172 * If we receive a SYN packet with these bits set, it means a
6173 * network is playing bad games with TOS bits. In order to
6174 * avoid possible false congestion notifications, we disable
6175 * TCP ECN negotiation.
6176 *
6177 * Exception: tcp_ca wants ECN. This is required for DCTCP
6178 * congestion control: Linux DCTCP asserts ECT on all packets,
6179 * including SYN, which is most optimal solution; however,
6180 * others, such as FreeBSD do not.
6181 */
6182 static void tcp_ecn_create_request(struct request_sock *req,
6183 const struct sk_buff *skb,
6184 const struct sock *listen_sk,
6185 const struct dst_entry *dst)
6186 {
6187 const struct tcphdr *th = tcp_hdr(skb);
6188 const struct net *net = sock_net(listen_sk);
6189 bool th_ecn = th->ece && th->cwr;
6190 bool ect, ecn_ok;
6191 u32 ecn_ok_dst;
6192
6193 if (!th_ecn)
6194 return;
6195
6196 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6197 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6198 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6199
6200 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6201 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6202 tcp_bpf_ca_needs_ecn((struct sock *)req))
6203 inet_rsk(req)->ecn_ok = 1;
6204 }
6205
6206 static void tcp_openreq_init(struct request_sock *req,
6207 const struct tcp_options_received *rx_opt,
6208 struct sk_buff *skb, const struct sock *sk)
6209 {
6210 struct inet_request_sock *ireq = inet_rsk(req);
6211
6212 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6213 req->cookie_ts = 0;
6214 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6215 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6216 tcp_rsk(req)->snt_synack = tcp_clock_us();
6217 tcp_rsk(req)->last_oow_ack_time = 0;
6218 req->mss = rx_opt->mss_clamp;
6219 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6220 ireq->tstamp_ok = rx_opt->tstamp_ok;
6221 ireq->sack_ok = rx_opt->sack_ok;
6222 ireq->snd_wscale = rx_opt->snd_wscale;
6223 ireq->wscale_ok = rx_opt->wscale_ok;
6224 ireq->acked = 0;
6225 ireq->ecn_ok = 0;
6226 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6227 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6228 ireq->ir_mark = inet_request_mark(sk, skb);
6229 }
6230
6231 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6232 struct sock *sk_listener,
6233 bool attach_listener)
6234 {
6235 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6236 attach_listener);
6237
6238 if (req) {
6239 struct inet_request_sock *ireq = inet_rsk(req);
6240
6241 ireq->ireq_opt = NULL;
6242 #if IS_ENABLED(CONFIG_IPV6)
6243 ireq->pktopts = NULL;
6244 #endif
6245 atomic64_set(&ireq->ir_cookie, 0);
6246 ireq->ireq_state = TCP_NEW_SYN_RECV;
6247 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6248 ireq->ireq_family = sk_listener->sk_family;
6249 }
6250
6251 return req;
6252 }
6253 EXPORT_SYMBOL(inet_reqsk_alloc);
6254
6255 /*
6256 * Return true if a syncookie should be sent
6257 */
6258 static bool tcp_syn_flood_action(const struct sock *sk,
6259 const struct sk_buff *skb,
6260 const char *proto)
6261 {
6262 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6263 const char *msg = "Dropping request";
6264 bool want_cookie = false;
6265 struct net *net = sock_net(sk);
6266
6267 #ifdef CONFIG_SYN_COOKIES
6268 if (net->ipv4.sysctl_tcp_syncookies) {
6269 msg = "Sending cookies";
6270 want_cookie = true;
6271 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6272 } else
6273 #endif
6274 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6275
6276 if (!queue->synflood_warned &&
6277 net->ipv4.sysctl_tcp_syncookies != 2 &&
6278 xchg(&queue->synflood_warned, 1) == 0)
6279 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6280 proto, ntohs(tcp_hdr(skb)->dest), msg);
6281
6282 return want_cookie;
6283 }
6284
6285 static void tcp_reqsk_record_syn(const struct sock *sk,
6286 struct request_sock *req,
6287 const struct sk_buff *skb)
6288 {
6289 if (tcp_sk(sk)->save_syn) {
6290 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6291 u32 *copy;
6292
6293 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6294 if (copy) {
6295 copy[0] = len;
6296 memcpy(&copy[1], skb_network_header(skb), len);
6297 req->saved_syn = copy;
6298 }
6299 }
6300 }
6301
6302 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6303 const struct tcp_request_sock_ops *af_ops,
6304 struct sock *sk, struct sk_buff *skb)
6305 {
6306 struct tcp_fastopen_cookie foc = { .len = -1 };
6307 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6308 struct tcp_options_received tmp_opt;
6309 struct tcp_sock *tp = tcp_sk(sk);
6310 struct net *net = sock_net(sk);
6311 struct sock *fastopen_sk = NULL;
6312 struct request_sock *req;
6313 bool want_cookie = false;
6314 struct dst_entry *dst;
6315 struct flowi fl;
6316
6317 /* TW buckets are converted to open requests without
6318 * limitations, they conserve resources and peer is
6319 * evidently real one.
6320 */
6321 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6322 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6323 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6324 if (!want_cookie)
6325 goto drop;
6326 }
6327
6328 if (sk_acceptq_is_full(sk)) {
6329 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6330 goto drop;
6331 }
6332
6333 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6334 if (!req)
6335 goto drop;
6336
6337 tcp_rsk(req)->af_specific = af_ops;
6338 tcp_rsk(req)->ts_off = 0;
6339
6340 tcp_clear_options(&tmp_opt);
6341 tmp_opt.mss_clamp = af_ops->mss_clamp;
6342 tmp_opt.user_mss = tp->rx_opt.user_mss;
6343 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6344 want_cookie ? NULL : &foc);
6345
6346 if (want_cookie && !tmp_opt.saw_tstamp)
6347 tcp_clear_options(&tmp_opt);
6348
6349 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6350 tcp_openreq_init(req, &tmp_opt, skb, sk);
6351 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6352
6353 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6354 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6355
6356 af_ops->init_req(req, sk, skb);
6357
6358 if (security_inet_conn_request(sk, skb, req))
6359 goto drop_and_free;
6360
6361 if (tmp_opt.tstamp_ok)
6362 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6363
6364 dst = af_ops->route_req(sk, &fl, req);
6365 if (!dst)
6366 goto drop_and_free;
6367
6368 if (!want_cookie && !isn) {
6369 /* Kill the following clause, if you dislike this way. */
6370 if (!net->ipv4.sysctl_tcp_syncookies &&
6371 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6372 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6373 !tcp_peer_is_proven(req, dst)) {
6374 /* Without syncookies last quarter of
6375 * backlog is filled with destinations,
6376 * proven to be alive.
6377 * It means that we continue to communicate
6378 * to destinations, already remembered
6379 * to the moment of synflood.
6380 */
6381 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6382 rsk_ops->family);
6383 goto drop_and_release;
6384 }
6385
6386 isn = af_ops->init_seq(skb);
6387 }
6388
6389 tcp_ecn_create_request(req, skb, sk, dst);
6390
6391 if (want_cookie) {
6392 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6393 req->cookie_ts = tmp_opt.tstamp_ok;
6394 if (!tmp_opt.tstamp_ok)
6395 inet_rsk(req)->ecn_ok = 0;
6396 }
6397
6398 tcp_rsk(req)->snt_isn = isn;
6399 tcp_rsk(req)->txhash = net_tx_rndhash();
6400 tcp_openreq_init_rwin(req, sk, dst);
6401 if (!want_cookie) {
6402 tcp_reqsk_record_syn(sk, req, skb);
6403 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc);
6404 }
6405 if (fastopen_sk) {
6406 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6407 &foc, TCP_SYNACK_FASTOPEN);
6408 /* Add the child socket directly into the accept queue */
6409 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6410 reqsk_fastopen_remove(fastopen_sk, req, false);
6411 bh_unlock_sock(fastopen_sk);
6412 sock_put(fastopen_sk);
6413 reqsk_put(req);
6414 goto drop;
6415 }
6416 sk->sk_data_ready(sk);
6417 bh_unlock_sock(fastopen_sk);
6418 sock_put(fastopen_sk);
6419 } else {
6420 tcp_rsk(req)->tfo_listener = false;
6421 if (!want_cookie)
6422 inet_csk_reqsk_queue_hash_add(sk, req,
6423 tcp_timeout_init((struct sock *)req));
6424 af_ops->send_synack(sk, dst, &fl, req, &foc,
6425 !want_cookie ? TCP_SYNACK_NORMAL :
6426 TCP_SYNACK_COOKIE);
6427 if (want_cookie) {
6428 reqsk_free(req);
6429 return 0;
6430 }
6431 }
6432 reqsk_put(req);
6433 return 0;
6434
6435 drop_and_release:
6436 dst_release(dst);
6437 drop_and_free:
6438 reqsk_free(req);
6439 drop:
6440 tcp_listendrop(sk);
6441 return 0;
6442 }
6443 EXPORT_SYMBOL(tcp_conn_request);