]> git.ipfire.org Git - people/ms/linux.git/blob - net/ipv4/tcp_output.c
Merge tag 'arm-soc/for-5.20/defconfig-arm64' of https://github.com/Broadcom/stblinux...
[people/ms/linux.git] / net / ipv4 / tcp_output.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes: Pedro Roque : Retransmit queue handled by TCP.
24 * : Fragmentation on mtu decrease
25 * : Segment collapse on retransmit
26 * : AF independence
27 *
28 * Linus Torvalds : send_delayed_ack
29 * David S. Miller : Charge memory using the right skb
30 * during syn/ack processing.
31 * David S. Miller : Output engine completely rewritten.
32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
33 * Cacophonix Gaul : draft-minshall-nagle-01
34 * J Hadi Salim : ECN support
35 *
36 */
37
38 #define pr_fmt(fmt) "TCP: " fmt
39
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47
48 #include <trace/events/tcp.h>
49
50 /* Refresh clocks of a TCP socket,
51 * ensuring monotically increasing values.
52 */
53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 u64 val = tcp_clock_ns();
56
57 tp->tcp_clock_cache = val;
58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 int push_one, gfp_t gfp);
63
64 /* Account for new data that has been sent to the network. */
65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 struct inet_connection_sock *icsk = inet_csk(sk);
68 struct tcp_sock *tp = tcp_sk(sk);
69 unsigned int prior_packets = tp->packets_out;
70
71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72
73 __skb_unlink(skb, &sk->sk_write_queue);
74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75
76 if (tp->highest_sack == NULL)
77 tp->highest_sack = skb;
78
79 tp->packets_out += tcp_skb_pcount(skb);
80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 tcp_rearm_rto(sk);
82
83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 tcp_skb_pcount(skb));
85 tcp_check_space(sk);
86 }
87
88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89 * window scaling factor due to loss of precision.
90 * If window has been shrunk, what should we make? It is not clear at all.
91 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93 * invalid. OK, let's make this for now:
94 */
95 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 {
97 const struct tcp_sock *tp = tcp_sk(sk);
98
99 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100 (tp->rx_opt.wscale_ok &&
101 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
102 return tp->snd_nxt;
103 else
104 return tcp_wnd_end(tp);
105 }
106
107 /* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109 *
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 * attached devices, because some buggy hosts are confused by
114 * large MSS.
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 * This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 * probably even Jumbo".
120 */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 struct tcp_sock *tp = tcp_sk(sk);
124 const struct dst_entry *dst = __sk_dst_get(sk);
125 int mss = tp->advmss;
126
127 if (dst) {
128 unsigned int metric = dst_metric_advmss(dst);
129
130 if (metric < mss) {
131 mss = metric;
132 tp->advmss = mss;
133 }
134 }
135
136 return (__u16)mss;
137 }
138
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism.
141 */
142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 struct tcp_sock *tp = tcp_sk(sk);
145 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 u32 cwnd = tcp_snd_cwnd(tp);
147
148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149
150 tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 restart_cwnd = min(restart_cwnd, cwnd);
152
153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 cwnd >>= 1;
155 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
156 tp->snd_cwnd_stamp = tcp_jiffies32;
157 tp->snd_cwnd_used = 0;
158 }
159
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 struct sock *sk)
163 {
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 const u32 now = tcp_jiffies32;
166
167 if (tcp_packets_in_flight(tp) == 0)
168 tcp_ca_event(sk, CA_EVENT_TX_START);
169
170 /* If this is the first data packet sent in response to the
171 * previous received data,
172 * and it is a reply for ato after last received packet,
173 * increase pingpong count.
174 */
175 if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
176 (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
177 inet_csk_inc_pingpong_cnt(sk);
178
179 tp->lsndtime = now;
180 }
181
182 /* Account for an ACK we sent. */
183 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
184 u32 rcv_nxt)
185 {
186 struct tcp_sock *tp = tcp_sk(sk);
187
188 if (unlikely(tp->compressed_ack)) {
189 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
190 tp->compressed_ack);
191 tp->compressed_ack = 0;
192 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
193 __sock_put(sk);
194 }
195
196 if (unlikely(rcv_nxt != tp->rcv_nxt))
197 return; /* Special ACK sent by DCTCP to reflect ECN */
198 tcp_dec_quickack_mode(sk, pkts);
199 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
200 }
201
202 /* Determine a window scaling and initial window to offer.
203 * Based on the assumption that the given amount of space
204 * will be offered. Store the results in the tp structure.
205 * NOTE: for smooth operation initial space offering should
206 * be a multiple of mss if possible. We assume here that mss >= 1.
207 * This MUST be enforced by all callers.
208 */
209 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
210 __u32 *rcv_wnd, __u32 *window_clamp,
211 int wscale_ok, __u8 *rcv_wscale,
212 __u32 init_rcv_wnd)
213 {
214 unsigned int space = (__space < 0 ? 0 : __space);
215
216 /* If no clamp set the clamp to the max possible scaled window */
217 if (*window_clamp == 0)
218 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
219 space = min(*window_clamp, space);
220
221 /* Quantize space offering to a multiple of mss if possible. */
222 if (space > mss)
223 space = rounddown(space, mss);
224
225 /* NOTE: offering an initial window larger than 32767
226 * will break some buggy TCP stacks. If the admin tells us
227 * it is likely we could be speaking with such a buggy stack
228 * we will truncate our initial window offering to 32K-1
229 * unless the remote has sent us a window scaling option,
230 * which we interpret as a sign the remote TCP is not
231 * misinterpreting the window field as a signed quantity.
232 */
233 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
234 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
235 else
236 (*rcv_wnd) = min_t(u32, space, U16_MAX);
237
238 if (init_rcv_wnd)
239 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
240
241 *rcv_wscale = 0;
242 if (wscale_ok) {
243 /* Set window scaling on max possible window */
244 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
245 space = max_t(u32, space, sysctl_rmem_max);
246 space = min_t(u32, space, *window_clamp);
247 *rcv_wscale = clamp_t(int, ilog2(space) - 15,
248 0, TCP_MAX_WSCALE);
249 }
250 /* Set the clamp no higher than max representable value */
251 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
252 }
253 EXPORT_SYMBOL(tcp_select_initial_window);
254
255 /* Chose a new window to advertise, update state in tcp_sock for the
256 * socket, and return result with RFC1323 scaling applied. The return
257 * value can be stuffed directly into th->window for an outgoing
258 * frame.
259 */
260 static u16 tcp_select_window(struct sock *sk)
261 {
262 struct tcp_sock *tp = tcp_sk(sk);
263 u32 old_win = tp->rcv_wnd;
264 u32 cur_win = tcp_receive_window(tp);
265 u32 new_win = __tcp_select_window(sk);
266
267 /* Never shrink the offered window */
268 if (new_win < cur_win) {
269 /* Danger Will Robinson!
270 * Don't update rcv_wup/rcv_wnd here or else
271 * we will not be able to advertise a zero
272 * window in time. --DaveM
273 *
274 * Relax Will Robinson.
275 */
276 if (new_win == 0)
277 NET_INC_STATS(sock_net(sk),
278 LINUX_MIB_TCPWANTZEROWINDOWADV);
279 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
280 }
281 tp->rcv_wnd = new_win;
282 tp->rcv_wup = tp->rcv_nxt;
283
284 /* Make sure we do not exceed the maximum possible
285 * scaled window.
286 */
287 if (!tp->rx_opt.rcv_wscale &&
288 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
289 new_win = min(new_win, MAX_TCP_WINDOW);
290 else
291 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
292
293 /* RFC1323 scaling applied */
294 new_win >>= tp->rx_opt.rcv_wscale;
295
296 /* If we advertise zero window, disable fast path. */
297 if (new_win == 0) {
298 tp->pred_flags = 0;
299 if (old_win)
300 NET_INC_STATS(sock_net(sk),
301 LINUX_MIB_TCPTOZEROWINDOWADV);
302 } else if (old_win == 0) {
303 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
304 }
305
306 return new_win;
307 }
308
309 /* Packet ECN state for a SYN-ACK */
310 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
311 {
312 const struct tcp_sock *tp = tcp_sk(sk);
313
314 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
315 if (!(tp->ecn_flags & TCP_ECN_OK))
316 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
317 else if (tcp_ca_needs_ecn(sk) ||
318 tcp_bpf_ca_needs_ecn(sk))
319 INET_ECN_xmit(sk);
320 }
321
322 /* Packet ECN state for a SYN. */
323 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
324 {
325 struct tcp_sock *tp = tcp_sk(sk);
326 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
327 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
328 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
329
330 if (!use_ecn) {
331 const struct dst_entry *dst = __sk_dst_get(sk);
332
333 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
334 use_ecn = true;
335 }
336
337 tp->ecn_flags = 0;
338
339 if (use_ecn) {
340 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
341 tp->ecn_flags = TCP_ECN_OK;
342 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
343 INET_ECN_xmit(sk);
344 }
345 }
346
347 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
348 {
349 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
350 /* tp->ecn_flags are cleared at a later point in time when
351 * SYN ACK is ultimatively being received.
352 */
353 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
354 }
355
356 static void
357 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
358 {
359 if (inet_rsk(req)->ecn_ok)
360 th->ece = 1;
361 }
362
363 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
364 * be sent.
365 */
366 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
367 struct tcphdr *th, int tcp_header_len)
368 {
369 struct tcp_sock *tp = tcp_sk(sk);
370
371 if (tp->ecn_flags & TCP_ECN_OK) {
372 /* Not-retransmitted data segment: set ECT and inject CWR. */
373 if (skb->len != tcp_header_len &&
374 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
375 INET_ECN_xmit(sk);
376 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
377 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
378 th->cwr = 1;
379 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
380 }
381 } else if (!tcp_ca_needs_ecn(sk)) {
382 /* ACK or retransmitted segment: clear ECT|CE */
383 INET_ECN_dontxmit(sk);
384 }
385 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
386 th->ece = 1;
387 }
388 }
389
390 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
391 * auto increment end seqno.
392 */
393 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
394 {
395 skb->ip_summed = CHECKSUM_PARTIAL;
396
397 TCP_SKB_CB(skb)->tcp_flags = flags;
398
399 tcp_skb_pcount_set(skb, 1);
400
401 TCP_SKB_CB(skb)->seq = seq;
402 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
403 seq++;
404 TCP_SKB_CB(skb)->end_seq = seq;
405 }
406
407 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
408 {
409 return tp->snd_una != tp->snd_up;
410 }
411
412 #define OPTION_SACK_ADVERTISE BIT(0)
413 #define OPTION_TS BIT(1)
414 #define OPTION_MD5 BIT(2)
415 #define OPTION_WSCALE BIT(3)
416 #define OPTION_FAST_OPEN_COOKIE BIT(8)
417 #define OPTION_SMC BIT(9)
418 #define OPTION_MPTCP BIT(10)
419
420 static void smc_options_write(__be32 *ptr, u16 *options)
421 {
422 #if IS_ENABLED(CONFIG_SMC)
423 if (static_branch_unlikely(&tcp_have_smc)) {
424 if (unlikely(OPTION_SMC & *options)) {
425 *ptr++ = htonl((TCPOPT_NOP << 24) |
426 (TCPOPT_NOP << 16) |
427 (TCPOPT_EXP << 8) |
428 (TCPOLEN_EXP_SMC_BASE));
429 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
430 }
431 }
432 #endif
433 }
434
435 struct tcp_out_options {
436 u16 options; /* bit field of OPTION_* */
437 u16 mss; /* 0 to disable */
438 u8 ws; /* window scale, 0 to disable */
439 u8 num_sack_blocks; /* number of SACK blocks to include */
440 u8 hash_size; /* bytes in hash_location */
441 u8 bpf_opt_len; /* length of BPF hdr option */
442 __u8 *hash_location; /* temporary pointer, overloaded */
443 __u32 tsval, tsecr; /* need to include OPTION_TS */
444 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
445 struct mptcp_out_options mptcp;
446 };
447
448 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
449 struct tcp_sock *tp,
450 struct tcp_out_options *opts)
451 {
452 #if IS_ENABLED(CONFIG_MPTCP)
453 if (unlikely(OPTION_MPTCP & opts->options))
454 mptcp_write_options(th, ptr, tp, &opts->mptcp);
455 #endif
456 }
457
458 #ifdef CONFIG_CGROUP_BPF
459 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
460 enum tcp_synack_type synack_type)
461 {
462 if (unlikely(!skb))
463 return BPF_WRITE_HDR_TCP_CURRENT_MSS;
464
465 if (unlikely(synack_type == TCP_SYNACK_COOKIE))
466 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
467
468 return 0;
469 }
470
471 /* req, syn_skb and synack_type are used when writing synack */
472 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
473 struct request_sock *req,
474 struct sk_buff *syn_skb,
475 enum tcp_synack_type synack_type,
476 struct tcp_out_options *opts,
477 unsigned int *remaining)
478 {
479 struct bpf_sock_ops_kern sock_ops;
480 int err;
481
482 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
483 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
484 !*remaining)
485 return;
486
487 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
488
489 /* init sock_ops */
490 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
491
492 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
493
494 if (req) {
495 /* The listen "sk" cannot be passed here because
496 * it is not locked. It would not make too much
497 * sense to do bpf_setsockopt(listen_sk) based
498 * on individual connection request also.
499 *
500 * Thus, "req" is passed here and the cgroup-bpf-progs
501 * of the listen "sk" will be run.
502 *
503 * "req" is also used here for fastopen even the "sk" here is
504 * a fullsock "child" sk. It is to keep the behavior
505 * consistent between fastopen and non-fastopen on
506 * the bpf programming side.
507 */
508 sock_ops.sk = (struct sock *)req;
509 sock_ops.syn_skb = syn_skb;
510 } else {
511 sock_owned_by_me(sk);
512
513 sock_ops.is_fullsock = 1;
514 sock_ops.sk = sk;
515 }
516
517 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
518 sock_ops.remaining_opt_len = *remaining;
519 /* tcp_current_mss() does not pass a skb */
520 if (skb)
521 bpf_skops_init_skb(&sock_ops, skb, 0);
522
523 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
524
525 if (err || sock_ops.remaining_opt_len == *remaining)
526 return;
527
528 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
529 /* round up to 4 bytes */
530 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
531
532 *remaining -= opts->bpf_opt_len;
533 }
534
535 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
536 struct request_sock *req,
537 struct sk_buff *syn_skb,
538 enum tcp_synack_type synack_type,
539 struct tcp_out_options *opts)
540 {
541 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
542 struct bpf_sock_ops_kern sock_ops;
543 int err;
544
545 if (likely(!max_opt_len))
546 return;
547
548 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
549
550 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
551
552 if (req) {
553 sock_ops.sk = (struct sock *)req;
554 sock_ops.syn_skb = syn_skb;
555 } else {
556 sock_owned_by_me(sk);
557
558 sock_ops.is_fullsock = 1;
559 sock_ops.sk = sk;
560 }
561
562 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
563 sock_ops.remaining_opt_len = max_opt_len;
564 first_opt_off = tcp_hdrlen(skb) - max_opt_len;
565 bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
566
567 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
568
569 if (err)
570 nr_written = 0;
571 else
572 nr_written = max_opt_len - sock_ops.remaining_opt_len;
573
574 if (nr_written < max_opt_len)
575 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
576 max_opt_len - nr_written);
577 }
578 #else
579 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
580 struct request_sock *req,
581 struct sk_buff *syn_skb,
582 enum tcp_synack_type synack_type,
583 struct tcp_out_options *opts,
584 unsigned int *remaining)
585 {
586 }
587
588 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
589 struct request_sock *req,
590 struct sk_buff *syn_skb,
591 enum tcp_synack_type synack_type,
592 struct tcp_out_options *opts)
593 {
594 }
595 #endif
596
597 /* Write previously computed TCP options to the packet.
598 *
599 * Beware: Something in the Internet is very sensitive to the ordering of
600 * TCP options, we learned this through the hard way, so be careful here.
601 * Luckily we can at least blame others for their non-compliance but from
602 * inter-operability perspective it seems that we're somewhat stuck with
603 * the ordering which we have been using if we want to keep working with
604 * those broken things (not that it currently hurts anybody as there isn't
605 * particular reason why the ordering would need to be changed).
606 *
607 * At least SACK_PERM as the first option is known to lead to a disaster
608 * (but it may well be that other scenarios fail similarly).
609 */
610 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
611 struct tcp_out_options *opts)
612 {
613 __be32 *ptr = (__be32 *)(th + 1);
614 u16 options = opts->options; /* mungable copy */
615
616 if (unlikely(OPTION_MD5 & options)) {
617 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
618 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
619 /* overload cookie hash location */
620 opts->hash_location = (__u8 *)ptr;
621 ptr += 4;
622 }
623
624 if (unlikely(opts->mss)) {
625 *ptr++ = htonl((TCPOPT_MSS << 24) |
626 (TCPOLEN_MSS << 16) |
627 opts->mss);
628 }
629
630 if (likely(OPTION_TS & options)) {
631 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
632 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
633 (TCPOLEN_SACK_PERM << 16) |
634 (TCPOPT_TIMESTAMP << 8) |
635 TCPOLEN_TIMESTAMP);
636 options &= ~OPTION_SACK_ADVERTISE;
637 } else {
638 *ptr++ = htonl((TCPOPT_NOP << 24) |
639 (TCPOPT_NOP << 16) |
640 (TCPOPT_TIMESTAMP << 8) |
641 TCPOLEN_TIMESTAMP);
642 }
643 *ptr++ = htonl(opts->tsval);
644 *ptr++ = htonl(opts->tsecr);
645 }
646
647 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
648 *ptr++ = htonl((TCPOPT_NOP << 24) |
649 (TCPOPT_NOP << 16) |
650 (TCPOPT_SACK_PERM << 8) |
651 TCPOLEN_SACK_PERM);
652 }
653
654 if (unlikely(OPTION_WSCALE & options)) {
655 *ptr++ = htonl((TCPOPT_NOP << 24) |
656 (TCPOPT_WINDOW << 16) |
657 (TCPOLEN_WINDOW << 8) |
658 opts->ws);
659 }
660
661 if (unlikely(opts->num_sack_blocks)) {
662 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
663 tp->duplicate_sack : tp->selective_acks;
664 int this_sack;
665
666 *ptr++ = htonl((TCPOPT_NOP << 24) |
667 (TCPOPT_NOP << 16) |
668 (TCPOPT_SACK << 8) |
669 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
670 TCPOLEN_SACK_PERBLOCK)));
671
672 for (this_sack = 0; this_sack < opts->num_sack_blocks;
673 ++this_sack) {
674 *ptr++ = htonl(sp[this_sack].start_seq);
675 *ptr++ = htonl(sp[this_sack].end_seq);
676 }
677
678 tp->rx_opt.dsack = 0;
679 }
680
681 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
682 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
683 u8 *p = (u8 *)ptr;
684 u32 len; /* Fast Open option length */
685
686 if (foc->exp) {
687 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
688 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
689 TCPOPT_FASTOPEN_MAGIC);
690 p += TCPOLEN_EXP_FASTOPEN_BASE;
691 } else {
692 len = TCPOLEN_FASTOPEN_BASE + foc->len;
693 *p++ = TCPOPT_FASTOPEN;
694 *p++ = len;
695 }
696
697 memcpy(p, foc->val, foc->len);
698 if ((len & 3) == 2) {
699 p[foc->len] = TCPOPT_NOP;
700 p[foc->len + 1] = TCPOPT_NOP;
701 }
702 ptr += (len + 3) >> 2;
703 }
704
705 smc_options_write(ptr, &options);
706
707 mptcp_options_write(th, ptr, tp, opts);
708 }
709
710 static void smc_set_option(const struct tcp_sock *tp,
711 struct tcp_out_options *opts,
712 unsigned int *remaining)
713 {
714 #if IS_ENABLED(CONFIG_SMC)
715 if (static_branch_unlikely(&tcp_have_smc)) {
716 if (tp->syn_smc) {
717 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
718 opts->options |= OPTION_SMC;
719 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
720 }
721 }
722 }
723 #endif
724 }
725
726 static void smc_set_option_cond(const struct tcp_sock *tp,
727 const struct inet_request_sock *ireq,
728 struct tcp_out_options *opts,
729 unsigned int *remaining)
730 {
731 #if IS_ENABLED(CONFIG_SMC)
732 if (static_branch_unlikely(&tcp_have_smc)) {
733 if (tp->syn_smc && ireq->smc_ok) {
734 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
735 opts->options |= OPTION_SMC;
736 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
737 }
738 }
739 }
740 #endif
741 }
742
743 static void mptcp_set_option_cond(const struct request_sock *req,
744 struct tcp_out_options *opts,
745 unsigned int *remaining)
746 {
747 if (rsk_is_mptcp(req)) {
748 unsigned int size;
749
750 if (mptcp_synack_options(req, &size, &opts->mptcp)) {
751 if (*remaining >= size) {
752 opts->options |= OPTION_MPTCP;
753 *remaining -= size;
754 }
755 }
756 }
757 }
758
759 /* Compute TCP options for SYN packets. This is not the final
760 * network wire format yet.
761 */
762 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
763 struct tcp_out_options *opts,
764 struct tcp_md5sig_key **md5)
765 {
766 struct tcp_sock *tp = tcp_sk(sk);
767 unsigned int remaining = MAX_TCP_OPTION_SPACE;
768 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
769
770 *md5 = NULL;
771 #ifdef CONFIG_TCP_MD5SIG
772 if (static_branch_unlikely(&tcp_md5_needed) &&
773 rcu_access_pointer(tp->md5sig_info)) {
774 *md5 = tp->af_specific->md5_lookup(sk, sk);
775 if (*md5) {
776 opts->options |= OPTION_MD5;
777 remaining -= TCPOLEN_MD5SIG_ALIGNED;
778 }
779 }
780 #endif
781
782 /* We always get an MSS option. The option bytes which will be seen in
783 * normal data packets should timestamps be used, must be in the MSS
784 * advertised. But we subtract them from tp->mss_cache so that
785 * calculations in tcp_sendmsg are simpler etc. So account for this
786 * fact here if necessary. If we don't do this correctly, as a
787 * receiver we won't recognize data packets as being full sized when we
788 * should, and thus we won't abide by the delayed ACK rules correctly.
789 * SACKs don't matter, we never delay an ACK when we have any of those
790 * going out. */
791 opts->mss = tcp_advertise_mss(sk);
792 remaining -= TCPOLEN_MSS_ALIGNED;
793
794 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
795 opts->options |= OPTION_TS;
796 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
797 opts->tsecr = tp->rx_opt.ts_recent;
798 remaining -= TCPOLEN_TSTAMP_ALIGNED;
799 }
800 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
801 opts->ws = tp->rx_opt.rcv_wscale;
802 opts->options |= OPTION_WSCALE;
803 remaining -= TCPOLEN_WSCALE_ALIGNED;
804 }
805 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
806 opts->options |= OPTION_SACK_ADVERTISE;
807 if (unlikely(!(OPTION_TS & opts->options)))
808 remaining -= TCPOLEN_SACKPERM_ALIGNED;
809 }
810
811 if (fastopen && fastopen->cookie.len >= 0) {
812 u32 need = fastopen->cookie.len;
813
814 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
815 TCPOLEN_FASTOPEN_BASE;
816 need = (need + 3) & ~3U; /* Align to 32 bits */
817 if (remaining >= need) {
818 opts->options |= OPTION_FAST_OPEN_COOKIE;
819 opts->fastopen_cookie = &fastopen->cookie;
820 remaining -= need;
821 tp->syn_fastopen = 1;
822 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
823 }
824 }
825
826 smc_set_option(tp, opts, &remaining);
827
828 if (sk_is_mptcp(sk)) {
829 unsigned int size;
830
831 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
832 opts->options |= OPTION_MPTCP;
833 remaining -= size;
834 }
835 }
836
837 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
838
839 return MAX_TCP_OPTION_SPACE - remaining;
840 }
841
842 /* Set up TCP options for SYN-ACKs. */
843 static unsigned int tcp_synack_options(const struct sock *sk,
844 struct request_sock *req,
845 unsigned int mss, struct sk_buff *skb,
846 struct tcp_out_options *opts,
847 const struct tcp_md5sig_key *md5,
848 struct tcp_fastopen_cookie *foc,
849 enum tcp_synack_type synack_type,
850 struct sk_buff *syn_skb)
851 {
852 struct inet_request_sock *ireq = inet_rsk(req);
853 unsigned int remaining = MAX_TCP_OPTION_SPACE;
854
855 #ifdef CONFIG_TCP_MD5SIG
856 if (md5) {
857 opts->options |= OPTION_MD5;
858 remaining -= TCPOLEN_MD5SIG_ALIGNED;
859
860 /* We can't fit any SACK blocks in a packet with MD5 + TS
861 * options. There was discussion about disabling SACK
862 * rather than TS in order to fit in better with old,
863 * buggy kernels, but that was deemed to be unnecessary.
864 */
865 if (synack_type != TCP_SYNACK_COOKIE)
866 ireq->tstamp_ok &= !ireq->sack_ok;
867 }
868 #endif
869
870 /* We always send an MSS option. */
871 opts->mss = mss;
872 remaining -= TCPOLEN_MSS_ALIGNED;
873
874 if (likely(ireq->wscale_ok)) {
875 opts->ws = ireq->rcv_wscale;
876 opts->options |= OPTION_WSCALE;
877 remaining -= TCPOLEN_WSCALE_ALIGNED;
878 }
879 if (likely(ireq->tstamp_ok)) {
880 opts->options |= OPTION_TS;
881 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
882 opts->tsecr = req->ts_recent;
883 remaining -= TCPOLEN_TSTAMP_ALIGNED;
884 }
885 if (likely(ireq->sack_ok)) {
886 opts->options |= OPTION_SACK_ADVERTISE;
887 if (unlikely(!ireq->tstamp_ok))
888 remaining -= TCPOLEN_SACKPERM_ALIGNED;
889 }
890 if (foc != NULL && foc->len >= 0) {
891 u32 need = foc->len;
892
893 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
894 TCPOLEN_FASTOPEN_BASE;
895 need = (need + 3) & ~3U; /* Align to 32 bits */
896 if (remaining >= need) {
897 opts->options |= OPTION_FAST_OPEN_COOKIE;
898 opts->fastopen_cookie = foc;
899 remaining -= need;
900 }
901 }
902
903 mptcp_set_option_cond(req, opts, &remaining);
904
905 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
906
907 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
908 synack_type, opts, &remaining);
909
910 return MAX_TCP_OPTION_SPACE - remaining;
911 }
912
913 /* Compute TCP options for ESTABLISHED sockets. This is not the
914 * final wire format yet.
915 */
916 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
917 struct tcp_out_options *opts,
918 struct tcp_md5sig_key **md5)
919 {
920 struct tcp_sock *tp = tcp_sk(sk);
921 unsigned int size = 0;
922 unsigned int eff_sacks;
923
924 opts->options = 0;
925
926 *md5 = NULL;
927 #ifdef CONFIG_TCP_MD5SIG
928 if (static_branch_unlikely(&tcp_md5_needed) &&
929 rcu_access_pointer(tp->md5sig_info)) {
930 *md5 = tp->af_specific->md5_lookup(sk, sk);
931 if (*md5) {
932 opts->options |= OPTION_MD5;
933 size += TCPOLEN_MD5SIG_ALIGNED;
934 }
935 }
936 #endif
937
938 if (likely(tp->rx_opt.tstamp_ok)) {
939 opts->options |= OPTION_TS;
940 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
941 opts->tsecr = tp->rx_opt.ts_recent;
942 size += TCPOLEN_TSTAMP_ALIGNED;
943 }
944
945 /* MPTCP options have precedence over SACK for the limited TCP
946 * option space because a MPTCP connection would be forced to
947 * fall back to regular TCP if a required multipath option is
948 * missing. SACK still gets a chance to use whatever space is
949 * left.
950 */
951 if (sk_is_mptcp(sk)) {
952 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
953 unsigned int opt_size = 0;
954
955 if (mptcp_established_options(sk, skb, &opt_size, remaining,
956 &opts->mptcp)) {
957 opts->options |= OPTION_MPTCP;
958 size += opt_size;
959 }
960 }
961
962 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
963 if (unlikely(eff_sacks)) {
964 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
965 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
966 TCPOLEN_SACK_PERBLOCK))
967 return size;
968
969 opts->num_sack_blocks =
970 min_t(unsigned int, eff_sacks,
971 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
972 TCPOLEN_SACK_PERBLOCK);
973
974 size += TCPOLEN_SACK_BASE_ALIGNED +
975 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
976 }
977
978 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
979 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
980 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
981
982 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
983
984 size = MAX_TCP_OPTION_SPACE - remaining;
985 }
986
987 return size;
988 }
989
990
991 /* TCP SMALL QUEUES (TSQ)
992 *
993 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
994 * to reduce RTT and bufferbloat.
995 * We do this using a special skb destructor (tcp_wfree).
996 *
997 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
998 * needs to be reallocated in a driver.
999 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1000 *
1001 * Since transmit from skb destructor is forbidden, we use a tasklet
1002 * to process all sockets that eventually need to send more skbs.
1003 * We use one tasklet per cpu, with its own queue of sockets.
1004 */
1005 struct tsq_tasklet {
1006 struct tasklet_struct tasklet;
1007 struct list_head head; /* queue of tcp sockets */
1008 };
1009 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1010
1011 static void tcp_tsq_write(struct sock *sk)
1012 {
1013 if ((1 << sk->sk_state) &
1014 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1015 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
1016 struct tcp_sock *tp = tcp_sk(sk);
1017
1018 if (tp->lost_out > tp->retrans_out &&
1019 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1020 tcp_mstamp_refresh(tp);
1021 tcp_xmit_retransmit_queue(sk);
1022 }
1023
1024 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1025 0, GFP_ATOMIC);
1026 }
1027 }
1028
1029 static void tcp_tsq_handler(struct sock *sk)
1030 {
1031 bh_lock_sock(sk);
1032 if (!sock_owned_by_user(sk))
1033 tcp_tsq_write(sk);
1034 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1035 sock_hold(sk);
1036 bh_unlock_sock(sk);
1037 }
1038 /*
1039 * One tasklet per cpu tries to send more skbs.
1040 * We run in tasklet context but need to disable irqs when
1041 * transferring tsq->head because tcp_wfree() might
1042 * interrupt us (non NAPI drivers)
1043 */
1044 static void tcp_tasklet_func(struct tasklet_struct *t)
1045 {
1046 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet);
1047 LIST_HEAD(list);
1048 unsigned long flags;
1049 struct list_head *q, *n;
1050 struct tcp_sock *tp;
1051 struct sock *sk;
1052
1053 local_irq_save(flags);
1054 list_splice_init(&tsq->head, &list);
1055 local_irq_restore(flags);
1056
1057 list_for_each_safe(q, n, &list) {
1058 tp = list_entry(q, struct tcp_sock, tsq_node);
1059 list_del(&tp->tsq_node);
1060
1061 sk = (struct sock *)tp;
1062 smp_mb__before_atomic();
1063 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1064
1065 tcp_tsq_handler(sk);
1066 sk_free(sk);
1067 }
1068 }
1069
1070 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
1071 TCPF_WRITE_TIMER_DEFERRED | \
1072 TCPF_DELACK_TIMER_DEFERRED | \
1073 TCPF_MTU_REDUCED_DEFERRED)
1074 /**
1075 * tcp_release_cb - tcp release_sock() callback
1076 * @sk: socket
1077 *
1078 * called from release_sock() to perform protocol dependent
1079 * actions before socket release.
1080 */
1081 void tcp_release_cb(struct sock *sk)
1082 {
1083 unsigned long flags, nflags;
1084
1085 /* perform an atomic operation only if at least one flag is set */
1086 do {
1087 flags = sk->sk_tsq_flags;
1088 if (!(flags & TCP_DEFERRED_ALL))
1089 return;
1090 nflags = flags & ~TCP_DEFERRED_ALL;
1091 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
1092
1093 if (flags & TCPF_TSQ_DEFERRED) {
1094 tcp_tsq_write(sk);
1095 __sock_put(sk);
1096 }
1097 /* Here begins the tricky part :
1098 * We are called from release_sock() with :
1099 * 1) BH disabled
1100 * 2) sk_lock.slock spinlock held
1101 * 3) socket owned by us (sk->sk_lock.owned == 1)
1102 *
1103 * But following code is meant to be called from BH handlers,
1104 * so we should keep BH disabled, but early release socket ownership
1105 */
1106 sock_release_ownership(sk);
1107
1108 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1109 tcp_write_timer_handler(sk);
1110 __sock_put(sk);
1111 }
1112 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1113 tcp_delack_timer_handler(sk);
1114 __sock_put(sk);
1115 }
1116 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1117 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1118 __sock_put(sk);
1119 }
1120 }
1121 EXPORT_SYMBOL(tcp_release_cb);
1122
1123 void __init tcp_tasklet_init(void)
1124 {
1125 int i;
1126
1127 for_each_possible_cpu(i) {
1128 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1129
1130 INIT_LIST_HEAD(&tsq->head);
1131 tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1132 }
1133 }
1134
1135 /*
1136 * Write buffer destructor automatically called from kfree_skb.
1137 * We can't xmit new skbs from this context, as we might already
1138 * hold qdisc lock.
1139 */
1140 void tcp_wfree(struct sk_buff *skb)
1141 {
1142 struct sock *sk = skb->sk;
1143 struct tcp_sock *tp = tcp_sk(sk);
1144 unsigned long flags, nval, oval;
1145
1146 /* Keep one reference on sk_wmem_alloc.
1147 * Will be released by sk_free() from here or tcp_tasklet_func()
1148 */
1149 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1150
1151 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
1152 * Wait until our queues (qdisc + devices) are drained.
1153 * This gives :
1154 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1155 * - chance for incoming ACK (processed by another cpu maybe)
1156 * to migrate this flow (skb->ooo_okay will be eventually set)
1157 */
1158 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1159 goto out;
1160
1161 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1162 struct tsq_tasklet *tsq;
1163 bool empty;
1164
1165 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1166 goto out;
1167
1168 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1169 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1170 if (nval != oval)
1171 continue;
1172
1173 /* queue this socket to tasklet queue */
1174 local_irq_save(flags);
1175 tsq = this_cpu_ptr(&tsq_tasklet);
1176 empty = list_empty(&tsq->head);
1177 list_add(&tp->tsq_node, &tsq->head);
1178 if (empty)
1179 tasklet_schedule(&tsq->tasklet);
1180 local_irq_restore(flags);
1181 return;
1182 }
1183 out:
1184 sk_free(sk);
1185 }
1186
1187 /* Note: Called under soft irq.
1188 * We can call TCP stack right away, unless socket is owned by user.
1189 */
1190 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1191 {
1192 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1193 struct sock *sk = (struct sock *)tp;
1194
1195 tcp_tsq_handler(sk);
1196 sock_put(sk);
1197
1198 return HRTIMER_NORESTART;
1199 }
1200
1201 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1202 u64 prior_wstamp)
1203 {
1204 struct tcp_sock *tp = tcp_sk(sk);
1205
1206 if (sk->sk_pacing_status != SK_PACING_NONE) {
1207 unsigned long rate = sk->sk_pacing_rate;
1208
1209 /* Original sch_fq does not pace first 10 MSS
1210 * Note that tp->data_segs_out overflows after 2^32 packets,
1211 * this is a minor annoyance.
1212 */
1213 if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1214 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1215 u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1216
1217 /* take into account OS jitter */
1218 len_ns -= min_t(u64, len_ns / 2, credit);
1219 tp->tcp_wstamp_ns += len_ns;
1220 }
1221 }
1222 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1223 }
1224
1225 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1226 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1227 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1228
1229 /* This routine actually transmits TCP packets queued in by
1230 * tcp_do_sendmsg(). This is used by both the initial
1231 * transmission and possible later retransmissions.
1232 * All SKB's seen here are completely headerless. It is our
1233 * job to build the TCP header, and pass the packet down to
1234 * IP so it can do the same plus pass the packet off to the
1235 * device.
1236 *
1237 * We are working here with either a clone of the original
1238 * SKB, or a fresh unique copy made by the retransmit engine.
1239 */
1240 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1241 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1242 {
1243 const struct inet_connection_sock *icsk = inet_csk(sk);
1244 struct inet_sock *inet;
1245 struct tcp_sock *tp;
1246 struct tcp_skb_cb *tcb;
1247 struct tcp_out_options opts;
1248 unsigned int tcp_options_size, tcp_header_size;
1249 struct sk_buff *oskb = NULL;
1250 struct tcp_md5sig_key *md5;
1251 struct tcphdr *th;
1252 u64 prior_wstamp;
1253 int err;
1254
1255 BUG_ON(!skb || !tcp_skb_pcount(skb));
1256 tp = tcp_sk(sk);
1257 prior_wstamp = tp->tcp_wstamp_ns;
1258 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1259 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1260 if (clone_it) {
1261 oskb = skb;
1262
1263 tcp_skb_tsorted_save(oskb) {
1264 if (unlikely(skb_cloned(oskb)))
1265 skb = pskb_copy(oskb, gfp_mask);
1266 else
1267 skb = skb_clone(oskb, gfp_mask);
1268 } tcp_skb_tsorted_restore(oskb);
1269
1270 if (unlikely(!skb))
1271 return -ENOBUFS;
1272 /* retransmit skbs might have a non zero value in skb->dev
1273 * because skb->dev is aliased with skb->rbnode.rb_left
1274 */
1275 skb->dev = NULL;
1276 }
1277
1278 inet = inet_sk(sk);
1279 tcb = TCP_SKB_CB(skb);
1280 memset(&opts, 0, sizeof(opts));
1281
1282 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1283 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1284 } else {
1285 tcp_options_size = tcp_established_options(sk, skb, &opts,
1286 &md5);
1287 /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1288 * at receiver : This slightly improve GRO performance.
1289 * Note that we do not force the PSH flag for non GSO packets,
1290 * because they might be sent under high congestion events,
1291 * and in this case it is better to delay the delivery of 1-MSS
1292 * packets and thus the corresponding ACK packet that would
1293 * release the following packet.
1294 */
1295 if (tcp_skb_pcount(skb) > 1)
1296 tcb->tcp_flags |= TCPHDR_PSH;
1297 }
1298 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1299
1300 /* if no packet is in qdisc/device queue, then allow XPS to select
1301 * another queue. We can be called from tcp_tsq_handler()
1302 * which holds one reference to sk.
1303 *
1304 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1305 * One way to get this would be to set skb->truesize = 2 on them.
1306 */
1307 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1308
1309 /* If we had to use memory reserve to allocate this skb,
1310 * this might cause drops if packet is looped back :
1311 * Other socket might not have SOCK_MEMALLOC.
1312 * Packets not looped back do not care about pfmemalloc.
1313 */
1314 skb->pfmemalloc = 0;
1315
1316 skb_push(skb, tcp_header_size);
1317 skb_reset_transport_header(skb);
1318
1319 skb_orphan(skb);
1320 skb->sk = sk;
1321 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1322 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1323
1324 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1325
1326 /* Build TCP header and checksum it. */
1327 th = (struct tcphdr *)skb->data;
1328 th->source = inet->inet_sport;
1329 th->dest = inet->inet_dport;
1330 th->seq = htonl(tcb->seq);
1331 th->ack_seq = htonl(rcv_nxt);
1332 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1333 tcb->tcp_flags);
1334
1335 th->check = 0;
1336 th->urg_ptr = 0;
1337
1338 /* The urg_mode check is necessary during a below snd_una win probe */
1339 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1340 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1341 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1342 th->urg = 1;
1343 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1344 th->urg_ptr = htons(0xFFFF);
1345 th->urg = 1;
1346 }
1347 }
1348
1349 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1350 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1351 th->window = htons(tcp_select_window(sk));
1352 tcp_ecn_send(sk, skb, th, tcp_header_size);
1353 } else {
1354 /* RFC1323: The window in SYN & SYN/ACK segments
1355 * is never scaled.
1356 */
1357 th->window = htons(min(tp->rcv_wnd, 65535U));
1358 }
1359
1360 tcp_options_write(th, tp, &opts);
1361
1362 #ifdef CONFIG_TCP_MD5SIG
1363 /* Calculate the MD5 hash, as we have all we need now */
1364 if (md5) {
1365 sk_gso_disable(sk);
1366 tp->af_specific->calc_md5_hash(opts.hash_location,
1367 md5, sk, skb);
1368 }
1369 #endif
1370
1371 /* BPF prog is the last one writing header option */
1372 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1373
1374 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1375 tcp_v6_send_check, tcp_v4_send_check,
1376 sk, skb);
1377
1378 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1379 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1380
1381 if (skb->len != tcp_header_size) {
1382 tcp_event_data_sent(tp, sk);
1383 tp->data_segs_out += tcp_skb_pcount(skb);
1384 tp->bytes_sent += skb->len - tcp_header_size;
1385 }
1386
1387 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1388 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1389 tcp_skb_pcount(skb));
1390
1391 tp->segs_out += tcp_skb_pcount(skb);
1392 skb_set_hash_from_sk(skb, sk);
1393 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1394 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1395 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1396
1397 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1398
1399 /* Cleanup our debris for IP stacks */
1400 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1401 sizeof(struct inet6_skb_parm)));
1402
1403 tcp_add_tx_delay(skb, tp);
1404
1405 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1406 inet6_csk_xmit, ip_queue_xmit,
1407 sk, skb, &inet->cork.fl);
1408
1409 if (unlikely(err > 0)) {
1410 tcp_enter_cwr(sk);
1411 err = net_xmit_eval(err);
1412 }
1413 if (!err && oskb) {
1414 tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1415 tcp_rate_skb_sent(sk, oskb);
1416 }
1417 return err;
1418 }
1419
1420 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1421 gfp_t gfp_mask)
1422 {
1423 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1424 tcp_sk(sk)->rcv_nxt);
1425 }
1426
1427 /* This routine just queues the buffer for sending.
1428 *
1429 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1430 * otherwise socket can stall.
1431 */
1432 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1433 {
1434 struct tcp_sock *tp = tcp_sk(sk);
1435
1436 /* Advance write_seq and place onto the write_queue. */
1437 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1438 __skb_header_release(skb);
1439 tcp_add_write_queue_tail(sk, skb);
1440 sk_wmem_queued_add(sk, skb->truesize);
1441 sk_mem_charge(sk, skb->truesize);
1442 }
1443
1444 /* Initialize TSO segments for a packet. */
1445 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1446 {
1447 if (skb->len <= mss_now) {
1448 /* Avoid the costly divide in the normal
1449 * non-TSO case.
1450 */
1451 tcp_skb_pcount_set(skb, 1);
1452 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1453 } else {
1454 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1455 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1456 }
1457 }
1458
1459 /* Pcount in the middle of the write queue got changed, we need to do various
1460 * tweaks to fix counters
1461 */
1462 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1463 {
1464 struct tcp_sock *tp = tcp_sk(sk);
1465
1466 tp->packets_out -= decr;
1467
1468 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1469 tp->sacked_out -= decr;
1470 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1471 tp->retrans_out -= decr;
1472 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1473 tp->lost_out -= decr;
1474
1475 /* Reno case is special. Sigh... */
1476 if (tcp_is_reno(tp) && decr > 0)
1477 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1478
1479 if (tp->lost_skb_hint &&
1480 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1481 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1482 tp->lost_cnt_hint -= decr;
1483
1484 tcp_verify_left_out(tp);
1485 }
1486
1487 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1488 {
1489 return TCP_SKB_CB(skb)->txstamp_ack ||
1490 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1491 }
1492
1493 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1494 {
1495 struct skb_shared_info *shinfo = skb_shinfo(skb);
1496
1497 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1498 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1499 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1500 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1501
1502 shinfo->tx_flags &= ~tsflags;
1503 shinfo2->tx_flags |= tsflags;
1504 swap(shinfo->tskey, shinfo2->tskey);
1505 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1506 TCP_SKB_CB(skb)->txstamp_ack = 0;
1507 }
1508 }
1509
1510 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1511 {
1512 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1513 TCP_SKB_CB(skb)->eor = 0;
1514 }
1515
1516 /* Insert buff after skb on the write or rtx queue of sk. */
1517 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1518 struct sk_buff *buff,
1519 struct sock *sk,
1520 enum tcp_queue tcp_queue)
1521 {
1522 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1523 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1524 else
1525 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1526 }
1527
1528 /* Function to create two new TCP segments. Shrinks the given segment
1529 * to the specified size and appends a new segment with the rest of the
1530 * packet to the list. This won't be called frequently, I hope.
1531 * Remember, these are still headerless SKBs at this point.
1532 */
1533 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1534 struct sk_buff *skb, u32 len,
1535 unsigned int mss_now, gfp_t gfp)
1536 {
1537 struct tcp_sock *tp = tcp_sk(sk);
1538 struct sk_buff *buff;
1539 int nsize, old_factor;
1540 long limit;
1541 int nlen;
1542 u8 flags;
1543
1544 if (WARN_ON(len > skb->len))
1545 return -EINVAL;
1546
1547 nsize = skb_headlen(skb) - len;
1548 if (nsize < 0)
1549 nsize = 0;
1550
1551 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1552 * We need some allowance to not penalize applications setting small
1553 * SO_SNDBUF values.
1554 * Also allow first and last skb in retransmit queue to be split.
1555 */
1556 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1557 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1558 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1559 skb != tcp_rtx_queue_head(sk) &&
1560 skb != tcp_rtx_queue_tail(sk))) {
1561 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1562 return -ENOMEM;
1563 }
1564
1565 if (skb_unclone_keeptruesize(skb, gfp))
1566 return -ENOMEM;
1567
1568 /* Get a new skb... force flag on. */
1569 buff = tcp_stream_alloc_skb(sk, nsize, gfp, true);
1570 if (!buff)
1571 return -ENOMEM; /* We'll just try again later. */
1572 skb_copy_decrypted(buff, skb);
1573 mptcp_skb_ext_copy(buff, skb);
1574
1575 sk_wmem_queued_add(sk, buff->truesize);
1576 sk_mem_charge(sk, buff->truesize);
1577 nlen = skb->len - len - nsize;
1578 buff->truesize += nlen;
1579 skb->truesize -= nlen;
1580
1581 /* Correct the sequence numbers. */
1582 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1583 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1584 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1585
1586 /* PSH and FIN should only be set in the second packet. */
1587 flags = TCP_SKB_CB(skb)->tcp_flags;
1588 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1589 TCP_SKB_CB(buff)->tcp_flags = flags;
1590 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1591 tcp_skb_fragment_eor(skb, buff);
1592
1593 skb_split(skb, buff, len);
1594
1595 skb_set_delivery_time(buff, skb->tstamp, true);
1596 tcp_fragment_tstamp(skb, buff);
1597
1598 old_factor = tcp_skb_pcount(skb);
1599
1600 /* Fix up tso_factor for both original and new SKB. */
1601 tcp_set_skb_tso_segs(skb, mss_now);
1602 tcp_set_skb_tso_segs(buff, mss_now);
1603
1604 /* Update delivered info for the new segment */
1605 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1606
1607 /* If this packet has been sent out already, we must
1608 * adjust the various packet counters.
1609 */
1610 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1611 int diff = old_factor - tcp_skb_pcount(skb) -
1612 tcp_skb_pcount(buff);
1613
1614 if (diff)
1615 tcp_adjust_pcount(sk, skb, diff);
1616 }
1617
1618 /* Link BUFF into the send queue. */
1619 __skb_header_release(buff);
1620 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1621 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1622 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1623
1624 return 0;
1625 }
1626
1627 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1628 * data is not copied, but immediately discarded.
1629 */
1630 static int __pskb_trim_head(struct sk_buff *skb, int len)
1631 {
1632 struct skb_shared_info *shinfo;
1633 int i, k, eat;
1634
1635 eat = min_t(int, len, skb_headlen(skb));
1636 if (eat) {
1637 __skb_pull(skb, eat);
1638 len -= eat;
1639 if (!len)
1640 return 0;
1641 }
1642 eat = len;
1643 k = 0;
1644 shinfo = skb_shinfo(skb);
1645 for (i = 0; i < shinfo->nr_frags; i++) {
1646 int size = skb_frag_size(&shinfo->frags[i]);
1647
1648 if (size <= eat) {
1649 skb_frag_unref(skb, i);
1650 eat -= size;
1651 } else {
1652 shinfo->frags[k] = shinfo->frags[i];
1653 if (eat) {
1654 skb_frag_off_add(&shinfo->frags[k], eat);
1655 skb_frag_size_sub(&shinfo->frags[k], eat);
1656 eat = 0;
1657 }
1658 k++;
1659 }
1660 }
1661 shinfo->nr_frags = k;
1662
1663 skb->data_len -= len;
1664 skb->len = skb->data_len;
1665 return len;
1666 }
1667
1668 /* Remove acked data from a packet in the transmit queue. */
1669 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1670 {
1671 u32 delta_truesize;
1672
1673 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1674 return -ENOMEM;
1675
1676 delta_truesize = __pskb_trim_head(skb, len);
1677
1678 TCP_SKB_CB(skb)->seq += len;
1679
1680 if (delta_truesize) {
1681 skb->truesize -= delta_truesize;
1682 sk_wmem_queued_add(sk, -delta_truesize);
1683 if (!skb_zcopy_pure(skb))
1684 sk_mem_uncharge(sk, delta_truesize);
1685 }
1686
1687 /* Any change of skb->len requires recalculation of tso factor. */
1688 if (tcp_skb_pcount(skb) > 1)
1689 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1690
1691 return 0;
1692 }
1693
1694 /* Calculate MSS not accounting any TCP options. */
1695 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1696 {
1697 const struct tcp_sock *tp = tcp_sk(sk);
1698 const struct inet_connection_sock *icsk = inet_csk(sk);
1699 int mss_now;
1700
1701 /* Calculate base mss without TCP options:
1702 It is MMS_S - sizeof(tcphdr) of rfc1122
1703 */
1704 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1705
1706 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1707 if (icsk->icsk_af_ops->net_frag_header_len) {
1708 const struct dst_entry *dst = __sk_dst_get(sk);
1709
1710 if (dst && dst_allfrag(dst))
1711 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1712 }
1713
1714 /* Clamp it (mss_clamp does not include tcp options) */
1715 if (mss_now > tp->rx_opt.mss_clamp)
1716 mss_now = tp->rx_opt.mss_clamp;
1717
1718 /* Now subtract optional transport overhead */
1719 mss_now -= icsk->icsk_ext_hdr_len;
1720
1721 /* Then reserve room for full set of TCP options and 8 bytes of data */
1722 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1723 return mss_now;
1724 }
1725
1726 /* Calculate MSS. Not accounting for SACKs here. */
1727 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1728 {
1729 /* Subtract TCP options size, not including SACKs */
1730 return __tcp_mtu_to_mss(sk, pmtu) -
1731 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1732 }
1733 EXPORT_SYMBOL(tcp_mtu_to_mss);
1734
1735 /* Inverse of above */
1736 int tcp_mss_to_mtu(struct sock *sk, int mss)
1737 {
1738 const struct tcp_sock *tp = tcp_sk(sk);
1739 const struct inet_connection_sock *icsk = inet_csk(sk);
1740 int mtu;
1741
1742 mtu = mss +
1743 tp->tcp_header_len +
1744 icsk->icsk_ext_hdr_len +
1745 icsk->icsk_af_ops->net_header_len;
1746
1747 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1748 if (icsk->icsk_af_ops->net_frag_header_len) {
1749 const struct dst_entry *dst = __sk_dst_get(sk);
1750
1751 if (dst && dst_allfrag(dst))
1752 mtu += icsk->icsk_af_ops->net_frag_header_len;
1753 }
1754 return mtu;
1755 }
1756 EXPORT_SYMBOL(tcp_mss_to_mtu);
1757
1758 /* MTU probing init per socket */
1759 void tcp_mtup_init(struct sock *sk)
1760 {
1761 struct tcp_sock *tp = tcp_sk(sk);
1762 struct inet_connection_sock *icsk = inet_csk(sk);
1763 struct net *net = sock_net(sk);
1764
1765 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1766 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1767 icsk->icsk_af_ops->net_header_len;
1768 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1769 icsk->icsk_mtup.probe_size = 0;
1770 if (icsk->icsk_mtup.enabled)
1771 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1772 }
1773 EXPORT_SYMBOL(tcp_mtup_init);
1774
1775 /* This function synchronize snd mss to current pmtu/exthdr set.
1776
1777 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1778 for TCP options, but includes only bare TCP header.
1779
1780 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1781 It is minimum of user_mss and mss received with SYN.
1782 It also does not include TCP options.
1783
1784 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1785
1786 tp->mss_cache is current effective sending mss, including
1787 all tcp options except for SACKs. It is evaluated,
1788 taking into account current pmtu, but never exceeds
1789 tp->rx_opt.mss_clamp.
1790
1791 NOTE1. rfc1122 clearly states that advertised MSS
1792 DOES NOT include either tcp or ip options.
1793
1794 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1795 are READ ONLY outside this function. --ANK (980731)
1796 */
1797 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1798 {
1799 struct tcp_sock *tp = tcp_sk(sk);
1800 struct inet_connection_sock *icsk = inet_csk(sk);
1801 int mss_now;
1802
1803 if (icsk->icsk_mtup.search_high > pmtu)
1804 icsk->icsk_mtup.search_high = pmtu;
1805
1806 mss_now = tcp_mtu_to_mss(sk, pmtu);
1807 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1808
1809 /* And store cached results */
1810 icsk->icsk_pmtu_cookie = pmtu;
1811 if (icsk->icsk_mtup.enabled)
1812 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1813 tp->mss_cache = mss_now;
1814
1815 return mss_now;
1816 }
1817 EXPORT_SYMBOL(tcp_sync_mss);
1818
1819 /* Compute the current effective MSS, taking SACKs and IP options,
1820 * and even PMTU discovery events into account.
1821 */
1822 unsigned int tcp_current_mss(struct sock *sk)
1823 {
1824 const struct tcp_sock *tp = tcp_sk(sk);
1825 const struct dst_entry *dst = __sk_dst_get(sk);
1826 u32 mss_now;
1827 unsigned int header_len;
1828 struct tcp_out_options opts;
1829 struct tcp_md5sig_key *md5;
1830
1831 mss_now = tp->mss_cache;
1832
1833 if (dst) {
1834 u32 mtu = dst_mtu(dst);
1835 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1836 mss_now = tcp_sync_mss(sk, mtu);
1837 }
1838
1839 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1840 sizeof(struct tcphdr);
1841 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1842 * some common options. If this is an odd packet (because we have SACK
1843 * blocks etc) then our calculated header_len will be different, and
1844 * we have to adjust mss_now correspondingly */
1845 if (header_len != tp->tcp_header_len) {
1846 int delta = (int) header_len - tp->tcp_header_len;
1847 mss_now -= delta;
1848 }
1849
1850 return mss_now;
1851 }
1852
1853 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1854 * As additional protections, we do not touch cwnd in retransmission phases,
1855 * and if application hit its sndbuf limit recently.
1856 */
1857 static void tcp_cwnd_application_limited(struct sock *sk)
1858 {
1859 struct tcp_sock *tp = tcp_sk(sk);
1860
1861 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1862 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1863 /* Limited by application or receiver window. */
1864 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1865 u32 win_used = max(tp->snd_cwnd_used, init_win);
1866 if (win_used < tcp_snd_cwnd(tp)) {
1867 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1868 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1869 }
1870 tp->snd_cwnd_used = 0;
1871 }
1872 tp->snd_cwnd_stamp = tcp_jiffies32;
1873 }
1874
1875 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1876 {
1877 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1878 struct tcp_sock *tp = tcp_sk(sk);
1879
1880 /* Track the maximum number of outstanding packets in each
1881 * window, and remember whether we were cwnd-limited then.
1882 */
1883 if (!before(tp->snd_una, tp->max_packets_seq) ||
1884 tp->packets_out > tp->max_packets_out ||
1885 is_cwnd_limited) {
1886 tp->max_packets_out = tp->packets_out;
1887 tp->max_packets_seq = tp->snd_nxt;
1888 tp->is_cwnd_limited = is_cwnd_limited;
1889 }
1890
1891 if (tcp_is_cwnd_limited(sk)) {
1892 /* Network is feed fully. */
1893 tp->snd_cwnd_used = 0;
1894 tp->snd_cwnd_stamp = tcp_jiffies32;
1895 } else {
1896 /* Network starves. */
1897 if (tp->packets_out > tp->snd_cwnd_used)
1898 tp->snd_cwnd_used = tp->packets_out;
1899
1900 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1901 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1902 !ca_ops->cong_control)
1903 tcp_cwnd_application_limited(sk);
1904
1905 /* The following conditions together indicate the starvation
1906 * is caused by insufficient sender buffer:
1907 * 1) just sent some data (see tcp_write_xmit)
1908 * 2) not cwnd limited (this else condition)
1909 * 3) no more data to send (tcp_write_queue_empty())
1910 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1911 */
1912 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1913 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1914 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1915 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1916 }
1917 }
1918
1919 /* Minshall's variant of the Nagle send check. */
1920 static bool tcp_minshall_check(const struct tcp_sock *tp)
1921 {
1922 return after(tp->snd_sml, tp->snd_una) &&
1923 !after(tp->snd_sml, tp->snd_nxt);
1924 }
1925
1926 /* Update snd_sml if this skb is under mss
1927 * Note that a TSO packet might end with a sub-mss segment
1928 * The test is really :
1929 * if ((skb->len % mss) != 0)
1930 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1931 * But we can avoid doing the divide again given we already have
1932 * skb_pcount = skb->len / mss_now
1933 */
1934 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1935 const struct sk_buff *skb)
1936 {
1937 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1938 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1939 }
1940
1941 /* Return false, if packet can be sent now without violation Nagle's rules:
1942 * 1. It is full sized. (provided by caller in %partial bool)
1943 * 2. Or it contains FIN. (already checked by caller)
1944 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1945 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1946 * With Minshall's modification: all sent small packets are ACKed.
1947 */
1948 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1949 int nonagle)
1950 {
1951 return partial &&
1952 ((nonagle & TCP_NAGLE_CORK) ||
1953 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1954 }
1955
1956 /* Return how many segs we'd like on a TSO packet,
1957 * depending on current pacing rate, and how close the peer is.
1958 *
1959 * Rationale is:
1960 * - For close peers, we rather send bigger packets to reduce
1961 * cpu costs, because occasional losses will be repaired fast.
1962 * - For long distance/rtt flows, we would like to get ACK clocking
1963 * with 1 ACK per ms.
1964 *
1965 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
1966 * in bigger TSO bursts. We we cut the RTT-based allowance in half
1967 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
1968 * is below 1500 bytes after 6 * ~500 usec = 3ms.
1969 */
1970 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1971 int min_tso_segs)
1972 {
1973 unsigned long bytes;
1974 u32 r;
1975
1976 bytes = sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift);
1977
1978 r = tcp_min_rtt(tcp_sk(sk)) >> sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log;
1979 if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
1980 bytes += sk->sk_gso_max_size >> r;
1981
1982 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
1983
1984 return max_t(u32, bytes / mss_now, min_tso_segs);
1985 }
1986
1987 /* Return the number of segments we want in the skb we are transmitting.
1988 * See if congestion control module wants to decide; otherwise, autosize.
1989 */
1990 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1991 {
1992 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1993 u32 min_tso, tso_segs;
1994
1995 min_tso = ca_ops->min_tso_segs ?
1996 ca_ops->min_tso_segs(sk) :
1997 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1998
1999 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2000 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2001 }
2002
2003 /* Returns the portion of skb which can be sent right away */
2004 static unsigned int tcp_mss_split_point(const struct sock *sk,
2005 const struct sk_buff *skb,
2006 unsigned int mss_now,
2007 unsigned int max_segs,
2008 int nonagle)
2009 {
2010 const struct tcp_sock *tp = tcp_sk(sk);
2011 u32 partial, needed, window, max_len;
2012
2013 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2014 max_len = mss_now * max_segs;
2015
2016 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2017 return max_len;
2018
2019 needed = min(skb->len, window);
2020
2021 if (max_len <= needed)
2022 return max_len;
2023
2024 partial = needed % mss_now;
2025 /* If last segment is not a full MSS, check if Nagle rules allow us
2026 * to include this last segment in this skb.
2027 * Otherwise, we'll split the skb at last MSS boundary
2028 */
2029 if (tcp_nagle_check(partial != 0, tp, nonagle))
2030 return needed - partial;
2031
2032 return needed;
2033 }
2034
2035 /* Can at least one segment of SKB be sent right now, according to the
2036 * congestion window rules? If so, return how many segments are allowed.
2037 */
2038 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2039 const struct sk_buff *skb)
2040 {
2041 u32 in_flight, cwnd, halfcwnd;
2042
2043 /* Don't be strict about the congestion window for the final FIN. */
2044 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2045 tcp_skb_pcount(skb) == 1)
2046 return 1;
2047
2048 in_flight = tcp_packets_in_flight(tp);
2049 cwnd = tcp_snd_cwnd(tp);
2050 if (in_flight >= cwnd)
2051 return 0;
2052
2053 /* For better scheduling, ensure we have at least
2054 * 2 GSO packets in flight.
2055 */
2056 halfcwnd = max(cwnd >> 1, 1U);
2057 return min(halfcwnd, cwnd - in_flight);
2058 }
2059
2060 /* Initialize TSO state of a skb.
2061 * This must be invoked the first time we consider transmitting
2062 * SKB onto the wire.
2063 */
2064 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2065 {
2066 int tso_segs = tcp_skb_pcount(skb);
2067
2068 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2069 tcp_set_skb_tso_segs(skb, mss_now);
2070 tso_segs = tcp_skb_pcount(skb);
2071 }
2072 return tso_segs;
2073 }
2074
2075
2076 /* Return true if the Nagle test allows this packet to be
2077 * sent now.
2078 */
2079 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2080 unsigned int cur_mss, int nonagle)
2081 {
2082 /* Nagle rule does not apply to frames, which sit in the middle of the
2083 * write_queue (they have no chances to get new data).
2084 *
2085 * This is implemented in the callers, where they modify the 'nonagle'
2086 * argument based upon the location of SKB in the send queue.
2087 */
2088 if (nonagle & TCP_NAGLE_PUSH)
2089 return true;
2090
2091 /* Don't use the nagle rule for urgent data (or for the final FIN). */
2092 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2093 return true;
2094
2095 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2096 return true;
2097
2098 return false;
2099 }
2100
2101 /* Does at least the first segment of SKB fit into the send window? */
2102 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2103 const struct sk_buff *skb,
2104 unsigned int cur_mss)
2105 {
2106 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2107
2108 if (skb->len > cur_mss)
2109 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2110
2111 return !after(end_seq, tcp_wnd_end(tp));
2112 }
2113
2114 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2115 * which is put after SKB on the list. It is very much like
2116 * tcp_fragment() except that it may make several kinds of assumptions
2117 * in order to speed up the splitting operation. In particular, we
2118 * know that all the data is in scatter-gather pages, and that the
2119 * packet has never been sent out before (and thus is not cloned).
2120 */
2121 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2122 unsigned int mss_now, gfp_t gfp)
2123 {
2124 int nlen = skb->len - len;
2125 struct sk_buff *buff;
2126 u8 flags;
2127
2128 /* All of a TSO frame must be composed of paged data. */
2129 if (skb->len != skb->data_len)
2130 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2131 skb, len, mss_now, gfp);
2132
2133 buff = tcp_stream_alloc_skb(sk, 0, gfp, true);
2134 if (unlikely(!buff))
2135 return -ENOMEM;
2136 skb_copy_decrypted(buff, skb);
2137 mptcp_skb_ext_copy(buff, skb);
2138
2139 sk_wmem_queued_add(sk, buff->truesize);
2140 sk_mem_charge(sk, buff->truesize);
2141 buff->truesize += nlen;
2142 skb->truesize -= nlen;
2143
2144 /* Correct the sequence numbers. */
2145 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2146 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2147 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2148
2149 /* PSH and FIN should only be set in the second packet. */
2150 flags = TCP_SKB_CB(skb)->tcp_flags;
2151 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2152 TCP_SKB_CB(buff)->tcp_flags = flags;
2153
2154 tcp_skb_fragment_eor(skb, buff);
2155
2156 skb_split(skb, buff, len);
2157 tcp_fragment_tstamp(skb, buff);
2158
2159 /* Fix up tso_factor for both original and new SKB. */
2160 tcp_set_skb_tso_segs(skb, mss_now);
2161 tcp_set_skb_tso_segs(buff, mss_now);
2162
2163 /* Link BUFF into the send queue. */
2164 __skb_header_release(buff);
2165 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2166
2167 return 0;
2168 }
2169
2170 /* Try to defer sending, if possible, in order to minimize the amount
2171 * of TSO splitting we do. View it as a kind of TSO Nagle test.
2172 *
2173 * This algorithm is from John Heffner.
2174 */
2175 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2176 bool *is_cwnd_limited,
2177 bool *is_rwnd_limited,
2178 u32 max_segs)
2179 {
2180 const struct inet_connection_sock *icsk = inet_csk(sk);
2181 u32 send_win, cong_win, limit, in_flight;
2182 struct tcp_sock *tp = tcp_sk(sk);
2183 struct sk_buff *head;
2184 int win_divisor;
2185 s64 delta;
2186
2187 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2188 goto send_now;
2189
2190 /* Avoid bursty behavior by allowing defer
2191 * only if the last write was recent (1 ms).
2192 * Note that tp->tcp_wstamp_ns can be in the future if we have
2193 * packets waiting in a qdisc or device for EDT delivery.
2194 */
2195 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2196 if (delta > 0)
2197 goto send_now;
2198
2199 in_flight = tcp_packets_in_flight(tp);
2200
2201 BUG_ON(tcp_skb_pcount(skb) <= 1);
2202 BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2203
2204 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2205
2206 /* From in_flight test above, we know that cwnd > in_flight. */
2207 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2208
2209 limit = min(send_win, cong_win);
2210
2211 /* If a full-sized TSO skb can be sent, do it. */
2212 if (limit >= max_segs * tp->mss_cache)
2213 goto send_now;
2214
2215 /* Middle in queue won't get any more data, full sendable already? */
2216 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2217 goto send_now;
2218
2219 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2220 if (win_divisor) {
2221 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2222
2223 /* If at least some fraction of a window is available,
2224 * just use it.
2225 */
2226 chunk /= win_divisor;
2227 if (limit >= chunk)
2228 goto send_now;
2229 } else {
2230 /* Different approach, try not to defer past a single
2231 * ACK. Receiver should ACK every other full sized
2232 * frame, so if we have space for more than 3 frames
2233 * then send now.
2234 */
2235 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2236 goto send_now;
2237 }
2238
2239 /* TODO : use tsorted_sent_queue ? */
2240 head = tcp_rtx_queue_head(sk);
2241 if (!head)
2242 goto send_now;
2243 delta = tp->tcp_clock_cache - head->tstamp;
2244 /* If next ACK is likely to come too late (half srtt), do not defer */
2245 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2246 goto send_now;
2247
2248 /* Ok, it looks like it is advisable to defer.
2249 * Three cases are tracked :
2250 * 1) We are cwnd-limited
2251 * 2) We are rwnd-limited
2252 * 3) We are application limited.
2253 */
2254 if (cong_win < send_win) {
2255 if (cong_win <= skb->len) {
2256 *is_cwnd_limited = true;
2257 return true;
2258 }
2259 } else {
2260 if (send_win <= skb->len) {
2261 *is_rwnd_limited = true;
2262 return true;
2263 }
2264 }
2265
2266 /* If this packet won't get more data, do not wait. */
2267 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2268 TCP_SKB_CB(skb)->eor)
2269 goto send_now;
2270
2271 return true;
2272
2273 send_now:
2274 return false;
2275 }
2276
2277 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2278 {
2279 struct inet_connection_sock *icsk = inet_csk(sk);
2280 struct tcp_sock *tp = tcp_sk(sk);
2281 struct net *net = sock_net(sk);
2282 u32 interval;
2283 s32 delta;
2284
2285 interval = net->ipv4.sysctl_tcp_probe_interval;
2286 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2287 if (unlikely(delta >= interval * HZ)) {
2288 int mss = tcp_current_mss(sk);
2289
2290 /* Update current search range */
2291 icsk->icsk_mtup.probe_size = 0;
2292 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2293 sizeof(struct tcphdr) +
2294 icsk->icsk_af_ops->net_header_len;
2295 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2296
2297 /* Update probe time stamp */
2298 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2299 }
2300 }
2301
2302 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2303 {
2304 struct sk_buff *skb, *next;
2305
2306 skb = tcp_send_head(sk);
2307 tcp_for_write_queue_from_safe(skb, next, sk) {
2308 if (len <= skb->len)
2309 break;
2310
2311 if (unlikely(TCP_SKB_CB(skb)->eor) ||
2312 tcp_has_tx_tstamp(skb) ||
2313 !skb_pure_zcopy_same(skb, next))
2314 return false;
2315
2316 len -= skb->len;
2317 }
2318
2319 return true;
2320 }
2321
2322 /* Create a new MTU probe if we are ready.
2323 * MTU probe is regularly attempting to increase the path MTU by
2324 * deliberately sending larger packets. This discovers routing
2325 * changes resulting in larger path MTUs.
2326 *
2327 * Returns 0 if we should wait to probe (no cwnd available),
2328 * 1 if a probe was sent,
2329 * -1 otherwise
2330 */
2331 static int tcp_mtu_probe(struct sock *sk)
2332 {
2333 struct inet_connection_sock *icsk = inet_csk(sk);
2334 struct tcp_sock *tp = tcp_sk(sk);
2335 struct sk_buff *skb, *nskb, *next;
2336 struct net *net = sock_net(sk);
2337 int probe_size;
2338 int size_needed;
2339 int copy, len;
2340 int mss_now;
2341 int interval;
2342
2343 /* Not currently probing/verifying,
2344 * not in recovery,
2345 * have enough cwnd, and
2346 * not SACKing (the variable headers throw things off)
2347 */
2348 if (likely(!icsk->icsk_mtup.enabled ||
2349 icsk->icsk_mtup.probe_size ||
2350 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2351 tcp_snd_cwnd(tp) < 11 ||
2352 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2353 return -1;
2354
2355 /* Use binary search for probe_size between tcp_mss_base,
2356 * and current mss_clamp. if (search_high - search_low)
2357 * smaller than a threshold, backoff from probing.
2358 */
2359 mss_now = tcp_current_mss(sk);
2360 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2361 icsk->icsk_mtup.search_low) >> 1);
2362 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2363 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2364 /* When misfortune happens, we are reprobing actively,
2365 * and then reprobe timer has expired. We stick with current
2366 * probing process by not resetting search range to its orignal.
2367 */
2368 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2369 interval < net->ipv4.sysctl_tcp_probe_threshold) {
2370 /* Check whether enough time has elaplased for
2371 * another round of probing.
2372 */
2373 tcp_mtu_check_reprobe(sk);
2374 return -1;
2375 }
2376
2377 /* Have enough data in the send queue to probe? */
2378 if (tp->write_seq - tp->snd_nxt < size_needed)
2379 return -1;
2380
2381 if (tp->snd_wnd < size_needed)
2382 return -1;
2383 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2384 return 0;
2385
2386 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2387 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2388 if (!tcp_packets_in_flight(tp))
2389 return -1;
2390 else
2391 return 0;
2392 }
2393
2394 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2395 return -1;
2396
2397 /* We're allowed to probe. Build it now. */
2398 nskb = tcp_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2399 if (!nskb)
2400 return -1;
2401 sk_wmem_queued_add(sk, nskb->truesize);
2402 sk_mem_charge(sk, nskb->truesize);
2403
2404 skb = tcp_send_head(sk);
2405 skb_copy_decrypted(nskb, skb);
2406 mptcp_skb_ext_copy(nskb, skb);
2407
2408 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2409 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2410 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2411
2412 tcp_insert_write_queue_before(nskb, skb, sk);
2413 tcp_highest_sack_replace(sk, skb, nskb);
2414
2415 len = 0;
2416 tcp_for_write_queue_from_safe(skb, next, sk) {
2417 copy = min_t(int, skb->len, probe_size - len);
2418 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2419
2420 if (skb->len <= copy) {
2421 /* We've eaten all the data from this skb.
2422 * Throw it away. */
2423 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2424 /* If this is the last SKB we copy and eor is set
2425 * we need to propagate it to the new skb.
2426 */
2427 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2428 tcp_skb_collapse_tstamp(nskb, skb);
2429 tcp_unlink_write_queue(skb, sk);
2430 tcp_wmem_free_skb(sk, skb);
2431 } else {
2432 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2433 ~(TCPHDR_FIN|TCPHDR_PSH);
2434 if (!skb_shinfo(skb)->nr_frags) {
2435 skb_pull(skb, copy);
2436 } else {
2437 __pskb_trim_head(skb, copy);
2438 tcp_set_skb_tso_segs(skb, mss_now);
2439 }
2440 TCP_SKB_CB(skb)->seq += copy;
2441 }
2442
2443 len += copy;
2444
2445 if (len >= probe_size)
2446 break;
2447 }
2448 tcp_init_tso_segs(nskb, nskb->len);
2449
2450 /* We're ready to send. If this fails, the probe will
2451 * be resegmented into mss-sized pieces by tcp_write_xmit().
2452 */
2453 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2454 /* Decrement cwnd here because we are sending
2455 * effectively two packets. */
2456 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2457 tcp_event_new_data_sent(sk, nskb);
2458
2459 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2460 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2461 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2462
2463 return 1;
2464 }
2465
2466 return -1;
2467 }
2468
2469 static bool tcp_pacing_check(struct sock *sk)
2470 {
2471 struct tcp_sock *tp = tcp_sk(sk);
2472
2473 if (!tcp_needs_internal_pacing(sk))
2474 return false;
2475
2476 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2477 return false;
2478
2479 if (!hrtimer_is_queued(&tp->pacing_timer)) {
2480 hrtimer_start(&tp->pacing_timer,
2481 ns_to_ktime(tp->tcp_wstamp_ns),
2482 HRTIMER_MODE_ABS_PINNED_SOFT);
2483 sock_hold(sk);
2484 }
2485 return true;
2486 }
2487
2488 /* TCP Small Queues :
2489 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2490 * (These limits are doubled for retransmits)
2491 * This allows for :
2492 * - better RTT estimation and ACK scheduling
2493 * - faster recovery
2494 * - high rates
2495 * Alas, some drivers / subsystems require a fair amount
2496 * of queued bytes to ensure line rate.
2497 * One example is wifi aggregation (802.11 AMPDU)
2498 */
2499 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2500 unsigned int factor)
2501 {
2502 unsigned long limit;
2503
2504 limit = max_t(unsigned long,
2505 2 * skb->truesize,
2506 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2507 if (sk->sk_pacing_status == SK_PACING_NONE)
2508 limit = min_t(unsigned long, limit,
2509 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2510 limit <<= factor;
2511
2512 if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2513 tcp_sk(sk)->tcp_tx_delay) {
2514 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2515
2516 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2517 * approximate our needs assuming an ~100% skb->truesize overhead.
2518 * USEC_PER_SEC is approximated by 2^20.
2519 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2520 */
2521 extra_bytes >>= (20 - 1);
2522 limit += extra_bytes;
2523 }
2524 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2525 /* Always send skb if rtx queue is empty.
2526 * No need to wait for TX completion to call us back,
2527 * after softirq/tasklet schedule.
2528 * This helps when TX completions are delayed too much.
2529 */
2530 if (tcp_rtx_queue_empty(sk))
2531 return false;
2532
2533 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2534 /* It is possible TX completion already happened
2535 * before we set TSQ_THROTTLED, so we must
2536 * test again the condition.
2537 */
2538 smp_mb__after_atomic();
2539 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2540 return true;
2541 }
2542 return false;
2543 }
2544
2545 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2546 {
2547 const u32 now = tcp_jiffies32;
2548 enum tcp_chrono old = tp->chrono_type;
2549
2550 if (old > TCP_CHRONO_UNSPEC)
2551 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2552 tp->chrono_start = now;
2553 tp->chrono_type = new;
2554 }
2555
2556 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2557 {
2558 struct tcp_sock *tp = tcp_sk(sk);
2559
2560 /* If there are multiple conditions worthy of tracking in a
2561 * chronograph then the highest priority enum takes precedence
2562 * over the other conditions. So that if something "more interesting"
2563 * starts happening, stop the previous chrono and start a new one.
2564 */
2565 if (type > tp->chrono_type)
2566 tcp_chrono_set(tp, type);
2567 }
2568
2569 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2570 {
2571 struct tcp_sock *tp = tcp_sk(sk);
2572
2573
2574 /* There are multiple conditions worthy of tracking in a
2575 * chronograph, so that the highest priority enum takes
2576 * precedence over the other conditions (see tcp_chrono_start).
2577 * If a condition stops, we only stop chrono tracking if
2578 * it's the "most interesting" or current chrono we are
2579 * tracking and starts busy chrono if we have pending data.
2580 */
2581 if (tcp_rtx_and_write_queues_empty(sk))
2582 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2583 else if (type == tp->chrono_type)
2584 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2585 }
2586
2587 /* This routine writes packets to the network. It advances the
2588 * send_head. This happens as incoming acks open up the remote
2589 * window for us.
2590 *
2591 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2592 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2593 * account rare use of URG, this is not a big flaw.
2594 *
2595 * Send at most one packet when push_one > 0. Temporarily ignore
2596 * cwnd limit to force at most one packet out when push_one == 2.
2597
2598 * Returns true, if no segments are in flight and we have queued segments,
2599 * but cannot send anything now because of SWS or another problem.
2600 */
2601 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2602 int push_one, gfp_t gfp)
2603 {
2604 struct tcp_sock *tp = tcp_sk(sk);
2605 struct sk_buff *skb;
2606 unsigned int tso_segs, sent_pkts;
2607 int cwnd_quota;
2608 int result;
2609 bool is_cwnd_limited = false, is_rwnd_limited = false;
2610 u32 max_segs;
2611
2612 sent_pkts = 0;
2613
2614 tcp_mstamp_refresh(tp);
2615 if (!push_one) {
2616 /* Do MTU probing. */
2617 result = tcp_mtu_probe(sk);
2618 if (!result) {
2619 return false;
2620 } else if (result > 0) {
2621 sent_pkts = 1;
2622 }
2623 }
2624
2625 max_segs = tcp_tso_segs(sk, mss_now);
2626 while ((skb = tcp_send_head(sk))) {
2627 unsigned int limit;
2628
2629 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2630 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2631 tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2632 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2633 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2634 tcp_init_tso_segs(skb, mss_now);
2635 goto repair; /* Skip network transmission */
2636 }
2637
2638 if (tcp_pacing_check(sk))
2639 break;
2640
2641 tso_segs = tcp_init_tso_segs(skb, mss_now);
2642 BUG_ON(!tso_segs);
2643
2644 cwnd_quota = tcp_cwnd_test(tp, skb);
2645 if (!cwnd_quota) {
2646 if (push_one == 2)
2647 /* Force out a loss probe pkt. */
2648 cwnd_quota = 1;
2649 else
2650 break;
2651 }
2652
2653 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2654 is_rwnd_limited = true;
2655 break;
2656 }
2657
2658 if (tso_segs == 1) {
2659 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2660 (tcp_skb_is_last(sk, skb) ?
2661 nonagle : TCP_NAGLE_PUSH))))
2662 break;
2663 } else {
2664 if (!push_one &&
2665 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2666 &is_rwnd_limited, max_segs))
2667 break;
2668 }
2669
2670 limit = mss_now;
2671 if (tso_segs > 1 && !tcp_urg_mode(tp))
2672 limit = tcp_mss_split_point(sk, skb, mss_now,
2673 min_t(unsigned int,
2674 cwnd_quota,
2675 max_segs),
2676 nonagle);
2677
2678 if (skb->len > limit &&
2679 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2680 break;
2681
2682 if (tcp_small_queue_check(sk, skb, 0))
2683 break;
2684
2685 /* Argh, we hit an empty skb(), presumably a thread
2686 * is sleeping in sendmsg()/sk_stream_wait_memory().
2687 * We do not want to send a pure-ack packet and have
2688 * a strange looking rtx queue with empty packet(s).
2689 */
2690 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2691 break;
2692
2693 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2694 break;
2695
2696 repair:
2697 /* Advance the send_head. This one is sent out.
2698 * This call will increment packets_out.
2699 */
2700 tcp_event_new_data_sent(sk, skb);
2701
2702 tcp_minshall_update(tp, mss_now, skb);
2703 sent_pkts += tcp_skb_pcount(skb);
2704
2705 if (push_one)
2706 break;
2707 }
2708
2709 if (is_rwnd_limited)
2710 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2711 else
2712 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2713
2714 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2715 if (likely(sent_pkts || is_cwnd_limited))
2716 tcp_cwnd_validate(sk, is_cwnd_limited);
2717
2718 if (likely(sent_pkts)) {
2719 if (tcp_in_cwnd_reduction(sk))
2720 tp->prr_out += sent_pkts;
2721
2722 /* Send one loss probe per tail loss episode. */
2723 if (push_one != 2)
2724 tcp_schedule_loss_probe(sk, false);
2725 return false;
2726 }
2727 return !tp->packets_out && !tcp_write_queue_empty(sk);
2728 }
2729
2730 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2731 {
2732 struct inet_connection_sock *icsk = inet_csk(sk);
2733 struct tcp_sock *tp = tcp_sk(sk);
2734 u32 timeout, rto_delta_us;
2735 int early_retrans;
2736
2737 /* Don't do any loss probe on a Fast Open connection before 3WHS
2738 * finishes.
2739 */
2740 if (rcu_access_pointer(tp->fastopen_rsk))
2741 return false;
2742
2743 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2744 /* Schedule a loss probe in 2*RTT for SACK capable connections
2745 * not in loss recovery, that are either limited by cwnd or application.
2746 */
2747 if ((early_retrans != 3 && early_retrans != 4) ||
2748 !tp->packets_out || !tcp_is_sack(tp) ||
2749 (icsk->icsk_ca_state != TCP_CA_Open &&
2750 icsk->icsk_ca_state != TCP_CA_CWR))
2751 return false;
2752
2753 /* Probe timeout is 2*rtt. Add minimum RTO to account
2754 * for delayed ack when there's one outstanding packet. If no RTT
2755 * sample is available then probe after TCP_TIMEOUT_INIT.
2756 */
2757 if (tp->srtt_us) {
2758 timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2759 if (tp->packets_out == 1)
2760 timeout += TCP_RTO_MIN;
2761 else
2762 timeout += TCP_TIMEOUT_MIN;
2763 } else {
2764 timeout = TCP_TIMEOUT_INIT;
2765 }
2766
2767 /* If the RTO formula yields an earlier time, then use that time. */
2768 rto_delta_us = advancing_rto ?
2769 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2770 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2771 if (rto_delta_us > 0)
2772 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2773
2774 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2775 return true;
2776 }
2777
2778 /* Thanks to skb fast clones, we can detect if a prior transmit of
2779 * a packet is still in a qdisc or driver queue.
2780 * In this case, there is very little point doing a retransmit !
2781 */
2782 static bool skb_still_in_host_queue(struct sock *sk,
2783 const struct sk_buff *skb)
2784 {
2785 if (unlikely(skb_fclone_busy(sk, skb))) {
2786 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2787 smp_mb__after_atomic();
2788 if (skb_fclone_busy(sk, skb)) {
2789 NET_INC_STATS(sock_net(sk),
2790 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2791 return true;
2792 }
2793 }
2794 return false;
2795 }
2796
2797 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2798 * retransmit the last segment.
2799 */
2800 void tcp_send_loss_probe(struct sock *sk)
2801 {
2802 struct tcp_sock *tp = tcp_sk(sk);
2803 struct sk_buff *skb;
2804 int pcount;
2805 int mss = tcp_current_mss(sk);
2806
2807 /* At most one outstanding TLP */
2808 if (tp->tlp_high_seq)
2809 goto rearm_timer;
2810
2811 tp->tlp_retrans = 0;
2812 skb = tcp_send_head(sk);
2813 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2814 pcount = tp->packets_out;
2815 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2816 if (tp->packets_out > pcount)
2817 goto probe_sent;
2818 goto rearm_timer;
2819 }
2820 skb = skb_rb_last(&sk->tcp_rtx_queue);
2821 if (unlikely(!skb)) {
2822 WARN_ONCE(tp->packets_out,
2823 "invalid inflight: %u state %u cwnd %u mss %d\n",
2824 tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2825 inet_csk(sk)->icsk_pending = 0;
2826 return;
2827 }
2828
2829 if (skb_still_in_host_queue(sk, skb))
2830 goto rearm_timer;
2831
2832 pcount = tcp_skb_pcount(skb);
2833 if (WARN_ON(!pcount))
2834 goto rearm_timer;
2835
2836 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2837 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2838 (pcount - 1) * mss, mss,
2839 GFP_ATOMIC)))
2840 goto rearm_timer;
2841 skb = skb_rb_next(skb);
2842 }
2843
2844 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2845 goto rearm_timer;
2846
2847 if (__tcp_retransmit_skb(sk, skb, 1))
2848 goto rearm_timer;
2849
2850 tp->tlp_retrans = 1;
2851
2852 probe_sent:
2853 /* Record snd_nxt for loss detection. */
2854 tp->tlp_high_seq = tp->snd_nxt;
2855
2856 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2857 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2858 inet_csk(sk)->icsk_pending = 0;
2859 rearm_timer:
2860 tcp_rearm_rto(sk);
2861 }
2862
2863 /* Push out any pending frames which were held back due to
2864 * TCP_CORK or attempt at coalescing tiny packets.
2865 * The socket must be locked by the caller.
2866 */
2867 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2868 int nonagle)
2869 {
2870 /* If we are closed, the bytes will have to remain here.
2871 * In time closedown will finish, we empty the write queue and
2872 * all will be happy.
2873 */
2874 if (unlikely(sk->sk_state == TCP_CLOSE))
2875 return;
2876
2877 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2878 sk_gfp_mask(sk, GFP_ATOMIC)))
2879 tcp_check_probe_timer(sk);
2880 }
2881
2882 /* Send _single_ skb sitting at the send head. This function requires
2883 * true push pending frames to setup probe timer etc.
2884 */
2885 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2886 {
2887 struct sk_buff *skb = tcp_send_head(sk);
2888
2889 BUG_ON(!skb || skb->len < mss_now);
2890
2891 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2892 }
2893
2894 /* This function returns the amount that we can raise the
2895 * usable window based on the following constraints
2896 *
2897 * 1. The window can never be shrunk once it is offered (RFC 793)
2898 * 2. We limit memory per socket
2899 *
2900 * RFC 1122:
2901 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2902 * RECV.NEXT + RCV.WIN fixed until:
2903 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2904 *
2905 * i.e. don't raise the right edge of the window until you can raise
2906 * it at least MSS bytes.
2907 *
2908 * Unfortunately, the recommended algorithm breaks header prediction,
2909 * since header prediction assumes th->window stays fixed.
2910 *
2911 * Strictly speaking, keeping th->window fixed violates the receiver
2912 * side SWS prevention criteria. The problem is that under this rule
2913 * a stream of single byte packets will cause the right side of the
2914 * window to always advance by a single byte.
2915 *
2916 * Of course, if the sender implements sender side SWS prevention
2917 * then this will not be a problem.
2918 *
2919 * BSD seems to make the following compromise:
2920 *
2921 * If the free space is less than the 1/4 of the maximum
2922 * space available and the free space is less than 1/2 mss,
2923 * then set the window to 0.
2924 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2925 * Otherwise, just prevent the window from shrinking
2926 * and from being larger than the largest representable value.
2927 *
2928 * This prevents incremental opening of the window in the regime
2929 * where TCP is limited by the speed of the reader side taking
2930 * data out of the TCP receive queue. It does nothing about
2931 * those cases where the window is constrained on the sender side
2932 * because the pipeline is full.
2933 *
2934 * BSD also seems to "accidentally" limit itself to windows that are a
2935 * multiple of MSS, at least until the free space gets quite small.
2936 * This would appear to be a side effect of the mbuf implementation.
2937 * Combining these two algorithms results in the observed behavior
2938 * of having a fixed window size at almost all times.
2939 *
2940 * Below we obtain similar behavior by forcing the offered window to
2941 * a multiple of the mss when it is feasible to do so.
2942 *
2943 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2944 * Regular options like TIMESTAMP are taken into account.
2945 */
2946 u32 __tcp_select_window(struct sock *sk)
2947 {
2948 struct inet_connection_sock *icsk = inet_csk(sk);
2949 struct tcp_sock *tp = tcp_sk(sk);
2950 /* MSS for the peer's data. Previous versions used mss_clamp
2951 * here. I don't know if the value based on our guesses
2952 * of peer's MSS is better for the performance. It's more correct
2953 * but may be worse for the performance because of rcv_mss
2954 * fluctuations. --SAW 1998/11/1
2955 */
2956 int mss = icsk->icsk_ack.rcv_mss;
2957 int free_space = tcp_space(sk);
2958 int allowed_space = tcp_full_space(sk);
2959 int full_space, window;
2960
2961 if (sk_is_mptcp(sk))
2962 mptcp_space(sk, &free_space, &allowed_space);
2963
2964 full_space = min_t(int, tp->window_clamp, allowed_space);
2965
2966 if (unlikely(mss > full_space)) {
2967 mss = full_space;
2968 if (mss <= 0)
2969 return 0;
2970 }
2971 if (free_space < (full_space >> 1)) {
2972 icsk->icsk_ack.quick = 0;
2973
2974 if (tcp_under_memory_pressure(sk))
2975 tcp_adjust_rcv_ssthresh(sk);
2976
2977 /* free_space might become our new window, make sure we don't
2978 * increase it due to wscale.
2979 */
2980 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2981
2982 /* if free space is less than mss estimate, or is below 1/16th
2983 * of the maximum allowed, try to move to zero-window, else
2984 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2985 * new incoming data is dropped due to memory limits.
2986 * With large window, mss test triggers way too late in order
2987 * to announce zero window in time before rmem limit kicks in.
2988 */
2989 if (free_space < (allowed_space >> 4) || free_space < mss)
2990 return 0;
2991 }
2992
2993 if (free_space > tp->rcv_ssthresh)
2994 free_space = tp->rcv_ssthresh;
2995
2996 /* Don't do rounding if we are using window scaling, since the
2997 * scaled window will not line up with the MSS boundary anyway.
2998 */
2999 if (tp->rx_opt.rcv_wscale) {
3000 window = free_space;
3001
3002 /* Advertise enough space so that it won't get scaled away.
3003 * Import case: prevent zero window announcement if
3004 * 1<<rcv_wscale > mss.
3005 */
3006 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3007 } else {
3008 window = tp->rcv_wnd;
3009 /* Get the largest window that is a nice multiple of mss.
3010 * Window clamp already applied above.
3011 * If our current window offering is within 1 mss of the
3012 * free space we just keep it. This prevents the divide
3013 * and multiply from happening most of the time.
3014 * We also don't do any window rounding when the free space
3015 * is too small.
3016 */
3017 if (window <= free_space - mss || window > free_space)
3018 window = rounddown(free_space, mss);
3019 else if (mss == full_space &&
3020 free_space > window + (full_space >> 1))
3021 window = free_space;
3022 }
3023
3024 return window;
3025 }
3026
3027 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3028 const struct sk_buff *next_skb)
3029 {
3030 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3031 const struct skb_shared_info *next_shinfo =
3032 skb_shinfo(next_skb);
3033 struct skb_shared_info *shinfo = skb_shinfo(skb);
3034
3035 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3036 shinfo->tskey = next_shinfo->tskey;
3037 TCP_SKB_CB(skb)->txstamp_ack |=
3038 TCP_SKB_CB(next_skb)->txstamp_ack;
3039 }
3040 }
3041
3042 /* Collapses two adjacent SKB's during retransmission. */
3043 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3044 {
3045 struct tcp_sock *tp = tcp_sk(sk);
3046 struct sk_buff *next_skb = skb_rb_next(skb);
3047 int next_skb_size;
3048
3049 next_skb_size = next_skb->len;
3050
3051 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3052
3053 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3054 return false;
3055
3056 tcp_highest_sack_replace(sk, next_skb, skb);
3057
3058 /* Update sequence range on original skb. */
3059 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3060
3061 /* Merge over control information. This moves PSH/FIN etc. over */
3062 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3063
3064 /* All done, get rid of second SKB and account for it so
3065 * packet counting does not break.
3066 */
3067 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3068 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3069
3070 /* changed transmit queue under us so clear hints */
3071 tcp_clear_retrans_hints_partial(tp);
3072 if (next_skb == tp->retransmit_skb_hint)
3073 tp->retransmit_skb_hint = skb;
3074
3075 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3076
3077 tcp_skb_collapse_tstamp(skb, next_skb);
3078
3079 tcp_rtx_queue_unlink_and_free(next_skb, sk);
3080 return true;
3081 }
3082
3083 /* Check if coalescing SKBs is legal. */
3084 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3085 {
3086 if (tcp_skb_pcount(skb) > 1)
3087 return false;
3088 if (skb_cloned(skb))
3089 return false;
3090 /* Some heuristics for collapsing over SACK'd could be invented */
3091 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3092 return false;
3093
3094 return true;
3095 }
3096
3097 /* Collapse packets in the retransmit queue to make to create
3098 * less packets on the wire. This is only done on retransmission.
3099 */
3100 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3101 int space)
3102 {
3103 struct tcp_sock *tp = tcp_sk(sk);
3104 struct sk_buff *skb = to, *tmp;
3105 bool first = true;
3106
3107 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
3108 return;
3109 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3110 return;
3111
3112 skb_rbtree_walk_from_safe(skb, tmp) {
3113 if (!tcp_can_collapse(sk, skb))
3114 break;
3115
3116 if (!tcp_skb_can_collapse(to, skb))
3117 break;
3118
3119 space -= skb->len;
3120
3121 if (first) {
3122 first = false;
3123 continue;
3124 }
3125
3126 if (space < 0)
3127 break;
3128
3129 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3130 break;
3131
3132 if (!tcp_collapse_retrans(sk, to))
3133 break;
3134 }
3135 }
3136
3137 /* This retransmits one SKB. Policy decisions and retransmit queue
3138 * state updates are done by the caller. Returns non-zero if an
3139 * error occurred which prevented the send.
3140 */
3141 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3142 {
3143 struct inet_connection_sock *icsk = inet_csk(sk);
3144 struct tcp_sock *tp = tcp_sk(sk);
3145 unsigned int cur_mss;
3146 int diff, len, err;
3147
3148
3149 /* Inconclusive MTU probe */
3150 if (icsk->icsk_mtup.probe_size)
3151 icsk->icsk_mtup.probe_size = 0;
3152
3153 if (skb_still_in_host_queue(sk, skb))
3154 return -EBUSY;
3155
3156 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3157 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3158 WARN_ON_ONCE(1);
3159 return -EINVAL;
3160 }
3161 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3162 return -ENOMEM;
3163 }
3164
3165 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3166 return -EHOSTUNREACH; /* Routing failure or similar. */
3167
3168 cur_mss = tcp_current_mss(sk);
3169
3170 /* If receiver has shrunk his window, and skb is out of
3171 * new window, do not retransmit it. The exception is the
3172 * case, when window is shrunk to zero. In this case
3173 * our retransmit serves as a zero window probe.
3174 */
3175 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
3176 TCP_SKB_CB(skb)->seq != tp->snd_una)
3177 return -EAGAIN;
3178
3179 len = cur_mss * segs;
3180 if (skb->len > len) {
3181 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3182 cur_mss, GFP_ATOMIC))
3183 return -ENOMEM; /* We'll try again later. */
3184 } else {
3185 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3186 return -ENOMEM;
3187
3188 diff = tcp_skb_pcount(skb);
3189 tcp_set_skb_tso_segs(skb, cur_mss);
3190 diff -= tcp_skb_pcount(skb);
3191 if (diff)
3192 tcp_adjust_pcount(sk, skb, diff);
3193 if (skb->len < cur_mss)
3194 tcp_retrans_try_collapse(sk, skb, cur_mss);
3195 }
3196
3197 /* RFC3168, section 6.1.1.1. ECN fallback */
3198 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3199 tcp_ecn_clear_syn(sk, skb);
3200
3201 /* Update global and local TCP statistics. */
3202 segs = tcp_skb_pcount(skb);
3203 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3204 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3205 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3206 tp->total_retrans += segs;
3207 tp->bytes_retrans += skb->len;
3208
3209 /* make sure skb->data is aligned on arches that require it
3210 * and check if ack-trimming & collapsing extended the headroom
3211 * beyond what csum_start can cover.
3212 */
3213 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3214 skb_headroom(skb) >= 0xFFFF)) {
3215 struct sk_buff *nskb;
3216
3217 tcp_skb_tsorted_save(skb) {
3218 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3219 if (nskb) {
3220 nskb->dev = NULL;
3221 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3222 } else {
3223 err = -ENOBUFS;
3224 }
3225 } tcp_skb_tsorted_restore(skb);
3226
3227 if (!err) {
3228 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3229 tcp_rate_skb_sent(sk, skb);
3230 }
3231 } else {
3232 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3233 }
3234
3235 /* To avoid taking spuriously low RTT samples based on a timestamp
3236 * for a transmit that never happened, always mark EVER_RETRANS
3237 */
3238 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3239
3240 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3241 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3242 TCP_SKB_CB(skb)->seq, segs, err);
3243
3244 if (likely(!err)) {
3245 trace_tcp_retransmit_skb(sk, skb);
3246 } else if (err != -EBUSY) {
3247 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3248 }
3249 return err;
3250 }
3251
3252 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3253 {
3254 struct tcp_sock *tp = tcp_sk(sk);
3255 int err = __tcp_retransmit_skb(sk, skb, segs);
3256
3257 if (err == 0) {
3258 #if FASTRETRANS_DEBUG > 0
3259 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3260 net_dbg_ratelimited("retrans_out leaked\n");
3261 }
3262 #endif
3263 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3264 tp->retrans_out += tcp_skb_pcount(skb);
3265 }
3266
3267 /* Save stamp of the first (attempted) retransmit. */
3268 if (!tp->retrans_stamp)
3269 tp->retrans_stamp = tcp_skb_timestamp(skb);
3270
3271 if (tp->undo_retrans < 0)
3272 tp->undo_retrans = 0;
3273 tp->undo_retrans += tcp_skb_pcount(skb);
3274 return err;
3275 }
3276
3277 /* This gets called after a retransmit timeout, and the initially
3278 * retransmitted data is acknowledged. It tries to continue
3279 * resending the rest of the retransmit queue, until either
3280 * we've sent it all or the congestion window limit is reached.
3281 */
3282 void tcp_xmit_retransmit_queue(struct sock *sk)
3283 {
3284 const struct inet_connection_sock *icsk = inet_csk(sk);
3285 struct sk_buff *skb, *rtx_head, *hole = NULL;
3286 struct tcp_sock *tp = tcp_sk(sk);
3287 bool rearm_timer = false;
3288 u32 max_segs;
3289 int mib_idx;
3290
3291 if (!tp->packets_out)
3292 return;
3293
3294 rtx_head = tcp_rtx_queue_head(sk);
3295 skb = tp->retransmit_skb_hint ?: rtx_head;
3296 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3297 skb_rbtree_walk_from(skb) {
3298 __u8 sacked;
3299 int segs;
3300
3301 if (tcp_pacing_check(sk))
3302 break;
3303
3304 /* we could do better than to assign each time */
3305 if (!hole)
3306 tp->retransmit_skb_hint = skb;
3307
3308 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3309 if (segs <= 0)
3310 break;
3311 sacked = TCP_SKB_CB(skb)->sacked;
3312 /* In case tcp_shift_skb_data() have aggregated large skbs,
3313 * we need to make sure not sending too bigs TSO packets
3314 */
3315 segs = min_t(int, segs, max_segs);
3316
3317 if (tp->retrans_out >= tp->lost_out) {
3318 break;
3319 } else if (!(sacked & TCPCB_LOST)) {
3320 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3321 hole = skb;
3322 continue;
3323
3324 } else {
3325 if (icsk->icsk_ca_state != TCP_CA_Loss)
3326 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3327 else
3328 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3329 }
3330
3331 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3332 continue;
3333
3334 if (tcp_small_queue_check(sk, skb, 1))
3335 break;
3336
3337 if (tcp_retransmit_skb(sk, skb, segs))
3338 break;
3339
3340 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3341
3342 if (tcp_in_cwnd_reduction(sk))
3343 tp->prr_out += tcp_skb_pcount(skb);
3344
3345 if (skb == rtx_head &&
3346 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3347 rearm_timer = true;
3348
3349 }
3350 if (rearm_timer)
3351 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3352 inet_csk(sk)->icsk_rto,
3353 TCP_RTO_MAX);
3354 }
3355
3356 /* We allow to exceed memory limits for FIN packets to expedite
3357 * connection tear down and (memory) recovery.
3358 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3359 * or even be forced to close flow without any FIN.
3360 * In general, we want to allow one skb per socket to avoid hangs
3361 * with edge trigger epoll()
3362 */
3363 void sk_forced_mem_schedule(struct sock *sk, int size)
3364 {
3365 int amt;
3366
3367 if (size <= sk->sk_forward_alloc)
3368 return;
3369 amt = sk_mem_pages(size);
3370 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3371 sk_memory_allocated_add(sk, amt);
3372
3373 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3374 mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3375 gfp_memcg_charge() | __GFP_NOFAIL);
3376 }
3377
3378 /* Send a FIN. The caller locks the socket for us.
3379 * We should try to send a FIN packet really hard, but eventually give up.
3380 */
3381 void tcp_send_fin(struct sock *sk)
3382 {
3383 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3384 struct tcp_sock *tp = tcp_sk(sk);
3385
3386 /* Optimization, tack on the FIN if we have one skb in write queue and
3387 * this skb was not yet sent, or we are under memory pressure.
3388 * Note: in the latter case, FIN packet will be sent after a timeout,
3389 * as TCP stack thinks it has already been transmitted.
3390 */
3391 tskb = tail;
3392 if (!tskb && tcp_under_memory_pressure(sk))
3393 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3394
3395 if (tskb) {
3396 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3397 TCP_SKB_CB(tskb)->end_seq++;
3398 tp->write_seq++;
3399 if (!tail) {
3400 /* This means tskb was already sent.
3401 * Pretend we included the FIN on previous transmit.
3402 * We need to set tp->snd_nxt to the value it would have
3403 * if FIN had been sent. This is because retransmit path
3404 * does not change tp->snd_nxt.
3405 */
3406 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3407 return;
3408 }
3409 } else {
3410 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3411 if (unlikely(!skb))
3412 return;
3413
3414 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3415 skb_reserve(skb, MAX_TCP_HEADER);
3416 sk_forced_mem_schedule(sk, skb->truesize);
3417 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3418 tcp_init_nondata_skb(skb, tp->write_seq,
3419 TCPHDR_ACK | TCPHDR_FIN);
3420 tcp_queue_skb(sk, skb);
3421 }
3422 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3423 }
3424
3425 /* We get here when a process closes a file descriptor (either due to
3426 * an explicit close() or as a byproduct of exit()'ing) and there
3427 * was unread data in the receive queue. This behavior is recommended
3428 * by RFC 2525, section 2.17. -DaveM
3429 */
3430 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3431 {
3432 struct sk_buff *skb;
3433
3434 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3435
3436 /* NOTE: No TCP options attached and we never retransmit this. */
3437 skb = alloc_skb(MAX_TCP_HEADER, priority);
3438 if (!skb) {
3439 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3440 return;
3441 }
3442
3443 /* Reserve space for headers and prepare control bits. */
3444 skb_reserve(skb, MAX_TCP_HEADER);
3445 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3446 TCPHDR_ACK | TCPHDR_RST);
3447 tcp_mstamp_refresh(tcp_sk(sk));
3448 /* Send it off. */
3449 if (tcp_transmit_skb(sk, skb, 0, priority))
3450 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3451
3452 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3453 * skb here is different to the troublesome skb, so use NULL
3454 */
3455 trace_tcp_send_reset(sk, NULL);
3456 }
3457
3458 /* Send a crossed SYN-ACK during socket establishment.
3459 * WARNING: This routine must only be called when we have already sent
3460 * a SYN packet that crossed the incoming SYN that caused this routine
3461 * to get called. If this assumption fails then the initial rcv_wnd
3462 * and rcv_wscale values will not be correct.
3463 */
3464 int tcp_send_synack(struct sock *sk)
3465 {
3466 struct sk_buff *skb;
3467
3468 skb = tcp_rtx_queue_head(sk);
3469 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3470 pr_err("%s: wrong queue state\n", __func__);
3471 return -EFAULT;
3472 }
3473 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3474 if (skb_cloned(skb)) {
3475 struct sk_buff *nskb;
3476
3477 tcp_skb_tsorted_save(skb) {
3478 nskb = skb_copy(skb, GFP_ATOMIC);
3479 } tcp_skb_tsorted_restore(skb);
3480 if (!nskb)
3481 return -ENOMEM;
3482 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3483 tcp_highest_sack_replace(sk, skb, nskb);
3484 tcp_rtx_queue_unlink_and_free(skb, sk);
3485 __skb_header_release(nskb);
3486 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3487 sk_wmem_queued_add(sk, nskb->truesize);
3488 sk_mem_charge(sk, nskb->truesize);
3489 skb = nskb;
3490 }
3491
3492 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3493 tcp_ecn_send_synack(sk, skb);
3494 }
3495 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3496 }
3497
3498 /**
3499 * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3500 * @sk: listener socket
3501 * @dst: dst entry attached to the SYNACK. It is consumed and caller
3502 * should not use it again.
3503 * @req: request_sock pointer
3504 * @foc: cookie for tcp fast open
3505 * @synack_type: Type of synack to prepare
3506 * @syn_skb: SYN packet just received. It could be NULL for rtx case.
3507 */
3508 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3509 struct request_sock *req,
3510 struct tcp_fastopen_cookie *foc,
3511 enum tcp_synack_type synack_type,
3512 struct sk_buff *syn_skb)
3513 {
3514 struct inet_request_sock *ireq = inet_rsk(req);
3515 const struct tcp_sock *tp = tcp_sk(sk);
3516 struct tcp_md5sig_key *md5 = NULL;
3517 struct tcp_out_options opts;
3518 struct sk_buff *skb;
3519 int tcp_header_size;
3520 struct tcphdr *th;
3521 int mss;
3522 u64 now;
3523
3524 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3525 if (unlikely(!skb)) {
3526 dst_release(dst);
3527 return NULL;
3528 }
3529 /* Reserve space for headers. */
3530 skb_reserve(skb, MAX_TCP_HEADER);
3531
3532 switch (synack_type) {
3533 case TCP_SYNACK_NORMAL:
3534 skb_set_owner_w(skb, req_to_sk(req));
3535 break;
3536 case TCP_SYNACK_COOKIE:
3537 /* Under synflood, we do not attach skb to a socket,
3538 * to avoid false sharing.
3539 */
3540 break;
3541 case TCP_SYNACK_FASTOPEN:
3542 /* sk is a const pointer, because we want to express multiple
3543 * cpu might call us concurrently.
3544 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3545 */
3546 skb_set_owner_w(skb, (struct sock *)sk);
3547 break;
3548 }
3549 skb_dst_set(skb, dst);
3550
3551 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3552
3553 memset(&opts, 0, sizeof(opts));
3554 now = tcp_clock_ns();
3555 #ifdef CONFIG_SYN_COOKIES
3556 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3557 skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3558 true);
3559 else
3560 #endif
3561 {
3562 skb_set_delivery_time(skb, now, true);
3563 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3564 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3565 }
3566
3567 #ifdef CONFIG_TCP_MD5SIG
3568 rcu_read_lock();
3569 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3570 #endif
3571 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3572 /* bpf program will be interested in the tcp_flags */
3573 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3574 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3575 foc, synack_type,
3576 syn_skb) + sizeof(*th);
3577
3578 skb_push(skb, tcp_header_size);
3579 skb_reset_transport_header(skb);
3580
3581 th = (struct tcphdr *)skb->data;
3582 memset(th, 0, sizeof(struct tcphdr));
3583 th->syn = 1;
3584 th->ack = 1;
3585 tcp_ecn_make_synack(req, th);
3586 th->source = htons(ireq->ir_num);
3587 th->dest = ireq->ir_rmt_port;
3588 skb->mark = ireq->ir_mark;
3589 skb->ip_summed = CHECKSUM_PARTIAL;
3590 th->seq = htonl(tcp_rsk(req)->snt_isn);
3591 /* XXX data is queued and acked as is. No buffer/window check */
3592 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3593
3594 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3595 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3596 tcp_options_write(th, NULL, &opts);
3597 th->doff = (tcp_header_size >> 2);
3598 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3599
3600 #ifdef CONFIG_TCP_MD5SIG
3601 /* Okay, we have all we need - do the md5 hash if needed */
3602 if (md5)
3603 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3604 md5, req_to_sk(req), skb);
3605 rcu_read_unlock();
3606 #endif
3607
3608 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3609 synack_type, &opts);
3610
3611 skb_set_delivery_time(skb, now, true);
3612 tcp_add_tx_delay(skb, tp);
3613
3614 return skb;
3615 }
3616 EXPORT_SYMBOL(tcp_make_synack);
3617
3618 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3619 {
3620 struct inet_connection_sock *icsk = inet_csk(sk);
3621 const struct tcp_congestion_ops *ca;
3622 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3623
3624 if (ca_key == TCP_CA_UNSPEC)
3625 return;
3626
3627 rcu_read_lock();
3628 ca = tcp_ca_find_key(ca_key);
3629 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3630 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3631 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3632 icsk->icsk_ca_ops = ca;
3633 }
3634 rcu_read_unlock();
3635 }
3636
3637 /* Do all connect socket setups that can be done AF independent. */
3638 static void tcp_connect_init(struct sock *sk)
3639 {
3640 const struct dst_entry *dst = __sk_dst_get(sk);
3641 struct tcp_sock *tp = tcp_sk(sk);
3642 __u8 rcv_wscale;
3643 u32 rcv_wnd;
3644
3645 /* We'll fix this up when we get a response from the other end.
3646 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3647 */
3648 tp->tcp_header_len = sizeof(struct tcphdr);
3649 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3650 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3651
3652 #ifdef CONFIG_TCP_MD5SIG
3653 if (tp->af_specific->md5_lookup(sk, sk))
3654 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3655 #endif
3656
3657 /* If user gave his TCP_MAXSEG, record it to clamp */
3658 if (tp->rx_opt.user_mss)
3659 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3660 tp->max_window = 0;
3661 tcp_mtup_init(sk);
3662 tcp_sync_mss(sk, dst_mtu(dst));
3663
3664 tcp_ca_dst_init(sk, dst);
3665
3666 if (!tp->window_clamp)
3667 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3668 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3669
3670 tcp_initialize_rcv_mss(sk);
3671
3672 /* limit the window selection if the user enforce a smaller rx buffer */
3673 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3674 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3675 tp->window_clamp = tcp_full_space(sk);
3676
3677 rcv_wnd = tcp_rwnd_init_bpf(sk);
3678 if (rcv_wnd == 0)
3679 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3680
3681 tcp_select_initial_window(sk, tcp_full_space(sk),
3682 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3683 &tp->rcv_wnd,
3684 &tp->window_clamp,
3685 sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3686 &rcv_wscale,
3687 rcv_wnd);
3688
3689 tp->rx_opt.rcv_wscale = rcv_wscale;
3690 tp->rcv_ssthresh = tp->rcv_wnd;
3691
3692 sk->sk_err = 0;
3693 sock_reset_flag(sk, SOCK_DONE);
3694 tp->snd_wnd = 0;
3695 tcp_init_wl(tp, 0);
3696 tcp_write_queue_purge(sk);
3697 tp->snd_una = tp->write_seq;
3698 tp->snd_sml = tp->write_seq;
3699 tp->snd_up = tp->write_seq;
3700 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3701
3702 if (likely(!tp->repair))
3703 tp->rcv_nxt = 0;
3704 else
3705 tp->rcv_tstamp = tcp_jiffies32;
3706 tp->rcv_wup = tp->rcv_nxt;
3707 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3708
3709 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3710 inet_csk(sk)->icsk_retransmits = 0;
3711 tcp_clear_retrans(tp);
3712 }
3713
3714 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3715 {
3716 struct tcp_sock *tp = tcp_sk(sk);
3717 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3718
3719 tcb->end_seq += skb->len;
3720 __skb_header_release(skb);
3721 sk_wmem_queued_add(sk, skb->truesize);
3722 sk_mem_charge(sk, skb->truesize);
3723 WRITE_ONCE(tp->write_seq, tcb->end_seq);
3724 tp->packets_out += tcp_skb_pcount(skb);
3725 }
3726
3727 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3728 * queue a data-only packet after the regular SYN, such that regular SYNs
3729 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3730 * only the SYN sequence, the data are retransmitted in the first ACK.
3731 * If cookie is not cached or other error occurs, falls back to send a
3732 * regular SYN with Fast Open cookie request option.
3733 */
3734 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3735 {
3736 struct inet_connection_sock *icsk = inet_csk(sk);
3737 struct tcp_sock *tp = tcp_sk(sk);
3738 struct tcp_fastopen_request *fo = tp->fastopen_req;
3739 int space, err = 0;
3740 struct sk_buff *syn_data;
3741
3742 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3743 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3744 goto fallback;
3745
3746 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3747 * user-MSS. Reserve maximum option space for middleboxes that add
3748 * private TCP options. The cost is reduced data space in SYN :(
3749 */
3750 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3751 /* Sync mss_cache after updating the mss_clamp */
3752 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3753
3754 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3755 MAX_TCP_OPTION_SPACE;
3756
3757 space = min_t(size_t, space, fo->size);
3758
3759 /* limit to order-0 allocations */
3760 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3761
3762 syn_data = tcp_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3763 if (!syn_data)
3764 goto fallback;
3765 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3766 if (space) {
3767 int copied = copy_from_iter(skb_put(syn_data, space), space,
3768 &fo->data->msg_iter);
3769 if (unlikely(!copied)) {
3770 tcp_skb_tsorted_anchor_cleanup(syn_data);
3771 kfree_skb(syn_data);
3772 goto fallback;
3773 }
3774 if (copied != space) {
3775 skb_trim(syn_data, copied);
3776 space = copied;
3777 }
3778 skb_zcopy_set(syn_data, fo->uarg, NULL);
3779 }
3780 /* No more data pending in inet_wait_for_connect() */
3781 if (space == fo->size)
3782 fo->data = NULL;
3783 fo->copied = space;
3784
3785 tcp_connect_queue_skb(sk, syn_data);
3786 if (syn_data->len)
3787 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3788
3789 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3790
3791 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3792
3793 /* Now full SYN+DATA was cloned and sent (or not),
3794 * remove the SYN from the original skb (syn_data)
3795 * we keep in write queue in case of a retransmit, as we
3796 * also have the SYN packet (with no data) in the same queue.
3797 */
3798 TCP_SKB_CB(syn_data)->seq++;
3799 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3800 if (!err) {
3801 tp->syn_data = (fo->copied > 0);
3802 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3803 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3804 goto done;
3805 }
3806
3807 /* data was not sent, put it in write_queue */
3808 __skb_queue_tail(&sk->sk_write_queue, syn_data);
3809 tp->packets_out -= tcp_skb_pcount(syn_data);
3810
3811 fallback:
3812 /* Send a regular SYN with Fast Open cookie request option */
3813 if (fo->cookie.len > 0)
3814 fo->cookie.len = 0;
3815 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3816 if (err)
3817 tp->syn_fastopen = 0;
3818 done:
3819 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3820 return err;
3821 }
3822
3823 /* Build a SYN and send it off. */
3824 int tcp_connect(struct sock *sk)
3825 {
3826 struct tcp_sock *tp = tcp_sk(sk);
3827 struct sk_buff *buff;
3828 int err;
3829
3830 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3831
3832 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3833 return -EHOSTUNREACH; /* Routing failure or similar. */
3834
3835 tcp_connect_init(sk);
3836
3837 if (unlikely(tp->repair)) {
3838 tcp_finish_connect(sk, NULL);
3839 return 0;
3840 }
3841
3842 buff = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3843 if (unlikely(!buff))
3844 return -ENOBUFS;
3845
3846 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3847 tcp_mstamp_refresh(tp);
3848 tp->retrans_stamp = tcp_time_stamp(tp);
3849 tcp_connect_queue_skb(sk, buff);
3850 tcp_ecn_send_syn(sk, buff);
3851 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3852
3853 /* Send off SYN; include data in Fast Open. */
3854 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3855 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3856 if (err == -ECONNREFUSED)
3857 return err;
3858
3859 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3860 * in order to make this packet get counted in tcpOutSegs.
3861 */
3862 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3863 tp->pushed_seq = tp->write_seq;
3864 buff = tcp_send_head(sk);
3865 if (unlikely(buff)) {
3866 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3867 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3868 }
3869 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3870
3871 /* Timer for repeating the SYN until an answer. */
3872 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3873 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3874 return 0;
3875 }
3876 EXPORT_SYMBOL(tcp_connect);
3877
3878 /* Send out a delayed ack, the caller does the policy checking
3879 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3880 * for details.
3881 */
3882 void tcp_send_delayed_ack(struct sock *sk)
3883 {
3884 struct inet_connection_sock *icsk = inet_csk(sk);
3885 int ato = icsk->icsk_ack.ato;
3886 unsigned long timeout;
3887
3888 if (ato > TCP_DELACK_MIN) {
3889 const struct tcp_sock *tp = tcp_sk(sk);
3890 int max_ato = HZ / 2;
3891
3892 if (inet_csk_in_pingpong_mode(sk) ||
3893 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3894 max_ato = TCP_DELACK_MAX;
3895
3896 /* Slow path, intersegment interval is "high". */
3897
3898 /* If some rtt estimate is known, use it to bound delayed ack.
3899 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3900 * directly.
3901 */
3902 if (tp->srtt_us) {
3903 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3904 TCP_DELACK_MIN);
3905
3906 if (rtt < max_ato)
3907 max_ato = rtt;
3908 }
3909
3910 ato = min(ato, max_ato);
3911 }
3912
3913 ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
3914
3915 /* Stay within the limit we were given */
3916 timeout = jiffies + ato;
3917
3918 /* Use new timeout only if there wasn't a older one earlier. */
3919 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3920 /* If delack timer is about to expire, send ACK now. */
3921 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3922 tcp_send_ack(sk);
3923 return;
3924 }
3925
3926 if (!time_before(timeout, icsk->icsk_ack.timeout))
3927 timeout = icsk->icsk_ack.timeout;
3928 }
3929 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3930 icsk->icsk_ack.timeout = timeout;
3931 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3932 }
3933
3934 /* This routine sends an ack and also updates the window. */
3935 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3936 {
3937 struct sk_buff *buff;
3938
3939 /* If we have been reset, we may not send again. */
3940 if (sk->sk_state == TCP_CLOSE)
3941 return;
3942
3943 /* We are not putting this on the write queue, so
3944 * tcp_transmit_skb() will set the ownership to this
3945 * sock.
3946 */
3947 buff = alloc_skb(MAX_TCP_HEADER,
3948 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3949 if (unlikely(!buff)) {
3950 struct inet_connection_sock *icsk = inet_csk(sk);
3951 unsigned long delay;
3952
3953 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
3954 if (delay < TCP_RTO_MAX)
3955 icsk->icsk_ack.retry++;
3956 inet_csk_schedule_ack(sk);
3957 icsk->icsk_ack.ato = TCP_ATO_MIN;
3958 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
3959 return;
3960 }
3961
3962 /* Reserve space for headers and prepare control bits. */
3963 skb_reserve(buff, MAX_TCP_HEADER);
3964 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3965
3966 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3967 * too much.
3968 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3969 */
3970 skb_set_tcp_pure_ack(buff);
3971
3972 /* Send it off, this clears delayed acks for us. */
3973 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3974 }
3975 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3976
3977 void tcp_send_ack(struct sock *sk)
3978 {
3979 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3980 }
3981
3982 /* This routine sends a packet with an out of date sequence
3983 * number. It assumes the other end will try to ack it.
3984 *
3985 * Question: what should we make while urgent mode?
3986 * 4.4BSD forces sending single byte of data. We cannot send
3987 * out of window data, because we have SND.NXT==SND.MAX...
3988 *
3989 * Current solution: to send TWO zero-length segments in urgent mode:
3990 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3991 * out-of-date with SND.UNA-1 to probe window.
3992 */
3993 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3994 {
3995 struct tcp_sock *tp = tcp_sk(sk);
3996 struct sk_buff *skb;
3997
3998 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3999 skb = alloc_skb(MAX_TCP_HEADER,
4000 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4001 if (!skb)
4002 return -1;
4003
4004 /* Reserve space for headers and set control bits. */
4005 skb_reserve(skb, MAX_TCP_HEADER);
4006 /* Use a previous sequence. This should cause the other
4007 * end to send an ack. Don't queue or clone SKB, just
4008 * send it.
4009 */
4010 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4011 NET_INC_STATS(sock_net(sk), mib);
4012 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4013 }
4014
4015 /* Called from setsockopt( ... TCP_REPAIR ) */
4016 void tcp_send_window_probe(struct sock *sk)
4017 {
4018 if (sk->sk_state == TCP_ESTABLISHED) {
4019 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4020 tcp_mstamp_refresh(tcp_sk(sk));
4021 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4022 }
4023 }
4024
4025 /* Initiate keepalive or window probe from timer. */
4026 int tcp_write_wakeup(struct sock *sk, int mib)
4027 {
4028 struct tcp_sock *tp = tcp_sk(sk);
4029 struct sk_buff *skb;
4030
4031 if (sk->sk_state == TCP_CLOSE)
4032 return -1;
4033
4034 skb = tcp_send_head(sk);
4035 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4036 int err;
4037 unsigned int mss = tcp_current_mss(sk);
4038 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4039
4040 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4041 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4042
4043 /* We are probing the opening of a window
4044 * but the window size is != 0
4045 * must have been a result SWS avoidance ( sender )
4046 */
4047 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4048 skb->len > mss) {
4049 seg_size = min(seg_size, mss);
4050 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4051 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4052 skb, seg_size, mss, GFP_ATOMIC))
4053 return -1;
4054 } else if (!tcp_skb_pcount(skb))
4055 tcp_set_skb_tso_segs(skb, mss);
4056
4057 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4058 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4059 if (!err)
4060 tcp_event_new_data_sent(sk, skb);
4061 return err;
4062 } else {
4063 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4064 tcp_xmit_probe_skb(sk, 1, mib);
4065 return tcp_xmit_probe_skb(sk, 0, mib);
4066 }
4067 }
4068
4069 /* A window probe timeout has occurred. If window is not closed send
4070 * a partial packet else a zero probe.
4071 */
4072 void tcp_send_probe0(struct sock *sk)
4073 {
4074 struct inet_connection_sock *icsk = inet_csk(sk);
4075 struct tcp_sock *tp = tcp_sk(sk);
4076 struct net *net = sock_net(sk);
4077 unsigned long timeout;
4078 int err;
4079
4080 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4081
4082 if (tp->packets_out || tcp_write_queue_empty(sk)) {
4083 /* Cancel probe timer, if it is not required. */
4084 icsk->icsk_probes_out = 0;
4085 icsk->icsk_backoff = 0;
4086 icsk->icsk_probes_tstamp = 0;
4087 return;
4088 }
4089
4090 icsk->icsk_probes_out++;
4091 if (err <= 0) {
4092 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
4093 icsk->icsk_backoff++;
4094 timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4095 } else {
4096 /* If packet was not sent due to local congestion,
4097 * Let senders fight for local resources conservatively.
4098 */
4099 timeout = TCP_RESOURCE_PROBE_INTERVAL;
4100 }
4101
4102 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4103 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4104 }
4105
4106 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4107 {
4108 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4109 struct flowi fl;
4110 int res;
4111
4112 /* Paired with WRITE_ONCE() in sock_setsockopt() */
4113 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4114 tcp_rsk(req)->txhash = net_tx_rndhash();
4115 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4116 NULL);
4117 if (!res) {
4118 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4119 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4120 if (unlikely(tcp_passive_fastopen(sk)))
4121 tcp_sk(sk)->total_retrans++;
4122 trace_tcp_retransmit_synack(sk, req);
4123 }
4124 return res;
4125 }
4126 EXPORT_SYMBOL(tcp_rtx_synack);