]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - net/ipv4/tcp_output.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[thirdparty/kernel/stable.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 int push_one, gfp_t gfp);
67
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 struct inet_connection_sock *icsk = inet_csk(sk);
72 struct tcp_sock *tp = tcp_sk(sk);
73 unsigned int prior_packets = tp->packets_out;
74
75 tcp_advance_send_head(sk, skb);
76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77
78 tp->packets_out += tcp_skb_pcount(skb);
79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 tcp_rearm_rto(sk);
81
82 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 tcp_skb_pcount(skb));
84 }
85
86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87 * window scaling factor due to loss of precision.
88 * If window has been shrunk, what should we make? It is not clear at all.
89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91 * invalid. OK, let's make this for now:
92 */
93 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
94 {
95 const struct tcp_sock *tp = tcp_sk(sk);
96
97 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
98 (tp->rx_opt.wscale_ok &&
99 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
100 return tp->snd_nxt;
101 else
102 return tcp_wnd_end(tp);
103 }
104
105 /* Calculate mss to advertise in SYN segment.
106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
107 *
108 * 1. It is independent of path mtu.
109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111 * attached devices, because some buggy hosts are confused by
112 * large MSS.
113 * 4. We do not make 3, we advertise MSS, calculated from first
114 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
115 * This may be overridden via information stored in routing table.
116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117 * probably even Jumbo".
118 */
119 static __u16 tcp_advertise_mss(struct sock *sk)
120 {
121 struct tcp_sock *tp = tcp_sk(sk);
122 const struct dst_entry *dst = __sk_dst_get(sk);
123 int mss = tp->advmss;
124
125 if (dst) {
126 unsigned int metric = dst_metric_advmss(dst);
127
128 if (metric < mss) {
129 mss = metric;
130 tp->advmss = mss;
131 }
132 }
133
134 return (__u16)mss;
135 }
136
137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138 * This is the first part of cwnd validation mechanism.
139 */
140 void tcp_cwnd_restart(struct sock *sk, s32 delta)
141 {
142 struct tcp_sock *tp = tcp_sk(sk);
143 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
144 u32 cwnd = tp->snd_cwnd;
145
146 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
147
148 tp->snd_ssthresh = tcp_current_ssthresh(sk);
149 restart_cwnd = min(restart_cwnd, cwnd);
150
151 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
152 cwnd >>= 1;
153 tp->snd_cwnd = max(cwnd, restart_cwnd);
154 tp->snd_cwnd_stamp = tcp_time_stamp;
155 tp->snd_cwnd_used = 0;
156 }
157
158 /* Congestion state accounting after a packet has been sent. */
159 static void tcp_event_data_sent(struct tcp_sock *tp,
160 struct sock *sk)
161 {
162 struct inet_connection_sock *icsk = inet_csk(sk);
163 const u32 now = tcp_time_stamp;
164
165 if (tcp_packets_in_flight(tp) == 0)
166 tcp_ca_event(sk, CA_EVENT_TX_START);
167
168 tp->lsndtime = now;
169
170 /* If it is a reply for ato after last received
171 * packet, enter pingpong mode.
172 */
173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 icsk->icsk_ack.pingpong = 1;
175 }
176
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
179 {
180 tcp_dec_quickack_mode(sk, pkts);
181 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
182 }
183
184
185 u32 tcp_default_init_rwnd(u32 mss)
186 {
187 /* Initial receive window should be twice of TCP_INIT_CWND to
188 * enable proper sending of new unsent data during fast recovery
189 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
190 * limit when mss is larger than 1460.
191 */
192 u32 init_rwnd = TCP_INIT_CWND * 2;
193
194 if (mss > 1460)
195 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
196 return init_rwnd;
197 }
198
199 /* Determine a window scaling and initial window to offer.
200 * Based on the assumption that the given amount of space
201 * will be offered. Store the results in the tp structure.
202 * NOTE: for smooth operation initial space offering should
203 * be a multiple of mss if possible. We assume here that mss >= 1.
204 * This MUST be enforced by all callers.
205 */
206 void tcp_select_initial_window(int __space, __u32 mss,
207 __u32 *rcv_wnd, __u32 *window_clamp,
208 int wscale_ok, __u8 *rcv_wscale,
209 __u32 init_rcv_wnd)
210 {
211 unsigned int space = (__space < 0 ? 0 : __space);
212
213 /* If no clamp set the clamp to the max possible scaled window */
214 if (*window_clamp == 0)
215 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
216 space = min(*window_clamp, space);
217
218 /* Quantize space offering to a multiple of mss if possible. */
219 if (space > mss)
220 space = rounddown(space, mss);
221
222 /* NOTE: offering an initial window larger than 32767
223 * will break some buggy TCP stacks. If the admin tells us
224 * it is likely we could be speaking with such a buggy stack
225 * we will truncate our initial window offering to 32K-1
226 * unless the remote has sent us a window scaling option,
227 * which we interpret as a sign the remote TCP is not
228 * misinterpreting the window field as a signed quantity.
229 */
230 if (sysctl_tcp_workaround_signed_windows)
231 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 else
233 (*rcv_wnd) = space;
234
235 (*rcv_wscale) = 0;
236 if (wscale_ok) {
237 /* Set window scaling on max possible window */
238 space = max_t(u32, space, sysctl_tcp_rmem[2]);
239 space = max_t(u32, space, sysctl_rmem_max);
240 space = min_t(u32, space, *window_clamp);
241 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
242 space >>= 1;
243 (*rcv_wscale)++;
244 }
245 }
246
247 if (mss > (1 << *rcv_wscale)) {
248 if (!init_rcv_wnd) /* Use default unless specified otherwise */
249 init_rcv_wnd = tcp_default_init_rwnd(mss);
250 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
251 }
252
253 /* Set the clamp no higher than max representable value */
254 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
255 }
256 EXPORT_SYMBOL(tcp_select_initial_window);
257
258 /* Chose a new window to advertise, update state in tcp_sock for the
259 * socket, and return result with RFC1323 scaling applied. The return
260 * value can be stuffed directly into th->window for an outgoing
261 * frame.
262 */
263 static u16 tcp_select_window(struct sock *sk)
264 {
265 struct tcp_sock *tp = tcp_sk(sk);
266 u32 old_win = tp->rcv_wnd;
267 u32 cur_win = tcp_receive_window(tp);
268 u32 new_win = __tcp_select_window(sk);
269
270 /* Never shrink the offered window */
271 if (new_win < cur_win) {
272 /* Danger Will Robinson!
273 * Don't update rcv_wup/rcv_wnd here or else
274 * we will not be able to advertise a zero
275 * window in time. --DaveM
276 *
277 * Relax Will Robinson.
278 */
279 if (new_win == 0)
280 NET_INC_STATS(sock_net(sk),
281 LINUX_MIB_TCPWANTZEROWINDOWADV);
282 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
283 }
284 tp->rcv_wnd = new_win;
285 tp->rcv_wup = tp->rcv_nxt;
286
287 /* Make sure we do not exceed the maximum possible
288 * scaled window.
289 */
290 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
291 new_win = min(new_win, MAX_TCP_WINDOW);
292 else
293 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
294
295 /* RFC1323 scaling applied */
296 new_win >>= tp->rx_opt.rcv_wscale;
297
298 /* If we advertise zero window, disable fast path. */
299 if (new_win == 0) {
300 tp->pred_flags = 0;
301 if (old_win)
302 NET_INC_STATS(sock_net(sk),
303 LINUX_MIB_TCPTOZEROWINDOWADV);
304 } else if (old_win == 0) {
305 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
306 }
307
308 return new_win;
309 }
310
311 /* Packet ECN state for a SYN-ACK */
312 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
313 {
314 const struct tcp_sock *tp = tcp_sk(sk);
315
316 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
317 if (!(tp->ecn_flags & TCP_ECN_OK))
318 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
319 else if (tcp_ca_needs_ecn(sk))
320 INET_ECN_xmit(sk);
321 }
322
323 /* Packet ECN state for a SYN. */
324 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
325 {
326 struct tcp_sock *tp = tcp_sk(sk);
327 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
328 tcp_ca_needs_ecn(sk);
329
330 if (!use_ecn) {
331 const struct dst_entry *dst = __sk_dst_get(sk);
332
333 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
334 use_ecn = true;
335 }
336
337 tp->ecn_flags = 0;
338
339 if (use_ecn) {
340 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
341 tp->ecn_flags = TCP_ECN_OK;
342 if (tcp_ca_needs_ecn(sk))
343 INET_ECN_xmit(sk);
344 }
345 }
346
347 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
348 {
349 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
350 /* tp->ecn_flags are cleared at a later point in time when
351 * SYN ACK is ultimatively being received.
352 */
353 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
354 }
355
356 static void
357 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
358 {
359 if (inet_rsk(req)->ecn_ok)
360 th->ece = 1;
361 }
362
363 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
364 * be sent.
365 */
366 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
367 struct tcphdr *th, int tcp_header_len)
368 {
369 struct tcp_sock *tp = tcp_sk(sk);
370
371 if (tp->ecn_flags & TCP_ECN_OK) {
372 /* Not-retransmitted data segment: set ECT and inject CWR. */
373 if (skb->len != tcp_header_len &&
374 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
375 INET_ECN_xmit(sk);
376 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
377 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
378 th->cwr = 1;
379 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
380 }
381 } else if (!tcp_ca_needs_ecn(sk)) {
382 /* ACK or retransmitted segment: clear ECT|CE */
383 INET_ECN_dontxmit(sk);
384 }
385 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
386 th->ece = 1;
387 }
388 }
389
390 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
391 * auto increment end seqno.
392 */
393 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
394 {
395 skb->ip_summed = CHECKSUM_PARTIAL;
396 skb->csum = 0;
397
398 TCP_SKB_CB(skb)->tcp_flags = flags;
399 TCP_SKB_CB(skb)->sacked = 0;
400
401 tcp_skb_pcount_set(skb, 1);
402
403 TCP_SKB_CB(skb)->seq = seq;
404 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
405 seq++;
406 TCP_SKB_CB(skb)->end_seq = seq;
407 }
408
409 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
410 {
411 return tp->snd_una != tp->snd_up;
412 }
413
414 #define OPTION_SACK_ADVERTISE (1 << 0)
415 #define OPTION_TS (1 << 1)
416 #define OPTION_MD5 (1 << 2)
417 #define OPTION_WSCALE (1 << 3)
418 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
419
420 struct tcp_out_options {
421 u16 options; /* bit field of OPTION_* */
422 u16 mss; /* 0 to disable */
423 u8 ws; /* window scale, 0 to disable */
424 u8 num_sack_blocks; /* number of SACK blocks to include */
425 u8 hash_size; /* bytes in hash_location */
426 __u8 *hash_location; /* temporary pointer, overloaded */
427 __u32 tsval, tsecr; /* need to include OPTION_TS */
428 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
429 };
430
431 /* Write previously computed TCP options to the packet.
432 *
433 * Beware: Something in the Internet is very sensitive to the ordering of
434 * TCP options, we learned this through the hard way, so be careful here.
435 * Luckily we can at least blame others for their non-compliance but from
436 * inter-operability perspective it seems that we're somewhat stuck with
437 * the ordering which we have been using if we want to keep working with
438 * those broken things (not that it currently hurts anybody as there isn't
439 * particular reason why the ordering would need to be changed).
440 *
441 * At least SACK_PERM as the first option is known to lead to a disaster
442 * (but it may well be that other scenarios fail similarly).
443 */
444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
445 struct tcp_out_options *opts)
446 {
447 u16 options = opts->options; /* mungable copy */
448
449 if (unlikely(OPTION_MD5 & options)) {
450 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
451 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
452 /* overload cookie hash location */
453 opts->hash_location = (__u8 *)ptr;
454 ptr += 4;
455 }
456
457 if (unlikely(opts->mss)) {
458 *ptr++ = htonl((TCPOPT_MSS << 24) |
459 (TCPOLEN_MSS << 16) |
460 opts->mss);
461 }
462
463 if (likely(OPTION_TS & options)) {
464 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
465 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
466 (TCPOLEN_SACK_PERM << 16) |
467 (TCPOPT_TIMESTAMP << 8) |
468 TCPOLEN_TIMESTAMP);
469 options &= ~OPTION_SACK_ADVERTISE;
470 } else {
471 *ptr++ = htonl((TCPOPT_NOP << 24) |
472 (TCPOPT_NOP << 16) |
473 (TCPOPT_TIMESTAMP << 8) |
474 TCPOLEN_TIMESTAMP);
475 }
476 *ptr++ = htonl(opts->tsval);
477 *ptr++ = htonl(opts->tsecr);
478 }
479
480 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
481 *ptr++ = htonl((TCPOPT_NOP << 24) |
482 (TCPOPT_NOP << 16) |
483 (TCPOPT_SACK_PERM << 8) |
484 TCPOLEN_SACK_PERM);
485 }
486
487 if (unlikely(OPTION_WSCALE & options)) {
488 *ptr++ = htonl((TCPOPT_NOP << 24) |
489 (TCPOPT_WINDOW << 16) |
490 (TCPOLEN_WINDOW << 8) |
491 opts->ws);
492 }
493
494 if (unlikely(opts->num_sack_blocks)) {
495 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
496 tp->duplicate_sack : tp->selective_acks;
497 int this_sack;
498
499 *ptr++ = htonl((TCPOPT_NOP << 24) |
500 (TCPOPT_NOP << 16) |
501 (TCPOPT_SACK << 8) |
502 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
503 TCPOLEN_SACK_PERBLOCK)));
504
505 for (this_sack = 0; this_sack < opts->num_sack_blocks;
506 ++this_sack) {
507 *ptr++ = htonl(sp[this_sack].start_seq);
508 *ptr++ = htonl(sp[this_sack].end_seq);
509 }
510
511 tp->rx_opt.dsack = 0;
512 }
513
514 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
515 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
516 u8 *p = (u8 *)ptr;
517 u32 len; /* Fast Open option length */
518
519 if (foc->exp) {
520 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
521 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
522 TCPOPT_FASTOPEN_MAGIC);
523 p += TCPOLEN_EXP_FASTOPEN_BASE;
524 } else {
525 len = TCPOLEN_FASTOPEN_BASE + foc->len;
526 *p++ = TCPOPT_FASTOPEN;
527 *p++ = len;
528 }
529
530 memcpy(p, foc->val, foc->len);
531 if ((len & 3) == 2) {
532 p[foc->len] = TCPOPT_NOP;
533 p[foc->len + 1] = TCPOPT_NOP;
534 }
535 ptr += (len + 3) >> 2;
536 }
537 }
538
539 /* Compute TCP options for SYN packets. This is not the final
540 * network wire format yet.
541 */
542 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
543 struct tcp_out_options *opts,
544 struct tcp_md5sig_key **md5)
545 {
546 struct tcp_sock *tp = tcp_sk(sk);
547 unsigned int remaining = MAX_TCP_OPTION_SPACE;
548 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
549
550 #ifdef CONFIG_TCP_MD5SIG
551 *md5 = tp->af_specific->md5_lookup(sk, sk);
552 if (*md5) {
553 opts->options |= OPTION_MD5;
554 remaining -= TCPOLEN_MD5SIG_ALIGNED;
555 }
556 #else
557 *md5 = NULL;
558 #endif
559
560 /* We always get an MSS option. The option bytes which will be seen in
561 * normal data packets should timestamps be used, must be in the MSS
562 * advertised. But we subtract them from tp->mss_cache so that
563 * calculations in tcp_sendmsg are simpler etc. So account for this
564 * fact here if necessary. If we don't do this correctly, as a
565 * receiver we won't recognize data packets as being full sized when we
566 * should, and thus we won't abide by the delayed ACK rules correctly.
567 * SACKs don't matter, we never delay an ACK when we have any of those
568 * going out. */
569 opts->mss = tcp_advertise_mss(sk);
570 remaining -= TCPOLEN_MSS_ALIGNED;
571
572 if (likely(sysctl_tcp_timestamps && !*md5)) {
573 opts->options |= OPTION_TS;
574 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
575 opts->tsecr = tp->rx_opt.ts_recent;
576 remaining -= TCPOLEN_TSTAMP_ALIGNED;
577 }
578 if (likely(sysctl_tcp_window_scaling)) {
579 opts->ws = tp->rx_opt.rcv_wscale;
580 opts->options |= OPTION_WSCALE;
581 remaining -= TCPOLEN_WSCALE_ALIGNED;
582 }
583 if (likely(sysctl_tcp_sack)) {
584 opts->options |= OPTION_SACK_ADVERTISE;
585 if (unlikely(!(OPTION_TS & opts->options)))
586 remaining -= TCPOLEN_SACKPERM_ALIGNED;
587 }
588
589 if (fastopen && fastopen->cookie.len >= 0) {
590 u32 need = fastopen->cookie.len;
591
592 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
593 TCPOLEN_FASTOPEN_BASE;
594 need = (need + 3) & ~3U; /* Align to 32 bits */
595 if (remaining >= need) {
596 opts->options |= OPTION_FAST_OPEN_COOKIE;
597 opts->fastopen_cookie = &fastopen->cookie;
598 remaining -= need;
599 tp->syn_fastopen = 1;
600 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
601 }
602 }
603
604 return MAX_TCP_OPTION_SPACE - remaining;
605 }
606
607 /* Set up TCP options for SYN-ACKs. */
608 static unsigned int tcp_synack_options(struct request_sock *req,
609 unsigned int mss, struct sk_buff *skb,
610 struct tcp_out_options *opts,
611 const struct tcp_md5sig_key *md5,
612 struct tcp_fastopen_cookie *foc)
613 {
614 struct inet_request_sock *ireq = inet_rsk(req);
615 unsigned int remaining = MAX_TCP_OPTION_SPACE;
616
617 #ifdef CONFIG_TCP_MD5SIG
618 if (md5) {
619 opts->options |= OPTION_MD5;
620 remaining -= TCPOLEN_MD5SIG_ALIGNED;
621
622 /* We can't fit any SACK blocks in a packet with MD5 + TS
623 * options. There was discussion about disabling SACK
624 * rather than TS in order to fit in better with old,
625 * buggy kernels, but that was deemed to be unnecessary.
626 */
627 ireq->tstamp_ok &= !ireq->sack_ok;
628 }
629 #endif
630
631 /* We always send an MSS option. */
632 opts->mss = mss;
633 remaining -= TCPOLEN_MSS_ALIGNED;
634
635 if (likely(ireq->wscale_ok)) {
636 opts->ws = ireq->rcv_wscale;
637 opts->options |= OPTION_WSCALE;
638 remaining -= TCPOLEN_WSCALE_ALIGNED;
639 }
640 if (likely(ireq->tstamp_ok)) {
641 opts->options |= OPTION_TS;
642 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
643 opts->tsecr = req->ts_recent;
644 remaining -= TCPOLEN_TSTAMP_ALIGNED;
645 }
646 if (likely(ireq->sack_ok)) {
647 opts->options |= OPTION_SACK_ADVERTISE;
648 if (unlikely(!ireq->tstamp_ok))
649 remaining -= TCPOLEN_SACKPERM_ALIGNED;
650 }
651 if (foc != NULL && foc->len >= 0) {
652 u32 need = foc->len;
653
654 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
655 TCPOLEN_FASTOPEN_BASE;
656 need = (need + 3) & ~3U; /* Align to 32 bits */
657 if (remaining >= need) {
658 opts->options |= OPTION_FAST_OPEN_COOKIE;
659 opts->fastopen_cookie = foc;
660 remaining -= need;
661 }
662 }
663
664 return MAX_TCP_OPTION_SPACE - remaining;
665 }
666
667 /* Compute TCP options for ESTABLISHED sockets. This is not the
668 * final wire format yet.
669 */
670 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
671 struct tcp_out_options *opts,
672 struct tcp_md5sig_key **md5)
673 {
674 struct tcp_sock *tp = tcp_sk(sk);
675 unsigned int size = 0;
676 unsigned int eff_sacks;
677
678 opts->options = 0;
679
680 #ifdef CONFIG_TCP_MD5SIG
681 *md5 = tp->af_specific->md5_lookup(sk, sk);
682 if (unlikely(*md5)) {
683 opts->options |= OPTION_MD5;
684 size += TCPOLEN_MD5SIG_ALIGNED;
685 }
686 #else
687 *md5 = NULL;
688 #endif
689
690 if (likely(tp->rx_opt.tstamp_ok)) {
691 opts->options |= OPTION_TS;
692 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
693 opts->tsecr = tp->rx_opt.ts_recent;
694 size += TCPOLEN_TSTAMP_ALIGNED;
695 }
696
697 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
698 if (unlikely(eff_sacks)) {
699 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
700 opts->num_sack_blocks =
701 min_t(unsigned int, eff_sacks,
702 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
703 TCPOLEN_SACK_PERBLOCK);
704 size += TCPOLEN_SACK_BASE_ALIGNED +
705 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
706 }
707
708 return size;
709 }
710
711
712 /* TCP SMALL QUEUES (TSQ)
713 *
714 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
715 * to reduce RTT and bufferbloat.
716 * We do this using a special skb destructor (tcp_wfree).
717 *
718 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
719 * needs to be reallocated in a driver.
720 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
721 *
722 * Since transmit from skb destructor is forbidden, we use a tasklet
723 * to process all sockets that eventually need to send more skbs.
724 * We use one tasklet per cpu, with its own queue of sockets.
725 */
726 struct tsq_tasklet {
727 struct tasklet_struct tasklet;
728 struct list_head head; /* queue of tcp sockets */
729 };
730 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
731
732 static void tcp_tsq_handler(struct sock *sk)
733 {
734 if ((1 << sk->sk_state) &
735 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
736 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
737 struct tcp_sock *tp = tcp_sk(sk);
738
739 if (tp->lost_out > tp->retrans_out &&
740 tp->snd_cwnd > tcp_packets_in_flight(tp))
741 tcp_xmit_retransmit_queue(sk);
742
743 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
744 0, GFP_ATOMIC);
745 }
746 }
747 /*
748 * One tasklet per cpu tries to send more skbs.
749 * We run in tasklet context but need to disable irqs when
750 * transferring tsq->head because tcp_wfree() might
751 * interrupt us (non NAPI drivers)
752 */
753 static void tcp_tasklet_func(unsigned long data)
754 {
755 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
756 LIST_HEAD(list);
757 unsigned long flags;
758 struct list_head *q, *n;
759 struct tcp_sock *tp;
760 struct sock *sk;
761
762 local_irq_save(flags);
763 list_splice_init(&tsq->head, &list);
764 local_irq_restore(flags);
765
766 list_for_each_safe(q, n, &list) {
767 tp = list_entry(q, struct tcp_sock, tsq_node);
768 list_del(&tp->tsq_node);
769
770 sk = (struct sock *)tp;
771 smp_mb__before_atomic();
772 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
773
774 if (!sk->sk_lock.owned &&
775 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
776 bh_lock_sock(sk);
777 if (!sock_owned_by_user(sk)) {
778 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
779 tcp_tsq_handler(sk);
780 }
781 bh_unlock_sock(sk);
782 }
783
784 sk_free(sk);
785 }
786 }
787
788 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
789 TCPF_WRITE_TIMER_DEFERRED | \
790 TCPF_DELACK_TIMER_DEFERRED | \
791 TCPF_MTU_REDUCED_DEFERRED)
792 /**
793 * tcp_release_cb - tcp release_sock() callback
794 * @sk: socket
795 *
796 * called from release_sock() to perform protocol dependent
797 * actions before socket release.
798 */
799 void tcp_release_cb(struct sock *sk)
800 {
801 unsigned long flags, nflags;
802
803 /* perform an atomic operation only if at least one flag is set */
804 do {
805 flags = sk->sk_tsq_flags;
806 if (!(flags & TCP_DEFERRED_ALL))
807 return;
808 nflags = flags & ~TCP_DEFERRED_ALL;
809 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
810
811 if (flags & TCPF_TSQ_DEFERRED)
812 tcp_tsq_handler(sk);
813
814 /* Here begins the tricky part :
815 * We are called from release_sock() with :
816 * 1) BH disabled
817 * 2) sk_lock.slock spinlock held
818 * 3) socket owned by us (sk->sk_lock.owned == 1)
819 *
820 * But following code is meant to be called from BH handlers,
821 * so we should keep BH disabled, but early release socket ownership
822 */
823 sock_release_ownership(sk);
824
825 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
826 tcp_write_timer_handler(sk);
827 __sock_put(sk);
828 }
829 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
830 tcp_delack_timer_handler(sk);
831 __sock_put(sk);
832 }
833 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
834 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
835 __sock_put(sk);
836 }
837 }
838 EXPORT_SYMBOL(tcp_release_cb);
839
840 void __init tcp_tasklet_init(void)
841 {
842 int i;
843
844 for_each_possible_cpu(i) {
845 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
846
847 INIT_LIST_HEAD(&tsq->head);
848 tasklet_init(&tsq->tasklet,
849 tcp_tasklet_func,
850 (unsigned long)tsq);
851 }
852 }
853
854 /*
855 * Write buffer destructor automatically called from kfree_skb.
856 * We can't xmit new skbs from this context, as we might already
857 * hold qdisc lock.
858 */
859 void tcp_wfree(struct sk_buff *skb)
860 {
861 struct sock *sk = skb->sk;
862 struct tcp_sock *tp = tcp_sk(sk);
863 unsigned long flags, nval, oval;
864 int wmem;
865
866 /* Keep one reference on sk_wmem_alloc.
867 * Will be released by sk_free() from here or tcp_tasklet_func()
868 */
869 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
870
871 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
872 * Wait until our queues (qdisc + devices) are drained.
873 * This gives :
874 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
875 * - chance for incoming ACK (processed by another cpu maybe)
876 * to migrate this flow (skb->ooo_okay will be eventually set)
877 */
878 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
879 goto out;
880
881 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
882 struct tsq_tasklet *tsq;
883 bool empty;
884
885 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
886 goto out;
887
888 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
889 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
890 if (nval != oval)
891 continue;
892
893 /* queue this socket to tasklet queue */
894 local_irq_save(flags);
895 tsq = this_cpu_ptr(&tsq_tasklet);
896 empty = list_empty(&tsq->head);
897 list_add(&tp->tsq_node, &tsq->head);
898 if (empty)
899 tasklet_schedule(&tsq->tasklet);
900 local_irq_restore(flags);
901 return;
902 }
903 out:
904 sk_free(sk);
905 }
906
907 /* This routine actually transmits TCP packets queued in by
908 * tcp_do_sendmsg(). This is used by both the initial
909 * transmission and possible later retransmissions.
910 * All SKB's seen here are completely headerless. It is our
911 * job to build the TCP header, and pass the packet down to
912 * IP so it can do the same plus pass the packet off to the
913 * device.
914 *
915 * We are working here with either a clone of the original
916 * SKB, or a fresh unique copy made by the retransmit engine.
917 */
918 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
919 gfp_t gfp_mask)
920 {
921 const struct inet_connection_sock *icsk = inet_csk(sk);
922 struct inet_sock *inet;
923 struct tcp_sock *tp;
924 struct tcp_skb_cb *tcb;
925 struct tcp_out_options opts;
926 unsigned int tcp_options_size, tcp_header_size;
927 struct tcp_md5sig_key *md5;
928 struct tcphdr *th;
929 int err;
930
931 BUG_ON(!skb || !tcp_skb_pcount(skb));
932 tp = tcp_sk(sk);
933
934 if (clone_it) {
935 skb_mstamp_get(&skb->skb_mstamp);
936 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
937 - tp->snd_una;
938 tcp_rate_skb_sent(sk, skb);
939
940 if (unlikely(skb_cloned(skb)))
941 skb = pskb_copy(skb, gfp_mask);
942 else
943 skb = skb_clone(skb, gfp_mask);
944 if (unlikely(!skb))
945 return -ENOBUFS;
946 }
947
948 inet = inet_sk(sk);
949 tcb = TCP_SKB_CB(skb);
950 memset(&opts, 0, sizeof(opts));
951
952 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
953 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
954 else
955 tcp_options_size = tcp_established_options(sk, skb, &opts,
956 &md5);
957 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
958
959 /* if no packet is in qdisc/device queue, then allow XPS to select
960 * another queue. We can be called from tcp_tsq_handler()
961 * which holds one reference to sk_wmem_alloc.
962 *
963 * TODO: Ideally, in-flight pure ACK packets should not matter here.
964 * One way to get this would be to set skb->truesize = 2 on them.
965 */
966 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
967
968 /* If we had to use memory reserve to allocate this skb,
969 * this might cause drops if packet is looped back :
970 * Other socket might not have SOCK_MEMALLOC.
971 * Packets not looped back do not care about pfmemalloc.
972 */
973 skb->pfmemalloc = 0;
974
975 skb_push(skb, tcp_header_size);
976 skb_reset_transport_header(skb);
977
978 skb_orphan(skb);
979 skb->sk = sk;
980 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
981 skb_set_hash_from_sk(skb, sk);
982 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
983
984 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
985
986 /* Build TCP header and checksum it. */
987 th = (struct tcphdr *)skb->data;
988 th->source = inet->inet_sport;
989 th->dest = inet->inet_dport;
990 th->seq = htonl(tcb->seq);
991 th->ack_seq = htonl(tp->rcv_nxt);
992 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
993 tcb->tcp_flags);
994
995 th->check = 0;
996 th->urg_ptr = 0;
997
998 /* The urg_mode check is necessary during a below snd_una win probe */
999 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1000 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1001 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1002 th->urg = 1;
1003 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1004 th->urg_ptr = htons(0xFFFF);
1005 th->urg = 1;
1006 }
1007 }
1008
1009 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1010 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1011 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1012 th->window = htons(tcp_select_window(sk));
1013 tcp_ecn_send(sk, skb, th, tcp_header_size);
1014 } else {
1015 /* RFC1323: The window in SYN & SYN/ACK segments
1016 * is never scaled.
1017 */
1018 th->window = htons(min(tp->rcv_wnd, 65535U));
1019 }
1020 #ifdef CONFIG_TCP_MD5SIG
1021 /* Calculate the MD5 hash, as we have all we need now */
1022 if (md5) {
1023 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1024 tp->af_specific->calc_md5_hash(opts.hash_location,
1025 md5, sk, skb);
1026 }
1027 #endif
1028
1029 icsk->icsk_af_ops->send_check(sk, skb);
1030
1031 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1032 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1033
1034 if (skb->len != tcp_header_size) {
1035 tcp_event_data_sent(tp, sk);
1036 tp->data_segs_out += tcp_skb_pcount(skb);
1037 }
1038
1039 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1040 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1041 tcp_skb_pcount(skb));
1042
1043 tp->segs_out += tcp_skb_pcount(skb);
1044 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1045 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1046 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1047
1048 /* Our usage of tstamp should remain private */
1049 skb->tstamp = 0;
1050
1051 /* Cleanup our debris for IP stacks */
1052 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1053 sizeof(struct inet6_skb_parm)));
1054
1055 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1056
1057 if (likely(err <= 0))
1058 return err;
1059
1060 tcp_enter_cwr(sk);
1061
1062 return net_xmit_eval(err);
1063 }
1064
1065 /* This routine just queues the buffer for sending.
1066 *
1067 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1068 * otherwise socket can stall.
1069 */
1070 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1071 {
1072 struct tcp_sock *tp = tcp_sk(sk);
1073
1074 /* Advance write_seq and place onto the write_queue. */
1075 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1076 __skb_header_release(skb);
1077 tcp_add_write_queue_tail(sk, skb);
1078 sk->sk_wmem_queued += skb->truesize;
1079 sk_mem_charge(sk, skb->truesize);
1080 }
1081
1082 /* Initialize TSO segments for a packet. */
1083 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1084 {
1085 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1086 /* Avoid the costly divide in the normal
1087 * non-TSO case.
1088 */
1089 tcp_skb_pcount_set(skb, 1);
1090 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1091 } else {
1092 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1093 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1094 }
1095 }
1096
1097 /* When a modification to fackets out becomes necessary, we need to check
1098 * skb is counted to fackets_out or not.
1099 */
1100 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1101 int decr)
1102 {
1103 struct tcp_sock *tp = tcp_sk(sk);
1104
1105 if (!tp->sacked_out || tcp_is_reno(tp))
1106 return;
1107
1108 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1109 tp->fackets_out -= decr;
1110 }
1111
1112 /* Pcount in the middle of the write queue got changed, we need to do various
1113 * tweaks to fix counters
1114 */
1115 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1116 {
1117 struct tcp_sock *tp = tcp_sk(sk);
1118
1119 tp->packets_out -= decr;
1120
1121 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1122 tp->sacked_out -= decr;
1123 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1124 tp->retrans_out -= decr;
1125 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1126 tp->lost_out -= decr;
1127
1128 /* Reno case is special. Sigh... */
1129 if (tcp_is_reno(tp) && decr > 0)
1130 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1131
1132 tcp_adjust_fackets_out(sk, skb, decr);
1133
1134 if (tp->lost_skb_hint &&
1135 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1136 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1137 tp->lost_cnt_hint -= decr;
1138
1139 tcp_verify_left_out(tp);
1140 }
1141
1142 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1143 {
1144 return TCP_SKB_CB(skb)->txstamp_ack ||
1145 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1146 }
1147
1148 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1149 {
1150 struct skb_shared_info *shinfo = skb_shinfo(skb);
1151
1152 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1153 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1154 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1155 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1156
1157 shinfo->tx_flags &= ~tsflags;
1158 shinfo2->tx_flags |= tsflags;
1159 swap(shinfo->tskey, shinfo2->tskey);
1160 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1161 TCP_SKB_CB(skb)->txstamp_ack = 0;
1162 }
1163 }
1164
1165 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1166 {
1167 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1168 TCP_SKB_CB(skb)->eor = 0;
1169 }
1170
1171 /* Function to create two new TCP segments. Shrinks the given segment
1172 * to the specified size and appends a new segment with the rest of the
1173 * packet to the list. This won't be called frequently, I hope.
1174 * Remember, these are still headerless SKBs at this point.
1175 */
1176 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1177 unsigned int mss_now, gfp_t gfp)
1178 {
1179 struct tcp_sock *tp = tcp_sk(sk);
1180 struct sk_buff *buff;
1181 int nsize, old_factor;
1182 int nlen;
1183 u8 flags;
1184
1185 if (WARN_ON(len > skb->len))
1186 return -EINVAL;
1187
1188 nsize = skb_headlen(skb) - len;
1189 if (nsize < 0)
1190 nsize = 0;
1191
1192 if (skb_unclone(skb, gfp))
1193 return -ENOMEM;
1194
1195 /* Get a new skb... force flag on. */
1196 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1197 if (!buff)
1198 return -ENOMEM; /* We'll just try again later. */
1199
1200 sk->sk_wmem_queued += buff->truesize;
1201 sk_mem_charge(sk, buff->truesize);
1202 nlen = skb->len - len - nsize;
1203 buff->truesize += nlen;
1204 skb->truesize -= nlen;
1205
1206 /* Correct the sequence numbers. */
1207 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1208 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1209 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1210
1211 /* PSH and FIN should only be set in the second packet. */
1212 flags = TCP_SKB_CB(skb)->tcp_flags;
1213 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1214 TCP_SKB_CB(buff)->tcp_flags = flags;
1215 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1216 tcp_skb_fragment_eor(skb, buff);
1217
1218 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1219 /* Copy and checksum data tail into the new buffer. */
1220 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1221 skb_put(buff, nsize),
1222 nsize, 0);
1223
1224 skb_trim(skb, len);
1225
1226 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1227 } else {
1228 skb->ip_summed = CHECKSUM_PARTIAL;
1229 skb_split(skb, buff, len);
1230 }
1231
1232 buff->ip_summed = skb->ip_summed;
1233
1234 buff->tstamp = skb->tstamp;
1235 tcp_fragment_tstamp(skb, buff);
1236
1237 old_factor = tcp_skb_pcount(skb);
1238
1239 /* Fix up tso_factor for both original and new SKB. */
1240 tcp_set_skb_tso_segs(skb, mss_now);
1241 tcp_set_skb_tso_segs(buff, mss_now);
1242
1243 /* Update delivered info for the new segment */
1244 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1245
1246 /* If this packet has been sent out already, we must
1247 * adjust the various packet counters.
1248 */
1249 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1250 int diff = old_factor - tcp_skb_pcount(skb) -
1251 tcp_skb_pcount(buff);
1252
1253 if (diff)
1254 tcp_adjust_pcount(sk, skb, diff);
1255 }
1256
1257 /* Link BUFF into the send queue. */
1258 __skb_header_release(buff);
1259 tcp_insert_write_queue_after(skb, buff, sk);
1260
1261 return 0;
1262 }
1263
1264 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1265 * eventually). The difference is that pulled data not copied, but
1266 * immediately discarded.
1267 */
1268 static int __pskb_trim_head(struct sk_buff *skb, int len)
1269 {
1270 struct skb_shared_info *shinfo;
1271 int i, k, eat;
1272
1273 eat = min_t(int, len, skb_headlen(skb));
1274 if (eat) {
1275 __skb_pull(skb, eat);
1276 len -= eat;
1277 if (!len)
1278 return 0;
1279 }
1280 eat = len;
1281 k = 0;
1282 shinfo = skb_shinfo(skb);
1283 for (i = 0; i < shinfo->nr_frags; i++) {
1284 int size = skb_frag_size(&shinfo->frags[i]);
1285
1286 if (size <= eat) {
1287 skb_frag_unref(skb, i);
1288 eat -= size;
1289 } else {
1290 shinfo->frags[k] = shinfo->frags[i];
1291 if (eat) {
1292 shinfo->frags[k].page_offset += eat;
1293 skb_frag_size_sub(&shinfo->frags[k], eat);
1294 eat = 0;
1295 }
1296 k++;
1297 }
1298 }
1299 shinfo->nr_frags = k;
1300
1301 skb_reset_tail_pointer(skb);
1302 skb->data_len -= len;
1303 skb->len = skb->data_len;
1304 return len;
1305 }
1306
1307 /* Remove acked data from a packet in the transmit queue. */
1308 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1309 {
1310 u32 delta_truesize;
1311
1312 if (skb_unclone(skb, GFP_ATOMIC))
1313 return -ENOMEM;
1314
1315 delta_truesize = __pskb_trim_head(skb, len);
1316
1317 TCP_SKB_CB(skb)->seq += len;
1318 skb->ip_summed = CHECKSUM_PARTIAL;
1319
1320 if (delta_truesize) {
1321 skb->truesize -= delta_truesize;
1322 sk->sk_wmem_queued -= delta_truesize;
1323 sk_mem_uncharge(sk, delta_truesize);
1324 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1325 }
1326
1327 /* Any change of skb->len requires recalculation of tso factor. */
1328 if (tcp_skb_pcount(skb) > 1)
1329 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1330
1331 return 0;
1332 }
1333
1334 /* Calculate MSS not accounting any TCP options. */
1335 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1336 {
1337 const struct tcp_sock *tp = tcp_sk(sk);
1338 const struct inet_connection_sock *icsk = inet_csk(sk);
1339 int mss_now;
1340
1341 /* Calculate base mss without TCP options:
1342 It is MMS_S - sizeof(tcphdr) of rfc1122
1343 */
1344 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1345
1346 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1347 if (icsk->icsk_af_ops->net_frag_header_len) {
1348 const struct dst_entry *dst = __sk_dst_get(sk);
1349
1350 if (dst && dst_allfrag(dst))
1351 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1352 }
1353
1354 /* Clamp it (mss_clamp does not include tcp options) */
1355 if (mss_now > tp->rx_opt.mss_clamp)
1356 mss_now = tp->rx_opt.mss_clamp;
1357
1358 /* Now subtract optional transport overhead */
1359 mss_now -= icsk->icsk_ext_hdr_len;
1360
1361 /* Then reserve room for full set of TCP options and 8 bytes of data */
1362 if (mss_now < 48)
1363 mss_now = 48;
1364 return mss_now;
1365 }
1366
1367 /* Calculate MSS. Not accounting for SACKs here. */
1368 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1369 {
1370 /* Subtract TCP options size, not including SACKs */
1371 return __tcp_mtu_to_mss(sk, pmtu) -
1372 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1373 }
1374
1375 /* Inverse of above */
1376 int tcp_mss_to_mtu(struct sock *sk, int mss)
1377 {
1378 const struct tcp_sock *tp = tcp_sk(sk);
1379 const struct inet_connection_sock *icsk = inet_csk(sk);
1380 int mtu;
1381
1382 mtu = mss +
1383 tp->tcp_header_len +
1384 icsk->icsk_ext_hdr_len +
1385 icsk->icsk_af_ops->net_header_len;
1386
1387 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1388 if (icsk->icsk_af_ops->net_frag_header_len) {
1389 const struct dst_entry *dst = __sk_dst_get(sk);
1390
1391 if (dst && dst_allfrag(dst))
1392 mtu += icsk->icsk_af_ops->net_frag_header_len;
1393 }
1394 return mtu;
1395 }
1396 EXPORT_SYMBOL(tcp_mss_to_mtu);
1397
1398 /* MTU probing init per socket */
1399 void tcp_mtup_init(struct sock *sk)
1400 {
1401 struct tcp_sock *tp = tcp_sk(sk);
1402 struct inet_connection_sock *icsk = inet_csk(sk);
1403 struct net *net = sock_net(sk);
1404
1405 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1406 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1407 icsk->icsk_af_ops->net_header_len;
1408 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1409 icsk->icsk_mtup.probe_size = 0;
1410 if (icsk->icsk_mtup.enabled)
1411 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1412 }
1413 EXPORT_SYMBOL(tcp_mtup_init);
1414
1415 /* This function synchronize snd mss to current pmtu/exthdr set.
1416
1417 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1418 for TCP options, but includes only bare TCP header.
1419
1420 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1421 It is minimum of user_mss and mss received with SYN.
1422 It also does not include TCP options.
1423
1424 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1425
1426 tp->mss_cache is current effective sending mss, including
1427 all tcp options except for SACKs. It is evaluated,
1428 taking into account current pmtu, but never exceeds
1429 tp->rx_opt.mss_clamp.
1430
1431 NOTE1. rfc1122 clearly states that advertised MSS
1432 DOES NOT include either tcp or ip options.
1433
1434 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1435 are READ ONLY outside this function. --ANK (980731)
1436 */
1437 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1438 {
1439 struct tcp_sock *tp = tcp_sk(sk);
1440 struct inet_connection_sock *icsk = inet_csk(sk);
1441 int mss_now;
1442
1443 if (icsk->icsk_mtup.search_high > pmtu)
1444 icsk->icsk_mtup.search_high = pmtu;
1445
1446 mss_now = tcp_mtu_to_mss(sk, pmtu);
1447 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1448
1449 /* And store cached results */
1450 icsk->icsk_pmtu_cookie = pmtu;
1451 if (icsk->icsk_mtup.enabled)
1452 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1453 tp->mss_cache = mss_now;
1454
1455 return mss_now;
1456 }
1457 EXPORT_SYMBOL(tcp_sync_mss);
1458
1459 /* Compute the current effective MSS, taking SACKs and IP options,
1460 * and even PMTU discovery events into account.
1461 */
1462 unsigned int tcp_current_mss(struct sock *sk)
1463 {
1464 const struct tcp_sock *tp = tcp_sk(sk);
1465 const struct dst_entry *dst = __sk_dst_get(sk);
1466 u32 mss_now;
1467 unsigned int header_len;
1468 struct tcp_out_options opts;
1469 struct tcp_md5sig_key *md5;
1470
1471 mss_now = tp->mss_cache;
1472
1473 if (dst) {
1474 u32 mtu = dst_mtu(dst);
1475 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1476 mss_now = tcp_sync_mss(sk, mtu);
1477 }
1478
1479 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1480 sizeof(struct tcphdr);
1481 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1482 * some common options. If this is an odd packet (because we have SACK
1483 * blocks etc) then our calculated header_len will be different, and
1484 * we have to adjust mss_now correspondingly */
1485 if (header_len != tp->tcp_header_len) {
1486 int delta = (int) header_len - tp->tcp_header_len;
1487 mss_now -= delta;
1488 }
1489
1490 return mss_now;
1491 }
1492
1493 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1494 * As additional protections, we do not touch cwnd in retransmission phases,
1495 * and if application hit its sndbuf limit recently.
1496 */
1497 static void tcp_cwnd_application_limited(struct sock *sk)
1498 {
1499 struct tcp_sock *tp = tcp_sk(sk);
1500
1501 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1502 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1503 /* Limited by application or receiver window. */
1504 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1505 u32 win_used = max(tp->snd_cwnd_used, init_win);
1506 if (win_used < tp->snd_cwnd) {
1507 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1508 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1509 }
1510 tp->snd_cwnd_used = 0;
1511 }
1512 tp->snd_cwnd_stamp = tcp_time_stamp;
1513 }
1514
1515 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1516 {
1517 struct tcp_sock *tp = tcp_sk(sk);
1518
1519 /* Track the maximum number of outstanding packets in each
1520 * window, and remember whether we were cwnd-limited then.
1521 */
1522 if (!before(tp->snd_una, tp->max_packets_seq) ||
1523 tp->packets_out > tp->max_packets_out) {
1524 tp->max_packets_out = tp->packets_out;
1525 tp->max_packets_seq = tp->snd_nxt;
1526 tp->is_cwnd_limited = is_cwnd_limited;
1527 }
1528
1529 if (tcp_is_cwnd_limited(sk)) {
1530 /* Network is feed fully. */
1531 tp->snd_cwnd_used = 0;
1532 tp->snd_cwnd_stamp = tcp_time_stamp;
1533 } else {
1534 /* Network starves. */
1535 if (tp->packets_out > tp->snd_cwnd_used)
1536 tp->snd_cwnd_used = tp->packets_out;
1537
1538 if (sysctl_tcp_slow_start_after_idle &&
1539 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1540 tcp_cwnd_application_limited(sk);
1541
1542 /* The following conditions together indicate the starvation
1543 * is caused by insufficient sender buffer:
1544 * 1) just sent some data (see tcp_write_xmit)
1545 * 2) not cwnd limited (this else condition)
1546 * 3) no more data to send (null tcp_send_head )
1547 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1548 */
1549 if (!tcp_send_head(sk) && sk->sk_socket &&
1550 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1551 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1552 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1553 }
1554 }
1555
1556 /* Minshall's variant of the Nagle send check. */
1557 static bool tcp_minshall_check(const struct tcp_sock *tp)
1558 {
1559 return after(tp->snd_sml, tp->snd_una) &&
1560 !after(tp->snd_sml, tp->snd_nxt);
1561 }
1562
1563 /* Update snd_sml if this skb is under mss
1564 * Note that a TSO packet might end with a sub-mss segment
1565 * The test is really :
1566 * if ((skb->len % mss) != 0)
1567 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1568 * But we can avoid doing the divide again given we already have
1569 * skb_pcount = skb->len / mss_now
1570 */
1571 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1572 const struct sk_buff *skb)
1573 {
1574 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1575 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1576 }
1577
1578 /* Return false, if packet can be sent now without violation Nagle's rules:
1579 * 1. It is full sized. (provided by caller in %partial bool)
1580 * 2. Or it contains FIN. (already checked by caller)
1581 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1582 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1583 * With Minshall's modification: all sent small packets are ACKed.
1584 */
1585 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1586 int nonagle)
1587 {
1588 return partial &&
1589 ((nonagle & TCP_NAGLE_CORK) ||
1590 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1591 }
1592
1593 /* Return how many segs we'd like on a TSO packet,
1594 * to send one TSO packet per ms
1595 */
1596 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1597 int min_tso_segs)
1598 {
1599 u32 bytes, segs;
1600
1601 bytes = min(sk->sk_pacing_rate >> 10,
1602 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1603
1604 /* Goal is to send at least one packet per ms,
1605 * not one big TSO packet every 100 ms.
1606 * This preserves ACK clocking and is consistent
1607 * with tcp_tso_should_defer() heuristic.
1608 */
1609 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1610
1611 return min_t(u32, segs, sk->sk_gso_max_segs);
1612 }
1613 EXPORT_SYMBOL(tcp_tso_autosize);
1614
1615 /* Return the number of segments we want in the skb we are transmitting.
1616 * See if congestion control module wants to decide; otherwise, autosize.
1617 */
1618 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1619 {
1620 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1621 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1622
1623 return tso_segs ? :
1624 tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
1625 }
1626
1627 /* Returns the portion of skb which can be sent right away */
1628 static unsigned int tcp_mss_split_point(const struct sock *sk,
1629 const struct sk_buff *skb,
1630 unsigned int mss_now,
1631 unsigned int max_segs,
1632 int nonagle)
1633 {
1634 const struct tcp_sock *tp = tcp_sk(sk);
1635 u32 partial, needed, window, max_len;
1636
1637 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1638 max_len = mss_now * max_segs;
1639
1640 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1641 return max_len;
1642
1643 needed = min(skb->len, window);
1644
1645 if (max_len <= needed)
1646 return max_len;
1647
1648 partial = needed % mss_now;
1649 /* If last segment is not a full MSS, check if Nagle rules allow us
1650 * to include this last segment in this skb.
1651 * Otherwise, we'll split the skb at last MSS boundary
1652 */
1653 if (tcp_nagle_check(partial != 0, tp, nonagle))
1654 return needed - partial;
1655
1656 return needed;
1657 }
1658
1659 /* Can at least one segment of SKB be sent right now, according to the
1660 * congestion window rules? If so, return how many segments are allowed.
1661 */
1662 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1663 const struct sk_buff *skb)
1664 {
1665 u32 in_flight, cwnd, halfcwnd;
1666
1667 /* Don't be strict about the congestion window for the final FIN. */
1668 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1669 tcp_skb_pcount(skb) == 1)
1670 return 1;
1671
1672 in_flight = tcp_packets_in_flight(tp);
1673 cwnd = tp->snd_cwnd;
1674 if (in_flight >= cwnd)
1675 return 0;
1676
1677 /* For better scheduling, ensure we have at least
1678 * 2 GSO packets in flight.
1679 */
1680 halfcwnd = max(cwnd >> 1, 1U);
1681 return min(halfcwnd, cwnd - in_flight);
1682 }
1683
1684 /* Initialize TSO state of a skb.
1685 * This must be invoked the first time we consider transmitting
1686 * SKB onto the wire.
1687 */
1688 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1689 {
1690 int tso_segs = tcp_skb_pcount(skb);
1691
1692 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1693 tcp_set_skb_tso_segs(skb, mss_now);
1694 tso_segs = tcp_skb_pcount(skb);
1695 }
1696 return tso_segs;
1697 }
1698
1699
1700 /* Return true if the Nagle test allows this packet to be
1701 * sent now.
1702 */
1703 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1704 unsigned int cur_mss, int nonagle)
1705 {
1706 /* Nagle rule does not apply to frames, which sit in the middle of the
1707 * write_queue (they have no chances to get new data).
1708 *
1709 * This is implemented in the callers, where they modify the 'nonagle'
1710 * argument based upon the location of SKB in the send queue.
1711 */
1712 if (nonagle & TCP_NAGLE_PUSH)
1713 return true;
1714
1715 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1716 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1717 return true;
1718
1719 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1720 return true;
1721
1722 return false;
1723 }
1724
1725 /* Does at least the first segment of SKB fit into the send window? */
1726 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1727 const struct sk_buff *skb,
1728 unsigned int cur_mss)
1729 {
1730 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1731
1732 if (skb->len > cur_mss)
1733 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1734
1735 return !after(end_seq, tcp_wnd_end(tp));
1736 }
1737
1738 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1739 * should be put on the wire right now. If so, it returns the number of
1740 * packets allowed by the congestion window.
1741 */
1742 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1743 unsigned int cur_mss, int nonagle)
1744 {
1745 const struct tcp_sock *tp = tcp_sk(sk);
1746 unsigned int cwnd_quota;
1747
1748 tcp_init_tso_segs(skb, cur_mss);
1749
1750 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1751 return 0;
1752
1753 cwnd_quota = tcp_cwnd_test(tp, skb);
1754 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1755 cwnd_quota = 0;
1756
1757 return cwnd_quota;
1758 }
1759
1760 /* Test if sending is allowed right now. */
1761 bool tcp_may_send_now(struct sock *sk)
1762 {
1763 const struct tcp_sock *tp = tcp_sk(sk);
1764 struct sk_buff *skb = tcp_send_head(sk);
1765
1766 return skb &&
1767 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1768 (tcp_skb_is_last(sk, skb) ?
1769 tp->nonagle : TCP_NAGLE_PUSH));
1770 }
1771
1772 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1773 * which is put after SKB on the list. It is very much like
1774 * tcp_fragment() except that it may make several kinds of assumptions
1775 * in order to speed up the splitting operation. In particular, we
1776 * know that all the data is in scatter-gather pages, and that the
1777 * packet has never been sent out before (and thus is not cloned).
1778 */
1779 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1780 unsigned int mss_now, gfp_t gfp)
1781 {
1782 struct sk_buff *buff;
1783 int nlen = skb->len - len;
1784 u8 flags;
1785
1786 /* All of a TSO frame must be composed of paged data. */
1787 if (skb->len != skb->data_len)
1788 return tcp_fragment(sk, skb, len, mss_now, gfp);
1789
1790 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1791 if (unlikely(!buff))
1792 return -ENOMEM;
1793
1794 sk->sk_wmem_queued += buff->truesize;
1795 sk_mem_charge(sk, buff->truesize);
1796 buff->truesize += nlen;
1797 skb->truesize -= nlen;
1798
1799 /* Correct the sequence numbers. */
1800 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1801 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1802 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1803
1804 /* PSH and FIN should only be set in the second packet. */
1805 flags = TCP_SKB_CB(skb)->tcp_flags;
1806 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1807 TCP_SKB_CB(buff)->tcp_flags = flags;
1808
1809 /* This packet was never sent out yet, so no SACK bits. */
1810 TCP_SKB_CB(buff)->sacked = 0;
1811
1812 tcp_skb_fragment_eor(skb, buff);
1813
1814 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1815 skb_split(skb, buff, len);
1816 tcp_fragment_tstamp(skb, buff);
1817
1818 /* Fix up tso_factor for both original and new SKB. */
1819 tcp_set_skb_tso_segs(skb, mss_now);
1820 tcp_set_skb_tso_segs(buff, mss_now);
1821
1822 /* Link BUFF into the send queue. */
1823 __skb_header_release(buff);
1824 tcp_insert_write_queue_after(skb, buff, sk);
1825
1826 return 0;
1827 }
1828
1829 /* Try to defer sending, if possible, in order to minimize the amount
1830 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1831 *
1832 * This algorithm is from John Heffner.
1833 */
1834 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1835 bool *is_cwnd_limited, u32 max_segs)
1836 {
1837 const struct inet_connection_sock *icsk = inet_csk(sk);
1838 u32 age, send_win, cong_win, limit, in_flight;
1839 struct tcp_sock *tp = tcp_sk(sk);
1840 struct skb_mstamp now;
1841 struct sk_buff *head;
1842 int win_divisor;
1843
1844 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1845 goto send_now;
1846
1847 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1848 goto send_now;
1849
1850 /* Avoid bursty behavior by allowing defer
1851 * only if the last write was recent.
1852 */
1853 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1854 goto send_now;
1855
1856 in_flight = tcp_packets_in_flight(tp);
1857
1858 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1859
1860 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1861
1862 /* From in_flight test above, we know that cwnd > in_flight. */
1863 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1864
1865 limit = min(send_win, cong_win);
1866
1867 /* If a full-sized TSO skb can be sent, do it. */
1868 if (limit >= max_segs * tp->mss_cache)
1869 goto send_now;
1870
1871 /* Middle in queue won't get any more data, full sendable already? */
1872 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1873 goto send_now;
1874
1875 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1876 if (win_divisor) {
1877 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1878
1879 /* If at least some fraction of a window is available,
1880 * just use it.
1881 */
1882 chunk /= win_divisor;
1883 if (limit >= chunk)
1884 goto send_now;
1885 } else {
1886 /* Different approach, try not to defer past a single
1887 * ACK. Receiver should ACK every other full sized
1888 * frame, so if we have space for more than 3 frames
1889 * then send now.
1890 */
1891 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1892 goto send_now;
1893 }
1894
1895 head = tcp_write_queue_head(sk);
1896 skb_mstamp_get(&now);
1897 age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1898 /* If next ACK is likely to come too late (half srtt), do not defer */
1899 if (age < (tp->srtt_us >> 4))
1900 goto send_now;
1901
1902 /* Ok, it looks like it is advisable to defer. */
1903
1904 if (cong_win < send_win && cong_win <= skb->len)
1905 *is_cwnd_limited = true;
1906
1907 return true;
1908
1909 send_now:
1910 return false;
1911 }
1912
1913 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1914 {
1915 struct inet_connection_sock *icsk = inet_csk(sk);
1916 struct tcp_sock *tp = tcp_sk(sk);
1917 struct net *net = sock_net(sk);
1918 u32 interval;
1919 s32 delta;
1920
1921 interval = net->ipv4.sysctl_tcp_probe_interval;
1922 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1923 if (unlikely(delta >= interval * HZ)) {
1924 int mss = tcp_current_mss(sk);
1925
1926 /* Update current search range */
1927 icsk->icsk_mtup.probe_size = 0;
1928 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1929 sizeof(struct tcphdr) +
1930 icsk->icsk_af_ops->net_header_len;
1931 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1932
1933 /* Update probe time stamp */
1934 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1935 }
1936 }
1937
1938 /* Create a new MTU probe if we are ready.
1939 * MTU probe is regularly attempting to increase the path MTU by
1940 * deliberately sending larger packets. This discovers routing
1941 * changes resulting in larger path MTUs.
1942 *
1943 * Returns 0 if we should wait to probe (no cwnd available),
1944 * 1 if a probe was sent,
1945 * -1 otherwise
1946 */
1947 static int tcp_mtu_probe(struct sock *sk)
1948 {
1949 struct inet_connection_sock *icsk = inet_csk(sk);
1950 struct tcp_sock *tp = tcp_sk(sk);
1951 struct sk_buff *skb, *nskb, *next;
1952 struct net *net = sock_net(sk);
1953 int probe_size;
1954 int size_needed;
1955 int copy, len;
1956 int mss_now;
1957 int interval;
1958
1959 /* Not currently probing/verifying,
1960 * not in recovery,
1961 * have enough cwnd, and
1962 * not SACKing (the variable headers throw things off)
1963 */
1964 if (likely(!icsk->icsk_mtup.enabled ||
1965 icsk->icsk_mtup.probe_size ||
1966 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1967 tp->snd_cwnd < 11 ||
1968 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
1969 return -1;
1970
1971 /* Use binary search for probe_size between tcp_mss_base,
1972 * and current mss_clamp. if (search_high - search_low)
1973 * smaller than a threshold, backoff from probing.
1974 */
1975 mss_now = tcp_current_mss(sk);
1976 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1977 icsk->icsk_mtup.search_low) >> 1);
1978 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1979 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1980 /* When misfortune happens, we are reprobing actively,
1981 * and then reprobe timer has expired. We stick with current
1982 * probing process by not resetting search range to its orignal.
1983 */
1984 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1985 interval < net->ipv4.sysctl_tcp_probe_threshold) {
1986 /* Check whether enough time has elaplased for
1987 * another round of probing.
1988 */
1989 tcp_mtu_check_reprobe(sk);
1990 return -1;
1991 }
1992
1993 /* Have enough data in the send queue to probe? */
1994 if (tp->write_seq - tp->snd_nxt < size_needed)
1995 return -1;
1996
1997 if (tp->snd_wnd < size_needed)
1998 return -1;
1999 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2000 return 0;
2001
2002 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2003 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2004 if (!tcp_packets_in_flight(tp))
2005 return -1;
2006 else
2007 return 0;
2008 }
2009
2010 /* We're allowed to probe. Build it now. */
2011 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2012 if (!nskb)
2013 return -1;
2014 sk->sk_wmem_queued += nskb->truesize;
2015 sk_mem_charge(sk, nskb->truesize);
2016
2017 skb = tcp_send_head(sk);
2018
2019 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2020 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2021 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2022 TCP_SKB_CB(nskb)->sacked = 0;
2023 nskb->csum = 0;
2024 nskb->ip_summed = skb->ip_summed;
2025
2026 tcp_insert_write_queue_before(nskb, skb, sk);
2027
2028 len = 0;
2029 tcp_for_write_queue_from_safe(skb, next, sk) {
2030 copy = min_t(int, skb->len, probe_size - len);
2031 if (nskb->ip_summed) {
2032 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2033 } else {
2034 __wsum csum = skb_copy_and_csum_bits(skb, 0,
2035 skb_put(nskb, copy),
2036 copy, 0);
2037 nskb->csum = csum_block_add(nskb->csum, csum, len);
2038 }
2039
2040 if (skb->len <= copy) {
2041 /* We've eaten all the data from this skb.
2042 * Throw it away. */
2043 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2044 tcp_unlink_write_queue(skb, sk);
2045 sk_wmem_free_skb(sk, skb);
2046 } else {
2047 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2048 ~(TCPHDR_FIN|TCPHDR_PSH);
2049 if (!skb_shinfo(skb)->nr_frags) {
2050 skb_pull(skb, copy);
2051 if (skb->ip_summed != CHECKSUM_PARTIAL)
2052 skb->csum = csum_partial(skb->data,
2053 skb->len, 0);
2054 } else {
2055 __pskb_trim_head(skb, copy);
2056 tcp_set_skb_tso_segs(skb, mss_now);
2057 }
2058 TCP_SKB_CB(skb)->seq += copy;
2059 }
2060
2061 len += copy;
2062
2063 if (len >= probe_size)
2064 break;
2065 }
2066 tcp_init_tso_segs(nskb, nskb->len);
2067
2068 /* We're ready to send. If this fails, the probe will
2069 * be resegmented into mss-sized pieces by tcp_write_xmit().
2070 */
2071 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2072 /* Decrement cwnd here because we are sending
2073 * effectively two packets. */
2074 tp->snd_cwnd--;
2075 tcp_event_new_data_sent(sk, nskb);
2076
2077 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2078 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2079 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2080
2081 return 1;
2082 }
2083
2084 return -1;
2085 }
2086
2087 /* TCP Small Queues :
2088 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2089 * (These limits are doubled for retransmits)
2090 * This allows for :
2091 * - better RTT estimation and ACK scheduling
2092 * - faster recovery
2093 * - high rates
2094 * Alas, some drivers / subsystems require a fair amount
2095 * of queued bytes to ensure line rate.
2096 * One example is wifi aggregation (802.11 AMPDU)
2097 */
2098 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2099 unsigned int factor)
2100 {
2101 unsigned int limit;
2102
2103 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2104 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2105 limit <<= factor;
2106
2107 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2108 /* Always send the 1st or 2nd skb in write queue.
2109 * No need to wait for TX completion to call us back,
2110 * after softirq/tasklet schedule.
2111 * This helps when TX completions are delayed too much.
2112 */
2113 if (skb == sk->sk_write_queue.next ||
2114 skb->prev == sk->sk_write_queue.next)
2115 return false;
2116
2117 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2118 /* It is possible TX completion already happened
2119 * before we set TSQ_THROTTLED, so we must
2120 * test again the condition.
2121 */
2122 smp_mb__after_atomic();
2123 if (atomic_read(&sk->sk_wmem_alloc) > limit)
2124 return true;
2125 }
2126 return false;
2127 }
2128
2129 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2130 {
2131 const u32 now = tcp_time_stamp;
2132
2133 if (tp->chrono_type > TCP_CHRONO_UNSPEC)
2134 tp->chrono_stat[tp->chrono_type - 1] += now - tp->chrono_start;
2135 tp->chrono_start = now;
2136 tp->chrono_type = new;
2137 }
2138
2139 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2140 {
2141 struct tcp_sock *tp = tcp_sk(sk);
2142
2143 /* If there are multiple conditions worthy of tracking in a
2144 * chronograph then the highest priority enum takes precedence
2145 * over the other conditions. So that if something "more interesting"
2146 * starts happening, stop the previous chrono and start a new one.
2147 */
2148 if (type > tp->chrono_type)
2149 tcp_chrono_set(tp, type);
2150 }
2151
2152 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2153 {
2154 struct tcp_sock *tp = tcp_sk(sk);
2155
2156
2157 /* There are multiple conditions worthy of tracking in a
2158 * chronograph, so that the highest priority enum takes
2159 * precedence over the other conditions (see tcp_chrono_start).
2160 * If a condition stops, we only stop chrono tracking if
2161 * it's the "most interesting" or current chrono we are
2162 * tracking and starts busy chrono if we have pending data.
2163 */
2164 if (tcp_write_queue_empty(sk))
2165 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2166 else if (type == tp->chrono_type)
2167 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2168 }
2169
2170 /* This routine writes packets to the network. It advances the
2171 * send_head. This happens as incoming acks open up the remote
2172 * window for us.
2173 *
2174 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2175 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2176 * account rare use of URG, this is not a big flaw.
2177 *
2178 * Send at most one packet when push_one > 0. Temporarily ignore
2179 * cwnd limit to force at most one packet out when push_one == 2.
2180
2181 * Returns true, if no segments are in flight and we have queued segments,
2182 * but cannot send anything now because of SWS or another problem.
2183 */
2184 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2185 int push_one, gfp_t gfp)
2186 {
2187 struct tcp_sock *tp = tcp_sk(sk);
2188 struct sk_buff *skb;
2189 unsigned int tso_segs, sent_pkts;
2190 int cwnd_quota;
2191 int result;
2192 bool is_cwnd_limited = false, is_rwnd_limited = false;
2193 u32 max_segs;
2194
2195 sent_pkts = 0;
2196
2197 if (!push_one) {
2198 /* Do MTU probing. */
2199 result = tcp_mtu_probe(sk);
2200 if (!result) {
2201 return false;
2202 } else if (result > 0) {
2203 sent_pkts = 1;
2204 }
2205 }
2206
2207 max_segs = tcp_tso_segs(sk, mss_now);
2208 while ((skb = tcp_send_head(sk))) {
2209 unsigned int limit;
2210
2211 tso_segs = tcp_init_tso_segs(skb, mss_now);
2212 BUG_ON(!tso_segs);
2213
2214 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2215 /* "skb_mstamp" is used as a start point for the retransmit timer */
2216 skb_mstamp_get(&skb->skb_mstamp);
2217 goto repair; /* Skip network transmission */
2218 }
2219
2220 cwnd_quota = tcp_cwnd_test(tp, skb);
2221 if (!cwnd_quota) {
2222 if (push_one == 2)
2223 /* Force out a loss probe pkt. */
2224 cwnd_quota = 1;
2225 else
2226 break;
2227 }
2228
2229 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2230 is_rwnd_limited = true;
2231 break;
2232 }
2233
2234 if (tso_segs == 1) {
2235 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2236 (tcp_skb_is_last(sk, skb) ?
2237 nonagle : TCP_NAGLE_PUSH))))
2238 break;
2239 } else {
2240 if (!push_one &&
2241 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2242 max_segs))
2243 break;
2244 }
2245
2246 limit = mss_now;
2247 if (tso_segs > 1 && !tcp_urg_mode(tp))
2248 limit = tcp_mss_split_point(sk, skb, mss_now,
2249 min_t(unsigned int,
2250 cwnd_quota,
2251 max_segs),
2252 nonagle);
2253
2254 if (skb->len > limit &&
2255 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2256 break;
2257
2258 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2259 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2260 if (tcp_small_queue_check(sk, skb, 0))
2261 break;
2262
2263 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2264 break;
2265
2266 repair:
2267 /* Advance the send_head. This one is sent out.
2268 * This call will increment packets_out.
2269 */
2270 tcp_event_new_data_sent(sk, skb);
2271
2272 tcp_minshall_update(tp, mss_now, skb);
2273 sent_pkts += tcp_skb_pcount(skb);
2274
2275 if (push_one)
2276 break;
2277 }
2278
2279 if (is_rwnd_limited)
2280 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2281 else
2282 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2283
2284 if (likely(sent_pkts)) {
2285 if (tcp_in_cwnd_reduction(sk))
2286 tp->prr_out += sent_pkts;
2287
2288 /* Send one loss probe per tail loss episode. */
2289 if (push_one != 2)
2290 tcp_schedule_loss_probe(sk);
2291 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2292 tcp_cwnd_validate(sk, is_cwnd_limited);
2293 return false;
2294 }
2295 return !tp->packets_out && tcp_send_head(sk);
2296 }
2297
2298 bool tcp_schedule_loss_probe(struct sock *sk)
2299 {
2300 struct inet_connection_sock *icsk = inet_csk(sk);
2301 struct tcp_sock *tp = tcp_sk(sk);
2302 u32 timeout, tlp_time_stamp, rto_time_stamp;
2303 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2304
2305 /* No consecutive loss probes. */
2306 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2307 tcp_rearm_rto(sk);
2308 return false;
2309 }
2310 /* Don't do any loss probe on a Fast Open connection before 3WHS
2311 * finishes.
2312 */
2313 if (tp->fastopen_rsk)
2314 return false;
2315
2316 /* TLP is only scheduled when next timer event is RTO. */
2317 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2318 return false;
2319
2320 /* Schedule a loss probe in 2*RTT for SACK capable connections
2321 * in Open state, that are either limited by cwnd or application.
2322 */
2323 if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) ||
2324 !tp->packets_out || !tcp_is_sack(tp) ||
2325 icsk->icsk_ca_state != TCP_CA_Open)
2326 return false;
2327
2328 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2329 tcp_send_head(sk))
2330 return false;
2331
2332 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2333 * for delayed ack when there's one outstanding packet. If no RTT
2334 * sample is available then probe after TCP_TIMEOUT_INIT.
2335 */
2336 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2337 if (tp->packets_out == 1)
2338 timeout = max_t(u32, timeout,
2339 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2340 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2341
2342 /* If RTO is shorter, just schedule TLP in its place. */
2343 tlp_time_stamp = tcp_time_stamp + timeout;
2344 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2345 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2346 s32 delta = rto_time_stamp - tcp_time_stamp;
2347 if (delta > 0)
2348 timeout = delta;
2349 }
2350
2351 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2352 TCP_RTO_MAX);
2353 return true;
2354 }
2355
2356 /* Thanks to skb fast clones, we can detect if a prior transmit of
2357 * a packet is still in a qdisc or driver queue.
2358 * In this case, there is very little point doing a retransmit !
2359 */
2360 static bool skb_still_in_host_queue(const struct sock *sk,
2361 const struct sk_buff *skb)
2362 {
2363 if (unlikely(skb_fclone_busy(sk, skb))) {
2364 NET_INC_STATS(sock_net(sk),
2365 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2366 return true;
2367 }
2368 return false;
2369 }
2370
2371 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2372 * retransmit the last segment.
2373 */
2374 void tcp_send_loss_probe(struct sock *sk)
2375 {
2376 struct tcp_sock *tp = tcp_sk(sk);
2377 struct sk_buff *skb;
2378 int pcount;
2379 int mss = tcp_current_mss(sk);
2380
2381 skb = tcp_send_head(sk);
2382 if (skb) {
2383 if (tcp_snd_wnd_test(tp, skb, mss)) {
2384 pcount = tp->packets_out;
2385 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2386 if (tp->packets_out > pcount)
2387 goto probe_sent;
2388 goto rearm_timer;
2389 }
2390 skb = tcp_write_queue_prev(sk, skb);
2391 } else {
2392 skb = tcp_write_queue_tail(sk);
2393 }
2394
2395 /* At most one outstanding TLP retransmission. */
2396 if (tp->tlp_high_seq)
2397 goto rearm_timer;
2398
2399 /* Retransmit last segment. */
2400 if (WARN_ON(!skb))
2401 goto rearm_timer;
2402
2403 if (skb_still_in_host_queue(sk, skb))
2404 goto rearm_timer;
2405
2406 pcount = tcp_skb_pcount(skb);
2407 if (WARN_ON(!pcount))
2408 goto rearm_timer;
2409
2410 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2411 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2412 GFP_ATOMIC)))
2413 goto rearm_timer;
2414 skb = tcp_write_queue_next(sk, skb);
2415 }
2416
2417 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2418 goto rearm_timer;
2419
2420 if (__tcp_retransmit_skb(sk, skb, 1))
2421 goto rearm_timer;
2422
2423 /* Record snd_nxt for loss detection. */
2424 tp->tlp_high_seq = tp->snd_nxt;
2425
2426 probe_sent:
2427 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2428 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2429 inet_csk(sk)->icsk_pending = 0;
2430 rearm_timer:
2431 tcp_rearm_rto(sk);
2432 }
2433
2434 /* Push out any pending frames which were held back due to
2435 * TCP_CORK or attempt at coalescing tiny packets.
2436 * The socket must be locked by the caller.
2437 */
2438 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2439 int nonagle)
2440 {
2441 /* If we are closed, the bytes will have to remain here.
2442 * In time closedown will finish, we empty the write queue and
2443 * all will be happy.
2444 */
2445 if (unlikely(sk->sk_state == TCP_CLOSE))
2446 return;
2447
2448 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2449 sk_gfp_mask(sk, GFP_ATOMIC)))
2450 tcp_check_probe_timer(sk);
2451 }
2452
2453 /* Send _single_ skb sitting at the send head. This function requires
2454 * true push pending frames to setup probe timer etc.
2455 */
2456 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2457 {
2458 struct sk_buff *skb = tcp_send_head(sk);
2459
2460 BUG_ON(!skb || skb->len < mss_now);
2461
2462 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2463 }
2464
2465 /* This function returns the amount that we can raise the
2466 * usable window based on the following constraints
2467 *
2468 * 1. The window can never be shrunk once it is offered (RFC 793)
2469 * 2. We limit memory per socket
2470 *
2471 * RFC 1122:
2472 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2473 * RECV.NEXT + RCV.WIN fixed until:
2474 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2475 *
2476 * i.e. don't raise the right edge of the window until you can raise
2477 * it at least MSS bytes.
2478 *
2479 * Unfortunately, the recommended algorithm breaks header prediction,
2480 * since header prediction assumes th->window stays fixed.
2481 *
2482 * Strictly speaking, keeping th->window fixed violates the receiver
2483 * side SWS prevention criteria. The problem is that under this rule
2484 * a stream of single byte packets will cause the right side of the
2485 * window to always advance by a single byte.
2486 *
2487 * Of course, if the sender implements sender side SWS prevention
2488 * then this will not be a problem.
2489 *
2490 * BSD seems to make the following compromise:
2491 *
2492 * If the free space is less than the 1/4 of the maximum
2493 * space available and the free space is less than 1/2 mss,
2494 * then set the window to 0.
2495 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2496 * Otherwise, just prevent the window from shrinking
2497 * and from being larger than the largest representable value.
2498 *
2499 * This prevents incremental opening of the window in the regime
2500 * where TCP is limited by the speed of the reader side taking
2501 * data out of the TCP receive queue. It does nothing about
2502 * those cases where the window is constrained on the sender side
2503 * because the pipeline is full.
2504 *
2505 * BSD also seems to "accidentally" limit itself to windows that are a
2506 * multiple of MSS, at least until the free space gets quite small.
2507 * This would appear to be a side effect of the mbuf implementation.
2508 * Combining these two algorithms results in the observed behavior
2509 * of having a fixed window size at almost all times.
2510 *
2511 * Below we obtain similar behavior by forcing the offered window to
2512 * a multiple of the mss when it is feasible to do so.
2513 *
2514 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2515 * Regular options like TIMESTAMP are taken into account.
2516 */
2517 u32 __tcp_select_window(struct sock *sk)
2518 {
2519 struct inet_connection_sock *icsk = inet_csk(sk);
2520 struct tcp_sock *tp = tcp_sk(sk);
2521 /* MSS for the peer's data. Previous versions used mss_clamp
2522 * here. I don't know if the value based on our guesses
2523 * of peer's MSS is better for the performance. It's more correct
2524 * but may be worse for the performance because of rcv_mss
2525 * fluctuations. --SAW 1998/11/1
2526 */
2527 int mss = icsk->icsk_ack.rcv_mss;
2528 int free_space = tcp_space(sk);
2529 int allowed_space = tcp_full_space(sk);
2530 int full_space = min_t(int, tp->window_clamp, allowed_space);
2531 int window;
2532
2533 if (unlikely(mss > full_space)) {
2534 mss = full_space;
2535 if (mss <= 0)
2536 return 0;
2537 }
2538 if (free_space < (full_space >> 1)) {
2539 icsk->icsk_ack.quick = 0;
2540
2541 if (tcp_under_memory_pressure(sk))
2542 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2543 4U * tp->advmss);
2544
2545 /* free_space might become our new window, make sure we don't
2546 * increase it due to wscale.
2547 */
2548 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2549
2550 /* if free space is less than mss estimate, or is below 1/16th
2551 * of the maximum allowed, try to move to zero-window, else
2552 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2553 * new incoming data is dropped due to memory limits.
2554 * With large window, mss test triggers way too late in order
2555 * to announce zero window in time before rmem limit kicks in.
2556 */
2557 if (free_space < (allowed_space >> 4) || free_space < mss)
2558 return 0;
2559 }
2560
2561 if (free_space > tp->rcv_ssthresh)
2562 free_space = tp->rcv_ssthresh;
2563
2564 /* Don't do rounding if we are using window scaling, since the
2565 * scaled window will not line up with the MSS boundary anyway.
2566 */
2567 if (tp->rx_opt.rcv_wscale) {
2568 window = free_space;
2569
2570 /* Advertise enough space so that it won't get scaled away.
2571 * Import case: prevent zero window announcement if
2572 * 1<<rcv_wscale > mss.
2573 */
2574 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2575 } else {
2576 window = tp->rcv_wnd;
2577 /* Get the largest window that is a nice multiple of mss.
2578 * Window clamp already applied above.
2579 * If our current window offering is within 1 mss of the
2580 * free space we just keep it. This prevents the divide
2581 * and multiply from happening most of the time.
2582 * We also don't do any window rounding when the free space
2583 * is too small.
2584 */
2585 if (window <= free_space - mss || window > free_space)
2586 window = rounddown(free_space, mss);
2587 else if (mss == full_space &&
2588 free_space > window + (full_space >> 1))
2589 window = free_space;
2590 }
2591
2592 return window;
2593 }
2594
2595 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2596 const struct sk_buff *next_skb)
2597 {
2598 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2599 const struct skb_shared_info *next_shinfo =
2600 skb_shinfo(next_skb);
2601 struct skb_shared_info *shinfo = skb_shinfo(skb);
2602
2603 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2604 shinfo->tskey = next_shinfo->tskey;
2605 TCP_SKB_CB(skb)->txstamp_ack |=
2606 TCP_SKB_CB(next_skb)->txstamp_ack;
2607 }
2608 }
2609
2610 /* Collapses two adjacent SKB's during retransmission. */
2611 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2612 {
2613 struct tcp_sock *tp = tcp_sk(sk);
2614 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2615 int skb_size, next_skb_size;
2616
2617 skb_size = skb->len;
2618 next_skb_size = next_skb->len;
2619
2620 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2621
2622 if (next_skb_size) {
2623 if (next_skb_size <= skb_availroom(skb))
2624 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2625 next_skb_size);
2626 else if (!skb_shift(skb, next_skb, next_skb_size))
2627 return false;
2628 }
2629 tcp_highest_sack_combine(sk, next_skb, skb);
2630
2631 tcp_unlink_write_queue(next_skb, sk);
2632
2633 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2634 skb->ip_summed = CHECKSUM_PARTIAL;
2635
2636 if (skb->ip_summed != CHECKSUM_PARTIAL)
2637 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2638
2639 /* Update sequence range on original skb. */
2640 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2641
2642 /* Merge over control information. This moves PSH/FIN etc. over */
2643 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2644
2645 /* All done, get rid of second SKB and account for it so
2646 * packet counting does not break.
2647 */
2648 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2649 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2650
2651 /* changed transmit queue under us so clear hints */
2652 tcp_clear_retrans_hints_partial(tp);
2653 if (next_skb == tp->retransmit_skb_hint)
2654 tp->retransmit_skb_hint = skb;
2655
2656 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2657
2658 tcp_skb_collapse_tstamp(skb, next_skb);
2659
2660 sk_wmem_free_skb(sk, next_skb);
2661 return true;
2662 }
2663
2664 /* Check if coalescing SKBs is legal. */
2665 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2666 {
2667 if (tcp_skb_pcount(skb) > 1)
2668 return false;
2669 if (skb_cloned(skb))
2670 return false;
2671 if (skb == tcp_send_head(sk))
2672 return false;
2673 /* Some heuristics for collapsing over SACK'd could be invented */
2674 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2675 return false;
2676
2677 return true;
2678 }
2679
2680 /* Collapse packets in the retransmit queue to make to create
2681 * less packets on the wire. This is only done on retransmission.
2682 */
2683 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2684 int space)
2685 {
2686 struct tcp_sock *tp = tcp_sk(sk);
2687 struct sk_buff *skb = to, *tmp;
2688 bool first = true;
2689
2690 if (!sysctl_tcp_retrans_collapse)
2691 return;
2692 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2693 return;
2694
2695 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2696 if (!tcp_can_collapse(sk, skb))
2697 break;
2698
2699 if (!tcp_skb_can_collapse_to(to))
2700 break;
2701
2702 space -= skb->len;
2703
2704 if (first) {
2705 first = false;
2706 continue;
2707 }
2708
2709 if (space < 0)
2710 break;
2711
2712 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2713 break;
2714
2715 if (!tcp_collapse_retrans(sk, to))
2716 break;
2717 }
2718 }
2719
2720 /* This retransmits one SKB. Policy decisions and retransmit queue
2721 * state updates are done by the caller. Returns non-zero if an
2722 * error occurred which prevented the send.
2723 */
2724 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2725 {
2726 struct inet_connection_sock *icsk = inet_csk(sk);
2727 struct tcp_sock *tp = tcp_sk(sk);
2728 unsigned int cur_mss;
2729 int diff, len, err;
2730
2731
2732 /* Inconclusive MTU probe */
2733 if (icsk->icsk_mtup.probe_size)
2734 icsk->icsk_mtup.probe_size = 0;
2735
2736 /* Do not sent more than we queued. 1/4 is reserved for possible
2737 * copying overhead: fragmentation, tunneling, mangling etc.
2738 */
2739 if (atomic_read(&sk->sk_wmem_alloc) >
2740 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2741 sk->sk_sndbuf))
2742 return -EAGAIN;
2743
2744 if (skb_still_in_host_queue(sk, skb))
2745 return -EBUSY;
2746
2747 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2748 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2749 BUG();
2750 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2751 return -ENOMEM;
2752 }
2753
2754 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2755 return -EHOSTUNREACH; /* Routing failure or similar. */
2756
2757 cur_mss = tcp_current_mss(sk);
2758
2759 /* If receiver has shrunk his window, and skb is out of
2760 * new window, do not retransmit it. The exception is the
2761 * case, when window is shrunk to zero. In this case
2762 * our retransmit serves as a zero window probe.
2763 */
2764 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2765 TCP_SKB_CB(skb)->seq != tp->snd_una)
2766 return -EAGAIN;
2767
2768 len = cur_mss * segs;
2769 if (skb->len > len) {
2770 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2771 return -ENOMEM; /* We'll try again later. */
2772 } else {
2773 if (skb_unclone(skb, GFP_ATOMIC))
2774 return -ENOMEM;
2775
2776 diff = tcp_skb_pcount(skb);
2777 tcp_set_skb_tso_segs(skb, cur_mss);
2778 diff -= tcp_skb_pcount(skb);
2779 if (diff)
2780 tcp_adjust_pcount(sk, skb, diff);
2781 if (skb->len < cur_mss)
2782 tcp_retrans_try_collapse(sk, skb, cur_mss);
2783 }
2784
2785 /* RFC3168, section 6.1.1.1. ECN fallback */
2786 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2787 tcp_ecn_clear_syn(sk, skb);
2788
2789 /* Update global and local TCP statistics. */
2790 segs = tcp_skb_pcount(skb);
2791 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2792 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2793 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2794 tp->total_retrans += segs;
2795
2796 /* make sure skb->data is aligned on arches that require it
2797 * and check if ack-trimming & collapsing extended the headroom
2798 * beyond what csum_start can cover.
2799 */
2800 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2801 skb_headroom(skb) >= 0xFFFF)) {
2802 struct sk_buff *nskb;
2803
2804 skb_mstamp_get(&skb->skb_mstamp);
2805 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2806 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2807 -ENOBUFS;
2808 } else {
2809 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2810 }
2811
2812 if (likely(!err)) {
2813 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2814 } else if (err != -EBUSY) {
2815 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2816 }
2817 return err;
2818 }
2819
2820 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2821 {
2822 struct tcp_sock *tp = tcp_sk(sk);
2823 int err = __tcp_retransmit_skb(sk, skb, segs);
2824
2825 if (err == 0) {
2826 #if FASTRETRANS_DEBUG > 0
2827 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2828 net_dbg_ratelimited("retrans_out leaked\n");
2829 }
2830 #endif
2831 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2832 tp->retrans_out += tcp_skb_pcount(skb);
2833
2834 /* Save stamp of the first retransmit. */
2835 if (!tp->retrans_stamp)
2836 tp->retrans_stamp = tcp_skb_timestamp(skb);
2837
2838 }
2839
2840 if (tp->undo_retrans < 0)
2841 tp->undo_retrans = 0;
2842 tp->undo_retrans += tcp_skb_pcount(skb);
2843 return err;
2844 }
2845
2846 /* This gets called after a retransmit timeout, and the initially
2847 * retransmitted data is acknowledged. It tries to continue
2848 * resending the rest of the retransmit queue, until either
2849 * we've sent it all or the congestion window limit is reached.
2850 * If doing SACK, the first ACK which comes back for a timeout
2851 * based retransmit packet might feed us FACK information again.
2852 * If so, we use it to avoid unnecessarily retransmissions.
2853 */
2854 void tcp_xmit_retransmit_queue(struct sock *sk)
2855 {
2856 const struct inet_connection_sock *icsk = inet_csk(sk);
2857 struct tcp_sock *tp = tcp_sk(sk);
2858 struct sk_buff *skb;
2859 struct sk_buff *hole = NULL;
2860 u32 max_segs;
2861 int mib_idx;
2862
2863 if (!tp->packets_out)
2864 return;
2865
2866 if (tp->retransmit_skb_hint) {
2867 skb = tp->retransmit_skb_hint;
2868 } else {
2869 skb = tcp_write_queue_head(sk);
2870 }
2871
2872 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2873 tcp_for_write_queue_from(skb, sk) {
2874 __u8 sacked;
2875 int segs;
2876
2877 if (skb == tcp_send_head(sk))
2878 break;
2879 /* we could do better than to assign each time */
2880 if (!hole)
2881 tp->retransmit_skb_hint = skb;
2882
2883 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2884 if (segs <= 0)
2885 return;
2886 sacked = TCP_SKB_CB(skb)->sacked;
2887 /* In case tcp_shift_skb_data() have aggregated large skbs,
2888 * we need to make sure not sending too bigs TSO packets
2889 */
2890 segs = min_t(int, segs, max_segs);
2891
2892 if (tp->retrans_out >= tp->lost_out) {
2893 break;
2894 } else if (!(sacked & TCPCB_LOST)) {
2895 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2896 hole = skb;
2897 continue;
2898
2899 } else {
2900 if (icsk->icsk_ca_state != TCP_CA_Loss)
2901 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2902 else
2903 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2904 }
2905
2906 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2907 continue;
2908
2909 if (tcp_small_queue_check(sk, skb, 1))
2910 return;
2911
2912 if (tcp_retransmit_skb(sk, skb, segs))
2913 return;
2914
2915 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2916
2917 if (tcp_in_cwnd_reduction(sk))
2918 tp->prr_out += tcp_skb_pcount(skb);
2919
2920 if (skb == tcp_write_queue_head(sk) &&
2921 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
2922 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2923 inet_csk(sk)->icsk_rto,
2924 TCP_RTO_MAX);
2925 }
2926 }
2927
2928 /* We allow to exceed memory limits for FIN packets to expedite
2929 * connection tear down and (memory) recovery.
2930 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2931 * or even be forced to close flow without any FIN.
2932 * In general, we want to allow one skb per socket to avoid hangs
2933 * with edge trigger epoll()
2934 */
2935 void sk_forced_mem_schedule(struct sock *sk, int size)
2936 {
2937 int amt;
2938
2939 if (size <= sk->sk_forward_alloc)
2940 return;
2941 amt = sk_mem_pages(size);
2942 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2943 sk_memory_allocated_add(sk, amt);
2944
2945 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2946 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2947 }
2948
2949 /* Send a FIN. The caller locks the socket for us.
2950 * We should try to send a FIN packet really hard, but eventually give up.
2951 */
2952 void tcp_send_fin(struct sock *sk)
2953 {
2954 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2955 struct tcp_sock *tp = tcp_sk(sk);
2956
2957 /* Optimization, tack on the FIN if we have one skb in write queue and
2958 * this skb was not yet sent, or we are under memory pressure.
2959 * Note: in the latter case, FIN packet will be sent after a timeout,
2960 * as TCP stack thinks it has already been transmitted.
2961 */
2962 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2963 coalesce:
2964 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2965 TCP_SKB_CB(tskb)->end_seq++;
2966 tp->write_seq++;
2967 if (!tcp_send_head(sk)) {
2968 /* This means tskb was already sent.
2969 * Pretend we included the FIN on previous transmit.
2970 * We need to set tp->snd_nxt to the value it would have
2971 * if FIN had been sent. This is because retransmit path
2972 * does not change tp->snd_nxt.
2973 */
2974 tp->snd_nxt++;
2975 return;
2976 }
2977 } else {
2978 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2979 if (unlikely(!skb)) {
2980 if (tskb)
2981 goto coalesce;
2982 return;
2983 }
2984 skb_reserve(skb, MAX_TCP_HEADER);
2985 sk_forced_mem_schedule(sk, skb->truesize);
2986 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2987 tcp_init_nondata_skb(skb, tp->write_seq,
2988 TCPHDR_ACK | TCPHDR_FIN);
2989 tcp_queue_skb(sk, skb);
2990 }
2991 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2992 }
2993
2994 /* We get here when a process closes a file descriptor (either due to
2995 * an explicit close() or as a byproduct of exit()'ing) and there
2996 * was unread data in the receive queue. This behavior is recommended
2997 * by RFC 2525, section 2.17. -DaveM
2998 */
2999 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3000 {
3001 struct sk_buff *skb;
3002
3003 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3004
3005 /* NOTE: No TCP options attached and we never retransmit this. */
3006 skb = alloc_skb(MAX_TCP_HEADER, priority);
3007 if (!skb) {
3008 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3009 return;
3010 }
3011
3012 /* Reserve space for headers and prepare control bits. */
3013 skb_reserve(skb, MAX_TCP_HEADER);
3014 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3015 TCPHDR_ACK | TCPHDR_RST);
3016 skb_mstamp_get(&skb->skb_mstamp);
3017 /* Send it off. */
3018 if (tcp_transmit_skb(sk, skb, 0, priority))
3019 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3020 }
3021
3022 /* Send a crossed SYN-ACK during socket establishment.
3023 * WARNING: This routine must only be called when we have already sent
3024 * a SYN packet that crossed the incoming SYN that caused this routine
3025 * to get called. If this assumption fails then the initial rcv_wnd
3026 * and rcv_wscale values will not be correct.
3027 */
3028 int tcp_send_synack(struct sock *sk)
3029 {
3030 struct sk_buff *skb;
3031
3032 skb = tcp_write_queue_head(sk);
3033 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3034 pr_debug("%s: wrong queue state\n", __func__);
3035 return -EFAULT;
3036 }
3037 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3038 if (skb_cloned(skb)) {
3039 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
3040 if (!nskb)
3041 return -ENOMEM;
3042 tcp_unlink_write_queue(skb, sk);
3043 __skb_header_release(nskb);
3044 __tcp_add_write_queue_head(sk, nskb);
3045 sk_wmem_free_skb(sk, skb);
3046 sk->sk_wmem_queued += nskb->truesize;
3047 sk_mem_charge(sk, nskb->truesize);
3048 skb = nskb;
3049 }
3050
3051 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3052 tcp_ecn_send_synack(sk, skb);
3053 }
3054 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3055 }
3056
3057 /**
3058 * tcp_make_synack - Prepare a SYN-ACK.
3059 * sk: listener socket
3060 * dst: dst entry attached to the SYNACK
3061 * req: request_sock pointer
3062 *
3063 * Allocate one skb and build a SYNACK packet.
3064 * @dst is consumed : Caller should not use it again.
3065 */
3066 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3067 struct request_sock *req,
3068 struct tcp_fastopen_cookie *foc,
3069 enum tcp_synack_type synack_type)
3070 {
3071 struct inet_request_sock *ireq = inet_rsk(req);
3072 const struct tcp_sock *tp = tcp_sk(sk);
3073 struct tcp_md5sig_key *md5 = NULL;
3074 struct tcp_out_options opts;
3075 struct sk_buff *skb;
3076 int tcp_header_size;
3077 struct tcphdr *th;
3078 int mss;
3079
3080 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3081 if (unlikely(!skb)) {
3082 dst_release(dst);
3083 return NULL;
3084 }
3085 /* Reserve space for headers. */
3086 skb_reserve(skb, MAX_TCP_HEADER);
3087
3088 switch (synack_type) {
3089 case TCP_SYNACK_NORMAL:
3090 skb_set_owner_w(skb, req_to_sk(req));
3091 break;
3092 case TCP_SYNACK_COOKIE:
3093 /* Under synflood, we do not attach skb to a socket,
3094 * to avoid false sharing.
3095 */
3096 break;
3097 case TCP_SYNACK_FASTOPEN:
3098 /* sk is a const pointer, because we want to express multiple
3099 * cpu might call us concurrently.
3100 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3101 */
3102 skb_set_owner_w(skb, (struct sock *)sk);
3103 break;
3104 }
3105 skb_dst_set(skb, dst);
3106
3107 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3108
3109 memset(&opts, 0, sizeof(opts));
3110 #ifdef CONFIG_SYN_COOKIES
3111 if (unlikely(req->cookie_ts))
3112 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
3113 else
3114 #endif
3115 skb_mstamp_get(&skb->skb_mstamp);
3116
3117 #ifdef CONFIG_TCP_MD5SIG
3118 rcu_read_lock();
3119 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3120 #endif
3121 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3122 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3123 sizeof(*th);
3124
3125 skb_push(skb, tcp_header_size);
3126 skb_reset_transport_header(skb);
3127
3128 th = (struct tcphdr *)skb->data;
3129 memset(th, 0, sizeof(struct tcphdr));
3130 th->syn = 1;
3131 th->ack = 1;
3132 tcp_ecn_make_synack(req, th);
3133 th->source = htons(ireq->ir_num);
3134 th->dest = ireq->ir_rmt_port;
3135 /* Setting of flags are superfluous here for callers (and ECE is
3136 * not even correctly set)
3137 */
3138 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3139 TCPHDR_SYN | TCPHDR_ACK);
3140
3141 th->seq = htonl(TCP_SKB_CB(skb)->seq);
3142 /* XXX data is queued and acked as is. No buffer/window check */
3143 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3144
3145 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3146 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3147 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3148 th->doff = (tcp_header_size >> 2);
3149 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3150
3151 #ifdef CONFIG_TCP_MD5SIG
3152 /* Okay, we have all we need - do the md5 hash if needed */
3153 if (md5)
3154 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3155 md5, req_to_sk(req), skb);
3156 rcu_read_unlock();
3157 #endif
3158
3159 /* Do not fool tcpdump (if any), clean our debris */
3160 skb->tstamp = 0;
3161 return skb;
3162 }
3163 EXPORT_SYMBOL(tcp_make_synack);
3164
3165 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3166 {
3167 struct inet_connection_sock *icsk = inet_csk(sk);
3168 const struct tcp_congestion_ops *ca;
3169 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3170
3171 if (ca_key == TCP_CA_UNSPEC)
3172 return;
3173
3174 rcu_read_lock();
3175 ca = tcp_ca_find_key(ca_key);
3176 if (likely(ca && try_module_get(ca->owner))) {
3177 module_put(icsk->icsk_ca_ops->owner);
3178 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3179 icsk->icsk_ca_ops = ca;
3180 }
3181 rcu_read_unlock();
3182 }
3183
3184 /* Do all connect socket setups that can be done AF independent. */
3185 static void tcp_connect_init(struct sock *sk)
3186 {
3187 const struct dst_entry *dst = __sk_dst_get(sk);
3188 struct tcp_sock *tp = tcp_sk(sk);
3189 __u8 rcv_wscale;
3190
3191 /* We'll fix this up when we get a response from the other end.
3192 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3193 */
3194 tp->tcp_header_len = sizeof(struct tcphdr) +
3195 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3196
3197 #ifdef CONFIG_TCP_MD5SIG
3198 if (tp->af_specific->md5_lookup(sk, sk))
3199 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3200 #endif
3201
3202 /* If user gave his TCP_MAXSEG, record it to clamp */
3203 if (tp->rx_opt.user_mss)
3204 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3205 tp->max_window = 0;
3206 tcp_mtup_init(sk);
3207 tcp_sync_mss(sk, dst_mtu(dst));
3208
3209 tcp_ca_dst_init(sk, dst);
3210
3211 if (!tp->window_clamp)
3212 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3213 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3214
3215 tcp_initialize_rcv_mss(sk);
3216
3217 /* limit the window selection if the user enforce a smaller rx buffer */
3218 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3219 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3220 tp->window_clamp = tcp_full_space(sk);
3221
3222 tcp_select_initial_window(tcp_full_space(sk),
3223 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3224 &tp->rcv_wnd,
3225 &tp->window_clamp,
3226 sysctl_tcp_window_scaling,
3227 &rcv_wscale,
3228 dst_metric(dst, RTAX_INITRWND));
3229
3230 tp->rx_opt.rcv_wscale = rcv_wscale;
3231 tp->rcv_ssthresh = tp->rcv_wnd;
3232
3233 sk->sk_err = 0;
3234 sock_reset_flag(sk, SOCK_DONE);
3235 tp->snd_wnd = 0;
3236 tcp_init_wl(tp, 0);
3237 tp->snd_una = tp->write_seq;
3238 tp->snd_sml = tp->write_seq;
3239 tp->snd_up = tp->write_seq;
3240 tp->snd_nxt = tp->write_seq;
3241
3242 if (likely(!tp->repair))
3243 tp->rcv_nxt = 0;
3244 else
3245 tp->rcv_tstamp = tcp_time_stamp;
3246 tp->rcv_wup = tp->rcv_nxt;
3247 tp->copied_seq = tp->rcv_nxt;
3248
3249 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3250 inet_csk(sk)->icsk_retransmits = 0;
3251 tcp_clear_retrans(tp);
3252 }
3253
3254 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3255 {
3256 struct tcp_sock *tp = tcp_sk(sk);
3257 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3258
3259 tcb->end_seq += skb->len;
3260 __skb_header_release(skb);
3261 __tcp_add_write_queue_tail(sk, skb);
3262 sk->sk_wmem_queued += skb->truesize;
3263 sk_mem_charge(sk, skb->truesize);
3264 tp->write_seq = tcb->end_seq;
3265 tp->packets_out += tcp_skb_pcount(skb);
3266 }
3267
3268 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3269 * queue a data-only packet after the regular SYN, such that regular SYNs
3270 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3271 * only the SYN sequence, the data are retransmitted in the first ACK.
3272 * If cookie is not cached or other error occurs, falls back to send a
3273 * regular SYN with Fast Open cookie request option.
3274 */
3275 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3276 {
3277 struct tcp_sock *tp = tcp_sk(sk);
3278 struct tcp_fastopen_request *fo = tp->fastopen_req;
3279 int space, err = 0;
3280 struct sk_buff *syn_data;
3281
3282 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3283 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3284 goto fallback;
3285
3286 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3287 * user-MSS. Reserve maximum option space for middleboxes that add
3288 * private TCP options. The cost is reduced data space in SYN :(
3289 */
3290 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3291
3292 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3293 MAX_TCP_OPTION_SPACE;
3294
3295 space = min_t(size_t, space, fo->size);
3296
3297 /* limit to order-0 allocations */
3298 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3299
3300 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3301 if (!syn_data)
3302 goto fallback;
3303 syn_data->ip_summed = CHECKSUM_PARTIAL;
3304 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3305 if (space) {
3306 int copied = copy_from_iter(skb_put(syn_data, space), space,
3307 &fo->data->msg_iter);
3308 if (unlikely(!copied)) {
3309 kfree_skb(syn_data);
3310 goto fallback;
3311 }
3312 if (copied != space) {
3313 skb_trim(syn_data, copied);
3314 space = copied;
3315 }
3316 }
3317 /* No more data pending in inet_wait_for_connect() */
3318 if (space == fo->size)
3319 fo->data = NULL;
3320 fo->copied = space;
3321
3322 tcp_connect_queue_skb(sk, syn_data);
3323 if (syn_data->len)
3324 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3325
3326 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3327
3328 syn->skb_mstamp = syn_data->skb_mstamp;
3329
3330 /* Now full SYN+DATA was cloned and sent (or not),
3331 * remove the SYN from the original skb (syn_data)
3332 * we keep in write queue in case of a retransmit, as we
3333 * also have the SYN packet (with no data) in the same queue.
3334 */
3335 TCP_SKB_CB(syn_data)->seq++;
3336 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3337 if (!err) {
3338 tp->syn_data = (fo->copied > 0);
3339 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3340 goto done;
3341 }
3342
3343 fallback:
3344 /* Send a regular SYN with Fast Open cookie request option */
3345 if (fo->cookie.len > 0)
3346 fo->cookie.len = 0;
3347 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3348 if (err)
3349 tp->syn_fastopen = 0;
3350 done:
3351 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3352 return err;
3353 }
3354
3355 /* Build a SYN and send it off. */
3356 int tcp_connect(struct sock *sk)
3357 {
3358 struct tcp_sock *tp = tcp_sk(sk);
3359 struct sk_buff *buff;
3360 int err;
3361
3362 tcp_connect_init(sk);
3363
3364 if (unlikely(tp->repair)) {
3365 tcp_finish_connect(sk, NULL);
3366 return 0;
3367 }
3368
3369 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3370 if (unlikely(!buff))
3371 return -ENOBUFS;
3372
3373 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3374 tp->retrans_stamp = tcp_time_stamp;
3375 tcp_connect_queue_skb(sk, buff);
3376 tcp_ecn_send_syn(sk, buff);
3377
3378 /* Send off SYN; include data in Fast Open. */
3379 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3380 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3381 if (err == -ECONNREFUSED)
3382 return err;
3383
3384 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3385 * in order to make this packet get counted in tcpOutSegs.
3386 */
3387 tp->snd_nxt = tp->write_seq;
3388 tp->pushed_seq = tp->write_seq;
3389 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3390
3391 /* Timer for repeating the SYN until an answer. */
3392 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3393 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3394 return 0;
3395 }
3396 EXPORT_SYMBOL(tcp_connect);
3397
3398 /* Send out a delayed ack, the caller does the policy checking
3399 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3400 * for details.
3401 */
3402 void tcp_send_delayed_ack(struct sock *sk)
3403 {
3404 struct inet_connection_sock *icsk = inet_csk(sk);
3405 int ato = icsk->icsk_ack.ato;
3406 unsigned long timeout;
3407
3408 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3409
3410 if (ato > TCP_DELACK_MIN) {
3411 const struct tcp_sock *tp = tcp_sk(sk);
3412 int max_ato = HZ / 2;
3413
3414 if (icsk->icsk_ack.pingpong ||
3415 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3416 max_ato = TCP_DELACK_MAX;
3417
3418 /* Slow path, intersegment interval is "high". */
3419
3420 /* If some rtt estimate is known, use it to bound delayed ack.
3421 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3422 * directly.
3423 */
3424 if (tp->srtt_us) {
3425 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3426 TCP_DELACK_MIN);
3427
3428 if (rtt < max_ato)
3429 max_ato = rtt;
3430 }
3431
3432 ato = min(ato, max_ato);
3433 }
3434
3435 /* Stay within the limit we were given */
3436 timeout = jiffies + ato;
3437
3438 /* Use new timeout only if there wasn't a older one earlier. */
3439 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3440 /* If delack timer was blocked or is about to expire,
3441 * send ACK now.
3442 */
3443 if (icsk->icsk_ack.blocked ||
3444 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3445 tcp_send_ack(sk);
3446 return;
3447 }
3448
3449 if (!time_before(timeout, icsk->icsk_ack.timeout))
3450 timeout = icsk->icsk_ack.timeout;
3451 }
3452 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3453 icsk->icsk_ack.timeout = timeout;
3454 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3455 }
3456
3457 /* This routine sends an ack and also updates the window. */
3458 void tcp_send_ack(struct sock *sk)
3459 {
3460 struct sk_buff *buff;
3461
3462 /* If we have been reset, we may not send again. */
3463 if (sk->sk_state == TCP_CLOSE)
3464 return;
3465
3466 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3467
3468 /* We are not putting this on the write queue, so
3469 * tcp_transmit_skb() will set the ownership to this
3470 * sock.
3471 */
3472 buff = alloc_skb(MAX_TCP_HEADER,
3473 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3474 if (unlikely(!buff)) {
3475 inet_csk_schedule_ack(sk);
3476 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3477 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3478 TCP_DELACK_MAX, TCP_RTO_MAX);
3479 return;
3480 }
3481
3482 /* Reserve space for headers and prepare control bits. */
3483 skb_reserve(buff, MAX_TCP_HEADER);
3484 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3485
3486 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3487 * too much.
3488 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3489 */
3490 skb_set_tcp_pure_ack(buff);
3491
3492 /* Send it off, this clears delayed acks for us. */
3493 skb_mstamp_get(&buff->skb_mstamp);
3494 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3495 }
3496 EXPORT_SYMBOL_GPL(tcp_send_ack);
3497
3498 /* This routine sends a packet with an out of date sequence
3499 * number. It assumes the other end will try to ack it.
3500 *
3501 * Question: what should we make while urgent mode?
3502 * 4.4BSD forces sending single byte of data. We cannot send
3503 * out of window data, because we have SND.NXT==SND.MAX...
3504 *
3505 * Current solution: to send TWO zero-length segments in urgent mode:
3506 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3507 * out-of-date with SND.UNA-1 to probe window.
3508 */
3509 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3510 {
3511 struct tcp_sock *tp = tcp_sk(sk);
3512 struct sk_buff *skb;
3513
3514 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3515 skb = alloc_skb(MAX_TCP_HEADER,
3516 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3517 if (!skb)
3518 return -1;
3519
3520 /* Reserve space for headers and set control bits. */
3521 skb_reserve(skb, MAX_TCP_HEADER);
3522 /* Use a previous sequence. This should cause the other
3523 * end to send an ack. Don't queue or clone SKB, just
3524 * send it.
3525 */
3526 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3527 skb_mstamp_get(&skb->skb_mstamp);
3528 NET_INC_STATS(sock_net(sk), mib);
3529 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3530 }
3531
3532 void tcp_send_window_probe(struct sock *sk)
3533 {
3534 if (sk->sk_state == TCP_ESTABLISHED) {
3535 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3536 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3537 }
3538 }
3539
3540 /* Initiate keepalive or window probe from timer. */
3541 int tcp_write_wakeup(struct sock *sk, int mib)
3542 {
3543 struct tcp_sock *tp = tcp_sk(sk);
3544 struct sk_buff *skb;
3545
3546 if (sk->sk_state == TCP_CLOSE)
3547 return -1;
3548
3549 skb = tcp_send_head(sk);
3550 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3551 int err;
3552 unsigned int mss = tcp_current_mss(sk);
3553 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3554
3555 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3556 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3557
3558 /* We are probing the opening of a window
3559 * but the window size is != 0
3560 * must have been a result SWS avoidance ( sender )
3561 */
3562 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3563 skb->len > mss) {
3564 seg_size = min(seg_size, mss);
3565 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3566 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3567 return -1;
3568 } else if (!tcp_skb_pcount(skb))
3569 tcp_set_skb_tso_segs(skb, mss);
3570
3571 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3572 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3573 if (!err)
3574 tcp_event_new_data_sent(sk, skb);
3575 return err;
3576 } else {
3577 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3578 tcp_xmit_probe_skb(sk, 1, mib);
3579 return tcp_xmit_probe_skb(sk, 0, mib);
3580 }
3581 }
3582
3583 /* A window probe timeout has occurred. If window is not closed send
3584 * a partial packet else a zero probe.
3585 */
3586 void tcp_send_probe0(struct sock *sk)
3587 {
3588 struct inet_connection_sock *icsk = inet_csk(sk);
3589 struct tcp_sock *tp = tcp_sk(sk);
3590 struct net *net = sock_net(sk);
3591 unsigned long probe_max;
3592 int err;
3593
3594 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3595
3596 if (tp->packets_out || !tcp_send_head(sk)) {
3597 /* Cancel probe timer, if it is not required. */
3598 icsk->icsk_probes_out = 0;
3599 icsk->icsk_backoff = 0;
3600 return;
3601 }
3602
3603 if (err <= 0) {
3604 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3605 icsk->icsk_backoff++;
3606 icsk->icsk_probes_out++;
3607 probe_max = TCP_RTO_MAX;
3608 } else {
3609 /* If packet was not sent due to local congestion,
3610 * do not backoff and do not remember icsk_probes_out.
3611 * Let local senders to fight for local resources.
3612 *
3613 * Use accumulated backoff yet.
3614 */
3615 if (!icsk->icsk_probes_out)
3616 icsk->icsk_probes_out = 1;
3617 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3618 }
3619 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3620 tcp_probe0_when(sk, probe_max),
3621 TCP_RTO_MAX);
3622 }
3623
3624 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3625 {
3626 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3627 struct flowi fl;
3628 int res;
3629
3630 tcp_rsk(req)->txhash = net_tx_rndhash();
3631 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3632 if (!res) {
3633 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3634 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3635 if (unlikely(tcp_passive_fastopen(sk)))
3636 tcp_sk(sk)->total_retrans++;
3637 }
3638 return res;
3639 }
3640 EXPORT_SYMBOL(tcp_rtx_synack);