]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - net/mac80211/key.c
kprobes: Mark ftrace mcount handler functions nokprobe
[thirdparty/kernel/linux.git] / net / mac80211 / key.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2015-2017 Intel Deutschland GmbH
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/if_ether.h>
15 #include <linux/etherdevice.h>
16 #include <linux/list.h>
17 #include <linux/rcupdate.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/slab.h>
20 #include <linux/export.h>
21 #include <net/mac80211.h>
22 #include <crypto/algapi.h>
23 #include <asm/unaligned.h>
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "debugfs_key.h"
27 #include "aes_ccm.h"
28 #include "aes_cmac.h"
29 #include "aes_gmac.h"
30 #include "aes_gcm.h"
31
32
33 /**
34 * DOC: Key handling basics
35 *
36 * Key handling in mac80211 is done based on per-interface (sub_if_data)
37 * keys and per-station keys. Since each station belongs to an interface,
38 * each station key also belongs to that interface.
39 *
40 * Hardware acceleration is done on a best-effort basis for algorithms
41 * that are implemented in software, for each key the hardware is asked
42 * to enable that key for offloading but if it cannot do that the key is
43 * simply kept for software encryption (unless it is for an algorithm
44 * that isn't implemented in software).
45 * There is currently no way of knowing whether a key is handled in SW
46 * or HW except by looking into debugfs.
47 *
48 * All key management is internally protected by a mutex. Within all
49 * other parts of mac80211, key references are, just as STA structure
50 * references, protected by RCU. Note, however, that some things are
51 * unprotected, namely the key->sta dereferences within the hardware
52 * acceleration functions. This means that sta_info_destroy() must
53 * remove the key which waits for an RCU grace period.
54 */
55
56 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
57
58 static void assert_key_lock(struct ieee80211_local *local)
59 {
60 lockdep_assert_held(&local->key_mtx);
61 }
62
63 static void
64 update_vlan_tailroom_need_count(struct ieee80211_sub_if_data *sdata, int delta)
65 {
66 struct ieee80211_sub_if_data *vlan;
67
68 if (sdata->vif.type != NL80211_IFTYPE_AP)
69 return;
70
71 /* crypto_tx_tailroom_needed_cnt is protected by this */
72 assert_key_lock(sdata->local);
73
74 rcu_read_lock();
75
76 list_for_each_entry_rcu(vlan, &sdata->u.ap.vlans, u.vlan.list)
77 vlan->crypto_tx_tailroom_needed_cnt += delta;
78
79 rcu_read_unlock();
80 }
81
82 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
83 {
84 /*
85 * When this count is zero, SKB resizing for allocating tailroom
86 * for IV or MMIC is skipped. But, this check has created two race
87 * cases in xmit path while transiting from zero count to one:
88 *
89 * 1. SKB resize was skipped because no key was added but just before
90 * the xmit key is added and SW encryption kicks off.
91 *
92 * 2. SKB resize was skipped because all the keys were hw planted but
93 * just before xmit one of the key is deleted and SW encryption kicks
94 * off.
95 *
96 * In both the above case SW encryption will find not enough space for
97 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
98 *
99 * Solution has been explained at
100 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
101 */
102
103 assert_key_lock(sdata->local);
104
105 update_vlan_tailroom_need_count(sdata, 1);
106
107 if (!sdata->crypto_tx_tailroom_needed_cnt++) {
108 /*
109 * Flush all XMIT packets currently using HW encryption or no
110 * encryption at all if the count transition is from 0 -> 1.
111 */
112 synchronize_net();
113 }
114 }
115
116 static void decrease_tailroom_need_count(struct ieee80211_sub_if_data *sdata,
117 int delta)
118 {
119 assert_key_lock(sdata->local);
120
121 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt < delta);
122
123 update_vlan_tailroom_need_count(sdata, -delta);
124 sdata->crypto_tx_tailroom_needed_cnt -= delta;
125 }
126
127 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
128 {
129 struct ieee80211_sub_if_data *sdata = key->sdata;
130 struct sta_info *sta;
131 int ret = -EOPNOTSUPP;
132
133 might_sleep();
134
135 if (key->flags & KEY_FLAG_TAINTED) {
136 /* If we get here, it's during resume and the key is
137 * tainted so shouldn't be used/programmed any more.
138 * However, its flags may still indicate that it was
139 * programmed into the device (since we're in resume)
140 * so clear that flag now to avoid trying to remove
141 * it again later.
142 */
143 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
144 return -EINVAL;
145 }
146
147 if (!key->local->ops->set_key)
148 goto out_unsupported;
149
150 assert_key_lock(key->local);
151
152 sta = key->sta;
153
154 /*
155 * If this is a per-STA GTK, check if it
156 * is supported; if not, return.
157 */
158 if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
159 !ieee80211_hw_check(&key->local->hw, SUPPORTS_PER_STA_GTK))
160 goto out_unsupported;
161
162 if (sta && !sta->uploaded)
163 goto out_unsupported;
164
165 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
166 /*
167 * The driver doesn't know anything about VLAN interfaces.
168 * Hence, don't send GTKs for VLAN interfaces to the driver.
169 */
170 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
171 goto out_unsupported;
172 }
173
174 ret = drv_set_key(key->local, SET_KEY, sdata,
175 sta ? &sta->sta : NULL, &key->conf);
176
177 if (!ret) {
178 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
179
180 if (!((key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
181 IEEE80211_KEY_FLAG_PUT_MIC_SPACE)) ||
182 (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
183 decrease_tailroom_need_count(sdata, 1);
184
185 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
186 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
187
188 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_MIC_SPACE) &&
189 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC));
190
191 return 0;
192 }
193
194 if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1)
195 sdata_err(sdata,
196 "failed to set key (%d, %pM) to hardware (%d)\n",
197 key->conf.keyidx,
198 sta ? sta->sta.addr : bcast_addr, ret);
199
200 out_unsupported:
201 switch (key->conf.cipher) {
202 case WLAN_CIPHER_SUITE_WEP40:
203 case WLAN_CIPHER_SUITE_WEP104:
204 case WLAN_CIPHER_SUITE_TKIP:
205 case WLAN_CIPHER_SUITE_CCMP:
206 case WLAN_CIPHER_SUITE_CCMP_256:
207 case WLAN_CIPHER_SUITE_AES_CMAC:
208 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
209 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
210 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
211 case WLAN_CIPHER_SUITE_GCMP:
212 case WLAN_CIPHER_SUITE_GCMP_256:
213 /* all of these we can do in software - if driver can */
214 if (ret == 1)
215 return 0;
216 if (ieee80211_hw_check(&key->local->hw, SW_CRYPTO_CONTROL)) {
217 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
218 return 0;
219 return -EINVAL;
220 }
221 return 0;
222 default:
223 return -EINVAL;
224 }
225 }
226
227 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
228 {
229 struct ieee80211_sub_if_data *sdata;
230 struct sta_info *sta;
231 int ret;
232
233 might_sleep();
234
235 if (!key || !key->local->ops->set_key)
236 return;
237
238 assert_key_lock(key->local);
239
240 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
241 return;
242
243 sta = key->sta;
244 sdata = key->sdata;
245
246 if (!((key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
247 IEEE80211_KEY_FLAG_PUT_MIC_SPACE)) ||
248 (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
249 increment_tailroom_need_count(sdata);
250
251 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
252 ret = drv_set_key(key->local, DISABLE_KEY, sdata,
253 sta ? &sta->sta : NULL, &key->conf);
254
255 if (ret)
256 sdata_err(sdata,
257 "failed to remove key (%d, %pM) from hardware (%d)\n",
258 key->conf.keyidx,
259 sta ? sta->sta.addr : bcast_addr, ret);
260 }
261
262 static int ieee80211_hw_key_replace(struct ieee80211_key *old_key,
263 struct ieee80211_key *new_key,
264 bool ptk0rekey)
265 {
266 struct ieee80211_sub_if_data *sdata;
267 struct ieee80211_local *local;
268 struct sta_info *sta;
269 int ret;
270
271 /* Aggregation sessions are OK when running on SW crypto.
272 * A broken remote STA may cause issues not observed with HW
273 * crypto, though.
274 */
275 if (!(old_key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
276 return 0;
277
278 assert_key_lock(old_key->local);
279 sta = old_key->sta;
280
281 /* PTK only using key ID 0 needs special handling on rekey */
282 if (new_key && sta && ptk0rekey) {
283 local = old_key->local;
284 sdata = old_key->sdata;
285
286 /* Stop TX till we are on the new key */
287 old_key->flags |= KEY_FLAG_TAINTED;
288 ieee80211_clear_fast_xmit(sta);
289
290 /* Aggregation sessions during rekey are complicated due to the
291 * reorder buffer and retransmits. Side step that by blocking
292 * aggregation during rekey and tear down running sessions.
293 */
294 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) {
295 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
296 ieee80211_sta_tear_down_BA_sessions(sta,
297 AGG_STOP_LOCAL_REQUEST);
298 }
299
300 if (!wiphy_ext_feature_isset(local->hw.wiphy,
301 NL80211_EXT_FEATURE_CAN_REPLACE_PTK0)) {
302 pr_warn_ratelimited("Rekeying PTK for STA %pM but driver can't safely do that.",
303 sta->sta.addr);
304 /* Flushing the driver queues *may* help prevent
305 * the clear text leaks and freezes.
306 */
307 ieee80211_flush_queues(local, sdata, false);
308 }
309 }
310
311 ieee80211_key_disable_hw_accel(old_key);
312
313 if (new_key)
314 ret = ieee80211_key_enable_hw_accel(new_key);
315 else
316 ret = 0;
317
318 return ret;
319 }
320
321 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
322 int idx, bool uni, bool multi)
323 {
324 struct ieee80211_key *key = NULL;
325
326 assert_key_lock(sdata->local);
327
328 if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
329 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
330
331 if (uni) {
332 rcu_assign_pointer(sdata->default_unicast_key, key);
333 ieee80211_check_fast_xmit_iface(sdata);
334 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
335 drv_set_default_unicast_key(sdata->local, sdata, idx);
336 }
337
338 if (multi)
339 rcu_assign_pointer(sdata->default_multicast_key, key);
340
341 ieee80211_debugfs_key_update_default(sdata);
342 }
343
344 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
345 bool uni, bool multi)
346 {
347 mutex_lock(&sdata->local->key_mtx);
348 __ieee80211_set_default_key(sdata, idx, uni, multi);
349 mutex_unlock(&sdata->local->key_mtx);
350 }
351
352 static void
353 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
354 {
355 struct ieee80211_key *key = NULL;
356
357 assert_key_lock(sdata->local);
358
359 if (idx >= NUM_DEFAULT_KEYS &&
360 idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
361 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
362
363 rcu_assign_pointer(sdata->default_mgmt_key, key);
364
365 ieee80211_debugfs_key_update_default(sdata);
366 }
367
368 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
369 int idx)
370 {
371 mutex_lock(&sdata->local->key_mtx);
372 __ieee80211_set_default_mgmt_key(sdata, idx);
373 mutex_unlock(&sdata->local->key_mtx);
374 }
375
376
377 static int ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
378 struct sta_info *sta,
379 bool pairwise,
380 struct ieee80211_key *old,
381 struct ieee80211_key *new)
382 {
383 int idx;
384 int ret;
385 bool defunikey, defmultikey, defmgmtkey;
386
387 /* caller must provide at least one old/new */
388 if (WARN_ON(!new && !old))
389 return 0;
390
391 if (new)
392 list_add_tail_rcu(&new->list, &sdata->key_list);
393
394 WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
395
396 if (old) {
397 idx = old->conf.keyidx;
398 /* TODO: proper implement and test "Extended Key ID for
399 * Individually Addressed Frames" from IEEE 802.11-2016.
400 * Till then always assume only key ID 0 is used for
401 * pairwise keys.*/
402 ret = ieee80211_hw_key_replace(old, new, pairwise);
403 } else {
404 /* new must be provided in case old is not */
405 idx = new->conf.keyidx;
406 if (!new->local->wowlan)
407 ret = ieee80211_key_enable_hw_accel(new);
408 else
409 ret = 0;
410 }
411
412 if (ret)
413 return ret;
414
415 if (sta) {
416 if (pairwise) {
417 rcu_assign_pointer(sta->ptk[idx], new);
418 sta->ptk_idx = idx;
419 if (new) {
420 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
421 ieee80211_check_fast_xmit(sta);
422 }
423 } else {
424 rcu_assign_pointer(sta->gtk[idx], new);
425 }
426 if (new)
427 ieee80211_check_fast_rx(sta);
428 } else {
429 defunikey = old &&
430 old == key_mtx_dereference(sdata->local,
431 sdata->default_unicast_key);
432 defmultikey = old &&
433 old == key_mtx_dereference(sdata->local,
434 sdata->default_multicast_key);
435 defmgmtkey = old &&
436 old == key_mtx_dereference(sdata->local,
437 sdata->default_mgmt_key);
438
439 if (defunikey && !new)
440 __ieee80211_set_default_key(sdata, -1, true, false);
441 if (defmultikey && !new)
442 __ieee80211_set_default_key(sdata, -1, false, true);
443 if (defmgmtkey && !new)
444 __ieee80211_set_default_mgmt_key(sdata, -1);
445
446 rcu_assign_pointer(sdata->keys[idx], new);
447 if (defunikey && new)
448 __ieee80211_set_default_key(sdata, new->conf.keyidx,
449 true, false);
450 if (defmultikey && new)
451 __ieee80211_set_default_key(sdata, new->conf.keyidx,
452 false, true);
453 if (defmgmtkey && new)
454 __ieee80211_set_default_mgmt_key(sdata,
455 new->conf.keyidx);
456 }
457
458 if (old)
459 list_del_rcu(&old->list);
460
461 return 0;
462 }
463
464 struct ieee80211_key *
465 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
466 const u8 *key_data,
467 size_t seq_len, const u8 *seq,
468 const struct ieee80211_cipher_scheme *cs)
469 {
470 struct ieee80211_key *key;
471 int i, j, err;
472
473 if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS))
474 return ERR_PTR(-EINVAL);
475
476 key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
477 if (!key)
478 return ERR_PTR(-ENOMEM);
479
480 /*
481 * Default to software encryption; we'll later upload the
482 * key to the hardware if possible.
483 */
484 key->conf.flags = 0;
485 key->flags = 0;
486
487 key->conf.cipher = cipher;
488 key->conf.keyidx = idx;
489 key->conf.keylen = key_len;
490 switch (cipher) {
491 case WLAN_CIPHER_SUITE_WEP40:
492 case WLAN_CIPHER_SUITE_WEP104:
493 key->conf.iv_len = IEEE80211_WEP_IV_LEN;
494 key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
495 break;
496 case WLAN_CIPHER_SUITE_TKIP:
497 key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
498 key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
499 if (seq) {
500 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
501 key->u.tkip.rx[i].iv32 =
502 get_unaligned_le32(&seq[2]);
503 key->u.tkip.rx[i].iv16 =
504 get_unaligned_le16(seq);
505 }
506 }
507 spin_lock_init(&key->u.tkip.txlock);
508 break;
509 case WLAN_CIPHER_SUITE_CCMP:
510 key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
511 key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
512 if (seq) {
513 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
514 for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
515 key->u.ccmp.rx_pn[i][j] =
516 seq[IEEE80211_CCMP_PN_LEN - j - 1];
517 }
518 /*
519 * Initialize AES key state here as an optimization so that
520 * it does not need to be initialized for every packet.
521 */
522 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
523 key_data, key_len, IEEE80211_CCMP_MIC_LEN);
524 if (IS_ERR(key->u.ccmp.tfm)) {
525 err = PTR_ERR(key->u.ccmp.tfm);
526 kfree(key);
527 return ERR_PTR(err);
528 }
529 break;
530 case WLAN_CIPHER_SUITE_CCMP_256:
531 key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN;
532 key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN;
533 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
534 for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++)
535 key->u.ccmp.rx_pn[i][j] =
536 seq[IEEE80211_CCMP_256_PN_LEN - j - 1];
537 /* Initialize AES key state here as an optimization so that
538 * it does not need to be initialized for every packet.
539 */
540 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
541 key_data, key_len, IEEE80211_CCMP_256_MIC_LEN);
542 if (IS_ERR(key->u.ccmp.tfm)) {
543 err = PTR_ERR(key->u.ccmp.tfm);
544 kfree(key);
545 return ERR_PTR(err);
546 }
547 break;
548 case WLAN_CIPHER_SUITE_AES_CMAC:
549 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
550 key->conf.iv_len = 0;
551 if (cipher == WLAN_CIPHER_SUITE_AES_CMAC)
552 key->conf.icv_len = sizeof(struct ieee80211_mmie);
553 else
554 key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
555 if (seq)
556 for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
557 key->u.aes_cmac.rx_pn[j] =
558 seq[IEEE80211_CMAC_PN_LEN - j - 1];
559 /*
560 * Initialize AES key state here as an optimization so that
561 * it does not need to be initialized for every packet.
562 */
563 key->u.aes_cmac.tfm =
564 ieee80211_aes_cmac_key_setup(key_data, key_len);
565 if (IS_ERR(key->u.aes_cmac.tfm)) {
566 err = PTR_ERR(key->u.aes_cmac.tfm);
567 kfree(key);
568 return ERR_PTR(err);
569 }
570 break;
571 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
572 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
573 key->conf.iv_len = 0;
574 key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
575 if (seq)
576 for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++)
577 key->u.aes_gmac.rx_pn[j] =
578 seq[IEEE80211_GMAC_PN_LEN - j - 1];
579 /* Initialize AES key state here as an optimization so that
580 * it does not need to be initialized for every packet.
581 */
582 key->u.aes_gmac.tfm =
583 ieee80211_aes_gmac_key_setup(key_data, key_len);
584 if (IS_ERR(key->u.aes_gmac.tfm)) {
585 err = PTR_ERR(key->u.aes_gmac.tfm);
586 kfree(key);
587 return ERR_PTR(err);
588 }
589 break;
590 case WLAN_CIPHER_SUITE_GCMP:
591 case WLAN_CIPHER_SUITE_GCMP_256:
592 key->conf.iv_len = IEEE80211_GCMP_HDR_LEN;
593 key->conf.icv_len = IEEE80211_GCMP_MIC_LEN;
594 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
595 for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++)
596 key->u.gcmp.rx_pn[i][j] =
597 seq[IEEE80211_GCMP_PN_LEN - j - 1];
598 /* Initialize AES key state here as an optimization so that
599 * it does not need to be initialized for every packet.
600 */
601 key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data,
602 key_len);
603 if (IS_ERR(key->u.gcmp.tfm)) {
604 err = PTR_ERR(key->u.gcmp.tfm);
605 kfree(key);
606 return ERR_PTR(err);
607 }
608 break;
609 default:
610 if (cs) {
611 if (seq_len && seq_len != cs->pn_len) {
612 kfree(key);
613 return ERR_PTR(-EINVAL);
614 }
615
616 key->conf.iv_len = cs->hdr_len;
617 key->conf.icv_len = cs->mic_len;
618 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
619 for (j = 0; j < seq_len; j++)
620 key->u.gen.rx_pn[i][j] =
621 seq[seq_len - j - 1];
622 key->flags |= KEY_FLAG_CIPHER_SCHEME;
623 }
624 }
625 memcpy(key->conf.key, key_data, key_len);
626 INIT_LIST_HEAD(&key->list);
627
628 return key;
629 }
630
631 static void ieee80211_key_free_common(struct ieee80211_key *key)
632 {
633 switch (key->conf.cipher) {
634 case WLAN_CIPHER_SUITE_CCMP:
635 case WLAN_CIPHER_SUITE_CCMP_256:
636 ieee80211_aes_key_free(key->u.ccmp.tfm);
637 break;
638 case WLAN_CIPHER_SUITE_AES_CMAC:
639 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
640 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
641 break;
642 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
643 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
644 ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm);
645 break;
646 case WLAN_CIPHER_SUITE_GCMP:
647 case WLAN_CIPHER_SUITE_GCMP_256:
648 ieee80211_aes_gcm_key_free(key->u.gcmp.tfm);
649 break;
650 }
651 kzfree(key);
652 }
653
654 static void __ieee80211_key_destroy(struct ieee80211_key *key,
655 bool delay_tailroom)
656 {
657 if (key->local) {
658 struct ieee80211_sub_if_data *sdata = key->sdata;
659
660 ieee80211_debugfs_key_remove(key);
661
662 if (delay_tailroom) {
663 /* see ieee80211_delayed_tailroom_dec */
664 sdata->crypto_tx_tailroom_pending_dec++;
665 schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
666 HZ/2);
667 } else {
668 decrease_tailroom_need_count(sdata, 1);
669 }
670 }
671
672 ieee80211_key_free_common(key);
673 }
674
675 static void ieee80211_key_destroy(struct ieee80211_key *key,
676 bool delay_tailroom)
677 {
678 if (!key)
679 return;
680
681 /*
682 * Synchronize so the TX path and rcu key iterators
683 * can no longer be using this key before we free/remove it.
684 */
685 synchronize_net();
686
687 __ieee80211_key_destroy(key, delay_tailroom);
688 }
689
690 void ieee80211_key_free_unused(struct ieee80211_key *key)
691 {
692 WARN_ON(key->sdata || key->local);
693 ieee80211_key_free_common(key);
694 }
695
696 static bool ieee80211_key_identical(struct ieee80211_sub_if_data *sdata,
697 struct ieee80211_key *old,
698 struct ieee80211_key *new)
699 {
700 u8 tkip_old[WLAN_KEY_LEN_TKIP], tkip_new[WLAN_KEY_LEN_TKIP];
701 u8 *tk_old, *tk_new;
702
703 if (!old || new->conf.keylen != old->conf.keylen)
704 return false;
705
706 tk_old = old->conf.key;
707 tk_new = new->conf.key;
708
709 /*
710 * In station mode, don't compare the TX MIC key, as it's never used
711 * and offloaded rekeying may not care to send it to the host. This
712 * is the case in iwlwifi, for example.
713 */
714 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
715 new->conf.cipher == WLAN_CIPHER_SUITE_TKIP &&
716 new->conf.keylen == WLAN_KEY_LEN_TKIP &&
717 !(new->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
718 memcpy(tkip_old, tk_old, WLAN_KEY_LEN_TKIP);
719 memcpy(tkip_new, tk_new, WLAN_KEY_LEN_TKIP);
720 memset(tkip_old + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8);
721 memset(tkip_new + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8);
722 tk_old = tkip_old;
723 tk_new = tkip_new;
724 }
725
726 return !crypto_memneq(tk_old, tk_new, new->conf.keylen);
727 }
728
729 int ieee80211_key_link(struct ieee80211_key *key,
730 struct ieee80211_sub_if_data *sdata,
731 struct sta_info *sta)
732 {
733 struct ieee80211_key *old_key;
734 int idx = key->conf.keyidx;
735 bool pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
736 /*
737 * We want to delay tailroom updates only for station - in that
738 * case it helps roaming speed, but in other cases it hurts and
739 * can cause warnings to appear.
740 */
741 bool delay_tailroom = sdata->vif.type == NL80211_IFTYPE_STATION;
742 int ret;
743
744 mutex_lock(&sdata->local->key_mtx);
745
746 if (sta && pairwise)
747 old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
748 else if (sta)
749 old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
750 else
751 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
752
753 /*
754 * Silently accept key re-installation without really installing the
755 * new version of the key to avoid nonce reuse or replay issues.
756 */
757 if (ieee80211_key_identical(sdata, old_key, key)) {
758 ieee80211_key_free_unused(key);
759 ret = 0;
760 goto out;
761 }
762
763 key->local = sdata->local;
764 key->sdata = sdata;
765 key->sta = sta;
766
767 increment_tailroom_need_count(sdata);
768
769 ret = ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
770
771 if (!ret) {
772 ieee80211_debugfs_key_add(key);
773 ieee80211_key_destroy(old_key, delay_tailroom);
774 } else {
775 ieee80211_key_free(key, delay_tailroom);
776 }
777
778 out:
779 mutex_unlock(&sdata->local->key_mtx);
780
781 return ret;
782 }
783
784 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
785 {
786 if (!key)
787 return;
788
789 /*
790 * Replace key with nothingness if it was ever used.
791 */
792 if (key->sdata)
793 ieee80211_key_replace(key->sdata, key->sta,
794 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
795 key, NULL);
796 ieee80211_key_destroy(key, delay_tailroom);
797 }
798
799 void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
800 {
801 struct ieee80211_key *key;
802 struct ieee80211_sub_if_data *vlan;
803
804 ASSERT_RTNL();
805
806 if (WARN_ON(!ieee80211_sdata_running(sdata)))
807 return;
808
809 mutex_lock(&sdata->local->key_mtx);
810
811 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
812 sdata->crypto_tx_tailroom_pending_dec);
813
814 if (sdata->vif.type == NL80211_IFTYPE_AP) {
815 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
816 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
817 vlan->crypto_tx_tailroom_pending_dec);
818 }
819
820 list_for_each_entry(key, &sdata->key_list, list) {
821 increment_tailroom_need_count(sdata);
822 ieee80211_key_enable_hw_accel(key);
823 }
824
825 mutex_unlock(&sdata->local->key_mtx);
826 }
827
828 void ieee80211_reset_crypto_tx_tailroom(struct ieee80211_sub_if_data *sdata)
829 {
830 struct ieee80211_sub_if_data *vlan;
831
832 mutex_lock(&sdata->local->key_mtx);
833
834 sdata->crypto_tx_tailroom_needed_cnt = 0;
835
836 if (sdata->vif.type == NL80211_IFTYPE_AP) {
837 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
838 vlan->crypto_tx_tailroom_needed_cnt = 0;
839 }
840
841 mutex_unlock(&sdata->local->key_mtx);
842 }
843
844 void ieee80211_iter_keys(struct ieee80211_hw *hw,
845 struct ieee80211_vif *vif,
846 void (*iter)(struct ieee80211_hw *hw,
847 struct ieee80211_vif *vif,
848 struct ieee80211_sta *sta,
849 struct ieee80211_key_conf *key,
850 void *data),
851 void *iter_data)
852 {
853 struct ieee80211_local *local = hw_to_local(hw);
854 struct ieee80211_key *key, *tmp;
855 struct ieee80211_sub_if_data *sdata;
856
857 ASSERT_RTNL();
858
859 mutex_lock(&local->key_mtx);
860 if (vif) {
861 sdata = vif_to_sdata(vif);
862 list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
863 iter(hw, &sdata->vif,
864 key->sta ? &key->sta->sta : NULL,
865 &key->conf, iter_data);
866 } else {
867 list_for_each_entry(sdata, &local->interfaces, list)
868 list_for_each_entry_safe(key, tmp,
869 &sdata->key_list, list)
870 iter(hw, &sdata->vif,
871 key->sta ? &key->sta->sta : NULL,
872 &key->conf, iter_data);
873 }
874 mutex_unlock(&local->key_mtx);
875 }
876 EXPORT_SYMBOL(ieee80211_iter_keys);
877
878 static void
879 _ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
880 struct ieee80211_sub_if_data *sdata,
881 void (*iter)(struct ieee80211_hw *hw,
882 struct ieee80211_vif *vif,
883 struct ieee80211_sta *sta,
884 struct ieee80211_key_conf *key,
885 void *data),
886 void *iter_data)
887 {
888 struct ieee80211_key *key;
889
890 list_for_each_entry_rcu(key, &sdata->key_list, list) {
891 /* skip keys of station in removal process */
892 if (key->sta && key->sta->removed)
893 continue;
894 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
895 continue;
896
897 iter(hw, &sdata->vif,
898 key->sta ? &key->sta->sta : NULL,
899 &key->conf, iter_data);
900 }
901 }
902
903 void ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
904 struct ieee80211_vif *vif,
905 void (*iter)(struct ieee80211_hw *hw,
906 struct ieee80211_vif *vif,
907 struct ieee80211_sta *sta,
908 struct ieee80211_key_conf *key,
909 void *data),
910 void *iter_data)
911 {
912 struct ieee80211_local *local = hw_to_local(hw);
913 struct ieee80211_sub_if_data *sdata;
914
915 if (vif) {
916 sdata = vif_to_sdata(vif);
917 _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
918 } else {
919 list_for_each_entry_rcu(sdata, &local->interfaces, list)
920 _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
921 }
922 }
923 EXPORT_SYMBOL(ieee80211_iter_keys_rcu);
924
925 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
926 struct list_head *keys)
927 {
928 struct ieee80211_key *key, *tmp;
929
930 decrease_tailroom_need_count(sdata,
931 sdata->crypto_tx_tailroom_pending_dec);
932 sdata->crypto_tx_tailroom_pending_dec = 0;
933
934 ieee80211_debugfs_key_remove_mgmt_default(sdata);
935
936 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
937 ieee80211_key_replace(key->sdata, key->sta,
938 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
939 key, NULL);
940 list_add_tail(&key->list, keys);
941 }
942
943 ieee80211_debugfs_key_update_default(sdata);
944 }
945
946 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
947 bool force_synchronize)
948 {
949 struct ieee80211_local *local = sdata->local;
950 struct ieee80211_sub_if_data *vlan;
951 struct ieee80211_sub_if_data *master;
952 struct ieee80211_key *key, *tmp;
953 LIST_HEAD(keys);
954
955 cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
956
957 mutex_lock(&local->key_mtx);
958
959 ieee80211_free_keys_iface(sdata, &keys);
960
961 if (sdata->vif.type == NL80211_IFTYPE_AP) {
962 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
963 ieee80211_free_keys_iface(vlan, &keys);
964 }
965
966 if (!list_empty(&keys) || force_synchronize)
967 synchronize_net();
968 list_for_each_entry_safe(key, tmp, &keys, list)
969 __ieee80211_key_destroy(key, false);
970
971 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
972 if (sdata->bss) {
973 master = container_of(sdata->bss,
974 struct ieee80211_sub_if_data,
975 u.ap);
976
977 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt !=
978 master->crypto_tx_tailroom_needed_cnt);
979 }
980 } else {
981 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
982 sdata->crypto_tx_tailroom_pending_dec);
983 }
984
985 if (sdata->vif.type == NL80211_IFTYPE_AP) {
986 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
987 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
988 vlan->crypto_tx_tailroom_pending_dec);
989 }
990
991 mutex_unlock(&local->key_mtx);
992 }
993
994 void ieee80211_free_sta_keys(struct ieee80211_local *local,
995 struct sta_info *sta)
996 {
997 struct ieee80211_key *key;
998 int i;
999
1000 mutex_lock(&local->key_mtx);
1001 for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) {
1002 key = key_mtx_dereference(local, sta->gtk[i]);
1003 if (!key)
1004 continue;
1005 ieee80211_key_replace(key->sdata, key->sta,
1006 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
1007 key, NULL);
1008 __ieee80211_key_destroy(key, key->sdata->vif.type ==
1009 NL80211_IFTYPE_STATION);
1010 }
1011
1012 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1013 key = key_mtx_dereference(local, sta->ptk[i]);
1014 if (!key)
1015 continue;
1016 ieee80211_key_replace(key->sdata, key->sta,
1017 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
1018 key, NULL);
1019 __ieee80211_key_destroy(key, key->sdata->vif.type ==
1020 NL80211_IFTYPE_STATION);
1021 }
1022
1023 mutex_unlock(&local->key_mtx);
1024 }
1025
1026 void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
1027 {
1028 struct ieee80211_sub_if_data *sdata;
1029
1030 sdata = container_of(wk, struct ieee80211_sub_if_data,
1031 dec_tailroom_needed_wk.work);
1032
1033 /*
1034 * The reason for the delayed tailroom needed decrementing is to
1035 * make roaming faster: during roaming, all keys are first deleted
1036 * and then new keys are installed. The first new key causes the
1037 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
1038 * the cost of synchronize_net() (which can be slow). Avoid this
1039 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
1040 * key removal for a while, so if we roam the value is larger than
1041 * zero and no 0->1 transition happens.
1042 *
1043 * The cost is that if the AP switching was from an AP with keys
1044 * to one without, we still allocate tailroom while it would no
1045 * longer be needed. However, in the typical (fast) roaming case
1046 * within an ESS this usually won't happen.
1047 */
1048
1049 mutex_lock(&sdata->local->key_mtx);
1050 decrease_tailroom_need_count(sdata,
1051 sdata->crypto_tx_tailroom_pending_dec);
1052 sdata->crypto_tx_tailroom_pending_dec = 0;
1053 mutex_unlock(&sdata->local->key_mtx);
1054 }
1055
1056 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
1057 const u8 *replay_ctr, gfp_t gfp)
1058 {
1059 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1060
1061 trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
1062
1063 cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
1064 }
1065 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
1066
1067 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
1068 int tid, struct ieee80211_key_seq *seq)
1069 {
1070 struct ieee80211_key *key;
1071 const u8 *pn;
1072
1073 key = container_of(keyconf, struct ieee80211_key, conf);
1074
1075 switch (key->conf.cipher) {
1076 case WLAN_CIPHER_SUITE_TKIP:
1077 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
1078 return;
1079 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
1080 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
1081 break;
1082 case WLAN_CIPHER_SUITE_CCMP:
1083 case WLAN_CIPHER_SUITE_CCMP_256:
1084 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1085 return;
1086 if (tid < 0)
1087 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1088 else
1089 pn = key->u.ccmp.rx_pn[tid];
1090 memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
1091 break;
1092 case WLAN_CIPHER_SUITE_AES_CMAC:
1093 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1094 if (WARN_ON(tid != 0))
1095 return;
1096 pn = key->u.aes_cmac.rx_pn;
1097 memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
1098 break;
1099 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1100 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1101 if (WARN_ON(tid != 0))
1102 return;
1103 pn = key->u.aes_gmac.rx_pn;
1104 memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN);
1105 break;
1106 case WLAN_CIPHER_SUITE_GCMP:
1107 case WLAN_CIPHER_SUITE_GCMP_256:
1108 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1109 return;
1110 if (tid < 0)
1111 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1112 else
1113 pn = key->u.gcmp.rx_pn[tid];
1114 memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN);
1115 break;
1116 }
1117 }
1118 EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
1119
1120 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
1121 int tid, struct ieee80211_key_seq *seq)
1122 {
1123 struct ieee80211_key *key;
1124 u8 *pn;
1125
1126 key = container_of(keyconf, struct ieee80211_key, conf);
1127
1128 switch (key->conf.cipher) {
1129 case WLAN_CIPHER_SUITE_TKIP:
1130 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
1131 return;
1132 key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
1133 key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
1134 break;
1135 case WLAN_CIPHER_SUITE_CCMP:
1136 case WLAN_CIPHER_SUITE_CCMP_256:
1137 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1138 return;
1139 if (tid < 0)
1140 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1141 else
1142 pn = key->u.ccmp.rx_pn[tid];
1143 memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
1144 break;
1145 case WLAN_CIPHER_SUITE_AES_CMAC:
1146 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1147 if (WARN_ON(tid != 0))
1148 return;
1149 pn = key->u.aes_cmac.rx_pn;
1150 memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
1151 break;
1152 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1153 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1154 if (WARN_ON(tid != 0))
1155 return;
1156 pn = key->u.aes_gmac.rx_pn;
1157 memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN);
1158 break;
1159 case WLAN_CIPHER_SUITE_GCMP:
1160 case WLAN_CIPHER_SUITE_GCMP_256:
1161 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1162 return;
1163 if (tid < 0)
1164 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1165 else
1166 pn = key->u.gcmp.rx_pn[tid];
1167 memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN);
1168 break;
1169 default:
1170 WARN_ON(1);
1171 break;
1172 }
1173 }
1174 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
1175
1176 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
1177 {
1178 struct ieee80211_key *key;
1179
1180 key = container_of(keyconf, struct ieee80211_key, conf);
1181
1182 assert_key_lock(key->local);
1183
1184 /*
1185 * if key was uploaded, we assume the driver will/has remove(d)
1186 * it, so adjust bookkeeping accordingly
1187 */
1188 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
1189 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
1190
1191 if (!((key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
1192 IEEE80211_KEY_FLAG_PUT_MIC_SPACE)) ||
1193 (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
1194 increment_tailroom_need_count(key->sdata);
1195 }
1196
1197 ieee80211_key_free(key, false);
1198 }
1199 EXPORT_SYMBOL_GPL(ieee80211_remove_key);
1200
1201 struct ieee80211_key_conf *
1202 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
1203 struct ieee80211_key_conf *keyconf)
1204 {
1205 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1206 struct ieee80211_local *local = sdata->local;
1207 struct ieee80211_key *key;
1208 int err;
1209
1210 if (WARN_ON(!local->wowlan))
1211 return ERR_PTR(-EINVAL);
1212
1213 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1214 return ERR_PTR(-EINVAL);
1215
1216 key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
1217 keyconf->keylen, keyconf->key,
1218 0, NULL, NULL);
1219 if (IS_ERR(key))
1220 return ERR_CAST(key);
1221
1222 if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
1223 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
1224
1225 err = ieee80211_key_link(key, sdata, NULL);
1226 if (err)
1227 return ERR_PTR(err);
1228
1229 return &key->conf;
1230 }
1231 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);