]> git.ipfire.org Git - thirdparty/linux.git/blob - net/mac80211/sta_info.c
Merge tag 'drm/tegra/for-5.7-fixes' of git://anongit.freedesktop.org/tegra/linux...
[thirdparty/linux.git] / net / mac80211 / sta_info.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002-2005, Instant802 Networks, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2013-2014 Intel Mobile Communications GmbH
6 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH
7 * Copyright (C) 2018-2020 Intel Corporation
8 */
9
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/etherdevice.h>
13 #include <linux/netdevice.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/skbuff.h>
17 #include <linux/if_arp.h>
18 #include <linux/timer.h>
19 #include <linux/rtnetlink.h>
20
21 #include <net/codel.h>
22 #include <net/mac80211.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "rate.h"
26 #include "sta_info.h"
27 #include "debugfs_sta.h"
28 #include "mesh.h"
29 #include "wme.h"
30
31 /**
32 * DOC: STA information lifetime rules
33 *
34 * STA info structures (&struct sta_info) are managed in a hash table
35 * for faster lookup and a list for iteration. They are managed using
36 * RCU, i.e. access to the list and hash table is protected by RCU.
37 *
38 * Upon allocating a STA info structure with sta_info_alloc(), the caller
39 * owns that structure. It must then insert it into the hash table using
40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
41 * case (which acquires an rcu read section but must not be called from
42 * within one) will the pointer still be valid after the call. Note that
43 * the caller may not do much with the STA info before inserting it, in
44 * particular, it may not start any mesh peer link management or add
45 * encryption keys.
46 *
47 * When the insertion fails (sta_info_insert()) returns non-zero), the
48 * structure will have been freed by sta_info_insert()!
49 *
50 * Station entries are added by mac80211 when you establish a link with a
51 * peer. This means different things for the different type of interfaces
52 * we support. For a regular station this mean we add the AP sta when we
53 * receive an association response from the AP. For IBSS this occurs when
54 * get to know about a peer on the same IBSS. For WDS we add the sta for
55 * the peer immediately upon device open. When using AP mode we add stations
56 * for each respective station upon request from userspace through nl80211.
57 *
58 * In order to remove a STA info structure, various sta_info_destroy_*()
59 * calls are available.
60 *
61 * There is no concept of ownership on a STA entry, each structure is
62 * owned by the global hash table/list until it is removed. All users of
63 * the structure need to be RCU protected so that the structure won't be
64 * freed before they are done using it.
65 */
66
67 static const struct rhashtable_params sta_rht_params = {
68 .nelem_hint = 3, /* start small */
69 .automatic_shrinking = true,
70 .head_offset = offsetof(struct sta_info, hash_node),
71 .key_offset = offsetof(struct sta_info, addr),
72 .key_len = ETH_ALEN,
73 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
74 };
75
76 /* Caller must hold local->sta_mtx */
77 static int sta_info_hash_del(struct ieee80211_local *local,
78 struct sta_info *sta)
79 {
80 return rhltable_remove(&local->sta_hash, &sta->hash_node,
81 sta_rht_params);
82 }
83
84 static void __cleanup_single_sta(struct sta_info *sta)
85 {
86 int ac, i;
87 struct tid_ampdu_tx *tid_tx;
88 struct ieee80211_sub_if_data *sdata = sta->sdata;
89 struct ieee80211_local *local = sdata->local;
90 struct ps_data *ps;
91
92 if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
93 test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
94 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
95 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
96 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
97 ps = &sdata->bss->ps;
98 else if (ieee80211_vif_is_mesh(&sdata->vif))
99 ps = &sdata->u.mesh.ps;
100 else
101 return;
102
103 clear_sta_flag(sta, WLAN_STA_PS_STA);
104 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
105 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
106
107 atomic_dec(&ps->num_sta_ps);
108 }
109
110 if (sta->sta.txq[0]) {
111 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
112 struct txq_info *txqi;
113
114 if (!sta->sta.txq[i])
115 continue;
116
117 txqi = to_txq_info(sta->sta.txq[i]);
118
119 ieee80211_txq_purge(local, txqi);
120 }
121 }
122
123 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
124 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
125 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
126 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
127 }
128
129 if (ieee80211_vif_is_mesh(&sdata->vif))
130 mesh_sta_cleanup(sta);
131
132 cancel_work_sync(&sta->drv_deliver_wk);
133
134 /*
135 * Destroy aggregation state here. It would be nice to wait for the
136 * driver to finish aggregation stop and then clean up, but for now
137 * drivers have to handle aggregation stop being requested, followed
138 * directly by station destruction.
139 */
140 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
141 kfree(sta->ampdu_mlme.tid_start_tx[i]);
142 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
143 if (!tid_tx)
144 continue;
145 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
146 kfree(tid_tx);
147 }
148 }
149
150 static void cleanup_single_sta(struct sta_info *sta)
151 {
152 struct ieee80211_sub_if_data *sdata = sta->sdata;
153 struct ieee80211_local *local = sdata->local;
154
155 __cleanup_single_sta(sta);
156 sta_info_free(local, sta);
157 }
158
159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
160 const u8 *addr)
161 {
162 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
163 }
164
165 /* protected by RCU */
166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
167 const u8 *addr)
168 {
169 struct ieee80211_local *local = sdata->local;
170 struct rhlist_head *tmp;
171 struct sta_info *sta;
172
173 rcu_read_lock();
174 for_each_sta_info(local, addr, sta, tmp) {
175 if (sta->sdata == sdata) {
176 rcu_read_unlock();
177 /* this is safe as the caller must already hold
178 * another rcu read section or the mutex
179 */
180 return sta;
181 }
182 }
183 rcu_read_unlock();
184 return NULL;
185 }
186
187 /*
188 * Get sta info either from the specified interface
189 * or from one of its vlans
190 */
191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
192 const u8 *addr)
193 {
194 struct ieee80211_local *local = sdata->local;
195 struct rhlist_head *tmp;
196 struct sta_info *sta;
197
198 rcu_read_lock();
199 for_each_sta_info(local, addr, sta, tmp) {
200 if (sta->sdata == sdata ||
201 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
202 rcu_read_unlock();
203 /* this is safe as the caller must already hold
204 * another rcu read section or the mutex
205 */
206 return sta;
207 }
208 }
209 rcu_read_unlock();
210 return NULL;
211 }
212
213 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local,
214 const u8 *sta_addr, const u8 *vif_addr)
215 {
216 struct rhlist_head *tmp;
217 struct sta_info *sta;
218
219 for_each_sta_info(local, sta_addr, sta, tmp) {
220 if (ether_addr_equal(vif_addr, sta->sdata->vif.addr))
221 return sta;
222 }
223
224 return NULL;
225 }
226
227 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
228 int idx)
229 {
230 struct ieee80211_local *local = sdata->local;
231 struct sta_info *sta;
232 int i = 0;
233
234 list_for_each_entry_rcu(sta, &local->sta_list, list,
235 lockdep_is_held(&local->sta_mtx)) {
236 if (sdata != sta->sdata)
237 continue;
238 if (i < idx) {
239 ++i;
240 continue;
241 }
242 return sta;
243 }
244
245 return NULL;
246 }
247
248 /**
249 * sta_info_free - free STA
250 *
251 * @local: pointer to the global information
252 * @sta: STA info to free
253 *
254 * This function must undo everything done by sta_info_alloc()
255 * that may happen before sta_info_insert(). It may only be
256 * called when sta_info_insert() has not been attempted (and
257 * if that fails, the station is freed anyway.)
258 */
259 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
260 {
261 if (sta->rate_ctrl)
262 rate_control_free_sta(sta);
263
264 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
265
266 if (sta->sta.txq[0])
267 kfree(to_txq_info(sta->sta.txq[0]));
268 kfree(rcu_dereference_raw(sta->sta.rates));
269 #ifdef CONFIG_MAC80211_MESH
270 kfree(sta->mesh);
271 #endif
272 free_percpu(sta->pcpu_rx_stats);
273 kfree(sta);
274 }
275
276 /* Caller must hold local->sta_mtx */
277 static int sta_info_hash_add(struct ieee80211_local *local,
278 struct sta_info *sta)
279 {
280 return rhltable_insert(&local->sta_hash, &sta->hash_node,
281 sta_rht_params);
282 }
283
284 static void sta_deliver_ps_frames(struct work_struct *wk)
285 {
286 struct sta_info *sta;
287
288 sta = container_of(wk, struct sta_info, drv_deliver_wk);
289
290 if (sta->dead)
291 return;
292
293 local_bh_disable();
294 if (!test_sta_flag(sta, WLAN_STA_PS_STA))
295 ieee80211_sta_ps_deliver_wakeup(sta);
296 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
297 ieee80211_sta_ps_deliver_poll_response(sta);
298 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
299 ieee80211_sta_ps_deliver_uapsd(sta);
300 local_bh_enable();
301 }
302
303 static int sta_prepare_rate_control(struct ieee80211_local *local,
304 struct sta_info *sta, gfp_t gfp)
305 {
306 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
307 return 0;
308
309 sta->rate_ctrl = local->rate_ctrl;
310 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
311 sta, gfp);
312 if (!sta->rate_ctrl_priv)
313 return -ENOMEM;
314
315 return 0;
316 }
317
318 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
319 const u8 *addr, gfp_t gfp)
320 {
321 struct ieee80211_local *local = sdata->local;
322 struct ieee80211_hw *hw = &local->hw;
323 struct sta_info *sta;
324 int i;
325
326 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
327 if (!sta)
328 return NULL;
329
330 if (ieee80211_hw_check(hw, USES_RSS)) {
331 sta->pcpu_rx_stats =
332 alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp);
333 if (!sta->pcpu_rx_stats)
334 goto free;
335 }
336
337 spin_lock_init(&sta->lock);
338 spin_lock_init(&sta->ps_lock);
339 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
340 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
341 mutex_init(&sta->ampdu_mlme.mtx);
342 #ifdef CONFIG_MAC80211_MESH
343 if (ieee80211_vif_is_mesh(&sdata->vif)) {
344 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
345 if (!sta->mesh)
346 goto free;
347 sta->mesh->plink_sta = sta;
348 spin_lock_init(&sta->mesh->plink_lock);
349 if (ieee80211_vif_is_mesh(&sdata->vif) &&
350 !sdata->u.mesh.user_mpm)
351 timer_setup(&sta->mesh->plink_timer, mesh_plink_timer,
352 0);
353 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
354 }
355 #endif
356
357 memcpy(sta->addr, addr, ETH_ALEN);
358 memcpy(sta->sta.addr, addr, ETH_ALEN);
359 sta->sta.max_rx_aggregation_subframes =
360 local->hw.max_rx_aggregation_subframes;
361
362 /* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only.
363 * The Tx path starts to use a key as soon as the key slot ptk_idx
364 * references to is not NULL. To not use the initial Rx-only key
365 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid
366 * which always will refer to a NULL key.
367 */
368 BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX);
369 sta->ptk_idx = INVALID_PTK_KEYIDX;
370
371 sta->local = local;
372 sta->sdata = sdata;
373 sta->rx_stats.last_rx = jiffies;
374
375 u64_stats_init(&sta->rx_stats.syncp);
376
377 sta->sta_state = IEEE80211_STA_NONE;
378
379 /* Mark TID as unreserved */
380 sta->reserved_tid = IEEE80211_TID_UNRESERVED;
381
382 sta->last_connected = ktime_get_seconds();
383 ewma_signal_init(&sta->rx_stats_avg.signal);
384 ewma_avg_signal_init(&sta->status_stats.avg_ack_signal);
385 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++)
386 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]);
387
388 if (local->ops->wake_tx_queue) {
389 void *txq_data;
390 int size = sizeof(struct txq_info) +
391 ALIGN(hw->txq_data_size, sizeof(void *));
392
393 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
394 if (!txq_data)
395 goto free;
396
397 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
398 struct txq_info *txq = txq_data + i * size;
399
400 /* might not do anything for the bufferable MMPDU TXQ */
401 ieee80211_txq_init(sdata, sta, txq, i);
402 }
403 }
404
405 if (sta_prepare_rate_control(local, sta, gfp))
406 goto free_txq;
407
408 sta->airtime_weight = IEEE80211_DEFAULT_AIRTIME_WEIGHT;
409
410 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
411 skb_queue_head_init(&sta->ps_tx_buf[i]);
412 skb_queue_head_init(&sta->tx_filtered[i]);
413 sta->airtime[i].deficit = sta->airtime_weight;
414 atomic_set(&sta->airtime[i].aql_tx_pending, 0);
415 sta->airtime[i].aql_limit_low = local->aql_txq_limit_low[i];
416 sta->airtime[i].aql_limit_high = local->aql_txq_limit_high[i];
417 }
418
419 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
420 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
421
422 for (i = 0; i < NUM_NL80211_BANDS; i++) {
423 u32 mandatory = 0;
424 int r;
425
426 if (!hw->wiphy->bands[i])
427 continue;
428
429 switch (i) {
430 case NL80211_BAND_2GHZ:
431 /*
432 * We use both here, even if we cannot really know for
433 * sure the station will support both, but the only use
434 * for this is when we don't know anything yet and send
435 * management frames, and then we'll pick the lowest
436 * possible rate anyway.
437 * If we don't include _G here, we cannot find a rate
438 * in P2P, and thus trigger the WARN_ONCE() in rate.c
439 */
440 mandatory = IEEE80211_RATE_MANDATORY_B |
441 IEEE80211_RATE_MANDATORY_G;
442 break;
443 case NL80211_BAND_5GHZ:
444 mandatory = IEEE80211_RATE_MANDATORY_A;
445 break;
446 case NL80211_BAND_60GHZ:
447 WARN_ON(1);
448 mandatory = 0;
449 break;
450 }
451
452 for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) {
453 struct ieee80211_rate *rate;
454
455 rate = &hw->wiphy->bands[i]->bitrates[r];
456
457 if (!(rate->flags & mandatory))
458 continue;
459 sta->sta.supp_rates[i] |= BIT(r);
460 }
461 }
462
463 sta->sta.smps_mode = IEEE80211_SMPS_OFF;
464 if (sdata->vif.type == NL80211_IFTYPE_AP ||
465 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
466 struct ieee80211_supported_band *sband;
467 u8 smps;
468
469 sband = ieee80211_get_sband(sdata);
470 if (!sband)
471 goto free_txq;
472
473 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
474 IEEE80211_HT_CAP_SM_PS_SHIFT;
475 /*
476 * Assume that hostapd advertises our caps in the beacon and
477 * this is the known_smps_mode for a station that just assciated
478 */
479 switch (smps) {
480 case WLAN_HT_SMPS_CONTROL_DISABLED:
481 sta->known_smps_mode = IEEE80211_SMPS_OFF;
482 break;
483 case WLAN_HT_SMPS_CONTROL_STATIC:
484 sta->known_smps_mode = IEEE80211_SMPS_STATIC;
485 break;
486 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
487 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
488 break;
489 default:
490 WARN_ON(1);
491 }
492 }
493
494 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
495
496 sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD;
497 sta->cparams.target = MS2TIME(20);
498 sta->cparams.interval = MS2TIME(100);
499 sta->cparams.ecn = true;
500
501 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
502
503 return sta;
504
505 free_txq:
506 if (sta->sta.txq[0])
507 kfree(to_txq_info(sta->sta.txq[0]));
508 free:
509 free_percpu(sta->pcpu_rx_stats);
510 #ifdef CONFIG_MAC80211_MESH
511 kfree(sta->mesh);
512 #endif
513 kfree(sta);
514 return NULL;
515 }
516
517 static int sta_info_insert_check(struct sta_info *sta)
518 {
519 struct ieee80211_sub_if_data *sdata = sta->sdata;
520
521 /*
522 * Can't be a WARN_ON because it can be triggered through a race:
523 * something inserts a STA (on one CPU) without holding the RTNL
524 * and another CPU turns off the net device.
525 */
526 if (unlikely(!ieee80211_sdata_running(sdata)))
527 return -ENETDOWN;
528
529 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
530 is_multicast_ether_addr(sta->sta.addr)))
531 return -EINVAL;
532
533 /* The RCU read lock is required by rhashtable due to
534 * asynchronous resize/rehash. We also require the mutex
535 * for correctness.
536 */
537 rcu_read_lock();
538 lockdep_assert_held(&sdata->local->sta_mtx);
539 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
540 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
541 rcu_read_unlock();
542 return -ENOTUNIQ;
543 }
544 rcu_read_unlock();
545
546 return 0;
547 }
548
549 static int sta_info_insert_drv_state(struct ieee80211_local *local,
550 struct ieee80211_sub_if_data *sdata,
551 struct sta_info *sta)
552 {
553 enum ieee80211_sta_state state;
554 int err = 0;
555
556 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
557 err = drv_sta_state(local, sdata, sta, state, state + 1);
558 if (err)
559 break;
560 }
561
562 if (!err) {
563 /*
564 * Drivers using legacy sta_add/sta_remove callbacks only
565 * get uploaded set to true after sta_add is called.
566 */
567 if (!local->ops->sta_add)
568 sta->uploaded = true;
569 return 0;
570 }
571
572 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
573 sdata_info(sdata,
574 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
575 sta->sta.addr, state + 1, err);
576 err = 0;
577 }
578
579 /* unwind on error */
580 for (; state > IEEE80211_STA_NOTEXIST; state--)
581 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
582
583 return err;
584 }
585
586 static void
587 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
588 {
589 struct ieee80211_local *local = sdata->local;
590 bool allow_p2p_go_ps = sdata->vif.p2p;
591 struct sta_info *sta;
592
593 rcu_read_lock();
594 list_for_each_entry_rcu(sta, &local->sta_list, list) {
595 if (sdata != sta->sdata ||
596 !test_sta_flag(sta, WLAN_STA_ASSOC))
597 continue;
598 if (!sta->sta.support_p2p_ps) {
599 allow_p2p_go_ps = false;
600 break;
601 }
602 }
603 rcu_read_unlock();
604
605 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
606 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
607 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
608 }
609 }
610
611 /*
612 * should be called with sta_mtx locked
613 * this function replaces the mutex lock
614 * with a RCU lock
615 */
616 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
617 {
618 struct ieee80211_local *local = sta->local;
619 struct ieee80211_sub_if_data *sdata = sta->sdata;
620 struct station_info *sinfo = NULL;
621 int err = 0;
622
623 lockdep_assert_held(&local->sta_mtx);
624
625 /* check if STA exists already */
626 if (sta_info_get_bss(sdata, sta->sta.addr)) {
627 err = -EEXIST;
628 goto out_err;
629 }
630
631 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
632 if (!sinfo) {
633 err = -ENOMEM;
634 goto out_err;
635 }
636
637 local->num_sta++;
638 local->sta_generation++;
639 smp_mb();
640
641 /* simplify things and don't accept BA sessions yet */
642 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
643
644 /* make the station visible */
645 err = sta_info_hash_add(local, sta);
646 if (err)
647 goto out_drop_sta;
648
649 list_add_tail_rcu(&sta->list, &local->sta_list);
650
651 /* notify driver */
652 err = sta_info_insert_drv_state(local, sdata, sta);
653 if (err)
654 goto out_remove;
655
656 set_sta_flag(sta, WLAN_STA_INSERTED);
657
658 if (sta->sta_state >= IEEE80211_STA_ASSOC) {
659 ieee80211_recalc_min_chandef(sta->sdata);
660 if (!sta->sta.support_p2p_ps)
661 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
662 }
663
664 /* accept BA sessions now */
665 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
666
667 ieee80211_sta_debugfs_add(sta);
668 rate_control_add_sta_debugfs(sta);
669
670 sinfo->generation = local->sta_generation;
671 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
672 kfree(sinfo);
673
674 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
675
676 /* move reference to rcu-protected */
677 rcu_read_lock();
678 mutex_unlock(&local->sta_mtx);
679
680 if (ieee80211_vif_is_mesh(&sdata->vif))
681 mesh_accept_plinks_update(sdata);
682
683 return 0;
684 out_remove:
685 sta_info_hash_del(local, sta);
686 list_del_rcu(&sta->list);
687 out_drop_sta:
688 local->num_sta--;
689 synchronize_net();
690 __cleanup_single_sta(sta);
691 out_err:
692 mutex_unlock(&local->sta_mtx);
693 kfree(sinfo);
694 rcu_read_lock();
695 return err;
696 }
697
698 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
699 {
700 struct ieee80211_local *local = sta->local;
701 int err;
702
703 might_sleep();
704
705 mutex_lock(&local->sta_mtx);
706
707 err = sta_info_insert_check(sta);
708 if (err) {
709 mutex_unlock(&local->sta_mtx);
710 rcu_read_lock();
711 goto out_free;
712 }
713
714 err = sta_info_insert_finish(sta);
715 if (err)
716 goto out_free;
717
718 return 0;
719 out_free:
720 sta_info_free(local, sta);
721 return err;
722 }
723
724 int sta_info_insert(struct sta_info *sta)
725 {
726 int err = sta_info_insert_rcu(sta);
727
728 rcu_read_unlock();
729
730 return err;
731 }
732
733 static inline void __bss_tim_set(u8 *tim, u16 id)
734 {
735 /*
736 * This format has been mandated by the IEEE specifications,
737 * so this line may not be changed to use the __set_bit() format.
738 */
739 tim[id / 8] |= (1 << (id % 8));
740 }
741
742 static inline void __bss_tim_clear(u8 *tim, u16 id)
743 {
744 /*
745 * This format has been mandated by the IEEE specifications,
746 * so this line may not be changed to use the __clear_bit() format.
747 */
748 tim[id / 8] &= ~(1 << (id % 8));
749 }
750
751 static inline bool __bss_tim_get(u8 *tim, u16 id)
752 {
753 /*
754 * This format has been mandated by the IEEE specifications,
755 * so this line may not be changed to use the test_bit() format.
756 */
757 return tim[id / 8] & (1 << (id % 8));
758 }
759
760 static unsigned long ieee80211_tids_for_ac(int ac)
761 {
762 /* If we ever support TIDs > 7, this obviously needs to be adjusted */
763 switch (ac) {
764 case IEEE80211_AC_VO:
765 return BIT(6) | BIT(7);
766 case IEEE80211_AC_VI:
767 return BIT(4) | BIT(5);
768 case IEEE80211_AC_BE:
769 return BIT(0) | BIT(3);
770 case IEEE80211_AC_BK:
771 return BIT(1) | BIT(2);
772 default:
773 WARN_ON(1);
774 return 0;
775 }
776 }
777
778 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
779 {
780 struct ieee80211_local *local = sta->local;
781 struct ps_data *ps;
782 bool indicate_tim = false;
783 u8 ignore_for_tim = sta->sta.uapsd_queues;
784 int ac;
785 u16 id = sta->sta.aid;
786
787 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
788 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
789 if (WARN_ON_ONCE(!sta->sdata->bss))
790 return;
791
792 ps = &sta->sdata->bss->ps;
793 #ifdef CONFIG_MAC80211_MESH
794 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
795 ps = &sta->sdata->u.mesh.ps;
796 #endif
797 } else {
798 return;
799 }
800
801 /* No need to do anything if the driver does all */
802 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim)
803 return;
804
805 if (sta->dead)
806 goto done;
807
808 /*
809 * If all ACs are delivery-enabled then we should build
810 * the TIM bit for all ACs anyway; if only some are then
811 * we ignore those and build the TIM bit using only the
812 * non-enabled ones.
813 */
814 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
815 ignore_for_tim = 0;
816
817 if (ignore_pending)
818 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
819
820 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
821 unsigned long tids;
822
823 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac])
824 continue;
825
826 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
827 !skb_queue_empty(&sta->ps_tx_buf[ac]);
828 if (indicate_tim)
829 break;
830
831 tids = ieee80211_tids_for_ac(ac);
832
833 indicate_tim |=
834 sta->driver_buffered_tids & tids;
835 indicate_tim |=
836 sta->txq_buffered_tids & tids;
837 }
838
839 done:
840 spin_lock_bh(&local->tim_lock);
841
842 if (indicate_tim == __bss_tim_get(ps->tim, id))
843 goto out_unlock;
844
845 if (indicate_tim)
846 __bss_tim_set(ps->tim, id);
847 else
848 __bss_tim_clear(ps->tim, id);
849
850 if (local->ops->set_tim && !WARN_ON(sta->dead)) {
851 local->tim_in_locked_section = true;
852 drv_set_tim(local, &sta->sta, indicate_tim);
853 local->tim_in_locked_section = false;
854 }
855
856 out_unlock:
857 spin_unlock_bh(&local->tim_lock);
858 }
859
860 void sta_info_recalc_tim(struct sta_info *sta)
861 {
862 __sta_info_recalc_tim(sta, false);
863 }
864
865 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
866 {
867 struct ieee80211_tx_info *info;
868 int timeout;
869
870 if (!skb)
871 return false;
872
873 info = IEEE80211_SKB_CB(skb);
874
875 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
876 timeout = (sta->listen_interval *
877 sta->sdata->vif.bss_conf.beacon_int *
878 32 / 15625) * HZ;
879 if (timeout < STA_TX_BUFFER_EXPIRE)
880 timeout = STA_TX_BUFFER_EXPIRE;
881 return time_after(jiffies, info->control.jiffies + timeout);
882 }
883
884
885 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
886 struct sta_info *sta, int ac)
887 {
888 unsigned long flags;
889 struct sk_buff *skb;
890
891 /*
892 * First check for frames that should expire on the filtered
893 * queue. Frames here were rejected by the driver and are on
894 * a separate queue to avoid reordering with normal PS-buffered
895 * frames. They also aren't accounted for right now in the
896 * total_ps_buffered counter.
897 */
898 for (;;) {
899 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
900 skb = skb_peek(&sta->tx_filtered[ac]);
901 if (sta_info_buffer_expired(sta, skb))
902 skb = __skb_dequeue(&sta->tx_filtered[ac]);
903 else
904 skb = NULL;
905 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
906
907 /*
908 * Frames are queued in order, so if this one
909 * hasn't expired yet we can stop testing. If
910 * we actually reached the end of the queue we
911 * also need to stop, of course.
912 */
913 if (!skb)
914 break;
915 ieee80211_free_txskb(&local->hw, skb);
916 }
917
918 /*
919 * Now also check the normal PS-buffered queue, this will
920 * only find something if the filtered queue was emptied
921 * since the filtered frames are all before the normal PS
922 * buffered frames.
923 */
924 for (;;) {
925 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
926 skb = skb_peek(&sta->ps_tx_buf[ac]);
927 if (sta_info_buffer_expired(sta, skb))
928 skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
929 else
930 skb = NULL;
931 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
932
933 /*
934 * frames are queued in order, so if this one
935 * hasn't expired yet (or we reached the end of
936 * the queue) we can stop testing
937 */
938 if (!skb)
939 break;
940
941 local->total_ps_buffered--;
942 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
943 sta->sta.addr);
944 ieee80211_free_txskb(&local->hw, skb);
945 }
946
947 /*
948 * Finally, recalculate the TIM bit for this station -- it might
949 * now be clear because the station was too slow to retrieve its
950 * frames.
951 */
952 sta_info_recalc_tim(sta);
953
954 /*
955 * Return whether there are any frames still buffered, this is
956 * used to check whether the cleanup timer still needs to run,
957 * if there are no frames we don't need to rearm the timer.
958 */
959 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
960 skb_queue_empty(&sta->tx_filtered[ac]));
961 }
962
963 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
964 struct sta_info *sta)
965 {
966 bool have_buffered = false;
967 int ac;
968
969 /* This is only necessary for stations on BSS/MBSS interfaces */
970 if (!sta->sdata->bss &&
971 !ieee80211_vif_is_mesh(&sta->sdata->vif))
972 return false;
973
974 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
975 have_buffered |=
976 sta_info_cleanup_expire_buffered_ac(local, sta, ac);
977
978 return have_buffered;
979 }
980
981 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
982 {
983 struct ieee80211_local *local;
984 struct ieee80211_sub_if_data *sdata;
985 int ret;
986
987 might_sleep();
988
989 if (!sta)
990 return -ENOENT;
991
992 local = sta->local;
993 sdata = sta->sdata;
994
995 lockdep_assert_held(&local->sta_mtx);
996
997 /*
998 * Before removing the station from the driver and
999 * rate control, it might still start new aggregation
1000 * sessions -- block that to make sure the tear-down
1001 * will be sufficient.
1002 */
1003 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
1004 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
1005
1006 /*
1007 * Before removing the station from the driver there might be pending
1008 * rx frames on RSS queues sent prior to the disassociation - wait for
1009 * all such frames to be processed.
1010 */
1011 drv_sync_rx_queues(local, sta);
1012
1013 ret = sta_info_hash_del(local, sta);
1014 if (WARN_ON(ret))
1015 return ret;
1016
1017 /*
1018 * for TDLS peers, make sure to return to the base channel before
1019 * removal.
1020 */
1021 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
1022 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
1023 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
1024 }
1025
1026 list_del_rcu(&sta->list);
1027 sta->removed = true;
1028
1029 drv_sta_pre_rcu_remove(local, sta->sdata, sta);
1030
1031 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1032 rcu_access_pointer(sdata->u.vlan.sta) == sta)
1033 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
1034
1035 return 0;
1036 }
1037
1038 static void __sta_info_destroy_part2(struct sta_info *sta)
1039 {
1040 struct ieee80211_local *local = sta->local;
1041 struct ieee80211_sub_if_data *sdata = sta->sdata;
1042 struct station_info *sinfo;
1043 int ret;
1044
1045 /*
1046 * NOTE: This assumes at least synchronize_net() was done
1047 * after _part1 and before _part2!
1048 */
1049
1050 might_sleep();
1051 lockdep_assert_held(&local->sta_mtx);
1052
1053 while (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1054 ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC);
1055 WARN_ON_ONCE(ret);
1056 }
1057
1058 /* now keys can no longer be reached */
1059 ieee80211_free_sta_keys(local, sta);
1060
1061 /* disable TIM bit - last chance to tell driver */
1062 __sta_info_recalc_tim(sta, true);
1063
1064 sta->dead = true;
1065
1066 local->num_sta--;
1067 local->sta_generation++;
1068
1069 while (sta->sta_state > IEEE80211_STA_NONE) {
1070 ret = sta_info_move_state(sta, sta->sta_state - 1);
1071 if (ret) {
1072 WARN_ON_ONCE(1);
1073 break;
1074 }
1075 }
1076
1077 if (sta->uploaded) {
1078 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
1079 IEEE80211_STA_NOTEXIST);
1080 WARN_ON_ONCE(ret != 0);
1081 }
1082
1083 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
1084
1085 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
1086 if (sinfo)
1087 sta_set_sinfo(sta, sinfo, true);
1088 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
1089 kfree(sinfo);
1090
1091 ieee80211_sta_debugfs_remove(sta);
1092
1093 cleanup_single_sta(sta);
1094 }
1095
1096 int __must_check __sta_info_destroy(struct sta_info *sta)
1097 {
1098 int err = __sta_info_destroy_part1(sta);
1099
1100 if (err)
1101 return err;
1102
1103 synchronize_net();
1104
1105 __sta_info_destroy_part2(sta);
1106
1107 return 0;
1108 }
1109
1110 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
1111 {
1112 struct sta_info *sta;
1113 int ret;
1114
1115 mutex_lock(&sdata->local->sta_mtx);
1116 sta = sta_info_get(sdata, addr);
1117 ret = __sta_info_destroy(sta);
1118 mutex_unlock(&sdata->local->sta_mtx);
1119
1120 return ret;
1121 }
1122
1123 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1124 const u8 *addr)
1125 {
1126 struct sta_info *sta;
1127 int ret;
1128
1129 mutex_lock(&sdata->local->sta_mtx);
1130 sta = sta_info_get_bss(sdata, addr);
1131 ret = __sta_info_destroy(sta);
1132 mutex_unlock(&sdata->local->sta_mtx);
1133
1134 return ret;
1135 }
1136
1137 static void sta_info_cleanup(struct timer_list *t)
1138 {
1139 struct ieee80211_local *local = from_timer(local, t, sta_cleanup);
1140 struct sta_info *sta;
1141 bool timer_needed = false;
1142
1143 rcu_read_lock();
1144 list_for_each_entry_rcu(sta, &local->sta_list, list)
1145 if (sta_info_cleanup_expire_buffered(local, sta))
1146 timer_needed = true;
1147 rcu_read_unlock();
1148
1149 if (local->quiescing)
1150 return;
1151
1152 if (!timer_needed)
1153 return;
1154
1155 mod_timer(&local->sta_cleanup,
1156 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1157 }
1158
1159 int sta_info_init(struct ieee80211_local *local)
1160 {
1161 int err;
1162
1163 err = rhltable_init(&local->sta_hash, &sta_rht_params);
1164 if (err)
1165 return err;
1166
1167 spin_lock_init(&local->tim_lock);
1168 mutex_init(&local->sta_mtx);
1169 INIT_LIST_HEAD(&local->sta_list);
1170
1171 timer_setup(&local->sta_cleanup, sta_info_cleanup, 0);
1172 return 0;
1173 }
1174
1175 void sta_info_stop(struct ieee80211_local *local)
1176 {
1177 del_timer_sync(&local->sta_cleanup);
1178 rhltable_destroy(&local->sta_hash);
1179 }
1180
1181
1182 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1183 {
1184 struct ieee80211_local *local = sdata->local;
1185 struct sta_info *sta, *tmp;
1186 LIST_HEAD(free_list);
1187 int ret = 0;
1188
1189 might_sleep();
1190
1191 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1192 WARN_ON(vlans && !sdata->bss);
1193
1194 mutex_lock(&local->sta_mtx);
1195 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1196 if (sdata == sta->sdata ||
1197 (vlans && sdata->bss == sta->sdata->bss)) {
1198 if (!WARN_ON(__sta_info_destroy_part1(sta)))
1199 list_add(&sta->free_list, &free_list);
1200 ret++;
1201 }
1202 }
1203
1204 if (!list_empty(&free_list)) {
1205 synchronize_net();
1206 list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1207 __sta_info_destroy_part2(sta);
1208 }
1209 mutex_unlock(&local->sta_mtx);
1210
1211 return ret;
1212 }
1213
1214 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1215 unsigned long exp_time)
1216 {
1217 struct ieee80211_local *local = sdata->local;
1218 struct sta_info *sta, *tmp;
1219
1220 mutex_lock(&local->sta_mtx);
1221
1222 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1223 unsigned long last_active = ieee80211_sta_last_active(sta);
1224
1225 if (sdata != sta->sdata)
1226 continue;
1227
1228 if (time_is_before_jiffies(last_active + exp_time)) {
1229 sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1230 sta->sta.addr);
1231
1232 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1233 test_sta_flag(sta, WLAN_STA_PS_STA))
1234 atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1235
1236 WARN_ON(__sta_info_destroy(sta));
1237 }
1238 }
1239
1240 mutex_unlock(&local->sta_mtx);
1241 }
1242
1243 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1244 const u8 *addr,
1245 const u8 *localaddr)
1246 {
1247 struct ieee80211_local *local = hw_to_local(hw);
1248 struct rhlist_head *tmp;
1249 struct sta_info *sta;
1250
1251 /*
1252 * Just return a random station if localaddr is NULL
1253 * ... first in list.
1254 */
1255 for_each_sta_info(local, addr, sta, tmp) {
1256 if (localaddr &&
1257 !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1258 continue;
1259 if (!sta->uploaded)
1260 return NULL;
1261 return &sta->sta;
1262 }
1263
1264 return NULL;
1265 }
1266 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1267
1268 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1269 const u8 *addr)
1270 {
1271 struct sta_info *sta;
1272
1273 if (!vif)
1274 return NULL;
1275
1276 sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1277 if (!sta)
1278 return NULL;
1279
1280 if (!sta->uploaded)
1281 return NULL;
1282
1283 return &sta->sta;
1284 }
1285 EXPORT_SYMBOL(ieee80211_find_sta);
1286
1287 /* powersave support code */
1288 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1289 {
1290 struct ieee80211_sub_if_data *sdata = sta->sdata;
1291 struct ieee80211_local *local = sdata->local;
1292 struct sk_buff_head pending;
1293 int filtered = 0, buffered = 0, ac, i;
1294 unsigned long flags;
1295 struct ps_data *ps;
1296
1297 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1298 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1299 u.ap);
1300
1301 if (sdata->vif.type == NL80211_IFTYPE_AP)
1302 ps = &sdata->bss->ps;
1303 else if (ieee80211_vif_is_mesh(&sdata->vif))
1304 ps = &sdata->u.mesh.ps;
1305 else
1306 return;
1307
1308 clear_sta_flag(sta, WLAN_STA_SP);
1309
1310 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1311 sta->driver_buffered_tids = 0;
1312 sta->txq_buffered_tids = 0;
1313
1314 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1315 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1316
1317 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1318 if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i]))
1319 continue;
1320
1321 schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i]));
1322 }
1323
1324 skb_queue_head_init(&pending);
1325
1326 /* sync with ieee80211_tx_h_unicast_ps_buf */
1327 spin_lock(&sta->ps_lock);
1328 /* Send all buffered frames to the station */
1329 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1330 int count = skb_queue_len(&pending), tmp;
1331
1332 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1333 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1334 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1335 tmp = skb_queue_len(&pending);
1336 filtered += tmp - count;
1337 count = tmp;
1338
1339 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1340 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1341 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1342 tmp = skb_queue_len(&pending);
1343 buffered += tmp - count;
1344 }
1345
1346 ieee80211_add_pending_skbs(local, &pending);
1347
1348 /* now we're no longer in the deliver code */
1349 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1350
1351 /* The station might have polled and then woken up before we responded,
1352 * so clear these flags now to avoid them sticking around.
1353 */
1354 clear_sta_flag(sta, WLAN_STA_PSPOLL);
1355 clear_sta_flag(sta, WLAN_STA_UAPSD);
1356 spin_unlock(&sta->ps_lock);
1357
1358 atomic_dec(&ps->num_sta_ps);
1359
1360 local->total_ps_buffered -= buffered;
1361
1362 sta_info_recalc_tim(sta);
1363
1364 ps_dbg(sdata,
1365 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n",
1366 sta->sta.addr, sta->sta.aid, filtered, buffered);
1367
1368 ieee80211_check_fast_xmit(sta);
1369 }
1370
1371 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1372 enum ieee80211_frame_release_type reason,
1373 bool call_driver, bool more_data)
1374 {
1375 struct ieee80211_sub_if_data *sdata = sta->sdata;
1376 struct ieee80211_local *local = sdata->local;
1377 struct ieee80211_qos_hdr *nullfunc;
1378 struct sk_buff *skb;
1379 int size = sizeof(*nullfunc);
1380 __le16 fc;
1381 bool qos = sta->sta.wme;
1382 struct ieee80211_tx_info *info;
1383 struct ieee80211_chanctx_conf *chanctx_conf;
1384
1385 /* Don't send NDPs when STA is connected HE */
1386 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1387 !(sdata->u.mgd.flags & IEEE80211_STA_DISABLE_HE))
1388 return;
1389
1390 if (qos) {
1391 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1392 IEEE80211_STYPE_QOS_NULLFUNC |
1393 IEEE80211_FCTL_FROMDS);
1394 } else {
1395 size -= 2;
1396 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1397 IEEE80211_STYPE_NULLFUNC |
1398 IEEE80211_FCTL_FROMDS);
1399 }
1400
1401 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1402 if (!skb)
1403 return;
1404
1405 skb_reserve(skb, local->hw.extra_tx_headroom);
1406
1407 nullfunc = skb_put(skb, size);
1408 nullfunc->frame_control = fc;
1409 nullfunc->duration_id = 0;
1410 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1411 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1412 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1413 nullfunc->seq_ctrl = 0;
1414
1415 skb->priority = tid;
1416 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1417 if (qos) {
1418 nullfunc->qos_ctrl = cpu_to_le16(tid);
1419
1420 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1421 nullfunc->qos_ctrl |=
1422 cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1423 if (more_data)
1424 nullfunc->frame_control |=
1425 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1426 }
1427 }
1428
1429 info = IEEE80211_SKB_CB(skb);
1430
1431 /*
1432 * Tell TX path to send this frame even though the
1433 * STA may still remain is PS mode after this frame
1434 * exchange. Also set EOSP to indicate this packet
1435 * ends the poll/service period.
1436 */
1437 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1438 IEEE80211_TX_STATUS_EOSP |
1439 IEEE80211_TX_CTL_REQ_TX_STATUS;
1440
1441 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1442
1443 if (call_driver)
1444 drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1445 reason, false);
1446
1447 skb->dev = sdata->dev;
1448
1449 rcu_read_lock();
1450 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1451 if (WARN_ON(!chanctx_conf)) {
1452 rcu_read_unlock();
1453 kfree_skb(skb);
1454 return;
1455 }
1456
1457 info->band = chanctx_conf->def.chan->band;
1458 ieee80211_xmit(sdata, sta, skb, 0);
1459 rcu_read_unlock();
1460 }
1461
1462 static int find_highest_prio_tid(unsigned long tids)
1463 {
1464 /* lower 3 TIDs aren't ordered perfectly */
1465 if (tids & 0xF8)
1466 return fls(tids) - 1;
1467 /* TID 0 is BE just like TID 3 */
1468 if (tids & BIT(0))
1469 return 0;
1470 return fls(tids) - 1;
1471 }
1472
1473 /* Indicates if the MORE_DATA bit should be set in the last
1474 * frame obtained by ieee80211_sta_ps_get_frames.
1475 * Note that driver_release_tids is relevant only if
1476 * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1477 */
1478 static bool
1479 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1480 enum ieee80211_frame_release_type reason,
1481 unsigned long driver_release_tids)
1482 {
1483 int ac;
1484
1485 /* If the driver has data on more than one TID then
1486 * certainly there's more data if we release just a
1487 * single frame now (from a single TID). This will
1488 * only happen for PS-Poll.
1489 */
1490 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1491 hweight16(driver_release_tids) > 1)
1492 return true;
1493
1494 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1495 if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1496 continue;
1497
1498 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1499 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1500 return true;
1501 }
1502
1503 return false;
1504 }
1505
1506 static void
1507 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1508 enum ieee80211_frame_release_type reason,
1509 struct sk_buff_head *frames,
1510 unsigned long *driver_release_tids)
1511 {
1512 struct ieee80211_sub_if_data *sdata = sta->sdata;
1513 struct ieee80211_local *local = sdata->local;
1514 int ac;
1515
1516 /* Get response frame(s) and more data bit for the last one. */
1517 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1518 unsigned long tids;
1519
1520 if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1521 continue;
1522
1523 tids = ieee80211_tids_for_ac(ac);
1524
1525 /* if we already have frames from software, then we can't also
1526 * release from hardware queues
1527 */
1528 if (skb_queue_empty(frames)) {
1529 *driver_release_tids |=
1530 sta->driver_buffered_tids & tids;
1531 *driver_release_tids |= sta->txq_buffered_tids & tids;
1532 }
1533
1534 if (!*driver_release_tids) {
1535 struct sk_buff *skb;
1536
1537 while (n_frames > 0) {
1538 skb = skb_dequeue(&sta->tx_filtered[ac]);
1539 if (!skb) {
1540 skb = skb_dequeue(
1541 &sta->ps_tx_buf[ac]);
1542 if (skb)
1543 local->total_ps_buffered--;
1544 }
1545 if (!skb)
1546 break;
1547 n_frames--;
1548 __skb_queue_tail(frames, skb);
1549 }
1550 }
1551
1552 /* If we have more frames buffered on this AC, then abort the
1553 * loop since we can't send more data from other ACs before
1554 * the buffered frames from this.
1555 */
1556 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1557 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1558 break;
1559 }
1560 }
1561
1562 static void
1563 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1564 int n_frames, u8 ignored_acs,
1565 enum ieee80211_frame_release_type reason)
1566 {
1567 struct ieee80211_sub_if_data *sdata = sta->sdata;
1568 struct ieee80211_local *local = sdata->local;
1569 unsigned long driver_release_tids = 0;
1570 struct sk_buff_head frames;
1571 bool more_data;
1572
1573 /* Service or PS-Poll period starts */
1574 set_sta_flag(sta, WLAN_STA_SP);
1575
1576 __skb_queue_head_init(&frames);
1577
1578 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1579 &frames, &driver_release_tids);
1580
1581 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1582
1583 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1584 driver_release_tids =
1585 BIT(find_highest_prio_tid(driver_release_tids));
1586
1587 if (skb_queue_empty(&frames) && !driver_release_tids) {
1588 int tid, ac;
1589
1590 /*
1591 * For PS-Poll, this can only happen due to a race condition
1592 * when we set the TIM bit and the station notices it, but
1593 * before it can poll for the frame we expire it.
1594 *
1595 * For uAPSD, this is said in the standard (11.2.1.5 h):
1596 * At each unscheduled SP for a non-AP STA, the AP shall
1597 * attempt to transmit at least one MSDU or MMPDU, but no
1598 * more than the value specified in the Max SP Length field
1599 * in the QoS Capability element from delivery-enabled ACs,
1600 * that are destined for the non-AP STA.
1601 *
1602 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1603 */
1604
1605 /* This will evaluate to 1, 3, 5 or 7. */
1606 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++)
1607 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac]))
1608 break;
1609 tid = 7 - 2 * ac;
1610
1611 ieee80211_send_null_response(sta, tid, reason, true, false);
1612 } else if (!driver_release_tids) {
1613 struct sk_buff_head pending;
1614 struct sk_buff *skb;
1615 int num = 0;
1616 u16 tids = 0;
1617 bool need_null = false;
1618
1619 skb_queue_head_init(&pending);
1620
1621 while ((skb = __skb_dequeue(&frames))) {
1622 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1623 struct ieee80211_hdr *hdr = (void *) skb->data;
1624 u8 *qoshdr = NULL;
1625
1626 num++;
1627
1628 /*
1629 * Tell TX path to send this frame even though the
1630 * STA may still remain is PS mode after this frame
1631 * exchange.
1632 */
1633 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1634 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1635
1636 /*
1637 * Use MoreData flag to indicate whether there are
1638 * more buffered frames for this STA
1639 */
1640 if (more_data || !skb_queue_empty(&frames))
1641 hdr->frame_control |=
1642 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1643 else
1644 hdr->frame_control &=
1645 cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1646
1647 if (ieee80211_is_data_qos(hdr->frame_control) ||
1648 ieee80211_is_qos_nullfunc(hdr->frame_control))
1649 qoshdr = ieee80211_get_qos_ctl(hdr);
1650
1651 tids |= BIT(skb->priority);
1652
1653 __skb_queue_tail(&pending, skb);
1654
1655 /* end service period after last frame or add one */
1656 if (!skb_queue_empty(&frames))
1657 continue;
1658
1659 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1660 /* for PS-Poll, there's only one frame */
1661 info->flags |= IEEE80211_TX_STATUS_EOSP |
1662 IEEE80211_TX_CTL_REQ_TX_STATUS;
1663 break;
1664 }
1665
1666 /* For uAPSD, things are a bit more complicated. If the
1667 * last frame has a QoS header (i.e. is a QoS-data or
1668 * QoS-nulldata frame) then just set the EOSP bit there
1669 * and be done.
1670 * If the frame doesn't have a QoS header (which means
1671 * it should be a bufferable MMPDU) then we can't set
1672 * the EOSP bit in the QoS header; add a QoS-nulldata
1673 * frame to the list to send it after the MMPDU.
1674 *
1675 * Note that this code is only in the mac80211-release
1676 * code path, we assume that the driver will not buffer
1677 * anything but QoS-data frames, or if it does, will
1678 * create the QoS-nulldata frame by itself if needed.
1679 *
1680 * Cf. 802.11-2012 10.2.1.10 (c).
1681 */
1682 if (qoshdr) {
1683 *qoshdr |= IEEE80211_QOS_CTL_EOSP;
1684
1685 info->flags |= IEEE80211_TX_STATUS_EOSP |
1686 IEEE80211_TX_CTL_REQ_TX_STATUS;
1687 } else {
1688 /* The standard isn't completely clear on this
1689 * as it says the more-data bit should be set
1690 * if there are more BUs. The QoS-Null frame
1691 * we're about to send isn't buffered yet, we
1692 * only create it below, but let's pretend it
1693 * was buffered just in case some clients only
1694 * expect more-data=0 when eosp=1.
1695 */
1696 hdr->frame_control |=
1697 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1698 need_null = true;
1699 num++;
1700 }
1701 break;
1702 }
1703
1704 drv_allow_buffered_frames(local, sta, tids, num,
1705 reason, more_data);
1706
1707 ieee80211_add_pending_skbs(local, &pending);
1708
1709 if (need_null)
1710 ieee80211_send_null_response(
1711 sta, find_highest_prio_tid(tids),
1712 reason, false, false);
1713
1714 sta_info_recalc_tim(sta);
1715 } else {
1716 int tid;
1717
1718 /*
1719 * We need to release a frame that is buffered somewhere in the
1720 * driver ... it'll have to handle that.
1721 * Note that the driver also has to check the number of frames
1722 * on the TIDs we're releasing from - if there are more than
1723 * n_frames it has to set the more-data bit (if we didn't ask
1724 * it to set it anyway due to other buffered frames); if there
1725 * are fewer than n_frames it has to make sure to adjust that
1726 * to allow the service period to end properly.
1727 */
1728 drv_release_buffered_frames(local, sta, driver_release_tids,
1729 n_frames, reason, more_data);
1730
1731 /*
1732 * Note that we don't recalculate the TIM bit here as it would
1733 * most likely have no effect at all unless the driver told us
1734 * that the TID(s) became empty before returning here from the
1735 * release function.
1736 * Either way, however, when the driver tells us that the TID(s)
1737 * became empty or we find that a txq became empty, we'll do the
1738 * TIM recalculation.
1739 */
1740
1741 if (!sta->sta.txq[0])
1742 return;
1743
1744 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1745 if (!sta->sta.txq[tid] ||
1746 !(driver_release_tids & BIT(tid)) ||
1747 txq_has_queue(sta->sta.txq[tid]))
1748 continue;
1749
1750 sta_info_recalc_tim(sta);
1751 break;
1752 }
1753 }
1754 }
1755
1756 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1757 {
1758 u8 ignore_for_response = sta->sta.uapsd_queues;
1759
1760 /*
1761 * If all ACs are delivery-enabled then we should reply
1762 * from any of them, if only some are enabled we reply
1763 * only from the non-enabled ones.
1764 */
1765 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1766 ignore_for_response = 0;
1767
1768 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1769 IEEE80211_FRAME_RELEASE_PSPOLL);
1770 }
1771
1772 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1773 {
1774 int n_frames = sta->sta.max_sp;
1775 u8 delivery_enabled = sta->sta.uapsd_queues;
1776
1777 /*
1778 * If we ever grow support for TSPEC this might happen if
1779 * the TSPEC update from hostapd comes in between a trigger
1780 * frame setting WLAN_STA_UAPSD in the RX path and this
1781 * actually getting called.
1782 */
1783 if (!delivery_enabled)
1784 return;
1785
1786 switch (sta->sta.max_sp) {
1787 case 1:
1788 n_frames = 2;
1789 break;
1790 case 2:
1791 n_frames = 4;
1792 break;
1793 case 3:
1794 n_frames = 6;
1795 break;
1796 case 0:
1797 /* XXX: what is a good value? */
1798 n_frames = 128;
1799 break;
1800 }
1801
1802 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1803 IEEE80211_FRAME_RELEASE_UAPSD);
1804 }
1805
1806 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1807 struct ieee80211_sta *pubsta, bool block)
1808 {
1809 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1810
1811 trace_api_sta_block_awake(sta->local, pubsta, block);
1812
1813 if (block) {
1814 set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1815 ieee80211_clear_fast_xmit(sta);
1816 return;
1817 }
1818
1819 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1820 return;
1821
1822 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1823 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1824 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1825 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1826 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1827 test_sta_flag(sta, WLAN_STA_UAPSD)) {
1828 /* must be asleep in this case */
1829 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1830 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1831 } else {
1832 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1833 ieee80211_check_fast_xmit(sta);
1834 }
1835 }
1836 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1837
1838 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1839 {
1840 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1841 struct ieee80211_local *local = sta->local;
1842
1843 trace_api_eosp(local, pubsta);
1844
1845 clear_sta_flag(sta, WLAN_STA_SP);
1846 }
1847 EXPORT_SYMBOL(ieee80211_sta_eosp);
1848
1849 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1850 {
1851 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1852 enum ieee80211_frame_release_type reason;
1853 bool more_data;
1854
1855 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1856
1857 reason = IEEE80211_FRAME_RELEASE_UAPSD;
1858 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1859 reason, 0);
1860
1861 ieee80211_send_null_response(sta, tid, reason, false, more_data);
1862 }
1863 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1864
1865 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1866 u8 tid, bool buffered)
1867 {
1868 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1869
1870 if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1871 return;
1872
1873 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1874
1875 if (buffered)
1876 set_bit(tid, &sta->driver_buffered_tids);
1877 else
1878 clear_bit(tid, &sta->driver_buffered_tids);
1879
1880 sta_info_recalc_tim(sta);
1881 }
1882 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1883
1884 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid,
1885 u32 tx_airtime, u32 rx_airtime)
1886 {
1887 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1888 struct ieee80211_local *local = sta->sdata->local;
1889 u8 ac = ieee80211_ac_from_tid(tid);
1890 u32 airtime = 0;
1891
1892 if (sta->local->airtime_flags & AIRTIME_USE_TX)
1893 airtime += tx_airtime;
1894 if (sta->local->airtime_flags & AIRTIME_USE_RX)
1895 airtime += rx_airtime;
1896
1897 spin_lock_bh(&local->active_txq_lock[ac]);
1898 sta->airtime[ac].tx_airtime += tx_airtime;
1899 sta->airtime[ac].rx_airtime += rx_airtime;
1900 sta->airtime[ac].deficit -= airtime;
1901 spin_unlock_bh(&local->active_txq_lock[ac]);
1902 }
1903 EXPORT_SYMBOL(ieee80211_sta_register_airtime);
1904
1905 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local,
1906 struct sta_info *sta, u8 ac,
1907 u16 tx_airtime, bool tx_completed)
1908 {
1909 int tx_pending;
1910
1911 if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL))
1912 return;
1913
1914 if (!tx_completed) {
1915 if (sta)
1916 atomic_add(tx_airtime,
1917 &sta->airtime[ac].aql_tx_pending);
1918
1919 atomic_add(tx_airtime, &local->aql_total_pending_airtime);
1920 return;
1921 }
1922
1923 if (sta) {
1924 tx_pending = atomic_sub_return(tx_airtime,
1925 &sta->airtime[ac].aql_tx_pending);
1926 if (WARN_ONCE(tx_pending < 0,
1927 "STA %pM AC %d txq pending airtime underflow: %u, %u",
1928 sta->addr, ac, tx_pending, tx_airtime))
1929 atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending,
1930 tx_pending, 0);
1931 }
1932
1933 tx_pending = atomic_sub_return(tx_airtime,
1934 &local->aql_total_pending_airtime);
1935 if (WARN_ONCE(tx_pending < 0,
1936 "Device %s AC %d pending airtime underflow: %u, %u",
1937 wiphy_name(local->hw.wiphy), ac, tx_pending,
1938 tx_airtime))
1939 atomic_cmpxchg(&local->aql_total_pending_airtime,
1940 tx_pending, 0);
1941 }
1942
1943 int sta_info_move_state(struct sta_info *sta,
1944 enum ieee80211_sta_state new_state)
1945 {
1946 might_sleep();
1947
1948 if (sta->sta_state == new_state)
1949 return 0;
1950
1951 /* check allowed transitions first */
1952
1953 switch (new_state) {
1954 case IEEE80211_STA_NONE:
1955 if (sta->sta_state != IEEE80211_STA_AUTH)
1956 return -EINVAL;
1957 break;
1958 case IEEE80211_STA_AUTH:
1959 if (sta->sta_state != IEEE80211_STA_NONE &&
1960 sta->sta_state != IEEE80211_STA_ASSOC)
1961 return -EINVAL;
1962 break;
1963 case IEEE80211_STA_ASSOC:
1964 if (sta->sta_state != IEEE80211_STA_AUTH &&
1965 sta->sta_state != IEEE80211_STA_AUTHORIZED)
1966 return -EINVAL;
1967 break;
1968 case IEEE80211_STA_AUTHORIZED:
1969 if (sta->sta_state != IEEE80211_STA_ASSOC)
1970 return -EINVAL;
1971 break;
1972 default:
1973 WARN(1, "invalid state %d", new_state);
1974 return -EINVAL;
1975 }
1976
1977 sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1978 sta->sta.addr, new_state);
1979
1980 /*
1981 * notify the driver before the actual changes so it can
1982 * fail the transition
1983 */
1984 if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1985 int err = drv_sta_state(sta->local, sta->sdata, sta,
1986 sta->sta_state, new_state);
1987 if (err)
1988 return err;
1989 }
1990
1991 /* reflect the change in all state variables */
1992
1993 switch (new_state) {
1994 case IEEE80211_STA_NONE:
1995 if (sta->sta_state == IEEE80211_STA_AUTH)
1996 clear_bit(WLAN_STA_AUTH, &sta->_flags);
1997 break;
1998 case IEEE80211_STA_AUTH:
1999 if (sta->sta_state == IEEE80211_STA_NONE) {
2000 set_bit(WLAN_STA_AUTH, &sta->_flags);
2001 } else if (sta->sta_state == IEEE80211_STA_ASSOC) {
2002 clear_bit(WLAN_STA_ASSOC, &sta->_flags);
2003 ieee80211_recalc_min_chandef(sta->sdata);
2004 if (!sta->sta.support_p2p_ps)
2005 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2006 }
2007 break;
2008 case IEEE80211_STA_ASSOC:
2009 if (sta->sta_state == IEEE80211_STA_AUTH) {
2010 set_bit(WLAN_STA_ASSOC, &sta->_flags);
2011 sta->assoc_at = ktime_get_boottime_ns();
2012 ieee80211_recalc_min_chandef(sta->sdata);
2013 if (!sta->sta.support_p2p_ps)
2014 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2015 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
2016 ieee80211_vif_dec_num_mcast(sta->sdata);
2017 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2018 ieee80211_clear_fast_xmit(sta);
2019 ieee80211_clear_fast_rx(sta);
2020 }
2021 break;
2022 case IEEE80211_STA_AUTHORIZED:
2023 if (sta->sta_state == IEEE80211_STA_ASSOC) {
2024 ieee80211_vif_inc_num_mcast(sta->sdata);
2025 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2026 ieee80211_check_fast_xmit(sta);
2027 ieee80211_check_fast_rx(sta);
2028 }
2029 if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
2030 sta->sdata->vif.type == NL80211_IFTYPE_AP)
2031 cfg80211_send_layer2_update(sta->sdata->dev,
2032 sta->sta.addr);
2033 break;
2034 default:
2035 break;
2036 }
2037
2038 sta->sta_state = new_state;
2039
2040 return 0;
2041 }
2042
2043 u8 sta_info_tx_streams(struct sta_info *sta)
2044 {
2045 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
2046 u8 rx_streams;
2047
2048 if (!sta->sta.ht_cap.ht_supported)
2049 return 1;
2050
2051 if (sta->sta.vht_cap.vht_supported) {
2052 int i;
2053 u16 tx_mcs_map =
2054 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
2055
2056 for (i = 7; i >= 0; i--)
2057 if ((tx_mcs_map & (0x3 << (i * 2))) !=
2058 IEEE80211_VHT_MCS_NOT_SUPPORTED)
2059 return i + 1;
2060 }
2061
2062 if (ht_cap->mcs.rx_mask[3])
2063 rx_streams = 4;
2064 else if (ht_cap->mcs.rx_mask[2])
2065 rx_streams = 3;
2066 else if (ht_cap->mcs.rx_mask[1])
2067 rx_streams = 2;
2068 else
2069 rx_streams = 1;
2070
2071 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
2072 return rx_streams;
2073
2074 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
2075 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
2076 }
2077
2078 static struct ieee80211_sta_rx_stats *
2079 sta_get_last_rx_stats(struct sta_info *sta)
2080 {
2081 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
2082 struct ieee80211_local *local = sta->local;
2083 int cpu;
2084
2085 if (!ieee80211_hw_check(&local->hw, USES_RSS))
2086 return stats;
2087
2088 for_each_possible_cpu(cpu) {
2089 struct ieee80211_sta_rx_stats *cpustats;
2090
2091 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2092
2093 if (time_after(cpustats->last_rx, stats->last_rx))
2094 stats = cpustats;
2095 }
2096
2097 return stats;
2098 }
2099
2100 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate,
2101 struct rate_info *rinfo)
2102 {
2103 rinfo->bw = STA_STATS_GET(BW, rate);
2104
2105 switch (STA_STATS_GET(TYPE, rate)) {
2106 case STA_STATS_RATE_TYPE_VHT:
2107 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
2108 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate);
2109 rinfo->nss = STA_STATS_GET(VHT_NSS, rate);
2110 if (STA_STATS_GET(SGI, rate))
2111 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2112 break;
2113 case STA_STATS_RATE_TYPE_HT:
2114 rinfo->flags = RATE_INFO_FLAGS_MCS;
2115 rinfo->mcs = STA_STATS_GET(HT_MCS, rate);
2116 if (STA_STATS_GET(SGI, rate))
2117 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2118 break;
2119 case STA_STATS_RATE_TYPE_LEGACY: {
2120 struct ieee80211_supported_band *sband;
2121 u16 brate;
2122 unsigned int shift;
2123 int band = STA_STATS_GET(LEGACY_BAND, rate);
2124 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate);
2125
2126 sband = local->hw.wiphy->bands[band];
2127 brate = sband->bitrates[rate_idx].bitrate;
2128 if (rinfo->bw == RATE_INFO_BW_5)
2129 shift = 2;
2130 else if (rinfo->bw == RATE_INFO_BW_10)
2131 shift = 1;
2132 else
2133 shift = 0;
2134 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
2135 break;
2136 }
2137 case STA_STATS_RATE_TYPE_HE:
2138 rinfo->flags = RATE_INFO_FLAGS_HE_MCS;
2139 rinfo->mcs = STA_STATS_GET(HE_MCS, rate);
2140 rinfo->nss = STA_STATS_GET(HE_NSS, rate);
2141 rinfo->he_gi = STA_STATS_GET(HE_GI, rate);
2142 rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate);
2143 rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate);
2144 break;
2145 }
2146 }
2147
2148 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2149 {
2150 u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2151
2152 if (rate == STA_STATS_RATE_INVALID)
2153 return -EINVAL;
2154
2155 sta_stats_decode_rate(sta->local, rate, rinfo);
2156 return 0;
2157 }
2158
2159 static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats,
2160 int tid)
2161 {
2162 unsigned int start;
2163 u64 value;
2164
2165 do {
2166 start = u64_stats_fetch_begin(&rxstats->syncp);
2167 value = rxstats->msdu[tid];
2168 } while (u64_stats_fetch_retry(&rxstats->syncp, start));
2169
2170 return value;
2171 }
2172
2173 static void sta_set_tidstats(struct sta_info *sta,
2174 struct cfg80211_tid_stats *tidstats,
2175 int tid)
2176 {
2177 struct ieee80211_local *local = sta->local;
2178 int cpu;
2179
2180 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2181 if (!ieee80211_hw_check(&local->hw, USES_RSS))
2182 tidstats->rx_msdu +=
2183 sta_get_tidstats_msdu(&sta->rx_stats, tid);
2184
2185 if (sta->pcpu_rx_stats) {
2186 for_each_possible_cpu(cpu) {
2187 struct ieee80211_sta_rx_stats *cpurxs;
2188
2189 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2190 tidstats->rx_msdu +=
2191 sta_get_tidstats_msdu(cpurxs, tid);
2192 }
2193 }
2194
2195 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2196 }
2197
2198 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2199 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2200 tidstats->tx_msdu = sta->tx_stats.msdu[tid];
2201 }
2202
2203 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2204 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2205 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2206 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid];
2207 }
2208
2209 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2210 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2211 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2212 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid];
2213 }
2214
2215 if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) {
2216 spin_lock_bh(&local->fq.lock);
2217 rcu_read_lock();
2218
2219 tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS);
2220 ieee80211_fill_txq_stats(&tidstats->txq_stats,
2221 to_txq_info(sta->sta.txq[tid]));
2222
2223 rcu_read_unlock();
2224 spin_unlock_bh(&local->fq.lock);
2225 }
2226 }
2227
2228 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2229 {
2230 unsigned int start;
2231 u64 value;
2232
2233 do {
2234 start = u64_stats_fetch_begin(&rxstats->syncp);
2235 value = rxstats->bytes;
2236 } while (u64_stats_fetch_retry(&rxstats->syncp, start));
2237
2238 return value;
2239 }
2240
2241 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo,
2242 bool tidstats)
2243 {
2244 struct ieee80211_sub_if_data *sdata = sta->sdata;
2245 struct ieee80211_local *local = sdata->local;
2246 u32 thr = 0;
2247 int i, ac, cpu;
2248 struct ieee80211_sta_rx_stats *last_rxstats;
2249
2250 last_rxstats = sta_get_last_rx_stats(sta);
2251
2252 sinfo->generation = sdata->local->sta_generation;
2253
2254 /* do before driver, so beacon filtering drivers have a
2255 * chance to e.g. just add the number of filtered beacons
2256 * (or just modify the value entirely, of course)
2257 */
2258 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2259 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2260
2261 drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2262
2263 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) |
2264 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) |
2265 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) |
2266 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) |
2267 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) |
2268 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC);
2269
2270 if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2271 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2272 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS);
2273 }
2274
2275 sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2276 sinfo->assoc_at = sta->assoc_at;
2277 sinfo->inactive_time =
2278 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2279
2280 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) |
2281 BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) {
2282 sinfo->tx_bytes = 0;
2283 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2284 sinfo->tx_bytes += sta->tx_stats.bytes[ac];
2285 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64);
2286 }
2287
2288 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) {
2289 sinfo->tx_packets = 0;
2290 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2291 sinfo->tx_packets += sta->tx_stats.packets[ac];
2292 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS);
2293 }
2294
2295 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) |
2296 BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) {
2297 if (!ieee80211_hw_check(&local->hw, USES_RSS))
2298 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats);
2299
2300 if (sta->pcpu_rx_stats) {
2301 for_each_possible_cpu(cpu) {
2302 struct ieee80211_sta_rx_stats *cpurxs;
2303
2304 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2305 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2306 }
2307 }
2308
2309 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64);
2310 }
2311
2312 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) {
2313 sinfo->rx_packets = sta->rx_stats.packets;
2314 if (sta->pcpu_rx_stats) {
2315 for_each_possible_cpu(cpu) {
2316 struct ieee80211_sta_rx_stats *cpurxs;
2317
2318 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2319 sinfo->rx_packets += cpurxs->packets;
2320 }
2321 }
2322 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS);
2323 }
2324
2325 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) {
2326 sinfo->tx_retries = sta->status_stats.retry_count;
2327 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES);
2328 }
2329
2330 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) {
2331 sinfo->tx_failed = sta->status_stats.retry_failed;
2332 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED);
2333 }
2334
2335 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) {
2336 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2337 sinfo->rx_duration += sta->airtime[ac].rx_airtime;
2338 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION);
2339 }
2340
2341 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) {
2342 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2343 sinfo->tx_duration += sta->airtime[ac].tx_airtime;
2344 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION);
2345 }
2346
2347 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) {
2348 sinfo->airtime_weight = sta->airtime_weight;
2349 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT);
2350 }
2351
2352 sinfo->rx_dropped_misc = sta->rx_stats.dropped;
2353 if (sta->pcpu_rx_stats) {
2354 for_each_possible_cpu(cpu) {
2355 struct ieee80211_sta_rx_stats *cpurxs;
2356
2357 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2358 sinfo->rx_dropped_misc += cpurxs->dropped;
2359 }
2360 }
2361
2362 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2363 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2364 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) |
2365 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2366 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2367 }
2368
2369 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2370 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2371 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) {
2372 sinfo->signal = (s8)last_rxstats->last_signal;
2373 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL);
2374 }
2375
2376 if (!sta->pcpu_rx_stats &&
2377 !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) {
2378 sinfo->signal_avg =
2379 -ewma_signal_read(&sta->rx_stats_avg.signal);
2380 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG);
2381 }
2382 }
2383
2384 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2385 * the sta->rx_stats struct, so the check here is fine with and without
2386 * pcpu statistics
2387 */
2388 if (last_rxstats->chains &&
2389 !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) |
2390 BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2391 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL);
2392 if (!sta->pcpu_rx_stats)
2393 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2394
2395 sinfo->chains = last_rxstats->chains;
2396
2397 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2398 sinfo->chain_signal[i] =
2399 last_rxstats->chain_signal_last[i];
2400 sinfo->chain_signal_avg[i] =
2401 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]);
2402 }
2403 }
2404
2405 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) {
2406 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
2407 &sinfo->txrate);
2408 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
2409 }
2410
2411 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) {
2412 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0)
2413 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE);
2414 }
2415
2416 if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) {
2417 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
2418 sta_set_tidstats(sta, &sinfo->pertid[i], i);
2419 }
2420
2421 if (ieee80211_vif_is_mesh(&sdata->vif)) {
2422 #ifdef CONFIG_MAC80211_MESH
2423 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) |
2424 BIT_ULL(NL80211_STA_INFO_PLID) |
2425 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) |
2426 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) |
2427 BIT_ULL(NL80211_STA_INFO_PEER_PM) |
2428 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) |
2429 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE);
2430
2431 sinfo->llid = sta->mesh->llid;
2432 sinfo->plid = sta->mesh->plid;
2433 sinfo->plink_state = sta->mesh->plink_state;
2434 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2435 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET);
2436 sinfo->t_offset = sta->mesh->t_offset;
2437 }
2438 sinfo->local_pm = sta->mesh->local_pm;
2439 sinfo->peer_pm = sta->mesh->peer_pm;
2440 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2441 sinfo->connected_to_gate = sta->mesh->connected_to_gate;
2442 #endif
2443 }
2444
2445 sinfo->bss_param.flags = 0;
2446 if (sdata->vif.bss_conf.use_cts_prot)
2447 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2448 if (sdata->vif.bss_conf.use_short_preamble)
2449 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2450 if (sdata->vif.bss_conf.use_short_slot)
2451 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2452 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2453 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2454
2455 sinfo->sta_flags.set = 0;
2456 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2457 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2458 BIT(NL80211_STA_FLAG_WME) |
2459 BIT(NL80211_STA_FLAG_MFP) |
2460 BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2461 BIT(NL80211_STA_FLAG_ASSOCIATED) |
2462 BIT(NL80211_STA_FLAG_TDLS_PEER);
2463 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2464 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2465 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2466 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2467 if (sta->sta.wme)
2468 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2469 if (test_sta_flag(sta, WLAN_STA_MFP))
2470 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2471 if (test_sta_flag(sta, WLAN_STA_AUTH))
2472 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2473 if (test_sta_flag(sta, WLAN_STA_ASSOC))
2474 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2475 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2476 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2477
2478 thr = sta_get_expected_throughput(sta);
2479
2480 if (thr != 0) {
2481 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2482 sinfo->expected_throughput = thr;
2483 }
2484
2485 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) &&
2486 sta->status_stats.ack_signal_filled) {
2487 sinfo->ack_signal = sta->status_stats.last_ack_signal;
2488 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL);
2489 }
2490
2491 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) &&
2492 sta->status_stats.ack_signal_filled) {
2493 sinfo->avg_ack_signal =
2494 -(s8)ewma_avg_signal_read(
2495 &sta->status_stats.avg_ack_signal);
2496 sinfo->filled |=
2497 BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG);
2498 }
2499
2500 if (ieee80211_vif_is_mesh(&sdata->vif)) {
2501 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC);
2502 sinfo->airtime_link_metric =
2503 airtime_link_metric_get(local, sta);
2504 }
2505 }
2506
2507 u32 sta_get_expected_throughput(struct sta_info *sta)
2508 {
2509 struct ieee80211_sub_if_data *sdata = sta->sdata;
2510 struct ieee80211_local *local = sdata->local;
2511 struct rate_control_ref *ref = NULL;
2512 u32 thr = 0;
2513
2514 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2515 ref = local->rate_ctrl;
2516
2517 /* check if the driver has a SW RC implementation */
2518 if (ref && ref->ops->get_expected_throughput)
2519 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2520 else
2521 thr = drv_get_expected_throughput(local, sta);
2522
2523 return thr;
2524 }
2525
2526 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2527 {
2528 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2529
2530 if (!sta->status_stats.last_ack ||
2531 time_after(stats->last_rx, sta->status_stats.last_ack))
2532 return stats->last_rx;
2533 return sta->status_stats.last_ack;
2534 }
2535
2536 static void sta_update_codel_params(struct sta_info *sta, u32 thr)
2537 {
2538 if (!sta->sdata->local->ops->wake_tx_queue)
2539 return;
2540
2541 if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) {
2542 sta->cparams.target = MS2TIME(50);
2543 sta->cparams.interval = MS2TIME(300);
2544 sta->cparams.ecn = false;
2545 } else {
2546 sta->cparams.target = MS2TIME(20);
2547 sta->cparams.interval = MS2TIME(100);
2548 sta->cparams.ecn = true;
2549 }
2550 }
2551
2552 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta,
2553 u32 thr)
2554 {
2555 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2556
2557 sta_update_codel_params(sta, thr);
2558 }