]> git.ipfire.org Git - people/ms/u-boot.git/blob - net/net.c
net: cosmetic: Un-typedef IP_t
[people/ms/u-boot.git] / net / net.c
1 /*
2 * Copied from Linux Monitor (LiMon) - Networking.
3 *
4 * Copyright 1994 - 2000 Neil Russell.
5 * (See License)
6 * Copyright 2000 Roland Borde
7 * Copyright 2000 Paolo Scaffardi
8 * Copyright 2000-2002 Wolfgang Denk, wd@denx.de
9 */
10
11 /*
12 * General Desription:
13 *
14 * The user interface supports commands for BOOTP, RARP, and TFTP.
15 * Also, we support ARP internally. Depending on available data,
16 * these interact as follows:
17 *
18 * BOOTP:
19 *
20 * Prerequisites: - own ethernet address
21 * We want: - own IP address
22 * - TFTP server IP address
23 * - name of bootfile
24 * Next step: ARP
25 *
26 * RARP:
27 *
28 * Prerequisites: - own ethernet address
29 * We want: - own IP address
30 * - TFTP server IP address
31 * Next step: ARP
32 *
33 * ARP:
34 *
35 * Prerequisites: - own ethernet address
36 * - own IP address
37 * - TFTP server IP address
38 * We want: - TFTP server ethernet address
39 * Next step: TFTP
40 *
41 * DHCP:
42 *
43 * Prerequisites: - own ethernet address
44 * We want: - IP, Netmask, ServerIP, Gateway IP
45 * - bootfilename, lease time
46 * Next step: - TFTP
47 *
48 * TFTP:
49 *
50 * Prerequisites: - own ethernet address
51 * - own IP address
52 * - TFTP server IP address
53 * - TFTP server ethernet address
54 * - name of bootfile (if unknown, we use a default name
55 * derived from our own IP address)
56 * We want: - load the boot file
57 * Next step: none
58 *
59 * NFS:
60 *
61 * Prerequisites: - own ethernet address
62 * - own IP address
63 * - name of bootfile (if unknown, we use a default name
64 * derived from our own IP address)
65 * We want: - load the boot file
66 * Next step: none
67 *
68 * SNTP:
69 *
70 * Prerequisites: - own ethernet address
71 * - own IP address
72 * We want: - network time
73 * Next step: none
74 */
75
76
77 #include <common.h>
78 #include <watchdog.h>
79 #include <command.h>
80 #include <linux/compiler.h>
81 #include <net.h>
82 #include "arp.h"
83 #include "bootp.h"
84 #include "tftp.h"
85 #include "rarp.h"
86 #include "nfs.h"
87 #ifdef CONFIG_STATUS_LED
88 #include <status_led.h>
89 #include <miiphy.h>
90 #endif
91 #if defined(CONFIG_CMD_SNTP)
92 #include "sntp.h"
93 #endif
94 #include "cdp.h"
95 #if defined(CONFIG_CMD_DNS)
96 #include "dns.h"
97 #endif
98 #include "ping.h"
99
100 DECLARE_GLOBAL_DATA_PTR;
101
102 /** BOOTP EXTENTIONS **/
103
104 /* Our subnet mask (0=unknown) */
105 IPaddr_t NetOurSubnetMask;
106 /* Our gateways IP address */
107 IPaddr_t NetOurGatewayIP;
108 /* Our DNS IP address */
109 IPaddr_t NetOurDNSIP;
110 #if defined(CONFIG_BOOTP_DNS2)
111 /* Our 2nd DNS IP address */
112 IPaddr_t NetOurDNS2IP;
113 #endif
114 /* Our NIS domain */
115 char NetOurNISDomain[32] = {0,};
116 /* Our hostname */
117 char NetOurHostName[32] = {0,};
118 /* Our bootpath */
119 char NetOurRootPath[64] = {0,};
120 /* Our bootfile size in blocks */
121 ushort NetBootFileSize;
122
123 #ifdef CONFIG_MCAST_TFTP /* Multicast TFTP */
124 IPaddr_t Mcast_addr;
125 #endif
126
127 /** END OF BOOTP EXTENTIONS **/
128
129 /* The actual transferred size of the bootfile (in bytes) */
130 ulong NetBootFileXferSize;
131 /* Our ethernet address */
132 uchar NetOurEther[6];
133 /* Boot server enet address */
134 uchar NetServerEther[6];
135 /* Our IP addr (0 = unknown) */
136 IPaddr_t NetOurIP;
137 /* Server IP addr (0 = unknown) */
138 IPaddr_t NetServerIP;
139 /* Current receive packet */
140 uchar *NetRxPacket;
141 /* Current rx packet length */
142 int NetRxPacketLen;
143 /* IP packet ID */
144 unsigned NetIPID;
145 /* Ethernet bcast address */
146 uchar NetBcastAddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
147 uchar NetEtherNullAddr[6];
148 #ifdef CONFIG_API
149 void (*push_packet)(void *, int len) = 0;
150 #endif
151 /* Network loop state */
152 int NetState;
153 /* Tried all network devices */
154 int NetRestartWrap;
155 /* Network loop restarted */
156 static int NetRestarted;
157 /* At least one device configured */
158 static int NetDevExists;
159
160 /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */
161 /* default is without VLAN */
162 ushort NetOurVLAN = 0xFFFF;
163 /* ditto */
164 ushort NetOurNativeVLAN = 0xFFFF;
165
166 /* Boot File name */
167 char BootFile[128];
168
169 #if defined(CONFIG_CMD_SNTP)
170 /* NTP server IP address */
171 IPaddr_t NetNtpServerIP;
172 /* offset time from UTC */
173 int NetTimeOffset;
174 #endif
175
176 uchar PktBuf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN];
177
178 /* Receive packet */
179 uchar *NetRxPackets[PKTBUFSRX];
180
181 /* Current RX packet handler */
182 static rxhand_f *packetHandler;
183 #ifdef CONFIG_CMD_TFTPPUT
184 static rxhand_icmp_f *packet_icmp_handler; /* Current ICMP rx handler */
185 #endif
186 /* Current timeout handler */
187 static thand_f *timeHandler;
188 /* Time base value */
189 static ulong timeStart;
190 /* Current timeout value */
191 static ulong timeDelta;
192 /* THE transmit packet */
193 uchar *NetTxPacket;
194
195 static int net_check_prereq(enum proto_t protocol);
196
197 static int NetTryCount;
198
199 /**********************************************************************/
200
201 /*
202 * Check if autoload is enabled. If so, use either NFS or TFTP to download
203 * the boot file.
204 */
205 void net_auto_load(void)
206 {
207 const char *s = getenv("autoload");
208
209 if (s != NULL) {
210 if (*s == 'n') {
211 /*
212 * Just use BOOTP/RARP to configure system;
213 * Do not use TFTP to load the bootfile.
214 */
215 NetState = NETLOOP_SUCCESS;
216 return;
217 }
218 #if defined(CONFIG_CMD_NFS)
219 if (strcmp(s, "NFS") == 0) {
220 /*
221 * Use NFS to load the bootfile.
222 */
223 NfsStart();
224 return;
225 }
226 #endif
227 }
228 TftpStart(TFTPGET);
229 }
230
231 static void NetInitLoop(enum proto_t protocol)
232 {
233 static int env_changed_id;
234 int env_id = get_env_id();
235
236 /* update only when the environment has changed */
237 if (env_changed_id != env_id) {
238 NetOurIP = getenv_IPaddr("ipaddr");
239 NetOurGatewayIP = getenv_IPaddr("gatewayip");
240 NetOurSubnetMask = getenv_IPaddr("netmask");
241 NetServerIP = getenv_IPaddr("serverip");
242 NetOurNativeVLAN = getenv_VLAN("nvlan");
243 NetOurVLAN = getenv_VLAN("vlan");
244 #if defined(CONFIG_CMD_DNS)
245 NetOurDNSIP = getenv_IPaddr("dnsip");
246 #endif
247 env_changed_id = env_id;
248 }
249
250 return;
251 }
252
253 /**********************************************************************/
254 /*
255 * Main network processing loop.
256 */
257
258 int NetLoop(enum proto_t protocol)
259 {
260 bd_t *bd = gd->bd;
261 int ret = -1;
262
263 NetRestarted = 0;
264 NetDevExists = 0;
265
266 NetTxPacket = NULL;
267 NetTryCount = 1;
268
269 ArpInit();
270
271 if (!NetTxPacket) {
272 int i;
273 /*
274 * Setup packet buffers, aligned correctly.
275 */
276 NetTxPacket = &PktBuf[0] + (PKTALIGN - 1);
277 NetTxPacket -= (ulong)NetTxPacket % PKTALIGN;
278 for (i = 0; i < PKTBUFSRX; i++)
279 NetRxPackets[i] = NetTxPacket + (i+1)*PKTSIZE_ALIGN;
280 }
281
282 bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start");
283 eth_halt();
284 eth_set_current();
285 if (eth_init(bd) < 0) {
286 eth_halt();
287 return -1;
288 }
289
290 restart:
291 memcpy(NetOurEther, eth_get_dev()->enetaddr, 6);
292
293 NetState = NETLOOP_CONTINUE;
294
295 /*
296 * Start the ball rolling with the given start function. From
297 * here on, this code is a state machine driven by received
298 * packets and timer events.
299 */
300 NetInitLoop(protocol);
301
302 switch (net_check_prereq(protocol)) {
303 case 1:
304 /* network not configured */
305 eth_halt();
306 return -1;
307
308 case 2:
309 /* network device not configured */
310 break;
311
312 case 0:
313 NetDevExists = 1;
314 NetBootFileXferSize = 0;
315 switch (protocol) {
316 case TFTPGET:
317 #ifdef CONFIG_CMD_TFTPPUT
318 case TFTPPUT:
319 #endif
320 /* always use ARP to get server ethernet address */
321 TftpStart(protocol);
322 break;
323 #ifdef CONFIG_CMD_TFTPSRV
324 case TFTPSRV:
325 TftpStartServer();
326 break;
327 #endif
328 #if defined(CONFIG_CMD_DHCP)
329 case DHCP:
330 BootpTry = 0;
331 NetOurIP = 0;
332 DhcpRequest(); /* Basically same as BOOTP */
333 break;
334 #endif
335
336 case BOOTP:
337 BootpTry = 0;
338 NetOurIP = 0;
339 BootpRequest();
340 break;
341
342 #if defined(CONFIG_CMD_RARP)
343 case RARP:
344 RarpTry = 0;
345 NetOurIP = 0;
346 RarpRequest();
347 break;
348 #endif
349 #if defined(CONFIG_CMD_PING)
350 case PING:
351 ping_start();
352 break;
353 #endif
354 #if defined(CONFIG_CMD_NFS)
355 case NFS:
356 NfsStart();
357 break;
358 #endif
359 #if defined(CONFIG_CMD_CDP)
360 case CDP:
361 CDPStart();
362 break;
363 #endif
364 #ifdef CONFIG_NETCONSOLE
365 case NETCONS:
366 NcStart();
367 break;
368 #endif
369 #if defined(CONFIG_CMD_SNTP)
370 case SNTP:
371 SntpStart();
372 break;
373 #endif
374 #if defined(CONFIG_CMD_DNS)
375 case DNS:
376 DnsStart();
377 break;
378 #endif
379 default:
380 break;
381 }
382
383 break;
384 }
385
386 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
387 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \
388 defined(CONFIG_STATUS_LED) && \
389 defined(STATUS_LED_RED)
390 /*
391 * Echo the inverted link state to the fault LED.
392 */
393 if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR))
394 status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
395 else
396 status_led_set(STATUS_LED_RED, STATUS_LED_ON);
397 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
398 #endif /* CONFIG_MII, ... */
399
400 /*
401 * Main packet reception loop. Loop receiving packets until
402 * someone sets `NetState' to a state that terminates.
403 */
404 for (;;) {
405 WATCHDOG_RESET();
406 #ifdef CONFIG_SHOW_ACTIVITY
407 show_activity(1);
408 #endif
409 /*
410 * Check the ethernet for a new packet. The ethernet
411 * receive routine will process it.
412 */
413 eth_rx();
414
415 /*
416 * Abort if ctrl-c was pressed.
417 */
418 if (ctrlc()) {
419 eth_halt();
420 puts("\nAbort\n");
421 goto done;
422 }
423
424 ArpTimeoutCheck();
425
426 /*
427 * Check for a timeout, and run the timeout handler
428 * if we have one.
429 */
430 if (timeHandler && ((get_timer(0) - timeStart) > timeDelta)) {
431 thand_f *x;
432
433 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
434 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \
435 defined(CONFIG_STATUS_LED) && \
436 defined(STATUS_LED_RED)
437 /*
438 * Echo the inverted link state to the fault LED.
439 */
440 if (miiphy_link(eth_get_dev()->name,
441 CONFIG_SYS_FAULT_MII_ADDR)) {
442 status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
443 } else {
444 status_led_set(STATUS_LED_RED, STATUS_LED_ON);
445 }
446 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
447 #endif /* CONFIG_MII, ... */
448 x = timeHandler;
449 timeHandler = (thand_f *)0;
450 (*x)();
451 }
452
453
454 switch (NetState) {
455
456 case NETLOOP_RESTART:
457 NetRestarted = 1;
458 goto restart;
459
460 case NETLOOP_SUCCESS:
461 if (NetBootFileXferSize > 0) {
462 char buf[20];
463 printf("Bytes transferred = %ld (%lx hex)\n",
464 NetBootFileXferSize,
465 NetBootFileXferSize);
466 sprintf(buf, "%lX", NetBootFileXferSize);
467 setenv("filesize", buf);
468
469 sprintf(buf, "%lX", (unsigned long)load_addr);
470 setenv("fileaddr", buf);
471 }
472 eth_halt();
473 ret = NetBootFileXferSize;
474 goto done;
475
476 case NETLOOP_FAIL:
477 goto done;
478 }
479 }
480
481 done:
482 #ifdef CONFIG_CMD_TFTPPUT
483 /* Clear out the handlers */
484 NetSetHandler(NULL);
485 net_set_icmp_handler(NULL);
486 #endif
487 return ret;
488 }
489
490 /**********************************************************************/
491
492 static void
493 startAgainTimeout(void)
494 {
495 NetState = NETLOOP_RESTART;
496 }
497
498 static void
499 startAgainHandler(uchar *pkt, unsigned dest, IPaddr_t sip,
500 unsigned src, unsigned len)
501 {
502 /* Totally ignore the packet */
503 }
504
505 void NetStartAgain(void)
506 {
507 char *nretry;
508 int retry_forever = 0;
509 unsigned long retrycnt = 0;
510
511 nretry = getenv("netretry");
512 if (nretry) {
513 if (!strcmp(nretry, "yes"))
514 retry_forever = 1;
515 else if (!strcmp(nretry, "no"))
516 retrycnt = 0;
517 else if (!strcmp(nretry, "once"))
518 retrycnt = 1;
519 else
520 retrycnt = simple_strtoul(nretry, NULL, 0);
521 } else
522 retry_forever = 1;
523
524 if ((!retry_forever) && (NetTryCount >= retrycnt)) {
525 eth_halt();
526 NetState = NETLOOP_FAIL;
527 return;
528 }
529
530 NetTryCount++;
531
532 eth_halt();
533 #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER)
534 eth_try_another(!NetRestarted);
535 #endif
536 eth_init(gd->bd);
537 if (NetRestartWrap) {
538 NetRestartWrap = 0;
539 if (NetDevExists) {
540 NetSetTimeout(10000UL, startAgainTimeout);
541 NetSetHandler(startAgainHandler);
542 } else {
543 NetState = NETLOOP_FAIL;
544 }
545 } else {
546 NetState = NETLOOP_RESTART;
547 }
548 }
549
550 /**********************************************************************/
551 /*
552 * Miscelaneous bits.
553 */
554
555 rxhand_f *
556 NetGetHandler(void)
557 {
558 return packetHandler;
559 }
560
561
562 void
563 NetSetHandler(rxhand_f *f)
564 {
565 packetHandler = f;
566 }
567
568 #ifdef CONFIG_CMD_TFTPPUT
569 void net_set_icmp_handler(rxhand_icmp_f *f)
570 {
571 packet_icmp_handler = f;
572 }
573 #endif
574
575 void
576 NetSetTimeout(ulong iv, thand_f *f)
577 {
578 if (iv == 0) {
579 timeHandler = (thand_f *)0;
580 } else {
581 timeHandler = f;
582 timeStart = get_timer(0);
583 timeDelta = iv;
584 }
585 }
586
587
588 void
589 NetSendPacket(uchar *pkt, int len)
590 {
591 (void) eth_send(pkt, len);
592 }
593
594 int
595 NetSendUDPPacket(uchar *ether, IPaddr_t dest, int dport, int sport, int len)
596 {
597 uchar *pkt;
598
599 /* convert to new style broadcast */
600 if (dest == 0)
601 dest = 0xFFFFFFFF;
602
603 /* if broadcast, make the ether address a broadcast and don't do ARP */
604 if (dest == 0xFFFFFFFF)
605 ether = NetBcastAddr;
606
607 /*
608 * if MAC address was not discovered yet, save the packet and do
609 * an ARP request
610 */
611 if (memcmp(ether, NetEtherNullAddr, 6) == 0) {
612
613 debug("sending ARP for %08x\n", dest);
614
615 NetArpWaitPacketIP = dest;
616 NetArpWaitPacketMAC = ether;
617
618 pkt = NetArpWaitTxPacket;
619 pkt += NetSetEther(pkt, NetArpWaitPacketMAC, PROT_IP);
620
621 NetSetIP(pkt, dest, dport, sport, len);
622 memcpy(pkt + IP_UDP_HDR_SIZE, (uchar *)NetTxPacket +
623 (pkt - (uchar *)NetArpWaitTxPacket) +
624 IP_UDP_HDR_SIZE, len);
625
626 /* size of the waiting packet */
627 NetArpWaitTxPacketSize = (pkt - NetArpWaitTxPacket) +
628 IP_UDP_HDR_SIZE + len;
629
630 /* and do the ARP request */
631 NetArpWaitTry = 1;
632 NetArpWaitTimerStart = get_timer(0);
633 ArpRequest();
634 return 1; /* waiting */
635 }
636
637 debug("sending UDP to %08x/%pM\n", dest, ether);
638
639 pkt = (uchar *)NetTxPacket;
640 pkt += NetSetEther(pkt, ether, PROT_IP);
641 NetSetIP(pkt, dest, dport, sport, len);
642 eth_send(NetTxPacket, (pkt - NetTxPacket) + IP_UDP_HDR_SIZE + len);
643
644 return 0; /* transmitted */
645 }
646
647 #ifdef CONFIG_IP_DEFRAG
648 /*
649 * This function collects fragments in a single packet, according
650 * to the algorithm in RFC815. It returns NULL or the pointer to
651 * a complete packet, in static storage
652 */
653 #ifndef CONFIG_NET_MAXDEFRAG
654 #define CONFIG_NET_MAXDEFRAG 16384
655 #endif
656 /*
657 * MAXDEFRAG, above, is chosen in the config file and is real data
658 * so we need to add the NFS overhead, which is more than TFTP.
659 * To use sizeof in the internal unnamed structures, we need a real
660 * instance (can't do "sizeof(struct rpc_t.u.reply))", unfortunately).
661 * The compiler doesn't complain nor allocates the actual structure
662 */
663 static struct rpc_t rpc_specimen;
664 #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG + sizeof(rpc_specimen.u.reply))
665
666 #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE_NO_UDP)
667
668 /*
669 * this is the packet being assembled, either data or frag control.
670 * Fragments go by 8 bytes, so this union must be 8 bytes long
671 */
672 struct hole {
673 /* first_byte is address of this structure */
674 u16 last_byte; /* last byte in this hole + 1 (begin of next hole) */
675 u16 next_hole; /* index of next (in 8-b blocks), 0 == none */
676 u16 prev_hole; /* index of prev, 0 == none */
677 u16 unused;
678 };
679
680 static struct ip_udp_hdr *__NetDefragment(struct ip_udp_hdr *ip, int *lenp)
681 {
682 static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN);
683 static u16 first_hole, total_len;
684 struct hole *payload, *thisfrag, *h, *newh;
685 struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff;
686 uchar *indata = (uchar *)ip;
687 int offset8, start, len, done = 0;
688 u16 ip_off = ntohs(ip->ip_off);
689
690 /* payload starts after IP header, this fragment is in there */
691 payload = (struct hole *)(pkt_buff + IP_HDR_SIZE_NO_UDP);
692 offset8 = (ip_off & IP_OFFS);
693 thisfrag = payload + offset8;
694 start = offset8 * 8;
695 len = ntohs(ip->ip_len) - IP_HDR_SIZE_NO_UDP;
696
697 if (start + len > IP_MAXUDP) /* fragment extends too far */
698 return NULL;
699
700 if (!total_len || localip->ip_id != ip->ip_id) {
701 /* new (or different) packet, reset structs */
702 total_len = 0xffff;
703 payload[0].last_byte = ~0;
704 payload[0].next_hole = 0;
705 payload[0].prev_hole = 0;
706 first_hole = 0;
707 /* any IP header will work, copy the first we received */
708 memcpy(localip, ip, IP_HDR_SIZE_NO_UDP);
709 }
710
711 /*
712 * What follows is the reassembly algorithm. We use the payload
713 * array as a linked list of hole descriptors, as each hole starts
714 * at a multiple of 8 bytes. However, last byte can be whatever value,
715 * so it is represented as byte count, not as 8-byte blocks.
716 */
717
718 h = payload + first_hole;
719 while (h->last_byte < start) {
720 if (!h->next_hole) {
721 /* no hole that far away */
722 return NULL;
723 }
724 h = payload + h->next_hole;
725 }
726
727 /* last fragment may be 1..7 bytes, the "+7" forces acceptance */
728 if (offset8 + ((len + 7) / 8) <= h - payload) {
729 /* no overlap with holes (dup fragment?) */
730 return NULL;
731 }
732
733 if (!(ip_off & IP_FLAGS_MFRAG)) {
734 /* no more fragmentss: truncate this (last) hole */
735 total_len = start + len;
736 h->last_byte = start + len;
737 }
738
739 /*
740 * There is some overlap: fix the hole list. This code doesn't
741 * deal with a fragment that overlaps with two different holes
742 * (thus being a superset of a previously-received fragment).
743 */
744
745 if ((h >= thisfrag) && (h->last_byte <= start + len)) {
746 /* complete overlap with hole: remove hole */
747 if (!h->prev_hole && !h->next_hole) {
748 /* last remaining hole */
749 done = 1;
750 } else if (!h->prev_hole) {
751 /* first hole */
752 first_hole = h->next_hole;
753 payload[h->next_hole].prev_hole = 0;
754 } else if (!h->next_hole) {
755 /* last hole */
756 payload[h->prev_hole].next_hole = 0;
757 } else {
758 /* in the middle of the list */
759 payload[h->next_hole].prev_hole = h->prev_hole;
760 payload[h->prev_hole].next_hole = h->next_hole;
761 }
762
763 } else if (h->last_byte <= start + len) {
764 /* overlaps with final part of the hole: shorten this hole */
765 h->last_byte = start;
766
767 } else if (h >= thisfrag) {
768 /* overlaps with initial part of the hole: move this hole */
769 newh = thisfrag + (len / 8);
770 *newh = *h;
771 h = newh;
772 if (h->next_hole)
773 payload[h->next_hole].prev_hole = (h - payload);
774 if (h->prev_hole)
775 payload[h->prev_hole].next_hole = (h - payload);
776 else
777 first_hole = (h - payload);
778
779 } else {
780 /* fragment sits in the middle: split the hole */
781 newh = thisfrag + (len / 8);
782 *newh = *h;
783 h->last_byte = start;
784 h->next_hole = (newh - payload);
785 newh->prev_hole = (h - payload);
786 if (newh->next_hole)
787 payload[newh->next_hole].prev_hole = (newh - payload);
788 }
789
790 /* finally copy this fragment and possibly return whole packet */
791 memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE_NO_UDP, len);
792 if (!done)
793 return NULL;
794
795 localip->ip_len = htons(total_len);
796 *lenp = total_len + IP_HDR_SIZE_NO_UDP;
797 return localip;
798 }
799
800 static inline struct ip_udp_hdr *NetDefragment(struct ip_udp_hdr *ip, int *lenp)
801 {
802 u16 ip_off = ntohs(ip->ip_off);
803 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
804 return ip; /* not a fragment */
805 return __NetDefragment(ip, lenp);
806 }
807
808 #else /* !CONFIG_IP_DEFRAG */
809
810 static inline struct ip_udp_hdr *NetDefragment(struct ip_udp_hdr *ip, int *lenp)
811 {
812 u16 ip_off = ntohs(ip->ip_off);
813 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
814 return ip; /* not a fragment */
815 return NULL;
816 }
817 #endif
818
819 /**
820 * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently
821 * drop others.
822 *
823 * @parma ip IP packet containing the ICMP
824 */
825 static void receive_icmp(struct ip_udp_hdr *ip, int len,
826 IPaddr_t src_ip, Ethernet_t *et)
827 {
828 ICMP_t *icmph = (ICMP_t *)&ip->udp_src;
829
830 switch (icmph->type) {
831 case ICMP_REDIRECT:
832 if (icmph->code != ICMP_REDIR_HOST)
833 return;
834 printf(" ICMP Host Redirect to %pI4 ",
835 &icmph->un.gateway);
836 break;
837 default:
838 #if defined(CONFIG_CMD_PING)
839 ping_receive(et, ip, len);
840 #endif
841 #ifdef CONFIG_CMD_TFTPPUT
842 if (packet_icmp_handler)
843 packet_icmp_handler(icmph->type, icmph->code,
844 ntohs(ip->udp_dst), src_ip, ntohs(ip->udp_src),
845 icmph->un.data, ntohs(ip->udp_len));
846 #endif
847 break;
848 }
849 }
850
851 void
852 NetReceive(uchar *inpkt, int len)
853 {
854 Ethernet_t *et;
855 struct ip_udp_hdr *ip;
856 IPaddr_t tmp;
857 IPaddr_t src_ip;
858 int x;
859 #if defined(CONFIG_CMD_CDP)
860 int iscdp;
861 #endif
862 ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid;
863
864 debug("packet received\n");
865
866 NetRxPacket = inpkt;
867 NetRxPacketLen = len;
868 et = (Ethernet_t *)inpkt;
869
870 /* too small packet? */
871 if (len < ETHER_HDR_SIZE)
872 return;
873
874 #ifdef CONFIG_API
875 if (push_packet) {
876 (*push_packet)(inpkt, len);
877 return;
878 }
879 #endif
880
881 #if defined(CONFIG_CMD_CDP)
882 /* keep track if packet is CDP */
883 iscdp = is_cdp_packet(et->et_dest);
884 #endif
885
886 myvlanid = ntohs(NetOurVLAN);
887 if (myvlanid == (ushort)-1)
888 myvlanid = VLAN_NONE;
889 mynvlanid = ntohs(NetOurNativeVLAN);
890 if (mynvlanid == (ushort)-1)
891 mynvlanid = VLAN_NONE;
892
893 x = ntohs(et->et_protlen);
894
895 debug("packet received\n");
896
897 if (x < 1514) {
898 /*
899 * Got a 802 packet. Check the other protocol field.
900 */
901 x = ntohs(et->et_prot);
902
903 ip = (struct ip_udp_hdr *)(inpkt + E802_HDR_SIZE);
904 len -= E802_HDR_SIZE;
905
906 } else if (x != PROT_VLAN) { /* normal packet */
907 ip = (struct ip_udp_hdr *)(inpkt + ETHER_HDR_SIZE);
908 len -= ETHER_HDR_SIZE;
909
910 } else { /* VLAN packet */
911 VLAN_Ethernet_t *vet = (VLAN_Ethernet_t *)et;
912
913 debug("VLAN packet received\n");
914
915 /* too small packet? */
916 if (len < VLAN_ETHER_HDR_SIZE)
917 return;
918
919 /* if no VLAN active */
920 if ((ntohs(NetOurVLAN) & VLAN_IDMASK) == VLAN_NONE
921 #if defined(CONFIG_CMD_CDP)
922 && iscdp == 0
923 #endif
924 )
925 return;
926
927 cti = ntohs(vet->vet_tag);
928 vlanid = cti & VLAN_IDMASK;
929 x = ntohs(vet->vet_type);
930
931 ip = (struct ip_udp_hdr *)(inpkt + VLAN_ETHER_HDR_SIZE);
932 len -= VLAN_ETHER_HDR_SIZE;
933 }
934
935 debug("Receive from protocol 0x%x\n", x);
936
937 #if defined(CONFIG_CMD_CDP)
938 if (iscdp) {
939 CDPHandler((uchar *)ip, len);
940 return;
941 }
942 #endif
943
944 if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) {
945 if (vlanid == VLAN_NONE)
946 vlanid = (mynvlanid & VLAN_IDMASK);
947 /* not matched? */
948 if (vlanid != (myvlanid & VLAN_IDMASK))
949 return;
950 }
951
952 switch (x) {
953
954 case PROT_ARP:
955 ArpReceive(et, ip, len);
956 break;
957
958 #ifdef CONFIG_CMD_RARP
959 case PROT_RARP:
960 rarp_receive(ip, len);
961 break;
962 #endif
963 case PROT_IP:
964 debug("Got IP\n");
965 /* Before we start poking the header, make sure it is there */
966 if (len < IP_UDP_HDR_SIZE) {
967 debug("len bad %d < %lu\n", len,
968 (ulong)IP_UDP_HDR_SIZE);
969 return;
970 }
971 /* Check the packet length */
972 if (len < ntohs(ip->ip_len)) {
973 printf("len bad %d < %d\n", len, ntohs(ip->ip_len));
974 return;
975 }
976 len = ntohs(ip->ip_len);
977 debug("len=%d, v=%02x\n", len, ip->ip_hl_v & 0xff);
978
979 /* Can't deal with anything except IPv4 */
980 if ((ip->ip_hl_v & 0xf0) != 0x40)
981 return;
982 /* Can't deal with IP options (headers != 20 bytes) */
983 if ((ip->ip_hl_v & 0x0f) > 0x05)
984 return;
985 /* Check the Checksum of the header */
986 if (!NetCksumOk((uchar *)ip, IP_HDR_SIZE_NO_UDP / 2)) {
987 puts("checksum bad\n");
988 return;
989 }
990 /* If it is not for us, ignore it */
991 tmp = NetReadIP(&ip->ip_dst);
992 if (NetOurIP && tmp != NetOurIP && tmp != 0xFFFFFFFF) {
993 #ifdef CONFIG_MCAST_TFTP
994 if (Mcast_addr != tmp)
995 #endif
996 return;
997 }
998 /* Read source IP address for later use */
999 src_ip = NetReadIP(&ip->ip_src);
1000 /*
1001 * The function returns the unchanged packet if it's not
1002 * a fragment, and either the complete packet or NULL if
1003 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL)
1004 */
1005 ip = NetDefragment(ip, &len);
1006 if (!ip)
1007 return;
1008 /*
1009 * watch for ICMP host redirects
1010 *
1011 * There is no real handler code (yet). We just watch
1012 * for ICMP host redirect messages. In case anybody
1013 * sees these messages: please contact me
1014 * (wd@denx.de), or - even better - send me the
1015 * necessary fixes :-)
1016 *
1017 * Note: in all cases where I have seen this so far
1018 * it was a problem with the router configuration,
1019 * for instance when a router was configured in the
1020 * BOOTP reply, but the TFTP server was on the same
1021 * subnet. So this is probably a warning that your
1022 * configuration might be wrong. But I'm not really
1023 * sure if there aren't any other situations.
1024 *
1025 * Simon Glass <sjg@chromium.org>: We get an ICMP when
1026 * we send a tftp packet to a dead connection, or when
1027 * there is no server at the other end.
1028 */
1029 if (ip->ip_p == IPPROTO_ICMP) {
1030 receive_icmp(ip, len, src_ip, et);
1031 return;
1032 } else if (ip->ip_p != IPPROTO_UDP) { /* Only UDP packets */
1033 return;
1034 }
1035
1036 #ifdef CONFIG_UDP_CHECKSUM
1037 if (ip->udp_xsum != 0) {
1038 ulong xsum;
1039 ushort *sumptr;
1040 ushort sumlen;
1041
1042 xsum = ip->ip_p;
1043 xsum += (ntohs(ip->udp_len));
1044 xsum += (ntohl(ip->ip_src) >> 16) & 0x0000ffff;
1045 xsum += (ntohl(ip->ip_src) >> 0) & 0x0000ffff;
1046 xsum += (ntohl(ip->ip_dst) >> 16) & 0x0000ffff;
1047 xsum += (ntohl(ip->ip_dst) >> 0) & 0x0000ffff;
1048
1049 sumlen = ntohs(ip->udp_len);
1050 sumptr = (ushort *) &(ip->udp_src);
1051
1052 while (sumlen > 1) {
1053 ushort sumdata;
1054
1055 sumdata = *sumptr++;
1056 xsum += ntohs(sumdata);
1057 sumlen -= 2;
1058 }
1059 if (sumlen > 0) {
1060 ushort sumdata;
1061
1062 sumdata = *(unsigned char *) sumptr;
1063 sumdata = (sumdata << 8) & 0xff00;
1064 xsum += sumdata;
1065 }
1066 while ((xsum >> 16) != 0) {
1067 xsum = (xsum & 0x0000ffff) +
1068 ((xsum >> 16) & 0x0000ffff);
1069 }
1070 if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) {
1071 printf(" UDP wrong checksum %08lx %08x\n",
1072 xsum, ntohs(ip->udp_xsum));
1073 return;
1074 }
1075 }
1076 #endif
1077
1078
1079 #ifdef CONFIG_NETCONSOLE
1080 nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE,
1081 ntohs(ip->udp_dst),
1082 ntohs(ip->udp_src),
1083 ntohs(ip->udp_len) - UDP_HDR_SIZE);
1084 #endif
1085 /*
1086 * IP header OK. Pass the packet to the current handler.
1087 */
1088 (*packetHandler)((uchar *)ip + IP_UDP_HDR_SIZE,
1089 ntohs(ip->udp_dst),
1090 src_ip,
1091 ntohs(ip->udp_src),
1092 ntohs(ip->udp_len) - UDP_HDR_SIZE);
1093 break;
1094 }
1095 }
1096
1097
1098 /**********************************************************************/
1099
1100 static int net_check_prereq(enum proto_t protocol)
1101 {
1102 switch (protocol) {
1103 /* Fall through */
1104 #if defined(CONFIG_CMD_PING)
1105 case PING:
1106 if (NetPingIP == 0) {
1107 puts("*** ERROR: ping address not given\n");
1108 return 1;
1109 }
1110 goto common;
1111 #endif
1112 #if defined(CONFIG_CMD_SNTP)
1113 case SNTP:
1114 if (NetNtpServerIP == 0) {
1115 puts("*** ERROR: NTP server address not given\n");
1116 return 1;
1117 }
1118 goto common;
1119 #endif
1120 #if defined(CONFIG_CMD_DNS)
1121 case DNS:
1122 if (NetOurDNSIP == 0) {
1123 puts("*** ERROR: DNS server address not given\n");
1124 return 1;
1125 }
1126 goto common;
1127 #endif
1128 #if defined(CONFIG_CMD_NFS)
1129 case NFS:
1130 #endif
1131 case TFTPGET:
1132 case TFTPPUT:
1133 if (NetServerIP == 0) {
1134 puts("*** ERROR: `serverip' not set\n");
1135 return 1;
1136 }
1137 #if defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \
1138 defined(CONFIG_CMD_DNS)
1139 common:
1140 #endif
1141 /* Fall through */
1142
1143 case NETCONS:
1144 case TFTPSRV:
1145 if (NetOurIP == 0) {
1146 puts("*** ERROR: `ipaddr' not set\n");
1147 return 1;
1148 }
1149 /* Fall through */
1150
1151 #ifdef CONFIG_CMD_RARP
1152 case RARP:
1153 #endif
1154 case BOOTP:
1155 case CDP:
1156 case DHCP:
1157 if (memcmp(NetOurEther, "\0\0\0\0\0\0", 6) == 0) {
1158 int num = eth_get_dev_index();
1159
1160 switch (num) {
1161 case -1:
1162 puts("*** ERROR: No ethernet found.\n");
1163 return 1;
1164 case 0:
1165 puts("*** ERROR: `ethaddr' not set\n");
1166 break;
1167 default:
1168 printf("*** ERROR: `eth%daddr' not set\n",
1169 num);
1170 break;
1171 }
1172
1173 NetStartAgain();
1174 return 2;
1175 }
1176 /* Fall through */
1177 default:
1178 return 0;
1179 }
1180 return 0; /* OK */
1181 }
1182 /**********************************************************************/
1183
1184 int
1185 NetCksumOk(uchar *ptr, int len)
1186 {
1187 return !((NetCksum(ptr, len) + 1) & 0xfffe);
1188 }
1189
1190
1191 unsigned
1192 NetCksum(uchar *ptr, int len)
1193 {
1194 ulong xsum;
1195 ushort *p = (ushort *)ptr;
1196
1197 xsum = 0;
1198 while (len-- > 0)
1199 xsum += *p++;
1200 xsum = (xsum & 0xffff) + (xsum >> 16);
1201 xsum = (xsum & 0xffff) + (xsum >> 16);
1202 return xsum & 0xffff;
1203 }
1204
1205 int
1206 NetEthHdrSize(void)
1207 {
1208 ushort myvlanid;
1209
1210 myvlanid = ntohs(NetOurVLAN);
1211 if (myvlanid == (ushort)-1)
1212 myvlanid = VLAN_NONE;
1213
1214 return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE :
1215 VLAN_ETHER_HDR_SIZE;
1216 }
1217
1218 int
1219 NetSetEther(uchar *xet, uchar * addr, uint prot)
1220 {
1221 Ethernet_t *et = (Ethernet_t *)xet;
1222 ushort myvlanid;
1223
1224 myvlanid = ntohs(NetOurVLAN);
1225 if (myvlanid == (ushort)-1)
1226 myvlanid = VLAN_NONE;
1227
1228 memcpy(et->et_dest, addr, 6);
1229 memcpy(et->et_src, NetOurEther, 6);
1230 if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) {
1231 et->et_protlen = htons(prot);
1232 return ETHER_HDR_SIZE;
1233 } else {
1234 VLAN_Ethernet_t *vet = (VLAN_Ethernet_t *)xet;
1235
1236 vet->vet_vlan_type = htons(PROT_VLAN);
1237 vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK));
1238 vet->vet_type = htons(prot);
1239 return VLAN_ETHER_HDR_SIZE;
1240 }
1241 }
1242
1243 void NetSetIP(uchar *xip, IPaddr_t dest, int dport, int sport, int len)
1244 {
1245 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)xip;
1246
1247 /*
1248 * If the data is an odd number of bytes, zero the
1249 * byte after the last byte so that the checksum
1250 * will work.
1251 */
1252 if (len & 1)
1253 xip[IP_UDP_HDR_SIZE + len] = 0;
1254
1255 /*
1256 * Construct an IP and UDP header.
1257 * (need to set no fragment bit - XXX)
1258 */
1259 /* IP_HDR_SIZE / 4 (not including UDP) */
1260 ip->ip_hl_v = 0x45;
1261 ip->ip_tos = 0;
1262 ip->ip_len = htons(IP_UDP_HDR_SIZE + len);
1263 ip->ip_id = htons(NetIPID++);
1264 ip->ip_off = htons(IP_FLAGS_DFRAG); /* Don't fragment */
1265 ip->ip_ttl = 255;
1266 ip->ip_p = 17; /* UDP */
1267 ip->ip_sum = 0;
1268 /* already in network byte order */
1269 NetCopyIP((void *)&ip->ip_src, &NetOurIP);
1270 /* - "" - */
1271 NetCopyIP((void *)&ip->ip_dst, &dest);
1272 ip->udp_src = htons(sport);
1273 ip->udp_dst = htons(dport);
1274 ip->udp_len = htons(UDP_HDR_SIZE + len);
1275 ip->udp_xsum = 0;
1276 ip->ip_sum = ~NetCksum((uchar *)ip, IP_HDR_SIZE_NO_UDP / 2);
1277 }
1278
1279 void copy_filename(char *dst, const char *src, int size)
1280 {
1281 if (*src && (*src == '"')) {
1282 ++src;
1283 --size;
1284 }
1285
1286 while ((--size > 0) && *src && (*src != '"'))
1287 *dst++ = *src++;
1288 *dst = '\0';
1289 }
1290
1291 #if defined(CONFIG_CMD_NFS) || \
1292 defined(CONFIG_CMD_SNTP) || \
1293 defined(CONFIG_CMD_DNS)
1294 /*
1295 * make port a little random (1024-17407)
1296 * This keeps the math somewhat trivial to compute, and seems to work with
1297 * all supported protocols/clients/servers
1298 */
1299 unsigned int random_port(void)
1300 {
1301 return 1024 + (get_timer(0) % 0x4000);
1302 }
1303 #endif
1304
1305 void ip_to_string(IPaddr_t x, char *s)
1306 {
1307 x = ntohl(x);
1308 sprintf(s, "%d.%d.%d.%d",
1309 (int) ((x >> 24) & 0xff),
1310 (int) ((x >> 16) & 0xff),
1311 (int) ((x >> 8) & 0xff), (int) ((x >> 0) & 0xff)
1312 );
1313 }
1314
1315 void VLAN_to_string(ushort x, char *s)
1316 {
1317 x = ntohs(x);
1318
1319 if (x == (ushort)-1)
1320 x = VLAN_NONE;
1321
1322 if (x == VLAN_NONE)
1323 strcpy(s, "none");
1324 else
1325 sprintf(s, "%d", x & VLAN_IDMASK);
1326 }
1327
1328 ushort string_to_VLAN(const char *s)
1329 {
1330 ushort id;
1331
1332 if (s == NULL)
1333 return htons(VLAN_NONE);
1334
1335 if (*s < '0' || *s > '9')
1336 id = VLAN_NONE;
1337 else
1338 id = (ushort)simple_strtoul(s, NULL, 10);
1339
1340 return htons(id);
1341 }
1342
1343 ushort getenv_VLAN(char *var)
1344 {
1345 return string_to_VLAN(getenv(var));
1346 }