]> git.ipfire.org Git - people/ms/u-boot.git/blob - net/net.c
net: Move common init into a new eth_common.c file
[people/ms/u-boot.git] / net / net.c
1 /*
2 * Copied from Linux Monitor (LiMon) - Networking.
3 *
4 * Copyright 1994 - 2000 Neil Russell.
5 * (See License)
6 * Copyright 2000 Roland Borde
7 * Copyright 2000 Paolo Scaffardi
8 * Copyright 2000-2002 Wolfgang Denk, wd@denx.de
9 * SPDX-License-Identifier: GPL-2.0
10 */
11
12 /*
13 * General Desription:
14 *
15 * The user interface supports commands for BOOTP, RARP, and TFTP.
16 * Also, we support ARP internally. Depending on available data,
17 * these interact as follows:
18 *
19 * BOOTP:
20 *
21 * Prerequisites: - own ethernet address
22 * We want: - own IP address
23 * - TFTP server IP address
24 * - name of bootfile
25 * Next step: ARP
26 *
27 * LINK_LOCAL:
28 *
29 * Prerequisites: - own ethernet address
30 * We want: - own IP address
31 * Next step: ARP
32 *
33 * RARP:
34 *
35 * Prerequisites: - own ethernet address
36 * We want: - own IP address
37 * - TFTP server IP address
38 * Next step: ARP
39 *
40 * ARP:
41 *
42 * Prerequisites: - own ethernet address
43 * - own IP address
44 * - TFTP server IP address
45 * We want: - TFTP server ethernet address
46 * Next step: TFTP
47 *
48 * DHCP:
49 *
50 * Prerequisites: - own ethernet address
51 * We want: - IP, Netmask, ServerIP, Gateway IP
52 * - bootfilename, lease time
53 * Next step: - TFTP
54 *
55 * TFTP:
56 *
57 * Prerequisites: - own ethernet address
58 * - own IP address
59 * - TFTP server IP address
60 * - TFTP server ethernet address
61 * - name of bootfile (if unknown, we use a default name
62 * derived from our own IP address)
63 * We want: - load the boot file
64 * Next step: none
65 *
66 * NFS:
67 *
68 * Prerequisites: - own ethernet address
69 * - own IP address
70 * - name of bootfile (if unknown, we use a default name
71 * derived from our own IP address)
72 * We want: - load the boot file
73 * Next step: none
74 *
75 * SNTP:
76 *
77 * Prerequisites: - own ethernet address
78 * - own IP address
79 * We want: - network time
80 * Next step: none
81 */
82
83
84 #include <common.h>
85 #include <command.h>
86 #include <console.h>
87 #include <environment.h>
88 #include <errno.h>
89 #include <net.h>
90 #include <net/tftp.h>
91 #if defined(CONFIG_STATUS_LED)
92 #include <miiphy.h>
93 #include <status_led.h>
94 #endif
95 #include <watchdog.h>
96 #include <linux/compiler.h>
97 #include "arp.h"
98 #include "bootp.h"
99 #include "cdp.h"
100 #if defined(CONFIG_CMD_DNS)
101 #include "dns.h"
102 #endif
103 #include "link_local.h"
104 #include "nfs.h"
105 #include "ping.h"
106 #include "rarp.h"
107 #if defined(CONFIG_CMD_SNTP)
108 #include "sntp.h"
109 #endif
110
111 DECLARE_GLOBAL_DATA_PTR;
112
113 /** BOOTP EXTENTIONS **/
114
115 /* Our subnet mask (0=unknown) */
116 struct in_addr net_netmask;
117 /* Our gateways IP address */
118 struct in_addr net_gateway;
119 /* Our DNS IP address */
120 struct in_addr net_dns_server;
121 #if defined(CONFIG_BOOTP_DNS2)
122 /* Our 2nd DNS IP address */
123 struct in_addr net_dns_server2;
124 #endif
125
126 #ifdef CONFIG_MCAST_TFTP /* Multicast TFTP */
127 struct in_addr net_mcast_addr;
128 #endif
129
130 /** END OF BOOTP EXTENTIONS **/
131
132 /* Our ethernet address */
133 u8 net_ethaddr[6];
134 /* Boot server enet address */
135 u8 net_server_ethaddr[6];
136 /* Our IP addr (0 = unknown) */
137 struct in_addr net_ip;
138 /* Server IP addr (0 = unknown) */
139 struct in_addr net_server_ip;
140 /* Current receive packet */
141 uchar *net_rx_packet;
142 /* Current rx packet length */
143 int net_rx_packet_len;
144 /* IP packet ID */
145 static unsigned net_ip_id;
146 /* Ethernet bcast address */
147 const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
148 const u8 net_null_ethaddr[6];
149 #ifdef CONFIG_API
150 void (*push_packet)(void *, int len) = 0;
151 #endif
152 /* Network loop state */
153 enum net_loop_state net_state;
154 /* Tried all network devices */
155 int net_restart_wrap;
156 /* Network loop restarted */
157 static int net_restarted;
158 /* At least one device configured */
159 static int net_dev_exists;
160
161 /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */
162 /* default is without VLAN */
163 ushort net_our_vlan = 0xFFFF;
164 /* ditto */
165 ushort net_native_vlan = 0xFFFF;
166
167 /* Boot File name */
168 char net_boot_file_name[1024];
169 /* The actual transferred size of the bootfile (in bytes) */
170 u32 net_boot_file_size;
171 /* Boot file size in blocks as reported by the DHCP server */
172 u32 net_boot_file_expected_size_in_blocks;
173
174 #if defined(CONFIG_CMD_SNTP)
175 /* NTP server IP address */
176 struct in_addr net_ntp_server;
177 /* offset time from UTC */
178 int net_ntp_time_offset;
179 #endif
180
181 static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN];
182 /* Receive packets */
183 uchar *net_rx_packets[PKTBUFSRX];
184 /* Current UDP RX packet handler */
185 static rxhand_f *udp_packet_handler;
186 /* Current ARP RX packet handler */
187 static rxhand_f *arp_packet_handler;
188 #ifdef CONFIG_CMD_TFTPPUT
189 /* Current ICMP rx handler */
190 static rxhand_icmp_f *packet_icmp_handler;
191 #endif
192 /* Current timeout handler */
193 static thand_f *time_handler;
194 /* Time base value */
195 static ulong time_start;
196 /* Current timeout value */
197 static ulong time_delta;
198 /* THE transmit packet */
199 uchar *net_tx_packet;
200
201 static int net_check_prereq(enum proto_t protocol);
202
203 static int net_try_count;
204
205 int __maybe_unused net_busy_flag;
206
207 /**********************************************************************/
208
209 static int on_bootfile(const char *name, const char *value, enum env_op op,
210 int flags)
211 {
212 if (flags & H_PROGRAMMATIC)
213 return 0;
214
215 switch (op) {
216 case env_op_create:
217 case env_op_overwrite:
218 copy_filename(net_boot_file_name, value,
219 sizeof(net_boot_file_name));
220 break;
221 default:
222 break;
223 }
224
225 return 0;
226 }
227 U_BOOT_ENV_CALLBACK(bootfile, on_bootfile);
228
229 static int on_ipaddr(const char *name, const char *value, enum env_op op,
230 int flags)
231 {
232 if (flags & H_PROGRAMMATIC)
233 return 0;
234
235 net_ip = string_to_ip(value);
236
237 return 0;
238 }
239 U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr);
240
241 static int on_gatewayip(const char *name, const char *value, enum env_op op,
242 int flags)
243 {
244 if (flags & H_PROGRAMMATIC)
245 return 0;
246
247 net_gateway = string_to_ip(value);
248
249 return 0;
250 }
251 U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip);
252
253 static int on_netmask(const char *name, const char *value, enum env_op op,
254 int flags)
255 {
256 if (flags & H_PROGRAMMATIC)
257 return 0;
258
259 net_netmask = string_to_ip(value);
260
261 return 0;
262 }
263 U_BOOT_ENV_CALLBACK(netmask, on_netmask);
264
265 static int on_serverip(const char *name, const char *value, enum env_op op,
266 int flags)
267 {
268 if (flags & H_PROGRAMMATIC)
269 return 0;
270
271 net_server_ip = string_to_ip(value);
272
273 return 0;
274 }
275 U_BOOT_ENV_CALLBACK(serverip, on_serverip);
276
277 static int on_nvlan(const char *name, const char *value, enum env_op op,
278 int flags)
279 {
280 if (flags & H_PROGRAMMATIC)
281 return 0;
282
283 net_native_vlan = string_to_vlan(value);
284
285 return 0;
286 }
287 U_BOOT_ENV_CALLBACK(nvlan, on_nvlan);
288
289 static int on_vlan(const char *name, const char *value, enum env_op op,
290 int flags)
291 {
292 if (flags & H_PROGRAMMATIC)
293 return 0;
294
295 net_our_vlan = string_to_vlan(value);
296
297 return 0;
298 }
299 U_BOOT_ENV_CALLBACK(vlan, on_vlan);
300
301 #if defined(CONFIG_CMD_DNS)
302 static int on_dnsip(const char *name, const char *value, enum env_op op,
303 int flags)
304 {
305 if (flags & H_PROGRAMMATIC)
306 return 0;
307
308 net_dns_server = string_to_ip(value);
309
310 return 0;
311 }
312 U_BOOT_ENV_CALLBACK(dnsip, on_dnsip);
313 #endif
314
315 /*
316 * Check if autoload is enabled. If so, use either NFS or TFTP to download
317 * the boot file.
318 */
319 void net_auto_load(void)
320 {
321 #if defined(CONFIG_CMD_NFS)
322 const char *s = getenv("autoload");
323
324 if (s != NULL && strcmp(s, "NFS") == 0) {
325 /*
326 * Use NFS to load the bootfile.
327 */
328 nfs_start();
329 return;
330 }
331 #endif
332 if (getenv_yesno("autoload") == 0) {
333 /*
334 * Just use BOOTP/RARP to configure system;
335 * Do not use TFTP to load the bootfile.
336 */
337 net_set_state(NETLOOP_SUCCESS);
338 return;
339 }
340 tftp_start(TFTPGET);
341 }
342
343 static void net_init_loop(void)
344 {
345 if (eth_get_dev())
346 memcpy(net_ethaddr, eth_get_ethaddr(), 6);
347
348 return;
349 }
350
351 static void net_clear_handlers(void)
352 {
353 net_set_udp_handler(NULL);
354 net_set_arp_handler(NULL);
355 net_set_timeout_handler(0, NULL);
356 }
357
358 static void net_cleanup_loop(void)
359 {
360 net_clear_handlers();
361 }
362
363 void net_init(void)
364 {
365 static int first_call = 1;
366
367 if (first_call) {
368 /*
369 * Setup packet buffers, aligned correctly.
370 */
371 int i;
372
373 net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1);
374 net_tx_packet -= (ulong)net_tx_packet % PKTALIGN;
375 for (i = 0; i < PKTBUFSRX; i++) {
376 net_rx_packets[i] = net_tx_packet +
377 (i + 1) * PKTSIZE_ALIGN;
378 }
379 arp_init();
380 net_clear_handlers();
381
382 /* Only need to setup buffer pointers once. */
383 first_call = 0;
384 }
385
386 net_init_loop();
387 }
388
389 /**********************************************************************/
390 /*
391 * Main network processing loop.
392 */
393
394 int net_loop(enum proto_t protocol)
395 {
396 int ret = -EINVAL;
397
398 net_restarted = 0;
399 net_dev_exists = 0;
400 net_try_count = 1;
401 debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n");
402
403 bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start");
404 net_init();
405 if (eth_is_on_demand_init() || protocol != NETCONS) {
406 eth_halt();
407 eth_set_current();
408 ret = eth_init();
409 if (ret < 0) {
410 eth_halt();
411 return ret;
412 }
413 } else {
414 eth_init_state_only();
415 }
416 restart:
417 #ifdef CONFIG_USB_KEYBOARD
418 net_busy_flag = 0;
419 #endif
420 net_set_state(NETLOOP_CONTINUE);
421
422 /*
423 * Start the ball rolling with the given start function. From
424 * here on, this code is a state machine driven by received
425 * packets and timer events.
426 */
427 debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n");
428 net_init_loop();
429
430 switch (net_check_prereq(protocol)) {
431 case 1:
432 /* network not configured */
433 eth_halt();
434 return -ENODEV;
435
436 case 2:
437 /* network device not configured */
438 break;
439
440 case 0:
441 net_dev_exists = 1;
442 net_boot_file_size = 0;
443 switch (protocol) {
444 case TFTPGET:
445 #ifdef CONFIG_CMD_TFTPPUT
446 case TFTPPUT:
447 #endif
448 /* always use ARP to get server ethernet address */
449 tftp_start(protocol);
450 break;
451 #ifdef CONFIG_CMD_TFTPSRV
452 case TFTPSRV:
453 tftp_start_server();
454 break;
455 #endif
456 #if defined(CONFIG_CMD_DHCP)
457 case DHCP:
458 bootp_reset();
459 net_ip.s_addr = 0;
460 dhcp_request(); /* Basically same as BOOTP */
461 break;
462 #endif
463
464 case BOOTP:
465 bootp_reset();
466 net_ip.s_addr = 0;
467 bootp_request();
468 break;
469
470 #if defined(CONFIG_CMD_RARP)
471 case RARP:
472 rarp_try = 0;
473 net_ip.s_addr = 0;
474 rarp_request();
475 break;
476 #endif
477 #if defined(CONFIG_CMD_PING)
478 case PING:
479 ping_start();
480 break;
481 #endif
482 #if defined(CONFIG_CMD_NFS)
483 case NFS:
484 nfs_start();
485 break;
486 #endif
487 #if defined(CONFIG_CMD_CDP)
488 case CDP:
489 cdp_start();
490 break;
491 #endif
492 #if defined(CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD)
493 case NETCONS:
494 nc_start();
495 break;
496 #endif
497 #if defined(CONFIG_CMD_SNTP)
498 case SNTP:
499 sntp_start();
500 break;
501 #endif
502 #if defined(CONFIG_CMD_DNS)
503 case DNS:
504 dns_start();
505 break;
506 #endif
507 #if defined(CONFIG_CMD_LINK_LOCAL)
508 case LINKLOCAL:
509 link_local_start();
510 break;
511 #endif
512 default:
513 break;
514 }
515
516 break;
517 }
518
519 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
520 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \
521 defined(CONFIG_STATUS_LED) && \
522 defined(STATUS_LED_RED)
523 /*
524 * Echo the inverted link state to the fault LED.
525 */
526 if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR))
527 status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
528 else
529 status_led_set(STATUS_LED_RED, STATUS_LED_ON);
530 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
531 #endif /* CONFIG_MII, ... */
532 #ifdef CONFIG_USB_KEYBOARD
533 net_busy_flag = 1;
534 #endif
535
536 /*
537 * Main packet reception loop. Loop receiving packets until
538 * someone sets `net_state' to a state that terminates.
539 */
540 for (;;) {
541 WATCHDOG_RESET();
542 #ifdef CONFIG_SHOW_ACTIVITY
543 show_activity(1);
544 #endif
545 if (arp_timeout_check() > 0)
546 time_start = get_timer(0);
547
548 /*
549 * Check the ethernet for a new packet. The ethernet
550 * receive routine will process it.
551 * Most drivers return the most recent packet size, but not
552 * errors that may have happened.
553 */
554 eth_rx();
555
556 /*
557 * Abort if ctrl-c was pressed.
558 */
559 if (ctrlc()) {
560 /* cancel any ARP that may not have completed */
561 net_arp_wait_packet_ip.s_addr = 0;
562
563 net_cleanup_loop();
564 eth_halt();
565 /* Invalidate the last protocol */
566 eth_set_last_protocol(BOOTP);
567
568 puts("\nAbort\n");
569 /* include a debug print as well incase the debug
570 messages are directed to stderr */
571 debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n");
572 ret = -EINTR;
573 goto done;
574 }
575
576 /*
577 * Check for a timeout, and run the timeout handler
578 * if we have one.
579 */
580 if (time_handler &&
581 ((get_timer(0) - time_start) > time_delta)) {
582 thand_f *x;
583
584 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
585 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \
586 defined(CONFIG_STATUS_LED) && \
587 defined(STATUS_LED_RED)
588 /*
589 * Echo the inverted link state to the fault LED.
590 */
591 if (miiphy_link(eth_get_dev()->name,
592 CONFIG_SYS_FAULT_MII_ADDR))
593 status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
594 else
595 status_led_set(STATUS_LED_RED, STATUS_LED_ON);
596 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
597 #endif /* CONFIG_MII, ... */
598 debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n");
599 x = time_handler;
600 time_handler = (thand_f *)0;
601 (*x)();
602 }
603
604 if (net_state == NETLOOP_FAIL)
605 ret = net_start_again();
606
607 switch (net_state) {
608 case NETLOOP_RESTART:
609 net_restarted = 1;
610 goto restart;
611
612 case NETLOOP_SUCCESS:
613 net_cleanup_loop();
614 if (net_boot_file_size > 0) {
615 printf("Bytes transferred = %d (%x hex)\n",
616 net_boot_file_size, net_boot_file_size);
617 setenv_hex("filesize", net_boot_file_size);
618 setenv_hex("fileaddr", load_addr);
619 }
620 if (protocol != NETCONS)
621 eth_halt();
622 else
623 eth_halt_state_only();
624
625 eth_set_last_protocol(protocol);
626
627 ret = net_boot_file_size;
628 debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n");
629 goto done;
630
631 case NETLOOP_FAIL:
632 net_cleanup_loop();
633 /* Invalidate the last protocol */
634 eth_set_last_protocol(BOOTP);
635 debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n");
636 goto done;
637
638 case NETLOOP_CONTINUE:
639 continue;
640 }
641 }
642
643 done:
644 #ifdef CONFIG_USB_KEYBOARD
645 net_busy_flag = 0;
646 #endif
647 #ifdef CONFIG_CMD_TFTPPUT
648 /* Clear out the handlers */
649 net_set_udp_handler(NULL);
650 net_set_icmp_handler(NULL);
651 #endif
652 return ret;
653 }
654
655 /**********************************************************************/
656
657 static void start_again_timeout_handler(void)
658 {
659 net_set_state(NETLOOP_RESTART);
660 }
661
662 int net_start_again(void)
663 {
664 char *nretry;
665 int retry_forever = 0;
666 unsigned long retrycnt = 0;
667 int ret;
668
669 nretry = getenv("netretry");
670 if (nretry) {
671 if (!strcmp(nretry, "yes"))
672 retry_forever = 1;
673 else if (!strcmp(nretry, "no"))
674 retrycnt = 0;
675 else if (!strcmp(nretry, "once"))
676 retrycnt = 1;
677 else
678 retrycnt = simple_strtoul(nretry, NULL, 0);
679 } else {
680 retrycnt = 0;
681 retry_forever = 0;
682 }
683
684 if ((!retry_forever) && (net_try_count >= retrycnt)) {
685 eth_halt();
686 net_set_state(NETLOOP_FAIL);
687 /*
688 * We don't provide a way for the protocol to return an error,
689 * but this is almost always the reason.
690 */
691 return -ETIMEDOUT;
692 }
693
694 net_try_count++;
695
696 eth_halt();
697 #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER)
698 eth_try_another(!net_restarted);
699 #endif
700 ret = eth_init();
701 if (net_restart_wrap) {
702 net_restart_wrap = 0;
703 if (net_dev_exists) {
704 net_set_timeout_handler(10000UL,
705 start_again_timeout_handler);
706 net_set_udp_handler(NULL);
707 } else {
708 net_set_state(NETLOOP_FAIL);
709 }
710 } else {
711 net_set_state(NETLOOP_RESTART);
712 }
713 return ret;
714 }
715
716 /**********************************************************************/
717 /*
718 * Miscelaneous bits.
719 */
720
721 static void dummy_handler(uchar *pkt, unsigned dport,
722 struct in_addr sip, unsigned sport,
723 unsigned len)
724 {
725 }
726
727 rxhand_f *net_get_udp_handler(void)
728 {
729 return udp_packet_handler;
730 }
731
732 void net_set_udp_handler(rxhand_f *f)
733 {
734 debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f);
735 if (f == NULL)
736 udp_packet_handler = dummy_handler;
737 else
738 udp_packet_handler = f;
739 }
740
741 rxhand_f *net_get_arp_handler(void)
742 {
743 return arp_packet_handler;
744 }
745
746 void net_set_arp_handler(rxhand_f *f)
747 {
748 debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f);
749 if (f == NULL)
750 arp_packet_handler = dummy_handler;
751 else
752 arp_packet_handler = f;
753 }
754
755 #ifdef CONFIG_CMD_TFTPPUT
756 void net_set_icmp_handler(rxhand_icmp_f *f)
757 {
758 packet_icmp_handler = f;
759 }
760 #endif
761
762 void net_set_timeout_handler(ulong iv, thand_f *f)
763 {
764 if (iv == 0) {
765 debug_cond(DEBUG_INT_STATE,
766 "--- net_loop timeout handler cancelled\n");
767 time_handler = (thand_f *)0;
768 } else {
769 debug_cond(DEBUG_INT_STATE,
770 "--- net_loop timeout handler set (%p)\n", f);
771 time_handler = f;
772 time_start = get_timer(0);
773 time_delta = iv * CONFIG_SYS_HZ / 1000;
774 }
775 }
776
777 int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport,
778 int payload_len)
779 {
780 uchar *pkt;
781 int eth_hdr_size;
782 int pkt_hdr_size;
783
784 /* make sure the net_tx_packet is initialized (net_init() was called) */
785 assert(net_tx_packet != NULL);
786 if (net_tx_packet == NULL)
787 return -1;
788
789 /* convert to new style broadcast */
790 if (dest.s_addr == 0)
791 dest.s_addr = 0xFFFFFFFF;
792
793 /* if broadcast, make the ether address a broadcast and don't do ARP */
794 if (dest.s_addr == 0xFFFFFFFF)
795 ether = (uchar *)net_bcast_ethaddr;
796
797 pkt = (uchar *)net_tx_packet;
798
799 eth_hdr_size = net_set_ether(pkt, ether, PROT_IP);
800 pkt += eth_hdr_size;
801 net_set_udp_header(pkt, dest, dport, sport, payload_len);
802 pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE;
803
804 /* if MAC address was not discovered yet, do an ARP request */
805 if (memcmp(ether, net_null_ethaddr, 6) == 0) {
806 debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest);
807
808 /* save the ip and eth addr for the packet to send after arp */
809 net_arp_wait_packet_ip = dest;
810 arp_wait_packet_ethaddr = ether;
811
812 /* size of the waiting packet */
813 arp_wait_tx_packet_size = pkt_hdr_size + payload_len;
814
815 /* and do the ARP request */
816 arp_wait_try = 1;
817 arp_wait_timer_start = get_timer(0);
818 arp_request();
819 return 1; /* waiting */
820 } else {
821 debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n",
822 &dest, ether);
823 net_send_packet(net_tx_packet, pkt_hdr_size + payload_len);
824 return 0; /* transmitted */
825 }
826 }
827
828 #ifdef CONFIG_IP_DEFRAG
829 /*
830 * This function collects fragments in a single packet, according
831 * to the algorithm in RFC815. It returns NULL or the pointer to
832 * a complete packet, in static storage
833 */
834 #ifndef CONFIG_NET_MAXDEFRAG
835 #define CONFIG_NET_MAXDEFRAG 16384
836 #endif
837 /*
838 * MAXDEFRAG, above, is chosen in the config file and is real data
839 * so we need to add the NFS overhead, which is more than TFTP.
840 * To use sizeof in the internal unnamed structures, we need a real
841 * instance (can't do "sizeof(struct rpc_t.u.reply))", unfortunately).
842 * The compiler doesn't complain nor allocates the actual structure
843 */
844 static struct rpc_t rpc_specimen;
845 #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG + sizeof(rpc_specimen.u.reply))
846
847 #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE)
848
849 /*
850 * this is the packet being assembled, either data or frag control.
851 * Fragments go by 8 bytes, so this union must be 8 bytes long
852 */
853 struct hole {
854 /* first_byte is address of this structure */
855 u16 last_byte; /* last byte in this hole + 1 (begin of next hole) */
856 u16 next_hole; /* index of next (in 8-b blocks), 0 == none */
857 u16 prev_hole; /* index of prev, 0 == none */
858 u16 unused;
859 };
860
861 static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp)
862 {
863 static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN);
864 static u16 first_hole, total_len;
865 struct hole *payload, *thisfrag, *h, *newh;
866 struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff;
867 uchar *indata = (uchar *)ip;
868 int offset8, start, len, done = 0;
869 u16 ip_off = ntohs(ip->ip_off);
870
871 /* payload starts after IP header, this fragment is in there */
872 payload = (struct hole *)(pkt_buff + IP_HDR_SIZE);
873 offset8 = (ip_off & IP_OFFS);
874 thisfrag = payload + offset8;
875 start = offset8 * 8;
876 len = ntohs(ip->ip_len) - IP_HDR_SIZE;
877
878 if (start + len > IP_MAXUDP) /* fragment extends too far */
879 return NULL;
880
881 if (!total_len || localip->ip_id != ip->ip_id) {
882 /* new (or different) packet, reset structs */
883 total_len = 0xffff;
884 payload[0].last_byte = ~0;
885 payload[0].next_hole = 0;
886 payload[0].prev_hole = 0;
887 first_hole = 0;
888 /* any IP header will work, copy the first we received */
889 memcpy(localip, ip, IP_HDR_SIZE);
890 }
891
892 /*
893 * What follows is the reassembly algorithm. We use the payload
894 * array as a linked list of hole descriptors, as each hole starts
895 * at a multiple of 8 bytes. However, last byte can be whatever value,
896 * so it is represented as byte count, not as 8-byte blocks.
897 */
898
899 h = payload + first_hole;
900 while (h->last_byte < start) {
901 if (!h->next_hole) {
902 /* no hole that far away */
903 return NULL;
904 }
905 h = payload + h->next_hole;
906 }
907
908 /* last fragment may be 1..7 bytes, the "+7" forces acceptance */
909 if (offset8 + ((len + 7) / 8) <= h - payload) {
910 /* no overlap with holes (dup fragment?) */
911 return NULL;
912 }
913
914 if (!(ip_off & IP_FLAGS_MFRAG)) {
915 /* no more fragmentss: truncate this (last) hole */
916 total_len = start + len;
917 h->last_byte = start + len;
918 }
919
920 /*
921 * There is some overlap: fix the hole list. This code doesn't
922 * deal with a fragment that overlaps with two different holes
923 * (thus being a superset of a previously-received fragment).
924 */
925
926 if ((h >= thisfrag) && (h->last_byte <= start + len)) {
927 /* complete overlap with hole: remove hole */
928 if (!h->prev_hole && !h->next_hole) {
929 /* last remaining hole */
930 done = 1;
931 } else if (!h->prev_hole) {
932 /* first hole */
933 first_hole = h->next_hole;
934 payload[h->next_hole].prev_hole = 0;
935 } else if (!h->next_hole) {
936 /* last hole */
937 payload[h->prev_hole].next_hole = 0;
938 } else {
939 /* in the middle of the list */
940 payload[h->next_hole].prev_hole = h->prev_hole;
941 payload[h->prev_hole].next_hole = h->next_hole;
942 }
943
944 } else if (h->last_byte <= start + len) {
945 /* overlaps with final part of the hole: shorten this hole */
946 h->last_byte = start;
947
948 } else if (h >= thisfrag) {
949 /* overlaps with initial part of the hole: move this hole */
950 newh = thisfrag + (len / 8);
951 *newh = *h;
952 h = newh;
953 if (h->next_hole)
954 payload[h->next_hole].prev_hole = (h - payload);
955 if (h->prev_hole)
956 payload[h->prev_hole].next_hole = (h - payload);
957 else
958 first_hole = (h - payload);
959
960 } else {
961 /* fragment sits in the middle: split the hole */
962 newh = thisfrag + (len / 8);
963 *newh = *h;
964 h->last_byte = start;
965 h->next_hole = (newh - payload);
966 newh->prev_hole = (h - payload);
967 if (newh->next_hole)
968 payload[newh->next_hole].prev_hole = (newh - payload);
969 }
970
971 /* finally copy this fragment and possibly return whole packet */
972 memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len);
973 if (!done)
974 return NULL;
975
976 localip->ip_len = htons(total_len);
977 *lenp = total_len + IP_HDR_SIZE;
978 return localip;
979 }
980
981 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
982 int *lenp)
983 {
984 u16 ip_off = ntohs(ip->ip_off);
985 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
986 return ip; /* not a fragment */
987 return __net_defragment(ip, lenp);
988 }
989
990 #else /* !CONFIG_IP_DEFRAG */
991
992 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
993 int *lenp)
994 {
995 u16 ip_off = ntohs(ip->ip_off);
996 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
997 return ip; /* not a fragment */
998 return NULL;
999 }
1000 #endif
1001
1002 /**
1003 * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently
1004 * drop others.
1005 *
1006 * @parma ip IP packet containing the ICMP
1007 */
1008 static void receive_icmp(struct ip_udp_hdr *ip, int len,
1009 struct in_addr src_ip, struct ethernet_hdr *et)
1010 {
1011 struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src;
1012
1013 switch (icmph->type) {
1014 case ICMP_REDIRECT:
1015 if (icmph->code != ICMP_REDIR_HOST)
1016 return;
1017 printf(" ICMP Host Redirect to %pI4 ",
1018 &icmph->un.gateway);
1019 break;
1020 default:
1021 #if defined(CONFIG_CMD_PING)
1022 ping_receive(et, ip, len);
1023 #endif
1024 #ifdef CONFIG_CMD_TFTPPUT
1025 if (packet_icmp_handler)
1026 packet_icmp_handler(icmph->type, icmph->code,
1027 ntohs(ip->udp_dst), src_ip,
1028 ntohs(ip->udp_src), icmph->un.data,
1029 ntohs(ip->udp_len));
1030 #endif
1031 break;
1032 }
1033 }
1034
1035 void net_process_received_packet(uchar *in_packet, int len)
1036 {
1037 struct ethernet_hdr *et;
1038 struct ip_udp_hdr *ip;
1039 struct in_addr dst_ip;
1040 struct in_addr src_ip;
1041 int eth_proto;
1042 #if defined(CONFIG_CMD_CDP)
1043 int iscdp;
1044 #endif
1045 ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid;
1046
1047 debug_cond(DEBUG_NET_PKT, "packet received\n");
1048
1049 net_rx_packet = in_packet;
1050 net_rx_packet_len = len;
1051 et = (struct ethernet_hdr *)in_packet;
1052
1053 /* too small packet? */
1054 if (len < ETHER_HDR_SIZE)
1055 return;
1056
1057 #ifdef CONFIG_API
1058 if (push_packet) {
1059 (*push_packet)(in_packet, len);
1060 return;
1061 }
1062 #endif
1063
1064 #if defined(CONFIG_CMD_CDP)
1065 /* keep track if packet is CDP */
1066 iscdp = is_cdp_packet(et->et_dest);
1067 #endif
1068
1069 myvlanid = ntohs(net_our_vlan);
1070 if (myvlanid == (ushort)-1)
1071 myvlanid = VLAN_NONE;
1072 mynvlanid = ntohs(net_native_vlan);
1073 if (mynvlanid == (ushort)-1)
1074 mynvlanid = VLAN_NONE;
1075
1076 eth_proto = ntohs(et->et_protlen);
1077
1078 if (eth_proto < 1514) {
1079 struct e802_hdr *et802 = (struct e802_hdr *)et;
1080 /*
1081 * Got a 802.2 packet. Check the other protocol field.
1082 * XXX VLAN over 802.2+SNAP not implemented!
1083 */
1084 eth_proto = ntohs(et802->et_prot);
1085
1086 ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE);
1087 len -= E802_HDR_SIZE;
1088
1089 } else if (eth_proto != PROT_VLAN) { /* normal packet */
1090 ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE);
1091 len -= ETHER_HDR_SIZE;
1092
1093 } else { /* VLAN packet */
1094 struct vlan_ethernet_hdr *vet =
1095 (struct vlan_ethernet_hdr *)et;
1096
1097 debug_cond(DEBUG_NET_PKT, "VLAN packet received\n");
1098
1099 /* too small packet? */
1100 if (len < VLAN_ETHER_HDR_SIZE)
1101 return;
1102
1103 /* if no VLAN active */
1104 if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE
1105 #if defined(CONFIG_CMD_CDP)
1106 && iscdp == 0
1107 #endif
1108 )
1109 return;
1110
1111 cti = ntohs(vet->vet_tag);
1112 vlanid = cti & VLAN_IDMASK;
1113 eth_proto = ntohs(vet->vet_type);
1114
1115 ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE);
1116 len -= VLAN_ETHER_HDR_SIZE;
1117 }
1118
1119 debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto);
1120
1121 #if defined(CONFIG_CMD_CDP)
1122 if (iscdp) {
1123 cdp_receive((uchar *)ip, len);
1124 return;
1125 }
1126 #endif
1127
1128 if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) {
1129 if (vlanid == VLAN_NONE)
1130 vlanid = (mynvlanid & VLAN_IDMASK);
1131 /* not matched? */
1132 if (vlanid != (myvlanid & VLAN_IDMASK))
1133 return;
1134 }
1135
1136 switch (eth_proto) {
1137 case PROT_ARP:
1138 arp_receive(et, ip, len);
1139 break;
1140
1141 #ifdef CONFIG_CMD_RARP
1142 case PROT_RARP:
1143 rarp_receive(ip, len);
1144 break;
1145 #endif
1146 case PROT_IP:
1147 debug_cond(DEBUG_NET_PKT, "Got IP\n");
1148 /* Before we start poking the header, make sure it is there */
1149 if (len < IP_UDP_HDR_SIZE) {
1150 debug("len bad %d < %lu\n", len,
1151 (ulong)IP_UDP_HDR_SIZE);
1152 return;
1153 }
1154 /* Check the packet length */
1155 if (len < ntohs(ip->ip_len)) {
1156 debug("len bad %d < %d\n", len, ntohs(ip->ip_len));
1157 return;
1158 }
1159 len = ntohs(ip->ip_len);
1160 debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n",
1161 len, ip->ip_hl_v & 0xff);
1162
1163 /* Can't deal with anything except IPv4 */
1164 if ((ip->ip_hl_v & 0xf0) != 0x40)
1165 return;
1166 /* Can't deal with IP options (headers != 20 bytes) */
1167 if ((ip->ip_hl_v & 0x0f) > 0x05)
1168 return;
1169 /* Check the Checksum of the header */
1170 if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) {
1171 debug("checksum bad\n");
1172 return;
1173 }
1174 /* If it is not for us, ignore it */
1175 dst_ip = net_read_ip(&ip->ip_dst);
1176 if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr &&
1177 dst_ip.s_addr != 0xFFFFFFFF) {
1178 #ifdef CONFIG_MCAST_TFTP
1179 if (net_mcast_addr != dst_ip)
1180 #endif
1181 return;
1182 }
1183 /* Read source IP address for later use */
1184 src_ip = net_read_ip(&ip->ip_src);
1185 /*
1186 * The function returns the unchanged packet if it's not
1187 * a fragment, and either the complete packet or NULL if
1188 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL)
1189 */
1190 ip = net_defragment(ip, &len);
1191 if (!ip)
1192 return;
1193 /*
1194 * watch for ICMP host redirects
1195 *
1196 * There is no real handler code (yet). We just watch
1197 * for ICMP host redirect messages. In case anybody
1198 * sees these messages: please contact me
1199 * (wd@denx.de), or - even better - send me the
1200 * necessary fixes :-)
1201 *
1202 * Note: in all cases where I have seen this so far
1203 * it was a problem with the router configuration,
1204 * for instance when a router was configured in the
1205 * BOOTP reply, but the TFTP server was on the same
1206 * subnet. So this is probably a warning that your
1207 * configuration might be wrong. But I'm not really
1208 * sure if there aren't any other situations.
1209 *
1210 * Simon Glass <sjg@chromium.org>: We get an ICMP when
1211 * we send a tftp packet to a dead connection, or when
1212 * there is no server at the other end.
1213 */
1214 if (ip->ip_p == IPPROTO_ICMP) {
1215 receive_icmp(ip, len, src_ip, et);
1216 return;
1217 } else if (ip->ip_p != IPPROTO_UDP) { /* Only UDP packets */
1218 return;
1219 }
1220
1221 debug_cond(DEBUG_DEV_PKT,
1222 "received UDP (to=%pI4, from=%pI4, len=%d)\n",
1223 &dst_ip, &src_ip, len);
1224
1225 #ifdef CONFIG_UDP_CHECKSUM
1226 if (ip->udp_xsum != 0) {
1227 ulong xsum;
1228 ushort *sumptr;
1229 ushort sumlen;
1230
1231 xsum = ip->ip_p;
1232 xsum += (ntohs(ip->udp_len));
1233 xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff;
1234 xsum += (ntohl(ip->ip_src.s_addr) >> 0) & 0x0000ffff;
1235 xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff;
1236 xsum += (ntohl(ip->ip_dst.s_addr) >> 0) & 0x0000ffff;
1237
1238 sumlen = ntohs(ip->udp_len);
1239 sumptr = (ushort *)&(ip->udp_src);
1240
1241 while (sumlen > 1) {
1242 ushort sumdata;
1243
1244 sumdata = *sumptr++;
1245 xsum += ntohs(sumdata);
1246 sumlen -= 2;
1247 }
1248 if (sumlen > 0) {
1249 ushort sumdata;
1250
1251 sumdata = *(unsigned char *)sumptr;
1252 sumdata = (sumdata << 8) & 0xff00;
1253 xsum += sumdata;
1254 }
1255 while ((xsum >> 16) != 0) {
1256 xsum = (xsum & 0x0000ffff) +
1257 ((xsum >> 16) & 0x0000ffff);
1258 }
1259 if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) {
1260 printf(" UDP wrong checksum %08lx %08x\n",
1261 xsum, ntohs(ip->udp_xsum));
1262 return;
1263 }
1264 }
1265 #endif
1266
1267 #if defined(CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD)
1268 nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE,
1269 src_ip,
1270 ntohs(ip->udp_dst),
1271 ntohs(ip->udp_src),
1272 ntohs(ip->udp_len) - UDP_HDR_SIZE);
1273 #endif
1274 /*
1275 * IP header OK. Pass the packet to the current handler.
1276 */
1277 (*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE,
1278 ntohs(ip->udp_dst),
1279 src_ip,
1280 ntohs(ip->udp_src),
1281 ntohs(ip->udp_len) - UDP_HDR_SIZE);
1282 break;
1283 }
1284 }
1285
1286 /**********************************************************************/
1287
1288 static int net_check_prereq(enum proto_t protocol)
1289 {
1290 switch (protocol) {
1291 /* Fall through */
1292 #if defined(CONFIG_CMD_PING)
1293 case PING:
1294 if (net_ping_ip.s_addr == 0) {
1295 puts("*** ERROR: ping address not given\n");
1296 return 1;
1297 }
1298 goto common;
1299 #endif
1300 #if defined(CONFIG_CMD_SNTP)
1301 case SNTP:
1302 if (net_ntp_server.s_addr == 0) {
1303 puts("*** ERROR: NTP server address not given\n");
1304 return 1;
1305 }
1306 goto common;
1307 #endif
1308 #if defined(CONFIG_CMD_DNS)
1309 case DNS:
1310 if (net_dns_server.s_addr == 0) {
1311 puts("*** ERROR: DNS server address not given\n");
1312 return 1;
1313 }
1314 goto common;
1315 #endif
1316 #if defined(CONFIG_CMD_NFS)
1317 case NFS:
1318 #endif
1319 /* Fall through */
1320 case TFTPGET:
1321 case TFTPPUT:
1322 if (net_server_ip.s_addr == 0) {
1323 puts("*** ERROR: `serverip' not set\n");
1324 return 1;
1325 }
1326 #if defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \
1327 defined(CONFIG_CMD_DNS)
1328 common:
1329 #endif
1330 /* Fall through */
1331
1332 case NETCONS:
1333 case TFTPSRV:
1334 if (net_ip.s_addr == 0) {
1335 puts("*** ERROR: `ipaddr' not set\n");
1336 return 1;
1337 }
1338 /* Fall through */
1339
1340 #ifdef CONFIG_CMD_RARP
1341 case RARP:
1342 #endif
1343 case BOOTP:
1344 case CDP:
1345 case DHCP:
1346 case LINKLOCAL:
1347 if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) {
1348 int num = eth_get_dev_index();
1349
1350 switch (num) {
1351 case -1:
1352 puts("*** ERROR: No ethernet found.\n");
1353 return 1;
1354 case 0:
1355 puts("*** ERROR: `ethaddr' not set\n");
1356 break;
1357 default:
1358 printf("*** ERROR: `eth%daddr' not set\n",
1359 num);
1360 break;
1361 }
1362
1363 net_start_again();
1364 return 2;
1365 }
1366 /* Fall through */
1367 default:
1368 return 0;
1369 }
1370 return 0; /* OK */
1371 }
1372 /**********************************************************************/
1373
1374 int
1375 net_eth_hdr_size(void)
1376 {
1377 ushort myvlanid;
1378
1379 myvlanid = ntohs(net_our_vlan);
1380 if (myvlanid == (ushort)-1)
1381 myvlanid = VLAN_NONE;
1382
1383 return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE :
1384 VLAN_ETHER_HDR_SIZE;
1385 }
1386
1387 int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot)
1388 {
1389 struct ethernet_hdr *et = (struct ethernet_hdr *)xet;
1390 ushort myvlanid;
1391
1392 myvlanid = ntohs(net_our_vlan);
1393 if (myvlanid == (ushort)-1)
1394 myvlanid = VLAN_NONE;
1395
1396 memcpy(et->et_dest, dest_ethaddr, 6);
1397 memcpy(et->et_src, net_ethaddr, 6);
1398 if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) {
1399 et->et_protlen = htons(prot);
1400 return ETHER_HDR_SIZE;
1401 } else {
1402 struct vlan_ethernet_hdr *vet =
1403 (struct vlan_ethernet_hdr *)xet;
1404
1405 vet->vet_vlan_type = htons(PROT_VLAN);
1406 vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK));
1407 vet->vet_type = htons(prot);
1408 return VLAN_ETHER_HDR_SIZE;
1409 }
1410 }
1411
1412 int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot)
1413 {
1414 ushort protlen;
1415
1416 memcpy(et->et_dest, addr, 6);
1417 memcpy(et->et_src, net_ethaddr, 6);
1418 protlen = ntohs(et->et_protlen);
1419 if (protlen == PROT_VLAN) {
1420 struct vlan_ethernet_hdr *vet =
1421 (struct vlan_ethernet_hdr *)et;
1422 vet->vet_type = htons(prot);
1423 return VLAN_ETHER_HDR_SIZE;
1424 } else if (protlen > 1514) {
1425 et->et_protlen = htons(prot);
1426 return ETHER_HDR_SIZE;
1427 } else {
1428 /* 802.2 + SNAP */
1429 struct e802_hdr *et802 = (struct e802_hdr *)et;
1430 et802->et_prot = htons(prot);
1431 return E802_HDR_SIZE;
1432 }
1433 }
1434
1435 void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source)
1436 {
1437 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1438
1439 /*
1440 * Construct an IP header.
1441 */
1442 /* IP_HDR_SIZE / 4 (not including UDP) */
1443 ip->ip_hl_v = 0x45;
1444 ip->ip_tos = 0;
1445 ip->ip_len = htons(IP_HDR_SIZE);
1446 ip->ip_id = htons(net_ip_id++);
1447 ip->ip_off = htons(IP_FLAGS_DFRAG); /* Don't fragment */
1448 ip->ip_ttl = 255;
1449 ip->ip_sum = 0;
1450 /* already in network byte order */
1451 net_copy_ip((void *)&ip->ip_src, &source);
1452 /* already in network byte order */
1453 net_copy_ip((void *)&ip->ip_dst, &dest);
1454 }
1455
1456 void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport,
1457 int len)
1458 {
1459 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1460
1461 /*
1462 * If the data is an odd number of bytes, zero the
1463 * byte after the last byte so that the checksum
1464 * will work.
1465 */
1466 if (len & 1)
1467 pkt[IP_UDP_HDR_SIZE + len] = 0;
1468
1469 net_set_ip_header(pkt, dest, net_ip);
1470 ip->ip_len = htons(IP_UDP_HDR_SIZE + len);
1471 ip->ip_p = IPPROTO_UDP;
1472 ip->ip_sum = compute_ip_checksum(ip, IP_HDR_SIZE);
1473
1474 ip->udp_src = htons(sport);
1475 ip->udp_dst = htons(dport);
1476 ip->udp_len = htons(UDP_HDR_SIZE + len);
1477 ip->udp_xsum = 0;
1478 }
1479
1480 void copy_filename(char *dst, const char *src, int size)
1481 {
1482 if (*src && (*src == '"')) {
1483 ++src;
1484 --size;
1485 }
1486
1487 while ((--size > 0) && *src && (*src != '"'))
1488 *dst++ = *src++;
1489 *dst = '\0';
1490 }
1491
1492 #if defined(CONFIG_CMD_NFS) || \
1493 defined(CONFIG_CMD_SNTP) || \
1494 defined(CONFIG_CMD_DNS)
1495 /*
1496 * make port a little random (1024-17407)
1497 * This keeps the math somewhat trivial to compute, and seems to work with
1498 * all supported protocols/clients/servers
1499 */
1500 unsigned int random_port(void)
1501 {
1502 return 1024 + (get_timer(0) % 0x4000);
1503 }
1504 #endif
1505
1506 void ip_to_string(struct in_addr x, char *s)
1507 {
1508 x.s_addr = ntohl(x.s_addr);
1509 sprintf(s, "%d.%d.%d.%d",
1510 (int) ((x.s_addr >> 24) & 0xff),
1511 (int) ((x.s_addr >> 16) & 0xff),
1512 (int) ((x.s_addr >> 8) & 0xff),
1513 (int) ((x.s_addr >> 0) & 0xff)
1514 );
1515 }
1516
1517 void vlan_to_string(ushort x, char *s)
1518 {
1519 x = ntohs(x);
1520
1521 if (x == (ushort)-1)
1522 x = VLAN_NONE;
1523
1524 if (x == VLAN_NONE)
1525 strcpy(s, "none");
1526 else
1527 sprintf(s, "%d", x & VLAN_IDMASK);
1528 }
1529
1530 ushort string_to_vlan(const char *s)
1531 {
1532 ushort id;
1533
1534 if (s == NULL)
1535 return htons(VLAN_NONE);
1536
1537 if (*s < '0' || *s > '9')
1538 id = VLAN_NONE;
1539 else
1540 id = (ushort)simple_strtoul(s, NULL, 10);
1541
1542 return htons(id);
1543 }
1544
1545 ushort getenv_vlan(char *var)
1546 {
1547 return string_to_vlan(getenv(var));
1548 }