]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - net/netfilter/nf_conntrack_core.c
netfilter: conntrack: fix cloned unconfirmed skb->_nfct race in __nf_conntrack_confirm
[thirdparty/kernel/stable.git] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/types.h>
18 #include <linux/netfilter.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/skbuff.h>
22 #include <linux/proc_fs.h>
23 #include <linux/vmalloc.h>
24 #include <linux/stddef.h>
25 #include <linux/slab.h>
26 #include <linux/random.h>
27 #include <linux/jhash.h>
28 #include <linux/err.h>
29 #include <linux/percpu.h>
30 #include <linux/moduleparam.h>
31 #include <linux/notifier.h>
32 #include <linux/kernel.h>
33 #include <linux/netdevice.h>
34 #include <linux/socket.h>
35 #include <linux/mm.h>
36 #include <linux/nsproxy.h>
37 #include <linux/rculist_nulls.h>
38
39 #include <net/netfilter/nf_conntrack.h>
40 #include <net/netfilter/nf_conntrack_l3proto.h>
41 #include <net/netfilter/nf_conntrack_l4proto.h>
42 #include <net/netfilter/nf_conntrack_expect.h>
43 #include <net/netfilter/nf_conntrack_helper.h>
44 #include <net/netfilter/nf_conntrack_seqadj.h>
45 #include <net/netfilter/nf_conntrack_core.h>
46 #include <net/netfilter/nf_conntrack_extend.h>
47 #include <net/netfilter/nf_conntrack_acct.h>
48 #include <net/netfilter/nf_conntrack_ecache.h>
49 #include <net/netfilter/nf_conntrack_zones.h>
50 #include <net/netfilter/nf_conntrack_timestamp.h>
51 #include <net/netfilter/nf_conntrack_timeout.h>
52 #include <net/netfilter/nf_conntrack_labels.h>
53 #include <net/netfilter/nf_conntrack_synproxy.h>
54 #include <net/netfilter/nf_nat.h>
55 #include <net/netfilter/nf_nat_core.h>
56 #include <net/netfilter/nf_nat_helper.h>
57 #include <net/netns/hash.h>
58
59 #include "nf_internals.h"
60
61 #define NF_CONNTRACK_VERSION "0.5.0"
62
63 int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
64 enum nf_nat_manip_type manip,
65 const struct nlattr *attr) __read_mostly;
66 EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
67
68 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
69 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
70
71 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
72 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
73
74 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
75 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
76
77 struct conntrack_gc_work {
78 struct delayed_work dwork;
79 u32 last_bucket;
80 bool exiting;
81 bool early_drop;
82 long next_gc_run;
83 };
84
85 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
86 static __read_mostly spinlock_t nf_conntrack_locks_all_lock;
87 static __read_mostly DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
88 static __read_mostly bool nf_conntrack_locks_all;
89
90 /* every gc cycle scans at most 1/GC_MAX_BUCKETS_DIV part of table */
91 #define GC_MAX_BUCKETS_DIV 128u
92 /* upper bound of full table scan */
93 #define GC_MAX_SCAN_JIFFIES (16u * HZ)
94 /* desired ratio of entries found to be expired */
95 #define GC_EVICT_RATIO 50u
96
97 static struct conntrack_gc_work conntrack_gc_work;
98
99 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
100 {
101 /* 1) Acquire the lock */
102 spin_lock(lock);
103
104 /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
105 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
106 */
107 if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
108 return;
109
110 /* fast path failed, unlock */
111 spin_unlock(lock);
112
113 /* Slow path 1) get global lock */
114 spin_lock(&nf_conntrack_locks_all_lock);
115
116 /* Slow path 2) get the lock we want */
117 spin_lock(lock);
118
119 /* Slow path 3) release the global lock */
120 spin_unlock(&nf_conntrack_locks_all_lock);
121 }
122 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
123
124 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
125 {
126 h1 %= CONNTRACK_LOCKS;
127 h2 %= CONNTRACK_LOCKS;
128 spin_unlock(&nf_conntrack_locks[h1]);
129 if (h1 != h2)
130 spin_unlock(&nf_conntrack_locks[h2]);
131 }
132
133 /* return true if we need to recompute hashes (in case hash table was resized) */
134 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
135 unsigned int h2, unsigned int sequence)
136 {
137 h1 %= CONNTRACK_LOCKS;
138 h2 %= CONNTRACK_LOCKS;
139 if (h1 <= h2) {
140 nf_conntrack_lock(&nf_conntrack_locks[h1]);
141 if (h1 != h2)
142 spin_lock_nested(&nf_conntrack_locks[h2],
143 SINGLE_DEPTH_NESTING);
144 } else {
145 nf_conntrack_lock(&nf_conntrack_locks[h2]);
146 spin_lock_nested(&nf_conntrack_locks[h1],
147 SINGLE_DEPTH_NESTING);
148 }
149 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
150 nf_conntrack_double_unlock(h1, h2);
151 return true;
152 }
153 return false;
154 }
155
156 static void nf_conntrack_all_lock(void)
157 {
158 int i;
159
160 spin_lock(&nf_conntrack_locks_all_lock);
161
162 nf_conntrack_locks_all = true;
163
164 for (i = 0; i < CONNTRACK_LOCKS; i++) {
165 spin_lock(&nf_conntrack_locks[i]);
166
167 /* This spin_unlock provides the "release" to ensure that
168 * nf_conntrack_locks_all==true is visible to everyone that
169 * acquired spin_lock(&nf_conntrack_locks[]).
170 */
171 spin_unlock(&nf_conntrack_locks[i]);
172 }
173 }
174
175 static void nf_conntrack_all_unlock(void)
176 {
177 /* All prior stores must be complete before we clear
178 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
179 * might observe the false value but not the entire
180 * critical section.
181 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
182 */
183 smp_store_release(&nf_conntrack_locks_all, false);
184 spin_unlock(&nf_conntrack_locks_all_lock);
185 }
186
187 unsigned int nf_conntrack_htable_size __read_mostly;
188 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
189
190 unsigned int nf_conntrack_max __read_mostly;
191 seqcount_t nf_conntrack_generation __read_mostly;
192 static unsigned int nf_conntrack_hash_rnd __read_mostly;
193
194 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
195 const struct net *net)
196 {
197 unsigned int n;
198 u32 seed;
199
200 get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
201
202 /* The direction must be ignored, so we hash everything up to the
203 * destination ports (which is a multiple of 4) and treat the last
204 * three bytes manually.
205 */
206 seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
207 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
208 return jhash2((u32 *)tuple, n, seed ^
209 (((__force __u16)tuple->dst.u.all << 16) |
210 tuple->dst.protonum));
211 }
212
213 static u32 scale_hash(u32 hash)
214 {
215 return reciprocal_scale(hash, nf_conntrack_htable_size);
216 }
217
218 static u32 __hash_conntrack(const struct net *net,
219 const struct nf_conntrack_tuple *tuple,
220 unsigned int size)
221 {
222 return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
223 }
224
225 static u32 hash_conntrack(const struct net *net,
226 const struct nf_conntrack_tuple *tuple)
227 {
228 return scale_hash(hash_conntrack_raw(tuple, net));
229 }
230
231 bool
232 nf_ct_get_tuple(const struct sk_buff *skb,
233 unsigned int nhoff,
234 unsigned int dataoff,
235 u_int16_t l3num,
236 u_int8_t protonum,
237 struct net *net,
238 struct nf_conntrack_tuple *tuple,
239 const struct nf_conntrack_l3proto *l3proto,
240 const struct nf_conntrack_l4proto *l4proto)
241 {
242 memset(tuple, 0, sizeof(*tuple));
243
244 tuple->src.l3num = l3num;
245 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
246 return false;
247
248 tuple->dst.protonum = protonum;
249 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
250
251 return l4proto->pkt_to_tuple(skb, dataoff, net, tuple);
252 }
253 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
254
255 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
256 u_int16_t l3num,
257 struct net *net, struct nf_conntrack_tuple *tuple)
258 {
259 const struct nf_conntrack_l3proto *l3proto;
260 const struct nf_conntrack_l4proto *l4proto;
261 unsigned int protoff;
262 u_int8_t protonum;
263 int ret;
264
265 rcu_read_lock();
266
267 l3proto = __nf_ct_l3proto_find(l3num);
268 ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
269 if (ret != NF_ACCEPT) {
270 rcu_read_unlock();
271 return false;
272 }
273
274 l4proto = __nf_ct_l4proto_find(l3num, protonum);
275
276 ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple,
277 l3proto, l4proto);
278
279 rcu_read_unlock();
280 return ret;
281 }
282 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
283
284 bool
285 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
286 const struct nf_conntrack_tuple *orig,
287 const struct nf_conntrack_l3proto *l3proto,
288 const struct nf_conntrack_l4proto *l4proto)
289 {
290 memset(inverse, 0, sizeof(*inverse));
291
292 inverse->src.l3num = orig->src.l3num;
293 if (l3proto->invert_tuple(inverse, orig) == 0)
294 return false;
295
296 inverse->dst.dir = !orig->dst.dir;
297
298 inverse->dst.protonum = orig->dst.protonum;
299 return l4proto->invert_tuple(inverse, orig);
300 }
301 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
302
303 static void
304 clean_from_lists(struct nf_conn *ct)
305 {
306 pr_debug("clean_from_lists(%p)\n", ct);
307 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
308 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
309
310 /* Destroy all pending expectations */
311 nf_ct_remove_expectations(ct);
312 }
313
314 /* must be called with local_bh_disable */
315 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
316 {
317 struct ct_pcpu *pcpu;
318
319 /* add this conntrack to the (per cpu) dying list */
320 ct->cpu = smp_processor_id();
321 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
322
323 spin_lock(&pcpu->lock);
324 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
325 &pcpu->dying);
326 spin_unlock(&pcpu->lock);
327 }
328
329 /* must be called with local_bh_disable */
330 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
331 {
332 struct ct_pcpu *pcpu;
333
334 /* add this conntrack to the (per cpu) unconfirmed list */
335 ct->cpu = smp_processor_id();
336 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
337
338 spin_lock(&pcpu->lock);
339 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
340 &pcpu->unconfirmed);
341 spin_unlock(&pcpu->lock);
342 }
343
344 /* must be called with local_bh_disable */
345 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
346 {
347 struct ct_pcpu *pcpu;
348
349 /* We overload first tuple to link into unconfirmed or dying list.*/
350 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
351
352 spin_lock(&pcpu->lock);
353 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
354 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
355 spin_unlock(&pcpu->lock);
356 }
357
358 #define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
359
360 /* Released via destroy_conntrack() */
361 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
362 const struct nf_conntrack_zone *zone,
363 gfp_t flags)
364 {
365 struct nf_conn *tmpl, *p;
366
367 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
368 tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
369 if (!tmpl)
370 return NULL;
371
372 p = tmpl;
373 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
374 if (tmpl != p) {
375 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
376 tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
377 }
378 } else {
379 tmpl = kzalloc(sizeof(*tmpl), flags);
380 if (!tmpl)
381 return NULL;
382 }
383
384 tmpl->status = IPS_TEMPLATE;
385 write_pnet(&tmpl->ct_net, net);
386 nf_ct_zone_add(tmpl, zone);
387 atomic_set(&tmpl->ct_general.use, 0);
388
389 return tmpl;
390 }
391 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
392
393 void nf_ct_tmpl_free(struct nf_conn *tmpl)
394 {
395 nf_ct_ext_destroy(tmpl);
396 nf_ct_ext_free(tmpl);
397
398 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
399 kfree((char *)tmpl - tmpl->proto.tmpl_padto);
400 else
401 kfree(tmpl);
402 }
403 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
404
405 static void
406 destroy_conntrack(struct nf_conntrack *nfct)
407 {
408 struct nf_conn *ct = (struct nf_conn *)nfct;
409 const struct nf_conntrack_l4proto *l4proto;
410
411 pr_debug("destroy_conntrack(%p)\n", ct);
412 WARN_ON(atomic_read(&nfct->use) != 0);
413
414 if (unlikely(nf_ct_is_template(ct))) {
415 nf_ct_tmpl_free(ct);
416 return;
417 }
418 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
419 if (l4proto->destroy)
420 l4proto->destroy(ct);
421
422 local_bh_disable();
423 /* Expectations will have been removed in clean_from_lists,
424 * except TFTP can create an expectation on the first packet,
425 * before connection is in the list, so we need to clean here,
426 * too.
427 */
428 nf_ct_remove_expectations(ct);
429
430 nf_ct_del_from_dying_or_unconfirmed_list(ct);
431
432 local_bh_enable();
433
434 if (ct->master)
435 nf_ct_put(ct->master);
436
437 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
438 nf_conntrack_free(ct);
439 }
440
441 static void nf_ct_delete_from_lists(struct nf_conn *ct)
442 {
443 struct net *net = nf_ct_net(ct);
444 unsigned int hash, reply_hash;
445 unsigned int sequence;
446
447 nf_ct_helper_destroy(ct);
448
449 local_bh_disable();
450 do {
451 sequence = read_seqcount_begin(&nf_conntrack_generation);
452 hash = hash_conntrack(net,
453 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
454 reply_hash = hash_conntrack(net,
455 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
456 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
457
458 clean_from_lists(ct);
459 nf_conntrack_double_unlock(hash, reply_hash);
460
461 nf_ct_add_to_dying_list(ct);
462
463 local_bh_enable();
464 }
465
466 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
467 {
468 struct nf_conn_tstamp *tstamp;
469
470 if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
471 return false;
472
473 tstamp = nf_conn_tstamp_find(ct);
474 if (tstamp && tstamp->stop == 0)
475 tstamp->stop = ktime_get_real_ns();
476
477 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
478 portid, report) < 0) {
479 /* destroy event was not delivered. nf_ct_put will
480 * be done by event cache worker on redelivery.
481 */
482 nf_ct_delete_from_lists(ct);
483 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
484 return false;
485 }
486
487 nf_conntrack_ecache_work(nf_ct_net(ct));
488 nf_ct_delete_from_lists(ct);
489 nf_ct_put(ct);
490 return true;
491 }
492 EXPORT_SYMBOL_GPL(nf_ct_delete);
493
494 static inline bool
495 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
496 const struct nf_conntrack_tuple *tuple,
497 const struct nf_conntrack_zone *zone,
498 const struct net *net)
499 {
500 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
501
502 /* A conntrack can be recreated with the equal tuple,
503 * so we need to check that the conntrack is confirmed
504 */
505 return nf_ct_tuple_equal(tuple, &h->tuple) &&
506 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
507 nf_ct_is_confirmed(ct) &&
508 net_eq(net, nf_ct_net(ct));
509 }
510
511 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
512 static void nf_ct_gc_expired(struct nf_conn *ct)
513 {
514 if (!atomic_inc_not_zero(&ct->ct_general.use))
515 return;
516
517 if (nf_ct_should_gc(ct))
518 nf_ct_kill(ct);
519
520 nf_ct_put(ct);
521 }
522
523 /*
524 * Warning :
525 * - Caller must take a reference on returned object
526 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
527 */
528 static struct nf_conntrack_tuple_hash *
529 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
530 const struct nf_conntrack_tuple *tuple, u32 hash)
531 {
532 struct nf_conntrack_tuple_hash *h;
533 struct hlist_nulls_head *ct_hash;
534 struct hlist_nulls_node *n;
535 unsigned int bucket, hsize;
536
537 begin:
538 nf_conntrack_get_ht(&ct_hash, &hsize);
539 bucket = reciprocal_scale(hash, hsize);
540
541 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
542 struct nf_conn *ct;
543
544 ct = nf_ct_tuplehash_to_ctrack(h);
545 if (nf_ct_is_expired(ct)) {
546 nf_ct_gc_expired(ct);
547 continue;
548 }
549
550 if (nf_ct_is_dying(ct))
551 continue;
552
553 if (nf_ct_key_equal(h, tuple, zone, net))
554 return h;
555 }
556 /*
557 * if the nulls value we got at the end of this lookup is
558 * not the expected one, we must restart lookup.
559 * We probably met an item that was moved to another chain.
560 */
561 if (get_nulls_value(n) != bucket) {
562 NF_CT_STAT_INC_ATOMIC(net, search_restart);
563 goto begin;
564 }
565
566 return NULL;
567 }
568
569 /* Find a connection corresponding to a tuple. */
570 static struct nf_conntrack_tuple_hash *
571 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
572 const struct nf_conntrack_tuple *tuple, u32 hash)
573 {
574 struct nf_conntrack_tuple_hash *h;
575 struct nf_conn *ct;
576
577 rcu_read_lock();
578 begin:
579 h = ____nf_conntrack_find(net, zone, tuple, hash);
580 if (h) {
581 ct = nf_ct_tuplehash_to_ctrack(h);
582 if (unlikely(nf_ct_is_dying(ct) ||
583 !atomic_inc_not_zero(&ct->ct_general.use)))
584 h = NULL;
585 else {
586 if (unlikely(!nf_ct_key_equal(h, tuple, zone, net))) {
587 nf_ct_put(ct);
588 goto begin;
589 }
590 }
591 }
592 rcu_read_unlock();
593
594 return h;
595 }
596
597 struct nf_conntrack_tuple_hash *
598 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
599 const struct nf_conntrack_tuple *tuple)
600 {
601 return __nf_conntrack_find_get(net, zone, tuple,
602 hash_conntrack_raw(tuple, net));
603 }
604 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
605
606 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
607 unsigned int hash,
608 unsigned int reply_hash)
609 {
610 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
611 &nf_conntrack_hash[hash]);
612 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
613 &nf_conntrack_hash[reply_hash]);
614 }
615
616 int
617 nf_conntrack_hash_check_insert(struct nf_conn *ct)
618 {
619 const struct nf_conntrack_zone *zone;
620 struct net *net = nf_ct_net(ct);
621 unsigned int hash, reply_hash;
622 struct nf_conntrack_tuple_hash *h;
623 struct hlist_nulls_node *n;
624 unsigned int sequence;
625
626 zone = nf_ct_zone(ct);
627
628 local_bh_disable();
629 do {
630 sequence = read_seqcount_begin(&nf_conntrack_generation);
631 hash = hash_conntrack(net,
632 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
633 reply_hash = hash_conntrack(net,
634 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
635 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
636
637 /* See if there's one in the list already, including reverse */
638 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
639 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
640 zone, net))
641 goto out;
642
643 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
644 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
645 zone, net))
646 goto out;
647
648 smp_wmb();
649 /* The caller holds a reference to this object */
650 atomic_set(&ct->ct_general.use, 2);
651 __nf_conntrack_hash_insert(ct, hash, reply_hash);
652 nf_conntrack_double_unlock(hash, reply_hash);
653 NF_CT_STAT_INC(net, insert);
654 local_bh_enable();
655 return 0;
656
657 out:
658 nf_conntrack_double_unlock(hash, reply_hash);
659 NF_CT_STAT_INC(net, insert_failed);
660 local_bh_enable();
661 return -EEXIST;
662 }
663 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
664
665 static inline void nf_ct_acct_update(struct nf_conn *ct,
666 enum ip_conntrack_info ctinfo,
667 unsigned int len)
668 {
669 struct nf_conn_acct *acct;
670
671 acct = nf_conn_acct_find(ct);
672 if (acct) {
673 struct nf_conn_counter *counter = acct->counter;
674
675 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
676 atomic64_add(len, &counter[CTINFO2DIR(ctinfo)].bytes);
677 }
678 }
679
680 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
681 const struct nf_conn *loser_ct)
682 {
683 struct nf_conn_acct *acct;
684
685 acct = nf_conn_acct_find(loser_ct);
686 if (acct) {
687 struct nf_conn_counter *counter = acct->counter;
688 unsigned int bytes;
689
690 /* u32 should be fine since we must have seen one packet. */
691 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
692 nf_ct_acct_update(ct, ctinfo, bytes);
693 }
694 }
695
696 /* Resolve race on insertion if this protocol allows this. */
697 static int nf_ct_resolve_clash(struct net *net, struct sk_buff *skb,
698 enum ip_conntrack_info ctinfo,
699 struct nf_conntrack_tuple_hash *h)
700 {
701 /* This is the conntrack entry already in hashes that won race. */
702 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
703 const struct nf_conntrack_l4proto *l4proto;
704
705 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
706 if (l4proto->allow_clash &&
707 ((ct->status & IPS_NAT_DONE_MASK) == 0) &&
708 !nf_ct_is_dying(ct) &&
709 atomic_inc_not_zero(&ct->ct_general.use)) {
710 enum ip_conntrack_info oldinfo;
711 struct nf_conn *loser_ct = nf_ct_get(skb, &oldinfo);
712
713 nf_ct_acct_merge(ct, ctinfo, loser_ct);
714 nf_conntrack_put(&loser_ct->ct_general);
715 nf_ct_set(skb, ct, oldinfo);
716 return NF_ACCEPT;
717 }
718 NF_CT_STAT_INC(net, drop);
719 return NF_DROP;
720 }
721
722 /* Confirm a connection given skb; places it in hash table */
723 int
724 __nf_conntrack_confirm(struct sk_buff *skb)
725 {
726 const struct nf_conntrack_zone *zone;
727 unsigned int hash, reply_hash;
728 struct nf_conntrack_tuple_hash *h;
729 struct nf_conn *ct;
730 struct nf_conn_help *help;
731 struct nf_conn_tstamp *tstamp;
732 struct hlist_nulls_node *n;
733 enum ip_conntrack_info ctinfo;
734 struct net *net;
735 unsigned int sequence;
736 int ret = NF_DROP;
737
738 ct = nf_ct_get(skb, &ctinfo);
739 net = nf_ct_net(ct);
740
741 /* ipt_REJECT uses nf_conntrack_attach to attach related
742 ICMP/TCP RST packets in other direction. Actual packet
743 which created connection will be IP_CT_NEW or for an
744 expected connection, IP_CT_RELATED. */
745 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
746 return NF_ACCEPT;
747
748 zone = nf_ct_zone(ct);
749 local_bh_disable();
750
751 do {
752 sequence = read_seqcount_begin(&nf_conntrack_generation);
753 /* reuse the hash saved before */
754 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
755 hash = scale_hash(hash);
756 reply_hash = hash_conntrack(net,
757 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
758
759 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
760
761 /* We're not in hash table, and we refuse to set up related
762 * connections for unconfirmed conns. But packet copies and
763 * REJECT will give spurious warnings here.
764 */
765
766 /* Another skb with the same unconfirmed conntrack may
767 * win the race. This may happen for bridge(br_flood)
768 * or broadcast/multicast packets do skb_clone with
769 * unconfirmed conntrack.
770 */
771 if (unlikely(nf_ct_is_confirmed(ct))) {
772 WARN_ON_ONCE(1);
773 nf_conntrack_double_unlock(hash, reply_hash);
774 local_bh_enable();
775 return NF_DROP;
776 }
777
778 pr_debug("Confirming conntrack %p\n", ct);
779 /* We have to check the DYING flag after unlink to prevent
780 * a race against nf_ct_get_next_corpse() possibly called from
781 * user context, else we insert an already 'dead' hash, blocking
782 * further use of that particular connection -JM.
783 */
784 nf_ct_del_from_dying_or_unconfirmed_list(ct);
785
786 if (unlikely(nf_ct_is_dying(ct))) {
787 nf_ct_add_to_dying_list(ct);
788 goto dying;
789 }
790
791 /* See if there's one in the list already, including reverse:
792 NAT could have grabbed it without realizing, since we're
793 not in the hash. If there is, we lost race. */
794 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
795 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
796 zone, net))
797 goto out;
798
799 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
800 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
801 zone, net))
802 goto out;
803
804 /* Timer relative to confirmation time, not original
805 setting time, otherwise we'd get timer wrap in
806 weird delay cases. */
807 ct->timeout += nfct_time_stamp;
808 atomic_inc(&ct->ct_general.use);
809 ct->status |= IPS_CONFIRMED;
810
811 /* set conntrack timestamp, if enabled. */
812 tstamp = nf_conn_tstamp_find(ct);
813 if (tstamp) {
814 if (skb->tstamp == 0)
815 __net_timestamp(skb);
816
817 tstamp->start = ktime_to_ns(skb->tstamp);
818 }
819 /* Since the lookup is lockless, hash insertion must be done after
820 * starting the timer and setting the CONFIRMED bit. The RCU barriers
821 * guarantee that no other CPU can find the conntrack before the above
822 * stores are visible.
823 */
824 __nf_conntrack_hash_insert(ct, hash, reply_hash);
825 nf_conntrack_double_unlock(hash, reply_hash);
826 local_bh_enable();
827
828 help = nfct_help(ct);
829 if (help && help->helper)
830 nf_conntrack_event_cache(IPCT_HELPER, ct);
831
832 nf_conntrack_event_cache(master_ct(ct) ?
833 IPCT_RELATED : IPCT_NEW, ct);
834 return NF_ACCEPT;
835
836 out:
837 nf_ct_add_to_dying_list(ct);
838 ret = nf_ct_resolve_clash(net, skb, ctinfo, h);
839 dying:
840 nf_conntrack_double_unlock(hash, reply_hash);
841 NF_CT_STAT_INC(net, insert_failed);
842 local_bh_enable();
843 return ret;
844 }
845 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
846
847 /* Returns true if a connection correspondings to the tuple (required
848 for NAT). */
849 int
850 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
851 const struct nf_conn *ignored_conntrack)
852 {
853 struct net *net = nf_ct_net(ignored_conntrack);
854 const struct nf_conntrack_zone *zone;
855 struct nf_conntrack_tuple_hash *h;
856 struct hlist_nulls_head *ct_hash;
857 unsigned int hash, hsize;
858 struct hlist_nulls_node *n;
859 struct nf_conn *ct;
860
861 zone = nf_ct_zone(ignored_conntrack);
862
863 rcu_read_lock();
864 begin:
865 nf_conntrack_get_ht(&ct_hash, &hsize);
866 hash = __hash_conntrack(net, tuple, hsize);
867
868 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
869 ct = nf_ct_tuplehash_to_ctrack(h);
870
871 if (ct == ignored_conntrack)
872 continue;
873
874 if (nf_ct_is_expired(ct)) {
875 nf_ct_gc_expired(ct);
876 continue;
877 }
878
879 if (nf_ct_key_equal(h, tuple, zone, net)) {
880 /* Tuple is taken already, so caller will need to find
881 * a new source port to use.
882 *
883 * Only exception:
884 * If the *original tuples* are identical, then both
885 * conntracks refer to the same flow.
886 * This is a rare situation, it can occur e.g. when
887 * more than one UDP packet is sent from same socket
888 * in different threads.
889 *
890 * Let nf_ct_resolve_clash() deal with this later.
891 */
892 if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
893 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple))
894 continue;
895
896 NF_CT_STAT_INC_ATOMIC(net, found);
897 rcu_read_unlock();
898 return 1;
899 }
900 }
901
902 if (get_nulls_value(n) != hash) {
903 NF_CT_STAT_INC_ATOMIC(net, search_restart);
904 goto begin;
905 }
906
907 rcu_read_unlock();
908
909 return 0;
910 }
911 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
912
913 #define NF_CT_EVICTION_RANGE 8
914
915 /* There's a small race here where we may free a just-assured
916 connection. Too bad: we're in trouble anyway. */
917 static unsigned int early_drop_list(struct net *net,
918 struct hlist_nulls_head *head)
919 {
920 struct nf_conntrack_tuple_hash *h;
921 struct hlist_nulls_node *n;
922 unsigned int drops = 0;
923 struct nf_conn *tmp;
924
925 hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
926 tmp = nf_ct_tuplehash_to_ctrack(h);
927
928 if (nf_ct_is_expired(tmp)) {
929 nf_ct_gc_expired(tmp);
930 continue;
931 }
932
933 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
934 !net_eq(nf_ct_net(tmp), net) ||
935 nf_ct_is_dying(tmp))
936 continue;
937
938 if (!atomic_inc_not_zero(&tmp->ct_general.use))
939 continue;
940
941 /* kill only if still in same netns -- might have moved due to
942 * SLAB_TYPESAFE_BY_RCU rules.
943 *
944 * We steal the timer reference. If that fails timer has
945 * already fired or someone else deleted it. Just drop ref
946 * and move to next entry.
947 */
948 if (net_eq(nf_ct_net(tmp), net) &&
949 nf_ct_is_confirmed(tmp) &&
950 nf_ct_delete(tmp, 0, 0))
951 drops++;
952
953 nf_ct_put(tmp);
954 }
955
956 return drops;
957 }
958
959 static noinline int early_drop(struct net *net, unsigned int hash)
960 {
961 unsigned int i, bucket;
962
963 for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
964 struct hlist_nulls_head *ct_hash;
965 unsigned int hsize, drops;
966
967 rcu_read_lock();
968 nf_conntrack_get_ht(&ct_hash, &hsize);
969 if (!i)
970 bucket = reciprocal_scale(hash, hsize);
971 else
972 bucket = (bucket + 1) % hsize;
973
974 drops = early_drop_list(net, &ct_hash[bucket]);
975 rcu_read_unlock();
976
977 if (drops) {
978 NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
979 return true;
980 }
981 }
982
983 return false;
984 }
985
986 static bool gc_worker_skip_ct(const struct nf_conn *ct)
987 {
988 return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
989 }
990
991 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
992 {
993 const struct nf_conntrack_l4proto *l4proto;
994
995 if (!test_bit(IPS_ASSURED_BIT, &ct->status))
996 return true;
997
998 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
999 if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1000 return true;
1001
1002 return false;
1003 }
1004
1005 static void gc_worker(struct work_struct *work)
1006 {
1007 unsigned int min_interval = max(HZ / GC_MAX_BUCKETS_DIV, 1u);
1008 unsigned int i, goal, buckets = 0, expired_count = 0;
1009 unsigned int nf_conntrack_max95 = 0;
1010 struct conntrack_gc_work *gc_work;
1011 unsigned int ratio, scanned = 0;
1012 unsigned long next_run;
1013
1014 gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1015
1016 goal = nf_conntrack_htable_size / GC_MAX_BUCKETS_DIV;
1017 i = gc_work->last_bucket;
1018 if (gc_work->early_drop)
1019 nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1020
1021 do {
1022 struct nf_conntrack_tuple_hash *h;
1023 struct hlist_nulls_head *ct_hash;
1024 struct hlist_nulls_node *n;
1025 unsigned int hashsz;
1026 struct nf_conn *tmp;
1027
1028 i++;
1029 rcu_read_lock();
1030
1031 nf_conntrack_get_ht(&ct_hash, &hashsz);
1032 if (i >= hashsz)
1033 i = 0;
1034
1035 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1036 struct net *net;
1037
1038 tmp = nf_ct_tuplehash_to_ctrack(h);
1039
1040 scanned++;
1041 if (nf_ct_is_expired(tmp)) {
1042 nf_ct_gc_expired(tmp);
1043 expired_count++;
1044 continue;
1045 }
1046
1047 if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1048 continue;
1049
1050 net = nf_ct_net(tmp);
1051 if (atomic_read(&net->ct.count) < nf_conntrack_max95)
1052 continue;
1053
1054 /* need to take reference to avoid possible races */
1055 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1056 continue;
1057
1058 if (gc_worker_skip_ct(tmp)) {
1059 nf_ct_put(tmp);
1060 continue;
1061 }
1062
1063 if (gc_worker_can_early_drop(tmp))
1064 nf_ct_kill(tmp);
1065
1066 nf_ct_put(tmp);
1067 }
1068
1069 /* could check get_nulls_value() here and restart if ct
1070 * was moved to another chain. But given gc is best-effort
1071 * we will just continue with next hash slot.
1072 */
1073 rcu_read_unlock();
1074 cond_resched_rcu_qs();
1075 } while (++buckets < goal);
1076
1077 if (gc_work->exiting)
1078 return;
1079
1080 /*
1081 * Eviction will normally happen from the packet path, and not
1082 * from this gc worker.
1083 *
1084 * This worker is only here to reap expired entries when system went
1085 * idle after a busy period.
1086 *
1087 * The heuristics below are supposed to balance conflicting goals:
1088 *
1089 * 1. Minimize time until we notice a stale entry
1090 * 2. Maximize scan intervals to not waste cycles
1091 *
1092 * Normally, expire ratio will be close to 0.
1093 *
1094 * As soon as a sizeable fraction of the entries have expired
1095 * increase scan frequency.
1096 */
1097 ratio = scanned ? expired_count * 100 / scanned : 0;
1098 if (ratio > GC_EVICT_RATIO) {
1099 gc_work->next_gc_run = min_interval;
1100 } else {
1101 unsigned int max = GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV;
1102
1103 BUILD_BUG_ON((GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV) == 0);
1104
1105 gc_work->next_gc_run += min_interval;
1106 if (gc_work->next_gc_run > max)
1107 gc_work->next_gc_run = max;
1108 }
1109
1110 next_run = gc_work->next_gc_run;
1111 gc_work->last_bucket = i;
1112 gc_work->early_drop = false;
1113 queue_delayed_work(system_long_wq, &gc_work->dwork, next_run);
1114 }
1115
1116 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1117 {
1118 INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker);
1119 gc_work->next_gc_run = HZ;
1120 gc_work->exiting = false;
1121 }
1122
1123 static struct nf_conn *
1124 __nf_conntrack_alloc(struct net *net,
1125 const struct nf_conntrack_zone *zone,
1126 const struct nf_conntrack_tuple *orig,
1127 const struct nf_conntrack_tuple *repl,
1128 gfp_t gfp, u32 hash)
1129 {
1130 struct nf_conn *ct;
1131
1132 /* We don't want any race condition at early drop stage */
1133 atomic_inc(&net->ct.count);
1134
1135 if (nf_conntrack_max &&
1136 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1137 if (!early_drop(net, hash)) {
1138 if (!conntrack_gc_work.early_drop)
1139 conntrack_gc_work.early_drop = true;
1140 atomic_dec(&net->ct.count);
1141 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1142 return ERR_PTR(-ENOMEM);
1143 }
1144 }
1145
1146 /*
1147 * Do not use kmem_cache_zalloc(), as this cache uses
1148 * SLAB_TYPESAFE_BY_RCU.
1149 */
1150 ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1151 if (ct == NULL)
1152 goto out;
1153
1154 spin_lock_init(&ct->lock);
1155 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1156 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1157 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1158 /* save hash for reusing when confirming */
1159 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1160 ct->status = 0;
1161 write_pnet(&ct->ct_net, net);
1162 memset(&ct->__nfct_init_offset[0], 0,
1163 offsetof(struct nf_conn, proto) -
1164 offsetof(struct nf_conn, __nfct_init_offset[0]));
1165
1166 nf_ct_zone_add(ct, zone);
1167
1168 /* Because we use RCU lookups, we set ct_general.use to zero before
1169 * this is inserted in any list.
1170 */
1171 atomic_set(&ct->ct_general.use, 0);
1172 return ct;
1173 out:
1174 atomic_dec(&net->ct.count);
1175 return ERR_PTR(-ENOMEM);
1176 }
1177
1178 struct nf_conn *nf_conntrack_alloc(struct net *net,
1179 const struct nf_conntrack_zone *zone,
1180 const struct nf_conntrack_tuple *orig,
1181 const struct nf_conntrack_tuple *repl,
1182 gfp_t gfp)
1183 {
1184 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1185 }
1186 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1187
1188 void nf_conntrack_free(struct nf_conn *ct)
1189 {
1190 struct net *net = nf_ct_net(ct);
1191
1192 /* A freed object has refcnt == 0, that's
1193 * the golden rule for SLAB_TYPESAFE_BY_RCU
1194 */
1195 WARN_ON(atomic_read(&ct->ct_general.use) != 0);
1196
1197 nf_ct_ext_destroy(ct);
1198 nf_ct_ext_free(ct);
1199 kmem_cache_free(nf_conntrack_cachep, ct);
1200 smp_mb__before_atomic();
1201 atomic_dec(&net->ct.count);
1202 }
1203 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1204
1205
1206 /* Allocate a new conntrack: we return -ENOMEM if classification
1207 failed due to stress. Otherwise it really is unclassifiable. */
1208 static noinline struct nf_conntrack_tuple_hash *
1209 init_conntrack(struct net *net, struct nf_conn *tmpl,
1210 const struct nf_conntrack_tuple *tuple,
1211 const struct nf_conntrack_l3proto *l3proto,
1212 const struct nf_conntrack_l4proto *l4proto,
1213 struct sk_buff *skb,
1214 unsigned int dataoff, u32 hash)
1215 {
1216 struct nf_conn *ct;
1217 struct nf_conn_help *help;
1218 struct nf_conntrack_tuple repl_tuple;
1219 struct nf_conntrack_ecache *ecache;
1220 struct nf_conntrack_expect *exp = NULL;
1221 const struct nf_conntrack_zone *zone;
1222 struct nf_conn_timeout *timeout_ext;
1223 struct nf_conntrack_zone tmp;
1224 unsigned int *timeouts;
1225
1226 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
1227 pr_debug("Can't invert tuple.\n");
1228 return NULL;
1229 }
1230
1231 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1232 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1233 hash);
1234 if (IS_ERR(ct))
1235 return (struct nf_conntrack_tuple_hash *)ct;
1236
1237 if (!nf_ct_add_synproxy(ct, tmpl)) {
1238 nf_conntrack_free(ct);
1239 return ERR_PTR(-ENOMEM);
1240 }
1241
1242 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1243 if (timeout_ext) {
1244 timeouts = nf_ct_timeout_data(timeout_ext);
1245 if (unlikely(!timeouts))
1246 timeouts = l4proto->get_timeouts(net);
1247 } else {
1248 timeouts = l4proto->get_timeouts(net);
1249 }
1250
1251 if (!l4proto->new(ct, skb, dataoff, timeouts)) {
1252 nf_conntrack_free(ct);
1253 pr_debug("can't track with proto module\n");
1254 return NULL;
1255 }
1256
1257 if (timeout_ext)
1258 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1259 GFP_ATOMIC);
1260
1261 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1262 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1263 nf_ct_labels_ext_add(ct);
1264
1265 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1266 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1267 ecache ? ecache->expmask : 0,
1268 GFP_ATOMIC);
1269
1270 local_bh_disable();
1271 if (net->ct.expect_count) {
1272 spin_lock(&nf_conntrack_expect_lock);
1273 exp = nf_ct_find_expectation(net, zone, tuple);
1274 if (exp) {
1275 pr_debug("expectation arrives ct=%p exp=%p\n",
1276 ct, exp);
1277 /* Welcome, Mr. Bond. We've been expecting you... */
1278 __set_bit(IPS_EXPECTED_BIT, &ct->status);
1279 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1280 ct->master = exp->master;
1281 if (exp->helper) {
1282 help = nf_ct_helper_ext_add(ct, exp->helper,
1283 GFP_ATOMIC);
1284 if (help)
1285 rcu_assign_pointer(help->helper, exp->helper);
1286 }
1287
1288 #ifdef CONFIG_NF_CONNTRACK_MARK
1289 ct->mark = exp->master->mark;
1290 #endif
1291 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1292 ct->secmark = exp->master->secmark;
1293 #endif
1294 NF_CT_STAT_INC(net, expect_new);
1295 }
1296 spin_unlock(&nf_conntrack_expect_lock);
1297 }
1298 if (!exp)
1299 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1300
1301 /* Now it is inserted into the unconfirmed list, bump refcount */
1302 nf_conntrack_get(&ct->ct_general);
1303 nf_ct_add_to_unconfirmed_list(ct);
1304
1305 local_bh_enable();
1306
1307 if (exp) {
1308 if (exp->expectfn)
1309 exp->expectfn(ct, exp);
1310 nf_ct_expect_put(exp);
1311 }
1312
1313 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1314 }
1315
1316 /* On success, returns 0, sets skb->_nfct | ctinfo */
1317 static int
1318 resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
1319 struct sk_buff *skb,
1320 unsigned int dataoff,
1321 u_int16_t l3num,
1322 u_int8_t protonum,
1323 const struct nf_conntrack_l3proto *l3proto,
1324 const struct nf_conntrack_l4proto *l4proto)
1325 {
1326 const struct nf_conntrack_zone *zone;
1327 struct nf_conntrack_tuple tuple;
1328 struct nf_conntrack_tuple_hash *h;
1329 enum ip_conntrack_info ctinfo;
1330 struct nf_conntrack_zone tmp;
1331 struct nf_conn *ct;
1332 u32 hash;
1333
1334 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1335 dataoff, l3num, protonum, net, &tuple, l3proto,
1336 l4proto)) {
1337 pr_debug("Can't get tuple\n");
1338 return 0;
1339 }
1340
1341 /* look for tuple match */
1342 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1343 hash = hash_conntrack_raw(&tuple, net);
1344 h = __nf_conntrack_find_get(net, zone, &tuple, hash);
1345 if (!h) {
1346 h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
1347 skb, dataoff, hash);
1348 if (!h)
1349 return 0;
1350 if (IS_ERR(h))
1351 return PTR_ERR(h);
1352 }
1353 ct = nf_ct_tuplehash_to_ctrack(h);
1354
1355 /* It exists; we have (non-exclusive) reference. */
1356 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1357 ctinfo = IP_CT_ESTABLISHED_REPLY;
1358 } else {
1359 /* Once we've had two way comms, always ESTABLISHED. */
1360 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1361 pr_debug("normal packet for %p\n", ct);
1362 ctinfo = IP_CT_ESTABLISHED;
1363 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1364 pr_debug("related packet for %p\n", ct);
1365 ctinfo = IP_CT_RELATED;
1366 } else {
1367 pr_debug("new packet for %p\n", ct);
1368 ctinfo = IP_CT_NEW;
1369 }
1370 }
1371 nf_ct_set(skb, ct, ctinfo);
1372 return 0;
1373 }
1374
1375 unsigned int
1376 nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
1377 struct sk_buff *skb)
1378 {
1379 const struct nf_conntrack_l3proto *l3proto;
1380 const struct nf_conntrack_l4proto *l4proto;
1381 struct nf_conn *ct, *tmpl;
1382 enum ip_conntrack_info ctinfo;
1383 unsigned int *timeouts;
1384 unsigned int dataoff;
1385 u_int8_t protonum;
1386 int ret;
1387
1388 tmpl = nf_ct_get(skb, &ctinfo);
1389 if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1390 /* Previously seen (loopback or untracked)? Ignore. */
1391 if ((tmpl && !nf_ct_is_template(tmpl)) ||
1392 ctinfo == IP_CT_UNTRACKED) {
1393 NF_CT_STAT_INC_ATOMIC(net, ignore);
1394 return NF_ACCEPT;
1395 }
1396 skb->_nfct = 0;
1397 }
1398
1399 /* rcu_read_lock()ed by nf_hook_thresh */
1400 l3proto = __nf_ct_l3proto_find(pf);
1401 ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
1402 &dataoff, &protonum);
1403 if (ret <= 0) {
1404 pr_debug("not prepared to track yet or error occurred\n");
1405 NF_CT_STAT_INC_ATOMIC(net, error);
1406 NF_CT_STAT_INC_ATOMIC(net, invalid);
1407 ret = -ret;
1408 goto out;
1409 }
1410
1411 l4proto = __nf_ct_l4proto_find(pf, protonum);
1412
1413 /* It may be an special packet, error, unclean...
1414 * inverse of the return code tells to the netfilter
1415 * core what to do with the packet. */
1416 if (l4proto->error != NULL) {
1417 ret = l4proto->error(net, tmpl, skb, dataoff, pf, hooknum);
1418 if (ret <= 0) {
1419 NF_CT_STAT_INC_ATOMIC(net, error);
1420 NF_CT_STAT_INC_ATOMIC(net, invalid);
1421 ret = -ret;
1422 goto out;
1423 }
1424 /* ICMP[v6] protocol trackers may assign one conntrack. */
1425 if (skb->_nfct)
1426 goto out;
1427 }
1428 repeat:
1429 ret = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
1430 l3proto, l4proto);
1431 if (ret < 0) {
1432 /* Too stressed to deal. */
1433 NF_CT_STAT_INC_ATOMIC(net, drop);
1434 ret = NF_DROP;
1435 goto out;
1436 }
1437
1438 ct = nf_ct_get(skb, &ctinfo);
1439 if (!ct) {
1440 /* Not valid part of a connection */
1441 NF_CT_STAT_INC_ATOMIC(net, invalid);
1442 ret = NF_ACCEPT;
1443 goto out;
1444 }
1445
1446 /* Decide what timeout policy we want to apply to this flow. */
1447 timeouts = nf_ct_timeout_lookup(net, ct, l4proto);
1448
1449 ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, timeouts);
1450 if (ret <= 0) {
1451 /* Invalid: inverse of the return code tells
1452 * the netfilter core what to do */
1453 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1454 nf_conntrack_put(&ct->ct_general);
1455 skb->_nfct = 0;
1456 NF_CT_STAT_INC_ATOMIC(net, invalid);
1457 if (ret == -NF_DROP)
1458 NF_CT_STAT_INC_ATOMIC(net, drop);
1459 /* Special case: TCP tracker reports an attempt to reopen a
1460 * closed/aborted connection. We have to go back and create a
1461 * fresh conntrack.
1462 */
1463 if (ret == -NF_REPEAT)
1464 goto repeat;
1465 ret = -ret;
1466 goto out;
1467 }
1468
1469 if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1470 !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1471 nf_conntrack_event_cache(IPCT_REPLY, ct);
1472 out:
1473 if (tmpl)
1474 nf_ct_put(tmpl);
1475
1476 return ret;
1477 }
1478 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1479
1480 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1481 const struct nf_conntrack_tuple *orig)
1482 {
1483 bool ret;
1484
1485 rcu_read_lock();
1486 ret = nf_ct_invert_tuple(inverse, orig,
1487 __nf_ct_l3proto_find(orig->src.l3num),
1488 __nf_ct_l4proto_find(orig->src.l3num,
1489 orig->dst.protonum));
1490 rcu_read_unlock();
1491 return ret;
1492 }
1493 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1494
1495 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1496 implicitly racy: see __nf_conntrack_confirm */
1497 void nf_conntrack_alter_reply(struct nf_conn *ct,
1498 const struct nf_conntrack_tuple *newreply)
1499 {
1500 struct nf_conn_help *help = nfct_help(ct);
1501
1502 /* Should be unconfirmed, so not in hash table yet */
1503 WARN_ON(nf_ct_is_confirmed(ct));
1504
1505 pr_debug("Altering reply tuple of %p to ", ct);
1506 nf_ct_dump_tuple(newreply);
1507
1508 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1509 if (ct->master || (help && !hlist_empty(&help->expectations)))
1510 return;
1511
1512 rcu_read_lock();
1513 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1514 rcu_read_unlock();
1515 }
1516 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1517
1518 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1519 void __nf_ct_refresh_acct(struct nf_conn *ct,
1520 enum ip_conntrack_info ctinfo,
1521 const struct sk_buff *skb,
1522 unsigned long extra_jiffies,
1523 int do_acct)
1524 {
1525 WARN_ON(!skb);
1526
1527 /* Only update if this is not a fixed timeout */
1528 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1529 goto acct;
1530
1531 /* If not in hash table, timer will not be active yet */
1532 if (nf_ct_is_confirmed(ct))
1533 extra_jiffies += nfct_time_stamp;
1534
1535 ct->timeout = extra_jiffies;
1536 acct:
1537 if (do_acct)
1538 nf_ct_acct_update(ct, ctinfo, skb->len);
1539 }
1540 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1541
1542 bool nf_ct_kill_acct(struct nf_conn *ct,
1543 enum ip_conntrack_info ctinfo,
1544 const struct sk_buff *skb)
1545 {
1546 nf_ct_acct_update(ct, ctinfo, skb->len);
1547
1548 return nf_ct_delete(ct, 0, 0);
1549 }
1550 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1551
1552 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1553
1554 #include <linux/netfilter/nfnetlink.h>
1555 #include <linux/netfilter/nfnetlink_conntrack.h>
1556 #include <linux/mutex.h>
1557
1558 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1559 * in ip_conntrack_core, since we don't want the protocols to autoload
1560 * or depend on ctnetlink */
1561 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1562 const struct nf_conntrack_tuple *tuple)
1563 {
1564 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1565 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1566 goto nla_put_failure;
1567 return 0;
1568
1569 nla_put_failure:
1570 return -1;
1571 }
1572 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1573
1574 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1575 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1576 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1577 };
1578 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1579
1580 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1581 struct nf_conntrack_tuple *t)
1582 {
1583 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1584 return -EINVAL;
1585
1586 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1587 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1588
1589 return 0;
1590 }
1591 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1592
1593 int nf_ct_port_nlattr_tuple_size(void)
1594 {
1595 return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1596 }
1597 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1598 #endif
1599
1600 /* Used by ipt_REJECT and ip6t_REJECT. */
1601 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1602 {
1603 struct nf_conn *ct;
1604 enum ip_conntrack_info ctinfo;
1605
1606 /* This ICMP is in reverse direction to the packet which caused it */
1607 ct = nf_ct_get(skb, &ctinfo);
1608 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1609 ctinfo = IP_CT_RELATED_REPLY;
1610 else
1611 ctinfo = IP_CT_RELATED;
1612
1613 /* Attach to new skbuff, and increment count */
1614 nf_ct_set(nskb, ct, ctinfo);
1615 nf_conntrack_get(skb_nfct(nskb));
1616 }
1617
1618 /* Bring out ya dead! */
1619 static struct nf_conn *
1620 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
1621 void *data, unsigned int *bucket)
1622 {
1623 struct nf_conntrack_tuple_hash *h;
1624 struct nf_conn *ct;
1625 struct hlist_nulls_node *n;
1626 spinlock_t *lockp;
1627
1628 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
1629 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
1630 local_bh_disable();
1631 nf_conntrack_lock(lockp);
1632 if (*bucket < nf_conntrack_htable_size) {
1633 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
1634 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
1635 continue;
1636 ct = nf_ct_tuplehash_to_ctrack(h);
1637 if (iter(ct, data))
1638 goto found;
1639 }
1640 }
1641 spin_unlock(lockp);
1642 local_bh_enable();
1643 cond_resched();
1644 }
1645
1646 return NULL;
1647 found:
1648 atomic_inc(&ct->ct_general.use);
1649 spin_unlock(lockp);
1650 local_bh_enable();
1651 return ct;
1652 }
1653
1654 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
1655 void *data, u32 portid, int report)
1656 {
1657 unsigned int bucket = 0, sequence;
1658 struct nf_conn *ct;
1659
1660 might_sleep();
1661
1662 for (;;) {
1663 sequence = read_seqcount_begin(&nf_conntrack_generation);
1664
1665 while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
1666 /* Time to push up daises... */
1667
1668 nf_ct_delete(ct, portid, report);
1669 nf_ct_put(ct);
1670 cond_resched();
1671 }
1672
1673 if (!read_seqcount_retry(&nf_conntrack_generation, sequence))
1674 break;
1675 bucket = 0;
1676 }
1677 }
1678
1679 struct iter_data {
1680 int (*iter)(struct nf_conn *i, void *data);
1681 void *data;
1682 struct net *net;
1683 };
1684
1685 static int iter_net_only(struct nf_conn *i, void *data)
1686 {
1687 struct iter_data *d = data;
1688
1689 if (!net_eq(d->net, nf_ct_net(i)))
1690 return 0;
1691
1692 return d->iter(i, d->data);
1693 }
1694
1695 static void
1696 __nf_ct_unconfirmed_destroy(struct net *net)
1697 {
1698 int cpu;
1699
1700 for_each_possible_cpu(cpu) {
1701 struct nf_conntrack_tuple_hash *h;
1702 struct hlist_nulls_node *n;
1703 struct ct_pcpu *pcpu;
1704
1705 pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1706
1707 spin_lock_bh(&pcpu->lock);
1708 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
1709 struct nf_conn *ct;
1710
1711 ct = nf_ct_tuplehash_to_ctrack(h);
1712
1713 /* we cannot call iter() on unconfirmed list, the
1714 * owning cpu can reallocate ct->ext at any time.
1715 */
1716 set_bit(IPS_DYING_BIT, &ct->status);
1717 }
1718 spin_unlock_bh(&pcpu->lock);
1719 cond_resched();
1720 }
1721 }
1722
1723 void nf_ct_unconfirmed_destroy(struct net *net)
1724 {
1725 might_sleep();
1726
1727 if (atomic_read(&net->ct.count) > 0) {
1728 __nf_ct_unconfirmed_destroy(net);
1729 nf_queue_nf_hook_drop(net);
1730 synchronize_net();
1731 }
1732 }
1733 EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
1734
1735 void nf_ct_iterate_cleanup_net(struct net *net,
1736 int (*iter)(struct nf_conn *i, void *data),
1737 void *data, u32 portid, int report)
1738 {
1739 struct iter_data d;
1740
1741 might_sleep();
1742
1743 if (atomic_read(&net->ct.count) == 0)
1744 return;
1745
1746 d.iter = iter;
1747 d.data = data;
1748 d.net = net;
1749
1750 nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
1751 }
1752 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
1753
1754 /**
1755 * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
1756 * @iter: callback to invoke for each conntrack
1757 * @data: data to pass to @iter
1758 *
1759 * Like nf_ct_iterate_cleanup, but first marks conntracks on the
1760 * unconfirmed list as dying (so they will not be inserted into
1761 * main table).
1762 *
1763 * Can only be called in module exit path.
1764 */
1765 void
1766 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
1767 {
1768 struct net *net;
1769
1770 rtnl_lock();
1771 for_each_net(net) {
1772 if (atomic_read(&net->ct.count) == 0)
1773 continue;
1774 __nf_ct_unconfirmed_destroy(net);
1775 nf_queue_nf_hook_drop(net);
1776 }
1777 rtnl_unlock();
1778
1779 /* Need to wait for netns cleanup worker to finish, if its
1780 * running -- it might have deleted a net namespace from
1781 * the global list, so our __nf_ct_unconfirmed_destroy() might
1782 * not have affected all namespaces.
1783 */
1784 net_ns_barrier();
1785
1786 /* a conntrack could have been unlinked from unconfirmed list
1787 * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
1788 * This makes sure its inserted into conntrack table.
1789 */
1790 synchronize_net();
1791
1792 nf_ct_iterate_cleanup(iter, data, 0, 0);
1793 }
1794 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
1795
1796 static int kill_all(struct nf_conn *i, void *data)
1797 {
1798 return net_eq(nf_ct_net(i), data);
1799 }
1800
1801 void nf_ct_free_hashtable(void *hash, unsigned int size)
1802 {
1803 if (is_vmalloc_addr(hash))
1804 vfree(hash);
1805 else
1806 free_pages((unsigned long)hash,
1807 get_order(sizeof(struct hlist_head) * size));
1808 }
1809 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1810
1811 void nf_conntrack_cleanup_start(void)
1812 {
1813 conntrack_gc_work.exiting = true;
1814 RCU_INIT_POINTER(ip_ct_attach, NULL);
1815 }
1816
1817 void nf_conntrack_cleanup_end(void)
1818 {
1819 RCU_INIT_POINTER(nf_ct_destroy, NULL);
1820
1821 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
1822 nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_htable_size);
1823
1824 nf_conntrack_proto_fini();
1825 nf_conntrack_seqadj_fini();
1826 nf_conntrack_labels_fini();
1827 nf_conntrack_helper_fini();
1828 nf_conntrack_timeout_fini();
1829 nf_conntrack_ecache_fini();
1830 nf_conntrack_tstamp_fini();
1831 nf_conntrack_acct_fini();
1832 nf_conntrack_expect_fini();
1833
1834 kmem_cache_destroy(nf_conntrack_cachep);
1835 }
1836
1837 /*
1838 * Mishearing the voices in his head, our hero wonders how he's
1839 * supposed to kill the mall.
1840 */
1841 void nf_conntrack_cleanup_net(struct net *net)
1842 {
1843 LIST_HEAD(single);
1844
1845 list_add(&net->exit_list, &single);
1846 nf_conntrack_cleanup_net_list(&single);
1847 }
1848
1849 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
1850 {
1851 int busy;
1852 struct net *net;
1853
1854 /*
1855 * This makes sure all current packets have passed through
1856 * netfilter framework. Roll on, two-stage module
1857 * delete...
1858 */
1859 synchronize_net();
1860 i_see_dead_people:
1861 busy = 0;
1862 list_for_each_entry(net, net_exit_list, exit_list) {
1863 nf_ct_iterate_cleanup(kill_all, net, 0, 0);
1864 if (atomic_read(&net->ct.count) != 0)
1865 busy = 1;
1866 }
1867 if (busy) {
1868 schedule();
1869 goto i_see_dead_people;
1870 }
1871
1872 list_for_each_entry(net, net_exit_list, exit_list) {
1873 nf_conntrack_proto_pernet_fini(net);
1874 nf_conntrack_helper_pernet_fini(net);
1875 nf_conntrack_ecache_pernet_fini(net);
1876 nf_conntrack_tstamp_pernet_fini(net);
1877 nf_conntrack_acct_pernet_fini(net);
1878 nf_conntrack_expect_pernet_fini(net);
1879 free_percpu(net->ct.stat);
1880 free_percpu(net->ct.pcpu_lists);
1881 }
1882 }
1883
1884 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1885 {
1886 struct hlist_nulls_head *hash;
1887 unsigned int nr_slots, i;
1888 size_t sz;
1889
1890 if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
1891 return NULL;
1892
1893 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1894 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1895
1896 if (nr_slots > (UINT_MAX / sizeof(struct hlist_nulls_head)))
1897 return NULL;
1898
1899 sz = nr_slots * sizeof(struct hlist_nulls_head);
1900 hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1901 get_order(sz));
1902 if (!hash)
1903 hash = vzalloc(sz);
1904
1905 if (hash && nulls)
1906 for (i = 0; i < nr_slots; i++)
1907 INIT_HLIST_NULLS_HEAD(&hash[i], i);
1908
1909 return hash;
1910 }
1911 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1912
1913 int nf_conntrack_hash_resize(unsigned int hashsize)
1914 {
1915 int i, bucket;
1916 unsigned int old_size;
1917 struct hlist_nulls_head *hash, *old_hash;
1918 struct nf_conntrack_tuple_hash *h;
1919 struct nf_conn *ct;
1920
1921 if (!hashsize)
1922 return -EINVAL;
1923
1924 hash = nf_ct_alloc_hashtable(&hashsize, 1);
1925 if (!hash)
1926 return -ENOMEM;
1927
1928 old_size = nf_conntrack_htable_size;
1929 if (old_size == hashsize) {
1930 nf_ct_free_hashtable(hash, hashsize);
1931 return 0;
1932 }
1933
1934 local_bh_disable();
1935 nf_conntrack_all_lock();
1936 write_seqcount_begin(&nf_conntrack_generation);
1937
1938 /* Lookups in the old hash might happen in parallel, which means we
1939 * might get false negatives during connection lookup. New connections
1940 * created because of a false negative won't make it into the hash
1941 * though since that required taking the locks.
1942 */
1943
1944 for (i = 0; i < nf_conntrack_htable_size; i++) {
1945 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
1946 h = hlist_nulls_entry(nf_conntrack_hash[i].first,
1947 struct nf_conntrack_tuple_hash, hnnode);
1948 ct = nf_ct_tuplehash_to_ctrack(h);
1949 hlist_nulls_del_rcu(&h->hnnode);
1950 bucket = __hash_conntrack(nf_ct_net(ct),
1951 &h->tuple, hashsize);
1952 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1953 }
1954 }
1955 old_size = nf_conntrack_htable_size;
1956 old_hash = nf_conntrack_hash;
1957
1958 nf_conntrack_hash = hash;
1959 nf_conntrack_htable_size = hashsize;
1960
1961 write_seqcount_end(&nf_conntrack_generation);
1962 nf_conntrack_all_unlock();
1963 local_bh_enable();
1964
1965 synchronize_net();
1966 nf_ct_free_hashtable(old_hash, old_size);
1967 return 0;
1968 }
1969
1970 int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1971 {
1972 unsigned int hashsize;
1973 int rc;
1974
1975 if (current->nsproxy->net_ns != &init_net)
1976 return -EOPNOTSUPP;
1977
1978 /* On boot, we can set this without any fancy locking. */
1979 if (!nf_conntrack_hash)
1980 return param_set_uint(val, kp);
1981
1982 rc = kstrtouint(val, 0, &hashsize);
1983 if (rc)
1984 return rc;
1985
1986 return nf_conntrack_hash_resize(hashsize);
1987 }
1988 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1989
1990 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1991 &nf_conntrack_htable_size, 0600);
1992
1993 static __always_inline unsigned int total_extension_size(void)
1994 {
1995 /* remember to add new extensions below */
1996 BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
1997
1998 return sizeof(struct nf_ct_ext) +
1999 sizeof(struct nf_conn_help)
2000 #if IS_ENABLED(CONFIG_NF_NAT)
2001 + sizeof(struct nf_conn_nat)
2002 #endif
2003 + sizeof(struct nf_conn_seqadj)
2004 + sizeof(struct nf_conn_acct)
2005 #ifdef CONFIG_NF_CONNTRACK_EVENTS
2006 + sizeof(struct nf_conntrack_ecache)
2007 #endif
2008 #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
2009 + sizeof(struct nf_conn_tstamp)
2010 #endif
2011 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
2012 + sizeof(struct nf_conn_timeout)
2013 #endif
2014 #ifdef CONFIG_NF_CONNTRACK_LABELS
2015 + sizeof(struct nf_conn_labels)
2016 #endif
2017 #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
2018 + sizeof(struct nf_conn_synproxy)
2019 #endif
2020 ;
2021 };
2022
2023 int nf_conntrack_init_start(void)
2024 {
2025 int max_factor = 8;
2026 int ret = -ENOMEM;
2027 int i;
2028
2029 /* struct nf_ct_ext uses u8 to store offsets/size */
2030 BUILD_BUG_ON(total_extension_size() > 255u);
2031
2032 seqcount_init(&nf_conntrack_generation);
2033
2034 for (i = 0; i < CONNTRACK_LOCKS; i++)
2035 spin_lock_init(&nf_conntrack_locks[i]);
2036
2037 if (!nf_conntrack_htable_size) {
2038 /* Idea from tcp.c: use 1/16384 of memory.
2039 * On i386: 32MB machine has 512 buckets.
2040 * >= 1GB machines have 16384 buckets.
2041 * >= 4GB machines have 65536 buckets.
2042 */
2043 nf_conntrack_htable_size
2044 = (((totalram_pages << PAGE_SHIFT) / 16384)
2045 / sizeof(struct hlist_head));
2046 if (totalram_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2047 nf_conntrack_htable_size = 65536;
2048 else if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2049 nf_conntrack_htable_size = 16384;
2050 if (nf_conntrack_htable_size < 32)
2051 nf_conntrack_htable_size = 32;
2052
2053 /* Use a max. factor of four by default to get the same max as
2054 * with the old struct list_heads. When a table size is given
2055 * we use the old value of 8 to avoid reducing the max.
2056 * entries. */
2057 max_factor = 4;
2058 }
2059
2060 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2061 if (!nf_conntrack_hash)
2062 return -ENOMEM;
2063
2064 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2065
2066 nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2067 sizeof(struct nf_conn),
2068 NFCT_INFOMASK + 1,
2069 SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2070 if (!nf_conntrack_cachep)
2071 goto err_cachep;
2072
2073 printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
2074 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
2075 nf_conntrack_max);
2076
2077 ret = nf_conntrack_expect_init();
2078 if (ret < 0)
2079 goto err_expect;
2080
2081 ret = nf_conntrack_acct_init();
2082 if (ret < 0)
2083 goto err_acct;
2084
2085 ret = nf_conntrack_tstamp_init();
2086 if (ret < 0)
2087 goto err_tstamp;
2088
2089 ret = nf_conntrack_ecache_init();
2090 if (ret < 0)
2091 goto err_ecache;
2092
2093 ret = nf_conntrack_timeout_init();
2094 if (ret < 0)
2095 goto err_timeout;
2096
2097 ret = nf_conntrack_helper_init();
2098 if (ret < 0)
2099 goto err_helper;
2100
2101 ret = nf_conntrack_labels_init();
2102 if (ret < 0)
2103 goto err_labels;
2104
2105 ret = nf_conntrack_seqadj_init();
2106 if (ret < 0)
2107 goto err_seqadj;
2108
2109 ret = nf_conntrack_proto_init();
2110 if (ret < 0)
2111 goto err_proto;
2112
2113 conntrack_gc_work_init(&conntrack_gc_work);
2114 queue_delayed_work(system_long_wq, &conntrack_gc_work.dwork, HZ);
2115
2116 return 0;
2117
2118 err_proto:
2119 nf_conntrack_seqadj_fini();
2120 err_seqadj:
2121 nf_conntrack_labels_fini();
2122 err_labels:
2123 nf_conntrack_helper_fini();
2124 err_helper:
2125 nf_conntrack_timeout_fini();
2126 err_timeout:
2127 nf_conntrack_ecache_fini();
2128 err_ecache:
2129 nf_conntrack_tstamp_fini();
2130 err_tstamp:
2131 nf_conntrack_acct_fini();
2132 err_acct:
2133 nf_conntrack_expect_fini();
2134 err_expect:
2135 kmem_cache_destroy(nf_conntrack_cachep);
2136 err_cachep:
2137 nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_htable_size);
2138 return ret;
2139 }
2140
2141 void nf_conntrack_init_end(void)
2142 {
2143 /* For use by REJECT target */
2144 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2145 RCU_INIT_POINTER(nf_ct_destroy, destroy_conntrack);
2146 }
2147
2148 /*
2149 * We need to use special "null" values, not used in hash table
2150 */
2151 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
2152 #define DYING_NULLS_VAL ((1<<30)+1)
2153 #define TEMPLATE_NULLS_VAL ((1<<30)+2)
2154
2155 int nf_conntrack_init_net(struct net *net)
2156 {
2157 int ret = -ENOMEM;
2158 int cpu;
2159
2160 BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2161 atomic_set(&net->ct.count, 0);
2162
2163 net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2164 if (!net->ct.pcpu_lists)
2165 goto err_stat;
2166
2167 for_each_possible_cpu(cpu) {
2168 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2169
2170 spin_lock_init(&pcpu->lock);
2171 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2172 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2173 }
2174
2175 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2176 if (!net->ct.stat)
2177 goto err_pcpu_lists;
2178
2179 ret = nf_conntrack_expect_pernet_init(net);
2180 if (ret < 0)
2181 goto err_expect;
2182 ret = nf_conntrack_acct_pernet_init(net);
2183 if (ret < 0)
2184 goto err_acct;
2185 ret = nf_conntrack_tstamp_pernet_init(net);
2186 if (ret < 0)
2187 goto err_tstamp;
2188 ret = nf_conntrack_ecache_pernet_init(net);
2189 if (ret < 0)
2190 goto err_ecache;
2191 ret = nf_conntrack_helper_pernet_init(net);
2192 if (ret < 0)
2193 goto err_helper;
2194 ret = nf_conntrack_proto_pernet_init(net);
2195 if (ret < 0)
2196 goto err_proto;
2197 return 0;
2198
2199 err_proto:
2200 nf_conntrack_helper_pernet_fini(net);
2201 err_helper:
2202 nf_conntrack_ecache_pernet_fini(net);
2203 err_ecache:
2204 nf_conntrack_tstamp_pernet_fini(net);
2205 err_tstamp:
2206 nf_conntrack_acct_pernet_fini(net);
2207 err_acct:
2208 nf_conntrack_expect_pernet_fini(net);
2209 err_expect:
2210 free_percpu(net->ct.stat);
2211 err_pcpu_lists:
2212 free_percpu(net->ct.pcpu_lists);
2213 err_stat:
2214 return ret;
2215 }