]> git.ipfire.org Git - thirdparty/linux.git/blob - net/netfilter/nf_conntrack_core.c
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / net / netfilter / nf_conntrack_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter. This is separated from,
3 but required by, the NAT layer; it can also be used by an iptables
4 extension. */
5
6 /* (C) 1999-2001 Paul `Rusty' Russell
7 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/jhash.h>
25 #include <linux/siphash.h>
26 #include <linux/err.h>
27 #include <linux/percpu.h>
28 #include <linux/moduleparam.h>
29 #include <linux/notifier.h>
30 #include <linux/kernel.h>
31 #include <linux/netdevice.h>
32 #include <linux/socket.h>
33 #include <linux/mm.h>
34 #include <linux/nsproxy.h>
35 #include <linux/rculist_nulls.h>
36
37 #include <net/netfilter/nf_conntrack.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_seqadj.h>
42 #include <net/netfilter/nf_conntrack_core.h>
43 #include <net/netfilter/nf_conntrack_extend.h>
44 #include <net/netfilter/nf_conntrack_acct.h>
45 #include <net/netfilter/nf_conntrack_ecache.h>
46 #include <net/netfilter/nf_conntrack_zones.h>
47 #include <net/netfilter/nf_conntrack_timestamp.h>
48 #include <net/netfilter/nf_conntrack_timeout.h>
49 #include <net/netfilter/nf_conntrack_labels.h>
50 #include <net/netfilter/nf_conntrack_synproxy.h>
51 #include <net/netfilter/nf_nat.h>
52 #include <net/netfilter/nf_nat_helper.h>
53 #include <net/netns/hash.h>
54 #include <net/ip.h>
55
56 #include "nf_internals.h"
57
58 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
59 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
60
61 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
62 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
63
64 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
65 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
66
67 struct conntrack_gc_work {
68 struct delayed_work dwork;
69 u32 last_bucket;
70 bool exiting;
71 bool early_drop;
72 long next_gc_run;
73 };
74
75 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
76 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
77 static __read_mostly bool nf_conntrack_locks_all;
78
79 /* every gc cycle scans at most 1/GC_MAX_BUCKETS_DIV part of table */
80 #define GC_MAX_BUCKETS_DIV 128u
81 /* upper bound of full table scan */
82 #define GC_MAX_SCAN_JIFFIES (16u * HZ)
83 /* desired ratio of entries found to be expired */
84 #define GC_EVICT_RATIO 50u
85
86 static struct conntrack_gc_work conntrack_gc_work;
87
88 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
89 {
90 /* 1) Acquire the lock */
91 spin_lock(lock);
92
93 /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
94 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
95 */
96 if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
97 return;
98
99 /* fast path failed, unlock */
100 spin_unlock(lock);
101
102 /* Slow path 1) get global lock */
103 spin_lock(&nf_conntrack_locks_all_lock);
104
105 /* Slow path 2) get the lock we want */
106 spin_lock(lock);
107
108 /* Slow path 3) release the global lock */
109 spin_unlock(&nf_conntrack_locks_all_lock);
110 }
111 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
112
113 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
114 {
115 h1 %= CONNTRACK_LOCKS;
116 h2 %= CONNTRACK_LOCKS;
117 spin_unlock(&nf_conntrack_locks[h1]);
118 if (h1 != h2)
119 spin_unlock(&nf_conntrack_locks[h2]);
120 }
121
122 /* return true if we need to recompute hashes (in case hash table was resized) */
123 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
124 unsigned int h2, unsigned int sequence)
125 {
126 h1 %= CONNTRACK_LOCKS;
127 h2 %= CONNTRACK_LOCKS;
128 if (h1 <= h2) {
129 nf_conntrack_lock(&nf_conntrack_locks[h1]);
130 if (h1 != h2)
131 spin_lock_nested(&nf_conntrack_locks[h2],
132 SINGLE_DEPTH_NESTING);
133 } else {
134 nf_conntrack_lock(&nf_conntrack_locks[h2]);
135 spin_lock_nested(&nf_conntrack_locks[h1],
136 SINGLE_DEPTH_NESTING);
137 }
138 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
139 nf_conntrack_double_unlock(h1, h2);
140 return true;
141 }
142 return false;
143 }
144
145 static void nf_conntrack_all_lock(void)
146 __acquires(&nf_conntrack_locks_all_lock)
147 {
148 int i;
149
150 spin_lock(&nf_conntrack_locks_all_lock);
151
152 nf_conntrack_locks_all = true;
153
154 for (i = 0; i < CONNTRACK_LOCKS; i++) {
155 spin_lock(&nf_conntrack_locks[i]);
156
157 /* This spin_unlock provides the "release" to ensure that
158 * nf_conntrack_locks_all==true is visible to everyone that
159 * acquired spin_lock(&nf_conntrack_locks[]).
160 */
161 spin_unlock(&nf_conntrack_locks[i]);
162 }
163 }
164
165 static void nf_conntrack_all_unlock(void)
166 __releases(&nf_conntrack_locks_all_lock)
167 {
168 /* All prior stores must be complete before we clear
169 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
170 * might observe the false value but not the entire
171 * critical section.
172 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
173 */
174 smp_store_release(&nf_conntrack_locks_all, false);
175 spin_unlock(&nf_conntrack_locks_all_lock);
176 }
177
178 unsigned int nf_conntrack_htable_size __read_mostly;
179 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
180
181 unsigned int nf_conntrack_max __read_mostly;
182 EXPORT_SYMBOL_GPL(nf_conntrack_max);
183 seqcount_t nf_conntrack_generation __read_mostly;
184 static unsigned int nf_conntrack_hash_rnd __read_mostly;
185
186 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
187 const struct net *net)
188 {
189 unsigned int n;
190 u32 seed;
191
192 get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
193
194 /* The direction must be ignored, so we hash everything up to the
195 * destination ports (which is a multiple of 4) and treat the last
196 * three bytes manually.
197 */
198 seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
199 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
200 return jhash2((u32 *)tuple, n, seed ^
201 (((__force __u16)tuple->dst.u.all << 16) |
202 tuple->dst.protonum));
203 }
204
205 static u32 scale_hash(u32 hash)
206 {
207 return reciprocal_scale(hash, nf_conntrack_htable_size);
208 }
209
210 static u32 __hash_conntrack(const struct net *net,
211 const struct nf_conntrack_tuple *tuple,
212 unsigned int size)
213 {
214 return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
215 }
216
217 static u32 hash_conntrack(const struct net *net,
218 const struct nf_conntrack_tuple *tuple)
219 {
220 return scale_hash(hash_conntrack_raw(tuple, net));
221 }
222
223 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
224 unsigned int dataoff,
225 struct nf_conntrack_tuple *tuple)
226 { struct {
227 __be16 sport;
228 __be16 dport;
229 } _inet_hdr, *inet_hdr;
230
231 /* Actually only need first 4 bytes to get ports. */
232 inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
233 if (!inet_hdr)
234 return false;
235
236 tuple->src.u.udp.port = inet_hdr->sport;
237 tuple->dst.u.udp.port = inet_hdr->dport;
238 return true;
239 }
240
241 static bool
242 nf_ct_get_tuple(const struct sk_buff *skb,
243 unsigned int nhoff,
244 unsigned int dataoff,
245 u_int16_t l3num,
246 u_int8_t protonum,
247 struct net *net,
248 struct nf_conntrack_tuple *tuple)
249 {
250 unsigned int size;
251 const __be32 *ap;
252 __be32 _addrs[8];
253
254 memset(tuple, 0, sizeof(*tuple));
255
256 tuple->src.l3num = l3num;
257 switch (l3num) {
258 case NFPROTO_IPV4:
259 nhoff += offsetof(struct iphdr, saddr);
260 size = 2 * sizeof(__be32);
261 break;
262 case NFPROTO_IPV6:
263 nhoff += offsetof(struct ipv6hdr, saddr);
264 size = sizeof(_addrs);
265 break;
266 default:
267 return true;
268 }
269
270 ap = skb_header_pointer(skb, nhoff, size, _addrs);
271 if (!ap)
272 return false;
273
274 switch (l3num) {
275 case NFPROTO_IPV4:
276 tuple->src.u3.ip = ap[0];
277 tuple->dst.u3.ip = ap[1];
278 break;
279 case NFPROTO_IPV6:
280 memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
281 memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
282 break;
283 }
284
285 tuple->dst.protonum = protonum;
286 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
287
288 switch (protonum) {
289 #if IS_ENABLED(CONFIG_IPV6)
290 case IPPROTO_ICMPV6:
291 return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
292 #endif
293 case IPPROTO_ICMP:
294 return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
295 #ifdef CONFIG_NF_CT_PROTO_GRE
296 case IPPROTO_GRE:
297 return gre_pkt_to_tuple(skb, dataoff, net, tuple);
298 #endif
299 case IPPROTO_TCP:
300 case IPPROTO_UDP: /* fallthrough */
301 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
302 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
303 case IPPROTO_UDPLITE:
304 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
305 #endif
306 #ifdef CONFIG_NF_CT_PROTO_SCTP
307 case IPPROTO_SCTP:
308 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
309 #endif
310 #ifdef CONFIG_NF_CT_PROTO_DCCP
311 case IPPROTO_DCCP:
312 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
313 #endif
314 default:
315 break;
316 }
317
318 return true;
319 }
320
321 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
322 u_int8_t *protonum)
323 {
324 int dataoff = -1;
325 const struct iphdr *iph;
326 struct iphdr _iph;
327
328 iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
329 if (!iph)
330 return -1;
331
332 /* Conntrack defragments packets, we might still see fragments
333 * inside ICMP packets though.
334 */
335 if (iph->frag_off & htons(IP_OFFSET))
336 return -1;
337
338 dataoff = nhoff + (iph->ihl << 2);
339 *protonum = iph->protocol;
340
341 /* Check bogus IP headers */
342 if (dataoff > skb->len) {
343 pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
344 nhoff, iph->ihl << 2, skb->len);
345 return -1;
346 }
347 return dataoff;
348 }
349
350 #if IS_ENABLED(CONFIG_IPV6)
351 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
352 u8 *protonum)
353 {
354 int protoff = -1;
355 unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
356 __be16 frag_off;
357 u8 nexthdr;
358
359 if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
360 &nexthdr, sizeof(nexthdr)) != 0) {
361 pr_debug("can't get nexthdr\n");
362 return -1;
363 }
364 protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
365 /*
366 * (protoff == skb->len) means the packet has not data, just
367 * IPv6 and possibly extensions headers, but it is tracked anyway
368 */
369 if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
370 pr_debug("can't find proto in pkt\n");
371 return -1;
372 }
373
374 *protonum = nexthdr;
375 return protoff;
376 }
377 #endif
378
379 static int get_l4proto(const struct sk_buff *skb,
380 unsigned int nhoff, u8 pf, u8 *l4num)
381 {
382 switch (pf) {
383 case NFPROTO_IPV4:
384 return ipv4_get_l4proto(skb, nhoff, l4num);
385 #if IS_ENABLED(CONFIG_IPV6)
386 case NFPROTO_IPV6:
387 return ipv6_get_l4proto(skb, nhoff, l4num);
388 #endif
389 default:
390 *l4num = 0;
391 break;
392 }
393 return -1;
394 }
395
396 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
397 u_int16_t l3num,
398 struct net *net, struct nf_conntrack_tuple *tuple)
399 {
400 u8 protonum;
401 int protoff;
402
403 protoff = get_l4proto(skb, nhoff, l3num, &protonum);
404 if (protoff <= 0)
405 return false;
406
407 return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
408 }
409 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
410
411 bool
412 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
413 const struct nf_conntrack_tuple *orig)
414 {
415 memset(inverse, 0, sizeof(*inverse));
416
417 inverse->src.l3num = orig->src.l3num;
418
419 switch (orig->src.l3num) {
420 case NFPROTO_IPV4:
421 inverse->src.u3.ip = orig->dst.u3.ip;
422 inverse->dst.u3.ip = orig->src.u3.ip;
423 break;
424 case NFPROTO_IPV6:
425 inverse->src.u3.in6 = orig->dst.u3.in6;
426 inverse->dst.u3.in6 = orig->src.u3.in6;
427 break;
428 default:
429 break;
430 }
431
432 inverse->dst.dir = !orig->dst.dir;
433
434 inverse->dst.protonum = orig->dst.protonum;
435
436 switch (orig->dst.protonum) {
437 case IPPROTO_ICMP:
438 return nf_conntrack_invert_icmp_tuple(inverse, orig);
439 #if IS_ENABLED(CONFIG_IPV6)
440 case IPPROTO_ICMPV6:
441 return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
442 #endif
443 }
444
445 inverse->src.u.all = orig->dst.u.all;
446 inverse->dst.u.all = orig->src.u.all;
447 return true;
448 }
449 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
450
451 /* Generate a almost-unique pseudo-id for a given conntrack.
452 *
453 * intentionally doesn't re-use any of the seeds used for hash
454 * table location, we assume id gets exposed to userspace.
455 *
456 * Following nf_conn items do not change throughout lifetime
457 * of the nf_conn:
458 *
459 * 1. nf_conn address
460 * 2. nf_conn->master address (normally NULL)
461 * 3. the associated net namespace
462 * 4. the original direction tuple
463 */
464 u32 nf_ct_get_id(const struct nf_conn *ct)
465 {
466 static __read_mostly siphash_key_t ct_id_seed;
467 unsigned long a, b, c, d;
468
469 net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
470
471 a = (unsigned long)ct;
472 b = (unsigned long)ct->master;
473 c = (unsigned long)nf_ct_net(ct);
474 d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
475 sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
476 &ct_id_seed);
477 #ifdef CONFIG_64BIT
478 return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
479 #else
480 return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
481 #endif
482 }
483 EXPORT_SYMBOL_GPL(nf_ct_get_id);
484
485 static void
486 clean_from_lists(struct nf_conn *ct)
487 {
488 pr_debug("clean_from_lists(%p)\n", ct);
489 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
490 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
491
492 /* Destroy all pending expectations */
493 nf_ct_remove_expectations(ct);
494 }
495
496 /* must be called with local_bh_disable */
497 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
498 {
499 struct ct_pcpu *pcpu;
500
501 /* add this conntrack to the (per cpu) dying list */
502 ct->cpu = smp_processor_id();
503 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
504
505 spin_lock(&pcpu->lock);
506 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
507 &pcpu->dying);
508 spin_unlock(&pcpu->lock);
509 }
510
511 /* must be called with local_bh_disable */
512 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
513 {
514 struct ct_pcpu *pcpu;
515
516 /* add this conntrack to the (per cpu) unconfirmed list */
517 ct->cpu = smp_processor_id();
518 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
519
520 spin_lock(&pcpu->lock);
521 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
522 &pcpu->unconfirmed);
523 spin_unlock(&pcpu->lock);
524 }
525
526 /* must be called with local_bh_disable */
527 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
528 {
529 struct ct_pcpu *pcpu;
530
531 /* We overload first tuple to link into unconfirmed or dying list.*/
532 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
533
534 spin_lock(&pcpu->lock);
535 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
536 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
537 spin_unlock(&pcpu->lock);
538 }
539
540 #define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
541
542 /* Released via destroy_conntrack() */
543 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
544 const struct nf_conntrack_zone *zone,
545 gfp_t flags)
546 {
547 struct nf_conn *tmpl, *p;
548
549 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
550 tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
551 if (!tmpl)
552 return NULL;
553
554 p = tmpl;
555 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
556 if (tmpl != p) {
557 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
558 tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
559 }
560 } else {
561 tmpl = kzalloc(sizeof(*tmpl), flags);
562 if (!tmpl)
563 return NULL;
564 }
565
566 tmpl->status = IPS_TEMPLATE;
567 write_pnet(&tmpl->ct_net, net);
568 nf_ct_zone_add(tmpl, zone);
569 atomic_set(&tmpl->ct_general.use, 0);
570
571 return tmpl;
572 }
573 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
574
575 void nf_ct_tmpl_free(struct nf_conn *tmpl)
576 {
577 nf_ct_ext_destroy(tmpl);
578
579 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
580 kfree((char *)tmpl - tmpl->proto.tmpl_padto);
581 else
582 kfree(tmpl);
583 }
584 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
585
586 static void destroy_gre_conntrack(struct nf_conn *ct)
587 {
588 #ifdef CONFIG_NF_CT_PROTO_GRE
589 struct nf_conn *master = ct->master;
590
591 if (master)
592 nf_ct_gre_keymap_destroy(master);
593 #endif
594 }
595
596 static void
597 destroy_conntrack(struct nf_conntrack *nfct)
598 {
599 struct nf_conn *ct = (struct nf_conn *)nfct;
600
601 pr_debug("destroy_conntrack(%p)\n", ct);
602 WARN_ON(atomic_read(&nfct->use) != 0);
603
604 if (unlikely(nf_ct_is_template(ct))) {
605 nf_ct_tmpl_free(ct);
606 return;
607 }
608
609 if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
610 destroy_gre_conntrack(ct);
611
612 local_bh_disable();
613 /* Expectations will have been removed in clean_from_lists,
614 * except TFTP can create an expectation on the first packet,
615 * before connection is in the list, so we need to clean here,
616 * too.
617 */
618 nf_ct_remove_expectations(ct);
619
620 nf_ct_del_from_dying_or_unconfirmed_list(ct);
621
622 local_bh_enable();
623
624 if (ct->master)
625 nf_ct_put(ct->master);
626
627 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
628 nf_conntrack_free(ct);
629 }
630
631 static void nf_ct_delete_from_lists(struct nf_conn *ct)
632 {
633 struct net *net = nf_ct_net(ct);
634 unsigned int hash, reply_hash;
635 unsigned int sequence;
636
637 nf_ct_helper_destroy(ct);
638
639 local_bh_disable();
640 do {
641 sequence = read_seqcount_begin(&nf_conntrack_generation);
642 hash = hash_conntrack(net,
643 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
644 reply_hash = hash_conntrack(net,
645 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
646 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
647
648 clean_from_lists(ct);
649 nf_conntrack_double_unlock(hash, reply_hash);
650
651 nf_ct_add_to_dying_list(ct);
652
653 local_bh_enable();
654 }
655
656 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
657 {
658 struct nf_conn_tstamp *tstamp;
659
660 if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
661 return false;
662
663 tstamp = nf_conn_tstamp_find(ct);
664 if (tstamp && tstamp->stop == 0)
665 tstamp->stop = ktime_get_real_ns();
666
667 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
668 portid, report) < 0) {
669 /* destroy event was not delivered. nf_ct_put will
670 * be done by event cache worker on redelivery.
671 */
672 nf_ct_delete_from_lists(ct);
673 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
674 return false;
675 }
676
677 nf_conntrack_ecache_work(nf_ct_net(ct));
678 nf_ct_delete_from_lists(ct);
679 nf_ct_put(ct);
680 return true;
681 }
682 EXPORT_SYMBOL_GPL(nf_ct_delete);
683
684 static inline bool
685 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
686 const struct nf_conntrack_tuple *tuple,
687 const struct nf_conntrack_zone *zone,
688 const struct net *net)
689 {
690 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
691
692 /* A conntrack can be recreated with the equal tuple,
693 * so we need to check that the conntrack is confirmed
694 */
695 return nf_ct_tuple_equal(tuple, &h->tuple) &&
696 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
697 nf_ct_is_confirmed(ct) &&
698 net_eq(net, nf_ct_net(ct));
699 }
700
701 static inline bool
702 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
703 {
704 return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
705 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
706 nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
707 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
708 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
709 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
710 net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
711 }
712
713 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
714 static void nf_ct_gc_expired(struct nf_conn *ct)
715 {
716 if (!atomic_inc_not_zero(&ct->ct_general.use))
717 return;
718
719 if (nf_ct_should_gc(ct))
720 nf_ct_kill(ct);
721
722 nf_ct_put(ct);
723 }
724
725 /*
726 * Warning :
727 * - Caller must take a reference on returned object
728 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
729 */
730 static struct nf_conntrack_tuple_hash *
731 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
732 const struct nf_conntrack_tuple *tuple, u32 hash)
733 {
734 struct nf_conntrack_tuple_hash *h;
735 struct hlist_nulls_head *ct_hash;
736 struct hlist_nulls_node *n;
737 unsigned int bucket, hsize;
738
739 begin:
740 nf_conntrack_get_ht(&ct_hash, &hsize);
741 bucket = reciprocal_scale(hash, hsize);
742
743 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
744 struct nf_conn *ct;
745
746 ct = nf_ct_tuplehash_to_ctrack(h);
747 if (nf_ct_is_expired(ct)) {
748 nf_ct_gc_expired(ct);
749 continue;
750 }
751
752 if (nf_ct_key_equal(h, tuple, zone, net))
753 return h;
754 }
755 /*
756 * if the nulls value we got at the end of this lookup is
757 * not the expected one, we must restart lookup.
758 * We probably met an item that was moved to another chain.
759 */
760 if (get_nulls_value(n) != bucket) {
761 NF_CT_STAT_INC_ATOMIC(net, search_restart);
762 goto begin;
763 }
764
765 return NULL;
766 }
767
768 /* Find a connection corresponding to a tuple. */
769 static struct nf_conntrack_tuple_hash *
770 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
771 const struct nf_conntrack_tuple *tuple, u32 hash)
772 {
773 struct nf_conntrack_tuple_hash *h;
774 struct nf_conn *ct;
775
776 rcu_read_lock();
777
778 h = ____nf_conntrack_find(net, zone, tuple, hash);
779 if (h) {
780 /* We have a candidate that matches the tuple we're interested
781 * in, try to obtain a reference and re-check tuple
782 */
783 ct = nf_ct_tuplehash_to_ctrack(h);
784 if (likely(atomic_inc_not_zero(&ct->ct_general.use))) {
785 if (likely(nf_ct_key_equal(h, tuple, zone, net)))
786 goto found;
787
788 /* TYPESAFE_BY_RCU recycled the candidate */
789 nf_ct_put(ct);
790 }
791
792 h = NULL;
793 }
794 found:
795 rcu_read_unlock();
796
797 return h;
798 }
799
800 struct nf_conntrack_tuple_hash *
801 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
802 const struct nf_conntrack_tuple *tuple)
803 {
804 return __nf_conntrack_find_get(net, zone, tuple,
805 hash_conntrack_raw(tuple, net));
806 }
807 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
808
809 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
810 unsigned int hash,
811 unsigned int reply_hash)
812 {
813 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
814 &nf_conntrack_hash[hash]);
815 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
816 &nf_conntrack_hash[reply_hash]);
817 }
818
819 int
820 nf_conntrack_hash_check_insert(struct nf_conn *ct)
821 {
822 const struct nf_conntrack_zone *zone;
823 struct net *net = nf_ct_net(ct);
824 unsigned int hash, reply_hash;
825 struct nf_conntrack_tuple_hash *h;
826 struct hlist_nulls_node *n;
827 unsigned int sequence;
828
829 zone = nf_ct_zone(ct);
830
831 local_bh_disable();
832 do {
833 sequence = read_seqcount_begin(&nf_conntrack_generation);
834 hash = hash_conntrack(net,
835 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
836 reply_hash = hash_conntrack(net,
837 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
838 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
839
840 /* See if there's one in the list already, including reverse */
841 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
842 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
843 zone, net))
844 goto out;
845
846 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
847 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
848 zone, net))
849 goto out;
850
851 smp_wmb();
852 /* The caller holds a reference to this object */
853 atomic_set(&ct->ct_general.use, 2);
854 __nf_conntrack_hash_insert(ct, hash, reply_hash);
855 nf_conntrack_double_unlock(hash, reply_hash);
856 NF_CT_STAT_INC(net, insert);
857 local_bh_enable();
858 return 0;
859
860 out:
861 nf_conntrack_double_unlock(hash, reply_hash);
862 NF_CT_STAT_INC(net, insert_failed);
863 local_bh_enable();
864 return -EEXIST;
865 }
866 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
867
868 void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
869 unsigned int bytes)
870 {
871 struct nf_conn_acct *acct;
872
873 acct = nf_conn_acct_find(ct);
874 if (acct) {
875 struct nf_conn_counter *counter = acct->counter;
876
877 atomic64_add(packets, &counter[dir].packets);
878 atomic64_add(bytes, &counter[dir].bytes);
879 }
880 }
881 EXPORT_SYMBOL_GPL(nf_ct_acct_add);
882
883 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
884 const struct nf_conn *loser_ct)
885 {
886 struct nf_conn_acct *acct;
887
888 acct = nf_conn_acct_find(loser_ct);
889 if (acct) {
890 struct nf_conn_counter *counter = acct->counter;
891 unsigned int bytes;
892
893 /* u32 should be fine since we must have seen one packet. */
894 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
895 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
896 }
897 }
898
899 static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
900 {
901 struct nf_conn_tstamp *tstamp;
902
903 atomic_inc(&ct->ct_general.use);
904 ct->status |= IPS_CONFIRMED;
905
906 /* set conntrack timestamp, if enabled. */
907 tstamp = nf_conn_tstamp_find(ct);
908 if (tstamp)
909 tstamp->start = ktime_get_real_ns();
910 }
911
912 static int __nf_ct_resolve_clash(struct sk_buff *skb,
913 struct nf_conntrack_tuple_hash *h)
914 {
915 /* This is the conntrack entry already in hashes that won race. */
916 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
917 enum ip_conntrack_info ctinfo;
918 struct nf_conn *loser_ct;
919
920 loser_ct = nf_ct_get(skb, &ctinfo);
921
922 if (nf_ct_is_dying(ct))
923 return NF_DROP;
924
925 if (!atomic_inc_not_zero(&ct->ct_general.use))
926 return NF_DROP;
927
928 if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
929 nf_ct_match(ct, loser_ct)) {
930 struct net *net = nf_ct_net(ct);
931
932 nf_ct_acct_merge(ct, ctinfo, loser_ct);
933 nf_ct_add_to_dying_list(loser_ct);
934 nf_conntrack_put(&loser_ct->ct_general);
935 nf_ct_set(skb, ct, ctinfo);
936
937 NF_CT_STAT_INC(net, insert_failed);
938 return NF_ACCEPT;
939 }
940
941 nf_ct_put(ct);
942 return NF_DROP;
943 }
944
945 /**
946 * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
947 *
948 * @skb: skb that causes the collision
949 * @repl_idx: hash slot for reply direction
950 *
951 * Called when origin or reply direction had a clash.
952 * The skb can be handled without packet drop provided the reply direction
953 * is unique or there the existing entry has the identical tuple in both
954 * directions.
955 *
956 * Caller must hold conntrack table locks to prevent concurrent updates.
957 *
958 * Returns NF_DROP if the clash could not be handled.
959 */
960 static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
961 {
962 struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
963 const struct nf_conntrack_zone *zone;
964 struct nf_conntrack_tuple_hash *h;
965 struct hlist_nulls_node *n;
966 struct net *net;
967
968 zone = nf_ct_zone(loser_ct);
969 net = nf_ct_net(loser_ct);
970
971 /* Reply direction must never result in a clash, unless both origin
972 * and reply tuples are identical.
973 */
974 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
975 if (nf_ct_key_equal(h,
976 &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
977 zone, net))
978 return __nf_ct_resolve_clash(skb, h);
979 }
980
981 /* We want the clashing entry to go away real soon: 1 second timeout. */
982 loser_ct->timeout = nfct_time_stamp + HZ;
983
984 /* IPS_NAT_CLASH removes the entry automatically on the first
985 * reply. Also prevents UDP tracker from moving the entry to
986 * ASSURED state, i.e. the entry can always be evicted under
987 * pressure.
988 */
989 loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
990
991 __nf_conntrack_insert_prepare(loser_ct);
992
993 /* fake add for ORIGINAL dir: we want lookups to only find the entry
994 * already in the table. This also hides the clashing entry from
995 * ctnetlink iteration, i.e. conntrack -L won't show them.
996 */
997 hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
998
999 hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
1000 &nf_conntrack_hash[repl_idx]);
1001 return NF_ACCEPT;
1002 }
1003
1004 /**
1005 * nf_ct_resolve_clash - attempt to handle clash without packet drop
1006 *
1007 * @skb: skb that causes the clash
1008 * @h: tuplehash of the clashing entry already in table
1009 * @hash_reply: hash slot for reply direction
1010 *
1011 * A conntrack entry can be inserted to the connection tracking table
1012 * if there is no existing entry with an identical tuple.
1013 *
1014 * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1015 * to be dropped. In case @skb is retransmitted, next conntrack lookup
1016 * will find the already-existing entry.
1017 *
1018 * The major problem with such packet drop is the extra delay added by
1019 * the packet loss -- it will take some time for a retransmit to occur
1020 * (or the sender to time out when waiting for a reply).
1021 *
1022 * This function attempts to handle the situation without packet drop.
1023 *
1024 * If @skb has no NAT transformation or if the colliding entries are
1025 * exactly the same, only the to-be-confirmed conntrack entry is discarded
1026 * and @skb is associated with the conntrack entry already in the table.
1027 *
1028 * Failing that, the new, unconfirmed conntrack is still added to the table
1029 * provided that the collision only occurs in the ORIGINAL direction.
1030 * The new entry will be added after the existing one in the hash list,
1031 * so packets in the ORIGINAL direction will continue to match the existing
1032 * entry. The new entry will also have a fixed timeout so it expires --
1033 * due to the collision, it will not see bidirectional traffic.
1034 *
1035 * Returns NF_DROP if the clash could not be resolved.
1036 */
1037 static __cold noinline int
1038 nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1039 u32 reply_hash)
1040 {
1041 /* This is the conntrack entry already in hashes that won race. */
1042 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1043 const struct nf_conntrack_l4proto *l4proto;
1044 enum ip_conntrack_info ctinfo;
1045 struct nf_conn *loser_ct;
1046 struct net *net;
1047 int ret;
1048
1049 loser_ct = nf_ct_get(skb, &ctinfo);
1050 net = nf_ct_net(loser_ct);
1051
1052 l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1053 if (!l4proto->allow_clash)
1054 goto drop;
1055
1056 ret = __nf_ct_resolve_clash(skb, h);
1057 if (ret == NF_ACCEPT)
1058 return ret;
1059
1060 ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1061 if (ret == NF_ACCEPT)
1062 return ret;
1063
1064 drop:
1065 nf_ct_add_to_dying_list(loser_ct);
1066 NF_CT_STAT_INC(net, drop);
1067 NF_CT_STAT_INC(net, insert_failed);
1068 return NF_DROP;
1069 }
1070
1071 /* Confirm a connection given skb; places it in hash table */
1072 int
1073 __nf_conntrack_confirm(struct sk_buff *skb)
1074 {
1075 const struct nf_conntrack_zone *zone;
1076 unsigned int hash, reply_hash;
1077 struct nf_conntrack_tuple_hash *h;
1078 struct nf_conn *ct;
1079 struct nf_conn_help *help;
1080 struct hlist_nulls_node *n;
1081 enum ip_conntrack_info ctinfo;
1082 struct net *net;
1083 unsigned int sequence;
1084 int ret = NF_DROP;
1085
1086 ct = nf_ct_get(skb, &ctinfo);
1087 net = nf_ct_net(ct);
1088
1089 /* ipt_REJECT uses nf_conntrack_attach to attach related
1090 ICMP/TCP RST packets in other direction. Actual packet
1091 which created connection will be IP_CT_NEW or for an
1092 expected connection, IP_CT_RELATED. */
1093 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1094 return NF_ACCEPT;
1095
1096 zone = nf_ct_zone(ct);
1097 local_bh_disable();
1098
1099 do {
1100 sequence = read_seqcount_begin(&nf_conntrack_generation);
1101 /* reuse the hash saved before */
1102 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1103 hash = scale_hash(hash);
1104 reply_hash = hash_conntrack(net,
1105 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
1106
1107 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1108
1109 /* We're not in hash table, and we refuse to set up related
1110 * connections for unconfirmed conns. But packet copies and
1111 * REJECT will give spurious warnings here.
1112 */
1113
1114 /* Another skb with the same unconfirmed conntrack may
1115 * win the race. This may happen for bridge(br_flood)
1116 * or broadcast/multicast packets do skb_clone with
1117 * unconfirmed conntrack.
1118 */
1119 if (unlikely(nf_ct_is_confirmed(ct))) {
1120 WARN_ON_ONCE(1);
1121 nf_conntrack_double_unlock(hash, reply_hash);
1122 local_bh_enable();
1123 return NF_DROP;
1124 }
1125
1126 pr_debug("Confirming conntrack %p\n", ct);
1127 /* We have to check the DYING flag after unlink to prevent
1128 * a race against nf_ct_get_next_corpse() possibly called from
1129 * user context, else we insert an already 'dead' hash, blocking
1130 * further use of that particular connection -JM.
1131 */
1132 nf_ct_del_from_dying_or_unconfirmed_list(ct);
1133
1134 if (unlikely(nf_ct_is_dying(ct))) {
1135 nf_ct_add_to_dying_list(ct);
1136 NF_CT_STAT_INC(net, insert_failed);
1137 goto dying;
1138 }
1139
1140 /* See if there's one in the list already, including reverse:
1141 NAT could have grabbed it without realizing, since we're
1142 not in the hash. If there is, we lost race. */
1143 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
1144 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1145 zone, net))
1146 goto out;
1147
1148 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
1149 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1150 zone, net))
1151 goto out;
1152
1153 /* Timer relative to confirmation time, not original
1154 setting time, otherwise we'd get timer wrap in
1155 weird delay cases. */
1156 ct->timeout += nfct_time_stamp;
1157
1158 __nf_conntrack_insert_prepare(ct);
1159
1160 /* Since the lookup is lockless, hash insertion must be done after
1161 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1162 * guarantee that no other CPU can find the conntrack before the above
1163 * stores are visible.
1164 */
1165 __nf_conntrack_hash_insert(ct, hash, reply_hash);
1166 nf_conntrack_double_unlock(hash, reply_hash);
1167 local_bh_enable();
1168
1169 help = nfct_help(ct);
1170 if (help && help->helper)
1171 nf_conntrack_event_cache(IPCT_HELPER, ct);
1172
1173 nf_conntrack_event_cache(master_ct(ct) ?
1174 IPCT_RELATED : IPCT_NEW, ct);
1175 return NF_ACCEPT;
1176
1177 out:
1178 ret = nf_ct_resolve_clash(skb, h, reply_hash);
1179 dying:
1180 nf_conntrack_double_unlock(hash, reply_hash);
1181 local_bh_enable();
1182 return ret;
1183 }
1184 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1185
1186 /* Returns true if a connection correspondings to the tuple (required
1187 for NAT). */
1188 int
1189 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1190 const struct nf_conn *ignored_conntrack)
1191 {
1192 struct net *net = nf_ct_net(ignored_conntrack);
1193 const struct nf_conntrack_zone *zone;
1194 struct nf_conntrack_tuple_hash *h;
1195 struct hlist_nulls_head *ct_hash;
1196 unsigned int hash, hsize;
1197 struct hlist_nulls_node *n;
1198 struct nf_conn *ct;
1199
1200 zone = nf_ct_zone(ignored_conntrack);
1201
1202 rcu_read_lock();
1203 begin:
1204 nf_conntrack_get_ht(&ct_hash, &hsize);
1205 hash = __hash_conntrack(net, tuple, hsize);
1206
1207 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1208 ct = nf_ct_tuplehash_to_ctrack(h);
1209
1210 if (ct == ignored_conntrack)
1211 continue;
1212
1213 if (nf_ct_is_expired(ct)) {
1214 nf_ct_gc_expired(ct);
1215 continue;
1216 }
1217
1218 if (nf_ct_key_equal(h, tuple, zone, net)) {
1219 /* Tuple is taken already, so caller will need to find
1220 * a new source port to use.
1221 *
1222 * Only exception:
1223 * If the *original tuples* are identical, then both
1224 * conntracks refer to the same flow.
1225 * This is a rare situation, it can occur e.g. when
1226 * more than one UDP packet is sent from same socket
1227 * in different threads.
1228 *
1229 * Let nf_ct_resolve_clash() deal with this later.
1230 */
1231 if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1232 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple))
1233 continue;
1234
1235 NF_CT_STAT_INC_ATOMIC(net, found);
1236 rcu_read_unlock();
1237 return 1;
1238 }
1239 }
1240
1241 if (get_nulls_value(n) != hash) {
1242 NF_CT_STAT_INC_ATOMIC(net, search_restart);
1243 goto begin;
1244 }
1245
1246 rcu_read_unlock();
1247
1248 return 0;
1249 }
1250 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1251
1252 #define NF_CT_EVICTION_RANGE 8
1253
1254 /* There's a small race here where we may free a just-assured
1255 connection. Too bad: we're in trouble anyway. */
1256 static unsigned int early_drop_list(struct net *net,
1257 struct hlist_nulls_head *head)
1258 {
1259 struct nf_conntrack_tuple_hash *h;
1260 struct hlist_nulls_node *n;
1261 unsigned int drops = 0;
1262 struct nf_conn *tmp;
1263
1264 hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1265 tmp = nf_ct_tuplehash_to_ctrack(h);
1266
1267 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1268 continue;
1269
1270 if (nf_ct_is_expired(tmp)) {
1271 nf_ct_gc_expired(tmp);
1272 continue;
1273 }
1274
1275 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1276 !net_eq(nf_ct_net(tmp), net) ||
1277 nf_ct_is_dying(tmp))
1278 continue;
1279
1280 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1281 continue;
1282
1283 /* kill only if still in same netns -- might have moved due to
1284 * SLAB_TYPESAFE_BY_RCU rules.
1285 *
1286 * We steal the timer reference. If that fails timer has
1287 * already fired or someone else deleted it. Just drop ref
1288 * and move to next entry.
1289 */
1290 if (net_eq(nf_ct_net(tmp), net) &&
1291 nf_ct_is_confirmed(tmp) &&
1292 nf_ct_delete(tmp, 0, 0))
1293 drops++;
1294
1295 nf_ct_put(tmp);
1296 }
1297
1298 return drops;
1299 }
1300
1301 static noinline int early_drop(struct net *net, unsigned int hash)
1302 {
1303 unsigned int i, bucket;
1304
1305 for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1306 struct hlist_nulls_head *ct_hash;
1307 unsigned int hsize, drops;
1308
1309 rcu_read_lock();
1310 nf_conntrack_get_ht(&ct_hash, &hsize);
1311 if (!i)
1312 bucket = reciprocal_scale(hash, hsize);
1313 else
1314 bucket = (bucket + 1) % hsize;
1315
1316 drops = early_drop_list(net, &ct_hash[bucket]);
1317 rcu_read_unlock();
1318
1319 if (drops) {
1320 NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1321 return true;
1322 }
1323 }
1324
1325 return false;
1326 }
1327
1328 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1329 {
1330 return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1331 }
1332
1333 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1334 {
1335 const struct nf_conntrack_l4proto *l4proto;
1336
1337 if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1338 return true;
1339
1340 l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1341 if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1342 return true;
1343
1344 return false;
1345 }
1346
1347 #define DAY (86400 * HZ)
1348
1349 /* Set an arbitrary timeout large enough not to ever expire, this save
1350 * us a check for the IPS_OFFLOAD_BIT from the packet path via
1351 * nf_ct_is_expired().
1352 */
1353 static void nf_ct_offload_timeout(struct nf_conn *ct)
1354 {
1355 if (nf_ct_expires(ct) < DAY / 2)
1356 ct->timeout = nfct_time_stamp + DAY;
1357 }
1358
1359 static void gc_worker(struct work_struct *work)
1360 {
1361 unsigned int min_interval = max(HZ / GC_MAX_BUCKETS_DIV, 1u);
1362 unsigned int i, goal, buckets = 0, expired_count = 0;
1363 unsigned int nf_conntrack_max95 = 0;
1364 struct conntrack_gc_work *gc_work;
1365 unsigned int ratio, scanned = 0;
1366 unsigned long next_run;
1367
1368 gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1369
1370 goal = nf_conntrack_htable_size / GC_MAX_BUCKETS_DIV;
1371 i = gc_work->last_bucket;
1372 if (gc_work->early_drop)
1373 nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1374
1375 do {
1376 struct nf_conntrack_tuple_hash *h;
1377 struct hlist_nulls_head *ct_hash;
1378 struct hlist_nulls_node *n;
1379 unsigned int hashsz;
1380 struct nf_conn *tmp;
1381
1382 i++;
1383 rcu_read_lock();
1384
1385 nf_conntrack_get_ht(&ct_hash, &hashsz);
1386 if (i >= hashsz)
1387 i = 0;
1388
1389 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1390 struct net *net;
1391
1392 tmp = nf_ct_tuplehash_to_ctrack(h);
1393
1394 scanned++;
1395 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1396 nf_ct_offload_timeout(tmp);
1397 continue;
1398 }
1399
1400 if (nf_ct_is_expired(tmp)) {
1401 nf_ct_gc_expired(tmp);
1402 expired_count++;
1403 continue;
1404 }
1405
1406 if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1407 continue;
1408
1409 net = nf_ct_net(tmp);
1410 if (atomic_read(&net->ct.count) < nf_conntrack_max95)
1411 continue;
1412
1413 /* need to take reference to avoid possible races */
1414 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1415 continue;
1416
1417 if (gc_worker_skip_ct(tmp)) {
1418 nf_ct_put(tmp);
1419 continue;
1420 }
1421
1422 if (gc_worker_can_early_drop(tmp))
1423 nf_ct_kill(tmp);
1424
1425 nf_ct_put(tmp);
1426 }
1427
1428 /* could check get_nulls_value() here and restart if ct
1429 * was moved to another chain. But given gc is best-effort
1430 * we will just continue with next hash slot.
1431 */
1432 rcu_read_unlock();
1433 cond_resched();
1434 } while (++buckets < goal);
1435
1436 if (gc_work->exiting)
1437 return;
1438
1439 /*
1440 * Eviction will normally happen from the packet path, and not
1441 * from this gc worker.
1442 *
1443 * This worker is only here to reap expired entries when system went
1444 * idle after a busy period.
1445 *
1446 * The heuristics below are supposed to balance conflicting goals:
1447 *
1448 * 1. Minimize time until we notice a stale entry
1449 * 2. Maximize scan intervals to not waste cycles
1450 *
1451 * Normally, expire ratio will be close to 0.
1452 *
1453 * As soon as a sizeable fraction of the entries have expired
1454 * increase scan frequency.
1455 */
1456 ratio = scanned ? expired_count * 100 / scanned : 0;
1457 if (ratio > GC_EVICT_RATIO) {
1458 gc_work->next_gc_run = min_interval;
1459 } else {
1460 unsigned int max = GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV;
1461
1462 BUILD_BUG_ON((GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV) == 0);
1463
1464 gc_work->next_gc_run += min_interval;
1465 if (gc_work->next_gc_run > max)
1466 gc_work->next_gc_run = max;
1467 }
1468
1469 next_run = gc_work->next_gc_run;
1470 gc_work->last_bucket = i;
1471 gc_work->early_drop = false;
1472 queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1473 }
1474
1475 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1476 {
1477 INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker);
1478 gc_work->next_gc_run = HZ;
1479 gc_work->exiting = false;
1480 }
1481
1482 static struct nf_conn *
1483 __nf_conntrack_alloc(struct net *net,
1484 const struct nf_conntrack_zone *zone,
1485 const struct nf_conntrack_tuple *orig,
1486 const struct nf_conntrack_tuple *repl,
1487 gfp_t gfp, u32 hash)
1488 {
1489 struct nf_conn *ct;
1490
1491 /* We don't want any race condition at early drop stage */
1492 atomic_inc(&net->ct.count);
1493
1494 if (nf_conntrack_max &&
1495 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1496 if (!early_drop(net, hash)) {
1497 if (!conntrack_gc_work.early_drop)
1498 conntrack_gc_work.early_drop = true;
1499 atomic_dec(&net->ct.count);
1500 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1501 return ERR_PTR(-ENOMEM);
1502 }
1503 }
1504
1505 /*
1506 * Do not use kmem_cache_zalloc(), as this cache uses
1507 * SLAB_TYPESAFE_BY_RCU.
1508 */
1509 ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1510 if (ct == NULL)
1511 goto out;
1512
1513 spin_lock_init(&ct->lock);
1514 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1515 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1516 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1517 /* save hash for reusing when confirming */
1518 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1519 ct->status = 0;
1520 ct->timeout = 0;
1521 write_pnet(&ct->ct_net, net);
1522 memset(&ct->__nfct_init_offset, 0,
1523 offsetof(struct nf_conn, proto) -
1524 offsetof(struct nf_conn, __nfct_init_offset));
1525
1526 nf_ct_zone_add(ct, zone);
1527
1528 /* Because we use RCU lookups, we set ct_general.use to zero before
1529 * this is inserted in any list.
1530 */
1531 atomic_set(&ct->ct_general.use, 0);
1532 return ct;
1533 out:
1534 atomic_dec(&net->ct.count);
1535 return ERR_PTR(-ENOMEM);
1536 }
1537
1538 struct nf_conn *nf_conntrack_alloc(struct net *net,
1539 const struct nf_conntrack_zone *zone,
1540 const struct nf_conntrack_tuple *orig,
1541 const struct nf_conntrack_tuple *repl,
1542 gfp_t gfp)
1543 {
1544 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1545 }
1546 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1547
1548 void nf_conntrack_free(struct nf_conn *ct)
1549 {
1550 struct net *net = nf_ct_net(ct);
1551
1552 /* A freed object has refcnt == 0, that's
1553 * the golden rule for SLAB_TYPESAFE_BY_RCU
1554 */
1555 WARN_ON(atomic_read(&ct->ct_general.use) != 0);
1556
1557 nf_ct_ext_destroy(ct);
1558 kmem_cache_free(nf_conntrack_cachep, ct);
1559 smp_mb__before_atomic();
1560 atomic_dec(&net->ct.count);
1561 }
1562 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1563
1564
1565 /* Allocate a new conntrack: we return -ENOMEM if classification
1566 failed due to stress. Otherwise it really is unclassifiable. */
1567 static noinline struct nf_conntrack_tuple_hash *
1568 init_conntrack(struct net *net, struct nf_conn *tmpl,
1569 const struct nf_conntrack_tuple *tuple,
1570 struct sk_buff *skb,
1571 unsigned int dataoff, u32 hash)
1572 {
1573 struct nf_conn *ct;
1574 struct nf_conn_help *help;
1575 struct nf_conntrack_tuple repl_tuple;
1576 struct nf_conntrack_ecache *ecache;
1577 struct nf_conntrack_expect *exp = NULL;
1578 const struct nf_conntrack_zone *zone;
1579 struct nf_conn_timeout *timeout_ext;
1580 struct nf_conntrack_zone tmp;
1581
1582 if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1583 pr_debug("Can't invert tuple.\n");
1584 return NULL;
1585 }
1586
1587 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1588 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1589 hash);
1590 if (IS_ERR(ct))
1591 return (struct nf_conntrack_tuple_hash *)ct;
1592
1593 if (!nf_ct_add_synproxy(ct, tmpl)) {
1594 nf_conntrack_free(ct);
1595 return ERR_PTR(-ENOMEM);
1596 }
1597
1598 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1599
1600 if (timeout_ext)
1601 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1602 GFP_ATOMIC);
1603
1604 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1605 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1606 nf_ct_labels_ext_add(ct);
1607
1608 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1609 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1610 ecache ? ecache->expmask : 0,
1611 GFP_ATOMIC);
1612
1613 local_bh_disable();
1614 if (net->ct.expect_count) {
1615 spin_lock(&nf_conntrack_expect_lock);
1616 exp = nf_ct_find_expectation(net, zone, tuple);
1617 if (exp) {
1618 pr_debug("expectation arrives ct=%p exp=%p\n",
1619 ct, exp);
1620 /* Welcome, Mr. Bond. We've been expecting you... */
1621 __set_bit(IPS_EXPECTED_BIT, &ct->status);
1622 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1623 ct->master = exp->master;
1624 if (exp->helper) {
1625 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1626 if (help)
1627 rcu_assign_pointer(help->helper, exp->helper);
1628 }
1629
1630 #ifdef CONFIG_NF_CONNTRACK_MARK
1631 ct->mark = exp->master->mark;
1632 #endif
1633 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1634 ct->secmark = exp->master->secmark;
1635 #endif
1636 NF_CT_STAT_INC(net, expect_new);
1637 }
1638 spin_unlock(&nf_conntrack_expect_lock);
1639 }
1640 if (!exp)
1641 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1642
1643 /* Now it is inserted into the unconfirmed list, bump refcount */
1644 nf_conntrack_get(&ct->ct_general);
1645 nf_ct_add_to_unconfirmed_list(ct);
1646
1647 local_bh_enable();
1648
1649 if (exp) {
1650 if (exp->expectfn)
1651 exp->expectfn(ct, exp);
1652 nf_ct_expect_put(exp);
1653 }
1654
1655 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1656 }
1657
1658 /* On success, returns 0, sets skb->_nfct | ctinfo */
1659 static int
1660 resolve_normal_ct(struct nf_conn *tmpl,
1661 struct sk_buff *skb,
1662 unsigned int dataoff,
1663 u_int8_t protonum,
1664 const struct nf_hook_state *state)
1665 {
1666 const struct nf_conntrack_zone *zone;
1667 struct nf_conntrack_tuple tuple;
1668 struct nf_conntrack_tuple_hash *h;
1669 enum ip_conntrack_info ctinfo;
1670 struct nf_conntrack_zone tmp;
1671 struct nf_conn *ct;
1672 u32 hash;
1673
1674 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1675 dataoff, state->pf, protonum, state->net,
1676 &tuple)) {
1677 pr_debug("Can't get tuple\n");
1678 return 0;
1679 }
1680
1681 /* look for tuple match */
1682 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1683 hash = hash_conntrack_raw(&tuple, state->net);
1684 h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1685 if (!h) {
1686 h = init_conntrack(state->net, tmpl, &tuple,
1687 skb, dataoff, hash);
1688 if (!h)
1689 return 0;
1690 if (IS_ERR(h))
1691 return PTR_ERR(h);
1692 }
1693 ct = nf_ct_tuplehash_to_ctrack(h);
1694
1695 /* It exists; we have (non-exclusive) reference. */
1696 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1697 ctinfo = IP_CT_ESTABLISHED_REPLY;
1698 } else {
1699 /* Once we've had two way comms, always ESTABLISHED. */
1700 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1701 pr_debug("normal packet for %p\n", ct);
1702 ctinfo = IP_CT_ESTABLISHED;
1703 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1704 pr_debug("related packet for %p\n", ct);
1705 ctinfo = IP_CT_RELATED;
1706 } else {
1707 pr_debug("new packet for %p\n", ct);
1708 ctinfo = IP_CT_NEW;
1709 }
1710 }
1711 nf_ct_set(skb, ct, ctinfo);
1712 return 0;
1713 }
1714
1715 /*
1716 * icmp packets need special treatment to handle error messages that are
1717 * related to a connection.
1718 *
1719 * Callers need to check if skb has a conntrack assigned when this
1720 * helper returns; in such case skb belongs to an already known connection.
1721 */
1722 static unsigned int __cold
1723 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1724 struct sk_buff *skb,
1725 unsigned int dataoff,
1726 u8 protonum,
1727 const struct nf_hook_state *state)
1728 {
1729 int ret;
1730
1731 if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1732 ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1733 #if IS_ENABLED(CONFIG_IPV6)
1734 else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1735 ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1736 #endif
1737 else
1738 return NF_ACCEPT;
1739
1740 if (ret <= 0) {
1741 NF_CT_STAT_INC_ATOMIC(state->net, error);
1742 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1743 }
1744
1745 return ret;
1746 }
1747
1748 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1749 enum ip_conntrack_info ctinfo)
1750 {
1751 const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1752
1753 if (!timeout)
1754 timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1755
1756 nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1757 return NF_ACCEPT;
1758 }
1759
1760 /* Returns verdict for packet, or -1 for invalid. */
1761 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1762 struct sk_buff *skb,
1763 unsigned int dataoff,
1764 enum ip_conntrack_info ctinfo,
1765 const struct nf_hook_state *state)
1766 {
1767 switch (nf_ct_protonum(ct)) {
1768 case IPPROTO_TCP:
1769 return nf_conntrack_tcp_packet(ct, skb, dataoff,
1770 ctinfo, state);
1771 case IPPROTO_UDP:
1772 return nf_conntrack_udp_packet(ct, skb, dataoff,
1773 ctinfo, state);
1774 case IPPROTO_ICMP:
1775 return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1776 #if IS_ENABLED(CONFIG_IPV6)
1777 case IPPROTO_ICMPV6:
1778 return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1779 #endif
1780 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1781 case IPPROTO_UDPLITE:
1782 return nf_conntrack_udplite_packet(ct, skb, dataoff,
1783 ctinfo, state);
1784 #endif
1785 #ifdef CONFIG_NF_CT_PROTO_SCTP
1786 case IPPROTO_SCTP:
1787 return nf_conntrack_sctp_packet(ct, skb, dataoff,
1788 ctinfo, state);
1789 #endif
1790 #ifdef CONFIG_NF_CT_PROTO_DCCP
1791 case IPPROTO_DCCP:
1792 return nf_conntrack_dccp_packet(ct, skb, dataoff,
1793 ctinfo, state);
1794 #endif
1795 #ifdef CONFIG_NF_CT_PROTO_GRE
1796 case IPPROTO_GRE:
1797 return nf_conntrack_gre_packet(ct, skb, dataoff,
1798 ctinfo, state);
1799 #endif
1800 }
1801
1802 return generic_packet(ct, skb, ctinfo);
1803 }
1804
1805 unsigned int
1806 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1807 {
1808 enum ip_conntrack_info ctinfo;
1809 struct nf_conn *ct, *tmpl;
1810 u_int8_t protonum;
1811 int dataoff, ret;
1812
1813 tmpl = nf_ct_get(skb, &ctinfo);
1814 if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1815 /* Previously seen (loopback or untracked)? Ignore. */
1816 if ((tmpl && !nf_ct_is_template(tmpl)) ||
1817 ctinfo == IP_CT_UNTRACKED) {
1818 NF_CT_STAT_INC_ATOMIC(state->net, ignore);
1819 return NF_ACCEPT;
1820 }
1821 skb->_nfct = 0;
1822 }
1823
1824 /* rcu_read_lock()ed by nf_hook_thresh */
1825 dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1826 if (dataoff <= 0) {
1827 pr_debug("not prepared to track yet or error occurred\n");
1828 NF_CT_STAT_INC_ATOMIC(state->net, error);
1829 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1830 ret = NF_ACCEPT;
1831 goto out;
1832 }
1833
1834 if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1835 ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1836 protonum, state);
1837 if (ret <= 0) {
1838 ret = -ret;
1839 goto out;
1840 }
1841 /* ICMP[v6] protocol trackers may assign one conntrack. */
1842 if (skb->_nfct)
1843 goto out;
1844 }
1845 repeat:
1846 ret = resolve_normal_ct(tmpl, skb, dataoff,
1847 protonum, state);
1848 if (ret < 0) {
1849 /* Too stressed to deal. */
1850 NF_CT_STAT_INC_ATOMIC(state->net, drop);
1851 ret = NF_DROP;
1852 goto out;
1853 }
1854
1855 ct = nf_ct_get(skb, &ctinfo);
1856 if (!ct) {
1857 /* Not valid part of a connection */
1858 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1859 ret = NF_ACCEPT;
1860 goto out;
1861 }
1862
1863 ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
1864 if (ret <= 0) {
1865 /* Invalid: inverse of the return code tells
1866 * the netfilter core what to do */
1867 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1868 nf_conntrack_put(&ct->ct_general);
1869 skb->_nfct = 0;
1870 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1871 if (ret == -NF_DROP)
1872 NF_CT_STAT_INC_ATOMIC(state->net, drop);
1873 /* Special case: TCP tracker reports an attempt to reopen a
1874 * closed/aborted connection. We have to go back and create a
1875 * fresh conntrack.
1876 */
1877 if (ret == -NF_REPEAT)
1878 goto repeat;
1879 ret = -ret;
1880 goto out;
1881 }
1882
1883 if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1884 !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1885 nf_conntrack_event_cache(IPCT_REPLY, ct);
1886 out:
1887 if (tmpl)
1888 nf_ct_put(tmpl);
1889
1890 return ret;
1891 }
1892 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1893
1894 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1895 implicitly racy: see __nf_conntrack_confirm */
1896 void nf_conntrack_alter_reply(struct nf_conn *ct,
1897 const struct nf_conntrack_tuple *newreply)
1898 {
1899 struct nf_conn_help *help = nfct_help(ct);
1900
1901 /* Should be unconfirmed, so not in hash table yet */
1902 WARN_ON(nf_ct_is_confirmed(ct));
1903
1904 pr_debug("Altering reply tuple of %p to ", ct);
1905 nf_ct_dump_tuple(newreply);
1906
1907 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1908 if (ct->master || (help && !hlist_empty(&help->expectations)))
1909 return;
1910
1911 rcu_read_lock();
1912 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1913 rcu_read_unlock();
1914 }
1915 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1916
1917 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1918 void __nf_ct_refresh_acct(struct nf_conn *ct,
1919 enum ip_conntrack_info ctinfo,
1920 const struct sk_buff *skb,
1921 u32 extra_jiffies,
1922 bool do_acct)
1923 {
1924 /* Only update if this is not a fixed timeout */
1925 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1926 goto acct;
1927
1928 /* If not in hash table, timer will not be active yet */
1929 if (nf_ct_is_confirmed(ct))
1930 extra_jiffies += nfct_time_stamp;
1931
1932 if (READ_ONCE(ct->timeout) != extra_jiffies)
1933 WRITE_ONCE(ct->timeout, extra_jiffies);
1934 acct:
1935 if (do_acct)
1936 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
1937 }
1938 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1939
1940 bool nf_ct_kill_acct(struct nf_conn *ct,
1941 enum ip_conntrack_info ctinfo,
1942 const struct sk_buff *skb)
1943 {
1944 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
1945
1946 return nf_ct_delete(ct, 0, 0);
1947 }
1948 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1949
1950 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1951
1952 #include <linux/netfilter/nfnetlink.h>
1953 #include <linux/netfilter/nfnetlink_conntrack.h>
1954 #include <linux/mutex.h>
1955
1956 /* Generic function for tcp/udp/sctp/dccp and alike. */
1957 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1958 const struct nf_conntrack_tuple *tuple)
1959 {
1960 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1961 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1962 goto nla_put_failure;
1963 return 0;
1964
1965 nla_put_failure:
1966 return -1;
1967 }
1968 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1969
1970 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1971 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1972 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1973 };
1974 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1975
1976 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1977 struct nf_conntrack_tuple *t)
1978 {
1979 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1980 return -EINVAL;
1981
1982 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1983 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1984
1985 return 0;
1986 }
1987 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1988
1989 unsigned int nf_ct_port_nlattr_tuple_size(void)
1990 {
1991 static unsigned int size __read_mostly;
1992
1993 if (!size)
1994 size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1995
1996 return size;
1997 }
1998 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1999 #endif
2000
2001 /* Used by ipt_REJECT and ip6t_REJECT. */
2002 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
2003 {
2004 struct nf_conn *ct;
2005 enum ip_conntrack_info ctinfo;
2006
2007 /* This ICMP is in reverse direction to the packet which caused it */
2008 ct = nf_ct_get(skb, &ctinfo);
2009 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2010 ctinfo = IP_CT_RELATED_REPLY;
2011 else
2012 ctinfo = IP_CT_RELATED;
2013
2014 /* Attach to new skbuff, and increment count */
2015 nf_ct_set(nskb, ct, ctinfo);
2016 nf_conntrack_get(skb_nfct(nskb));
2017 }
2018
2019 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2020 {
2021 struct nf_conntrack_tuple_hash *h;
2022 struct nf_conntrack_tuple tuple;
2023 enum ip_conntrack_info ctinfo;
2024 struct nf_nat_hook *nat_hook;
2025 unsigned int status;
2026 struct nf_conn *ct;
2027 int dataoff;
2028 u16 l3num;
2029 u8 l4num;
2030
2031 ct = nf_ct_get(skb, &ctinfo);
2032 if (!ct || nf_ct_is_confirmed(ct))
2033 return 0;
2034
2035 l3num = nf_ct_l3num(ct);
2036
2037 dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2038 if (dataoff <= 0)
2039 return -1;
2040
2041 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2042 l4num, net, &tuple))
2043 return -1;
2044
2045 if (ct->status & IPS_SRC_NAT) {
2046 memcpy(tuple.src.u3.all,
2047 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2048 sizeof(tuple.src.u3.all));
2049 tuple.src.u.all =
2050 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2051 }
2052
2053 if (ct->status & IPS_DST_NAT) {
2054 memcpy(tuple.dst.u3.all,
2055 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2056 sizeof(tuple.dst.u3.all));
2057 tuple.dst.u.all =
2058 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2059 }
2060
2061 h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2062 if (!h)
2063 return 0;
2064
2065 /* Store status bits of the conntrack that is clashing to re-do NAT
2066 * mangling according to what it has been done already to this packet.
2067 */
2068 status = ct->status;
2069
2070 nf_ct_put(ct);
2071 ct = nf_ct_tuplehash_to_ctrack(h);
2072 nf_ct_set(skb, ct, ctinfo);
2073
2074 nat_hook = rcu_dereference(nf_nat_hook);
2075 if (!nat_hook)
2076 return 0;
2077
2078 if (status & IPS_SRC_NAT &&
2079 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
2080 IP_CT_DIR_ORIGINAL) == NF_DROP)
2081 return -1;
2082
2083 if (status & IPS_DST_NAT &&
2084 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
2085 IP_CT_DIR_ORIGINAL) == NF_DROP)
2086 return -1;
2087
2088 return 0;
2089 }
2090
2091 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2092 const struct sk_buff *skb)
2093 {
2094 const struct nf_conntrack_tuple *src_tuple;
2095 const struct nf_conntrack_tuple_hash *hash;
2096 struct nf_conntrack_tuple srctuple;
2097 enum ip_conntrack_info ctinfo;
2098 struct nf_conn *ct;
2099
2100 ct = nf_ct_get(skb, &ctinfo);
2101 if (ct) {
2102 src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2103 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2104 return true;
2105 }
2106
2107 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2108 NFPROTO_IPV4, dev_net(skb->dev),
2109 &srctuple))
2110 return false;
2111
2112 hash = nf_conntrack_find_get(dev_net(skb->dev),
2113 &nf_ct_zone_dflt,
2114 &srctuple);
2115 if (!hash)
2116 return false;
2117
2118 ct = nf_ct_tuplehash_to_ctrack(hash);
2119 src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2120 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2121 nf_ct_put(ct);
2122
2123 return true;
2124 }
2125
2126 /* Bring out ya dead! */
2127 static struct nf_conn *
2128 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2129 void *data, unsigned int *bucket)
2130 {
2131 struct nf_conntrack_tuple_hash *h;
2132 struct nf_conn *ct;
2133 struct hlist_nulls_node *n;
2134 spinlock_t *lockp;
2135
2136 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2137 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2138 local_bh_disable();
2139 nf_conntrack_lock(lockp);
2140 if (*bucket < nf_conntrack_htable_size) {
2141 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
2142 if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2143 continue;
2144 /* All nf_conn objects are added to hash table twice, one
2145 * for original direction tuple, once for the reply tuple.
2146 *
2147 * Exception: In the IPS_NAT_CLASH case, only the reply
2148 * tuple is added (the original tuple already existed for
2149 * a different object).
2150 *
2151 * We only need to call the iterator once for each
2152 * conntrack, so we just use the 'reply' direction
2153 * tuple while iterating.
2154 */
2155 ct = nf_ct_tuplehash_to_ctrack(h);
2156 if (iter(ct, data))
2157 goto found;
2158 }
2159 }
2160 spin_unlock(lockp);
2161 local_bh_enable();
2162 cond_resched();
2163 }
2164
2165 return NULL;
2166 found:
2167 atomic_inc(&ct->ct_general.use);
2168 spin_unlock(lockp);
2169 local_bh_enable();
2170 return ct;
2171 }
2172
2173 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2174 void *data, u32 portid, int report)
2175 {
2176 unsigned int bucket = 0, sequence;
2177 struct nf_conn *ct;
2178
2179 might_sleep();
2180
2181 for (;;) {
2182 sequence = read_seqcount_begin(&nf_conntrack_generation);
2183
2184 while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
2185 /* Time to push up daises... */
2186
2187 nf_ct_delete(ct, portid, report);
2188 nf_ct_put(ct);
2189 cond_resched();
2190 }
2191
2192 if (!read_seqcount_retry(&nf_conntrack_generation, sequence))
2193 break;
2194 bucket = 0;
2195 }
2196 }
2197
2198 struct iter_data {
2199 int (*iter)(struct nf_conn *i, void *data);
2200 void *data;
2201 struct net *net;
2202 };
2203
2204 static int iter_net_only(struct nf_conn *i, void *data)
2205 {
2206 struct iter_data *d = data;
2207
2208 if (!net_eq(d->net, nf_ct_net(i)))
2209 return 0;
2210
2211 return d->iter(i, d->data);
2212 }
2213
2214 static void
2215 __nf_ct_unconfirmed_destroy(struct net *net)
2216 {
2217 int cpu;
2218
2219 for_each_possible_cpu(cpu) {
2220 struct nf_conntrack_tuple_hash *h;
2221 struct hlist_nulls_node *n;
2222 struct ct_pcpu *pcpu;
2223
2224 pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2225
2226 spin_lock_bh(&pcpu->lock);
2227 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
2228 struct nf_conn *ct;
2229
2230 ct = nf_ct_tuplehash_to_ctrack(h);
2231
2232 /* we cannot call iter() on unconfirmed list, the
2233 * owning cpu can reallocate ct->ext at any time.
2234 */
2235 set_bit(IPS_DYING_BIT, &ct->status);
2236 }
2237 spin_unlock_bh(&pcpu->lock);
2238 cond_resched();
2239 }
2240 }
2241
2242 void nf_ct_unconfirmed_destroy(struct net *net)
2243 {
2244 might_sleep();
2245
2246 if (atomic_read(&net->ct.count) > 0) {
2247 __nf_ct_unconfirmed_destroy(net);
2248 nf_queue_nf_hook_drop(net);
2249 synchronize_net();
2250 }
2251 }
2252 EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
2253
2254 void nf_ct_iterate_cleanup_net(struct net *net,
2255 int (*iter)(struct nf_conn *i, void *data),
2256 void *data, u32 portid, int report)
2257 {
2258 struct iter_data d;
2259
2260 might_sleep();
2261
2262 if (atomic_read(&net->ct.count) == 0)
2263 return;
2264
2265 d.iter = iter;
2266 d.data = data;
2267 d.net = net;
2268
2269 nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
2270 }
2271 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2272
2273 /**
2274 * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2275 * @iter: callback to invoke for each conntrack
2276 * @data: data to pass to @iter
2277 *
2278 * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2279 * unconfirmed list as dying (so they will not be inserted into
2280 * main table).
2281 *
2282 * Can only be called in module exit path.
2283 */
2284 void
2285 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2286 {
2287 struct net *net;
2288
2289 down_read(&net_rwsem);
2290 for_each_net(net) {
2291 if (atomic_read(&net->ct.count) == 0)
2292 continue;
2293 __nf_ct_unconfirmed_destroy(net);
2294 nf_queue_nf_hook_drop(net);
2295 }
2296 up_read(&net_rwsem);
2297
2298 /* Need to wait for netns cleanup worker to finish, if its
2299 * running -- it might have deleted a net namespace from
2300 * the global list, so our __nf_ct_unconfirmed_destroy() might
2301 * not have affected all namespaces.
2302 */
2303 net_ns_barrier();
2304
2305 /* a conntrack could have been unlinked from unconfirmed list
2306 * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
2307 * This makes sure its inserted into conntrack table.
2308 */
2309 synchronize_net();
2310
2311 nf_ct_iterate_cleanup(iter, data, 0, 0);
2312 }
2313 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2314
2315 static int kill_all(struct nf_conn *i, void *data)
2316 {
2317 return net_eq(nf_ct_net(i), data);
2318 }
2319
2320 void nf_conntrack_cleanup_start(void)
2321 {
2322 conntrack_gc_work.exiting = true;
2323 RCU_INIT_POINTER(ip_ct_attach, NULL);
2324 }
2325
2326 void nf_conntrack_cleanup_end(void)
2327 {
2328 RCU_INIT_POINTER(nf_ct_hook, NULL);
2329 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2330 kvfree(nf_conntrack_hash);
2331
2332 nf_conntrack_proto_fini();
2333 nf_conntrack_seqadj_fini();
2334 nf_conntrack_labels_fini();
2335 nf_conntrack_helper_fini();
2336 nf_conntrack_timeout_fini();
2337 nf_conntrack_ecache_fini();
2338 nf_conntrack_tstamp_fini();
2339 nf_conntrack_acct_fini();
2340 nf_conntrack_expect_fini();
2341
2342 kmem_cache_destroy(nf_conntrack_cachep);
2343 }
2344
2345 /*
2346 * Mishearing the voices in his head, our hero wonders how he's
2347 * supposed to kill the mall.
2348 */
2349 void nf_conntrack_cleanup_net(struct net *net)
2350 {
2351 LIST_HEAD(single);
2352
2353 list_add(&net->exit_list, &single);
2354 nf_conntrack_cleanup_net_list(&single);
2355 }
2356
2357 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2358 {
2359 int busy;
2360 struct net *net;
2361
2362 /*
2363 * This makes sure all current packets have passed through
2364 * netfilter framework. Roll on, two-stage module
2365 * delete...
2366 */
2367 synchronize_net();
2368 i_see_dead_people:
2369 busy = 0;
2370 list_for_each_entry(net, net_exit_list, exit_list) {
2371 nf_ct_iterate_cleanup(kill_all, net, 0, 0);
2372 if (atomic_read(&net->ct.count) != 0)
2373 busy = 1;
2374 }
2375 if (busy) {
2376 schedule();
2377 goto i_see_dead_people;
2378 }
2379
2380 list_for_each_entry(net, net_exit_list, exit_list) {
2381 nf_conntrack_proto_pernet_fini(net);
2382 nf_conntrack_ecache_pernet_fini(net);
2383 nf_conntrack_expect_pernet_fini(net);
2384 free_percpu(net->ct.stat);
2385 free_percpu(net->ct.pcpu_lists);
2386 }
2387 }
2388
2389 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2390 {
2391 struct hlist_nulls_head *hash;
2392 unsigned int nr_slots, i;
2393
2394 if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2395 return NULL;
2396
2397 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2398 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2399
2400 hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2401
2402 if (hash && nulls)
2403 for (i = 0; i < nr_slots; i++)
2404 INIT_HLIST_NULLS_HEAD(&hash[i], i);
2405
2406 return hash;
2407 }
2408 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2409
2410 int nf_conntrack_hash_resize(unsigned int hashsize)
2411 {
2412 int i, bucket;
2413 unsigned int old_size;
2414 struct hlist_nulls_head *hash, *old_hash;
2415 struct nf_conntrack_tuple_hash *h;
2416 struct nf_conn *ct;
2417
2418 if (!hashsize)
2419 return -EINVAL;
2420
2421 hash = nf_ct_alloc_hashtable(&hashsize, 1);
2422 if (!hash)
2423 return -ENOMEM;
2424
2425 old_size = nf_conntrack_htable_size;
2426 if (old_size == hashsize) {
2427 kvfree(hash);
2428 return 0;
2429 }
2430
2431 local_bh_disable();
2432 nf_conntrack_all_lock();
2433 write_seqcount_begin(&nf_conntrack_generation);
2434
2435 /* Lookups in the old hash might happen in parallel, which means we
2436 * might get false negatives during connection lookup. New connections
2437 * created because of a false negative won't make it into the hash
2438 * though since that required taking the locks.
2439 */
2440
2441 for (i = 0; i < nf_conntrack_htable_size; i++) {
2442 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2443 h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2444 struct nf_conntrack_tuple_hash, hnnode);
2445 ct = nf_ct_tuplehash_to_ctrack(h);
2446 hlist_nulls_del_rcu(&h->hnnode);
2447 bucket = __hash_conntrack(nf_ct_net(ct),
2448 &h->tuple, hashsize);
2449 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2450 }
2451 }
2452 old_size = nf_conntrack_htable_size;
2453 old_hash = nf_conntrack_hash;
2454
2455 nf_conntrack_hash = hash;
2456 nf_conntrack_htable_size = hashsize;
2457
2458 write_seqcount_end(&nf_conntrack_generation);
2459 nf_conntrack_all_unlock();
2460 local_bh_enable();
2461
2462 synchronize_net();
2463 kvfree(old_hash);
2464 return 0;
2465 }
2466
2467 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2468 {
2469 unsigned int hashsize;
2470 int rc;
2471
2472 if (current->nsproxy->net_ns != &init_net)
2473 return -EOPNOTSUPP;
2474
2475 /* On boot, we can set this without any fancy locking. */
2476 if (!nf_conntrack_hash)
2477 return param_set_uint(val, kp);
2478
2479 rc = kstrtouint(val, 0, &hashsize);
2480 if (rc)
2481 return rc;
2482
2483 return nf_conntrack_hash_resize(hashsize);
2484 }
2485
2486 static __always_inline unsigned int total_extension_size(void)
2487 {
2488 /* remember to add new extensions below */
2489 BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
2490
2491 return sizeof(struct nf_ct_ext) +
2492 sizeof(struct nf_conn_help)
2493 #if IS_ENABLED(CONFIG_NF_NAT)
2494 + sizeof(struct nf_conn_nat)
2495 #endif
2496 + sizeof(struct nf_conn_seqadj)
2497 + sizeof(struct nf_conn_acct)
2498 #ifdef CONFIG_NF_CONNTRACK_EVENTS
2499 + sizeof(struct nf_conntrack_ecache)
2500 #endif
2501 #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
2502 + sizeof(struct nf_conn_tstamp)
2503 #endif
2504 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
2505 + sizeof(struct nf_conn_timeout)
2506 #endif
2507 #ifdef CONFIG_NF_CONNTRACK_LABELS
2508 + sizeof(struct nf_conn_labels)
2509 #endif
2510 #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
2511 + sizeof(struct nf_conn_synproxy)
2512 #endif
2513 ;
2514 };
2515
2516 int nf_conntrack_init_start(void)
2517 {
2518 unsigned long nr_pages = totalram_pages();
2519 int max_factor = 8;
2520 int ret = -ENOMEM;
2521 int i;
2522
2523 /* struct nf_ct_ext uses u8 to store offsets/size */
2524 BUILD_BUG_ON(total_extension_size() > 255u);
2525
2526 seqcount_init(&nf_conntrack_generation);
2527
2528 for (i = 0; i < CONNTRACK_LOCKS; i++)
2529 spin_lock_init(&nf_conntrack_locks[i]);
2530
2531 if (!nf_conntrack_htable_size) {
2532 /* Idea from tcp.c: use 1/16384 of memory.
2533 * On i386: 32MB machine has 512 buckets.
2534 * >= 1GB machines have 16384 buckets.
2535 * >= 4GB machines have 65536 buckets.
2536 */
2537 nf_conntrack_htable_size
2538 = (((nr_pages << PAGE_SHIFT) / 16384)
2539 / sizeof(struct hlist_head));
2540 if (nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2541 nf_conntrack_htable_size = 65536;
2542 else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2543 nf_conntrack_htable_size = 16384;
2544 if (nf_conntrack_htable_size < 32)
2545 nf_conntrack_htable_size = 32;
2546
2547 /* Use a max. factor of four by default to get the same max as
2548 * with the old struct list_heads. When a table size is given
2549 * we use the old value of 8 to avoid reducing the max.
2550 * entries. */
2551 max_factor = 4;
2552 }
2553
2554 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2555 if (!nf_conntrack_hash)
2556 return -ENOMEM;
2557
2558 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2559
2560 nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2561 sizeof(struct nf_conn),
2562 NFCT_INFOMASK + 1,
2563 SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2564 if (!nf_conntrack_cachep)
2565 goto err_cachep;
2566
2567 ret = nf_conntrack_expect_init();
2568 if (ret < 0)
2569 goto err_expect;
2570
2571 ret = nf_conntrack_acct_init();
2572 if (ret < 0)
2573 goto err_acct;
2574
2575 ret = nf_conntrack_tstamp_init();
2576 if (ret < 0)
2577 goto err_tstamp;
2578
2579 ret = nf_conntrack_ecache_init();
2580 if (ret < 0)
2581 goto err_ecache;
2582
2583 ret = nf_conntrack_timeout_init();
2584 if (ret < 0)
2585 goto err_timeout;
2586
2587 ret = nf_conntrack_helper_init();
2588 if (ret < 0)
2589 goto err_helper;
2590
2591 ret = nf_conntrack_labels_init();
2592 if (ret < 0)
2593 goto err_labels;
2594
2595 ret = nf_conntrack_seqadj_init();
2596 if (ret < 0)
2597 goto err_seqadj;
2598
2599 ret = nf_conntrack_proto_init();
2600 if (ret < 0)
2601 goto err_proto;
2602
2603 conntrack_gc_work_init(&conntrack_gc_work);
2604 queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2605
2606 return 0;
2607
2608 err_proto:
2609 nf_conntrack_seqadj_fini();
2610 err_seqadj:
2611 nf_conntrack_labels_fini();
2612 err_labels:
2613 nf_conntrack_helper_fini();
2614 err_helper:
2615 nf_conntrack_timeout_fini();
2616 err_timeout:
2617 nf_conntrack_ecache_fini();
2618 err_ecache:
2619 nf_conntrack_tstamp_fini();
2620 err_tstamp:
2621 nf_conntrack_acct_fini();
2622 err_acct:
2623 nf_conntrack_expect_fini();
2624 err_expect:
2625 kmem_cache_destroy(nf_conntrack_cachep);
2626 err_cachep:
2627 kvfree(nf_conntrack_hash);
2628 return ret;
2629 }
2630
2631 static struct nf_ct_hook nf_conntrack_hook = {
2632 .update = nf_conntrack_update,
2633 .destroy = destroy_conntrack,
2634 .get_tuple_skb = nf_conntrack_get_tuple_skb,
2635 };
2636
2637 void nf_conntrack_init_end(void)
2638 {
2639 /* For use by REJECT target */
2640 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2641 RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2642 }
2643
2644 /*
2645 * We need to use special "null" values, not used in hash table
2646 */
2647 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
2648 #define DYING_NULLS_VAL ((1<<30)+1)
2649
2650 int nf_conntrack_init_net(struct net *net)
2651 {
2652 int ret = -ENOMEM;
2653 int cpu;
2654
2655 BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2656 BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2657 atomic_set(&net->ct.count, 0);
2658
2659 net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2660 if (!net->ct.pcpu_lists)
2661 goto err_stat;
2662
2663 for_each_possible_cpu(cpu) {
2664 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2665
2666 spin_lock_init(&pcpu->lock);
2667 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2668 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2669 }
2670
2671 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2672 if (!net->ct.stat)
2673 goto err_pcpu_lists;
2674
2675 ret = nf_conntrack_expect_pernet_init(net);
2676 if (ret < 0)
2677 goto err_expect;
2678
2679 nf_conntrack_acct_pernet_init(net);
2680 nf_conntrack_tstamp_pernet_init(net);
2681 nf_conntrack_ecache_pernet_init(net);
2682 nf_conntrack_helper_pernet_init(net);
2683 nf_conntrack_proto_pernet_init(net);
2684
2685 return 0;
2686
2687 err_expect:
2688 free_percpu(net->ct.stat);
2689 err_pcpu_lists:
2690 free_percpu(net->ct.pcpu_lists);
2691 err_stat:
2692 return ret;
2693 }