]> git.ipfire.org Git - thirdparty/linux.git/blob - net/netfilter/nft_set_pipapo.c
netfilter: nft_set_pipapo: release elements in clone from abort path
[thirdparty/linux.git] / net / netfilter / nft_set_pipapo.c
1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /* PIPAPO: PIle PAcket POlicies: set for arbitrary concatenations of ranges
4 *
5 * Copyright (c) 2019-2020 Red Hat GmbH
6 *
7 * Author: Stefano Brivio <sbrivio@redhat.com>
8 */
9
10 /**
11 * DOC: Theory of Operation
12 *
13 *
14 * Problem
15 * -------
16 *
17 * Match packet bytes against entries composed of ranged or non-ranged packet
18 * field specifiers, mapping them to arbitrary references. For example:
19 *
20 * ::
21 *
22 * --- fields --->
23 * | [net],[port],[net]... => [reference]
24 * entries [net],[port],[net]... => [reference]
25 * | [net],[port],[net]... => [reference]
26 * V ...
27 *
28 * where [net] fields can be IP ranges or netmasks, and [port] fields are port
29 * ranges. Arbitrary packet fields can be matched.
30 *
31 *
32 * Algorithm Overview
33 * ------------------
34 *
35 * This algorithm is loosely inspired by [Ligatti 2010], and fundamentally
36 * relies on the consideration that every contiguous range in a space of b bits
37 * can be converted into b * 2 netmasks, from Theorem 3 in [Rottenstreich 2010],
38 * as also illustrated in Section 9 of [Kogan 2014].
39 *
40 * Classification against a number of entries, that require matching given bits
41 * of a packet field, is performed by grouping those bits in sets of arbitrary
42 * size, and classifying packet bits one group at a time.
43 *
44 * Example:
45 * to match the source port (16 bits) of a packet, we can divide those 16 bits
46 * in 4 groups of 4 bits each. Given the entry:
47 * 0000 0001 0101 1001
48 * and a packet with source port:
49 * 0000 0001 1010 1001
50 * first and second groups match, but the third doesn't. We conclude that the
51 * packet doesn't match the given entry.
52 *
53 * Translate the set to a sequence of lookup tables, one per field. Each table
54 * has two dimensions: bit groups to be matched for a single packet field, and
55 * all the possible values of said groups (buckets). Input entries are
56 * represented as one or more rules, depending on the number of composing
57 * netmasks for the given field specifier, and a group match is indicated as a
58 * set bit, with number corresponding to the rule index, in all the buckets
59 * whose value matches the entry for a given group.
60 *
61 * Rules are mapped between fields through an array of x, n pairs, with each
62 * item mapping a matched rule to one or more rules. The position of the pair in
63 * the array indicates the matched rule to be mapped to the next field, x
64 * indicates the first rule index in the next field, and n the amount of
65 * next-field rules the current rule maps to.
66 *
67 * The mapping array for the last field maps to the desired references.
68 *
69 * To match, we perform table lookups using the values of grouped packet bits,
70 * and use a sequence of bitwise operations to progressively evaluate rule
71 * matching.
72 *
73 * A stand-alone, reference implementation, also including notes about possible
74 * future optimisations, is available at:
75 * https://pipapo.lameexcu.se/
76 *
77 * Insertion
78 * ---------
79 *
80 * - For each packet field:
81 *
82 * - divide the b packet bits we want to classify into groups of size t,
83 * obtaining ceil(b / t) groups
84 *
85 * Example: match on destination IP address, with t = 4: 32 bits, 8 groups
86 * of 4 bits each
87 *
88 * - allocate a lookup table with one column ("bucket") for each possible
89 * value of a group, and with one row for each group
90 *
91 * Example: 8 groups, 2^4 buckets:
92 *
93 * ::
94 *
95 * bucket
96 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
97 * 0
98 * 1
99 * 2
100 * 3
101 * 4
102 * 5
103 * 6
104 * 7
105 *
106 * - map the bits we want to classify for the current field, for a given
107 * entry, to a single rule for non-ranged and netmask set items, and to one
108 * or multiple rules for ranges. Ranges are expanded to composing netmasks
109 * by pipapo_expand().
110 *
111 * Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048
112 * - rule #0: 10.0.0.5
113 * - rule #1: 192.168.1.0/24
114 * - rule #2: 192.168.2.0/31
115 *
116 * - insert references to the rules in the lookup table, selecting buckets
117 * according to bit values of a rule in the given group. This is done by
118 * pipapo_insert().
119 *
120 * Example: given:
121 * - rule #0: 10.0.0.5 mapping to buckets
122 * < 0 10 0 0 0 0 0 5 >
123 * - rule #1: 192.168.1.0/24 mapping to buckets
124 * < 12 0 10 8 0 1 < 0..15 > < 0..15 > >
125 * - rule #2: 192.168.2.0/31 mapping to buckets
126 * < 12 0 10 8 0 2 0 < 0..1 > >
127 *
128 * these bits are set in the lookup table:
129 *
130 * ::
131 *
132 * bucket
133 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
134 * 0 0 1,2
135 * 1 1,2 0
136 * 2 0 1,2
137 * 3 0 1,2
138 * 4 0,1,2
139 * 5 0 1 2
140 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
141 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
142 *
143 * - if this is not the last field in the set, fill a mapping array that maps
144 * rules from the lookup table to rules belonging to the same entry in
145 * the next lookup table, done by pipapo_map().
146 *
147 * Note that as rules map to contiguous ranges of rules, given how netmask
148 * expansion and insertion is performed, &union nft_pipapo_map_bucket stores
149 * this information as pairs of first rule index, rule count.
150 *
151 * Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048,
152 * given lookup table #0 for field 0 (see example above):
153 *
154 * ::
155 *
156 * bucket
157 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
158 * 0 0 1,2
159 * 1 1,2 0
160 * 2 0 1,2
161 * 3 0 1,2
162 * 4 0,1,2
163 * 5 0 1 2
164 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
165 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
166 *
167 * and lookup table #1 for field 1 with:
168 * - rule #0: 1024 mapping to buckets
169 * < 0 0 4 0 >
170 * - rule #1: 2048 mapping to buckets
171 * < 0 0 5 0 >
172 *
173 * ::
174 *
175 * bucket
176 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
177 * 0 0,1
178 * 1 0,1
179 * 2 0 1
180 * 3 0,1
181 *
182 * we need to map rules for 10.0.0.5 in lookup table #0 (rule #0) to 1024
183 * in lookup table #1 (rule #0) and rules for 192.168.1.0-192.168.2.1
184 * (rules #1, #2) to 2048 in lookup table #2 (rule #1):
185 *
186 * ::
187 *
188 * rule indices in current field: 0 1 2
189 * map to rules in next field: 0 1 1
190 *
191 * - if this is the last field in the set, fill a mapping array that maps
192 * rules from the last lookup table to element pointers, also done by
193 * pipapo_map().
194 *
195 * Note that, in this implementation, we have two elements (start, end) for
196 * each entry. The pointer to the end element is stored in this array, and
197 * the pointer to the start element is linked from it.
198 *
199 * Example: entry 10.0.0.5:1024 has a corresponding &struct nft_pipapo_elem
200 * pointer, 0x66, and element for 192.168.1.0-192.168.2.1:2048 is at 0x42.
201 * From the rules of lookup table #1 as mapped above:
202 *
203 * ::
204 *
205 * rule indices in last field: 0 1
206 * map to elements: 0x66 0x42
207 *
208 *
209 * Matching
210 * --------
211 *
212 * We use a result bitmap, with the size of a single lookup table bucket, to
213 * represent the matching state that applies at every algorithm step. This is
214 * done by pipapo_lookup().
215 *
216 * - For each packet field:
217 *
218 * - start with an all-ones result bitmap (res_map in pipapo_lookup())
219 *
220 * - perform a lookup into the table corresponding to the current field,
221 * for each group, and at every group, AND the current result bitmap with
222 * the value from the lookup table bucket
223 *
224 * ::
225 *
226 * Example: 192.168.1.5 < 12 0 10 8 0 1 0 5 >, with lookup table from
227 * insertion examples.
228 * Lookup table buckets are at least 3 bits wide, we'll assume 8 bits for
229 * convenience in this example. Initial result bitmap is 0xff, the steps
230 * below show the value of the result bitmap after each group is processed:
231 *
232 * bucket
233 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
234 * 0 0 1,2
235 * result bitmap is now: 0xff & 0x6 [bucket 12] = 0x6
236 *
237 * 1 1,2 0
238 * result bitmap is now: 0x6 & 0x6 [bucket 0] = 0x6
239 *
240 * 2 0 1,2
241 * result bitmap is now: 0x6 & 0x6 [bucket 10] = 0x6
242 *
243 * 3 0 1,2
244 * result bitmap is now: 0x6 & 0x6 [bucket 8] = 0x6
245 *
246 * 4 0,1,2
247 * result bitmap is now: 0x6 & 0x7 [bucket 0] = 0x6
248 *
249 * 5 0 1 2
250 * result bitmap is now: 0x6 & 0x2 [bucket 1] = 0x2
251 *
252 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
253 * result bitmap is now: 0x2 & 0x7 [bucket 0] = 0x2
254 *
255 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
256 * final result bitmap for this field is: 0x2 & 0x3 [bucket 5] = 0x2
257 *
258 * - at the next field, start with a new, all-zeroes result bitmap. For each
259 * bit set in the previous result bitmap, fill the new result bitmap
260 * (fill_map in pipapo_lookup()) with the rule indices from the
261 * corresponding buckets of the mapping field for this field, done by
262 * pipapo_refill()
263 *
264 * Example: with mapping table from insertion examples, with the current
265 * result bitmap from the previous example, 0x02:
266 *
267 * ::
268 *
269 * rule indices in current field: 0 1 2
270 * map to rules in next field: 0 1 1
271 *
272 * the new result bitmap will be 0x02: rule 1 was set, and rule 1 will be
273 * set.
274 *
275 * We can now extend this example to cover the second iteration of the step
276 * above (lookup and AND bitmap): assuming the port field is
277 * 2048 < 0 0 5 0 >, with starting result bitmap 0x2, and lookup table
278 * for "port" field from pre-computation example:
279 *
280 * ::
281 *
282 * bucket
283 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
284 * 0 0,1
285 * 1 0,1
286 * 2 0 1
287 * 3 0,1
288 *
289 * operations are: 0x2 & 0x3 [bucket 0] & 0x3 [bucket 0] & 0x2 [bucket 5]
290 * & 0x3 [bucket 0], resulting bitmap is 0x2.
291 *
292 * - if this is the last field in the set, look up the value from the mapping
293 * array corresponding to the final result bitmap
294 *
295 * Example: 0x2 resulting bitmap from 192.168.1.5:2048, mapping array for
296 * last field from insertion example:
297 *
298 * ::
299 *
300 * rule indices in last field: 0 1
301 * map to elements: 0x66 0x42
302 *
303 * the matching element is at 0x42.
304 *
305 *
306 * References
307 * ----------
308 *
309 * [Ligatti 2010]
310 * A Packet-classification Algorithm for Arbitrary Bitmask Rules, with
311 * Automatic Time-space Tradeoffs
312 * Jay Ligatti, Josh Kuhn, and Chris Gage.
313 * Proceedings of the IEEE International Conference on Computer
314 * Communication Networks (ICCCN), August 2010.
315 * https://www.cse.usf.edu/~ligatti/papers/grouper-conf.pdf
316 *
317 * [Rottenstreich 2010]
318 * Worst-Case TCAM Rule Expansion
319 * Ori Rottenstreich and Isaac Keslassy.
320 * 2010 Proceedings IEEE INFOCOM, San Diego, CA, 2010.
321 * http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.4592&rep=rep1&type=pdf
322 *
323 * [Kogan 2014]
324 * SAX-PAC (Scalable And eXpressive PAcket Classification)
325 * Kirill Kogan, Sergey Nikolenko, Ori Rottenstreich, William Culhane,
326 * and Patrick Eugster.
327 * Proceedings of the 2014 ACM conference on SIGCOMM, August 2014.
328 * https://www.sigcomm.org/sites/default/files/ccr/papers/2014/August/2619239-2626294.pdf
329 */
330
331 #include <linux/kernel.h>
332 #include <linux/init.h>
333 #include <linux/module.h>
334 #include <linux/netlink.h>
335 #include <linux/netfilter.h>
336 #include <linux/netfilter/nf_tables.h>
337 #include <net/netfilter/nf_tables_core.h>
338 #include <uapi/linux/netfilter/nf_tables.h>
339 #include <linux/bitmap.h>
340 #include <linux/bitops.h>
341
342 #include "nft_set_pipapo_avx2.h"
343 #include "nft_set_pipapo.h"
344
345 /* Current working bitmap index, toggled between field matches */
346 static DEFINE_PER_CPU(bool, nft_pipapo_scratch_index);
347
348 /**
349 * pipapo_refill() - For each set bit, set bits from selected mapping table item
350 * @map: Bitmap to be scanned for set bits
351 * @len: Length of bitmap in longs
352 * @rules: Number of rules in field
353 * @dst: Destination bitmap
354 * @mt: Mapping table containing bit set specifiers
355 * @match_only: Find a single bit and return, don't fill
356 *
357 * Iteration over set bits with __builtin_ctzl(): Daniel Lemire, public domain.
358 *
359 * For each bit set in map, select the bucket from mapping table with index
360 * corresponding to the position of the bit set. Use start bit and amount of
361 * bits specified in bucket to fill region in dst.
362 *
363 * Return: -1 on no match, bit position on 'match_only', 0 otherwise.
364 */
365 int pipapo_refill(unsigned long *map, int len, int rules, unsigned long *dst,
366 union nft_pipapo_map_bucket *mt, bool match_only)
367 {
368 unsigned long bitset;
369 int k, ret = -1;
370
371 for (k = 0; k < len; k++) {
372 bitset = map[k];
373 while (bitset) {
374 unsigned long t = bitset & -bitset;
375 int r = __builtin_ctzl(bitset);
376 int i = k * BITS_PER_LONG + r;
377
378 if (unlikely(i >= rules)) {
379 map[k] = 0;
380 return -1;
381 }
382
383 if (match_only) {
384 bitmap_clear(map, i, 1);
385 return i;
386 }
387
388 ret = 0;
389
390 bitmap_set(dst, mt[i].to, mt[i].n);
391
392 bitset ^= t;
393 }
394 map[k] = 0;
395 }
396
397 return ret;
398 }
399
400 /**
401 * nft_pipapo_lookup() - Lookup function
402 * @net: Network namespace
403 * @set: nftables API set representation
404 * @key: nftables API element representation containing key data
405 * @ext: nftables API extension pointer, filled with matching reference
406 *
407 * For more details, see DOC: Theory of Operation.
408 *
409 * Return: true on match, false otherwise.
410 */
411 bool nft_pipapo_lookup(const struct net *net, const struct nft_set *set,
412 const u32 *key, const struct nft_set_ext **ext)
413 {
414 struct nft_pipapo *priv = nft_set_priv(set);
415 unsigned long *res_map, *fill_map;
416 u8 genmask = nft_genmask_cur(net);
417 const u8 *rp = (const u8 *)key;
418 struct nft_pipapo_match *m;
419 struct nft_pipapo_field *f;
420 bool map_index;
421 int i;
422
423 local_bh_disable();
424
425 map_index = raw_cpu_read(nft_pipapo_scratch_index);
426
427 m = rcu_dereference(priv->match);
428
429 if (unlikely(!m || !*raw_cpu_ptr(m->scratch)))
430 goto out;
431
432 res_map = *raw_cpu_ptr(m->scratch) + (map_index ? m->bsize_max : 0);
433 fill_map = *raw_cpu_ptr(m->scratch) + (map_index ? 0 : m->bsize_max);
434
435 memset(res_map, 0xff, m->bsize_max * sizeof(*res_map));
436
437 nft_pipapo_for_each_field(f, i, m) {
438 bool last = i == m->field_count - 1;
439 int b;
440
441 /* For each bit group: select lookup table bucket depending on
442 * packet bytes value, then AND bucket value
443 */
444 if (likely(f->bb == 8))
445 pipapo_and_field_buckets_8bit(f, res_map, rp);
446 else
447 pipapo_and_field_buckets_4bit(f, res_map, rp);
448 NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
449
450 rp += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
451
452 /* Now populate the bitmap for the next field, unless this is
453 * the last field, in which case return the matched 'ext'
454 * pointer if any.
455 *
456 * Now res_map contains the matching bitmap, and fill_map is the
457 * bitmap for the next field.
458 */
459 next_match:
460 b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
461 last);
462 if (b < 0) {
463 raw_cpu_write(nft_pipapo_scratch_index, map_index);
464 local_bh_enable();
465
466 return false;
467 }
468
469 if (last) {
470 *ext = &f->mt[b].e->ext;
471 if (unlikely(nft_set_elem_expired(*ext) ||
472 !nft_set_elem_active(*ext, genmask)))
473 goto next_match;
474
475 /* Last field: we're just returning the key without
476 * filling the initial bitmap for the next field, so the
477 * current inactive bitmap is clean and can be reused as
478 * *next* bitmap (not initial) for the next packet.
479 */
480 raw_cpu_write(nft_pipapo_scratch_index, map_index);
481 local_bh_enable();
482
483 return true;
484 }
485
486 /* Swap bitmap indices: res_map is the initial bitmap for the
487 * next field, and fill_map is guaranteed to be all-zeroes at
488 * this point.
489 */
490 map_index = !map_index;
491 swap(res_map, fill_map);
492
493 rp += NFT_PIPAPO_GROUPS_PADDING(f);
494 }
495
496 out:
497 local_bh_enable();
498 return false;
499 }
500
501 /**
502 * pipapo_get() - Get matching element reference given key data
503 * @net: Network namespace
504 * @set: nftables API set representation
505 * @data: Key data to be matched against existing elements
506 * @genmask: If set, check that element is active in given genmask
507 *
508 * This is essentially the same as the lookup function, except that it matches
509 * key data against the uncommitted copy and doesn't use preallocated maps for
510 * bitmap results.
511 *
512 * Return: pointer to &struct nft_pipapo_elem on match, error pointer otherwise.
513 */
514 static struct nft_pipapo_elem *pipapo_get(const struct net *net,
515 const struct nft_set *set,
516 const u8 *data, u8 genmask)
517 {
518 struct nft_pipapo_elem *ret = ERR_PTR(-ENOENT);
519 struct nft_pipapo *priv = nft_set_priv(set);
520 struct nft_pipapo_match *m = priv->clone;
521 unsigned long *res_map, *fill_map = NULL;
522 struct nft_pipapo_field *f;
523 int i;
524
525 res_map = kmalloc_array(m->bsize_max, sizeof(*res_map), GFP_ATOMIC);
526 if (!res_map) {
527 ret = ERR_PTR(-ENOMEM);
528 goto out;
529 }
530
531 fill_map = kcalloc(m->bsize_max, sizeof(*res_map), GFP_ATOMIC);
532 if (!fill_map) {
533 ret = ERR_PTR(-ENOMEM);
534 goto out;
535 }
536
537 memset(res_map, 0xff, m->bsize_max * sizeof(*res_map));
538
539 nft_pipapo_for_each_field(f, i, m) {
540 bool last = i == m->field_count - 1;
541 int b;
542
543 /* For each bit group: select lookup table bucket depending on
544 * packet bytes value, then AND bucket value
545 */
546 if (f->bb == 8)
547 pipapo_and_field_buckets_8bit(f, res_map, data);
548 else if (f->bb == 4)
549 pipapo_and_field_buckets_4bit(f, res_map, data);
550 else
551 BUG();
552
553 data += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
554
555 /* Now populate the bitmap for the next field, unless this is
556 * the last field, in which case return the matched 'ext'
557 * pointer if any.
558 *
559 * Now res_map contains the matching bitmap, and fill_map is the
560 * bitmap for the next field.
561 */
562 next_match:
563 b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
564 last);
565 if (b < 0)
566 goto out;
567
568 if (last) {
569 if (nft_set_elem_expired(&f->mt[b].e->ext) ||
570 (genmask &&
571 !nft_set_elem_active(&f->mt[b].e->ext, genmask)))
572 goto next_match;
573
574 ret = f->mt[b].e;
575 goto out;
576 }
577
578 data += NFT_PIPAPO_GROUPS_PADDING(f);
579
580 /* Swap bitmap indices: fill_map will be the initial bitmap for
581 * the next field (i.e. the new res_map), and res_map is
582 * guaranteed to be all-zeroes at this point, ready to be filled
583 * according to the next mapping table.
584 */
585 swap(res_map, fill_map);
586 }
587
588 out:
589 kfree(fill_map);
590 kfree(res_map);
591 return ret;
592 }
593
594 /**
595 * nft_pipapo_get() - Get matching element reference given key data
596 * @net: Network namespace
597 * @set: nftables API set representation
598 * @elem: nftables API element representation containing key data
599 * @flags: Unused
600 */
601 static void *nft_pipapo_get(const struct net *net, const struct nft_set *set,
602 const struct nft_set_elem *elem, unsigned int flags)
603 {
604 return pipapo_get(net, set, (const u8 *)elem->key.val.data,
605 nft_genmask_cur(net));
606 }
607
608 /**
609 * pipapo_resize() - Resize lookup or mapping table, or both
610 * @f: Field containing lookup and mapping tables
611 * @old_rules: Previous amount of rules in field
612 * @rules: New amount of rules
613 *
614 * Increase, decrease or maintain tables size depending on new amount of rules,
615 * and copy data over. In case the new size is smaller, throw away data for
616 * highest-numbered rules.
617 *
618 * Return: 0 on success, -ENOMEM on allocation failure.
619 */
620 static int pipapo_resize(struct nft_pipapo_field *f, int old_rules, int rules)
621 {
622 long *new_lt = NULL, *new_p, *old_lt = f->lt, *old_p;
623 union nft_pipapo_map_bucket *new_mt, *old_mt = f->mt;
624 size_t new_bucket_size, copy;
625 int group, bucket;
626
627 new_bucket_size = DIV_ROUND_UP(rules, BITS_PER_LONG);
628 #ifdef NFT_PIPAPO_ALIGN
629 new_bucket_size = roundup(new_bucket_size,
630 NFT_PIPAPO_ALIGN / sizeof(*new_lt));
631 #endif
632
633 if (new_bucket_size == f->bsize)
634 goto mt;
635
636 if (new_bucket_size > f->bsize)
637 copy = f->bsize;
638 else
639 copy = new_bucket_size;
640
641 new_lt = kvzalloc(f->groups * NFT_PIPAPO_BUCKETS(f->bb) *
642 new_bucket_size * sizeof(*new_lt) +
643 NFT_PIPAPO_ALIGN_HEADROOM,
644 GFP_KERNEL);
645 if (!new_lt)
646 return -ENOMEM;
647
648 new_p = NFT_PIPAPO_LT_ALIGN(new_lt);
649 old_p = NFT_PIPAPO_LT_ALIGN(old_lt);
650
651 for (group = 0; group < f->groups; group++) {
652 for (bucket = 0; bucket < NFT_PIPAPO_BUCKETS(f->bb); bucket++) {
653 memcpy(new_p, old_p, copy * sizeof(*new_p));
654 new_p += copy;
655 old_p += copy;
656
657 if (new_bucket_size > f->bsize)
658 new_p += new_bucket_size - f->bsize;
659 else
660 old_p += f->bsize - new_bucket_size;
661 }
662 }
663
664 mt:
665 new_mt = kvmalloc(rules * sizeof(*new_mt), GFP_KERNEL);
666 if (!new_mt) {
667 kvfree(new_lt);
668 return -ENOMEM;
669 }
670
671 memcpy(new_mt, f->mt, min(old_rules, rules) * sizeof(*new_mt));
672 if (rules > old_rules) {
673 memset(new_mt + old_rules, 0,
674 (rules - old_rules) * sizeof(*new_mt));
675 }
676
677 if (new_lt) {
678 f->bsize = new_bucket_size;
679 NFT_PIPAPO_LT_ASSIGN(f, new_lt);
680 kvfree(old_lt);
681 }
682
683 f->mt = new_mt;
684 kvfree(old_mt);
685
686 return 0;
687 }
688
689 /**
690 * pipapo_bucket_set() - Set rule bit in bucket given group and group value
691 * @f: Field containing lookup table
692 * @rule: Rule index
693 * @group: Group index
694 * @v: Value of bit group
695 */
696 static void pipapo_bucket_set(struct nft_pipapo_field *f, int rule, int group,
697 int v)
698 {
699 unsigned long *pos;
700
701 pos = NFT_PIPAPO_LT_ALIGN(f->lt);
702 pos += f->bsize * NFT_PIPAPO_BUCKETS(f->bb) * group;
703 pos += f->bsize * v;
704
705 __set_bit(rule, pos);
706 }
707
708 /**
709 * pipapo_lt_4b_to_8b() - Switch lookup table group width from 4 bits to 8 bits
710 * @old_groups: Number of current groups
711 * @bsize: Size of one bucket, in longs
712 * @old_lt: Pointer to the current lookup table
713 * @new_lt: Pointer to the new, pre-allocated lookup table
714 *
715 * Each bucket with index b in the new lookup table, belonging to group g, is
716 * filled with the bit intersection between:
717 * - bucket with index given by the upper 4 bits of b, from group g, and
718 * - bucket with index given by the lower 4 bits of b, from group g + 1
719 *
720 * That is, given buckets from the new lookup table N(x, y) and the old lookup
721 * table O(x, y), with x bucket index, and y group index:
722 *
723 * N(b, g) := O(b / 16, g) & O(b % 16, g + 1)
724 *
725 * This ensures equivalence of the matching results on lookup. Two examples in
726 * pictures:
727 *
728 * bucket
729 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ... 254 255
730 * 0 ^
731 * 1 | ^
732 * ... ( & ) |
733 * / \ |
734 * / \ .-( & )-.
735 * / bucket \ | |
736 * group 0 / 1 2 3 \ 4 5 6 7 8 9 10 11 12 13 |14 15 |
737 * 0 / \ | |
738 * 1 \ | |
739 * 2 | --'
740 * 3 '-
741 * ...
742 */
743 static void pipapo_lt_4b_to_8b(int old_groups, int bsize,
744 unsigned long *old_lt, unsigned long *new_lt)
745 {
746 int g, b, i;
747
748 for (g = 0; g < old_groups / 2; g++) {
749 int src_g0 = g * 2, src_g1 = g * 2 + 1;
750
751 for (b = 0; b < NFT_PIPAPO_BUCKETS(8); b++) {
752 int src_b0 = b / NFT_PIPAPO_BUCKETS(4);
753 int src_b1 = b % NFT_PIPAPO_BUCKETS(4);
754 int src_i0 = src_g0 * NFT_PIPAPO_BUCKETS(4) + src_b0;
755 int src_i1 = src_g1 * NFT_PIPAPO_BUCKETS(4) + src_b1;
756
757 for (i = 0; i < bsize; i++) {
758 *new_lt = old_lt[src_i0 * bsize + i] &
759 old_lt[src_i1 * bsize + i];
760 new_lt++;
761 }
762 }
763 }
764 }
765
766 /**
767 * pipapo_lt_8b_to_4b() - Switch lookup table group width from 8 bits to 4 bits
768 * @old_groups: Number of current groups
769 * @bsize: Size of one bucket, in longs
770 * @old_lt: Pointer to the current lookup table
771 * @new_lt: Pointer to the new, pre-allocated lookup table
772 *
773 * Each bucket with index b in the new lookup table, belonging to group g, is
774 * filled with the bit union of:
775 * - all the buckets with index such that the upper four bits of the lower byte
776 * equal b, from group g, with g odd
777 * - all the buckets with index such that the lower four bits equal b, from
778 * group g, with g even
779 *
780 * That is, given buckets from the new lookup table N(x, y) and the old lookup
781 * table O(x, y), with x bucket index, and y group index:
782 *
783 * - with g odd: N(b, g) := U(O(x, g) for each x : x = (b & 0xf0) >> 4)
784 * - with g even: N(b, g) := U(O(x, g) for each x : x = b & 0x0f)
785 *
786 * where U() denotes the arbitrary union operation (binary OR of n terms). This
787 * ensures equivalence of the matching results on lookup.
788 */
789 static void pipapo_lt_8b_to_4b(int old_groups, int bsize,
790 unsigned long *old_lt, unsigned long *new_lt)
791 {
792 int g, b, bsrc, i;
793
794 memset(new_lt, 0, old_groups * 2 * NFT_PIPAPO_BUCKETS(4) * bsize *
795 sizeof(unsigned long));
796
797 for (g = 0; g < old_groups * 2; g += 2) {
798 int src_g = g / 2;
799
800 for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
801 for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
802 bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
803 bsrc++) {
804 if (((bsrc & 0xf0) >> 4) != b)
805 continue;
806
807 for (i = 0; i < bsize; i++)
808 new_lt[i] |= old_lt[bsrc * bsize + i];
809 }
810
811 new_lt += bsize;
812 }
813
814 for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
815 for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
816 bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
817 bsrc++) {
818 if ((bsrc & 0x0f) != b)
819 continue;
820
821 for (i = 0; i < bsize; i++)
822 new_lt[i] |= old_lt[bsrc * bsize + i];
823 }
824
825 new_lt += bsize;
826 }
827 }
828 }
829
830 /**
831 * pipapo_lt_bits_adjust() - Adjust group size for lookup table if needed
832 * @f: Field containing lookup table
833 */
834 static void pipapo_lt_bits_adjust(struct nft_pipapo_field *f)
835 {
836 unsigned long *new_lt;
837 int groups, bb;
838 size_t lt_size;
839
840 lt_size = f->groups * NFT_PIPAPO_BUCKETS(f->bb) * f->bsize *
841 sizeof(*f->lt);
842
843 if (f->bb == NFT_PIPAPO_GROUP_BITS_SMALL_SET &&
844 lt_size > NFT_PIPAPO_LT_SIZE_HIGH) {
845 groups = f->groups * 2;
846 bb = NFT_PIPAPO_GROUP_BITS_LARGE_SET;
847
848 lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize *
849 sizeof(*f->lt);
850 } else if (f->bb == NFT_PIPAPO_GROUP_BITS_LARGE_SET &&
851 lt_size < NFT_PIPAPO_LT_SIZE_LOW) {
852 groups = f->groups / 2;
853 bb = NFT_PIPAPO_GROUP_BITS_SMALL_SET;
854
855 lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize *
856 sizeof(*f->lt);
857
858 /* Don't increase group width if the resulting lookup table size
859 * would exceed the upper size threshold for a "small" set.
860 */
861 if (lt_size > NFT_PIPAPO_LT_SIZE_HIGH)
862 return;
863 } else {
864 return;
865 }
866
867 new_lt = kvzalloc(lt_size + NFT_PIPAPO_ALIGN_HEADROOM, GFP_KERNEL);
868 if (!new_lt)
869 return;
870
871 NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
872 if (f->bb == 4 && bb == 8) {
873 pipapo_lt_4b_to_8b(f->groups, f->bsize,
874 NFT_PIPAPO_LT_ALIGN(f->lt),
875 NFT_PIPAPO_LT_ALIGN(new_lt));
876 } else if (f->bb == 8 && bb == 4) {
877 pipapo_lt_8b_to_4b(f->groups, f->bsize,
878 NFT_PIPAPO_LT_ALIGN(f->lt),
879 NFT_PIPAPO_LT_ALIGN(new_lt));
880 } else {
881 BUG();
882 }
883
884 f->groups = groups;
885 f->bb = bb;
886 kvfree(f->lt);
887 NFT_PIPAPO_LT_ASSIGN(f, new_lt);
888 }
889
890 /**
891 * pipapo_insert() - Insert new rule in field given input key and mask length
892 * @f: Field containing lookup table
893 * @k: Input key for classification, without nftables padding
894 * @mask_bits: Length of mask; matches field length for non-ranged entry
895 *
896 * Insert a new rule reference in lookup buckets corresponding to k and
897 * mask_bits.
898 *
899 * Return: 1 on success (one rule inserted), negative error code on failure.
900 */
901 static int pipapo_insert(struct nft_pipapo_field *f, const uint8_t *k,
902 int mask_bits)
903 {
904 int rule = f->rules++, group, ret, bit_offset = 0;
905
906 ret = pipapo_resize(f, f->rules - 1, f->rules);
907 if (ret)
908 return ret;
909
910 for (group = 0; group < f->groups; group++) {
911 int i, v;
912 u8 mask;
913
914 v = k[group / (BITS_PER_BYTE / f->bb)];
915 v &= GENMASK(BITS_PER_BYTE - bit_offset - 1, 0);
916 v >>= (BITS_PER_BYTE - bit_offset) - f->bb;
917
918 bit_offset += f->bb;
919 bit_offset %= BITS_PER_BYTE;
920
921 if (mask_bits >= (group + 1) * f->bb) {
922 /* Not masked */
923 pipapo_bucket_set(f, rule, group, v);
924 } else if (mask_bits <= group * f->bb) {
925 /* Completely masked */
926 for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++)
927 pipapo_bucket_set(f, rule, group, i);
928 } else {
929 /* The mask limit falls on this group */
930 mask = GENMASK(f->bb - 1, 0);
931 mask >>= mask_bits - group * f->bb;
932 for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++) {
933 if ((i & ~mask) == (v & ~mask))
934 pipapo_bucket_set(f, rule, group, i);
935 }
936 }
937 }
938
939 pipapo_lt_bits_adjust(f);
940
941 return 1;
942 }
943
944 /**
945 * pipapo_step_diff() - Check if setting @step bit in netmask would change it
946 * @base: Mask we are expanding
947 * @step: Step bit for given expansion step
948 * @len: Total length of mask space (set and unset bits), bytes
949 *
950 * Convenience function for mask expansion.
951 *
952 * Return: true if step bit changes mask (i.e. isn't set), false otherwise.
953 */
954 static bool pipapo_step_diff(u8 *base, int step, int len)
955 {
956 /* Network order, byte-addressed */
957 #ifdef __BIG_ENDIAN__
958 return !(BIT(step % BITS_PER_BYTE) & base[step / BITS_PER_BYTE]);
959 #else
960 return !(BIT(step % BITS_PER_BYTE) &
961 base[len - 1 - step / BITS_PER_BYTE]);
962 #endif
963 }
964
965 /**
966 * pipapo_step_after_end() - Check if mask exceeds range end with given step
967 * @base: Mask we are expanding
968 * @end: End of range
969 * @step: Step bit for given expansion step, highest bit to be set
970 * @len: Total length of mask space (set and unset bits), bytes
971 *
972 * Convenience function for mask expansion.
973 *
974 * Return: true if mask exceeds range setting step bits, false otherwise.
975 */
976 static bool pipapo_step_after_end(const u8 *base, const u8 *end, int step,
977 int len)
978 {
979 u8 tmp[NFT_PIPAPO_MAX_BYTES];
980 int i;
981
982 memcpy(tmp, base, len);
983
984 /* Network order, byte-addressed */
985 for (i = 0; i <= step; i++)
986 #ifdef __BIG_ENDIAN__
987 tmp[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
988 #else
989 tmp[len - 1 - i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
990 #endif
991
992 return memcmp(tmp, end, len) > 0;
993 }
994
995 /**
996 * pipapo_base_sum() - Sum step bit to given len-sized netmask base with carry
997 * @base: Netmask base
998 * @step: Step bit to sum
999 * @len: Netmask length, bytes
1000 */
1001 static void pipapo_base_sum(u8 *base, int step, int len)
1002 {
1003 bool carry = false;
1004 int i;
1005
1006 /* Network order, byte-addressed */
1007 #ifdef __BIG_ENDIAN__
1008 for (i = step / BITS_PER_BYTE; i < len; i++) {
1009 #else
1010 for (i = len - 1 - step / BITS_PER_BYTE; i >= 0; i--) {
1011 #endif
1012 if (carry)
1013 base[i]++;
1014 else
1015 base[i] += 1 << (step % BITS_PER_BYTE);
1016
1017 if (base[i])
1018 break;
1019
1020 carry = true;
1021 }
1022 }
1023
1024 /**
1025 * pipapo_expand() - Expand to composing netmasks, insert into lookup table
1026 * @f: Field containing lookup table
1027 * @start: Start of range
1028 * @end: End of range
1029 * @len: Length of value in bits
1030 *
1031 * Expand range to composing netmasks and insert corresponding rule references
1032 * in lookup buckets.
1033 *
1034 * Return: number of inserted rules on success, negative error code on failure.
1035 */
1036 static int pipapo_expand(struct nft_pipapo_field *f,
1037 const u8 *start, const u8 *end, int len)
1038 {
1039 int step, masks = 0, bytes = DIV_ROUND_UP(len, BITS_PER_BYTE);
1040 u8 base[NFT_PIPAPO_MAX_BYTES];
1041
1042 memcpy(base, start, bytes);
1043 while (memcmp(base, end, bytes) <= 0) {
1044 int err;
1045
1046 step = 0;
1047 while (pipapo_step_diff(base, step, bytes)) {
1048 if (pipapo_step_after_end(base, end, step, bytes))
1049 break;
1050
1051 step++;
1052 if (step >= len) {
1053 if (!masks) {
1054 pipapo_insert(f, base, 0);
1055 masks = 1;
1056 }
1057 goto out;
1058 }
1059 }
1060
1061 err = pipapo_insert(f, base, len - step);
1062
1063 if (err < 0)
1064 return err;
1065
1066 masks++;
1067 pipapo_base_sum(base, step, bytes);
1068 }
1069 out:
1070 return masks;
1071 }
1072
1073 /**
1074 * pipapo_map() - Insert rules in mapping tables, mapping them between fields
1075 * @m: Matching data, including mapping table
1076 * @map: Table of rule maps: array of first rule and amount of rules
1077 * in next field a given rule maps to, for each field
1078 * @e: For last field, nft_set_ext pointer matching rules map to
1079 */
1080 static void pipapo_map(struct nft_pipapo_match *m,
1081 union nft_pipapo_map_bucket map[NFT_PIPAPO_MAX_FIELDS],
1082 struct nft_pipapo_elem *e)
1083 {
1084 struct nft_pipapo_field *f;
1085 int i, j;
1086
1087 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++) {
1088 for (j = 0; j < map[i].n; j++) {
1089 f->mt[map[i].to + j].to = map[i + 1].to;
1090 f->mt[map[i].to + j].n = map[i + 1].n;
1091 }
1092 }
1093
1094 /* Last field: map to ext instead of mapping to next field */
1095 for (j = 0; j < map[i].n; j++)
1096 f->mt[map[i].to + j].e = e;
1097 }
1098
1099 /**
1100 * pipapo_realloc_scratch() - Reallocate scratch maps for partial match results
1101 * @clone: Copy of matching data with pending insertions and deletions
1102 * @bsize_max: Maximum bucket size, scratch maps cover two buckets
1103 *
1104 * Return: 0 on success, -ENOMEM on failure.
1105 */
1106 static int pipapo_realloc_scratch(struct nft_pipapo_match *clone,
1107 unsigned long bsize_max)
1108 {
1109 int i;
1110
1111 for_each_possible_cpu(i) {
1112 unsigned long *scratch;
1113 #ifdef NFT_PIPAPO_ALIGN
1114 unsigned long *scratch_aligned;
1115 #endif
1116
1117 scratch = kzalloc_node(bsize_max * sizeof(*scratch) * 2 +
1118 NFT_PIPAPO_ALIGN_HEADROOM,
1119 GFP_KERNEL, cpu_to_node(i));
1120 if (!scratch) {
1121 /* On failure, there's no need to undo previous
1122 * allocations: this means that some scratch maps have
1123 * a bigger allocated size now (this is only called on
1124 * insertion), but the extra space won't be used by any
1125 * CPU as new elements are not inserted and m->bsize_max
1126 * is not updated.
1127 */
1128 return -ENOMEM;
1129 }
1130
1131 kfree(*per_cpu_ptr(clone->scratch, i));
1132
1133 *per_cpu_ptr(clone->scratch, i) = scratch;
1134
1135 #ifdef NFT_PIPAPO_ALIGN
1136 scratch_aligned = NFT_PIPAPO_LT_ALIGN(scratch);
1137 *per_cpu_ptr(clone->scratch_aligned, i) = scratch_aligned;
1138 #endif
1139 }
1140
1141 return 0;
1142 }
1143
1144 /**
1145 * nft_pipapo_insert() - Validate and insert ranged elements
1146 * @net: Network namespace
1147 * @set: nftables API set representation
1148 * @elem: nftables API element representation containing key data
1149 * @ext2: Filled with pointer to &struct nft_set_ext in inserted element
1150 *
1151 * Return: 0 on success, error pointer on failure.
1152 */
1153 static int nft_pipapo_insert(const struct net *net, const struct nft_set *set,
1154 const struct nft_set_elem *elem,
1155 struct nft_set_ext **ext2)
1156 {
1157 const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
1158 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1159 const u8 *start = (const u8 *)elem->key.val.data, *end;
1160 struct nft_pipapo_elem *e = elem->priv, *dup;
1161 struct nft_pipapo *priv = nft_set_priv(set);
1162 struct nft_pipapo_match *m = priv->clone;
1163 u8 genmask = nft_genmask_next(net);
1164 struct nft_pipapo_field *f;
1165 int i, bsize_max, err = 0;
1166
1167 if (nft_set_ext_exists(ext, NFT_SET_EXT_KEY_END))
1168 end = (const u8 *)nft_set_ext_key_end(ext)->data;
1169 else
1170 end = start;
1171
1172 dup = pipapo_get(net, set, start, genmask);
1173 if (!IS_ERR(dup)) {
1174 /* Check if we already have the same exact entry */
1175 const struct nft_data *dup_key, *dup_end;
1176
1177 dup_key = nft_set_ext_key(&dup->ext);
1178 if (nft_set_ext_exists(&dup->ext, NFT_SET_EXT_KEY_END))
1179 dup_end = nft_set_ext_key_end(&dup->ext);
1180 else
1181 dup_end = dup_key;
1182
1183 if (!memcmp(start, dup_key->data, sizeof(*dup_key->data)) &&
1184 !memcmp(end, dup_end->data, sizeof(*dup_end->data))) {
1185 *ext2 = &dup->ext;
1186 return -EEXIST;
1187 }
1188
1189 return -ENOTEMPTY;
1190 }
1191
1192 if (PTR_ERR(dup) == -ENOENT) {
1193 /* Look for partially overlapping entries */
1194 dup = pipapo_get(net, set, end, nft_genmask_next(net));
1195 }
1196
1197 if (PTR_ERR(dup) != -ENOENT) {
1198 if (IS_ERR(dup))
1199 return PTR_ERR(dup);
1200 *ext2 = &dup->ext;
1201 return -ENOTEMPTY;
1202 }
1203
1204 /* Validate */
1205 nft_pipapo_for_each_field(f, i, m) {
1206 const u8 *start_p = start, *end_p = end;
1207
1208 if (f->rules >= (unsigned long)NFT_PIPAPO_RULE0_MAX)
1209 return -ENOSPC;
1210
1211 if (memcmp(start_p, end_p,
1212 f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) > 0)
1213 return -EINVAL;
1214
1215 start_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1216 end_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1217 }
1218
1219 /* Insert */
1220 priv->dirty = true;
1221
1222 bsize_max = m->bsize_max;
1223
1224 nft_pipapo_for_each_field(f, i, m) {
1225 int ret;
1226
1227 rulemap[i].to = f->rules;
1228
1229 ret = memcmp(start, end,
1230 f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1231 if (!ret)
1232 ret = pipapo_insert(f, start, f->groups * f->bb);
1233 else
1234 ret = pipapo_expand(f, start, end, f->groups * f->bb);
1235
1236 if (f->bsize > bsize_max)
1237 bsize_max = f->bsize;
1238
1239 rulemap[i].n = ret;
1240
1241 start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1242 end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1243 }
1244
1245 if (!*get_cpu_ptr(m->scratch) || bsize_max > m->bsize_max) {
1246 put_cpu_ptr(m->scratch);
1247
1248 err = pipapo_realloc_scratch(m, bsize_max);
1249 if (err)
1250 return err;
1251
1252 m->bsize_max = bsize_max;
1253 } else {
1254 put_cpu_ptr(m->scratch);
1255 }
1256
1257 *ext2 = &e->ext;
1258
1259 pipapo_map(m, rulemap, e);
1260
1261 return 0;
1262 }
1263
1264 /**
1265 * pipapo_clone() - Clone matching data to create new working copy
1266 * @old: Existing matching data
1267 *
1268 * Return: copy of matching data passed as 'old', error pointer on failure
1269 */
1270 static struct nft_pipapo_match *pipapo_clone(struct nft_pipapo_match *old)
1271 {
1272 struct nft_pipapo_field *dst, *src;
1273 struct nft_pipapo_match *new;
1274 int i;
1275
1276 new = kmalloc(sizeof(*new) + sizeof(*dst) * old->field_count,
1277 GFP_KERNEL);
1278 if (!new)
1279 return ERR_PTR(-ENOMEM);
1280
1281 new->field_count = old->field_count;
1282 new->bsize_max = old->bsize_max;
1283
1284 new->scratch = alloc_percpu(*new->scratch);
1285 if (!new->scratch)
1286 goto out_scratch;
1287
1288 #ifdef NFT_PIPAPO_ALIGN
1289 new->scratch_aligned = alloc_percpu(*new->scratch_aligned);
1290 if (!new->scratch_aligned)
1291 goto out_scratch;
1292 #endif
1293 for_each_possible_cpu(i)
1294 *per_cpu_ptr(new->scratch, i) = NULL;
1295
1296 if (pipapo_realloc_scratch(new, old->bsize_max))
1297 goto out_scratch_realloc;
1298
1299 rcu_head_init(&new->rcu);
1300
1301 src = old->f;
1302 dst = new->f;
1303
1304 for (i = 0; i < old->field_count; i++) {
1305 unsigned long *new_lt;
1306
1307 memcpy(dst, src, offsetof(struct nft_pipapo_field, lt));
1308
1309 new_lt = kvzalloc(src->groups * NFT_PIPAPO_BUCKETS(src->bb) *
1310 src->bsize * sizeof(*dst->lt) +
1311 NFT_PIPAPO_ALIGN_HEADROOM,
1312 GFP_KERNEL);
1313 if (!new_lt)
1314 goto out_lt;
1315
1316 NFT_PIPAPO_LT_ASSIGN(dst, new_lt);
1317
1318 memcpy(NFT_PIPAPO_LT_ALIGN(new_lt),
1319 NFT_PIPAPO_LT_ALIGN(src->lt),
1320 src->bsize * sizeof(*dst->lt) *
1321 src->groups * NFT_PIPAPO_BUCKETS(src->bb));
1322
1323 dst->mt = kvmalloc(src->rules * sizeof(*src->mt), GFP_KERNEL);
1324 if (!dst->mt)
1325 goto out_mt;
1326
1327 memcpy(dst->mt, src->mt, src->rules * sizeof(*src->mt));
1328 src++;
1329 dst++;
1330 }
1331
1332 return new;
1333
1334 out_mt:
1335 kvfree(dst->lt);
1336 out_lt:
1337 for (dst--; i > 0; i--) {
1338 kvfree(dst->mt);
1339 kvfree(dst->lt);
1340 dst--;
1341 }
1342 out_scratch_realloc:
1343 for_each_possible_cpu(i)
1344 kfree(*per_cpu_ptr(new->scratch, i));
1345 #ifdef NFT_PIPAPO_ALIGN
1346 free_percpu(new->scratch_aligned);
1347 #endif
1348 out_scratch:
1349 free_percpu(new->scratch);
1350 kfree(new);
1351
1352 return ERR_PTR(-ENOMEM);
1353 }
1354
1355 /**
1356 * pipapo_rules_same_key() - Get number of rules originated from the same entry
1357 * @f: Field containing mapping table
1358 * @first: Index of first rule in set of rules mapping to same entry
1359 *
1360 * Using the fact that all rules in a field that originated from the same entry
1361 * will map to the same set of rules in the next field, or to the same element
1362 * reference, return the cardinality of the set of rules that originated from
1363 * the same entry as the rule with index @first, @first rule included.
1364 *
1365 * In pictures:
1366 * rules
1367 * field #0 0 1 2 3 4
1368 * map to: 0 1 2-4 2-4 5-9
1369 * . . ....... . ...
1370 * | | | | \ \
1371 * | | | | \ \
1372 * | | | | \ \
1373 * ' ' ' ' ' \
1374 * in field #1 0 1 2 3 4 5 ...
1375 *
1376 * if this is called for rule 2 on field #0, it will return 3, as also rules 2
1377 * and 3 in field 0 map to the same set of rules (2, 3, 4) in the next field.
1378 *
1379 * For the last field in a set, we can rely on associated entries to map to the
1380 * same element references.
1381 *
1382 * Return: Number of rules that originated from the same entry as @first.
1383 */
1384 static int pipapo_rules_same_key(struct nft_pipapo_field *f, int first)
1385 {
1386 struct nft_pipapo_elem *e = NULL; /* Keep gcc happy */
1387 int r;
1388
1389 for (r = first; r < f->rules; r++) {
1390 if (r != first && e != f->mt[r].e)
1391 return r - first;
1392
1393 e = f->mt[r].e;
1394 }
1395
1396 if (r != first)
1397 return r - first;
1398
1399 return 0;
1400 }
1401
1402 /**
1403 * pipapo_unmap() - Remove rules from mapping tables, renumber remaining ones
1404 * @mt: Mapping array
1405 * @rules: Original amount of rules in mapping table
1406 * @start: First rule index to be removed
1407 * @n: Amount of rules to be removed
1408 * @to_offset: First rule index, in next field, this group of rules maps to
1409 * @is_last: If this is the last field, delete reference from mapping array
1410 *
1411 * This is used to unmap rules from the mapping table for a single field,
1412 * maintaining consistency and compactness for the existing ones.
1413 *
1414 * In pictures: let's assume that we want to delete rules 2 and 3 from the
1415 * following mapping array:
1416 *
1417 * rules
1418 * 0 1 2 3 4
1419 * map to: 4-10 4-10 11-15 11-15 16-18
1420 *
1421 * the result will be:
1422 *
1423 * rules
1424 * 0 1 2
1425 * map to: 4-10 4-10 11-13
1426 *
1427 * for fields before the last one. In case this is the mapping table for the
1428 * last field in a set, and rules map to pointers to &struct nft_pipapo_elem:
1429 *
1430 * rules
1431 * 0 1 2 3 4
1432 * element pointers: 0x42 0x42 0x33 0x33 0x44
1433 *
1434 * the result will be:
1435 *
1436 * rules
1437 * 0 1 2
1438 * element pointers: 0x42 0x42 0x44
1439 */
1440 static void pipapo_unmap(union nft_pipapo_map_bucket *mt, int rules,
1441 int start, int n, int to_offset, bool is_last)
1442 {
1443 int i;
1444
1445 memmove(mt + start, mt + start + n, (rules - start - n) * sizeof(*mt));
1446 memset(mt + rules - n, 0, n * sizeof(*mt));
1447
1448 if (is_last)
1449 return;
1450
1451 for (i = start; i < rules - n; i++)
1452 mt[i].to -= to_offset;
1453 }
1454
1455 /**
1456 * pipapo_drop() - Delete entry from lookup and mapping tables, given rule map
1457 * @m: Matching data
1458 * @rulemap: Table of rule maps, arrays of first rule and amount of rules
1459 * in next field a given entry maps to, for each field
1460 *
1461 * For each rule in lookup table buckets mapping to this set of rules, drop
1462 * all bits set in lookup table mapping. In pictures, assuming we want to drop
1463 * rules 0 and 1 from this lookup table:
1464 *
1465 * bucket
1466 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1467 * 0 0 1,2
1468 * 1 1,2 0
1469 * 2 0 1,2
1470 * 3 0 1,2
1471 * 4 0,1,2
1472 * 5 0 1 2
1473 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1474 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
1475 *
1476 * rule 2 becomes rule 0, and the result will be:
1477 *
1478 * bucket
1479 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1480 * 0 0
1481 * 1 0
1482 * 2 0
1483 * 3 0
1484 * 4 0
1485 * 5 0
1486 * 6 0
1487 * 7 0 0
1488 *
1489 * once this is done, call unmap() to drop all the corresponding rule references
1490 * from mapping tables.
1491 */
1492 static void pipapo_drop(struct nft_pipapo_match *m,
1493 union nft_pipapo_map_bucket rulemap[])
1494 {
1495 struct nft_pipapo_field *f;
1496 int i;
1497
1498 nft_pipapo_for_each_field(f, i, m) {
1499 int g;
1500
1501 for (g = 0; g < f->groups; g++) {
1502 unsigned long *pos;
1503 int b;
1504
1505 pos = NFT_PIPAPO_LT_ALIGN(f->lt) + g *
1506 NFT_PIPAPO_BUCKETS(f->bb) * f->bsize;
1507
1508 for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1509 bitmap_cut(pos, pos, rulemap[i].to,
1510 rulemap[i].n,
1511 f->bsize * BITS_PER_LONG);
1512
1513 pos += f->bsize;
1514 }
1515 }
1516
1517 pipapo_unmap(f->mt, f->rules, rulemap[i].to, rulemap[i].n,
1518 rulemap[i + 1].n, i == m->field_count - 1);
1519 if (pipapo_resize(f, f->rules, f->rules - rulemap[i].n)) {
1520 /* We can ignore this, a failure to shrink tables down
1521 * doesn't make tables invalid.
1522 */
1523 ;
1524 }
1525 f->rules -= rulemap[i].n;
1526
1527 pipapo_lt_bits_adjust(f);
1528 }
1529 }
1530
1531 /**
1532 * pipapo_gc() - Drop expired entries from set, destroy start and end elements
1533 * @set: nftables API set representation
1534 * @m: Matching data
1535 */
1536 static void pipapo_gc(const struct nft_set *set, struct nft_pipapo_match *m)
1537 {
1538 struct nft_pipapo *priv = nft_set_priv(set);
1539 int rules_f0, first_rule = 0;
1540 struct nft_pipapo_elem *e;
1541
1542 while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
1543 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1544 struct nft_pipapo_field *f;
1545 int i, start, rules_fx;
1546
1547 start = first_rule;
1548 rules_fx = rules_f0;
1549
1550 nft_pipapo_for_each_field(f, i, m) {
1551 rulemap[i].to = start;
1552 rulemap[i].n = rules_fx;
1553
1554 if (i < m->field_count - 1) {
1555 rules_fx = f->mt[start].n;
1556 start = f->mt[start].to;
1557 }
1558 }
1559
1560 /* Pick the last field, and its last index */
1561 f--;
1562 i--;
1563 e = f->mt[rulemap[i].to].e;
1564 if (nft_set_elem_expired(&e->ext) &&
1565 !nft_set_elem_mark_busy(&e->ext)) {
1566 priv->dirty = true;
1567 pipapo_drop(m, rulemap);
1568
1569 rcu_barrier();
1570 nft_set_elem_destroy(set, e, true);
1571
1572 /* And check again current first rule, which is now the
1573 * first we haven't checked.
1574 */
1575 } else {
1576 first_rule += rules_f0;
1577 }
1578 }
1579
1580 e = nft_set_catchall_gc(set);
1581 if (e)
1582 nft_set_elem_destroy(set, e, true);
1583
1584 priv->last_gc = jiffies;
1585 }
1586
1587 /**
1588 * pipapo_free_fields() - Free per-field tables contained in matching data
1589 * @m: Matching data
1590 */
1591 static void pipapo_free_fields(struct nft_pipapo_match *m)
1592 {
1593 struct nft_pipapo_field *f;
1594 int i;
1595
1596 nft_pipapo_for_each_field(f, i, m) {
1597 kvfree(f->lt);
1598 kvfree(f->mt);
1599 }
1600 }
1601
1602 /**
1603 * pipapo_reclaim_match - RCU callback to free fields from old matching data
1604 * @rcu: RCU head
1605 */
1606 static void pipapo_reclaim_match(struct rcu_head *rcu)
1607 {
1608 struct nft_pipapo_match *m;
1609 int i;
1610
1611 m = container_of(rcu, struct nft_pipapo_match, rcu);
1612
1613 for_each_possible_cpu(i)
1614 kfree(*per_cpu_ptr(m->scratch, i));
1615
1616 #ifdef NFT_PIPAPO_ALIGN
1617 free_percpu(m->scratch_aligned);
1618 #endif
1619 free_percpu(m->scratch);
1620
1621 pipapo_free_fields(m);
1622
1623 kfree(m);
1624 }
1625
1626 /**
1627 * pipapo_commit() - Replace lookup data with current working copy
1628 * @set: nftables API set representation
1629 *
1630 * While at it, check if we should perform garbage collection on the working
1631 * copy before committing it for lookup, and don't replace the table if the
1632 * working copy doesn't have pending changes.
1633 *
1634 * We also need to create a new working copy for subsequent insertions and
1635 * deletions.
1636 */
1637 static void pipapo_commit(const struct nft_set *set)
1638 {
1639 struct nft_pipapo *priv = nft_set_priv(set);
1640 struct nft_pipapo_match *new_clone, *old;
1641
1642 if (time_after_eq(jiffies, priv->last_gc + nft_set_gc_interval(set)))
1643 pipapo_gc(set, priv->clone);
1644
1645 if (!priv->dirty)
1646 return;
1647
1648 new_clone = pipapo_clone(priv->clone);
1649 if (IS_ERR(new_clone))
1650 return;
1651
1652 priv->dirty = false;
1653
1654 old = rcu_access_pointer(priv->match);
1655 rcu_assign_pointer(priv->match, priv->clone);
1656 if (old)
1657 call_rcu(&old->rcu, pipapo_reclaim_match);
1658
1659 priv->clone = new_clone;
1660 }
1661
1662 /**
1663 * nft_pipapo_activate() - Mark element reference as active given key, commit
1664 * @net: Network namespace
1665 * @set: nftables API set representation
1666 * @elem: nftables API element representation containing key data
1667 *
1668 * On insertion, elements are added to a copy of the matching data currently
1669 * in use for lookups, and not directly inserted into current lookup data, so
1670 * we'll take care of that by calling pipapo_commit() here. Both
1671 * nft_pipapo_insert() and nft_pipapo_activate() are called once for each
1672 * element, hence we can't purpose either one as a real commit operation.
1673 */
1674 static void nft_pipapo_activate(const struct net *net,
1675 const struct nft_set *set,
1676 const struct nft_set_elem *elem)
1677 {
1678 struct nft_pipapo_elem *e;
1679
1680 e = pipapo_get(net, set, (const u8 *)elem->key.val.data, 0);
1681 if (IS_ERR(e))
1682 return;
1683
1684 nft_set_elem_change_active(net, set, &e->ext);
1685 nft_set_elem_clear_busy(&e->ext);
1686
1687 pipapo_commit(set);
1688 }
1689
1690 /**
1691 * pipapo_deactivate() - Check that element is in set, mark as inactive
1692 * @net: Network namespace
1693 * @set: nftables API set representation
1694 * @data: Input key data
1695 * @ext: nftables API extension pointer, used to check for end element
1696 *
1697 * This is a convenience function that can be called from both
1698 * nft_pipapo_deactivate() and nft_pipapo_flush(), as they are in fact the same
1699 * operation.
1700 *
1701 * Return: deactivated element if found, NULL otherwise.
1702 */
1703 static void *pipapo_deactivate(const struct net *net, const struct nft_set *set,
1704 const u8 *data, const struct nft_set_ext *ext)
1705 {
1706 struct nft_pipapo_elem *e;
1707
1708 e = pipapo_get(net, set, data, nft_genmask_next(net));
1709 if (IS_ERR(e))
1710 return NULL;
1711
1712 nft_set_elem_change_active(net, set, &e->ext);
1713
1714 return e;
1715 }
1716
1717 /**
1718 * nft_pipapo_deactivate() - Call pipapo_deactivate() to make element inactive
1719 * @net: Network namespace
1720 * @set: nftables API set representation
1721 * @elem: nftables API element representation containing key data
1722 *
1723 * Return: deactivated element if found, NULL otherwise.
1724 */
1725 static void *nft_pipapo_deactivate(const struct net *net,
1726 const struct nft_set *set,
1727 const struct nft_set_elem *elem)
1728 {
1729 const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
1730
1731 return pipapo_deactivate(net, set, (const u8 *)elem->key.val.data, ext);
1732 }
1733
1734 /**
1735 * nft_pipapo_flush() - Call pipapo_deactivate() to make element inactive
1736 * @net: Network namespace
1737 * @set: nftables API set representation
1738 * @elem: nftables API element representation containing key data
1739 *
1740 * This is functionally the same as nft_pipapo_deactivate(), with a slightly
1741 * different interface, and it's also called once for each element in a set
1742 * being flushed, so we can't implement, strictly speaking, a flush operation,
1743 * which would otherwise be as simple as allocating an empty copy of the
1744 * matching data.
1745 *
1746 * Note that we could in theory do that, mark the set as flushed, and ignore
1747 * subsequent calls, but we would leak all the elements after the first one,
1748 * because they wouldn't then be freed as result of API calls.
1749 *
1750 * Return: true if element was found and deactivated.
1751 */
1752 static bool nft_pipapo_flush(const struct net *net, const struct nft_set *set,
1753 void *elem)
1754 {
1755 struct nft_pipapo_elem *e = elem;
1756
1757 return pipapo_deactivate(net, set, (const u8 *)nft_set_ext_key(&e->ext),
1758 &e->ext);
1759 }
1760
1761 /**
1762 * pipapo_get_boundaries() - Get byte interval for associated rules
1763 * @f: Field including lookup table
1764 * @first_rule: First rule (lowest index)
1765 * @rule_count: Number of associated rules
1766 * @left: Byte expression for left boundary (start of range)
1767 * @right: Byte expression for right boundary (end of range)
1768 *
1769 * Given the first rule and amount of rules that originated from the same entry,
1770 * build the original range associated with the entry, and calculate the length
1771 * of the originating netmask.
1772 *
1773 * In pictures:
1774 *
1775 * bucket
1776 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1777 * 0 1,2
1778 * 1 1,2
1779 * 2 1,2
1780 * 3 1,2
1781 * 4 1,2
1782 * 5 1 2
1783 * 6 1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1784 * 7 1,2 1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1785 *
1786 * this is the lookup table corresponding to the IPv4 range
1787 * 192.168.1.0-192.168.2.1, which was expanded to the two composing netmasks,
1788 * rule #1: 192.168.1.0/24, and rule #2: 192.168.2.0/31.
1789 *
1790 * This function fills @left and @right with the byte values of the leftmost
1791 * and rightmost bucket indices for the lowest and highest rule indices,
1792 * respectively. If @first_rule is 1 and @rule_count is 2, we obtain, in
1793 * nibbles:
1794 * left: < 12, 0, 10, 8, 0, 1, 0, 0 >
1795 * right: < 12, 0, 10, 8, 0, 2, 2, 1 >
1796 * corresponding to bytes:
1797 * left: < 192, 168, 1, 0 >
1798 * right: < 192, 168, 2, 1 >
1799 * with mask length irrelevant here, unused on return, as the range is already
1800 * defined by its start and end points. The mask length is relevant for a single
1801 * ranged entry instead: if @first_rule is 1 and @rule_count is 1, we ignore
1802 * rule 2 above: @left becomes < 192, 168, 1, 0 >, @right becomes
1803 * < 192, 168, 1, 255 >, and the mask length, calculated from the distances
1804 * between leftmost and rightmost bucket indices for each group, would be 24.
1805 *
1806 * Return: mask length, in bits.
1807 */
1808 static int pipapo_get_boundaries(struct nft_pipapo_field *f, int first_rule,
1809 int rule_count, u8 *left, u8 *right)
1810 {
1811 int g, mask_len = 0, bit_offset = 0;
1812 u8 *l = left, *r = right;
1813
1814 for (g = 0; g < f->groups; g++) {
1815 int b, x0, x1;
1816
1817 x0 = -1;
1818 x1 = -1;
1819 for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1820 unsigned long *pos;
1821
1822 pos = NFT_PIPAPO_LT_ALIGN(f->lt) +
1823 (g * NFT_PIPAPO_BUCKETS(f->bb) + b) * f->bsize;
1824 if (test_bit(first_rule, pos) && x0 == -1)
1825 x0 = b;
1826 if (test_bit(first_rule + rule_count - 1, pos))
1827 x1 = b;
1828 }
1829
1830 *l |= x0 << (BITS_PER_BYTE - f->bb - bit_offset);
1831 *r |= x1 << (BITS_PER_BYTE - f->bb - bit_offset);
1832
1833 bit_offset += f->bb;
1834 if (bit_offset >= BITS_PER_BYTE) {
1835 bit_offset %= BITS_PER_BYTE;
1836 l++;
1837 r++;
1838 }
1839
1840 if (x1 - x0 == 0)
1841 mask_len += 4;
1842 else if (x1 - x0 == 1)
1843 mask_len += 3;
1844 else if (x1 - x0 == 3)
1845 mask_len += 2;
1846 else if (x1 - x0 == 7)
1847 mask_len += 1;
1848 }
1849
1850 return mask_len;
1851 }
1852
1853 /**
1854 * pipapo_match_field() - Match rules against byte ranges
1855 * @f: Field including the lookup table
1856 * @first_rule: First of associated rules originating from same entry
1857 * @rule_count: Amount of associated rules
1858 * @start: Start of range to be matched
1859 * @end: End of range to be matched
1860 *
1861 * Return: true on match, false otherwise.
1862 */
1863 static bool pipapo_match_field(struct nft_pipapo_field *f,
1864 int first_rule, int rule_count,
1865 const u8 *start, const u8 *end)
1866 {
1867 u8 right[NFT_PIPAPO_MAX_BYTES] = { 0 };
1868 u8 left[NFT_PIPAPO_MAX_BYTES] = { 0 };
1869
1870 pipapo_get_boundaries(f, first_rule, rule_count, left, right);
1871
1872 return !memcmp(start, left,
1873 f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) &&
1874 !memcmp(end, right, f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1875 }
1876
1877 /**
1878 * nft_pipapo_remove() - Remove element given key, commit
1879 * @net: Network namespace
1880 * @set: nftables API set representation
1881 * @elem: nftables API element representation containing key data
1882 *
1883 * Similarly to nft_pipapo_activate(), this is used as commit operation by the
1884 * API, but it's called once per element in the pending transaction, so we can't
1885 * implement this as a single commit operation. Closest we can get is to remove
1886 * the matched element here, if any, and commit the updated matching data.
1887 */
1888 static void nft_pipapo_remove(const struct net *net, const struct nft_set *set,
1889 const struct nft_set_elem *elem)
1890 {
1891 struct nft_pipapo *priv = nft_set_priv(set);
1892 struct nft_pipapo_match *m = priv->clone;
1893 struct nft_pipapo_elem *e = elem->priv;
1894 int rules_f0, first_rule = 0;
1895 const u8 *data;
1896
1897 data = (const u8 *)nft_set_ext_key(&e->ext);
1898
1899 e = pipapo_get(net, set, data, 0);
1900 if (IS_ERR(e))
1901 return;
1902
1903 while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
1904 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1905 const u8 *match_start, *match_end;
1906 struct nft_pipapo_field *f;
1907 int i, start, rules_fx;
1908
1909 match_start = data;
1910 match_end = (const u8 *)nft_set_ext_key_end(&e->ext)->data;
1911
1912 start = first_rule;
1913 rules_fx = rules_f0;
1914
1915 nft_pipapo_for_each_field(f, i, m) {
1916 if (!pipapo_match_field(f, start, rules_fx,
1917 match_start, match_end))
1918 break;
1919
1920 rulemap[i].to = start;
1921 rulemap[i].n = rules_fx;
1922
1923 rules_fx = f->mt[start].n;
1924 start = f->mt[start].to;
1925
1926 match_start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1927 match_end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1928 }
1929
1930 if (i == m->field_count) {
1931 priv->dirty = true;
1932 pipapo_drop(m, rulemap);
1933 pipapo_commit(set);
1934 return;
1935 }
1936
1937 first_rule += rules_f0;
1938 }
1939 }
1940
1941 /**
1942 * nft_pipapo_walk() - Walk over elements
1943 * @ctx: nftables API context
1944 * @set: nftables API set representation
1945 * @iter: Iterator
1946 *
1947 * As elements are referenced in the mapping array for the last field, directly
1948 * scan that array: there's no need to follow rule mappings from the first
1949 * field.
1950 */
1951 static void nft_pipapo_walk(const struct nft_ctx *ctx, struct nft_set *set,
1952 struct nft_set_iter *iter)
1953 {
1954 struct nft_pipapo *priv = nft_set_priv(set);
1955 struct nft_pipapo_match *m;
1956 struct nft_pipapo_field *f;
1957 int i, r;
1958
1959 rcu_read_lock();
1960 m = rcu_dereference(priv->match);
1961
1962 if (unlikely(!m))
1963 goto out;
1964
1965 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
1966 ;
1967
1968 for (r = 0; r < f->rules; r++) {
1969 struct nft_pipapo_elem *e;
1970 struct nft_set_elem elem;
1971
1972 if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
1973 continue;
1974
1975 if (iter->count < iter->skip)
1976 goto cont;
1977
1978 e = f->mt[r].e;
1979 if (nft_set_elem_expired(&e->ext))
1980 goto cont;
1981
1982 elem.priv = e;
1983
1984 iter->err = iter->fn(ctx, set, iter, &elem);
1985 if (iter->err < 0)
1986 goto out;
1987
1988 cont:
1989 iter->count++;
1990 }
1991
1992 out:
1993 rcu_read_unlock();
1994 }
1995
1996 /**
1997 * nft_pipapo_privsize() - Return the size of private data for the set
1998 * @nla: netlink attributes, ignored as size doesn't depend on them
1999 * @desc: Set description, ignored as size doesn't depend on it
2000 *
2001 * Return: size of private data for this set implementation, in bytes
2002 */
2003 static u64 nft_pipapo_privsize(const struct nlattr * const nla[],
2004 const struct nft_set_desc *desc)
2005 {
2006 return sizeof(struct nft_pipapo);
2007 }
2008
2009 /**
2010 * nft_pipapo_estimate() - Set size, space and lookup complexity
2011 * @desc: Set description, element count and field description used
2012 * @features: Flags: NFT_SET_INTERVAL needs to be there
2013 * @est: Storage for estimation data
2014 *
2015 * Return: true if set description is compatible, false otherwise
2016 */
2017 static bool nft_pipapo_estimate(const struct nft_set_desc *desc, u32 features,
2018 struct nft_set_estimate *est)
2019 {
2020 if (!(features & NFT_SET_INTERVAL) ||
2021 desc->field_count < NFT_PIPAPO_MIN_FIELDS)
2022 return false;
2023
2024 est->size = pipapo_estimate_size(desc);
2025 if (!est->size)
2026 return false;
2027
2028 est->lookup = NFT_SET_CLASS_O_LOG_N;
2029
2030 est->space = NFT_SET_CLASS_O_N;
2031
2032 return true;
2033 }
2034
2035 /**
2036 * nft_pipapo_init() - Initialise data for a set instance
2037 * @set: nftables API set representation
2038 * @desc: Set description
2039 * @nla: netlink attributes
2040 *
2041 * Validate number and size of fields passed as NFTA_SET_DESC_CONCAT netlink
2042 * attributes, initialise internal set parameters, current instance of matching
2043 * data and a copy for subsequent insertions.
2044 *
2045 * Return: 0 on success, negative error code on failure.
2046 */
2047 static int nft_pipapo_init(const struct nft_set *set,
2048 const struct nft_set_desc *desc,
2049 const struct nlattr * const nla[])
2050 {
2051 struct nft_pipapo *priv = nft_set_priv(set);
2052 struct nft_pipapo_match *m;
2053 struct nft_pipapo_field *f;
2054 int err, i, field_count;
2055
2056 field_count = desc->field_count ? : 1;
2057
2058 if (field_count > NFT_PIPAPO_MAX_FIELDS)
2059 return -EINVAL;
2060
2061 m = kmalloc(sizeof(*priv->match) + sizeof(*f) * field_count,
2062 GFP_KERNEL);
2063 if (!m)
2064 return -ENOMEM;
2065
2066 m->field_count = field_count;
2067 m->bsize_max = 0;
2068
2069 m->scratch = alloc_percpu(unsigned long *);
2070 if (!m->scratch) {
2071 err = -ENOMEM;
2072 goto out_scratch;
2073 }
2074 for_each_possible_cpu(i)
2075 *per_cpu_ptr(m->scratch, i) = NULL;
2076
2077 #ifdef NFT_PIPAPO_ALIGN
2078 m->scratch_aligned = alloc_percpu(unsigned long *);
2079 if (!m->scratch_aligned) {
2080 err = -ENOMEM;
2081 goto out_free;
2082 }
2083 for_each_possible_cpu(i)
2084 *per_cpu_ptr(m->scratch_aligned, i) = NULL;
2085 #endif
2086
2087 rcu_head_init(&m->rcu);
2088
2089 nft_pipapo_for_each_field(f, i, m) {
2090 int len = desc->field_len[i] ? : set->klen;
2091
2092 f->bb = NFT_PIPAPO_GROUP_BITS_INIT;
2093 f->groups = len * NFT_PIPAPO_GROUPS_PER_BYTE(f);
2094
2095 priv->width += round_up(len, sizeof(u32));
2096
2097 f->bsize = 0;
2098 f->rules = 0;
2099 NFT_PIPAPO_LT_ASSIGN(f, NULL);
2100 f->mt = NULL;
2101 }
2102
2103 /* Create an initial clone of matching data for next insertion */
2104 priv->clone = pipapo_clone(m);
2105 if (IS_ERR(priv->clone)) {
2106 err = PTR_ERR(priv->clone);
2107 goto out_free;
2108 }
2109
2110 priv->dirty = false;
2111
2112 rcu_assign_pointer(priv->match, m);
2113
2114 return 0;
2115
2116 out_free:
2117 #ifdef NFT_PIPAPO_ALIGN
2118 free_percpu(m->scratch_aligned);
2119 #endif
2120 free_percpu(m->scratch);
2121 out_scratch:
2122 kfree(m);
2123
2124 return err;
2125 }
2126
2127 /**
2128 * nft_set_pipapo_match_destroy() - Destroy elements from key mapping array
2129 * @set: nftables API set representation
2130 * @m: matching data pointing to key mapping array
2131 */
2132 static void nft_set_pipapo_match_destroy(const struct nft_set *set,
2133 struct nft_pipapo_match *m)
2134 {
2135 struct nft_pipapo_field *f;
2136 int i, r;
2137
2138 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
2139 ;
2140
2141 for (r = 0; r < f->rules; r++) {
2142 struct nft_pipapo_elem *e;
2143
2144 if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
2145 continue;
2146
2147 e = f->mt[r].e;
2148
2149 nft_set_elem_destroy(set, e, true);
2150 }
2151 }
2152
2153 /**
2154 * nft_pipapo_destroy() - Free private data for set and all committed elements
2155 * @set: nftables API set representation
2156 */
2157 static void nft_pipapo_destroy(const struct nft_set *set)
2158 {
2159 struct nft_pipapo *priv = nft_set_priv(set);
2160 struct nft_pipapo_match *m;
2161 int cpu;
2162
2163 m = rcu_dereference_protected(priv->match, true);
2164 if (m) {
2165 rcu_barrier();
2166
2167 nft_set_pipapo_match_destroy(set, m);
2168
2169 #ifdef NFT_PIPAPO_ALIGN
2170 free_percpu(m->scratch_aligned);
2171 #endif
2172 for_each_possible_cpu(cpu)
2173 kfree(*per_cpu_ptr(m->scratch, cpu));
2174 free_percpu(m->scratch);
2175 pipapo_free_fields(m);
2176 kfree(m);
2177 priv->match = NULL;
2178 }
2179
2180 if (priv->clone) {
2181 m = priv->clone;
2182
2183 if (priv->dirty)
2184 nft_set_pipapo_match_destroy(set, m);
2185
2186 #ifdef NFT_PIPAPO_ALIGN
2187 free_percpu(priv->clone->scratch_aligned);
2188 #endif
2189 for_each_possible_cpu(cpu)
2190 kfree(*per_cpu_ptr(priv->clone->scratch, cpu));
2191 free_percpu(priv->clone->scratch);
2192
2193 pipapo_free_fields(priv->clone);
2194 kfree(priv->clone);
2195 priv->clone = NULL;
2196 }
2197 }
2198
2199 /**
2200 * nft_pipapo_gc_init() - Initialise garbage collection
2201 * @set: nftables API set representation
2202 *
2203 * Instead of actually setting up a periodic work for garbage collection, as
2204 * this operation requires a swap of matching data with the working copy, we'll
2205 * do that opportunistically with other commit operations if the interval is
2206 * elapsed, so we just need to set the current jiffies timestamp here.
2207 */
2208 static void nft_pipapo_gc_init(const struct nft_set *set)
2209 {
2210 struct nft_pipapo *priv = nft_set_priv(set);
2211
2212 priv->last_gc = jiffies;
2213 }
2214
2215 const struct nft_set_type nft_set_pipapo_type = {
2216 .features = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2217 NFT_SET_TIMEOUT,
2218 .ops = {
2219 .lookup = nft_pipapo_lookup,
2220 .insert = nft_pipapo_insert,
2221 .activate = nft_pipapo_activate,
2222 .deactivate = nft_pipapo_deactivate,
2223 .flush = nft_pipapo_flush,
2224 .remove = nft_pipapo_remove,
2225 .walk = nft_pipapo_walk,
2226 .get = nft_pipapo_get,
2227 .privsize = nft_pipapo_privsize,
2228 .estimate = nft_pipapo_estimate,
2229 .init = nft_pipapo_init,
2230 .destroy = nft_pipapo_destroy,
2231 .gc_init = nft_pipapo_gc_init,
2232 .elemsize = offsetof(struct nft_pipapo_elem, ext),
2233 },
2234 };
2235
2236 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
2237 const struct nft_set_type nft_set_pipapo_avx2_type = {
2238 .features = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2239 NFT_SET_TIMEOUT,
2240 .ops = {
2241 .lookup = nft_pipapo_avx2_lookup,
2242 .insert = nft_pipapo_insert,
2243 .activate = nft_pipapo_activate,
2244 .deactivate = nft_pipapo_deactivate,
2245 .flush = nft_pipapo_flush,
2246 .remove = nft_pipapo_remove,
2247 .walk = nft_pipapo_walk,
2248 .get = nft_pipapo_get,
2249 .privsize = nft_pipapo_privsize,
2250 .estimate = nft_pipapo_avx2_estimate,
2251 .init = nft_pipapo_init,
2252 .destroy = nft_pipapo_destroy,
2253 .gc_init = nft_pipapo_gc_init,
2254 .elemsize = offsetof(struct nft_pipapo_elem, ext),
2255 },
2256 };
2257 #endif