]> git.ipfire.org Git - thirdparty/linux.git/blob - net/netfilter/nft_set_pipapo.c
fs: indicate request originates from old mount API
[thirdparty/linux.git] / net / netfilter / nft_set_pipapo.c
1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /* PIPAPO: PIle PAcket POlicies: set for arbitrary concatenations of ranges
4 *
5 * Copyright (c) 2019-2020 Red Hat GmbH
6 *
7 * Author: Stefano Brivio <sbrivio@redhat.com>
8 */
9
10 /**
11 * DOC: Theory of Operation
12 *
13 *
14 * Problem
15 * -------
16 *
17 * Match packet bytes against entries composed of ranged or non-ranged packet
18 * field specifiers, mapping them to arbitrary references. For example:
19 *
20 * ::
21 *
22 * --- fields --->
23 * | [net],[port],[net]... => [reference]
24 * entries [net],[port],[net]... => [reference]
25 * | [net],[port],[net]... => [reference]
26 * V ...
27 *
28 * where [net] fields can be IP ranges or netmasks, and [port] fields are port
29 * ranges. Arbitrary packet fields can be matched.
30 *
31 *
32 * Algorithm Overview
33 * ------------------
34 *
35 * This algorithm is loosely inspired by [Ligatti 2010], and fundamentally
36 * relies on the consideration that every contiguous range in a space of b bits
37 * can be converted into b * 2 netmasks, from Theorem 3 in [Rottenstreich 2010],
38 * as also illustrated in Section 9 of [Kogan 2014].
39 *
40 * Classification against a number of entries, that require matching given bits
41 * of a packet field, is performed by grouping those bits in sets of arbitrary
42 * size, and classifying packet bits one group at a time.
43 *
44 * Example:
45 * to match the source port (16 bits) of a packet, we can divide those 16 bits
46 * in 4 groups of 4 bits each. Given the entry:
47 * 0000 0001 0101 1001
48 * and a packet with source port:
49 * 0000 0001 1010 1001
50 * first and second groups match, but the third doesn't. We conclude that the
51 * packet doesn't match the given entry.
52 *
53 * Translate the set to a sequence of lookup tables, one per field. Each table
54 * has two dimensions: bit groups to be matched for a single packet field, and
55 * all the possible values of said groups (buckets). Input entries are
56 * represented as one or more rules, depending on the number of composing
57 * netmasks for the given field specifier, and a group match is indicated as a
58 * set bit, with number corresponding to the rule index, in all the buckets
59 * whose value matches the entry for a given group.
60 *
61 * Rules are mapped between fields through an array of x, n pairs, with each
62 * item mapping a matched rule to one or more rules. The position of the pair in
63 * the array indicates the matched rule to be mapped to the next field, x
64 * indicates the first rule index in the next field, and n the amount of
65 * next-field rules the current rule maps to.
66 *
67 * The mapping array for the last field maps to the desired references.
68 *
69 * To match, we perform table lookups using the values of grouped packet bits,
70 * and use a sequence of bitwise operations to progressively evaluate rule
71 * matching.
72 *
73 * A stand-alone, reference implementation, also including notes about possible
74 * future optimisations, is available at:
75 * https://pipapo.lameexcu.se/
76 *
77 * Insertion
78 * ---------
79 *
80 * - For each packet field:
81 *
82 * - divide the b packet bits we want to classify into groups of size t,
83 * obtaining ceil(b / t) groups
84 *
85 * Example: match on destination IP address, with t = 4: 32 bits, 8 groups
86 * of 4 bits each
87 *
88 * - allocate a lookup table with one column ("bucket") for each possible
89 * value of a group, and with one row for each group
90 *
91 * Example: 8 groups, 2^4 buckets:
92 *
93 * ::
94 *
95 * bucket
96 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
97 * 0
98 * 1
99 * 2
100 * 3
101 * 4
102 * 5
103 * 6
104 * 7
105 *
106 * - map the bits we want to classify for the current field, for a given
107 * entry, to a single rule for non-ranged and netmask set items, and to one
108 * or multiple rules for ranges. Ranges are expanded to composing netmasks
109 * by pipapo_expand().
110 *
111 * Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048
112 * - rule #0: 10.0.0.5
113 * - rule #1: 192.168.1.0/24
114 * - rule #2: 192.168.2.0/31
115 *
116 * - insert references to the rules in the lookup table, selecting buckets
117 * according to bit values of a rule in the given group. This is done by
118 * pipapo_insert().
119 *
120 * Example: given:
121 * - rule #0: 10.0.0.5 mapping to buckets
122 * < 0 10 0 0 0 0 0 5 >
123 * - rule #1: 192.168.1.0/24 mapping to buckets
124 * < 12 0 10 8 0 1 < 0..15 > < 0..15 > >
125 * - rule #2: 192.168.2.0/31 mapping to buckets
126 * < 12 0 10 8 0 2 0 < 0..1 > >
127 *
128 * these bits are set in the lookup table:
129 *
130 * ::
131 *
132 * bucket
133 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
134 * 0 0 1,2
135 * 1 1,2 0
136 * 2 0 1,2
137 * 3 0 1,2
138 * 4 0,1,2
139 * 5 0 1 2
140 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
141 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
142 *
143 * - if this is not the last field in the set, fill a mapping array that maps
144 * rules from the lookup table to rules belonging to the same entry in
145 * the next lookup table, done by pipapo_map().
146 *
147 * Note that as rules map to contiguous ranges of rules, given how netmask
148 * expansion and insertion is performed, &union nft_pipapo_map_bucket stores
149 * this information as pairs of first rule index, rule count.
150 *
151 * Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048,
152 * given lookup table #0 for field 0 (see example above):
153 *
154 * ::
155 *
156 * bucket
157 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
158 * 0 0 1,2
159 * 1 1,2 0
160 * 2 0 1,2
161 * 3 0 1,2
162 * 4 0,1,2
163 * 5 0 1 2
164 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
165 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
166 *
167 * and lookup table #1 for field 1 with:
168 * - rule #0: 1024 mapping to buckets
169 * < 0 0 4 0 >
170 * - rule #1: 2048 mapping to buckets
171 * < 0 0 5 0 >
172 *
173 * ::
174 *
175 * bucket
176 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
177 * 0 0,1
178 * 1 0,1
179 * 2 0 1
180 * 3 0,1
181 *
182 * we need to map rules for 10.0.0.5 in lookup table #0 (rule #0) to 1024
183 * in lookup table #1 (rule #0) and rules for 192.168.1.0-192.168.2.1
184 * (rules #1, #2) to 2048 in lookup table #2 (rule #1):
185 *
186 * ::
187 *
188 * rule indices in current field: 0 1 2
189 * map to rules in next field: 0 1 1
190 *
191 * - if this is the last field in the set, fill a mapping array that maps
192 * rules from the last lookup table to element pointers, also done by
193 * pipapo_map().
194 *
195 * Note that, in this implementation, we have two elements (start, end) for
196 * each entry. The pointer to the end element is stored in this array, and
197 * the pointer to the start element is linked from it.
198 *
199 * Example: entry 10.0.0.5:1024 has a corresponding &struct nft_pipapo_elem
200 * pointer, 0x66, and element for 192.168.1.0-192.168.2.1:2048 is at 0x42.
201 * From the rules of lookup table #1 as mapped above:
202 *
203 * ::
204 *
205 * rule indices in last field: 0 1
206 * map to elements: 0x66 0x42
207 *
208 *
209 * Matching
210 * --------
211 *
212 * We use a result bitmap, with the size of a single lookup table bucket, to
213 * represent the matching state that applies at every algorithm step. This is
214 * done by pipapo_lookup().
215 *
216 * - For each packet field:
217 *
218 * - start with an all-ones result bitmap (res_map in pipapo_lookup())
219 *
220 * - perform a lookup into the table corresponding to the current field,
221 * for each group, and at every group, AND the current result bitmap with
222 * the value from the lookup table bucket
223 *
224 * ::
225 *
226 * Example: 192.168.1.5 < 12 0 10 8 0 1 0 5 >, with lookup table from
227 * insertion examples.
228 * Lookup table buckets are at least 3 bits wide, we'll assume 8 bits for
229 * convenience in this example. Initial result bitmap is 0xff, the steps
230 * below show the value of the result bitmap after each group is processed:
231 *
232 * bucket
233 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
234 * 0 0 1,2
235 * result bitmap is now: 0xff & 0x6 [bucket 12] = 0x6
236 *
237 * 1 1,2 0
238 * result bitmap is now: 0x6 & 0x6 [bucket 0] = 0x6
239 *
240 * 2 0 1,2
241 * result bitmap is now: 0x6 & 0x6 [bucket 10] = 0x6
242 *
243 * 3 0 1,2
244 * result bitmap is now: 0x6 & 0x6 [bucket 8] = 0x6
245 *
246 * 4 0,1,2
247 * result bitmap is now: 0x6 & 0x7 [bucket 0] = 0x6
248 *
249 * 5 0 1 2
250 * result bitmap is now: 0x6 & 0x2 [bucket 1] = 0x2
251 *
252 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
253 * result bitmap is now: 0x2 & 0x7 [bucket 0] = 0x2
254 *
255 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
256 * final result bitmap for this field is: 0x2 & 0x3 [bucket 5] = 0x2
257 *
258 * - at the next field, start with a new, all-zeroes result bitmap. For each
259 * bit set in the previous result bitmap, fill the new result bitmap
260 * (fill_map in pipapo_lookup()) with the rule indices from the
261 * corresponding buckets of the mapping field for this field, done by
262 * pipapo_refill()
263 *
264 * Example: with mapping table from insertion examples, with the current
265 * result bitmap from the previous example, 0x02:
266 *
267 * ::
268 *
269 * rule indices in current field: 0 1 2
270 * map to rules in next field: 0 1 1
271 *
272 * the new result bitmap will be 0x02: rule 1 was set, and rule 1 will be
273 * set.
274 *
275 * We can now extend this example to cover the second iteration of the step
276 * above (lookup and AND bitmap): assuming the port field is
277 * 2048 < 0 0 5 0 >, with starting result bitmap 0x2, and lookup table
278 * for "port" field from pre-computation example:
279 *
280 * ::
281 *
282 * bucket
283 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
284 * 0 0,1
285 * 1 0,1
286 * 2 0 1
287 * 3 0,1
288 *
289 * operations are: 0x2 & 0x3 [bucket 0] & 0x3 [bucket 0] & 0x2 [bucket 5]
290 * & 0x3 [bucket 0], resulting bitmap is 0x2.
291 *
292 * - if this is the last field in the set, look up the value from the mapping
293 * array corresponding to the final result bitmap
294 *
295 * Example: 0x2 resulting bitmap from 192.168.1.5:2048, mapping array for
296 * last field from insertion example:
297 *
298 * ::
299 *
300 * rule indices in last field: 0 1
301 * map to elements: 0x66 0x42
302 *
303 * the matching element is at 0x42.
304 *
305 *
306 * References
307 * ----------
308 *
309 * [Ligatti 2010]
310 * A Packet-classification Algorithm for Arbitrary Bitmask Rules, with
311 * Automatic Time-space Tradeoffs
312 * Jay Ligatti, Josh Kuhn, and Chris Gage.
313 * Proceedings of the IEEE International Conference on Computer
314 * Communication Networks (ICCCN), August 2010.
315 * https://www.cse.usf.edu/~ligatti/papers/grouper-conf.pdf
316 *
317 * [Rottenstreich 2010]
318 * Worst-Case TCAM Rule Expansion
319 * Ori Rottenstreich and Isaac Keslassy.
320 * 2010 Proceedings IEEE INFOCOM, San Diego, CA, 2010.
321 * http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.4592&rep=rep1&type=pdf
322 *
323 * [Kogan 2014]
324 * SAX-PAC (Scalable And eXpressive PAcket Classification)
325 * Kirill Kogan, Sergey Nikolenko, Ori Rottenstreich, William Culhane,
326 * and Patrick Eugster.
327 * Proceedings of the 2014 ACM conference on SIGCOMM, August 2014.
328 * https://www.sigcomm.org/sites/default/files/ccr/papers/2014/August/2619239-2626294.pdf
329 */
330
331 #include <linux/kernel.h>
332 #include <linux/init.h>
333 #include <linux/module.h>
334 #include <linux/netlink.h>
335 #include <linux/netfilter.h>
336 #include <linux/netfilter/nf_tables.h>
337 #include <net/netfilter/nf_tables_core.h>
338 #include <uapi/linux/netfilter/nf_tables.h>
339 #include <linux/bitmap.h>
340 #include <linux/bitops.h>
341
342 #include "nft_set_pipapo_avx2.h"
343 #include "nft_set_pipapo.h"
344
345 /* Current working bitmap index, toggled between field matches */
346 static DEFINE_PER_CPU(bool, nft_pipapo_scratch_index);
347
348 /**
349 * pipapo_refill() - For each set bit, set bits from selected mapping table item
350 * @map: Bitmap to be scanned for set bits
351 * @len: Length of bitmap in longs
352 * @rules: Number of rules in field
353 * @dst: Destination bitmap
354 * @mt: Mapping table containing bit set specifiers
355 * @match_only: Find a single bit and return, don't fill
356 *
357 * Iteration over set bits with __builtin_ctzl(): Daniel Lemire, public domain.
358 *
359 * For each bit set in map, select the bucket from mapping table with index
360 * corresponding to the position of the bit set. Use start bit and amount of
361 * bits specified in bucket to fill region in dst.
362 *
363 * Return: -1 on no match, bit position on 'match_only', 0 otherwise.
364 */
365 int pipapo_refill(unsigned long *map, int len, int rules, unsigned long *dst,
366 union nft_pipapo_map_bucket *mt, bool match_only)
367 {
368 unsigned long bitset;
369 int k, ret = -1;
370
371 for (k = 0; k < len; k++) {
372 bitset = map[k];
373 while (bitset) {
374 unsigned long t = bitset & -bitset;
375 int r = __builtin_ctzl(bitset);
376 int i = k * BITS_PER_LONG + r;
377
378 if (unlikely(i >= rules)) {
379 map[k] = 0;
380 return -1;
381 }
382
383 if (match_only) {
384 bitmap_clear(map, i, 1);
385 return i;
386 }
387
388 ret = 0;
389
390 bitmap_set(dst, mt[i].to, mt[i].n);
391
392 bitset ^= t;
393 }
394 map[k] = 0;
395 }
396
397 return ret;
398 }
399
400 /**
401 * nft_pipapo_lookup() - Lookup function
402 * @net: Network namespace
403 * @set: nftables API set representation
404 * @key: nftables API element representation containing key data
405 * @ext: nftables API extension pointer, filled with matching reference
406 *
407 * For more details, see DOC: Theory of Operation.
408 *
409 * Return: true on match, false otherwise.
410 */
411 bool nft_pipapo_lookup(const struct net *net, const struct nft_set *set,
412 const u32 *key, const struct nft_set_ext **ext)
413 {
414 struct nft_pipapo *priv = nft_set_priv(set);
415 unsigned long *res_map, *fill_map;
416 u8 genmask = nft_genmask_cur(net);
417 const u8 *rp = (const u8 *)key;
418 struct nft_pipapo_match *m;
419 struct nft_pipapo_field *f;
420 bool map_index;
421 int i;
422
423 local_bh_disable();
424
425 map_index = raw_cpu_read(nft_pipapo_scratch_index);
426
427 m = rcu_dereference(priv->match);
428
429 if (unlikely(!m || !*raw_cpu_ptr(m->scratch)))
430 goto out;
431
432 res_map = *raw_cpu_ptr(m->scratch) + (map_index ? m->bsize_max : 0);
433 fill_map = *raw_cpu_ptr(m->scratch) + (map_index ? 0 : m->bsize_max);
434
435 memset(res_map, 0xff, m->bsize_max * sizeof(*res_map));
436
437 nft_pipapo_for_each_field(f, i, m) {
438 bool last = i == m->field_count - 1;
439 int b;
440
441 /* For each bit group: select lookup table bucket depending on
442 * packet bytes value, then AND bucket value
443 */
444 if (likely(f->bb == 8))
445 pipapo_and_field_buckets_8bit(f, res_map, rp);
446 else
447 pipapo_and_field_buckets_4bit(f, res_map, rp);
448 NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
449
450 rp += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
451
452 /* Now populate the bitmap for the next field, unless this is
453 * the last field, in which case return the matched 'ext'
454 * pointer if any.
455 *
456 * Now res_map contains the matching bitmap, and fill_map is the
457 * bitmap for the next field.
458 */
459 next_match:
460 b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
461 last);
462 if (b < 0) {
463 raw_cpu_write(nft_pipapo_scratch_index, map_index);
464 local_bh_enable();
465
466 return false;
467 }
468
469 if (last) {
470 *ext = &f->mt[b].e->ext;
471 if (unlikely(nft_set_elem_expired(*ext) ||
472 !nft_set_elem_active(*ext, genmask)))
473 goto next_match;
474
475 /* Last field: we're just returning the key without
476 * filling the initial bitmap for the next field, so the
477 * current inactive bitmap is clean and can be reused as
478 * *next* bitmap (not initial) for the next packet.
479 */
480 raw_cpu_write(nft_pipapo_scratch_index, map_index);
481 local_bh_enable();
482
483 return true;
484 }
485
486 /* Swap bitmap indices: res_map is the initial bitmap for the
487 * next field, and fill_map is guaranteed to be all-zeroes at
488 * this point.
489 */
490 map_index = !map_index;
491 swap(res_map, fill_map);
492
493 rp += NFT_PIPAPO_GROUPS_PADDING(f);
494 }
495
496 out:
497 local_bh_enable();
498 return false;
499 }
500
501 /**
502 * pipapo_get() - Get matching element reference given key data
503 * @net: Network namespace
504 * @set: nftables API set representation
505 * @data: Key data to be matched against existing elements
506 * @genmask: If set, check that element is active in given genmask
507 *
508 * This is essentially the same as the lookup function, except that it matches
509 * key data against the uncommitted copy and doesn't use preallocated maps for
510 * bitmap results.
511 *
512 * Return: pointer to &struct nft_pipapo_elem on match, error pointer otherwise.
513 */
514 static struct nft_pipapo_elem *pipapo_get(const struct net *net,
515 const struct nft_set *set,
516 const u8 *data, u8 genmask)
517 {
518 struct nft_pipapo_elem *ret = ERR_PTR(-ENOENT);
519 struct nft_pipapo *priv = nft_set_priv(set);
520 struct nft_pipapo_match *m = priv->clone;
521 unsigned long *res_map, *fill_map = NULL;
522 struct nft_pipapo_field *f;
523 int i;
524
525 res_map = kmalloc_array(m->bsize_max, sizeof(*res_map), GFP_ATOMIC);
526 if (!res_map) {
527 ret = ERR_PTR(-ENOMEM);
528 goto out;
529 }
530
531 fill_map = kcalloc(m->bsize_max, sizeof(*res_map), GFP_ATOMIC);
532 if (!fill_map) {
533 ret = ERR_PTR(-ENOMEM);
534 goto out;
535 }
536
537 memset(res_map, 0xff, m->bsize_max * sizeof(*res_map));
538
539 nft_pipapo_for_each_field(f, i, m) {
540 bool last = i == m->field_count - 1;
541 int b;
542
543 /* For each bit group: select lookup table bucket depending on
544 * packet bytes value, then AND bucket value
545 */
546 if (f->bb == 8)
547 pipapo_and_field_buckets_8bit(f, res_map, data);
548 else if (f->bb == 4)
549 pipapo_and_field_buckets_4bit(f, res_map, data);
550 else
551 BUG();
552
553 data += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
554
555 /* Now populate the bitmap for the next field, unless this is
556 * the last field, in which case return the matched 'ext'
557 * pointer if any.
558 *
559 * Now res_map contains the matching bitmap, and fill_map is the
560 * bitmap for the next field.
561 */
562 next_match:
563 b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
564 last);
565 if (b < 0)
566 goto out;
567
568 if (last) {
569 if (nft_set_elem_expired(&f->mt[b].e->ext))
570 goto next_match;
571 if ((genmask &&
572 !nft_set_elem_active(&f->mt[b].e->ext, genmask)))
573 goto next_match;
574
575 ret = f->mt[b].e;
576 goto out;
577 }
578
579 data += NFT_PIPAPO_GROUPS_PADDING(f);
580
581 /* Swap bitmap indices: fill_map will be the initial bitmap for
582 * the next field (i.e. the new res_map), and res_map is
583 * guaranteed to be all-zeroes at this point, ready to be filled
584 * according to the next mapping table.
585 */
586 swap(res_map, fill_map);
587 }
588
589 out:
590 kfree(fill_map);
591 kfree(res_map);
592 return ret;
593 }
594
595 /**
596 * nft_pipapo_get() - Get matching element reference given key data
597 * @net: Network namespace
598 * @set: nftables API set representation
599 * @elem: nftables API element representation containing key data
600 * @flags: Unused
601 */
602 static struct nft_elem_priv *
603 nft_pipapo_get(const struct net *net, const struct nft_set *set,
604 const struct nft_set_elem *elem, unsigned int flags)
605 {
606 static struct nft_pipapo_elem *e;
607
608 e = pipapo_get(net, set, (const u8 *)elem->key.val.data,
609 nft_genmask_cur(net));
610 if (IS_ERR(e))
611 return ERR_CAST(e);
612
613 return &e->priv;
614 }
615
616 /**
617 * pipapo_resize() - Resize lookup or mapping table, or both
618 * @f: Field containing lookup and mapping tables
619 * @old_rules: Previous amount of rules in field
620 * @rules: New amount of rules
621 *
622 * Increase, decrease or maintain tables size depending on new amount of rules,
623 * and copy data over. In case the new size is smaller, throw away data for
624 * highest-numbered rules.
625 *
626 * Return: 0 on success, -ENOMEM on allocation failure.
627 */
628 static int pipapo_resize(struct nft_pipapo_field *f, int old_rules, int rules)
629 {
630 long *new_lt = NULL, *new_p, *old_lt = f->lt, *old_p;
631 union nft_pipapo_map_bucket *new_mt, *old_mt = f->mt;
632 size_t new_bucket_size, copy;
633 int group, bucket;
634
635 new_bucket_size = DIV_ROUND_UP(rules, BITS_PER_LONG);
636 #ifdef NFT_PIPAPO_ALIGN
637 new_bucket_size = roundup(new_bucket_size,
638 NFT_PIPAPO_ALIGN / sizeof(*new_lt));
639 #endif
640
641 if (new_bucket_size == f->bsize)
642 goto mt;
643
644 if (new_bucket_size > f->bsize)
645 copy = f->bsize;
646 else
647 copy = new_bucket_size;
648
649 new_lt = kvzalloc(f->groups * NFT_PIPAPO_BUCKETS(f->bb) *
650 new_bucket_size * sizeof(*new_lt) +
651 NFT_PIPAPO_ALIGN_HEADROOM,
652 GFP_KERNEL);
653 if (!new_lt)
654 return -ENOMEM;
655
656 new_p = NFT_PIPAPO_LT_ALIGN(new_lt);
657 old_p = NFT_PIPAPO_LT_ALIGN(old_lt);
658
659 for (group = 0; group < f->groups; group++) {
660 for (bucket = 0; bucket < NFT_PIPAPO_BUCKETS(f->bb); bucket++) {
661 memcpy(new_p, old_p, copy * sizeof(*new_p));
662 new_p += copy;
663 old_p += copy;
664
665 if (new_bucket_size > f->bsize)
666 new_p += new_bucket_size - f->bsize;
667 else
668 old_p += f->bsize - new_bucket_size;
669 }
670 }
671
672 mt:
673 new_mt = kvmalloc(rules * sizeof(*new_mt), GFP_KERNEL);
674 if (!new_mt) {
675 kvfree(new_lt);
676 return -ENOMEM;
677 }
678
679 memcpy(new_mt, f->mt, min(old_rules, rules) * sizeof(*new_mt));
680 if (rules > old_rules) {
681 memset(new_mt + old_rules, 0,
682 (rules - old_rules) * sizeof(*new_mt));
683 }
684
685 if (new_lt) {
686 f->bsize = new_bucket_size;
687 NFT_PIPAPO_LT_ASSIGN(f, new_lt);
688 kvfree(old_lt);
689 }
690
691 f->mt = new_mt;
692 kvfree(old_mt);
693
694 return 0;
695 }
696
697 /**
698 * pipapo_bucket_set() - Set rule bit in bucket given group and group value
699 * @f: Field containing lookup table
700 * @rule: Rule index
701 * @group: Group index
702 * @v: Value of bit group
703 */
704 static void pipapo_bucket_set(struct nft_pipapo_field *f, int rule, int group,
705 int v)
706 {
707 unsigned long *pos;
708
709 pos = NFT_PIPAPO_LT_ALIGN(f->lt);
710 pos += f->bsize * NFT_PIPAPO_BUCKETS(f->bb) * group;
711 pos += f->bsize * v;
712
713 __set_bit(rule, pos);
714 }
715
716 /**
717 * pipapo_lt_4b_to_8b() - Switch lookup table group width from 4 bits to 8 bits
718 * @old_groups: Number of current groups
719 * @bsize: Size of one bucket, in longs
720 * @old_lt: Pointer to the current lookup table
721 * @new_lt: Pointer to the new, pre-allocated lookup table
722 *
723 * Each bucket with index b in the new lookup table, belonging to group g, is
724 * filled with the bit intersection between:
725 * - bucket with index given by the upper 4 bits of b, from group g, and
726 * - bucket with index given by the lower 4 bits of b, from group g + 1
727 *
728 * That is, given buckets from the new lookup table N(x, y) and the old lookup
729 * table O(x, y), with x bucket index, and y group index:
730 *
731 * N(b, g) := O(b / 16, g) & O(b % 16, g + 1)
732 *
733 * This ensures equivalence of the matching results on lookup. Two examples in
734 * pictures:
735 *
736 * bucket
737 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ... 254 255
738 * 0 ^
739 * 1 | ^
740 * ... ( & ) |
741 * / \ |
742 * / \ .-( & )-.
743 * / bucket \ | |
744 * group 0 / 1 2 3 \ 4 5 6 7 8 9 10 11 12 13 |14 15 |
745 * 0 / \ | |
746 * 1 \ | |
747 * 2 | --'
748 * 3 '-
749 * ...
750 */
751 static void pipapo_lt_4b_to_8b(int old_groups, int bsize,
752 unsigned long *old_lt, unsigned long *new_lt)
753 {
754 int g, b, i;
755
756 for (g = 0; g < old_groups / 2; g++) {
757 int src_g0 = g * 2, src_g1 = g * 2 + 1;
758
759 for (b = 0; b < NFT_PIPAPO_BUCKETS(8); b++) {
760 int src_b0 = b / NFT_PIPAPO_BUCKETS(4);
761 int src_b1 = b % NFT_PIPAPO_BUCKETS(4);
762 int src_i0 = src_g0 * NFT_PIPAPO_BUCKETS(4) + src_b0;
763 int src_i1 = src_g1 * NFT_PIPAPO_BUCKETS(4) + src_b1;
764
765 for (i = 0; i < bsize; i++) {
766 *new_lt = old_lt[src_i0 * bsize + i] &
767 old_lt[src_i1 * bsize + i];
768 new_lt++;
769 }
770 }
771 }
772 }
773
774 /**
775 * pipapo_lt_8b_to_4b() - Switch lookup table group width from 8 bits to 4 bits
776 * @old_groups: Number of current groups
777 * @bsize: Size of one bucket, in longs
778 * @old_lt: Pointer to the current lookup table
779 * @new_lt: Pointer to the new, pre-allocated lookup table
780 *
781 * Each bucket with index b in the new lookup table, belonging to group g, is
782 * filled with the bit union of:
783 * - all the buckets with index such that the upper four bits of the lower byte
784 * equal b, from group g, with g odd
785 * - all the buckets with index such that the lower four bits equal b, from
786 * group g, with g even
787 *
788 * That is, given buckets from the new lookup table N(x, y) and the old lookup
789 * table O(x, y), with x bucket index, and y group index:
790 *
791 * - with g odd: N(b, g) := U(O(x, g) for each x : x = (b & 0xf0) >> 4)
792 * - with g even: N(b, g) := U(O(x, g) for each x : x = b & 0x0f)
793 *
794 * where U() denotes the arbitrary union operation (binary OR of n terms). This
795 * ensures equivalence of the matching results on lookup.
796 */
797 static void pipapo_lt_8b_to_4b(int old_groups, int bsize,
798 unsigned long *old_lt, unsigned long *new_lt)
799 {
800 int g, b, bsrc, i;
801
802 memset(new_lt, 0, old_groups * 2 * NFT_PIPAPO_BUCKETS(4) * bsize *
803 sizeof(unsigned long));
804
805 for (g = 0; g < old_groups * 2; g += 2) {
806 int src_g = g / 2;
807
808 for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
809 for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
810 bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
811 bsrc++) {
812 if (((bsrc & 0xf0) >> 4) != b)
813 continue;
814
815 for (i = 0; i < bsize; i++)
816 new_lt[i] |= old_lt[bsrc * bsize + i];
817 }
818
819 new_lt += bsize;
820 }
821
822 for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
823 for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
824 bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
825 bsrc++) {
826 if ((bsrc & 0x0f) != b)
827 continue;
828
829 for (i = 0; i < bsize; i++)
830 new_lt[i] |= old_lt[bsrc * bsize + i];
831 }
832
833 new_lt += bsize;
834 }
835 }
836 }
837
838 /**
839 * pipapo_lt_bits_adjust() - Adjust group size for lookup table if needed
840 * @f: Field containing lookup table
841 */
842 static void pipapo_lt_bits_adjust(struct nft_pipapo_field *f)
843 {
844 unsigned long *new_lt;
845 int groups, bb;
846 size_t lt_size;
847
848 lt_size = f->groups * NFT_PIPAPO_BUCKETS(f->bb) * f->bsize *
849 sizeof(*f->lt);
850
851 if (f->bb == NFT_PIPAPO_GROUP_BITS_SMALL_SET &&
852 lt_size > NFT_PIPAPO_LT_SIZE_HIGH) {
853 groups = f->groups * 2;
854 bb = NFT_PIPAPO_GROUP_BITS_LARGE_SET;
855
856 lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize *
857 sizeof(*f->lt);
858 } else if (f->bb == NFT_PIPAPO_GROUP_BITS_LARGE_SET &&
859 lt_size < NFT_PIPAPO_LT_SIZE_LOW) {
860 groups = f->groups / 2;
861 bb = NFT_PIPAPO_GROUP_BITS_SMALL_SET;
862
863 lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize *
864 sizeof(*f->lt);
865
866 /* Don't increase group width if the resulting lookup table size
867 * would exceed the upper size threshold for a "small" set.
868 */
869 if (lt_size > NFT_PIPAPO_LT_SIZE_HIGH)
870 return;
871 } else {
872 return;
873 }
874
875 new_lt = kvzalloc(lt_size + NFT_PIPAPO_ALIGN_HEADROOM, GFP_KERNEL);
876 if (!new_lt)
877 return;
878
879 NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
880 if (f->bb == 4 && bb == 8) {
881 pipapo_lt_4b_to_8b(f->groups, f->bsize,
882 NFT_PIPAPO_LT_ALIGN(f->lt),
883 NFT_PIPAPO_LT_ALIGN(new_lt));
884 } else if (f->bb == 8 && bb == 4) {
885 pipapo_lt_8b_to_4b(f->groups, f->bsize,
886 NFT_PIPAPO_LT_ALIGN(f->lt),
887 NFT_PIPAPO_LT_ALIGN(new_lt));
888 } else {
889 BUG();
890 }
891
892 f->groups = groups;
893 f->bb = bb;
894 kvfree(f->lt);
895 NFT_PIPAPO_LT_ASSIGN(f, new_lt);
896 }
897
898 /**
899 * pipapo_insert() - Insert new rule in field given input key and mask length
900 * @f: Field containing lookup table
901 * @k: Input key for classification, without nftables padding
902 * @mask_bits: Length of mask; matches field length for non-ranged entry
903 *
904 * Insert a new rule reference in lookup buckets corresponding to k and
905 * mask_bits.
906 *
907 * Return: 1 on success (one rule inserted), negative error code on failure.
908 */
909 static int pipapo_insert(struct nft_pipapo_field *f, const uint8_t *k,
910 int mask_bits)
911 {
912 int rule = f->rules, group, ret, bit_offset = 0;
913
914 ret = pipapo_resize(f, f->rules, f->rules + 1);
915 if (ret)
916 return ret;
917
918 f->rules++;
919
920 for (group = 0; group < f->groups; group++) {
921 int i, v;
922 u8 mask;
923
924 v = k[group / (BITS_PER_BYTE / f->bb)];
925 v &= GENMASK(BITS_PER_BYTE - bit_offset - 1, 0);
926 v >>= (BITS_PER_BYTE - bit_offset) - f->bb;
927
928 bit_offset += f->bb;
929 bit_offset %= BITS_PER_BYTE;
930
931 if (mask_bits >= (group + 1) * f->bb) {
932 /* Not masked */
933 pipapo_bucket_set(f, rule, group, v);
934 } else if (mask_bits <= group * f->bb) {
935 /* Completely masked */
936 for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++)
937 pipapo_bucket_set(f, rule, group, i);
938 } else {
939 /* The mask limit falls on this group */
940 mask = GENMASK(f->bb - 1, 0);
941 mask >>= mask_bits - group * f->bb;
942 for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++) {
943 if ((i & ~mask) == (v & ~mask))
944 pipapo_bucket_set(f, rule, group, i);
945 }
946 }
947 }
948
949 pipapo_lt_bits_adjust(f);
950
951 return 1;
952 }
953
954 /**
955 * pipapo_step_diff() - Check if setting @step bit in netmask would change it
956 * @base: Mask we are expanding
957 * @step: Step bit for given expansion step
958 * @len: Total length of mask space (set and unset bits), bytes
959 *
960 * Convenience function for mask expansion.
961 *
962 * Return: true if step bit changes mask (i.e. isn't set), false otherwise.
963 */
964 static bool pipapo_step_diff(u8 *base, int step, int len)
965 {
966 /* Network order, byte-addressed */
967 #ifdef __BIG_ENDIAN__
968 return !(BIT(step % BITS_PER_BYTE) & base[step / BITS_PER_BYTE]);
969 #else
970 return !(BIT(step % BITS_PER_BYTE) &
971 base[len - 1 - step / BITS_PER_BYTE]);
972 #endif
973 }
974
975 /**
976 * pipapo_step_after_end() - Check if mask exceeds range end with given step
977 * @base: Mask we are expanding
978 * @end: End of range
979 * @step: Step bit for given expansion step, highest bit to be set
980 * @len: Total length of mask space (set and unset bits), bytes
981 *
982 * Convenience function for mask expansion.
983 *
984 * Return: true if mask exceeds range setting step bits, false otherwise.
985 */
986 static bool pipapo_step_after_end(const u8 *base, const u8 *end, int step,
987 int len)
988 {
989 u8 tmp[NFT_PIPAPO_MAX_BYTES];
990 int i;
991
992 memcpy(tmp, base, len);
993
994 /* Network order, byte-addressed */
995 for (i = 0; i <= step; i++)
996 #ifdef __BIG_ENDIAN__
997 tmp[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
998 #else
999 tmp[len - 1 - i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
1000 #endif
1001
1002 return memcmp(tmp, end, len) > 0;
1003 }
1004
1005 /**
1006 * pipapo_base_sum() - Sum step bit to given len-sized netmask base with carry
1007 * @base: Netmask base
1008 * @step: Step bit to sum
1009 * @len: Netmask length, bytes
1010 */
1011 static void pipapo_base_sum(u8 *base, int step, int len)
1012 {
1013 bool carry = false;
1014 int i;
1015
1016 /* Network order, byte-addressed */
1017 #ifdef __BIG_ENDIAN__
1018 for (i = step / BITS_PER_BYTE; i < len; i++) {
1019 #else
1020 for (i = len - 1 - step / BITS_PER_BYTE; i >= 0; i--) {
1021 #endif
1022 if (carry)
1023 base[i]++;
1024 else
1025 base[i] += 1 << (step % BITS_PER_BYTE);
1026
1027 if (base[i])
1028 break;
1029
1030 carry = true;
1031 }
1032 }
1033
1034 /**
1035 * pipapo_expand() - Expand to composing netmasks, insert into lookup table
1036 * @f: Field containing lookup table
1037 * @start: Start of range
1038 * @end: End of range
1039 * @len: Length of value in bits
1040 *
1041 * Expand range to composing netmasks and insert corresponding rule references
1042 * in lookup buckets.
1043 *
1044 * Return: number of inserted rules on success, negative error code on failure.
1045 */
1046 static int pipapo_expand(struct nft_pipapo_field *f,
1047 const u8 *start, const u8 *end, int len)
1048 {
1049 int step, masks = 0, bytes = DIV_ROUND_UP(len, BITS_PER_BYTE);
1050 u8 base[NFT_PIPAPO_MAX_BYTES];
1051
1052 memcpy(base, start, bytes);
1053 while (memcmp(base, end, bytes) <= 0) {
1054 int err;
1055
1056 step = 0;
1057 while (pipapo_step_diff(base, step, bytes)) {
1058 if (pipapo_step_after_end(base, end, step, bytes))
1059 break;
1060
1061 step++;
1062 if (step >= len) {
1063 if (!masks) {
1064 err = pipapo_insert(f, base, 0);
1065 if (err < 0)
1066 return err;
1067 masks = 1;
1068 }
1069 goto out;
1070 }
1071 }
1072
1073 err = pipapo_insert(f, base, len - step);
1074
1075 if (err < 0)
1076 return err;
1077
1078 masks++;
1079 pipapo_base_sum(base, step, bytes);
1080 }
1081 out:
1082 return masks;
1083 }
1084
1085 /**
1086 * pipapo_map() - Insert rules in mapping tables, mapping them between fields
1087 * @m: Matching data, including mapping table
1088 * @map: Table of rule maps: array of first rule and amount of rules
1089 * in next field a given rule maps to, for each field
1090 * @e: For last field, nft_set_ext pointer matching rules map to
1091 */
1092 static void pipapo_map(struct nft_pipapo_match *m,
1093 union nft_pipapo_map_bucket map[NFT_PIPAPO_MAX_FIELDS],
1094 struct nft_pipapo_elem *e)
1095 {
1096 struct nft_pipapo_field *f;
1097 int i, j;
1098
1099 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++) {
1100 for (j = 0; j < map[i].n; j++) {
1101 f->mt[map[i].to + j].to = map[i + 1].to;
1102 f->mt[map[i].to + j].n = map[i + 1].n;
1103 }
1104 }
1105
1106 /* Last field: map to ext instead of mapping to next field */
1107 for (j = 0; j < map[i].n; j++)
1108 f->mt[map[i].to + j].e = e;
1109 }
1110
1111 /**
1112 * pipapo_realloc_scratch() - Reallocate scratch maps for partial match results
1113 * @clone: Copy of matching data with pending insertions and deletions
1114 * @bsize_max: Maximum bucket size, scratch maps cover two buckets
1115 *
1116 * Return: 0 on success, -ENOMEM on failure.
1117 */
1118 static int pipapo_realloc_scratch(struct nft_pipapo_match *clone,
1119 unsigned long bsize_max)
1120 {
1121 int i;
1122
1123 for_each_possible_cpu(i) {
1124 unsigned long *scratch;
1125 #ifdef NFT_PIPAPO_ALIGN
1126 unsigned long *scratch_aligned;
1127 #endif
1128
1129 scratch = kzalloc_node(bsize_max * sizeof(*scratch) * 2 +
1130 NFT_PIPAPO_ALIGN_HEADROOM,
1131 GFP_KERNEL, cpu_to_node(i));
1132 if (!scratch) {
1133 /* On failure, there's no need to undo previous
1134 * allocations: this means that some scratch maps have
1135 * a bigger allocated size now (this is only called on
1136 * insertion), but the extra space won't be used by any
1137 * CPU as new elements are not inserted and m->bsize_max
1138 * is not updated.
1139 */
1140 return -ENOMEM;
1141 }
1142
1143 kfree(*per_cpu_ptr(clone->scratch, i));
1144
1145 *per_cpu_ptr(clone->scratch, i) = scratch;
1146
1147 #ifdef NFT_PIPAPO_ALIGN
1148 scratch_aligned = NFT_PIPAPO_LT_ALIGN(scratch);
1149 *per_cpu_ptr(clone->scratch_aligned, i) = scratch_aligned;
1150 #endif
1151 }
1152
1153 return 0;
1154 }
1155
1156 /**
1157 * nft_pipapo_insert() - Validate and insert ranged elements
1158 * @net: Network namespace
1159 * @set: nftables API set representation
1160 * @elem: nftables API element representation containing key data
1161 * @elem_priv: Filled with pointer to &struct nft_set_ext in inserted element
1162 *
1163 * Return: 0 on success, error pointer on failure.
1164 */
1165 static int nft_pipapo_insert(const struct net *net, const struct nft_set *set,
1166 const struct nft_set_elem *elem,
1167 struct nft_elem_priv **elem_priv)
1168 {
1169 const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
1170 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1171 const u8 *start = (const u8 *)elem->key.val.data, *end;
1172 struct nft_pipapo *priv = nft_set_priv(set);
1173 struct nft_pipapo_match *m = priv->clone;
1174 u8 genmask = nft_genmask_next(net);
1175 struct nft_pipapo_elem *e, *dup;
1176 struct nft_pipapo_field *f;
1177 const u8 *start_p, *end_p;
1178 int i, bsize_max, err = 0;
1179
1180 if (nft_set_ext_exists(ext, NFT_SET_EXT_KEY_END))
1181 end = (const u8 *)nft_set_ext_key_end(ext)->data;
1182 else
1183 end = start;
1184
1185 dup = pipapo_get(net, set, start, genmask);
1186 if (!IS_ERR(dup)) {
1187 /* Check if we already have the same exact entry */
1188 const struct nft_data *dup_key, *dup_end;
1189
1190 dup_key = nft_set_ext_key(&dup->ext);
1191 if (nft_set_ext_exists(&dup->ext, NFT_SET_EXT_KEY_END))
1192 dup_end = nft_set_ext_key_end(&dup->ext);
1193 else
1194 dup_end = dup_key;
1195
1196 if (!memcmp(start, dup_key->data, sizeof(*dup_key->data)) &&
1197 !memcmp(end, dup_end->data, sizeof(*dup_end->data))) {
1198 *elem_priv = &dup->priv;
1199 return -EEXIST;
1200 }
1201
1202 return -ENOTEMPTY;
1203 }
1204
1205 if (PTR_ERR(dup) == -ENOENT) {
1206 /* Look for partially overlapping entries */
1207 dup = pipapo_get(net, set, end, nft_genmask_next(net));
1208 }
1209
1210 if (PTR_ERR(dup) != -ENOENT) {
1211 if (IS_ERR(dup))
1212 return PTR_ERR(dup);
1213 *elem_priv = &dup->priv;
1214 return -ENOTEMPTY;
1215 }
1216
1217 /* Validate */
1218 start_p = start;
1219 end_p = end;
1220 nft_pipapo_for_each_field(f, i, m) {
1221 if (f->rules >= (unsigned long)NFT_PIPAPO_RULE0_MAX)
1222 return -ENOSPC;
1223
1224 if (memcmp(start_p, end_p,
1225 f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) > 0)
1226 return -EINVAL;
1227
1228 start_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1229 end_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1230 }
1231
1232 /* Insert */
1233 priv->dirty = true;
1234
1235 bsize_max = m->bsize_max;
1236
1237 nft_pipapo_for_each_field(f, i, m) {
1238 int ret;
1239
1240 rulemap[i].to = f->rules;
1241
1242 ret = memcmp(start, end,
1243 f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1244 if (!ret)
1245 ret = pipapo_insert(f, start, f->groups * f->bb);
1246 else
1247 ret = pipapo_expand(f, start, end, f->groups * f->bb);
1248
1249 if (ret < 0)
1250 return ret;
1251
1252 if (f->bsize > bsize_max)
1253 bsize_max = f->bsize;
1254
1255 rulemap[i].n = ret;
1256
1257 start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1258 end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1259 }
1260
1261 if (!*get_cpu_ptr(m->scratch) || bsize_max > m->bsize_max) {
1262 put_cpu_ptr(m->scratch);
1263
1264 err = pipapo_realloc_scratch(m, bsize_max);
1265 if (err)
1266 return err;
1267
1268 m->bsize_max = bsize_max;
1269 } else {
1270 put_cpu_ptr(m->scratch);
1271 }
1272
1273 e = nft_elem_priv_cast(elem->priv);
1274 *elem_priv = &e->priv;
1275
1276 pipapo_map(m, rulemap, e);
1277
1278 return 0;
1279 }
1280
1281 /**
1282 * pipapo_clone() - Clone matching data to create new working copy
1283 * @old: Existing matching data
1284 *
1285 * Return: copy of matching data passed as 'old', error pointer on failure
1286 */
1287 static struct nft_pipapo_match *pipapo_clone(struct nft_pipapo_match *old)
1288 {
1289 struct nft_pipapo_field *dst, *src;
1290 struct nft_pipapo_match *new;
1291 int i;
1292
1293 new = kmalloc(struct_size(new, f, old->field_count), GFP_KERNEL);
1294 if (!new)
1295 return ERR_PTR(-ENOMEM);
1296
1297 new->field_count = old->field_count;
1298 new->bsize_max = old->bsize_max;
1299
1300 new->scratch = alloc_percpu(*new->scratch);
1301 if (!new->scratch)
1302 goto out_scratch;
1303
1304 #ifdef NFT_PIPAPO_ALIGN
1305 new->scratch_aligned = alloc_percpu(*new->scratch_aligned);
1306 if (!new->scratch_aligned)
1307 goto out_scratch;
1308 #endif
1309 for_each_possible_cpu(i)
1310 *per_cpu_ptr(new->scratch, i) = NULL;
1311
1312 if (pipapo_realloc_scratch(new, old->bsize_max))
1313 goto out_scratch_realloc;
1314
1315 rcu_head_init(&new->rcu);
1316
1317 src = old->f;
1318 dst = new->f;
1319
1320 for (i = 0; i < old->field_count; i++) {
1321 unsigned long *new_lt;
1322
1323 memcpy(dst, src, offsetof(struct nft_pipapo_field, lt));
1324
1325 new_lt = kvzalloc(src->groups * NFT_PIPAPO_BUCKETS(src->bb) *
1326 src->bsize * sizeof(*dst->lt) +
1327 NFT_PIPAPO_ALIGN_HEADROOM,
1328 GFP_KERNEL);
1329 if (!new_lt)
1330 goto out_lt;
1331
1332 NFT_PIPAPO_LT_ASSIGN(dst, new_lt);
1333
1334 memcpy(NFT_PIPAPO_LT_ALIGN(new_lt),
1335 NFT_PIPAPO_LT_ALIGN(src->lt),
1336 src->bsize * sizeof(*dst->lt) *
1337 src->groups * NFT_PIPAPO_BUCKETS(src->bb));
1338
1339 dst->mt = kvmalloc(src->rules * sizeof(*src->mt), GFP_KERNEL);
1340 if (!dst->mt)
1341 goto out_mt;
1342
1343 memcpy(dst->mt, src->mt, src->rules * sizeof(*src->mt));
1344 src++;
1345 dst++;
1346 }
1347
1348 return new;
1349
1350 out_mt:
1351 kvfree(dst->lt);
1352 out_lt:
1353 for (dst--; i > 0; i--) {
1354 kvfree(dst->mt);
1355 kvfree(dst->lt);
1356 dst--;
1357 }
1358 out_scratch_realloc:
1359 for_each_possible_cpu(i)
1360 kfree(*per_cpu_ptr(new->scratch, i));
1361 #ifdef NFT_PIPAPO_ALIGN
1362 free_percpu(new->scratch_aligned);
1363 #endif
1364 out_scratch:
1365 free_percpu(new->scratch);
1366 kfree(new);
1367
1368 return ERR_PTR(-ENOMEM);
1369 }
1370
1371 /**
1372 * pipapo_rules_same_key() - Get number of rules originated from the same entry
1373 * @f: Field containing mapping table
1374 * @first: Index of first rule in set of rules mapping to same entry
1375 *
1376 * Using the fact that all rules in a field that originated from the same entry
1377 * will map to the same set of rules in the next field, or to the same element
1378 * reference, return the cardinality of the set of rules that originated from
1379 * the same entry as the rule with index @first, @first rule included.
1380 *
1381 * In pictures:
1382 * rules
1383 * field #0 0 1 2 3 4
1384 * map to: 0 1 2-4 2-4 5-9
1385 * . . ....... . ...
1386 * | | | | \ \
1387 * | | | | \ \
1388 * | | | | \ \
1389 * ' ' ' ' ' \
1390 * in field #1 0 1 2 3 4 5 ...
1391 *
1392 * if this is called for rule 2 on field #0, it will return 3, as also rules 2
1393 * and 3 in field 0 map to the same set of rules (2, 3, 4) in the next field.
1394 *
1395 * For the last field in a set, we can rely on associated entries to map to the
1396 * same element references.
1397 *
1398 * Return: Number of rules that originated from the same entry as @first.
1399 */
1400 static int pipapo_rules_same_key(struct nft_pipapo_field *f, int first)
1401 {
1402 struct nft_pipapo_elem *e = NULL; /* Keep gcc happy */
1403 int r;
1404
1405 for (r = first; r < f->rules; r++) {
1406 if (r != first && e != f->mt[r].e)
1407 return r - first;
1408
1409 e = f->mt[r].e;
1410 }
1411
1412 if (r != first)
1413 return r - first;
1414
1415 return 0;
1416 }
1417
1418 /**
1419 * pipapo_unmap() - Remove rules from mapping tables, renumber remaining ones
1420 * @mt: Mapping array
1421 * @rules: Original amount of rules in mapping table
1422 * @start: First rule index to be removed
1423 * @n: Amount of rules to be removed
1424 * @to_offset: First rule index, in next field, this group of rules maps to
1425 * @is_last: If this is the last field, delete reference from mapping array
1426 *
1427 * This is used to unmap rules from the mapping table for a single field,
1428 * maintaining consistency and compactness for the existing ones.
1429 *
1430 * In pictures: let's assume that we want to delete rules 2 and 3 from the
1431 * following mapping array:
1432 *
1433 * rules
1434 * 0 1 2 3 4
1435 * map to: 4-10 4-10 11-15 11-15 16-18
1436 *
1437 * the result will be:
1438 *
1439 * rules
1440 * 0 1 2
1441 * map to: 4-10 4-10 11-13
1442 *
1443 * for fields before the last one. In case this is the mapping table for the
1444 * last field in a set, and rules map to pointers to &struct nft_pipapo_elem:
1445 *
1446 * rules
1447 * 0 1 2 3 4
1448 * element pointers: 0x42 0x42 0x33 0x33 0x44
1449 *
1450 * the result will be:
1451 *
1452 * rules
1453 * 0 1 2
1454 * element pointers: 0x42 0x42 0x44
1455 */
1456 static void pipapo_unmap(union nft_pipapo_map_bucket *mt, int rules,
1457 int start, int n, int to_offset, bool is_last)
1458 {
1459 int i;
1460
1461 memmove(mt + start, mt + start + n, (rules - start - n) * sizeof(*mt));
1462 memset(mt + rules - n, 0, n * sizeof(*mt));
1463
1464 if (is_last)
1465 return;
1466
1467 for (i = start; i < rules - n; i++)
1468 mt[i].to -= to_offset;
1469 }
1470
1471 /**
1472 * pipapo_drop() - Delete entry from lookup and mapping tables, given rule map
1473 * @m: Matching data
1474 * @rulemap: Table of rule maps, arrays of first rule and amount of rules
1475 * in next field a given entry maps to, for each field
1476 *
1477 * For each rule in lookup table buckets mapping to this set of rules, drop
1478 * all bits set in lookup table mapping. In pictures, assuming we want to drop
1479 * rules 0 and 1 from this lookup table:
1480 *
1481 * bucket
1482 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1483 * 0 0 1,2
1484 * 1 1,2 0
1485 * 2 0 1,2
1486 * 3 0 1,2
1487 * 4 0,1,2
1488 * 5 0 1 2
1489 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1490 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
1491 *
1492 * rule 2 becomes rule 0, and the result will be:
1493 *
1494 * bucket
1495 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1496 * 0 0
1497 * 1 0
1498 * 2 0
1499 * 3 0
1500 * 4 0
1501 * 5 0
1502 * 6 0
1503 * 7 0 0
1504 *
1505 * once this is done, call unmap() to drop all the corresponding rule references
1506 * from mapping tables.
1507 */
1508 static void pipapo_drop(struct nft_pipapo_match *m,
1509 union nft_pipapo_map_bucket rulemap[])
1510 {
1511 struct nft_pipapo_field *f;
1512 int i;
1513
1514 nft_pipapo_for_each_field(f, i, m) {
1515 int g;
1516
1517 for (g = 0; g < f->groups; g++) {
1518 unsigned long *pos;
1519 int b;
1520
1521 pos = NFT_PIPAPO_LT_ALIGN(f->lt) + g *
1522 NFT_PIPAPO_BUCKETS(f->bb) * f->bsize;
1523
1524 for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1525 bitmap_cut(pos, pos, rulemap[i].to,
1526 rulemap[i].n,
1527 f->bsize * BITS_PER_LONG);
1528
1529 pos += f->bsize;
1530 }
1531 }
1532
1533 pipapo_unmap(f->mt, f->rules, rulemap[i].to, rulemap[i].n,
1534 rulemap[i + 1].n, i == m->field_count - 1);
1535 if (pipapo_resize(f, f->rules, f->rules - rulemap[i].n)) {
1536 /* We can ignore this, a failure to shrink tables down
1537 * doesn't make tables invalid.
1538 */
1539 ;
1540 }
1541 f->rules -= rulemap[i].n;
1542
1543 pipapo_lt_bits_adjust(f);
1544 }
1545 }
1546
1547 static void nft_pipapo_gc_deactivate(struct net *net, struct nft_set *set,
1548 struct nft_pipapo_elem *e)
1549
1550 {
1551 nft_setelem_data_deactivate(net, set, &e->priv);
1552 }
1553
1554 /**
1555 * pipapo_gc() - Drop expired entries from set, destroy start and end elements
1556 * @set: nftables API set representation
1557 * @m: Matching data
1558 */
1559 static void pipapo_gc(struct nft_set *set, struct nft_pipapo_match *m)
1560 {
1561 struct nft_pipapo *priv = nft_set_priv(set);
1562 struct net *net = read_pnet(&set->net);
1563 int rules_f0, first_rule = 0;
1564 struct nft_pipapo_elem *e;
1565 struct nft_trans_gc *gc;
1566
1567 gc = nft_trans_gc_alloc(set, 0, GFP_KERNEL);
1568 if (!gc)
1569 return;
1570
1571 while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
1572 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1573 struct nft_pipapo_field *f;
1574 int i, start, rules_fx;
1575
1576 start = first_rule;
1577 rules_fx = rules_f0;
1578
1579 nft_pipapo_for_each_field(f, i, m) {
1580 rulemap[i].to = start;
1581 rulemap[i].n = rules_fx;
1582
1583 if (i < m->field_count - 1) {
1584 rules_fx = f->mt[start].n;
1585 start = f->mt[start].to;
1586 }
1587 }
1588
1589 /* Pick the last field, and its last index */
1590 f--;
1591 i--;
1592 e = f->mt[rulemap[i].to].e;
1593
1594 /* synchronous gc never fails, there is no need to set on
1595 * NFT_SET_ELEM_DEAD_BIT.
1596 */
1597 if (nft_set_elem_expired(&e->ext)) {
1598 priv->dirty = true;
1599
1600 gc = nft_trans_gc_queue_sync(gc, GFP_ATOMIC);
1601 if (!gc)
1602 return;
1603
1604 nft_pipapo_gc_deactivate(net, set, e);
1605 pipapo_drop(m, rulemap);
1606 nft_trans_gc_elem_add(gc, e);
1607
1608 /* And check again current first rule, which is now the
1609 * first we haven't checked.
1610 */
1611 } else {
1612 first_rule += rules_f0;
1613 }
1614 }
1615
1616 gc = nft_trans_gc_catchall_sync(gc);
1617 if (gc) {
1618 nft_trans_gc_queue_sync_done(gc);
1619 priv->last_gc = jiffies;
1620 }
1621 }
1622
1623 /**
1624 * pipapo_free_fields() - Free per-field tables contained in matching data
1625 * @m: Matching data
1626 */
1627 static void pipapo_free_fields(struct nft_pipapo_match *m)
1628 {
1629 struct nft_pipapo_field *f;
1630 int i;
1631
1632 nft_pipapo_for_each_field(f, i, m) {
1633 kvfree(f->lt);
1634 kvfree(f->mt);
1635 }
1636 }
1637
1638 static void pipapo_free_match(struct nft_pipapo_match *m)
1639 {
1640 int i;
1641
1642 for_each_possible_cpu(i)
1643 kfree(*per_cpu_ptr(m->scratch, i));
1644
1645 #ifdef NFT_PIPAPO_ALIGN
1646 free_percpu(m->scratch_aligned);
1647 #endif
1648 free_percpu(m->scratch);
1649
1650 pipapo_free_fields(m);
1651
1652 kfree(m);
1653 }
1654
1655 /**
1656 * pipapo_reclaim_match - RCU callback to free fields from old matching data
1657 * @rcu: RCU head
1658 */
1659 static void pipapo_reclaim_match(struct rcu_head *rcu)
1660 {
1661 struct nft_pipapo_match *m;
1662
1663 m = container_of(rcu, struct nft_pipapo_match, rcu);
1664 pipapo_free_match(m);
1665 }
1666
1667 /**
1668 * nft_pipapo_commit() - Replace lookup data with current working copy
1669 * @set: nftables API set representation
1670 *
1671 * While at it, check if we should perform garbage collection on the working
1672 * copy before committing it for lookup, and don't replace the table if the
1673 * working copy doesn't have pending changes.
1674 *
1675 * We also need to create a new working copy for subsequent insertions and
1676 * deletions.
1677 */
1678 static void nft_pipapo_commit(struct nft_set *set)
1679 {
1680 struct nft_pipapo *priv = nft_set_priv(set);
1681 struct nft_pipapo_match *new_clone, *old;
1682
1683 if (time_after_eq(jiffies, priv->last_gc + nft_set_gc_interval(set)))
1684 pipapo_gc(set, priv->clone);
1685
1686 if (!priv->dirty)
1687 return;
1688
1689 new_clone = pipapo_clone(priv->clone);
1690 if (IS_ERR(new_clone))
1691 return;
1692
1693 priv->dirty = false;
1694
1695 old = rcu_access_pointer(priv->match);
1696 rcu_assign_pointer(priv->match, priv->clone);
1697 if (old)
1698 call_rcu(&old->rcu, pipapo_reclaim_match);
1699
1700 priv->clone = new_clone;
1701 }
1702
1703 static bool nft_pipapo_transaction_mutex_held(const struct nft_set *set)
1704 {
1705 #ifdef CONFIG_PROVE_LOCKING
1706 const struct net *net = read_pnet(&set->net);
1707
1708 return lockdep_is_held(&nft_pernet(net)->commit_mutex);
1709 #else
1710 return true;
1711 #endif
1712 }
1713
1714 static void nft_pipapo_abort(const struct nft_set *set)
1715 {
1716 struct nft_pipapo *priv = nft_set_priv(set);
1717 struct nft_pipapo_match *new_clone, *m;
1718
1719 if (!priv->dirty)
1720 return;
1721
1722 m = rcu_dereference_protected(priv->match, nft_pipapo_transaction_mutex_held(set));
1723
1724 new_clone = pipapo_clone(m);
1725 if (IS_ERR(new_clone))
1726 return;
1727
1728 priv->dirty = false;
1729
1730 pipapo_free_match(priv->clone);
1731 priv->clone = new_clone;
1732 }
1733
1734 /**
1735 * nft_pipapo_activate() - Mark element reference as active given key, commit
1736 * @net: Network namespace
1737 * @set: nftables API set representation
1738 * @elem_priv: nftables API element representation containing key data
1739 *
1740 * On insertion, elements are added to a copy of the matching data currently
1741 * in use for lookups, and not directly inserted into current lookup data. Both
1742 * nft_pipapo_insert() and nft_pipapo_activate() are called once for each
1743 * element, hence we can't purpose either one as a real commit operation.
1744 */
1745 static void nft_pipapo_activate(const struct net *net,
1746 const struct nft_set *set,
1747 struct nft_elem_priv *elem_priv)
1748 {
1749 struct nft_pipapo_elem *e = nft_elem_priv_cast(elem_priv);
1750
1751 nft_set_elem_change_active(net, set, &e->ext);
1752 }
1753
1754 /**
1755 * pipapo_deactivate() - Check that element is in set, mark as inactive
1756 * @net: Network namespace
1757 * @set: nftables API set representation
1758 * @data: Input key data
1759 * @ext: nftables API extension pointer, used to check for end element
1760 *
1761 * This is a convenience function that can be called from both
1762 * nft_pipapo_deactivate() and nft_pipapo_flush(), as they are in fact the same
1763 * operation.
1764 *
1765 * Return: deactivated element if found, NULL otherwise.
1766 */
1767 static void *pipapo_deactivate(const struct net *net, const struct nft_set *set,
1768 const u8 *data, const struct nft_set_ext *ext)
1769 {
1770 struct nft_pipapo_elem *e;
1771
1772 e = pipapo_get(net, set, data, nft_genmask_next(net));
1773 if (IS_ERR(e))
1774 return NULL;
1775
1776 nft_set_elem_change_active(net, set, &e->ext);
1777
1778 return e;
1779 }
1780
1781 /**
1782 * nft_pipapo_deactivate() - Call pipapo_deactivate() to make element inactive
1783 * @net: Network namespace
1784 * @set: nftables API set representation
1785 * @elem: nftables API element representation containing key data
1786 *
1787 * Return: deactivated element if found, NULL otherwise.
1788 */
1789 static struct nft_elem_priv *
1790 nft_pipapo_deactivate(const struct net *net, const struct nft_set *set,
1791 const struct nft_set_elem *elem)
1792 {
1793 const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
1794
1795 return pipapo_deactivate(net, set, (const u8 *)elem->key.val.data, ext);
1796 }
1797
1798 /**
1799 * nft_pipapo_flush() - Call pipapo_deactivate() to make element inactive
1800 * @net: Network namespace
1801 * @set: nftables API set representation
1802 * @elem_priv: nftables API element representation containing key data
1803 *
1804 * This is functionally the same as nft_pipapo_deactivate(), with a slightly
1805 * different interface, and it's also called once for each element in a set
1806 * being flushed, so we can't implement, strictly speaking, a flush operation,
1807 * which would otherwise be as simple as allocating an empty copy of the
1808 * matching data.
1809 *
1810 * Note that we could in theory do that, mark the set as flushed, and ignore
1811 * subsequent calls, but we would leak all the elements after the first one,
1812 * because they wouldn't then be freed as result of API calls.
1813 *
1814 * Return: true if element was found and deactivated.
1815 */
1816 static void nft_pipapo_flush(const struct net *net, const struct nft_set *set,
1817 struct nft_elem_priv *elem_priv)
1818 {
1819 struct nft_pipapo_elem *e = nft_elem_priv_cast(elem_priv);
1820
1821 nft_set_elem_change_active(net, set, &e->ext);
1822 }
1823
1824 /**
1825 * pipapo_get_boundaries() - Get byte interval for associated rules
1826 * @f: Field including lookup table
1827 * @first_rule: First rule (lowest index)
1828 * @rule_count: Number of associated rules
1829 * @left: Byte expression for left boundary (start of range)
1830 * @right: Byte expression for right boundary (end of range)
1831 *
1832 * Given the first rule and amount of rules that originated from the same entry,
1833 * build the original range associated with the entry, and calculate the length
1834 * of the originating netmask.
1835 *
1836 * In pictures:
1837 *
1838 * bucket
1839 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1840 * 0 1,2
1841 * 1 1,2
1842 * 2 1,2
1843 * 3 1,2
1844 * 4 1,2
1845 * 5 1 2
1846 * 6 1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1847 * 7 1,2 1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1848 *
1849 * this is the lookup table corresponding to the IPv4 range
1850 * 192.168.1.0-192.168.2.1, which was expanded to the two composing netmasks,
1851 * rule #1: 192.168.1.0/24, and rule #2: 192.168.2.0/31.
1852 *
1853 * This function fills @left and @right with the byte values of the leftmost
1854 * and rightmost bucket indices for the lowest and highest rule indices,
1855 * respectively. If @first_rule is 1 and @rule_count is 2, we obtain, in
1856 * nibbles:
1857 * left: < 12, 0, 10, 8, 0, 1, 0, 0 >
1858 * right: < 12, 0, 10, 8, 0, 2, 2, 1 >
1859 * corresponding to bytes:
1860 * left: < 192, 168, 1, 0 >
1861 * right: < 192, 168, 2, 1 >
1862 * with mask length irrelevant here, unused on return, as the range is already
1863 * defined by its start and end points. The mask length is relevant for a single
1864 * ranged entry instead: if @first_rule is 1 and @rule_count is 1, we ignore
1865 * rule 2 above: @left becomes < 192, 168, 1, 0 >, @right becomes
1866 * < 192, 168, 1, 255 >, and the mask length, calculated from the distances
1867 * between leftmost and rightmost bucket indices for each group, would be 24.
1868 *
1869 * Return: mask length, in bits.
1870 */
1871 static int pipapo_get_boundaries(struct nft_pipapo_field *f, int first_rule,
1872 int rule_count, u8 *left, u8 *right)
1873 {
1874 int g, mask_len = 0, bit_offset = 0;
1875 u8 *l = left, *r = right;
1876
1877 for (g = 0; g < f->groups; g++) {
1878 int b, x0, x1;
1879
1880 x0 = -1;
1881 x1 = -1;
1882 for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1883 unsigned long *pos;
1884
1885 pos = NFT_PIPAPO_LT_ALIGN(f->lt) +
1886 (g * NFT_PIPAPO_BUCKETS(f->bb) + b) * f->bsize;
1887 if (test_bit(first_rule, pos) && x0 == -1)
1888 x0 = b;
1889 if (test_bit(first_rule + rule_count - 1, pos))
1890 x1 = b;
1891 }
1892
1893 *l |= x0 << (BITS_PER_BYTE - f->bb - bit_offset);
1894 *r |= x1 << (BITS_PER_BYTE - f->bb - bit_offset);
1895
1896 bit_offset += f->bb;
1897 if (bit_offset >= BITS_PER_BYTE) {
1898 bit_offset %= BITS_PER_BYTE;
1899 l++;
1900 r++;
1901 }
1902
1903 if (x1 - x0 == 0)
1904 mask_len += 4;
1905 else if (x1 - x0 == 1)
1906 mask_len += 3;
1907 else if (x1 - x0 == 3)
1908 mask_len += 2;
1909 else if (x1 - x0 == 7)
1910 mask_len += 1;
1911 }
1912
1913 return mask_len;
1914 }
1915
1916 /**
1917 * pipapo_match_field() - Match rules against byte ranges
1918 * @f: Field including the lookup table
1919 * @first_rule: First of associated rules originating from same entry
1920 * @rule_count: Amount of associated rules
1921 * @start: Start of range to be matched
1922 * @end: End of range to be matched
1923 *
1924 * Return: true on match, false otherwise.
1925 */
1926 static bool pipapo_match_field(struct nft_pipapo_field *f,
1927 int first_rule, int rule_count,
1928 const u8 *start, const u8 *end)
1929 {
1930 u8 right[NFT_PIPAPO_MAX_BYTES] = { 0 };
1931 u8 left[NFT_PIPAPO_MAX_BYTES] = { 0 };
1932
1933 pipapo_get_boundaries(f, first_rule, rule_count, left, right);
1934
1935 return !memcmp(start, left,
1936 f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) &&
1937 !memcmp(end, right, f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1938 }
1939
1940 /**
1941 * nft_pipapo_remove() - Remove element given key, commit
1942 * @net: Network namespace
1943 * @set: nftables API set representation
1944 * @elem_priv: nftables API element representation containing key data
1945 *
1946 * Similarly to nft_pipapo_activate(), this is used as commit operation by the
1947 * API, but it's called once per element in the pending transaction, so we can't
1948 * implement this as a single commit operation. Closest we can get is to remove
1949 * the matched element here, if any, and commit the updated matching data.
1950 */
1951 static void nft_pipapo_remove(const struct net *net, const struct nft_set *set,
1952 struct nft_elem_priv *elem_priv)
1953 {
1954 struct nft_pipapo *priv = nft_set_priv(set);
1955 struct nft_pipapo_match *m = priv->clone;
1956 int rules_f0, first_rule = 0;
1957 struct nft_pipapo_elem *e;
1958 const u8 *data;
1959
1960 e = nft_elem_priv_cast(elem_priv);
1961 data = (const u8 *)nft_set_ext_key(&e->ext);
1962
1963 while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
1964 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1965 const u8 *match_start, *match_end;
1966 struct nft_pipapo_field *f;
1967 int i, start, rules_fx;
1968
1969 match_start = data;
1970
1971 if (nft_set_ext_exists(&e->ext, NFT_SET_EXT_KEY_END))
1972 match_end = (const u8 *)nft_set_ext_key_end(&e->ext)->data;
1973 else
1974 match_end = data;
1975
1976 start = first_rule;
1977 rules_fx = rules_f0;
1978
1979 nft_pipapo_for_each_field(f, i, m) {
1980 if (!pipapo_match_field(f, start, rules_fx,
1981 match_start, match_end))
1982 break;
1983
1984 rulemap[i].to = start;
1985 rulemap[i].n = rules_fx;
1986
1987 rules_fx = f->mt[start].n;
1988 start = f->mt[start].to;
1989
1990 match_start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1991 match_end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1992 }
1993
1994 if (i == m->field_count) {
1995 priv->dirty = true;
1996 pipapo_drop(m, rulemap);
1997 return;
1998 }
1999
2000 first_rule += rules_f0;
2001 }
2002 }
2003
2004 /**
2005 * nft_pipapo_walk() - Walk over elements
2006 * @ctx: nftables API context
2007 * @set: nftables API set representation
2008 * @iter: Iterator
2009 *
2010 * As elements are referenced in the mapping array for the last field, directly
2011 * scan that array: there's no need to follow rule mappings from the first
2012 * field.
2013 */
2014 static void nft_pipapo_walk(const struct nft_ctx *ctx, struct nft_set *set,
2015 struct nft_set_iter *iter)
2016 {
2017 struct nft_pipapo *priv = nft_set_priv(set);
2018 struct net *net = read_pnet(&set->net);
2019 struct nft_pipapo_match *m;
2020 struct nft_pipapo_field *f;
2021 int i, r;
2022
2023 rcu_read_lock();
2024 if (iter->genmask == nft_genmask_cur(net))
2025 m = rcu_dereference(priv->match);
2026 else
2027 m = priv->clone;
2028
2029 if (unlikely(!m))
2030 goto out;
2031
2032 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
2033 ;
2034
2035 for (r = 0; r < f->rules; r++) {
2036 struct nft_pipapo_elem *e;
2037
2038 if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
2039 continue;
2040
2041 if (iter->count < iter->skip)
2042 goto cont;
2043
2044 e = f->mt[r].e;
2045
2046 if (!nft_set_elem_active(&e->ext, iter->genmask))
2047 goto cont;
2048
2049 iter->err = iter->fn(ctx, set, iter, &e->priv);
2050 if (iter->err < 0)
2051 goto out;
2052
2053 cont:
2054 iter->count++;
2055 }
2056
2057 out:
2058 rcu_read_unlock();
2059 }
2060
2061 /**
2062 * nft_pipapo_privsize() - Return the size of private data for the set
2063 * @nla: netlink attributes, ignored as size doesn't depend on them
2064 * @desc: Set description, ignored as size doesn't depend on it
2065 *
2066 * Return: size of private data for this set implementation, in bytes
2067 */
2068 static u64 nft_pipapo_privsize(const struct nlattr * const nla[],
2069 const struct nft_set_desc *desc)
2070 {
2071 return sizeof(struct nft_pipapo);
2072 }
2073
2074 /**
2075 * nft_pipapo_estimate() - Set size, space and lookup complexity
2076 * @desc: Set description, element count and field description used
2077 * @features: Flags: NFT_SET_INTERVAL needs to be there
2078 * @est: Storage for estimation data
2079 *
2080 * Return: true if set description is compatible, false otherwise
2081 */
2082 static bool nft_pipapo_estimate(const struct nft_set_desc *desc, u32 features,
2083 struct nft_set_estimate *est)
2084 {
2085 if (!(features & NFT_SET_INTERVAL) ||
2086 desc->field_count < NFT_PIPAPO_MIN_FIELDS)
2087 return false;
2088
2089 est->size = pipapo_estimate_size(desc);
2090 if (!est->size)
2091 return false;
2092
2093 est->lookup = NFT_SET_CLASS_O_LOG_N;
2094
2095 est->space = NFT_SET_CLASS_O_N;
2096
2097 return true;
2098 }
2099
2100 /**
2101 * nft_pipapo_init() - Initialise data for a set instance
2102 * @set: nftables API set representation
2103 * @desc: Set description
2104 * @nla: netlink attributes
2105 *
2106 * Validate number and size of fields passed as NFTA_SET_DESC_CONCAT netlink
2107 * attributes, initialise internal set parameters, current instance of matching
2108 * data and a copy for subsequent insertions.
2109 *
2110 * Return: 0 on success, negative error code on failure.
2111 */
2112 static int nft_pipapo_init(const struct nft_set *set,
2113 const struct nft_set_desc *desc,
2114 const struct nlattr * const nla[])
2115 {
2116 struct nft_pipapo *priv = nft_set_priv(set);
2117 struct nft_pipapo_match *m;
2118 struct nft_pipapo_field *f;
2119 int err, i, field_count;
2120
2121 BUILD_BUG_ON(offsetof(struct nft_pipapo_elem, priv) != 0);
2122
2123 field_count = desc->field_count ? : 1;
2124
2125 if (field_count > NFT_PIPAPO_MAX_FIELDS)
2126 return -EINVAL;
2127
2128 m = kmalloc(struct_size(m, f, field_count), GFP_KERNEL);
2129 if (!m)
2130 return -ENOMEM;
2131
2132 m->field_count = field_count;
2133 m->bsize_max = 0;
2134
2135 m->scratch = alloc_percpu(unsigned long *);
2136 if (!m->scratch) {
2137 err = -ENOMEM;
2138 goto out_scratch;
2139 }
2140 for_each_possible_cpu(i)
2141 *per_cpu_ptr(m->scratch, i) = NULL;
2142
2143 #ifdef NFT_PIPAPO_ALIGN
2144 m->scratch_aligned = alloc_percpu(unsigned long *);
2145 if (!m->scratch_aligned) {
2146 err = -ENOMEM;
2147 goto out_free;
2148 }
2149 for_each_possible_cpu(i)
2150 *per_cpu_ptr(m->scratch_aligned, i) = NULL;
2151 #endif
2152
2153 rcu_head_init(&m->rcu);
2154
2155 nft_pipapo_for_each_field(f, i, m) {
2156 int len = desc->field_len[i] ? : set->klen;
2157
2158 f->bb = NFT_PIPAPO_GROUP_BITS_INIT;
2159 f->groups = len * NFT_PIPAPO_GROUPS_PER_BYTE(f);
2160
2161 priv->width += round_up(len, sizeof(u32));
2162
2163 f->bsize = 0;
2164 f->rules = 0;
2165 NFT_PIPAPO_LT_ASSIGN(f, NULL);
2166 f->mt = NULL;
2167 }
2168
2169 /* Create an initial clone of matching data for next insertion */
2170 priv->clone = pipapo_clone(m);
2171 if (IS_ERR(priv->clone)) {
2172 err = PTR_ERR(priv->clone);
2173 goto out_free;
2174 }
2175
2176 priv->dirty = false;
2177
2178 rcu_assign_pointer(priv->match, m);
2179
2180 return 0;
2181
2182 out_free:
2183 #ifdef NFT_PIPAPO_ALIGN
2184 free_percpu(m->scratch_aligned);
2185 #endif
2186 free_percpu(m->scratch);
2187 out_scratch:
2188 kfree(m);
2189
2190 return err;
2191 }
2192
2193 /**
2194 * nft_set_pipapo_match_destroy() - Destroy elements from key mapping array
2195 * @ctx: context
2196 * @set: nftables API set representation
2197 * @m: matching data pointing to key mapping array
2198 */
2199 static void nft_set_pipapo_match_destroy(const struct nft_ctx *ctx,
2200 const struct nft_set *set,
2201 struct nft_pipapo_match *m)
2202 {
2203 struct nft_pipapo_field *f;
2204 int i, r;
2205
2206 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
2207 ;
2208
2209 for (r = 0; r < f->rules; r++) {
2210 struct nft_pipapo_elem *e;
2211
2212 if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
2213 continue;
2214
2215 e = f->mt[r].e;
2216
2217 nf_tables_set_elem_destroy(ctx, set, &e->priv);
2218 }
2219 }
2220
2221 /**
2222 * nft_pipapo_destroy() - Free private data for set and all committed elements
2223 * @ctx: context
2224 * @set: nftables API set representation
2225 */
2226 static void nft_pipapo_destroy(const struct nft_ctx *ctx,
2227 const struct nft_set *set)
2228 {
2229 struct nft_pipapo *priv = nft_set_priv(set);
2230 struct nft_pipapo_match *m;
2231 int cpu;
2232
2233 m = rcu_dereference_protected(priv->match, true);
2234 if (m) {
2235 rcu_barrier();
2236
2237 nft_set_pipapo_match_destroy(ctx, set, m);
2238
2239 #ifdef NFT_PIPAPO_ALIGN
2240 free_percpu(m->scratch_aligned);
2241 #endif
2242 for_each_possible_cpu(cpu)
2243 kfree(*per_cpu_ptr(m->scratch, cpu));
2244 free_percpu(m->scratch);
2245 pipapo_free_fields(m);
2246 kfree(m);
2247 priv->match = NULL;
2248 }
2249
2250 if (priv->clone) {
2251 m = priv->clone;
2252
2253 if (priv->dirty)
2254 nft_set_pipapo_match_destroy(ctx, set, m);
2255
2256 #ifdef NFT_PIPAPO_ALIGN
2257 free_percpu(priv->clone->scratch_aligned);
2258 #endif
2259 for_each_possible_cpu(cpu)
2260 kfree(*per_cpu_ptr(priv->clone->scratch, cpu));
2261 free_percpu(priv->clone->scratch);
2262
2263 pipapo_free_fields(priv->clone);
2264 kfree(priv->clone);
2265 priv->clone = NULL;
2266 }
2267 }
2268
2269 /**
2270 * nft_pipapo_gc_init() - Initialise garbage collection
2271 * @set: nftables API set representation
2272 *
2273 * Instead of actually setting up a periodic work for garbage collection, as
2274 * this operation requires a swap of matching data with the working copy, we'll
2275 * do that opportunistically with other commit operations if the interval is
2276 * elapsed, so we just need to set the current jiffies timestamp here.
2277 */
2278 static void nft_pipapo_gc_init(const struct nft_set *set)
2279 {
2280 struct nft_pipapo *priv = nft_set_priv(set);
2281
2282 priv->last_gc = jiffies;
2283 }
2284
2285 const struct nft_set_type nft_set_pipapo_type = {
2286 .features = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2287 NFT_SET_TIMEOUT,
2288 .ops = {
2289 .lookup = nft_pipapo_lookup,
2290 .insert = nft_pipapo_insert,
2291 .activate = nft_pipapo_activate,
2292 .deactivate = nft_pipapo_deactivate,
2293 .flush = nft_pipapo_flush,
2294 .remove = nft_pipapo_remove,
2295 .walk = nft_pipapo_walk,
2296 .get = nft_pipapo_get,
2297 .privsize = nft_pipapo_privsize,
2298 .estimate = nft_pipapo_estimate,
2299 .init = nft_pipapo_init,
2300 .destroy = nft_pipapo_destroy,
2301 .gc_init = nft_pipapo_gc_init,
2302 .commit = nft_pipapo_commit,
2303 .abort = nft_pipapo_abort,
2304 .elemsize = offsetof(struct nft_pipapo_elem, ext),
2305 },
2306 };
2307
2308 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
2309 const struct nft_set_type nft_set_pipapo_avx2_type = {
2310 .features = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2311 NFT_SET_TIMEOUT,
2312 .ops = {
2313 .lookup = nft_pipapo_avx2_lookup,
2314 .insert = nft_pipapo_insert,
2315 .activate = nft_pipapo_activate,
2316 .deactivate = nft_pipapo_deactivate,
2317 .flush = nft_pipapo_flush,
2318 .remove = nft_pipapo_remove,
2319 .walk = nft_pipapo_walk,
2320 .get = nft_pipapo_get,
2321 .privsize = nft_pipapo_privsize,
2322 .estimate = nft_pipapo_avx2_estimate,
2323 .init = nft_pipapo_init,
2324 .destroy = nft_pipapo_destroy,
2325 .gc_init = nft_pipapo_gc_init,
2326 .commit = nft_pipapo_commit,
2327 .abort = nft_pipapo_abort,
2328 .elemsize = offsetof(struct nft_pipapo_elem, ext),
2329 },
2330 };
2331 #endif