]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - net/netfilter/x_tables.c
netfilter: x_tables: add counters allocation wrapper
[thirdparty/kernel/stable.git] / net / netfilter / x_tables.c
1 /*
2 * x_tables core - Backend for {ip,ip6,arp}_tables
3 *
4 * Copyright (C) 2006-2006 Harald Welte <laforge@netfilter.org>
5 * Copyright (C) 2006-2012 Patrick McHardy <kaber@trash.net>
6 *
7 * Based on existing ip_tables code which is
8 * Copyright (C) 1999 Paul `Rusty' Russell & Michael J. Neuling
9 * Copyright (C) 2000-2005 Netfilter Core Team <coreteam@netfilter.org>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 *
15 */
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/socket.h>
20 #include <linux/net.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/string.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mutex.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/audit.h>
29 #include <linux/user_namespace.h>
30 #include <net/net_namespace.h>
31
32 #include <linux/netfilter/x_tables.h>
33 #include <linux/netfilter_arp.h>
34 #include <linux/netfilter_ipv4/ip_tables.h>
35 #include <linux/netfilter_ipv6/ip6_tables.h>
36 #include <linux/netfilter_arp/arp_tables.h>
37
38 MODULE_LICENSE("GPL");
39 MODULE_AUTHOR("Harald Welte <laforge@netfilter.org>");
40 MODULE_DESCRIPTION("{ip,ip6,arp,eb}_tables backend module");
41
42 #define XT_PCPU_BLOCK_SIZE 4096
43 #define XT_MAX_TABLE_SIZE (512 * 1024 * 1024)
44
45 struct compat_delta {
46 unsigned int offset; /* offset in kernel */
47 int delta; /* delta in 32bit user land */
48 };
49
50 struct xt_af {
51 struct mutex mutex;
52 struct list_head match;
53 struct list_head target;
54 #ifdef CONFIG_COMPAT
55 struct mutex compat_mutex;
56 struct compat_delta *compat_tab;
57 unsigned int number; /* number of slots in compat_tab[] */
58 unsigned int cur; /* number of used slots in compat_tab[] */
59 #endif
60 };
61
62 static struct xt_af *xt;
63
64 static const char *const xt_prefix[NFPROTO_NUMPROTO] = {
65 [NFPROTO_UNSPEC] = "x",
66 [NFPROTO_IPV4] = "ip",
67 [NFPROTO_ARP] = "arp",
68 [NFPROTO_BRIDGE] = "eb",
69 [NFPROTO_IPV6] = "ip6",
70 };
71
72 /* Registration hooks for targets. */
73 int xt_register_target(struct xt_target *target)
74 {
75 u_int8_t af = target->family;
76
77 mutex_lock(&xt[af].mutex);
78 list_add(&target->list, &xt[af].target);
79 mutex_unlock(&xt[af].mutex);
80 return 0;
81 }
82 EXPORT_SYMBOL(xt_register_target);
83
84 void
85 xt_unregister_target(struct xt_target *target)
86 {
87 u_int8_t af = target->family;
88
89 mutex_lock(&xt[af].mutex);
90 list_del(&target->list);
91 mutex_unlock(&xt[af].mutex);
92 }
93 EXPORT_SYMBOL(xt_unregister_target);
94
95 int
96 xt_register_targets(struct xt_target *target, unsigned int n)
97 {
98 unsigned int i;
99 int err = 0;
100
101 for (i = 0; i < n; i++) {
102 err = xt_register_target(&target[i]);
103 if (err)
104 goto err;
105 }
106 return err;
107
108 err:
109 if (i > 0)
110 xt_unregister_targets(target, i);
111 return err;
112 }
113 EXPORT_SYMBOL(xt_register_targets);
114
115 void
116 xt_unregister_targets(struct xt_target *target, unsigned int n)
117 {
118 while (n-- > 0)
119 xt_unregister_target(&target[n]);
120 }
121 EXPORT_SYMBOL(xt_unregister_targets);
122
123 int xt_register_match(struct xt_match *match)
124 {
125 u_int8_t af = match->family;
126
127 mutex_lock(&xt[af].mutex);
128 list_add(&match->list, &xt[af].match);
129 mutex_unlock(&xt[af].mutex);
130 return 0;
131 }
132 EXPORT_SYMBOL(xt_register_match);
133
134 void
135 xt_unregister_match(struct xt_match *match)
136 {
137 u_int8_t af = match->family;
138
139 mutex_lock(&xt[af].mutex);
140 list_del(&match->list);
141 mutex_unlock(&xt[af].mutex);
142 }
143 EXPORT_SYMBOL(xt_unregister_match);
144
145 int
146 xt_register_matches(struct xt_match *match, unsigned int n)
147 {
148 unsigned int i;
149 int err = 0;
150
151 for (i = 0; i < n; i++) {
152 err = xt_register_match(&match[i]);
153 if (err)
154 goto err;
155 }
156 return err;
157
158 err:
159 if (i > 0)
160 xt_unregister_matches(match, i);
161 return err;
162 }
163 EXPORT_SYMBOL(xt_register_matches);
164
165 void
166 xt_unregister_matches(struct xt_match *match, unsigned int n)
167 {
168 while (n-- > 0)
169 xt_unregister_match(&match[n]);
170 }
171 EXPORT_SYMBOL(xt_unregister_matches);
172
173
174 /*
175 * These are weird, but module loading must not be done with mutex
176 * held (since they will register), and we have to have a single
177 * function to use.
178 */
179
180 /* Find match, grabs ref. Returns ERR_PTR() on error. */
181 struct xt_match *xt_find_match(u8 af, const char *name, u8 revision)
182 {
183 struct xt_match *m;
184 int err = -ENOENT;
185
186 mutex_lock(&xt[af].mutex);
187 list_for_each_entry(m, &xt[af].match, list) {
188 if (strcmp(m->name, name) == 0) {
189 if (m->revision == revision) {
190 if (try_module_get(m->me)) {
191 mutex_unlock(&xt[af].mutex);
192 return m;
193 }
194 } else
195 err = -EPROTOTYPE; /* Found something. */
196 }
197 }
198 mutex_unlock(&xt[af].mutex);
199
200 if (af != NFPROTO_UNSPEC)
201 /* Try searching again in the family-independent list */
202 return xt_find_match(NFPROTO_UNSPEC, name, revision);
203
204 return ERR_PTR(err);
205 }
206 EXPORT_SYMBOL(xt_find_match);
207
208 struct xt_match *
209 xt_request_find_match(uint8_t nfproto, const char *name, uint8_t revision)
210 {
211 struct xt_match *match;
212
213 if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN)
214 return ERR_PTR(-EINVAL);
215
216 match = xt_find_match(nfproto, name, revision);
217 if (IS_ERR(match)) {
218 request_module("%st_%s", xt_prefix[nfproto], name);
219 match = xt_find_match(nfproto, name, revision);
220 }
221
222 return match;
223 }
224 EXPORT_SYMBOL_GPL(xt_request_find_match);
225
226 /* Find target, grabs ref. Returns ERR_PTR() on error. */
227 struct xt_target *xt_find_target(u8 af, const char *name, u8 revision)
228 {
229 struct xt_target *t;
230 int err = -ENOENT;
231
232 mutex_lock(&xt[af].mutex);
233 list_for_each_entry(t, &xt[af].target, list) {
234 if (strcmp(t->name, name) == 0) {
235 if (t->revision == revision) {
236 if (try_module_get(t->me)) {
237 mutex_unlock(&xt[af].mutex);
238 return t;
239 }
240 } else
241 err = -EPROTOTYPE; /* Found something. */
242 }
243 }
244 mutex_unlock(&xt[af].mutex);
245
246 if (af != NFPROTO_UNSPEC)
247 /* Try searching again in the family-independent list */
248 return xt_find_target(NFPROTO_UNSPEC, name, revision);
249
250 return ERR_PTR(err);
251 }
252 EXPORT_SYMBOL(xt_find_target);
253
254 struct xt_target *xt_request_find_target(u8 af, const char *name, u8 revision)
255 {
256 struct xt_target *target;
257
258 if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN)
259 return ERR_PTR(-EINVAL);
260
261 target = xt_find_target(af, name, revision);
262 if (IS_ERR(target)) {
263 request_module("%st_%s", xt_prefix[af], name);
264 target = xt_find_target(af, name, revision);
265 }
266
267 return target;
268 }
269 EXPORT_SYMBOL_GPL(xt_request_find_target);
270
271
272 static int xt_obj_to_user(u16 __user *psize, u16 size,
273 void __user *pname, const char *name,
274 u8 __user *prev, u8 rev)
275 {
276 if (put_user(size, psize))
277 return -EFAULT;
278 if (copy_to_user(pname, name, strlen(name) + 1))
279 return -EFAULT;
280 if (put_user(rev, prev))
281 return -EFAULT;
282
283 return 0;
284 }
285
286 #define XT_OBJ_TO_USER(U, K, TYPE, C_SIZE) \
287 xt_obj_to_user(&U->u.TYPE##_size, C_SIZE ? : K->u.TYPE##_size, \
288 U->u.user.name, K->u.kernel.TYPE->name, \
289 &U->u.user.revision, K->u.kernel.TYPE->revision)
290
291 int xt_data_to_user(void __user *dst, const void *src,
292 int usersize, int size, int aligned_size)
293 {
294 usersize = usersize ? : size;
295 if (copy_to_user(dst, src, usersize))
296 return -EFAULT;
297 if (usersize != aligned_size &&
298 clear_user(dst + usersize, aligned_size - usersize))
299 return -EFAULT;
300
301 return 0;
302 }
303 EXPORT_SYMBOL_GPL(xt_data_to_user);
304
305 #define XT_DATA_TO_USER(U, K, TYPE) \
306 xt_data_to_user(U->data, K->data, \
307 K->u.kernel.TYPE->usersize, \
308 K->u.kernel.TYPE->TYPE##size, \
309 XT_ALIGN(K->u.kernel.TYPE->TYPE##size))
310
311 int xt_match_to_user(const struct xt_entry_match *m,
312 struct xt_entry_match __user *u)
313 {
314 return XT_OBJ_TO_USER(u, m, match, 0) ||
315 XT_DATA_TO_USER(u, m, match);
316 }
317 EXPORT_SYMBOL_GPL(xt_match_to_user);
318
319 int xt_target_to_user(const struct xt_entry_target *t,
320 struct xt_entry_target __user *u)
321 {
322 return XT_OBJ_TO_USER(u, t, target, 0) ||
323 XT_DATA_TO_USER(u, t, target);
324 }
325 EXPORT_SYMBOL_GPL(xt_target_to_user);
326
327 static int match_revfn(u8 af, const char *name, u8 revision, int *bestp)
328 {
329 const struct xt_match *m;
330 int have_rev = 0;
331
332 list_for_each_entry(m, &xt[af].match, list) {
333 if (strcmp(m->name, name) == 0) {
334 if (m->revision > *bestp)
335 *bestp = m->revision;
336 if (m->revision == revision)
337 have_rev = 1;
338 }
339 }
340
341 if (af != NFPROTO_UNSPEC && !have_rev)
342 return match_revfn(NFPROTO_UNSPEC, name, revision, bestp);
343
344 return have_rev;
345 }
346
347 static int target_revfn(u8 af, const char *name, u8 revision, int *bestp)
348 {
349 const struct xt_target *t;
350 int have_rev = 0;
351
352 list_for_each_entry(t, &xt[af].target, list) {
353 if (strcmp(t->name, name) == 0) {
354 if (t->revision > *bestp)
355 *bestp = t->revision;
356 if (t->revision == revision)
357 have_rev = 1;
358 }
359 }
360
361 if (af != NFPROTO_UNSPEC && !have_rev)
362 return target_revfn(NFPROTO_UNSPEC, name, revision, bestp);
363
364 return have_rev;
365 }
366
367 /* Returns true or false (if no such extension at all) */
368 int xt_find_revision(u8 af, const char *name, u8 revision, int target,
369 int *err)
370 {
371 int have_rev, best = -1;
372
373 mutex_lock(&xt[af].mutex);
374 if (target == 1)
375 have_rev = target_revfn(af, name, revision, &best);
376 else
377 have_rev = match_revfn(af, name, revision, &best);
378 mutex_unlock(&xt[af].mutex);
379
380 /* Nothing at all? Return 0 to try loading module. */
381 if (best == -1) {
382 *err = -ENOENT;
383 return 0;
384 }
385
386 *err = best;
387 if (!have_rev)
388 *err = -EPROTONOSUPPORT;
389 return 1;
390 }
391 EXPORT_SYMBOL_GPL(xt_find_revision);
392
393 static char *
394 textify_hooks(char *buf, size_t size, unsigned int mask, uint8_t nfproto)
395 {
396 static const char *const inetbr_names[] = {
397 "PREROUTING", "INPUT", "FORWARD",
398 "OUTPUT", "POSTROUTING", "BROUTING",
399 };
400 static const char *const arp_names[] = {
401 "INPUT", "FORWARD", "OUTPUT",
402 };
403 const char *const *names;
404 unsigned int i, max;
405 char *p = buf;
406 bool np = false;
407 int res;
408
409 names = (nfproto == NFPROTO_ARP) ? arp_names : inetbr_names;
410 max = (nfproto == NFPROTO_ARP) ? ARRAY_SIZE(arp_names) :
411 ARRAY_SIZE(inetbr_names);
412 *p = '\0';
413 for (i = 0; i < max; ++i) {
414 if (!(mask & (1 << i)))
415 continue;
416 res = snprintf(p, size, "%s%s", np ? "/" : "", names[i]);
417 if (res > 0) {
418 size -= res;
419 p += res;
420 }
421 np = true;
422 }
423
424 return buf;
425 }
426
427 /**
428 * xt_check_proc_name - check that name is suitable for /proc file creation
429 *
430 * @name: file name candidate
431 * @size: length of buffer
432 *
433 * some x_tables modules wish to create a file in /proc.
434 * This function makes sure that the name is suitable for this
435 * purpose, it checks that name is NUL terminated and isn't a 'special'
436 * name, like "..".
437 *
438 * returns negative number on error or 0 if name is useable.
439 */
440 int xt_check_proc_name(const char *name, unsigned int size)
441 {
442 if (name[0] == '\0')
443 return -EINVAL;
444
445 if (strnlen(name, size) == size)
446 return -ENAMETOOLONG;
447
448 if (strcmp(name, ".") == 0 ||
449 strcmp(name, "..") == 0 ||
450 strchr(name, '/'))
451 return -EINVAL;
452
453 return 0;
454 }
455 EXPORT_SYMBOL(xt_check_proc_name);
456
457 int xt_check_match(struct xt_mtchk_param *par,
458 unsigned int size, u_int8_t proto, bool inv_proto)
459 {
460 int ret;
461
462 if (XT_ALIGN(par->match->matchsize) != size &&
463 par->match->matchsize != -1) {
464 /*
465 * ebt_among is exempt from centralized matchsize checking
466 * because it uses a dynamic-size data set.
467 */
468 pr_err("%s_tables: %s.%u match: invalid size "
469 "%u (kernel) != (user) %u\n",
470 xt_prefix[par->family], par->match->name,
471 par->match->revision,
472 XT_ALIGN(par->match->matchsize), size);
473 return -EINVAL;
474 }
475 if (par->match->table != NULL &&
476 strcmp(par->match->table, par->table) != 0) {
477 pr_err("%s_tables: %s match: only valid in %s table, not %s\n",
478 xt_prefix[par->family], par->match->name,
479 par->match->table, par->table);
480 return -EINVAL;
481 }
482 if (par->match->hooks && (par->hook_mask & ~par->match->hooks) != 0) {
483 char used[64], allow[64];
484
485 pr_err("%s_tables: %s match: used from hooks %s, but only "
486 "valid from %s\n",
487 xt_prefix[par->family], par->match->name,
488 textify_hooks(used, sizeof(used), par->hook_mask,
489 par->family),
490 textify_hooks(allow, sizeof(allow), par->match->hooks,
491 par->family));
492 return -EINVAL;
493 }
494 if (par->match->proto && (par->match->proto != proto || inv_proto)) {
495 pr_err("%s_tables: %s match: only valid for protocol %u\n",
496 xt_prefix[par->family], par->match->name,
497 par->match->proto);
498 return -EINVAL;
499 }
500 if (par->match->checkentry != NULL) {
501 ret = par->match->checkentry(par);
502 if (ret < 0)
503 return ret;
504 else if (ret > 0)
505 /* Flag up potential errors. */
506 return -EIO;
507 }
508 return 0;
509 }
510 EXPORT_SYMBOL_GPL(xt_check_match);
511
512 /** xt_check_entry_match - check that matches end before start of target
513 *
514 * @match: beginning of xt_entry_match
515 * @target: beginning of this rules target (alleged end of matches)
516 * @alignment: alignment requirement of match structures
517 *
518 * Validates that all matches add up to the beginning of the target,
519 * and that each match covers at least the base structure size.
520 *
521 * Return: 0 on success, negative errno on failure.
522 */
523 static int xt_check_entry_match(const char *match, const char *target,
524 const size_t alignment)
525 {
526 const struct xt_entry_match *pos;
527 int length = target - match;
528
529 if (length == 0) /* no matches */
530 return 0;
531
532 pos = (struct xt_entry_match *)match;
533 do {
534 if ((unsigned long)pos % alignment)
535 return -EINVAL;
536
537 if (length < (int)sizeof(struct xt_entry_match))
538 return -EINVAL;
539
540 if (pos->u.match_size < sizeof(struct xt_entry_match))
541 return -EINVAL;
542
543 if (pos->u.match_size > length)
544 return -EINVAL;
545
546 length -= pos->u.match_size;
547 pos = ((void *)((char *)(pos) + (pos)->u.match_size));
548 } while (length > 0);
549
550 return 0;
551 }
552
553 #ifdef CONFIG_COMPAT
554 int xt_compat_add_offset(u_int8_t af, unsigned int offset, int delta)
555 {
556 struct xt_af *xp = &xt[af];
557
558 if (!xp->compat_tab) {
559 if (!xp->number)
560 return -EINVAL;
561 xp->compat_tab = vmalloc(sizeof(struct compat_delta) * xp->number);
562 if (!xp->compat_tab)
563 return -ENOMEM;
564 xp->cur = 0;
565 }
566
567 if (xp->cur >= xp->number)
568 return -EINVAL;
569
570 if (xp->cur)
571 delta += xp->compat_tab[xp->cur - 1].delta;
572 xp->compat_tab[xp->cur].offset = offset;
573 xp->compat_tab[xp->cur].delta = delta;
574 xp->cur++;
575 return 0;
576 }
577 EXPORT_SYMBOL_GPL(xt_compat_add_offset);
578
579 void xt_compat_flush_offsets(u_int8_t af)
580 {
581 if (xt[af].compat_tab) {
582 vfree(xt[af].compat_tab);
583 xt[af].compat_tab = NULL;
584 xt[af].number = 0;
585 xt[af].cur = 0;
586 }
587 }
588 EXPORT_SYMBOL_GPL(xt_compat_flush_offsets);
589
590 int xt_compat_calc_jump(u_int8_t af, unsigned int offset)
591 {
592 struct compat_delta *tmp = xt[af].compat_tab;
593 int mid, left = 0, right = xt[af].cur - 1;
594
595 while (left <= right) {
596 mid = (left + right) >> 1;
597 if (offset > tmp[mid].offset)
598 left = mid + 1;
599 else if (offset < tmp[mid].offset)
600 right = mid - 1;
601 else
602 return mid ? tmp[mid - 1].delta : 0;
603 }
604 return left ? tmp[left - 1].delta : 0;
605 }
606 EXPORT_SYMBOL_GPL(xt_compat_calc_jump);
607
608 void xt_compat_init_offsets(u_int8_t af, unsigned int number)
609 {
610 xt[af].number = number;
611 xt[af].cur = 0;
612 }
613 EXPORT_SYMBOL(xt_compat_init_offsets);
614
615 int xt_compat_match_offset(const struct xt_match *match)
616 {
617 u_int16_t csize = match->compatsize ? : match->matchsize;
618 return XT_ALIGN(match->matchsize) - COMPAT_XT_ALIGN(csize);
619 }
620 EXPORT_SYMBOL_GPL(xt_compat_match_offset);
621
622 void xt_compat_match_from_user(struct xt_entry_match *m, void **dstptr,
623 unsigned int *size)
624 {
625 const struct xt_match *match = m->u.kernel.match;
626 struct compat_xt_entry_match *cm = (struct compat_xt_entry_match *)m;
627 int pad, off = xt_compat_match_offset(match);
628 u_int16_t msize = cm->u.user.match_size;
629 char name[sizeof(m->u.user.name)];
630
631 m = *dstptr;
632 memcpy(m, cm, sizeof(*cm));
633 if (match->compat_from_user)
634 match->compat_from_user(m->data, cm->data);
635 else
636 memcpy(m->data, cm->data, msize - sizeof(*cm));
637 pad = XT_ALIGN(match->matchsize) - match->matchsize;
638 if (pad > 0)
639 memset(m->data + match->matchsize, 0, pad);
640
641 msize += off;
642 m->u.user.match_size = msize;
643 strlcpy(name, match->name, sizeof(name));
644 module_put(match->me);
645 strncpy(m->u.user.name, name, sizeof(m->u.user.name));
646
647 *size += off;
648 *dstptr += msize;
649 }
650 EXPORT_SYMBOL_GPL(xt_compat_match_from_user);
651
652 #define COMPAT_XT_DATA_TO_USER(U, K, TYPE, C_SIZE) \
653 xt_data_to_user(U->data, K->data, \
654 K->u.kernel.TYPE->usersize, \
655 C_SIZE, \
656 COMPAT_XT_ALIGN(C_SIZE))
657
658 int xt_compat_match_to_user(const struct xt_entry_match *m,
659 void __user **dstptr, unsigned int *size)
660 {
661 const struct xt_match *match = m->u.kernel.match;
662 struct compat_xt_entry_match __user *cm = *dstptr;
663 int off = xt_compat_match_offset(match);
664 u_int16_t msize = m->u.user.match_size - off;
665
666 if (XT_OBJ_TO_USER(cm, m, match, msize))
667 return -EFAULT;
668
669 if (match->compat_to_user) {
670 if (match->compat_to_user((void __user *)cm->data, m->data))
671 return -EFAULT;
672 } else {
673 if (COMPAT_XT_DATA_TO_USER(cm, m, match, msize - sizeof(*cm)))
674 return -EFAULT;
675 }
676
677 *size -= off;
678 *dstptr += msize;
679 return 0;
680 }
681 EXPORT_SYMBOL_GPL(xt_compat_match_to_user);
682
683 /* non-compat version may have padding after verdict */
684 struct compat_xt_standard_target {
685 struct compat_xt_entry_target t;
686 compat_uint_t verdict;
687 };
688
689 int xt_compat_check_entry_offsets(const void *base, const char *elems,
690 unsigned int target_offset,
691 unsigned int next_offset)
692 {
693 long size_of_base_struct = elems - (const char *)base;
694 const struct compat_xt_entry_target *t;
695 const char *e = base;
696
697 if (target_offset < size_of_base_struct)
698 return -EINVAL;
699
700 if (target_offset + sizeof(*t) > next_offset)
701 return -EINVAL;
702
703 t = (void *)(e + target_offset);
704 if (t->u.target_size < sizeof(*t))
705 return -EINVAL;
706
707 if (target_offset + t->u.target_size > next_offset)
708 return -EINVAL;
709
710 if (strcmp(t->u.user.name, XT_STANDARD_TARGET) == 0 &&
711 COMPAT_XT_ALIGN(target_offset + sizeof(struct compat_xt_standard_target)) != next_offset)
712 return -EINVAL;
713
714 /* compat_xt_entry match has less strict alignment requirements,
715 * otherwise they are identical. In case of padding differences
716 * we need to add compat version of xt_check_entry_match.
717 */
718 BUILD_BUG_ON(sizeof(struct compat_xt_entry_match) != sizeof(struct xt_entry_match));
719
720 return xt_check_entry_match(elems, base + target_offset,
721 __alignof__(struct compat_xt_entry_match));
722 }
723 EXPORT_SYMBOL(xt_compat_check_entry_offsets);
724 #endif /* CONFIG_COMPAT */
725
726 /**
727 * xt_check_entry_offsets - validate arp/ip/ip6t_entry
728 *
729 * @base: pointer to arp/ip/ip6t_entry
730 * @elems: pointer to first xt_entry_match, i.e. ip(6)t_entry->elems
731 * @target_offset: the arp/ip/ip6_t->target_offset
732 * @next_offset: the arp/ip/ip6_t->next_offset
733 *
734 * validates that target_offset and next_offset are sane and that all
735 * match sizes (if any) align with the target offset.
736 *
737 * This function does not validate the targets or matches themselves, it
738 * only tests that all the offsets and sizes are correct, that all
739 * match structures are aligned, and that the last structure ends where
740 * the target structure begins.
741 *
742 * Also see xt_compat_check_entry_offsets for CONFIG_COMPAT version.
743 *
744 * The arp/ip/ip6t_entry structure @base must have passed following tests:
745 * - it must point to a valid memory location
746 * - base to base + next_offset must be accessible, i.e. not exceed allocated
747 * length.
748 *
749 * A well-formed entry looks like this:
750 *
751 * ip(6)t_entry match [mtdata] match [mtdata] target [tgdata] ip(6)t_entry
752 * e->elems[]-----' | |
753 * matchsize | |
754 * matchsize | |
755 * | |
756 * target_offset---------------------------------' |
757 * next_offset---------------------------------------------------'
758 *
759 * elems[]: flexible array member at end of ip(6)/arpt_entry struct.
760 * This is where matches (if any) and the target reside.
761 * target_offset: beginning of target.
762 * next_offset: start of the next rule; also: size of this rule.
763 * Since targets have a minimum size, target_offset + minlen <= next_offset.
764 *
765 * Every match stores its size, sum of sizes must not exceed target_offset.
766 *
767 * Return: 0 on success, negative errno on failure.
768 */
769 int xt_check_entry_offsets(const void *base,
770 const char *elems,
771 unsigned int target_offset,
772 unsigned int next_offset)
773 {
774 long size_of_base_struct = elems - (const char *)base;
775 const struct xt_entry_target *t;
776 const char *e = base;
777
778 /* target start is within the ip/ip6/arpt_entry struct */
779 if (target_offset < size_of_base_struct)
780 return -EINVAL;
781
782 if (target_offset + sizeof(*t) > next_offset)
783 return -EINVAL;
784
785 t = (void *)(e + target_offset);
786 if (t->u.target_size < sizeof(*t))
787 return -EINVAL;
788
789 if (target_offset + t->u.target_size > next_offset)
790 return -EINVAL;
791
792 if (strcmp(t->u.user.name, XT_STANDARD_TARGET) == 0 &&
793 XT_ALIGN(target_offset + sizeof(struct xt_standard_target)) != next_offset)
794 return -EINVAL;
795
796 return xt_check_entry_match(elems, base + target_offset,
797 __alignof__(struct xt_entry_match));
798 }
799 EXPORT_SYMBOL(xt_check_entry_offsets);
800
801 /**
802 * xt_alloc_entry_offsets - allocate array to store rule head offsets
803 *
804 * @size: number of entries
805 *
806 * Return: NULL or kmalloc'd or vmalloc'd array
807 */
808 unsigned int *xt_alloc_entry_offsets(unsigned int size)
809 {
810 return kvmalloc_array(size, sizeof(unsigned int), GFP_KERNEL | __GFP_ZERO);
811
812 }
813 EXPORT_SYMBOL(xt_alloc_entry_offsets);
814
815 /**
816 * xt_find_jump_offset - check if target is a valid jump offset
817 *
818 * @offsets: array containing all valid rule start offsets of a rule blob
819 * @target: the jump target to search for
820 * @size: entries in @offset
821 */
822 bool xt_find_jump_offset(const unsigned int *offsets,
823 unsigned int target, unsigned int size)
824 {
825 int m, low = 0, hi = size;
826
827 while (hi > low) {
828 m = (low + hi) / 2u;
829
830 if (offsets[m] > target)
831 hi = m;
832 else if (offsets[m] < target)
833 low = m + 1;
834 else
835 return true;
836 }
837
838 return false;
839 }
840 EXPORT_SYMBOL(xt_find_jump_offset);
841
842 int xt_check_target(struct xt_tgchk_param *par,
843 unsigned int size, u_int8_t proto, bool inv_proto)
844 {
845 int ret;
846
847 if (XT_ALIGN(par->target->targetsize) != size) {
848 pr_err("%s_tables: %s.%u target: invalid size "
849 "%u (kernel) != (user) %u\n",
850 xt_prefix[par->family], par->target->name,
851 par->target->revision,
852 XT_ALIGN(par->target->targetsize), size);
853 return -EINVAL;
854 }
855 if (par->target->table != NULL &&
856 strcmp(par->target->table, par->table) != 0) {
857 pr_err("%s_tables: %s target: only valid in %s table, not %s\n",
858 xt_prefix[par->family], par->target->name,
859 par->target->table, par->table);
860 return -EINVAL;
861 }
862 if (par->target->hooks && (par->hook_mask & ~par->target->hooks) != 0) {
863 char used[64], allow[64];
864
865 pr_err("%s_tables: %s target: used from hooks %s, but only "
866 "usable from %s\n",
867 xt_prefix[par->family], par->target->name,
868 textify_hooks(used, sizeof(used), par->hook_mask,
869 par->family),
870 textify_hooks(allow, sizeof(allow), par->target->hooks,
871 par->family));
872 return -EINVAL;
873 }
874 if (par->target->proto && (par->target->proto != proto || inv_proto)) {
875 pr_err("%s_tables: %s target: only valid for protocol %u\n",
876 xt_prefix[par->family], par->target->name,
877 par->target->proto);
878 return -EINVAL;
879 }
880 if (par->target->checkentry != NULL) {
881 ret = par->target->checkentry(par);
882 if (ret < 0)
883 return ret;
884 else if (ret > 0)
885 /* Flag up potential errors. */
886 return -EIO;
887 }
888 return 0;
889 }
890 EXPORT_SYMBOL_GPL(xt_check_target);
891
892 /**
893 * xt_copy_counters_from_user - copy counters and metadata from userspace
894 *
895 * @user: src pointer to userspace memory
896 * @len: alleged size of userspace memory
897 * @info: where to store the xt_counters_info metadata
898 * @compat: true if we setsockopt call is done by 32bit task on 64bit kernel
899 *
900 * Copies counter meta data from @user and stores it in @info.
901 *
902 * vmallocs memory to hold the counters, then copies the counter data
903 * from @user to the new memory and returns a pointer to it.
904 *
905 * If @compat is true, @info gets converted automatically to the 64bit
906 * representation.
907 *
908 * The metadata associated with the counters is stored in @info.
909 *
910 * Return: returns pointer that caller has to test via IS_ERR().
911 * If IS_ERR is false, caller has to vfree the pointer.
912 */
913 void *xt_copy_counters_from_user(const void __user *user, unsigned int len,
914 struct xt_counters_info *info, bool compat)
915 {
916 void *mem;
917 u64 size;
918
919 #ifdef CONFIG_COMPAT
920 if (compat) {
921 /* structures only differ in size due to alignment */
922 struct compat_xt_counters_info compat_tmp;
923
924 if (len <= sizeof(compat_tmp))
925 return ERR_PTR(-EINVAL);
926
927 len -= sizeof(compat_tmp);
928 if (copy_from_user(&compat_tmp, user, sizeof(compat_tmp)) != 0)
929 return ERR_PTR(-EFAULT);
930
931 memcpy(info->name, compat_tmp.name, sizeof(info->name) - 1);
932 info->num_counters = compat_tmp.num_counters;
933 user += sizeof(compat_tmp);
934 } else
935 #endif
936 {
937 if (len <= sizeof(*info))
938 return ERR_PTR(-EINVAL);
939
940 len -= sizeof(*info);
941 if (copy_from_user(info, user, sizeof(*info)) != 0)
942 return ERR_PTR(-EFAULT);
943
944 user += sizeof(*info);
945 }
946 info->name[sizeof(info->name) - 1] = '\0';
947
948 size = sizeof(struct xt_counters);
949 size *= info->num_counters;
950
951 if (size != (u64)len)
952 return ERR_PTR(-EINVAL);
953
954 mem = vmalloc(len);
955 if (!mem)
956 return ERR_PTR(-ENOMEM);
957
958 if (copy_from_user(mem, user, len) == 0)
959 return mem;
960
961 vfree(mem);
962 return ERR_PTR(-EFAULT);
963 }
964 EXPORT_SYMBOL_GPL(xt_copy_counters_from_user);
965
966 #ifdef CONFIG_COMPAT
967 int xt_compat_target_offset(const struct xt_target *target)
968 {
969 u_int16_t csize = target->compatsize ? : target->targetsize;
970 return XT_ALIGN(target->targetsize) - COMPAT_XT_ALIGN(csize);
971 }
972 EXPORT_SYMBOL_GPL(xt_compat_target_offset);
973
974 void xt_compat_target_from_user(struct xt_entry_target *t, void **dstptr,
975 unsigned int *size)
976 {
977 const struct xt_target *target = t->u.kernel.target;
978 struct compat_xt_entry_target *ct = (struct compat_xt_entry_target *)t;
979 int pad, off = xt_compat_target_offset(target);
980 u_int16_t tsize = ct->u.user.target_size;
981 char name[sizeof(t->u.user.name)];
982
983 t = *dstptr;
984 memcpy(t, ct, sizeof(*ct));
985 if (target->compat_from_user)
986 target->compat_from_user(t->data, ct->data);
987 else
988 memcpy(t->data, ct->data, tsize - sizeof(*ct));
989 pad = XT_ALIGN(target->targetsize) - target->targetsize;
990 if (pad > 0)
991 memset(t->data + target->targetsize, 0, pad);
992
993 tsize += off;
994 t->u.user.target_size = tsize;
995 strlcpy(name, target->name, sizeof(name));
996 module_put(target->me);
997 strncpy(t->u.user.name, name, sizeof(t->u.user.name));
998
999 *size += off;
1000 *dstptr += tsize;
1001 }
1002 EXPORT_SYMBOL_GPL(xt_compat_target_from_user);
1003
1004 int xt_compat_target_to_user(const struct xt_entry_target *t,
1005 void __user **dstptr, unsigned int *size)
1006 {
1007 const struct xt_target *target = t->u.kernel.target;
1008 struct compat_xt_entry_target __user *ct = *dstptr;
1009 int off = xt_compat_target_offset(target);
1010 u_int16_t tsize = t->u.user.target_size - off;
1011
1012 if (XT_OBJ_TO_USER(ct, t, target, tsize))
1013 return -EFAULT;
1014
1015 if (target->compat_to_user) {
1016 if (target->compat_to_user((void __user *)ct->data, t->data))
1017 return -EFAULT;
1018 } else {
1019 if (COMPAT_XT_DATA_TO_USER(ct, t, target, tsize - sizeof(*ct)))
1020 return -EFAULT;
1021 }
1022
1023 *size -= off;
1024 *dstptr += tsize;
1025 return 0;
1026 }
1027 EXPORT_SYMBOL_GPL(xt_compat_target_to_user);
1028 #endif
1029
1030 struct xt_table_info *xt_alloc_table_info(unsigned int size)
1031 {
1032 struct xt_table_info *info = NULL;
1033 size_t sz = sizeof(*info) + size;
1034
1035 if (sz < sizeof(*info) || sz >= XT_MAX_TABLE_SIZE)
1036 return NULL;
1037
1038 /* Pedantry: prevent them from hitting BUG() in vmalloc.c --RR */
1039 if ((size >> PAGE_SHIFT) + 2 > totalram_pages)
1040 return NULL;
1041
1042 /* __GFP_NORETRY is not fully supported by kvmalloc but it should
1043 * work reasonably well if sz is too large and bail out rather
1044 * than shoot all processes down before realizing there is nothing
1045 * more to reclaim.
1046 */
1047 info = kvmalloc(sz, GFP_KERNEL | __GFP_NORETRY);
1048 if (!info)
1049 return NULL;
1050
1051 memset(info, 0, sizeof(*info));
1052 info->size = size;
1053 return info;
1054 }
1055 EXPORT_SYMBOL(xt_alloc_table_info);
1056
1057 void xt_free_table_info(struct xt_table_info *info)
1058 {
1059 int cpu;
1060
1061 if (info->jumpstack != NULL) {
1062 for_each_possible_cpu(cpu)
1063 kvfree(info->jumpstack[cpu]);
1064 kvfree(info->jumpstack);
1065 }
1066
1067 kvfree(info);
1068 }
1069 EXPORT_SYMBOL(xt_free_table_info);
1070
1071 /* Find table by name, grabs mutex & ref. Returns NULL on error. */
1072 struct xt_table *xt_find_table_lock(struct net *net, u_int8_t af,
1073 const char *name)
1074 {
1075 struct xt_table *t, *found = NULL;
1076
1077 mutex_lock(&xt[af].mutex);
1078 list_for_each_entry(t, &net->xt.tables[af], list)
1079 if (strcmp(t->name, name) == 0 && try_module_get(t->me))
1080 return t;
1081
1082 if (net == &init_net)
1083 goto out;
1084
1085 /* Table doesn't exist in this netns, re-try init */
1086 list_for_each_entry(t, &init_net.xt.tables[af], list) {
1087 if (strcmp(t->name, name))
1088 continue;
1089 if (!try_module_get(t->me)) {
1090 mutex_unlock(&xt[af].mutex);
1091 return NULL;
1092 }
1093
1094 mutex_unlock(&xt[af].mutex);
1095 if (t->table_init(net) != 0) {
1096 module_put(t->me);
1097 return NULL;
1098 }
1099
1100 found = t;
1101
1102 mutex_lock(&xt[af].mutex);
1103 break;
1104 }
1105
1106 if (!found)
1107 goto out;
1108
1109 /* and once again: */
1110 list_for_each_entry(t, &net->xt.tables[af], list)
1111 if (strcmp(t->name, name) == 0)
1112 return t;
1113
1114 module_put(found->me);
1115 out:
1116 mutex_unlock(&xt[af].mutex);
1117 return NULL;
1118 }
1119 EXPORT_SYMBOL_GPL(xt_find_table_lock);
1120
1121 void xt_table_unlock(struct xt_table *table)
1122 {
1123 mutex_unlock(&xt[table->af].mutex);
1124 }
1125 EXPORT_SYMBOL_GPL(xt_table_unlock);
1126
1127 #ifdef CONFIG_COMPAT
1128 void xt_compat_lock(u_int8_t af)
1129 {
1130 mutex_lock(&xt[af].compat_mutex);
1131 }
1132 EXPORT_SYMBOL_GPL(xt_compat_lock);
1133
1134 void xt_compat_unlock(u_int8_t af)
1135 {
1136 mutex_unlock(&xt[af].compat_mutex);
1137 }
1138 EXPORT_SYMBOL_GPL(xt_compat_unlock);
1139 #endif
1140
1141 DEFINE_PER_CPU(seqcount_t, xt_recseq);
1142 EXPORT_PER_CPU_SYMBOL_GPL(xt_recseq);
1143
1144 struct static_key xt_tee_enabled __read_mostly;
1145 EXPORT_SYMBOL_GPL(xt_tee_enabled);
1146
1147 static int xt_jumpstack_alloc(struct xt_table_info *i)
1148 {
1149 unsigned int size;
1150 int cpu;
1151
1152 size = sizeof(void **) * nr_cpu_ids;
1153 if (size > PAGE_SIZE)
1154 i->jumpstack = kvzalloc(size, GFP_KERNEL);
1155 else
1156 i->jumpstack = kzalloc(size, GFP_KERNEL);
1157 if (i->jumpstack == NULL)
1158 return -ENOMEM;
1159
1160 /* ruleset without jumps -- no stack needed */
1161 if (i->stacksize == 0)
1162 return 0;
1163
1164 /* Jumpstack needs to be able to record two full callchains, one
1165 * from the first rule set traversal, plus one table reentrancy
1166 * via -j TEE without clobbering the callchain that brought us to
1167 * TEE target.
1168 *
1169 * This is done by allocating two jumpstacks per cpu, on reentry
1170 * the upper half of the stack is used.
1171 *
1172 * see the jumpstack setup in ipt_do_table() for more details.
1173 */
1174 size = sizeof(void *) * i->stacksize * 2u;
1175 for_each_possible_cpu(cpu) {
1176 i->jumpstack[cpu] = kvmalloc_node(size, GFP_KERNEL,
1177 cpu_to_node(cpu));
1178 if (i->jumpstack[cpu] == NULL)
1179 /*
1180 * Freeing will be done later on by the callers. The
1181 * chain is: xt_replace_table -> __do_replace ->
1182 * do_replace -> xt_free_table_info.
1183 */
1184 return -ENOMEM;
1185 }
1186
1187 return 0;
1188 }
1189
1190 struct xt_counters *xt_counters_alloc(unsigned int counters)
1191 {
1192 struct xt_counters *mem;
1193
1194 if (counters == 0 || counters > INT_MAX / sizeof(*mem))
1195 return NULL;
1196
1197 counters *= sizeof(*mem);
1198 if (counters > XT_MAX_TABLE_SIZE)
1199 return NULL;
1200
1201 return vzalloc(counters);
1202 }
1203 EXPORT_SYMBOL(xt_counters_alloc);
1204
1205 struct xt_table_info *
1206 xt_replace_table(struct xt_table *table,
1207 unsigned int num_counters,
1208 struct xt_table_info *newinfo,
1209 int *error)
1210 {
1211 struct xt_table_info *private;
1212 int ret;
1213
1214 ret = xt_jumpstack_alloc(newinfo);
1215 if (ret < 0) {
1216 *error = ret;
1217 return NULL;
1218 }
1219
1220 /* Do the substitution. */
1221 local_bh_disable();
1222 private = table->private;
1223
1224 /* Check inside lock: is the old number correct? */
1225 if (num_counters != private->number) {
1226 pr_debug("num_counters != table->private->number (%u/%u)\n",
1227 num_counters, private->number);
1228 local_bh_enable();
1229 *error = -EAGAIN;
1230 return NULL;
1231 }
1232
1233 newinfo->initial_entries = private->initial_entries;
1234 /*
1235 * Ensure contents of newinfo are visible before assigning to
1236 * private.
1237 */
1238 smp_wmb();
1239 table->private = newinfo;
1240
1241 /*
1242 * Even though table entries have now been swapped, other CPU's
1243 * may still be using the old entries. This is okay, because
1244 * resynchronization happens because of the locking done
1245 * during the get_counters() routine.
1246 */
1247 local_bh_enable();
1248
1249 #ifdef CONFIG_AUDIT
1250 if (audit_enabled) {
1251 audit_log(current->audit_context, GFP_KERNEL,
1252 AUDIT_NETFILTER_CFG,
1253 "table=%s family=%u entries=%u",
1254 table->name, table->af, private->number);
1255 }
1256 #endif
1257
1258 return private;
1259 }
1260 EXPORT_SYMBOL_GPL(xt_replace_table);
1261
1262 struct xt_table *xt_register_table(struct net *net,
1263 const struct xt_table *input_table,
1264 struct xt_table_info *bootstrap,
1265 struct xt_table_info *newinfo)
1266 {
1267 int ret;
1268 struct xt_table_info *private;
1269 struct xt_table *t, *table;
1270
1271 /* Don't add one object to multiple lists. */
1272 table = kmemdup(input_table, sizeof(struct xt_table), GFP_KERNEL);
1273 if (!table) {
1274 ret = -ENOMEM;
1275 goto out;
1276 }
1277
1278 mutex_lock(&xt[table->af].mutex);
1279 /* Don't autoload: we'd eat our tail... */
1280 list_for_each_entry(t, &net->xt.tables[table->af], list) {
1281 if (strcmp(t->name, table->name) == 0) {
1282 ret = -EEXIST;
1283 goto unlock;
1284 }
1285 }
1286
1287 /* Simplifies replace_table code. */
1288 table->private = bootstrap;
1289
1290 if (!xt_replace_table(table, 0, newinfo, &ret))
1291 goto unlock;
1292
1293 private = table->private;
1294 pr_debug("table->private->number = %u\n", private->number);
1295
1296 /* save number of initial entries */
1297 private->initial_entries = private->number;
1298
1299 list_add(&table->list, &net->xt.tables[table->af]);
1300 mutex_unlock(&xt[table->af].mutex);
1301 return table;
1302
1303 unlock:
1304 mutex_unlock(&xt[table->af].mutex);
1305 kfree(table);
1306 out:
1307 return ERR_PTR(ret);
1308 }
1309 EXPORT_SYMBOL_GPL(xt_register_table);
1310
1311 void *xt_unregister_table(struct xt_table *table)
1312 {
1313 struct xt_table_info *private;
1314
1315 mutex_lock(&xt[table->af].mutex);
1316 private = table->private;
1317 list_del(&table->list);
1318 mutex_unlock(&xt[table->af].mutex);
1319 kfree(table);
1320
1321 return private;
1322 }
1323 EXPORT_SYMBOL_GPL(xt_unregister_table);
1324
1325 #ifdef CONFIG_PROC_FS
1326 struct xt_names_priv {
1327 struct seq_net_private p;
1328 u_int8_t af;
1329 };
1330 static void *xt_table_seq_start(struct seq_file *seq, loff_t *pos)
1331 {
1332 struct xt_names_priv *priv = seq->private;
1333 struct net *net = seq_file_net(seq);
1334 u_int8_t af = priv->af;
1335
1336 mutex_lock(&xt[af].mutex);
1337 return seq_list_start(&net->xt.tables[af], *pos);
1338 }
1339
1340 static void *xt_table_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1341 {
1342 struct xt_names_priv *priv = seq->private;
1343 struct net *net = seq_file_net(seq);
1344 u_int8_t af = priv->af;
1345
1346 return seq_list_next(v, &net->xt.tables[af], pos);
1347 }
1348
1349 static void xt_table_seq_stop(struct seq_file *seq, void *v)
1350 {
1351 struct xt_names_priv *priv = seq->private;
1352 u_int8_t af = priv->af;
1353
1354 mutex_unlock(&xt[af].mutex);
1355 }
1356
1357 static int xt_table_seq_show(struct seq_file *seq, void *v)
1358 {
1359 struct xt_table *table = list_entry(v, struct xt_table, list);
1360
1361 if (*table->name)
1362 seq_printf(seq, "%s\n", table->name);
1363 return 0;
1364 }
1365
1366 static const struct seq_operations xt_table_seq_ops = {
1367 .start = xt_table_seq_start,
1368 .next = xt_table_seq_next,
1369 .stop = xt_table_seq_stop,
1370 .show = xt_table_seq_show,
1371 };
1372
1373 static int xt_table_open(struct inode *inode, struct file *file)
1374 {
1375 int ret;
1376 struct xt_names_priv *priv;
1377
1378 ret = seq_open_net(inode, file, &xt_table_seq_ops,
1379 sizeof(struct xt_names_priv));
1380 if (!ret) {
1381 priv = ((struct seq_file *)file->private_data)->private;
1382 priv->af = (unsigned long)PDE_DATA(inode);
1383 }
1384 return ret;
1385 }
1386
1387 static const struct file_operations xt_table_ops = {
1388 .owner = THIS_MODULE,
1389 .open = xt_table_open,
1390 .read = seq_read,
1391 .llseek = seq_lseek,
1392 .release = seq_release_net,
1393 };
1394
1395 /*
1396 * Traverse state for ip{,6}_{tables,matches} for helping crossing
1397 * the multi-AF mutexes.
1398 */
1399 struct nf_mttg_trav {
1400 struct list_head *head, *curr;
1401 uint8_t class, nfproto;
1402 };
1403
1404 enum {
1405 MTTG_TRAV_INIT,
1406 MTTG_TRAV_NFP_UNSPEC,
1407 MTTG_TRAV_NFP_SPEC,
1408 MTTG_TRAV_DONE,
1409 };
1410
1411 static void *xt_mttg_seq_next(struct seq_file *seq, void *v, loff_t *ppos,
1412 bool is_target)
1413 {
1414 static const uint8_t next_class[] = {
1415 [MTTG_TRAV_NFP_UNSPEC] = MTTG_TRAV_NFP_SPEC,
1416 [MTTG_TRAV_NFP_SPEC] = MTTG_TRAV_DONE,
1417 };
1418 struct nf_mttg_trav *trav = seq->private;
1419
1420 switch (trav->class) {
1421 case MTTG_TRAV_INIT:
1422 trav->class = MTTG_TRAV_NFP_UNSPEC;
1423 mutex_lock(&xt[NFPROTO_UNSPEC].mutex);
1424 trav->head = trav->curr = is_target ?
1425 &xt[NFPROTO_UNSPEC].target : &xt[NFPROTO_UNSPEC].match;
1426 break;
1427 case MTTG_TRAV_NFP_UNSPEC:
1428 trav->curr = trav->curr->next;
1429 if (trav->curr != trav->head)
1430 break;
1431 mutex_unlock(&xt[NFPROTO_UNSPEC].mutex);
1432 mutex_lock(&xt[trav->nfproto].mutex);
1433 trav->head = trav->curr = is_target ?
1434 &xt[trav->nfproto].target : &xt[trav->nfproto].match;
1435 trav->class = next_class[trav->class];
1436 break;
1437 case MTTG_TRAV_NFP_SPEC:
1438 trav->curr = trav->curr->next;
1439 if (trav->curr != trav->head)
1440 break;
1441 /* fallthru, _stop will unlock */
1442 default:
1443 return NULL;
1444 }
1445
1446 if (ppos != NULL)
1447 ++*ppos;
1448 return trav;
1449 }
1450
1451 static void *xt_mttg_seq_start(struct seq_file *seq, loff_t *pos,
1452 bool is_target)
1453 {
1454 struct nf_mttg_trav *trav = seq->private;
1455 unsigned int j;
1456
1457 trav->class = MTTG_TRAV_INIT;
1458 for (j = 0; j < *pos; ++j)
1459 if (xt_mttg_seq_next(seq, NULL, NULL, is_target) == NULL)
1460 return NULL;
1461 return trav;
1462 }
1463
1464 static void xt_mttg_seq_stop(struct seq_file *seq, void *v)
1465 {
1466 struct nf_mttg_trav *trav = seq->private;
1467
1468 switch (trav->class) {
1469 case MTTG_TRAV_NFP_UNSPEC:
1470 mutex_unlock(&xt[NFPROTO_UNSPEC].mutex);
1471 break;
1472 case MTTG_TRAV_NFP_SPEC:
1473 mutex_unlock(&xt[trav->nfproto].mutex);
1474 break;
1475 }
1476 }
1477
1478 static void *xt_match_seq_start(struct seq_file *seq, loff_t *pos)
1479 {
1480 return xt_mttg_seq_start(seq, pos, false);
1481 }
1482
1483 static void *xt_match_seq_next(struct seq_file *seq, void *v, loff_t *ppos)
1484 {
1485 return xt_mttg_seq_next(seq, v, ppos, false);
1486 }
1487
1488 static int xt_match_seq_show(struct seq_file *seq, void *v)
1489 {
1490 const struct nf_mttg_trav *trav = seq->private;
1491 const struct xt_match *match;
1492
1493 switch (trav->class) {
1494 case MTTG_TRAV_NFP_UNSPEC:
1495 case MTTG_TRAV_NFP_SPEC:
1496 if (trav->curr == trav->head)
1497 return 0;
1498 match = list_entry(trav->curr, struct xt_match, list);
1499 if (*match->name)
1500 seq_printf(seq, "%s\n", match->name);
1501 }
1502 return 0;
1503 }
1504
1505 static const struct seq_operations xt_match_seq_ops = {
1506 .start = xt_match_seq_start,
1507 .next = xt_match_seq_next,
1508 .stop = xt_mttg_seq_stop,
1509 .show = xt_match_seq_show,
1510 };
1511
1512 static int xt_match_open(struct inode *inode, struct file *file)
1513 {
1514 struct nf_mttg_trav *trav;
1515 trav = __seq_open_private(file, &xt_match_seq_ops, sizeof(*trav));
1516 if (!trav)
1517 return -ENOMEM;
1518
1519 trav->nfproto = (unsigned long)PDE_DATA(inode);
1520 return 0;
1521 }
1522
1523 static const struct file_operations xt_match_ops = {
1524 .owner = THIS_MODULE,
1525 .open = xt_match_open,
1526 .read = seq_read,
1527 .llseek = seq_lseek,
1528 .release = seq_release_private,
1529 };
1530
1531 static void *xt_target_seq_start(struct seq_file *seq, loff_t *pos)
1532 {
1533 return xt_mttg_seq_start(seq, pos, true);
1534 }
1535
1536 static void *xt_target_seq_next(struct seq_file *seq, void *v, loff_t *ppos)
1537 {
1538 return xt_mttg_seq_next(seq, v, ppos, true);
1539 }
1540
1541 static int xt_target_seq_show(struct seq_file *seq, void *v)
1542 {
1543 const struct nf_mttg_trav *trav = seq->private;
1544 const struct xt_target *target;
1545
1546 switch (trav->class) {
1547 case MTTG_TRAV_NFP_UNSPEC:
1548 case MTTG_TRAV_NFP_SPEC:
1549 if (trav->curr == trav->head)
1550 return 0;
1551 target = list_entry(trav->curr, struct xt_target, list);
1552 if (*target->name)
1553 seq_printf(seq, "%s\n", target->name);
1554 }
1555 return 0;
1556 }
1557
1558 static const struct seq_operations xt_target_seq_ops = {
1559 .start = xt_target_seq_start,
1560 .next = xt_target_seq_next,
1561 .stop = xt_mttg_seq_stop,
1562 .show = xt_target_seq_show,
1563 };
1564
1565 static int xt_target_open(struct inode *inode, struct file *file)
1566 {
1567 struct nf_mttg_trav *trav;
1568 trav = __seq_open_private(file, &xt_target_seq_ops, sizeof(*trav));
1569 if (!trav)
1570 return -ENOMEM;
1571
1572 trav->nfproto = (unsigned long)PDE_DATA(inode);
1573 return 0;
1574 }
1575
1576 static const struct file_operations xt_target_ops = {
1577 .owner = THIS_MODULE,
1578 .open = xt_target_open,
1579 .read = seq_read,
1580 .llseek = seq_lseek,
1581 .release = seq_release_private,
1582 };
1583
1584 #define FORMAT_TABLES "_tables_names"
1585 #define FORMAT_MATCHES "_tables_matches"
1586 #define FORMAT_TARGETS "_tables_targets"
1587
1588 #endif /* CONFIG_PROC_FS */
1589
1590 /**
1591 * xt_hook_ops_alloc - set up hooks for a new table
1592 * @table: table with metadata needed to set up hooks
1593 * @fn: Hook function
1594 *
1595 * This function will create the nf_hook_ops that the x_table needs
1596 * to hand to xt_hook_link_net().
1597 */
1598 struct nf_hook_ops *
1599 xt_hook_ops_alloc(const struct xt_table *table, nf_hookfn *fn)
1600 {
1601 unsigned int hook_mask = table->valid_hooks;
1602 uint8_t i, num_hooks = hweight32(hook_mask);
1603 uint8_t hooknum;
1604 struct nf_hook_ops *ops;
1605
1606 if (!num_hooks)
1607 return ERR_PTR(-EINVAL);
1608
1609 ops = kcalloc(num_hooks, sizeof(*ops), GFP_KERNEL);
1610 if (ops == NULL)
1611 return ERR_PTR(-ENOMEM);
1612
1613 for (i = 0, hooknum = 0; i < num_hooks && hook_mask != 0;
1614 hook_mask >>= 1, ++hooknum) {
1615 if (!(hook_mask & 1))
1616 continue;
1617 ops[i].hook = fn;
1618 ops[i].pf = table->af;
1619 ops[i].hooknum = hooknum;
1620 ops[i].priority = table->priority;
1621 ++i;
1622 }
1623
1624 return ops;
1625 }
1626 EXPORT_SYMBOL_GPL(xt_hook_ops_alloc);
1627
1628 int xt_proto_init(struct net *net, u_int8_t af)
1629 {
1630 #ifdef CONFIG_PROC_FS
1631 char buf[XT_FUNCTION_MAXNAMELEN];
1632 struct proc_dir_entry *proc;
1633 kuid_t root_uid;
1634 kgid_t root_gid;
1635 #endif
1636
1637 if (af >= ARRAY_SIZE(xt_prefix))
1638 return -EINVAL;
1639
1640
1641 #ifdef CONFIG_PROC_FS
1642 root_uid = make_kuid(net->user_ns, 0);
1643 root_gid = make_kgid(net->user_ns, 0);
1644
1645 strlcpy(buf, xt_prefix[af], sizeof(buf));
1646 strlcat(buf, FORMAT_TABLES, sizeof(buf));
1647 proc = proc_create_data(buf, 0440, net->proc_net, &xt_table_ops,
1648 (void *)(unsigned long)af);
1649 if (!proc)
1650 goto out;
1651 if (uid_valid(root_uid) && gid_valid(root_gid))
1652 proc_set_user(proc, root_uid, root_gid);
1653
1654 strlcpy(buf, xt_prefix[af], sizeof(buf));
1655 strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1656 proc = proc_create_data(buf, 0440, net->proc_net, &xt_match_ops,
1657 (void *)(unsigned long)af);
1658 if (!proc)
1659 goto out_remove_tables;
1660 if (uid_valid(root_uid) && gid_valid(root_gid))
1661 proc_set_user(proc, root_uid, root_gid);
1662
1663 strlcpy(buf, xt_prefix[af], sizeof(buf));
1664 strlcat(buf, FORMAT_TARGETS, sizeof(buf));
1665 proc = proc_create_data(buf, 0440, net->proc_net, &xt_target_ops,
1666 (void *)(unsigned long)af);
1667 if (!proc)
1668 goto out_remove_matches;
1669 if (uid_valid(root_uid) && gid_valid(root_gid))
1670 proc_set_user(proc, root_uid, root_gid);
1671 #endif
1672
1673 return 0;
1674
1675 #ifdef CONFIG_PROC_FS
1676 out_remove_matches:
1677 strlcpy(buf, xt_prefix[af], sizeof(buf));
1678 strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1679 remove_proc_entry(buf, net->proc_net);
1680
1681 out_remove_tables:
1682 strlcpy(buf, xt_prefix[af], sizeof(buf));
1683 strlcat(buf, FORMAT_TABLES, sizeof(buf));
1684 remove_proc_entry(buf, net->proc_net);
1685 out:
1686 return -1;
1687 #endif
1688 }
1689 EXPORT_SYMBOL_GPL(xt_proto_init);
1690
1691 void xt_proto_fini(struct net *net, u_int8_t af)
1692 {
1693 #ifdef CONFIG_PROC_FS
1694 char buf[XT_FUNCTION_MAXNAMELEN];
1695
1696 strlcpy(buf, xt_prefix[af], sizeof(buf));
1697 strlcat(buf, FORMAT_TABLES, sizeof(buf));
1698 remove_proc_entry(buf, net->proc_net);
1699
1700 strlcpy(buf, xt_prefix[af], sizeof(buf));
1701 strlcat(buf, FORMAT_TARGETS, sizeof(buf));
1702 remove_proc_entry(buf, net->proc_net);
1703
1704 strlcpy(buf, xt_prefix[af], sizeof(buf));
1705 strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1706 remove_proc_entry(buf, net->proc_net);
1707 #endif /*CONFIG_PROC_FS*/
1708 }
1709 EXPORT_SYMBOL_GPL(xt_proto_fini);
1710
1711 /**
1712 * xt_percpu_counter_alloc - allocate x_tables rule counter
1713 *
1714 * @state: pointer to xt_percpu allocation state
1715 * @counter: pointer to counter struct inside the ip(6)/arpt_entry struct
1716 *
1717 * On SMP, the packet counter [ ip(6)t_entry->counters.pcnt ] will then
1718 * contain the address of the real (percpu) counter.
1719 *
1720 * Rule evaluation needs to use xt_get_this_cpu_counter() helper
1721 * to fetch the real percpu counter.
1722 *
1723 * To speed up allocation and improve data locality, a 4kb block is
1724 * allocated.
1725 *
1726 * xt_percpu_counter_alloc_state contains the base address of the
1727 * allocated page and the current sub-offset.
1728 *
1729 * returns false on error.
1730 */
1731 bool xt_percpu_counter_alloc(struct xt_percpu_counter_alloc_state *state,
1732 struct xt_counters *counter)
1733 {
1734 BUILD_BUG_ON(XT_PCPU_BLOCK_SIZE < (sizeof(*counter) * 2));
1735
1736 if (nr_cpu_ids <= 1)
1737 return true;
1738
1739 if (!state->mem) {
1740 state->mem = __alloc_percpu(XT_PCPU_BLOCK_SIZE,
1741 XT_PCPU_BLOCK_SIZE);
1742 if (!state->mem)
1743 return false;
1744 }
1745 counter->pcnt = (__force unsigned long)(state->mem + state->off);
1746 state->off += sizeof(*counter);
1747 if (state->off > (XT_PCPU_BLOCK_SIZE - sizeof(*counter))) {
1748 state->mem = NULL;
1749 state->off = 0;
1750 }
1751 return true;
1752 }
1753 EXPORT_SYMBOL_GPL(xt_percpu_counter_alloc);
1754
1755 void xt_percpu_counter_free(struct xt_counters *counters)
1756 {
1757 unsigned long pcnt = counters->pcnt;
1758
1759 if (nr_cpu_ids > 1 && (pcnt & (XT_PCPU_BLOCK_SIZE - 1)) == 0)
1760 free_percpu((void __percpu *)pcnt);
1761 }
1762 EXPORT_SYMBOL_GPL(xt_percpu_counter_free);
1763
1764 static int __net_init xt_net_init(struct net *net)
1765 {
1766 int i;
1767
1768 for (i = 0; i < NFPROTO_NUMPROTO; i++)
1769 INIT_LIST_HEAD(&net->xt.tables[i]);
1770 return 0;
1771 }
1772
1773 static struct pernet_operations xt_net_ops = {
1774 .init = xt_net_init,
1775 };
1776
1777 static int __init xt_init(void)
1778 {
1779 unsigned int i;
1780 int rv;
1781
1782 for_each_possible_cpu(i) {
1783 seqcount_init(&per_cpu(xt_recseq, i));
1784 }
1785
1786 xt = kmalloc(sizeof(struct xt_af) * NFPROTO_NUMPROTO, GFP_KERNEL);
1787 if (!xt)
1788 return -ENOMEM;
1789
1790 for (i = 0; i < NFPROTO_NUMPROTO; i++) {
1791 mutex_init(&xt[i].mutex);
1792 #ifdef CONFIG_COMPAT
1793 mutex_init(&xt[i].compat_mutex);
1794 xt[i].compat_tab = NULL;
1795 #endif
1796 INIT_LIST_HEAD(&xt[i].target);
1797 INIT_LIST_HEAD(&xt[i].match);
1798 }
1799 rv = register_pernet_subsys(&xt_net_ops);
1800 if (rv < 0)
1801 kfree(xt);
1802 return rv;
1803 }
1804
1805 static void __exit xt_fini(void)
1806 {
1807 unregister_pernet_subsys(&xt_net_ops);
1808 kfree(xt);
1809 }
1810
1811 module_init(xt_init);
1812 module_exit(xt_fini);
1813