]> git.ipfire.org Git - thirdparty/linux.git/blob - net/openvswitch/conntrack.c
Merge remote-tracking branches 'asoc/topic/samsung', 'asoc/topic/sgtl5000', 'asoc...
[thirdparty/linux.git] / net / openvswitch / conntrack.c
1 /*
2 * Copyright (c) 2015 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13
14 #include <linux/module.h>
15 #include <linux/openvswitch.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/sctp.h>
19 #include <net/ip.h>
20 #include <net/netfilter/nf_conntrack_core.h>
21 #include <net/netfilter/nf_conntrack_helper.h>
22 #include <net/netfilter/nf_conntrack_labels.h>
23 #include <net/netfilter/nf_conntrack_seqadj.h>
24 #include <net/netfilter/nf_conntrack_zones.h>
25 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
26
27 #ifdef CONFIG_NF_NAT_NEEDED
28 #include <linux/netfilter/nf_nat.h>
29 #include <net/netfilter/nf_nat_core.h>
30 #include <net/netfilter/nf_nat_l3proto.h>
31 #endif
32
33 #include "datapath.h"
34 #include "conntrack.h"
35 #include "flow.h"
36 #include "flow_netlink.h"
37
38 struct ovs_ct_len_tbl {
39 int maxlen;
40 int minlen;
41 };
42
43 /* Metadata mark for masked write to conntrack mark */
44 struct md_mark {
45 u32 value;
46 u32 mask;
47 };
48
49 /* Metadata label for masked write to conntrack label. */
50 struct md_labels {
51 struct ovs_key_ct_labels value;
52 struct ovs_key_ct_labels mask;
53 };
54
55 enum ovs_ct_nat {
56 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */
57 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
58 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
59 };
60
61 /* Conntrack action context for execution. */
62 struct ovs_conntrack_info {
63 struct nf_conntrack_helper *helper;
64 struct nf_conntrack_zone zone;
65 struct nf_conn *ct;
66 u8 commit : 1;
67 u8 nat : 3; /* enum ovs_ct_nat */
68 u8 force : 1;
69 u16 family;
70 struct md_mark mark;
71 struct md_labels labels;
72 #ifdef CONFIG_NF_NAT_NEEDED
73 struct nf_nat_range range; /* Only present for SRC NAT and DST NAT. */
74 #endif
75 };
76
77 static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
78
79 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
80
81 static u16 key_to_nfproto(const struct sw_flow_key *key)
82 {
83 switch (ntohs(key->eth.type)) {
84 case ETH_P_IP:
85 return NFPROTO_IPV4;
86 case ETH_P_IPV6:
87 return NFPROTO_IPV6;
88 default:
89 return NFPROTO_UNSPEC;
90 }
91 }
92
93 /* Map SKB connection state into the values used by flow definition. */
94 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
95 {
96 u8 ct_state = OVS_CS_F_TRACKED;
97
98 switch (ctinfo) {
99 case IP_CT_ESTABLISHED_REPLY:
100 case IP_CT_RELATED_REPLY:
101 ct_state |= OVS_CS_F_REPLY_DIR;
102 break;
103 default:
104 break;
105 }
106
107 switch (ctinfo) {
108 case IP_CT_ESTABLISHED:
109 case IP_CT_ESTABLISHED_REPLY:
110 ct_state |= OVS_CS_F_ESTABLISHED;
111 break;
112 case IP_CT_RELATED:
113 case IP_CT_RELATED_REPLY:
114 ct_state |= OVS_CS_F_RELATED;
115 break;
116 case IP_CT_NEW:
117 ct_state |= OVS_CS_F_NEW;
118 break;
119 default:
120 break;
121 }
122
123 return ct_state;
124 }
125
126 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
127 {
128 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
129 return ct ? ct->mark : 0;
130 #else
131 return 0;
132 #endif
133 }
134
135 /* Guard against conntrack labels max size shrinking below 128 bits. */
136 #if NF_CT_LABELS_MAX_SIZE < 16
137 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
138 #endif
139
140 static void ovs_ct_get_labels(const struct nf_conn *ct,
141 struct ovs_key_ct_labels *labels)
142 {
143 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
144
145 if (cl)
146 memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
147 else
148 memset(labels, 0, OVS_CT_LABELS_LEN);
149 }
150
151 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
152 const struct nf_conntrack_tuple *orig,
153 u8 icmp_proto)
154 {
155 key->ct_orig_proto = orig->dst.protonum;
156 if (orig->dst.protonum == icmp_proto) {
157 key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
158 key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
159 } else {
160 key->ct.orig_tp.src = orig->src.u.all;
161 key->ct.orig_tp.dst = orig->dst.u.all;
162 }
163 }
164
165 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
166 const struct nf_conntrack_zone *zone,
167 const struct nf_conn *ct)
168 {
169 key->ct_state = state;
170 key->ct_zone = zone->id;
171 key->ct.mark = ovs_ct_get_mark(ct);
172 ovs_ct_get_labels(ct, &key->ct.labels);
173
174 if (ct) {
175 const struct nf_conntrack_tuple *orig;
176
177 /* Use the master if we have one. */
178 if (ct->master)
179 ct = ct->master;
180 orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
181
182 /* IP version must match with the master connection. */
183 if (key->eth.type == htons(ETH_P_IP) &&
184 nf_ct_l3num(ct) == NFPROTO_IPV4) {
185 key->ipv4.ct_orig.src = orig->src.u3.ip;
186 key->ipv4.ct_orig.dst = orig->dst.u3.ip;
187 __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
188 return;
189 } else if (key->eth.type == htons(ETH_P_IPV6) &&
190 !sw_flow_key_is_nd(key) &&
191 nf_ct_l3num(ct) == NFPROTO_IPV6) {
192 key->ipv6.ct_orig.src = orig->src.u3.in6;
193 key->ipv6.ct_orig.dst = orig->dst.u3.in6;
194 __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
195 return;
196 }
197 }
198 /* Clear 'ct_orig_proto' to mark the non-existence of conntrack
199 * original direction key fields.
200 */
201 key->ct_orig_proto = 0;
202 }
203
204 /* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has
205 * previously sent the packet to conntrack via the ct action. If
206 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
207 * initialized from the connection status.
208 */
209 static void ovs_ct_update_key(const struct sk_buff *skb,
210 const struct ovs_conntrack_info *info,
211 struct sw_flow_key *key, bool post_ct,
212 bool keep_nat_flags)
213 {
214 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
215 enum ip_conntrack_info ctinfo;
216 struct nf_conn *ct;
217 u8 state = 0;
218
219 ct = nf_ct_get(skb, &ctinfo);
220 if (ct) {
221 state = ovs_ct_get_state(ctinfo);
222 /* All unconfirmed entries are NEW connections. */
223 if (!nf_ct_is_confirmed(ct))
224 state |= OVS_CS_F_NEW;
225 /* OVS persists the related flag for the duration of the
226 * connection.
227 */
228 if (ct->master)
229 state |= OVS_CS_F_RELATED;
230 if (keep_nat_flags) {
231 state |= key->ct_state & OVS_CS_F_NAT_MASK;
232 } else {
233 if (ct->status & IPS_SRC_NAT)
234 state |= OVS_CS_F_SRC_NAT;
235 if (ct->status & IPS_DST_NAT)
236 state |= OVS_CS_F_DST_NAT;
237 }
238 zone = nf_ct_zone(ct);
239 } else if (post_ct) {
240 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
241 if (info)
242 zone = &info->zone;
243 }
244 __ovs_ct_update_key(key, state, zone, ct);
245 }
246
247 /* This is called to initialize CT key fields possibly coming in from the local
248 * stack.
249 */
250 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
251 {
252 ovs_ct_update_key(skb, NULL, key, false, false);
253 }
254
255 #define IN6_ADDR_INITIALIZER(ADDR) \
256 { (ADDR).s6_addr32[0], (ADDR).s6_addr32[1], \
257 (ADDR).s6_addr32[2], (ADDR).s6_addr32[3] }
258
259 int ovs_ct_put_key(const struct sw_flow_key *swkey,
260 const struct sw_flow_key *output, struct sk_buff *skb)
261 {
262 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
263 return -EMSGSIZE;
264
265 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
266 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
267 return -EMSGSIZE;
268
269 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
270 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
271 return -EMSGSIZE;
272
273 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
274 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
275 &output->ct.labels))
276 return -EMSGSIZE;
277
278 if (swkey->ct_orig_proto) {
279 if (swkey->eth.type == htons(ETH_P_IP)) {
280 struct ovs_key_ct_tuple_ipv4 orig = {
281 output->ipv4.ct_orig.src,
282 output->ipv4.ct_orig.dst,
283 output->ct.orig_tp.src,
284 output->ct.orig_tp.dst,
285 output->ct_orig_proto,
286 };
287 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
288 sizeof(orig), &orig))
289 return -EMSGSIZE;
290 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
291 struct ovs_key_ct_tuple_ipv6 orig = {
292 IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.src),
293 IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.dst),
294 output->ct.orig_tp.src,
295 output->ct.orig_tp.dst,
296 output->ct_orig_proto,
297 };
298 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
299 sizeof(orig), &orig))
300 return -EMSGSIZE;
301 }
302 }
303
304 return 0;
305 }
306
307 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
308 u32 ct_mark, u32 mask)
309 {
310 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
311 u32 new_mark;
312
313 new_mark = ct_mark | (ct->mark & ~(mask));
314 if (ct->mark != new_mark) {
315 ct->mark = new_mark;
316 if (nf_ct_is_confirmed(ct))
317 nf_conntrack_event_cache(IPCT_MARK, ct);
318 key->ct.mark = new_mark;
319 }
320
321 return 0;
322 #else
323 return -ENOTSUPP;
324 #endif
325 }
326
327 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
328 {
329 struct nf_conn_labels *cl;
330
331 cl = nf_ct_labels_find(ct);
332 if (!cl) {
333 nf_ct_labels_ext_add(ct);
334 cl = nf_ct_labels_find(ct);
335 }
336
337 return cl;
338 }
339
340 /* Initialize labels for a new, yet to be committed conntrack entry. Note that
341 * since the new connection is not yet confirmed, and thus no-one else has
342 * access to it's labels, we simply write them over.
343 */
344 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
345 const struct ovs_key_ct_labels *labels,
346 const struct ovs_key_ct_labels *mask)
347 {
348 struct nf_conn_labels *cl, *master_cl;
349 bool have_mask = labels_nonzero(mask);
350
351 /* Inherit master's labels to the related connection? */
352 master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
353
354 if (!master_cl && !have_mask)
355 return 0; /* Nothing to do. */
356
357 cl = ovs_ct_get_conn_labels(ct);
358 if (!cl)
359 return -ENOSPC;
360
361 /* Inherit the master's labels, if any. */
362 if (master_cl)
363 *cl = *master_cl;
364
365 if (have_mask) {
366 u32 *dst = (u32 *)cl->bits;
367 int i;
368
369 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
370 dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
371 (labels->ct_labels_32[i]
372 & mask->ct_labels_32[i]);
373 }
374
375 /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
376 * IPCT_LABEL bit it set in the event cache.
377 */
378 nf_conntrack_event_cache(IPCT_LABEL, ct);
379
380 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
381
382 return 0;
383 }
384
385 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
386 const struct ovs_key_ct_labels *labels,
387 const struct ovs_key_ct_labels *mask)
388 {
389 struct nf_conn_labels *cl;
390 int err;
391
392 cl = ovs_ct_get_conn_labels(ct);
393 if (!cl)
394 return -ENOSPC;
395
396 err = nf_connlabels_replace(ct, labels->ct_labels_32,
397 mask->ct_labels_32,
398 OVS_CT_LABELS_LEN_32);
399 if (err)
400 return err;
401
402 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
403
404 return 0;
405 }
406
407 /* 'skb' should already be pulled to nh_ofs. */
408 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
409 {
410 const struct nf_conntrack_helper *helper;
411 const struct nf_conn_help *help;
412 enum ip_conntrack_info ctinfo;
413 unsigned int protoff;
414 struct nf_conn *ct;
415 int err;
416
417 ct = nf_ct_get(skb, &ctinfo);
418 if (!ct || ctinfo == IP_CT_RELATED_REPLY)
419 return NF_ACCEPT;
420
421 help = nfct_help(ct);
422 if (!help)
423 return NF_ACCEPT;
424
425 helper = rcu_dereference(help->helper);
426 if (!helper)
427 return NF_ACCEPT;
428
429 switch (proto) {
430 case NFPROTO_IPV4:
431 protoff = ip_hdrlen(skb);
432 break;
433 case NFPROTO_IPV6: {
434 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
435 __be16 frag_off;
436 int ofs;
437
438 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
439 &frag_off);
440 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
441 pr_debug("proto header not found\n");
442 return NF_ACCEPT;
443 }
444 protoff = ofs;
445 break;
446 }
447 default:
448 WARN_ONCE(1, "helper invoked on non-IP family!");
449 return NF_DROP;
450 }
451
452 err = helper->help(skb, protoff, ct, ctinfo);
453 if (err != NF_ACCEPT)
454 return err;
455
456 /* Adjust seqs after helper. This is needed due to some helpers (e.g.,
457 * FTP with NAT) adusting the TCP payload size when mangling IP
458 * addresses and/or port numbers in the text-based control connection.
459 */
460 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
461 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
462 return NF_DROP;
463 return NF_ACCEPT;
464 }
465
466 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
467 * value if 'skb' is freed.
468 */
469 static int handle_fragments(struct net *net, struct sw_flow_key *key,
470 u16 zone, struct sk_buff *skb)
471 {
472 struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
473 int err;
474
475 if (key->eth.type == htons(ETH_P_IP)) {
476 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
477
478 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
479 err = ip_defrag(net, skb, user);
480 if (err)
481 return err;
482
483 ovs_cb.mru = IPCB(skb)->frag_max_size;
484 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
485 } else if (key->eth.type == htons(ETH_P_IPV6)) {
486 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
487
488 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
489 err = nf_ct_frag6_gather(net, skb, user);
490 if (err) {
491 if (err != -EINPROGRESS)
492 kfree_skb(skb);
493 return err;
494 }
495
496 key->ip.proto = ipv6_hdr(skb)->nexthdr;
497 ovs_cb.mru = IP6CB(skb)->frag_max_size;
498 #endif
499 } else {
500 kfree_skb(skb);
501 return -EPFNOSUPPORT;
502 }
503
504 key->ip.frag = OVS_FRAG_TYPE_NONE;
505 skb_clear_hash(skb);
506 skb->ignore_df = 1;
507 *OVS_CB(skb) = ovs_cb;
508
509 return 0;
510 }
511
512 static struct nf_conntrack_expect *
513 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
514 u16 proto, const struct sk_buff *skb)
515 {
516 struct nf_conntrack_tuple tuple;
517
518 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
519 return NULL;
520 return __nf_ct_expect_find(net, zone, &tuple);
521 }
522
523 /* This replicates logic from nf_conntrack_core.c that is not exported. */
524 static enum ip_conntrack_info
525 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
526 {
527 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
528
529 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
530 return IP_CT_ESTABLISHED_REPLY;
531 /* Once we've had two way comms, always ESTABLISHED. */
532 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
533 return IP_CT_ESTABLISHED;
534 if (test_bit(IPS_EXPECTED_BIT, &ct->status))
535 return IP_CT_RELATED;
536 return IP_CT_NEW;
537 }
538
539 /* Find an existing connection which this packet belongs to without
540 * re-attributing statistics or modifying the connection state. This allows an
541 * skb->_nfct lost due to an upcall to be recovered during actions execution.
542 *
543 * Must be called with rcu_read_lock.
544 *
545 * On success, populates skb->_nfct and returns the connection. Returns NULL
546 * if there is no existing entry.
547 */
548 static struct nf_conn *
549 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
550 u8 l3num, struct sk_buff *skb, bool natted)
551 {
552 struct nf_conntrack_l3proto *l3proto;
553 struct nf_conntrack_l4proto *l4proto;
554 struct nf_conntrack_tuple tuple;
555 struct nf_conntrack_tuple_hash *h;
556 struct nf_conn *ct;
557 unsigned int dataoff;
558 u8 protonum;
559
560 l3proto = __nf_ct_l3proto_find(l3num);
561 if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff,
562 &protonum) <= 0) {
563 pr_debug("ovs_ct_find_existing: Can't get protonum\n");
564 return NULL;
565 }
566 l4proto = __nf_ct_l4proto_find(l3num, protonum);
567 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
568 protonum, net, &tuple, l3proto, l4proto)) {
569 pr_debug("ovs_ct_find_existing: Can't get tuple\n");
570 return NULL;
571 }
572
573 /* Must invert the tuple if skb has been transformed by NAT. */
574 if (natted) {
575 struct nf_conntrack_tuple inverse;
576
577 if (!nf_ct_invert_tuple(&inverse, &tuple, l3proto, l4proto)) {
578 pr_debug("ovs_ct_find_existing: Inversion failed!\n");
579 return NULL;
580 }
581 tuple = inverse;
582 }
583
584 /* look for tuple match */
585 h = nf_conntrack_find_get(net, zone, &tuple);
586 if (!h)
587 return NULL; /* Not found. */
588
589 ct = nf_ct_tuplehash_to_ctrack(h);
590
591 /* Inverted packet tuple matches the reverse direction conntrack tuple,
592 * select the other tuplehash to get the right 'ctinfo' bits for this
593 * packet.
594 */
595 if (natted)
596 h = &ct->tuplehash[!h->tuple.dst.dir];
597
598 nf_ct_set(skb, ct, ovs_ct_get_info(h));
599 return ct;
600 }
601
602 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
603 static bool skb_nfct_cached(struct net *net,
604 const struct sw_flow_key *key,
605 const struct ovs_conntrack_info *info,
606 struct sk_buff *skb)
607 {
608 enum ip_conntrack_info ctinfo;
609 struct nf_conn *ct;
610
611 ct = nf_ct_get(skb, &ctinfo);
612 /* If no ct, check if we have evidence that an existing conntrack entry
613 * might be found for this skb. This happens when we lose a skb->_nfct
614 * due to an upcall. If the connection was not confirmed, it is not
615 * cached and needs to be run through conntrack again.
616 */
617 if (!ct && key->ct_state & OVS_CS_F_TRACKED &&
618 !(key->ct_state & OVS_CS_F_INVALID) &&
619 key->ct_zone == info->zone.id) {
620 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
621 !!(key->ct_state
622 & OVS_CS_F_NAT_MASK));
623 if (ct)
624 nf_ct_get(skb, &ctinfo);
625 }
626 if (!ct)
627 return false;
628 if (!net_eq(net, read_pnet(&ct->ct_net)))
629 return false;
630 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
631 return false;
632 if (info->helper) {
633 struct nf_conn_help *help;
634
635 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
636 if (help && rcu_access_pointer(help->helper) != info->helper)
637 return false;
638 }
639 /* Force conntrack entry direction to the current packet? */
640 if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
641 /* Delete the conntrack entry if confirmed, else just release
642 * the reference.
643 */
644 if (nf_ct_is_confirmed(ct))
645 nf_ct_delete(ct, 0, 0);
646
647 nf_conntrack_put(&ct->ct_general);
648 nf_ct_set(skb, NULL, 0);
649 return false;
650 }
651
652 return true;
653 }
654
655 #ifdef CONFIG_NF_NAT_NEEDED
656 /* Modelled after nf_nat_ipv[46]_fn().
657 * range is only used for new, uninitialized NAT state.
658 * Returns either NF_ACCEPT or NF_DROP.
659 */
660 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
661 enum ip_conntrack_info ctinfo,
662 const struct nf_nat_range *range,
663 enum nf_nat_manip_type maniptype)
664 {
665 int hooknum, nh_off, err = NF_ACCEPT;
666
667 nh_off = skb_network_offset(skb);
668 skb_pull_rcsum(skb, nh_off);
669
670 /* See HOOK2MANIP(). */
671 if (maniptype == NF_NAT_MANIP_SRC)
672 hooknum = NF_INET_LOCAL_IN; /* Source NAT */
673 else
674 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
675
676 switch (ctinfo) {
677 case IP_CT_RELATED:
678 case IP_CT_RELATED_REPLY:
679 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
680 skb->protocol == htons(ETH_P_IP) &&
681 ip_hdr(skb)->protocol == IPPROTO_ICMP) {
682 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
683 hooknum))
684 err = NF_DROP;
685 goto push;
686 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
687 skb->protocol == htons(ETH_P_IPV6)) {
688 __be16 frag_off;
689 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
690 int hdrlen = ipv6_skip_exthdr(skb,
691 sizeof(struct ipv6hdr),
692 &nexthdr, &frag_off);
693
694 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
695 if (!nf_nat_icmpv6_reply_translation(skb, ct,
696 ctinfo,
697 hooknum,
698 hdrlen))
699 err = NF_DROP;
700 goto push;
701 }
702 }
703 /* Non-ICMP, fall thru to initialize if needed. */
704 case IP_CT_NEW:
705 /* Seen it before? This can happen for loopback, retrans,
706 * or local packets.
707 */
708 if (!nf_nat_initialized(ct, maniptype)) {
709 /* Initialize according to the NAT action. */
710 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
711 /* Action is set up to establish a new
712 * mapping.
713 */
714 ? nf_nat_setup_info(ct, range, maniptype)
715 : nf_nat_alloc_null_binding(ct, hooknum);
716 if (err != NF_ACCEPT)
717 goto push;
718 }
719 break;
720
721 case IP_CT_ESTABLISHED:
722 case IP_CT_ESTABLISHED_REPLY:
723 break;
724
725 default:
726 err = NF_DROP;
727 goto push;
728 }
729
730 err = nf_nat_packet(ct, ctinfo, hooknum, skb);
731 push:
732 skb_push(skb, nh_off);
733 skb_postpush_rcsum(skb, skb->data, nh_off);
734
735 return err;
736 }
737
738 static void ovs_nat_update_key(struct sw_flow_key *key,
739 const struct sk_buff *skb,
740 enum nf_nat_manip_type maniptype)
741 {
742 if (maniptype == NF_NAT_MANIP_SRC) {
743 __be16 src;
744
745 key->ct_state |= OVS_CS_F_SRC_NAT;
746 if (key->eth.type == htons(ETH_P_IP))
747 key->ipv4.addr.src = ip_hdr(skb)->saddr;
748 else if (key->eth.type == htons(ETH_P_IPV6))
749 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
750 sizeof(key->ipv6.addr.src));
751 else
752 return;
753
754 if (key->ip.proto == IPPROTO_UDP)
755 src = udp_hdr(skb)->source;
756 else if (key->ip.proto == IPPROTO_TCP)
757 src = tcp_hdr(skb)->source;
758 else if (key->ip.proto == IPPROTO_SCTP)
759 src = sctp_hdr(skb)->source;
760 else
761 return;
762
763 key->tp.src = src;
764 } else {
765 __be16 dst;
766
767 key->ct_state |= OVS_CS_F_DST_NAT;
768 if (key->eth.type == htons(ETH_P_IP))
769 key->ipv4.addr.dst = ip_hdr(skb)->daddr;
770 else if (key->eth.type == htons(ETH_P_IPV6))
771 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
772 sizeof(key->ipv6.addr.dst));
773 else
774 return;
775
776 if (key->ip.proto == IPPROTO_UDP)
777 dst = udp_hdr(skb)->dest;
778 else if (key->ip.proto == IPPROTO_TCP)
779 dst = tcp_hdr(skb)->dest;
780 else if (key->ip.proto == IPPROTO_SCTP)
781 dst = sctp_hdr(skb)->dest;
782 else
783 return;
784
785 key->tp.dst = dst;
786 }
787 }
788
789 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
790 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
791 const struct ovs_conntrack_info *info,
792 struct sk_buff *skb, struct nf_conn *ct,
793 enum ip_conntrack_info ctinfo)
794 {
795 enum nf_nat_manip_type maniptype;
796 int err;
797
798 if (nf_ct_is_untracked(ct)) {
799 /* A NAT action may only be performed on tracked packets. */
800 return NF_ACCEPT;
801 }
802
803 /* Add NAT extension if not confirmed yet. */
804 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
805 return NF_ACCEPT; /* Can't NAT. */
806
807 /* Determine NAT type.
808 * Check if the NAT type can be deduced from the tracked connection.
809 * Make sure new expected connections (IP_CT_RELATED) are NATted only
810 * when committing.
811 */
812 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
813 ct->status & IPS_NAT_MASK &&
814 (ctinfo != IP_CT_RELATED || info->commit)) {
815 /* NAT an established or related connection like before. */
816 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
817 /* This is the REPLY direction for a connection
818 * for which NAT was applied in the forward
819 * direction. Do the reverse NAT.
820 */
821 maniptype = ct->status & IPS_SRC_NAT
822 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
823 else
824 maniptype = ct->status & IPS_SRC_NAT
825 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
826 } else if (info->nat & OVS_CT_SRC_NAT) {
827 maniptype = NF_NAT_MANIP_SRC;
828 } else if (info->nat & OVS_CT_DST_NAT) {
829 maniptype = NF_NAT_MANIP_DST;
830 } else {
831 return NF_ACCEPT; /* Connection is not NATed. */
832 }
833 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
834
835 /* Mark NAT done if successful and update the flow key. */
836 if (err == NF_ACCEPT)
837 ovs_nat_update_key(key, skb, maniptype);
838
839 return err;
840 }
841 #else /* !CONFIG_NF_NAT_NEEDED */
842 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
843 const struct ovs_conntrack_info *info,
844 struct sk_buff *skb, struct nf_conn *ct,
845 enum ip_conntrack_info ctinfo)
846 {
847 return NF_ACCEPT;
848 }
849 #endif
850
851 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
852 * not done already. Update key with new CT state after passing the packet
853 * through conntrack.
854 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
855 * set to NULL and 0 will be returned.
856 */
857 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
858 const struct ovs_conntrack_info *info,
859 struct sk_buff *skb)
860 {
861 /* If we are recirculating packets to match on conntrack fields and
862 * committing with a separate conntrack action, then we don't need to
863 * actually run the packet through conntrack twice unless it's for a
864 * different zone.
865 */
866 bool cached = skb_nfct_cached(net, key, info, skb);
867 enum ip_conntrack_info ctinfo;
868 struct nf_conn *ct;
869
870 if (!cached) {
871 struct nf_conn *tmpl = info->ct;
872 int err;
873
874 /* Associate skb with specified zone. */
875 if (tmpl) {
876 if (skb_nfct(skb))
877 nf_conntrack_put(skb_nfct(skb));
878 nf_conntrack_get(&tmpl->ct_general);
879 nf_ct_set(skb, tmpl, IP_CT_NEW);
880 }
881
882 err = nf_conntrack_in(net, info->family,
883 NF_INET_PRE_ROUTING, skb);
884 if (err != NF_ACCEPT)
885 return -ENOENT;
886
887 /* Clear CT state NAT flags to mark that we have not yet done
888 * NAT after the nf_conntrack_in() call. We can actually clear
889 * the whole state, as it will be re-initialized below.
890 */
891 key->ct_state = 0;
892
893 /* Update the key, but keep the NAT flags. */
894 ovs_ct_update_key(skb, info, key, true, true);
895 }
896
897 ct = nf_ct_get(skb, &ctinfo);
898 if (ct) {
899 /* Packets starting a new connection must be NATted before the
900 * helper, so that the helper knows about the NAT. We enforce
901 * this by delaying both NAT and helper calls for unconfirmed
902 * connections until the committing CT action. For later
903 * packets NAT and Helper may be called in either order.
904 *
905 * NAT will be done only if the CT action has NAT, and only
906 * once per packet (per zone), as guarded by the NAT bits in
907 * the key->ct_state.
908 */
909 if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
910 (nf_ct_is_confirmed(ct) || info->commit) &&
911 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
912 return -EINVAL;
913 }
914
915 /* Userspace may decide to perform a ct lookup without a helper
916 * specified followed by a (recirculate and) commit with one.
917 * Therefore, for unconfirmed connections which we will commit,
918 * we need to attach the helper here.
919 */
920 if (!nf_ct_is_confirmed(ct) && info->commit &&
921 info->helper && !nfct_help(ct)) {
922 int err = __nf_ct_try_assign_helper(ct, info->ct,
923 GFP_ATOMIC);
924 if (err)
925 return err;
926 }
927
928 /* Call the helper only if:
929 * - nf_conntrack_in() was executed above ("!cached") for a
930 * confirmed connection, or
931 * - When committing an unconfirmed connection.
932 */
933 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
934 ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
935 return -EINVAL;
936 }
937 }
938
939 return 0;
940 }
941
942 /* Lookup connection and read fields into key. */
943 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
944 const struct ovs_conntrack_info *info,
945 struct sk_buff *skb)
946 {
947 struct nf_conntrack_expect *exp;
948
949 /* If we pass an expected packet through nf_conntrack_in() the
950 * expectation is typically removed, but the packet could still be
951 * lost in upcall processing. To prevent this from happening we
952 * perform an explicit expectation lookup. Expected connections are
953 * always new, and will be passed through conntrack only when they are
954 * committed, as it is OK to remove the expectation at that time.
955 */
956 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
957 if (exp) {
958 u8 state;
959
960 /* NOTE: New connections are NATted and Helped only when
961 * committed, so we are not calling into NAT here.
962 */
963 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
964 __ovs_ct_update_key(key, state, &info->zone, exp->master);
965 } else {
966 struct nf_conn *ct;
967 int err;
968
969 err = __ovs_ct_lookup(net, key, info, skb);
970 if (err)
971 return err;
972
973 ct = (struct nf_conn *)skb_nfct(skb);
974 if (ct)
975 nf_ct_deliver_cached_events(ct);
976 }
977
978 return 0;
979 }
980
981 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
982 {
983 size_t i;
984
985 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
986 if (labels->ct_labels_32[i])
987 return true;
988
989 return false;
990 }
991
992 /* Lookup connection and confirm if unconfirmed. */
993 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
994 const struct ovs_conntrack_info *info,
995 struct sk_buff *skb)
996 {
997 enum ip_conntrack_info ctinfo;
998 struct nf_conn *ct;
999 int err;
1000
1001 err = __ovs_ct_lookup(net, key, info, skb);
1002 if (err)
1003 return err;
1004
1005 /* The connection could be invalid, in which case this is a no-op.*/
1006 ct = nf_ct_get(skb, &ctinfo);
1007 if (!ct)
1008 return 0;
1009
1010 /* Apply changes before confirming the connection so that the initial
1011 * conntrack NEW netlink event carries the values given in the CT
1012 * action.
1013 */
1014 if (info->mark.mask) {
1015 err = ovs_ct_set_mark(ct, key, info->mark.value,
1016 info->mark.mask);
1017 if (err)
1018 return err;
1019 }
1020 if (!nf_ct_is_confirmed(ct)) {
1021 err = ovs_ct_init_labels(ct, key, &info->labels.value,
1022 &info->labels.mask);
1023 if (err)
1024 return err;
1025 } else if (labels_nonzero(&info->labels.mask)) {
1026 err = ovs_ct_set_labels(ct, key, &info->labels.value,
1027 &info->labels.mask);
1028 if (err)
1029 return err;
1030 }
1031 /* This will take care of sending queued events even if the connection
1032 * is already confirmed.
1033 */
1034 if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1035 return -EINVAL;
1036
1037 return 0;
1038 }
1039
1040 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1041 * value if 'skb' is freed.
1042 */
1043 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1044 struct sw_flow_key *key,
1045 const struct ovs_conntrack_info *info)
1046 {
1047 int nh_ofs;
1048 int err;
1049
1050 /* The conntrack module expects to be working at L3. */
1051 nh_ofs = skb_network_offset(skb);
1052 skb_pull_rcsum(skb, nh_ofs);
1053
1054 if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1055 err = handle_fragments(net, key, info->zone.id, skb);
1056 if (err)
1057 return err;
1058 }
1059
1060 if (info->commit)
1061 err = ovs_ct_commit(net, key, info, skb);
1062 else
1063 err = ovs_ct_lookup(net, key, info, skb);
1064
1065 skb_push(skb, nh_ofs);
1066 skb_postpush_rcsum(skb, skb->data, nh_ofs);
1067 if (err)
1068 kfree_skb(skb);
1069 return err;
1070 }
1071
1072 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1073 const struct sw_flow_key *key, bool log)
1074 {
1075 struct nf_conntrack_helper *helper;
1076 struct nf_conn_help *help;
1077
1078 helper = nf_conntrack_helper_try_module_get(name, info->family,
1079 key->ip.proto);
1080 if (!helper) {
1081 OVS_NLERR(log, "Unknown helper \"%s\"", name);
1082 return -EINVAL;
1083 }
1084
1085 help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL);
1086 if (!help) {
1087 module_put(helper->me);
1088 return -ENOMEM;
1089 }
1090
1091 rcu_assign_pointer(help->helper, helper);
1092 info->helper = helper;
1093 return 0;
1094 }
1095
1096 #ifdef CONFIG_NF_NAT_NEEDED
1097 static int parse_nat(const struct nlattr *attr,
1098 struct ovs_conntrack_info *info, bool log)
1099 {
1100 struct nlattr *a;
1101 int rem;
1102 bool have_ip_max = false;
1103 bool have_proto_max = false;
1104 bool ip_vers = (info->family == NFPROTO_IPV6);
1105
1106 nla_for_each_nested(a, attr, rem) {
1107 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1108 [OVS_NAT_ATTR_SRC] = {0, 0},
1109 [OVS_NAT_ATTR_DST] = {0, 0},
1110 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1111 sizeof(struct in6_addr)},
1112 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1113 sizeof(struct in6_addr)},
1114 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1115 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1116 [OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1117 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1118 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1119 };
1120 int type = nla_type(a);
1121
1122 if (type > OVS_NAT_ATTR_MAX) {
1123 OVS_NLERR(log,
1124 "Unknown NAT attribute (type=%d, max=%d).\n",
1125 type, OVS_NAT_ATTR_MAX);
1126 return -EINVAL;
1127 }
1128
1129 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1130 OVS_NLERR(log,
1131 "NAT attribute type %d has unexpected length (%d != %d).\n",
1132 type, nla_len(a),
1133 ovs_nat_attr_lens[type][ip_vers]);
1134 return -EINVAL;
1135 }
1136
1137 switch (type) {
1138 case OVS_NAT_ATTR_SRC:
1139 case OVS_NAT_ATTR_DST:
1140 if (info->nat) {
1141 OVS_NLERR(log,
1142 "Only one type of NAT may be specified.\n"
1143 );
1144 return -ERANGE;
1145 }
1146 info->nat |= OVS_CT_NAT;
1147 info->nat |= ((type == OVS_NAT_ATTR_SRC)
1148 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1149 break;
1150
1151 case OVS_NAT_ATTR_IP_MIN:
1152 nla_memcpy(&info->range.min_addr, a,
1153 sizeof(info->range.min_addr));
1154 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1155 break;
1156
1157 case OVS_NAT_ATTR_IP_MAX:
1158 have_ip_max = true;
1159 nla_memcpy(&info->range.max_addr, a,
1160 sizeof(info->range.max_addr));
1161 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1162 break;
1163
1164 case OVS_NAT_ATTR_PROTO_MIN:
1165 info->range.min_proto.all = htons(nla_get_u16(a));
1166 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1167 break;
1168
1169 case OVS_NAT_ATTR_PROTO_MAX:
1170 have_proto_max = true;
1171 info->range.max_proto.all = htons(nla_get_u16(a));
1172 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1173 break;
1174
1175 case OVS_NAT_ATTR_PERSISTENT:
1176 info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1177 break;
1178
1179 case OVS_NAT_ATTR_PROTO_HASH:
1180 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1181 break;
1182
1183 case OVS_NAT_ATTR_PROTO_RANDOM:
1184 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1185 break;
1186
1187 default:
1188 OVS_NLERR(log, "Unknown nat attribute (%d).\n", type);
1189 return -EINVAL;
1190 }
1191 }
1192
1193 if (rem > 0) {
1194 OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem);
1195 return -EINVAL;
1196 }
1197 if (!info->nat) {
1198 /* Do not allow flags if no type is given. */
1199 if (info->range.flags) {
1200 OVS_NLERR(log,
1201 "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n"
1202 );
1203 return -EINVAL;
1204 }
1205 info->nat = OVS_CT_NAT; /* NAT existing connections. */
1206 } else if (!info->commit) {
1207 OVS_NLERR(log,
1208 "NAT attributes may be specified only when CT COMMIT flag is also specified.\n"
1209 );
1210 return -EINVAL;
1211 }
1212 /* Allow missing IP_MAX. */
1213 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1214 memcpy(&info->range.max_addr, &info->range.min_addr,
1215 sizeof(info->range.max_addr));
1216 }
1217 /* Allow missing PROTO_MAX. */
1218 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1219 !have_proto_max) {
1220 info->range.max_proto.all = info->range.min_proto.all;
1221 }
1222 return 0;
1223 }
1224 #endif
1225
1226 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1227 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 },
1228 [OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 },
1229 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16),
1230 .maxlen = sizeof(u16) },
1231 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark),
1232 .maxlen = sizeof(struct md_mark) },
1233 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels),
1234 .maxlen = sizeof(struct md_labels) },
1235 [OVS_CT_ATTR_HELPER] = { .minlen = 1,
1236 .maxlen = NF_CT_HELPER_NAME_LEN },
1237 #ifdef CONFIG_NF_NAT_NEEDED
1238 /* NAT length is checked when parsing the nested attributes. */
1239 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX },
1240 #endif
1241 };
1242
1243 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1244 const char **helper, bool log)
1245 {
1246 struct nlattr *a;
1247 int rem;
1248
1249 nla_for_each_nested(a, attr, rem) {
1250 int type = nla_type(a);
1251 int maxlen = ovs_ct_attr_lens[type].maxlen;
1252 int minlen = ovs_ct_attr_lens[type].minlen;
1253
1254 if (type > OVS_CT_ATTR_MAX) {
1255 OVS_NLERR(log,
1256 "Unknown conntrack attr (type=%d, max=%d)",
1257 type, OVS_CT_ATTR_MAX);
1258 return -EINVAL;
1259 }
1260 if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1261 OVS_NLERR(log,
1262 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1263 type, nla_len(a), maxlen);
1264 return -EINVAL;
1265 }
1266
1267 switch (type) {
1268 case OVS_CT_ATTR_FORCE_COMMIT:
1269 info->force = true;
1270 /* fall through. */
1271 case OVS_CT_ATTR_COMMIT:
1272 info->commit = true;
1273 break;
1274 #ifdef CONFIG_NF_CONNTRACK_ZONES
1275 case OVS_CT_ATTR_ZONE:
1276 info->zone.id = nla_get_u16(a);
1277 break;
1278 #endif
1279 #ifdef CONFIG_NF_CONNTRACK_MARK
1280 case OVS_CT_ATTR_MARK: {
1281 struct md_mark *mark = nla_data(a);
1282
1283 if (!mark->mask) {
1284 OVS_NLERR(log, "ct_mark mask cannot be 0");
1285 return -EINVAL;
1286 }
1287 info->mark = *mark;
1288 break;
1289 }
1290 #endif
1291 #ifdef CONFIG_NF_CONNTRACK_LABELS
1292 case OVS_CT_ATTR_LABELS: {
1293 struct md_labels *labels = nla_data(a);
1294
1295 if (!labels_nonzero(&labels->mask)) {
1296 OVS_NLERR(log, "ct_labels mask cannot be 0");
1297 return -EINVAL;
1298 }
1299 info->labels = *labels;
1300 break;
1301 }
1302 #endif
1303 case OVS_CT_ATTR_HELPER:
1304 *helper = nla_data(a);
1305 if (!memchr(*helper, '\0', nla_len(a))) {
1306 OVS_NLERR(log, "Invalid conntrack helper");
1307 return -EINVAL;
1308 }
1309 break;
1310 #ifdef CONFIG_NF_NAT_NEEDED
1311 case OVS_CT_ATTR_NAT: {
1312 int err = parse_nat(a, info, log);
1313
1314 if (err)
1315 return err;
1316 break;
1317 }
1318 #endif
1319 default:
1320 OVS_NLERR(log, "Unknown conntrack attr (%d)",
1321 type);
1322 return -EINVAL;
1323 }
1324 }
1325
1326 #ifdef CONFIG_NF_CONNTRACK_MARK
1327 if (!info->commit && info->mark.mask) {
1328 OVS_NLERR(log,
1329 "Setting conntrack mark requires 'commit' flag.");
1330 return -EINVAL;
1331 }
1332 #endif
1333 #ifdef CONFIG_NF_CONNTRACK_LABELS
1334 if (!info->commit && labels_nonzero(&info->labels.mask)) {
1335 OVS_NLERR(log,
1336 "Setting conntrack labels requires 'commit' flag.");
1337 return -EINVAL;
1338 }
1339 #endif
1340 if (rem > 0) {
1341 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1342 return -EINVAL;
1343 }
1344
1345 return 0;
1346 }
1347
1348 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1349 {
1350 if (attr == OVS_KEY_ATTR_CT_STATE)
1351 return true;
1352 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1353 attr == OVS_KEY_ATTR_CT_ZONE)
1354 return true;
1355 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1356 attr == OVS_KEY_ATTR_CT_MARK)
1357 return true;
1358 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1359 attr == OVS_KEY_ATTR_CT_LABELS) {
1360 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1361
1362 return ovs_net->xt_label;
1363 }
1364
1365 return false;
1366 }
1367
1368 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1369 const struct sw_flow_key *key,
1370 struct sw_flow_actions **sfa, bool log)
1371 {
1372 struct ovs_conntrack_info ct_info;
1373 const char *helper = NULL;
1374 u16 family;
1375 int err;
1376
1377 family = key_to_nfproto(key);
1378 if (family == NFPROTO_UNSPEC) {
1379 OVS_NLERR(log, "ct family unspecified");
1380 return -EINVAL;
1381 }
1382
1383 memset(&ct_info, 0, sizeof(ct_info));
1384 ct_info.family = family;
1385
1386 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1387 NF_CT_DEFAULT_ZONE_DIR, 0);
1388
1389 err = parse_ct(attr, &ct_info, &helper, log);
1390 if (err)
1391 return err;
1392
1393 /* Set up template for tracking connections in specific zones. */
1394 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1395 if (!ct_info.ct) {
1396 OVS_NLERR(log, "Failed to allocate conntrack template");
1397 return -ENOMEM;
1398 }
1399
1400 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1401 nf_conntrack_get(&ct_info.ct->ct_general);
1402
1403 if (helper) {
1404 err = ovs_ct_add_helper(&ct_info, helper, key, log);
1405 if (err)
1406 goto err_free_ct;
1407 }
1408
1409 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1410 sizeof(ct_info), log);
1411 if (err)
1412 goto err_free_ct;
1413
1414 return 0;
1415 err_free_ct:
1416 __ovs_ct_free_action(&ct_info);
1417 return err;
1418 }
1419
1420 #ifdef CONFIG_NF_NAT_NEEDED
1421 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1422 struct sk_buff *skb)
1423 {
1424 struct nlattr *start;
1425
1426 start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1427 if (!start)
1428 return false;
1429
1430 if (info->nat & OVS_CT_SRC_NAT) {
1431 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1432 return false;
1433 } else if (info->nat & OVS_CT_DST_NAT) {
1434 if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1435 return false;
1436 } else {
1437 goto out;
1438 }
1439
1440 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1441 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
1442 info->family == NFPROTO_IPV4) {
1443 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1444 info->range.min_addr.ip) ||
1445 (info->range.max_addr.ip
1446 != info->range.min_addr.ip &&
1447 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1448 info->range.max_addr.ip))))
1449 return false;
1450 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
1451 info->family == NFPROTO_IPV6) {
1452 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1453 &info->range.min_addr.in6) ||
1454 (memcmp(&info->range.max_addr.in6,
1455 &info->range.min_addr.in6,
1456 sizeof(info->range.max_addr.in6)) &&
1457 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1458 &info->range.max_addr.in6))))
1459 return false;
1460 } else {
1461 return false;
1462 }
1463 }
1464 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1465 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1466 ntohs(info->range.min_proto.all)) ||
1467 (info->range.max_proto.all != info->range.min_proto.all &&
1468 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1469 ntohs(info->range.max_proto.all)))))
1470 return false;
1471
1472 if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1473 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1474 return false;
1475 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1476 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1477 return false;
1478 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1479 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1480 return false;
1481 out:
1482 nla_nest_end(skb, start);
1483
1484 return true;
1485 }
1486 #endif
1487
1488 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1489 struct sk_buff *skb)
1490 {
1491 struct nlattr *start;
1492
1493 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1494 if (!start)
1495 return -EMSGSIZE;
1496
1497 if (ct_info->commit && nla_put_flag(skb, ct_info->force
1498 ? OVS_CT_ATTR_FORCE_COMMIT
1499 : OVS_CT_ATTR_COMMIT))
1500 return -EMSGSIZE;
1501 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1502 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1503 return -EMSGSIZE;
1504 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1505 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1506 &ct_info->mark))
1507 return -EMSGSIZE;
1508 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1509 labels_nonzero(&ct_info->labels.mask) &&
1510 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1511 &ct_info->labels))
1512 return -EMSGSIZE;
1513 if (ct_info->helper) {
1514 if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1515 ct_info->helper->name))
1516 return -EMSGSIZE;
1517 }
1518 #ifdef CONFIG_NF_NAT_NEEDED
1519 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1520 return -EMSGSIZE;
1521 #endif
1522 nla_nest_end(skb, start);
1523
1524 return 0;
1525 }
1526
1527 void ovs_ct_free_action(const struct nlattr *a)
1528 {
1529 struct ovs_conntrack_info *ct_info = nla_data(a);
1530
1531 __ovs_ct_free_action(ct_info);
1532 }
1533
1534 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1535 {
1536 if (ct_info->helper)
1537 module_put(ct_info->helper->me);
1538 if (ct_info->ct)
1539 nf_ct_tmpl_free(ct_info->ct);
1540 }
1541
1542 void ovs_ct_init(struct net *net)
1543 {
1544 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
1545 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1546
1547 if (nf_connlabels_get(net, n_bits - 1)) {
1548 ovs_net->xt_label = false;
1549 OVS_NLERR(true, "Failed to set connlabel length");
1550 } else {
1551 ovs_net->xt_label = true;
1552 }
1553 }
1554
1555 void ovs_ct_exit(struct net *net)
1556 {
1557 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1558
1559 if (ovs_net->xt_label)
1560 nf_connlabels_put(net);
1561 }