]> git.ipfire.org Git - thirdparty/linux.git/blob - net/openvswitch/conntrack.c
openvswitch: fix spelling mistake "execeeds" -> "exceeds"
[thirdparty/linux.git] / net / openvswitch / conntrack.c
1 /*
2 * Copyright (c) 2015 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13
14 #include <linux/module.h>
15 #include <linux/openvswitch.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/sctp.h>
19 #include <linux/static_key.h>
20 #include <net/ip.h>
21 #include <net/genetlink.h>
22 #include <net/netfilter/nf_conntrack_core.h>
23 #include <net/netfilter/nf_conntrack_count.h>
24 #include <net/netfilter/nf_conntrack_helper.h>
25 #include <net/netfilter/nf_conntrack_labels.h>
26 #include <net/netfilter/nf_conntrack_seqadj.h>
27 #include <net/netfilter/nf_conntrack_zones.h>
28 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
29 #include <net/ipv6_frag.h>
30
31 #ifdef CONFIG_NF_NAT_NEEDED
32 #include <linux/netfilter/nf_nat.h>
33 #include <net/netfilter/nf_nat_core.h>
34 #include <net/netfilter/nf_nat_l3proto.h>
35 #endif
36
37 #include "datapath.h"
38 #include "conntrack.h"
39 #include "flow.h"
40 #include "flow_netlink.h"
41
42 struct ovs_ct_len_tbl {
43 int maxlen;
44 int minlen;
45 };
46
47 /* Metadata mark for masked write to conntrack mark */
48 struct md_mark {
49 u32 value;
50 u32 mask;
51 };
52
53 /* Metadata label for masked write to conntrack label. */
54 struct md_labels {
55 struct ovs_key_ct_labels value;
56 struct ovs_key_ct_labels mask;
57 };
58
59 enum ovs_ct_nat {
60 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */
61 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
62 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
63 };
64
65 /* Conntrack action context for execution. */
66 struct ovs_conntrack_info {
67 struct nf_conntrack_helper *helper;
68 struct nf_conntrack_zone zone;
69 struct nf_conn *ct;
70 u8 commit : 1;
71 u8 nat : 3; /* enum ovs_ct_nat */
72 u8 force : 1;
73 u8 have_eventmask : 1;
74 u16 family;
75 u32 eventmask; /* Mask of 1 << IPCT_*. */
76 struct md_mark mark;
77 struct md_labels labels;
78 #ifdef CONFIG_NF_NAT_NEEDED
79 struct nf_nat_range2 range; /* Only present for SRC NAT and DST NAT. */
80 #endif
81 };
82
83 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
84 #define OVS_CT_LIMIT_UNLIMITED 0
85 #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
86 #define CT_LIMIT_HASH_BUCKETS 512
87 static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
88
89 struct ovs_ct_limit {
90 /* Elements in ovs_ct_limit_info->limits hash table */
91 struct hlist_node hlist_node;
92 struct rcu_head rcu;
93 u16 zone;
94 u32 limit;
95 };
96
97 struct ovs_ct_limit_info {
98 u32 default_limit;
99 struct hlist_head *limits;
100 struct nf_conncount_data *data;
101 };
102
103 static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
104 [OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
105 };
106 #endif
107
108 static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
109
110 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
111
112 static u16 key_to_nfproto(const struct sw_flow_key *key)
113 {
114 switch (ntohs(key->eth.type)) {
115 case ETH_P_IP:
116 return NFPROTO_IPV4;
117 case ETH_P_IPV6:
118 return NFPROTO_IPV6;
119 default:
120 return NFPROTO_UNSPEC;
121 }
122 }
123
124 /* Map SKB connection state into the values used by flow definition. */
125 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
126 {
127 u8 ct_state = OVS_CS_F_TRACKED;
128
129 switch (ctinfo) {
130 case IP_CT_ESTABLISHED_REPLY:
131 case IP_CT_RELATED_REPLY:
132 ct_state |= OVS_CS_F_REPLY_DIR;
133 break;
134 default:
135 break;
136 }
137
138 switch (ctinfo) {
139 case IP_CT_ESTABLISHED:
140 case IP_CT_ESTABLISHED_REPLY:
141 ct_state |= OVS_CS_F_ESTABLISHED;
142 break;
143 case IP_CT_RELATED:
144 case IP_CT_RELATED_REPLY:
145 ct_state |= OVS_CS_F_RELATED;
146 break;
147 case IP_CT_NEW:
148 ct_state |= OVS_CS_F_NEW;
149 break;
150 default:
151 break;
152 }
153
154 return ct_state;
155 }
156
157 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
158 {
159 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
160 return ct ? ct->mark : 0;
161 #else
162 return 0;
163 #endif
164 }
165
166 /* Guard against conntrack labels max size shrinking below 128 bits. */
167 #if NF_CT_LABELS_MAX_SIZE < 16
168 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
169 #endif
170
171 static void ovs_ct_get_labels(const struct nf_conn *ct,
172 struct ovs_key_ct_labels *labels)
173 {
174 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
175
176 if (cl)
177 memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
178 else
179 memset(labels, 0, OVS_CT_LABELS_LEN);
180 }
181
182 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
183 const struct nf_conntrack_tuple *orig,
184 u8 icmp_proto)
185 {
186 key->ct_orig_proto = orig->dst.protonum;
187 if (orig->dst.protonum == icmp_proto) {
188 key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
189 key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
190 } else {
191 key->ct.orig_tp.src = orig->src.u.all;
192 key->ct.orig_tp.dst = orig->dst.u.all;
193 }
194 }
195
196 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
197 const struct nf_conntrack_zone *zone,
198 const struct nf_conn *ct)
199 {
200 key->ct_state = state;
201 key->ct_zone = zone->id;
202 key->ct.mark = ovs_ct_get_mark(ct);
203 ovs_ct_get_labels(ct, &key->ct.labels);
204
205 if (ct) {
206 const struct nf_conntrack_tuple *orig;
207
208 /* Use the master if we have one. */
209 if (ct->master)
210 ct = ct->master;
211 orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
212
213 /* IP version must match with the master connection. */
214 if (key->eth.type == htons(ETH_P_IP) &&
215 nf_ct_l3num(ct) == NFPROTO_IPV4) {
216 key->ipv4.ct_orig.src = orig->src.u3.ip;
217 key->ipv4.ct_orig.dst = orig->dst.u3.ip;
218 __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
219 return;
220 } else if (key->eth.type == htons(ETH_P_IPV6) &&
221 !sw_flow_key_is_nd(key) &&
222 nf_ct_l3num(ct) == NFPROTO_IPV6) {
223 key->ipv6.ct_orig.src = orig->src.u3.in6;
224 key->ipv6.ct_orig.dst = orig->dst.u3.in6;
225 __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
226 return;
227 }
228 }
229 /* Clear 'ct_orig_proto' to mark the non-existence of conntrack
230 * original direction key fields.
231 */
232 key->ct_orig_proto = 0;
233 }
234
235 /* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has
236 * previously sent the packet to conntrack via the ct action. If
237 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
238 * initialized from the connection status.
239 */
240 static void ovs_ct_update_key(const struct sk_buff *skb,
241 const struct ovs_conntrack_info *info,
242 struct sw_flow_key *key, bool post_ct,
243 bool keep_nat_flags)
244 {
245 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
246 enum ip_conntrack_info ctinfo;
247 struct nf_conn *ct;
248 u8 state = 0;
249
250 ct = nf_ct_get(skb, &ctinfo);
251 if (ct) {
252 state = ovs_ct_get_state(ctinfo);
253 /* All unconfirmed entries are NEW connections. */
254 if (!nf_ct_is_confirmed(ct))
255 state |= OVS_CS_F_NEW;
256 /* OVS persists the related flag for the duration of the
257 * connection.
258 */
259 if (ct->master)
260 state |= OVS_CS_F_RELATED;
261 if (keep_nat_flags) {
262 state |= key->ct_state & OVS_CS_F_NAT_MASK;
263 } else {
264 if (ct->status & IPS_SRC_NAT)
265 state |= OVS_CS_F_SRC_NAT;
266 if (ct->status & IPS_DST_NAT)
267 state |= OVS_CS_F_DST_NAT;
268 }
269 zone = nf_ct_zone(ct);
270 } else if (post_ct) {
271 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
272 if (info)
273 zone = &info->zone;
274 }
275 __ovs_ct_update_key(key, state, zone, ct);
276 }
277
278 /* This is called to initialize CT key fields possibly coming in from the local
279 * stack.
280 */
281 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
282 {
283 ovs_ct_update_key(skb, NULL, key, false, false);
284 }
285
286 #define IN6_ADDR_INITIALIZER(ADDR) \
287 { (ADDR).s6_addr32[0], (ADDR).s6_addr32[1], \
288 (ADDR).s6_addr32[2], (ADDR).s6_addr32[3] }
289
290 int ovs_ct_put_key(const struct sw_flow_key *swkey,
291 const struct sw_flow_key *output, struct sk_buff *skb)
292 {
293 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
294 return -EMSGSIZE;
295
296 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
297 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
298 return -EMSGSIZE;
299
300 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
301 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
302 return -EMSGSIZE;
303
304 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
305 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
306 &output->ct.labels))
307 return -EMSGSIZE;
308
309 if (swkey->ct_orig_proto) {
310 if (swkey->eth.type == htons(ETH_P_IP)) {
311 struct ovs_key_ct_tuple_ipv4 orig = {
312 output->ipv4.ct_orig.src,
313 output->ipv4.ct_orig.dst,
314 output->ct.orig_tp.src,
315 output->ct.orig_tp.dst,
316 output->ct_orig_proto,
317 };
318 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
319 sizeof(orig), &orig))
320 return -EMSGSIZE;
321 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
322 struct ovs_key_ct_tuple_ipv6 orig = {
323 IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.src),
324 IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.dst),
325 output->ct.orig_tp.src,
326 output->ct.orig_tp.dst,
327 output->ct_orig_proto,
328 };
329 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
330 sizeof(orig), &orig))
331 return -EMSGSIZE;
332 }
333 }
334
335 return 0;
336 }
337
338 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
339 u32 ct_mark, u32 mask)
340 {
341 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
342 u32 new_mark;
343
344 new_mark = ct_mark | (ct->mark & ~(mask));
345 if (ct->mark != new_mark) {
346 ct->mark = new_mark;
347 if (nf_ct_is_confirmed(ct))
348 nf_conntrack_event_cache(IPCT_MARK, ct);
349 key->ct.mark = new_mark;
350 }
351
352 return 0;
353 #else
354 return -ENOTSUPP;
355 #endif
356 }
357
358 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
359 {
360 struct nf_conn_labels *cl;
361
362 cl = nf_ct_labels_find(ct);
363 if (!cl) {
364 nf_ct_labels_ext_add(ct);
365 cl = nf_ct_labels_find(ct);
366 }
367
368 return cl;
369 }
370
371 /* Initialize labels for a new, yet to be committed conntrack entry. Note that
372 * since the new connection is not yet confirmed, and thus no-one else has
373 * access to it's labels, we simply write them over.
374 */
375 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
376 const struct ovs_key_ct_labels *labels,
377 const struct ovs_key_ct_labels *mask)
378 {
379 struct nf_conn_labels *cl, *master_cl;
380 bool have_mask = labels_nonzero(mask);
381
382 /* Inherit master's labels to the related connection? */
383 master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
384
385 if (!master_cl && !have_mask)
386 return 0; /* Nothing to do. */
387
388 cl = ovs_ct_get_conn_labels(ct);
389 if (!cl)
390 return -ENOSPC;
391
392 /* Inherit the master's labels, if any. */
393 if (master_cl)
394 *cl = *master_cl;
395
396 if (have_mask) {
397 u32 *dst = (u32 *)cl->bits;
398 int i;
399
400 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
401 dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
402 (labels->ct_labels_32[i]
403 & mask->ct_labels_32[i]);
404 }
405
406 /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
407 * IPCT_LABEL bit is set in the event cache.
408 */
409 nf_conntrack_event_cache(IPCT_LABEL, ct);
410
411 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
412
413 return 0;
414 }
415
416 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
417 const struct ovs_key_ct_labels *labels,
418 const struct ovs_key_ct_labels *mask)
419 {
420 struct nf_conn_labels *cl;
421 int err;
422
423 cl = ovs_ct_get_conn_labels(ct);
424 if (!cl)
425 return -ENOSPC;
426
427 err = nf_connlabels_replace(ct, labels->ct_labels_32,
428 mask->ct_labels_32,
429 OVS_CT_LABELS_LEN_32);
430 if (err)
431 return err;
432
433 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
434
435 return 0;
436 }
437
438 /* 'skb' should already be pulled to nh_ofs. */
439 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
440 {
441 const struct nf_conntrack_helper *helper;
442 const struct nf_conn_help *help;
443 enum ip_conntrack_info ctinfo;
444 unsigned int protoff;
445 struct nf_conn *ct;
446 int err;
447
448 ct = nf_ct_get(skb, &ctinfo);
449 if (!ct || ctinfo == IP_CT_RELATED_REPLY)
450 return NF_ACCEPT;
451
452 help = nfct_help(ct);
453 if (!help)
454 return NF_ACCEPT;
455
456 helper = rcu_dereference(help->helper);
457 if (!helper)
458 return NF_ACCEPT;
459
460 switch (proto) {
461 case NFPROTO_IPV4:
462 protoff = ip_hdrlen(skb);
463 break;
464 case NFPROTO_IPV6: {
465 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
466 __be16 frag_off;
467 int ofs;
468
469 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
470 &frag_off);
471 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
472 pr_debug("proto header not found\n");
473 return NF_ACCEPT;
474 }
475 protoff = ofs;
476 break;
477 }
478 default:
479 WARN_ONCE(1, "helper invoked on non-IP family!");
480 return NF_DROP;
481 }
482
483 err = helper->help(skb, protoff, ct, ctinfo);
484 if (err != NF_ACCEPT)
485 return err;
486
487 /* Adjust seqs after helper. This is needed due to some helpers (e.g.,
488 * FTP with NAT) adusting the TCP payload size when mangling IP
489 * addresses and/or port numbers in the text-based control connection.
490 */
491 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
492 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
493 return NF_DROP;
494 return NF_ACCEPT;
495 }
496
497 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
498 * value if 'skb' is freed.
499 */
500 static int handle_fragments(struct net *net, struct sw_flow_key *key,
501 u16 zone, struct sk_buff *skb)
502 {
503 struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
504 int err;
505
506 if (key->eth.type == htons(ETH_P_IP)) {
507 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
508
509 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
510 err = ip_defrag(net, skb, user);
511 if (err)
512 return err;
513
514 ovs_cb.mru = IPCB(skb)->frag_max_size;
515 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
516 } else if (key->eth.type == htons(ETH_P_IPV6)) {
517 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
518
519 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
520 err = nf_ct_frag6_gather(net, skb, user);
521 if (err) {
522 if (err != -EINPROGRESS)
523 kfree_skb(skb);
524 return err;
525 }
526
527 key->ip.proto = ipv6_hdr(skb)->nexthdr;
528 ovs_cb.mru = IP6CB(skb)->frag_max_size;
529 #endif
530 } else {
531 kfree_skb(skb);
532 return -EPFNOSUPPORT;
533 }
534
535 key->ip.frag = OVS_FRAG_TYPE_NONE;
536 skb_clear_hash(skb);
537 skb->ignore_df = 1;
538 *OVS_CB(skb) = ovs_cb;
539
540 return 0;
541 }
542
543 static struct nf_conntrack_expect *
544 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
545 u16 proto, const struct sk_buff *skb)
546 {
547 struct nf_conntrack_tuple tuple;
548 struct nf_conntrack_expect *exp;
549
550 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
551 return NULL;
552
553 exp = __nf_ct_expect_find(net, zone, &tuple);
554 if (exp) {
555 struct nf_conntrack_tuple_hash *h;
556
557 /* Delete existing conntrack entry, if it clashes with the
558 * expectation. This can happen since conntrack ALGs do not
559 * check for clashes between (new) expectations and existing
560 * conntrack entries. nf_conntrack_in() will check the
561 * expectations only if a conntrack entry can not be found,
562 * which can lead to OVS finding the expectation (here) in the
563 * init direction, but which will not be removed by the
564 * nf_conntrack_in() call, if a matching conntrack entry is
565 * found instead. In this case all init direction packets
566 * would be reported as new related packets, while reply
567 * direction packets would be reported as un-related
568 * established packets.
569 */
570 h = nf_conntrack_find_get(net, zone, &tuple);
571 if (h) {
572 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
573
574 nf_ct_delete(ct, 0, 0);
575 nf_conntrack_put(&ct->ct_general);
576 }
577 }
578
579 return exp;
580 }
581
582 /* This replicates logic from nf_conntrack_core.c that is not exported. */
583 static enum ip_conntrack_info
584 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
585 {
586 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
587
588 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
589 return IP_CT_ESTABLISHED_REPLY;
590 /* Once we've had two way comms, always ESTABLISHED. */
591 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
592 return IP_CT_ESTABLISHED;
593 if (test_bit(IPS_EXPECTED_BIT, &ct->status))
594 return IP_CT_RELATED;
595 return IP_CT_NEW;
596 }
597
598 /* Find an existing connection which this packet belongs to without
599 * re-attributing statistics or modifying the connection state. This allows an
600 * skb->_nfct lost due to an upcall to be recovered during actions execution.
601 *
602 * Must be called with rcu_read_lock.
603 *
604 * On success, populates skb->_nfct and returns the connection. Returns NULL
605 * if there is no existing entry.
606 */
607 static struct nf_conn *
608 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
609 u8 l3num, struct sk_buff *skb, bool natted)
610 {
611 struct nf_conntrack_tuple tuple;
612 struct nf_conntrack_tuple_hash *h;
613 struct nf_conn *ct;
614
615 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
616 net, &tuple)) {
617 pr_debug("ovs_ct_find_existing: Can't get tuple\n");
618 return NULL;
619 }
620
621 /* Must invert the tuple if skb has been transformed by NAT. */
622 if (natted) {
623 struct nf_conntrack_tuple inverse;
624
625 if (!nf_ct_invert_tuplepr(&inverse, &tuple)) {
626 pr_debug("ovs_ct_find_existing: Inversion failed!\n");
627 return NULL;
628 }
629 tuple = inverse;
630 }
631
632 /* look for tuple match */
633 h = nf_conntrack_find_get(net, zone, &tuple);
634 if (!h)
635 return NULL; /* Not found. */
636
637 ct = nf_ct_tuplehash_to_ctrack(h);
638
639 /* Inverted packet tuple matches the reverse direction conntrack tuple,
640 * select the other tuplehash to get the right 'ctinfo' bits for this
641 * packet.
642 */
643 if (natted)
644 h = &ct->tuplehash[!h->tuple.dst.dir];
645
646 nf_ct_set(skb, ct, ovs_ct_get_info(h));
647 return ct;
648 }
649
650 static
651 struct nf_conn *ovs_ct_executed(struct net *net,
652 const struct sw_flow_key *key,
653 const struct ovs_conntrack_info *info,
654 struct sk_buff *skb,
655 bool *ct_executed)
656 {
657 struct nf_conn *ct = NULL;
658
659 /* If no ct, check if we have evidence that an existing conntrack entry
660 * might be found for this skb. This happens when we lose a skb->_nfct
661 * due to an upcall, or if the direction is being forced. If the
662 * connection was not confirmed, it is not cached and needs to be run
663 * through conntrack again.
664 */
665 *ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
666 !(key->ct_state & OVS_CS_F_INVALID) &&
667 (key->ct_zone == info->zone.id);
668
669 if (*ct_executed || (!key->ct_state && info->force)) {
670 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
671 !!(key->ct_state &
672 OVS_CS_F_NAT_MASK));
673 }
674
675 return ct;
676 }
677
678 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
679 static bool skb_nfct_cached(struct net *net,
680 const struct sw_flow_key *key,
681 const struct ovs_conntrack_info *info,
682 struct sk_buff *skb)
683 {
684 enum ip_conntrack_info ctinfo;
685 struct nf_conn *ct;
686 bool ct_executed = true;
687
688 ct = nf_ct_get(skb, &ctinfo);
689 if (!ct)
690 ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
691
692 if (ct)
693 nf_ct_get(skb, &ctinfo);
694 else
695 return false;
696
697 if (!net_eq(net, read_pnet(&ct->ct_net)))
698 return false;
699 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
700 return false;
701 if (info->helper) {
702 struct nf_conn_help *help;
703
704 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
705 if (help && rcu_access_pointer(help->helper) != info->helper)
706 return false;
707 }
708 /* Force conntrack entry direction to the current packet? */
709 if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
710 /* Delete the conntrack entry if confirmed, else just release
711 * the reference.
712 */
713 if (nf_ct_is_confirmed(ct))
714 nf_ct_delete(ct, 0, 0);
715
716 nf_conntrack_put(&ct->ct_general);
717 nf_ct_set(skb, NULL, 0);
718 return false;
719 }
720
721 return ct_executed;
722 }
723
724 #ifdef CONFIG_NF_NAT_NEEDED
725 /* Modelled after nf_nat_ipv[46]_fn().
726 * range is only used for new, uninitialized NAT state.
727 * Returns either NF_ACCEPT or NF_DROP.
728 */
729 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
730 enum ip_conntrack_info ctinfo,
731 const struct nf_nat_range2 *range,
732 enum nf_nat_manip_type maniptype)
733 {
734 int hooknum, nh_off, err = NF_ACCEPT;
735
736 nh_off = skb_network_offset(skb);
737 skb_pull_rcsum(skb, nh_off);
738
739 /* See HOOK2MANIP(). */
740 if (maniptype == NF_NAT_MANIP_SRC)
741 hooknum = NF_INET_LOCAL_IN; /* Source NAT */
742 else
743 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
744
745 switch (ctinfo) {
746 case IP_CT_RELATED:
747 case IP_CT_RELATED_REPLY:
748 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
749 skb->protocol == htons(ETH_P_IP) &&
750 ip_hdr(skb)->protocol == IPPROTO_ICMP) {
751 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
752 hooknum))
753 err = NF_DROP;
754 goto push;
755 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
756 skb->protocol == htons(ETH_P_IPV6)) {
757 __be16 frag_off;
758 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
759 int hdrlen = ipv6_skip_exthdr(skb,
760 sizeof(struct ipv6hdr),
761 &nexthdr, &frag_off);
762
763 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
764 if (!nf_nat_icmpv6_reply_translation(skb, ct,
765 ctinfo,
766 hooknum,
767 hdrlen))
768 err = NF_DROP;
769 goto push;
770 }
771 }
772 /* Non-ICMP, fall thru to initialize if needed. */
773 /* fall through */
774 case IP_CT_NEW:
775 /* Seen it before? This can happen for loopback, retrans,
776 * or local packets.
777 */
778 if (!nf_nat_initialized(ct, maniptype)) {
779 /* Initialize according to the NAT action. */
780 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
781 /* Action is set up to establish a new
782 * mapping.
783 */
784 ? nf_nat_setup_info(ct, range, maniptype)
785 : nf_nat_alloc_null_binding(ct, hooknum);
786 if (err != NF_ACCEPT)
787 goto push;
788 }
789 break;
790
791 case IP_CT_ESTABLISHED:
792 case IP_CT_ESTABLISHED_REPLY:
793 break;
794
795 default:
796 err = NF_DROP;
797 goto push;
798 }
799
800 err = nf_nat_packet(ct, ctinfo, hooknum, skb);
801 push:
802 skb_push(skb, nh_off);
803 skb_postpush_rcsum(skb, skb->data, nh_off);
804
805 return err;
806 }
807
808 static void ovs_nat_update_key(struct sw_flow_key *key,
809 const struct sk_buff *skb,
810 enum nf_nat_manip_type maniptype)
811 {
812 if (maniptype == NF_NAT_MANIP_SRC) {
813 __be16 src;
814
815 key->ct_state |= OVS_CS_F_SRC_NAT;
816 if (key->eth.type == htons(ETH_P_IP))
817 key->ipv4.addr.src = ip_hdr(skb)->saddr;
818 else if (key->eth.type == htons(ETH_P_IPV6))
819 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
820 sizeof(key->ipv6.addr.src));
821 else
822 return;
823
824 if (key->ip.proto == IPPROTO_UDP)
825 src = udp_hdr(skb)->source;
826 else if (key->ip.proto == IPPROTO_TCP)
827 src = tcp_hdr(skb)->source;
828 else if (key->ip.proto == IPPROTO_SCTP)
829 src = sctp_hdr(skb)->source;
830 else
831 return;
832
833 key->tp.src = src;
834 } else {
835 __be16 dst;
836
837 key->ct_state |= OVS_CS_F_DST_NAT;
838 if (key->eth.type == htons(ETH_P_IP))
839 key->ipv4.addr.dst = ip_hdr(skb)->daddr;
840 else if (key->eth.type == htons(ETH_P_IPV6))
841 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
842 sizeof(key->ipv6.addr.dst));
843 else
844 return;
845
846 if (key->ip.proto == IPPROTO_UDP)
847 dst = udp_hdr(skb)->dest;
848 else if (key->ip.proto == IPPROTO_TCP)
849 dst = tcp_hdr(skb)->dest;
850 else if (key->ip.proto == IPPROTO_SCTP)
851 dst = sctp_hdr(skb)->dest;
852 else
853 return;
854
855 key->tp.dst = dst;
856 }
857 }
858
859 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
860 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
861 const struct ovs_conntrack_info *info,
862 struct sk_buff *skb, struct nf_conn *ct,
863 enum ip_conntrack_info ctinfo)
864 {
865 enum nf_nat_manip_type maniptype;
866 int err;
867
868 /* Add NAT extension if not confirmed yet. */
869 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
870 return NF_ACCEPT; /* Can't NAT. */
871
872 /* Determine NAT type.
873 * Check if the NAT type can be deduced from the tracked connection.
874 * Make sure new expected connections (IP_CT_RELATED) are NATted only
875 * when committing.
876 */
877 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
878 ct->status & IPS_NAT_MASK &&
879 (ctinfo != IP_CT_RELATED || info->commit)) {
880 /* NAT an established or related connection like before. */
881 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
882 /* This is the REPLY direction for a connection
883 * for which NAT was applied in the forward
884 * direction. Do the reverse NAT.
885 */
886 maniptype = ct->status & IPS_SRC_NAT
887 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
888 else
889 maniptype = ct->status & IPS_SRC_NAT
890 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
891 } else if (info->nat & OVS_CT_SRC_NAT) {
892 maniptype = NF_NAT_MANIP_SRC;
893 } else if (info->nat & OVS_CT_DST_NAT) {
894 maniptype = NF_NAT_MANIP_DST;
895 } else {
896 return NF_ACCEPT; /* Connection is not NATed. */
897 }
898 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
899
900 /* Mark NAT done if successful and update the flow key. */
901 if (err == NF_ACCEPT)
902 ovs_nat_update_key(key, skb, maniptype);
903
904 return err;
905 }
906 #else /* !CONFIG_NF_NAT_NEEDED */
907 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
908 const struct ovs_conntrack_info *info,
909 struct sk_buff *skb, struct nf_conn *ct,
910 enum ip_conntrack_info ctinfo)
911 {
912 return NF_ACCEPT;
913 }
914 #endif
915
916 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
917 * not done already. Update key with new CT state after passing the packet
918 * through conntrack.
919 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
920 * set to NULL and 0 will be returned.
921 */
922 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
923 const struct ovs_conntrack_info *info,
924 struct sk_buff *skb)
925 {
926 /* If we are recirculating packets to match on conntrack fields and
927 * committing with a separate conntrack action, then we don't need to
928 * actually run the packet through conntrack twice unless it's for a
929 * different zone.
930 */
931 bool cached = skb_nfct_cached(net, key, info, skb);
932 enum ip_conntrack_info ctinfo;
933 struct nf_conn *ct;
934
935 if (!cached) {
936 struct nf_hook_state state = {
937 .hook = NF_INET_PRE_ROUTING,
938 .pf = info->family,
939 .net = net,
940 };
941 struct nf_conn *tmpl = info->ct;
942 int err;
943
944 /* Associate skb with specified zone. */
945 if (tmpl) {
946 if (skb_nfct(skb))
947 nf_conntrack_put(skb_nfct(skb));
948 nf_conntrack_get(&tmpl->ct_general);
949 nf_ct_set(skb, tmpl, IP_CT_NEW);
950 }
951
952 err = nf_conntrack_in(skb, &state);
953 if (err != NF_ACCEPT)
954 return -ENOENT;
955
956 /* Clear CT state NAT flags to mark that we have not yet done
957 * NAT after the nf_conntrack_in() call. We can actually clear
958 * the whole state, as it will be re-initialized below.
959 */
960 key->ct_state = 0;
961
962 /* Update the key, but keep the NAT flags. */
963 ovs_ct_update_key(skb, info, key, true, true);
964 }
965
966 ct = nf_ct_get(skb, &ctinfo);
967 if (ct) {
968 /* Packets starting a new connection must be NATted before the
969 * helper, so that the helper knows about the NAT. We enforce
970 * this by delaying both NAT and helper calls for unconfirmed
971 * connections until the committing CT action. For later
972 * packets NAT and Helper may be called in either order.
973 *
974 * NAT will be done only if the CT action has NAT, and only
975 * once per packet (per zone), as guarded by the NAT bits in
976 * the key->ct_state.
977 */
978 if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
979 (nf_ct_is_confirmed(ct) || info->commit) &&
980 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
981 return -EINVAL;
982 }
983
984 /* Userspace may decide to perform a ct lookup without a helper
985 * specified followed by a (recirculate and) commit with one.
986 * Therefore, for unconfirmed connections which we will commit,
987 * we need to attach the helper here.
988 */
989 if (!nf_ct_is_confirmed(ct) && info->commit &&
990 info->helper && !nfct_help(ct)) {
991 int err = __nf_ct_try_assign_helper(ct, info->ct,
992 GFP_ATOMIC);
993 if (err)
994 return err;
995 }
996
997 /* Call the helper only if:
998 * - nf_conntrack_in() was executed above ("!cached") for a
999 * confirmed connection, or
1000 * - When committing an unconfirmed connection.
1001 */
1002 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
1003 ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
1004 return -EINVAL;
1005 }
1006 }
1007
1008 return 0;
1009 }
1010
1011 /* Lookup connection and read fields into key. */
1012 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
1013 const struct ovs_conntrack_info *info,
1014 struct sk_buff *skb)
1015 {
1016 struct nf_conntrack_expect *exp;
1017
1018 /* If we pass an expected packet through nf_conntrack_in() the
1019 * expectation is typically removed, but the packet could still be
1020 * lost in upcall processing. To prevent this from happening we
1021 * perform an explicit expectation lookup. Expected connections are
1022 * always new, and will be passed through conntrack only when they are
1023 * committed, as it is OK to remove the expectation at that time.
1024 */
1025 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
1026 if (exp) {
1027 u8 state;
1028
1029 /* NOTE: New connections are NATted and Helped only when
1030 * committed, so we are not calling into NAT here.
1031 */
1032 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
1033 __ovs_ct_update_key(key, state, &info->zone, exp->master);
1034 } else {
1035 struct nf_conn *ct;
1036 int err;
1037
1038 err = __ovs_ct_lookup(net, key, info, skb);
1039 if (err)
1040 return err;
1041
1042 ct = (struct nf_conn *)skb_nfct(skb);
1043 if (ct)
1044 nf_ct_deliver_cached_events(ct);
1045 }
1046
1047 return 0;
1048 }
1049
1050 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
1051 {
1052 size_t i;
1053
1054 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
1055 if (labels->ct_labels_32[i])
1056 return true;
1057
1058 return false;
1059 }
1060
1061 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1062 static struct hlist_head *ct_limit_hash_bucket(
1063 const struct ovs_ct_limit_info *info, u16 zone)
1064 {
1065 return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
1066 }
1067
1068 /* Call with ovs_mutex */
1069 static void ct_limit_set(const struct ovs_ct_limit_info *info,
1070 struct ovs_ct_limit *new_ct_limit)
1071 {
1072 struct ovs_ct_limit *ct_limit;
1073 struct hlist_head *head;
1074
1075 head = ct_limit_hash_bucket(info, new_ct_limit->zone);
1076 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1077 if (ct_limit->zone == new_ct_limit->zone) {
1078 hlist_replace_rcu(&ct_limit->hlist_node,
1079 &new_ct_limit->hlist_node);
1080 kfree_rcu(ct_limit, rcu);
1081 return;
1082 }
1083 }
1084
1085 hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
1086 }
1087
1088 /* Call with ovs_mutex */
1089 static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
1090 {
1091 struct ovs_ct_limit *ct_limit;
1092 struct hlist_head *head;
1093 struct hlist_node *n;
1094
1095 head = ct_limit_hash_bucket(info, zone);
1096 hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
1097 if (ct_limit->zone == zone) {
1098 hlist_del_rcu(&ct_limit->hlist_node);
1099 kfree_rcu(ct_limit, rcu);
1100 return;
1101 }
1102 }
1103 }
1104
1105 /* Call with RCU read lock */
1106 static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
1107 {
1108 struct ovs_ct_limit *ct_limit;
1109 struct hlist_head *head;
1110
1111 head = ct_limit_hash_bucket(info, zone);
1112 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1113 if (ct_limit->zone == zone)
1114 return ct_limit->limit;
1115 }
1116
1117 return info->default_limit;
1118 }
1119
1120 static int ovs_ct_check_limit(struct net *net,
1121 const struct ovs_conntrack_info *info,
1122 const struct nf_conntrack_tuple *tuple)
1123 {
1124 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1125 const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1126 u32 per_zone_limit, connections;
1127 u32 conncount_key;
1128
1129 conncount_key = info->zone.id;
1130
1131 per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
1132 if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
1133 return 0;
1134
1135 connections = nf_conncount_count(net, ct_limit_info->data,
1136 &conncount_key, tuple, &info->zone);
1137 if (connections > per_zone_limit)
1138 return -ENOMEM;
1139
1140 return 0;
1141 }
1142 #endif
1143
1144 /* Lookup connection and confirm if unconfirmed. */
1145 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
1146 const struct ovs_conntrack_info *info,
1147 struct sk_buff *skb)
1148 {
1149 enum ip_conntrack_info ctinfo;
1150 struct nf_conn *ct;
1151 int err;
1152
1153 err = __ovs_ct_lookup(net, key, info, skb);
1154 if (err)
1155 return err;
1156
1157 /* The connection could be invalid, in which case this is a no-op.*/
1158 ct = nf_ct_get(skb, &ctinfo);
1159 if (!ct)
1160 return 0;
1161
1162 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1163 if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
1164 if (!nf_ct_is_confirmed(ct)) {
1165 err = ovs_ct_check_limit(net, info,
1166 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
1167 if (err) {
1168 net_warn_ratelimited("openvswitch: zone: %u "
1169 "exceeds conntrack limit\n",
1170 info->zone.id);
1171 return err;
1172 }
1173 }
1174 }
1175 #endif
1176
1177 /* Set the conntrack event mask if given. NEW and DELETE events have
1178 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1179 * typically would receive many kinds of updates. Setting the event
1180 * mask allows those events to be filtered. The set event mask will
1181 * remain in effect for the lifetime of the connection unless changed
1182 * by a further CT action with both the commit flag and the eventmask
1183 * option. */
1184 if (info->have_eventmask) {
1185 struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1186
1187 if (cache)
1188 cache->ctmask = info->eventmask;
1189 }
1190
1191 /* Apply changes before confirming the connection so that the initial
1192 * conntrack NEW netlink event carries the values given in the CT
1193 * action.
1194 */
1195 if (info->mark.mask) {
1196 err = ovs_ct_set_mark(ct, key, info->mark.value,
1197 info->mark.mask);
1198 if (err)
1199 return err;
1200 }
1201 if (!nf_ct_is_confirmed(ct)) {
1202 err = ovs_ct_init_labels(ct, key, &info->labels.value,
1203 &info->labels.mask);
1204 if (err)
1205 return err;
1206 } else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1207 labels_nonzero(&info->labels.mask)) {
1208 err = ovs_ct_set_labels(ct, key, &info->labels.value,
1209 &info->labels.mask);
1210 if (err)
1211 return err;
1212 }
1213 /* This will take care of sending queued events even if the connection
1214 * is already confirmed.
1215 */
1216 if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1217 return -EINVAL;
1218
1219 return 0;
1220 }
1221
1222 /* Trim the skb to the length specified by the IP/IPv6 header,
1223 * removing any trailing lower-layer padding. This prepares the skb
1224 * for higher-layer processing that assumes skb->len excludes padding
1225 * (such as nf_ip_checksum). The caller needs to pull the skb to the
1226 * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
1227 */
1228 static int ovs_skb_network_trim(struct sk_buff *skb)
1229 {
1230 unsigned int len;
1231 int err;
1232
1233 switch (skb->protocol) {
1234 case htons(ETH_P_IP):
1235 len = ntohs(ip_hdr(skb)->tot_len);
1236 break;
1237 case htons(ETH_P_IPV6):
1238 len = sizeof(struct ipv6hdr)
1239 + ntohs(ipv6_hdr(skb)->payload_len);
1240 break;
1241 default:
1242 len = skb->len;
1243 }
1244
1245 err = pskb_trim_rcsum(skb, len);
1246 if (err)
1247 kfree_skb(skb);
1248
1249 return err;
1250 }
1251
1252 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1253 * value if 'skb' is freed.
1254 */
1255 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1256 struct sw_flow_key *key,
1257 const struct ovs_conntrack_info *info)
1258 {
1259 int nh_ofs;
1260 int err;
1261
1262 /* The conntrack module expects to be working at L3. */
1263 nh_ofs = skb_network_offset(skb);
1264 skb_pull_rcsum(skb, nh_ofs);
1265
1266 err = ovs_skb_network_trim(skb);
1267 if (err)
1268 return err;
1269
1270 if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1271 err = handle_fragments(net, key, info->zone.id, skb);
1272 if (err)
1273 return err;
1274 }
1275
1276 if (info->commit)
1277 err = ovs_ct_commit(net, key, info, skb);
1278 else
1279 err = ovs_ct_lookup(net, key, info, skb);
1280
1281 skb_push(skb, nh_ofs);
1282 skb_postpush_rcsum(skb, skb->data, nh_ofs);
1283 if (err)
1284 kfree_skb(skb);
1285 return err;
1286 }
1287
1288 int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
1289 {
1290 if (skb_nfct(skb)) {
1291 nf_conntrack_put(skb_nfct(skb));
1292 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1293 ovs_ct_fill_key(skb, key);
1294 }
1295
1296 return 0;
1297 }
1298
1299 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1300 const struct sw_flow_key *key, bool log)
1301 {
1302 struct nf_conntrack_helper *helper;
1303 struct nf_conn_help *help;
1304
1305 helper = nf_conntrack_helper_try_module_get(name, info->family,
1306 key->ip.proto);
1307 if (!helper) {
1308 OVS_NLERR(log, "Unknown helper \"%s\"", name);
1309 return -EINVAL;
1310 }
1311
1312 help = nf_ct_helper_ext_add(info->ct, GFP_KERNEL);
1313 if (!help) {
1314 nf_conntrack_helper_put(helper);
1315 return -ENOMEM;
1316 }
1317
1318 rcu_assign_pointer(help->helper, helper);
1319 info->helper = helper;
1320
1321 if (info->nat)
1322 request_module("ip_nat_%s", name);
1323
1324 return 0;
1325 }
1326
1327 #ifdef CONFIG_NF_NAT_NEEDED
1328 static int parse_nat(const struct nlattr *attr,
1329 struct ovs_conntrack_info *info, bool log)
1330 {
1331 struct nlattr *a;
1332 int rem;
1333 bool have_ip_max = false;
1334 bool have_proto_max = false;
1335 bool ip_vers = (info->family == NFPROTO_IPV6);
1336
1337 nla_for_each_nested(a, attr, rem) {
1338 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1339 [OVS_NAT_ATTR_SRC] = {0, 0},
1340 [OVS_NAT_ATTR_DST] = {0, 0},
1341 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1342 sizeof(struct in6_addr)},
1343 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1344 sizeof(struct in6_addr)},
1345 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1346 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1347 [OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1348 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1349 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1350 };
1351 int type = nla_type(a);
1352
1353 if (type > OVS_NAT_ATTR_MAX) {
1354 OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
1355 type, OVS_NAT_ATTR_MAX);
1356 return -EINVAL;
1357 }
1358
1359 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1360 OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
1361 type, nla_len(a),
1362 ovs_nat_attr_lens[type][ip_vers]);
1363 return -EINVAL;
1364 }
1365
1366 switch (type) {
1367 case OVS_NAT_ATTR_SRC:
1368 case OVS_NAT_ATTR_DST:
1369 if (info->nat) {
1370 OVS_NLERR(log, "Only one type of NAT may be specified");
1371 return -ERANGE;
1372 }
1373 info->nat |= OVS_CT_NAT;
1374 info->nat |= ((type == OVS_NAT_ATTR_SRC)
1375 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1376 break;
1377
1378 case OVS_NAT_ATTR_IP_MIN:
1379 nla_memcpy(&info->range.min_addr, a,
1380 sizeof(info->range.min_addr));
1381 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1382 break;
1383
1384 case OVS_NAT_ATTR_IP_MAX:
1385 have_ip_max = true;
1386 nla_memcpy(&info->range.max_addr, a,
1387 sizeof(info->range.max_addr));
1388 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1389 break;
1390
1391 case OVS_NAT_ATTR_PROTO_MIN:
1392 info->range.min_proto.all = htons(nla_get_u16(a));
1393 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1394 break;
1395
1396 case OVS_NAT_ATTR_PROTO_MAX:
1397 have_proto_max = true;
1398 info->range.max_proto.all = htons(nla_get_u16(a));
1399 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1400 break;
1401
1402 case OVS_NAT_ATTR_PERSISTENT:
1403 info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1404 break;
1405
1406 case OVS_NAT_ATTR_PROTO_HASH:
1407 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1408 break;
1409
1410 case OVS_NAT_ATTR_PROTO_RANDOM:
1411 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1412 break;
1413
1414 default:
1415 OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1416 return -EINVAL;
1417 }
1418 }
1419
1420 if (rem > 0) {
1421 OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1422 return -EINVAL;
1423 }
1424 if (!info->nat) {
1425 /* Do not allow flags if no type is given. */
1426 if (info->range.flags) {
1427 OVS_NLERR(log,
1428 "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1429 );
1430 return -EINVAL;
1431 }
1432 info->nat = OVS_CT_NAT; /* NAT existing connections. */
1433 } else if (!info->commit) {
1434 OVS_NLERR(log,
1435 "NAT attributes may be specified only when CT COMMIT flag is also specified."
1436 );
1437 return -EINVAL;
1438 }
1439 /* Allow missing IP_MAX. */
1440 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1441 memcpy(&info->range.max_addr, &info->range.min_addr,
1442 sizeof(info->range.max_addr));
1443 }
1444 /* Allow missing PROTO_MAX. */
1445 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1446 !have_proto_max) {
1447 info->range.max_proto.all = info->range.min_proto.all;
1448 }
1449 return 0;
1450 }
1451 #endif
1452
1453 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1454 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 },
1455 [OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 },
1456 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16),
1457 .maxlen = sizeof(u16) },
1458 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark),
1459 .maxlen = sizeof(struct md_mark) },
1460 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels),
1461 .maxlen = sizeof(struct md_labels) },
1462 [OVS_CT_ATTR_HELPER] = { .minlen = 1,
1463 .maxlen = NF_CT_HELPER_NAME_LEN },
1464 #ifdef CONFIG_NF_NAT_NEEDED
1465 /* NAT length is checked when parsing the nested attributes. */
1466 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX },
1467 #endif
1468 [OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32),
1469 .maxlen = sizeof(u32) },
1470 };
1471
1472 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1473 const char **helper, bool log)
1474 {
1475 struct nlattr *a;
1476 int rem;
1477
1478 nla_for_each_nested(a, attr, rem) {
1479 int type = nla_type(a);
1480 int maxlen;
1481 int minlen;
1482
1483 if (type > OVS_CT_ATTR_MAX) {
1484 OVS_NLERR(log,
1485 "Unknown conntrack attr (type=%d, max=%d)",
1486 type, OVS_CT_ATTR_MAX);
1487 return -EINVAL;
1488 }
1489
1490 maxlen = ovs_ct_attr_lens[type].maxlen;
1491 minlen = ovs_ct_attr_lens[type].minlen;
1492 if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1493 OVS_NLERR(log,
1494 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1495 type, nla_len(a), maxlen);
1496 return -EINVAL;
1497 }
1498
1499 switch (type) {
1500 case OVS_CT_ATTR_FORCE_COMMIT:
1501 info->force = true;
1502 /* fall through. */
1503 case OVS_CT_ATTR_COMMIT:
1504 info->commit = true;
1505 break;
1506 #ifdef CONFIG_NF_CONNTRACK_ZONES
1507 case OVS_CT_ATTR_ZONE:
1508 info->zone.id = nla_get_u16(a);
1509 break;
1510 #endif
1511 #ifdef CONFIG_NF_CONNTRACK_MARK
1512 case OVS_CT_ATTR_MARK: {
1513 struct md_mark *mark = nla_data(a);
1514
1515 if (!mark->mask) {
1516 OVS_NLERR(log, "ct_mark mask cannot be 0");
1517 return -EINVAL;
1518 }
1519 info->mark = *mark;
1520 break;
1521 }
1522 #endif
1523 #ifdef CONFIG_NF_CONNTRACK_LABELS
1524 case OVS_CT_ATTR_LABELS: {
1525 struct md_labels *labels = nla_data(a);
1526
1527 if (!labels_nonzero(&labels->mask)) {
1528 OVS_NLERR(log, "ct_labels mask cannot be 0");
1529 return -EINVAL;
1530 }
1531 info->labels = *labels;
1532 break;
1533 }
1534 #endif
1535 case OVS_CT_ATTR_HELPER:
1536 *helper = nla_data(a);
1537 if (!memchr(*helper, '\0', nla_len(a))) {
1538 OVS_NLERR(log, "Invalid conntrack helper");
1539 return -EINVAL;
1540 }
1541 break;
1542 #ifdef CONFIG_NF_NAT_NEEDED
1543 case OVS_CT_ATTR_NAT: {
1544 int err = parse_nat(a, info, log);
1545
1546 if (err)
1547 return err;
1548 break;
1549 }
1550 #endif
1551 case OVS_CT_ATTR_EVENTMASK:
1552 info->have_eventmask = true;
1553 info->eventmask = nla_get_u32(a);
1554 break;
1555
1556 default:
1557 OVS_NLERR(log, "Unknown conntrack attr (%d)",
1558 type);
1559 return -EINVAL;
1560 }
1561 }
1562
1563 #ifdef CONFIG_NF_CONNTRACK_MARK
1564 if (!info->commit && info->mark.mask) {
1565 OVS_NLERR(log,
1566 "Setting conntrack mark requires 'commit' flag.");
1567 return -EINVAL;
1568 }
1569 #endif
1570 #ifdef CONFIG_NF_CONNTRACK_LABELS
1571 if (!info->commit && labels_nonzero(&info->labels.mask)) {
1572 OVS_NLERR(log,
1573 "Setting conntrack labels requires 'commit' flag.");
1574 return -EINVAL;
1575 }
1576 #endif
1577 if (rem > 0) {
1578 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1579 return -EINVAL;
1580 }
1581
1582 return 0;
1583 }
1584
1585 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1586 {
1587 if (attr == OVS_KEY_ATTR_CT_STATE)
1588 return true;
1589 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1590 attr == OVS_KEY_ATTR_CT_ZONE)
1591 return true;
1592 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1593 attr == OVS_KEY_ATTR_CT_MARK)
1594 return true;
1595 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1596 attr == OVS_KEY_ATTR_CT_LABELS) {
1597 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1598
1599 return ovs_net->xt_label;
1600 }
1601
1602 return false;
1603 }
1604
1605 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1606 const struct sw_flow_key *key,
1607 struct sw_flow_actions **sfa, bool log)
1608 {
1609 struct ovs_conntrack_info ct_info;
1610 const char *helper = NULL;
1611 u16 family;
1612 int err;
1613
1614 family = key_to_nfproto(key);
1615 if (family == NFPROTO_UNSPEC) {
1616 OVS_NLERR(log, "ct family unspecified");
1617 return -EINVAL;
1618 }
1619
1620 memset(&ct_info, 0, sizeof(ct_info));
1621 ct_info.family = family;
1622
1623 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1624 NF_CT_DEFAULT_ZONE_DIR, 0);
1625
1626 err = parse_ct(attr, &ct_info, &helper, log);
1627 if (err)
1628 return err;
1629
1630 /* Set up template for tracking connections in specific zones. */
1631 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1632 if (!ct_info.ct) {
1633 OVS_NLERR(log, "Failed to allocate conntrack template");
1634 return -ENOMEM;
1635 }
1636 if (helper) {
1637 err = ovs_ct_add_helper(&ct_info, helper, key, log);
1638 if (err)
1639 goto err_free_ct;
1640 }
1641
1642 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1643 sizeof(ct_info), log);
1644 if (err)
1645 goto err_free_ct;
1646
1647 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1648 nf_conntrack_get(&ct_info.ct->ct_general);
1649 return 0;
1650 err_free_ct:
1651 __ovs_ct_free_action(&ct_info);
1652 return err;
1653 }
1654
1655 #ifdef CONFIG_NF_NAT_NEEDED
1656 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1657 struct sk_buff *skb)
1658 {
1659 struct nlattr *start;
1660
1661 start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1662 if (!start)
1663 return false;
1664
1665 if (info->nat & OVS_CT_SRC_NAT) {
1666 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1667 return false;
1668 } else if (info->nat & OVS_CT_DST_NAT) {
1669 if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1670 return false;
1671 } else {
1672 goto out;
1673 }
1674
1675 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1676 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
1677 info->family == NFPROTO_IPV4) {
1678 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1679 info->range.min_addr.ip) ||
1680 (info->range.max_addr.ip
1681 != info->range.min_addr.ip &&
1682 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1683 info->range.max_addr.ip))))
1684 return false;
1685 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
1686 info->family == NFPROTO_IPV6) {
1687 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1688 &info->range.min_addr.in6) ||
1689 (memcmp(&info->range.max_addr.in6,
1690 &info->range.min_addr.in6,
1691 sizeof(info->range.max_addr.in6)) &&
1692 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1693 &info->range.max_addr.in6))))
1694 return false;
1695 } else {
1696 return false;
1697 }
1698 }
1699 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1700 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1701 ntohs(info->range.min_proto.all)) ||
1702 (info->range.max_proto.all != info->range.min_proto.all &&
1703 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1704 ntohs(info->range.max_proto.all)))))
1705 return false;
1706
1707 if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1708 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1709 return false;
1710 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1711 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1712 return false;
1713 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1714 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1715 return false;
1716 out:
1717 nla_nest_end(skb, start);
1718
1719 return true;
1720 }
1721 #endif
1722
1723 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1724 struct sk_buff *skb)
1725 {
1726 struct nlattr *start;
1727
1728 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1729 if (!start)
1730 return -EMSGSIZE;
1731
1732 if (ct_info->commit && nla_put_flag(skb, ct_info->force
1733 ? OVS_CT_ATTR_FORCE_COMMIT
1734 : OVS_CT_ATTR_COMMIT))
1735 return -EMSGSIZE;
1736 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1737 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1738 return -EMSGSIZE;
1739 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1740 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1741 &ct_info->mark))
1742 return -EMSGSIZE;
1743 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1744 labels_nonzero(&ct_info->labels.mask) &&
1745 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1746 &ct_info->labels))
1747 return -EMSGSIZE;
1748 if (ct_info->helper) {
1749 if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1750 ct_info->helper->name))
1751 return -EMSGSIZE;
1752 }
1753 if (ct_info->have_eventmask &&
1754 nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1755 return -EMSGSIZE;
1756
1757 #ifdef CONFIG_NF_NAT_NEEDED
1758 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1759 return -EMSGSIZE;
1760 #endif
1761 nla_nest_end(skb, start);
1762
1763 return 0;
1764 }
1765
1766 void ovs_ct_free_action(const struct nlattr *a)
1767 {
1768 struct ovs_conntrack_info *ct_info = nla_data(a);
1769
1770 __ovs_ct_free_action(ct_info);
1771 }
1772
1773 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1774 {
1775 if (ct_info->helper)
1776 nf_conntrack_helper_put(ct_info->helper);
1777 if (ct_info->ct)
1778 nf_ct_tmpl_free(ct_info->ct);
1779 }
1780
1781 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1782 static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1783 {
1784 int i, err;
1785
1786 ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1787 GFP_KERNEL);
1788 if (!ovs_net->ct_limit_info)
1789 return -ENOMEM;
1790
1791 ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1792 ovs_net->ct_limit_info->limits =
1793 kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1794 GFP_KERNEL);
1795 if (!ovs_net->ct_limit_info->limits) {
1796 kfree(ovs_net->ct_limit_info);
1797 return -ENOMEM;
1798 }
1799
1800 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1801 INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1802
1803 ovs_net->ct_limit_info->data =
1804 nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
1805
1806 if (IS_ERR(ovs_net->ct_limit_info->data)) {
1807 err = PTR_ERR(ovs_net->ct_limit_info->data);
1808 kfree(ovs_net->ct_limit_info->limits);
1809 kfree(ovs_net->ct_limit_info);
1810 pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1811 return err;
1812 }
1813 return 0;
1814 }
1815
1816 static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1817 {
1818 const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1819 int i;
1820
1821 nf_conncount_destroy(net, NFPROTO_INET, info->data);
1822 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1823 struct hlist_head *head = &info->limits[i];
1824 struct ovs_ct_limit *ct_limit;
1825
1826 hlist_for_each_entry_rcu(ct_limit, head, hlist_node)
1827 kfree_rcu(ct_limit, rcu);
1828 }
1829 kfree(ovs_net->ct_limit_info->limits);
1830 kfree(ovs_net->ct_limit_info);
1831 }
1832
1833 static struct sk_buff *
1834 ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1835 struct ovs_header **ovs_reply_header)
1836 {
1837 struct ovs_header *ovs_header = info->userhdr;
1838 struct sk_buff *skb;
1839
1840 skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1841 if (!skb)
1842 return ERR_PTR(-ENOMEM);
1843
1844 *ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1845 info->snd_seq,
1846 &dp_ct_limit_genl_family, 0, cmd);
1847
1848 if (!*ovs_reply_header) {
1849 nlmsg_free(skb);
1850 return ERR_PTR(-EMSGSIZE);
1851 }
1852 (*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1853
1854 return skb;
1855 }
1856
1857 static bool check_zone_id(int zone_id, u16 *pzone)
1858 {
1859 if (zone_id >= 0 && zone_id <= 65535) {
1860 *pzone = (u16)zone_id;
1861 return true;
1862 }
1863 return false;
1864 }
1865
1866 static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1867 struct ovs_ct_limit_info *info)
1868 {
1869 struct ovs_zone_limit *zone_limit;
1870 int rem;
1871 u16 zone;
1872
1873 rem = NLA_ALIGN(nla_len(nla_zone_limit));
1874 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1875
1876 while (rem >= sizeof(*zone_limit)) {
1877 if (unlikely(zone_limit->zone_id ==
1878 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1879 ovs_lock();
1880 info->default_limit = zone_limit->limit;
1881 ovs_unlock();
1882 } else if (unlikely(!check_zone_id(
1883 zone_limit->zone_id, &zone))) {
1884 OVS_NLERR(true, "zone id is out of range");
1885 } else {
1886 struct ovs_ct_limit *ct_limit;
1887
1888 ct_limit = kmalloc(sizeof(*ct_limit), GFP_KERNEL);
1889 if (!ct_limit)
1890 return -ENOMEM;
1891
1892 ct_limit->zone = zone;
1893 ct_limit->limit = zone_limit->limit;
1894
1895 ovs_lock();
1896 ct_limit_set(info, ct_limit);
1897 ovs_unlock();
1898 }
1899 rem -= NLA_ALIGN(sizeof(*zone_limit));
1900 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1901 NLA_ALIGN(sizeof(*zone_limit)));
1902 }
1903
1904 if (rem)
1905 OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1906
1907 return 0;
1908 }
1909
1910 static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1911 struct ovs_ct_limit_info *info)
1912 {
1913 struct ovs_zone_limit *zone_limit;
1914 int rem;
1915 u16 zone;
1916
1917 rem = NLA_ALIGN(nla_len(nla_zone_limit));
1918 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1919
1920 while (rem >= sizeof(*zone_limit)) {
1921 if (unlikely(zone_limit->zone_id ==
1922 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1923 ovs_lock();
1924 info->default_limit = OVS_CT_LIMIT_DEFAULT;
1925 ovs_unlock();
1926 } else if (unlikely(!check_zone_id(
1927 zone_limit->zone_id, &zone))) {
1928 OVS_NLERR(true, "zone id is out of range");
1929 } else {
1930 ovs_lock();
1931 ct_limit_del(info, zone);
1932 ovs_unlock();
1933 }
1934 rem -= NLA_ALIGN(sizeof(*zone_limit));
1935 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1936 NLA_ALIGN(sizeof(*zone_limit)));
1937 }
1938
1939 if (rem)
1940 OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
1941
1942 return 0;
1943 }
1944
1945 static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
1946 struct sk_buff *reply)
1947 {
1948 struct ovs_zone_limit zone_limit;
1949 int err;
1950
1951 zone_limit.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE;
1952 zone_limit.limit = info->default_limit;
1953 err = nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1954 if (err)
1955 return err;
1956
1957 return 0;
1958 }
1959
1960 static int __ovs_ct_limit_get_zone_limit(struct net *net,
1961 struct nf_conncount_data *data,
1962 u16 zone_id, u32 limit,
1963 struct sk_buff *reply)
1964 {
1965 struct nf_conntrack_zone ct_zone;
1966 struct ovs_zone_limit zone_limit;
1967 u32 conncount_key = zone_id;
1968
1969 zone_limit.zone_id = zone_id;
1970 zone_limit.limit = limit;
1971 nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
1972
1973 zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
1974 &ct_zone);
1975 return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1976 }
1977
1978 static int ovs_ct_limit_get_zone_limit(struct net *net,
1979 struct nlattr *nla_zone_limit,
1980 struct ovs_ct_limit_info *info,
1981 struct sk_buff *reply)
1982 {
1983 struct ovs_zone_limit *zone_limit;
1984 int rem, err;
1985 u32 limit;
1986 u16 zone;
1987
1988 rem = NLA_ALIGN(nla_len(nla_zone_limit));
1989 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1990
1991 while (rem >= sizeof(*zone_limit)) {
1992 if (unlikely(zone_limit->zone_id ==
1993 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1994 err = ovs_ct_limit_get_default_limit(info, reply);
1995 if (err)
1996 return err;
1997 } else if (unlikely(!check_zone_id(zone_limit->zone_id,
1998 &zone))) {
1999 OVS_NLERR(true, "zone id is out of range");
2000 } else {
2001 rcu_read_lock();
2002 limit = ct_limit_get(info, zone);
2003 rcu_read_unlock();
2004
2005 err = __ovs_ct_limit_get_zone_limit(
2006 net, info->data, zone, limit, reply);
2007 if (err)
2008 return err;
2009 }
2010 rem -= NLA_ALIGN(sizeof(*zone_limit));
2011 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2012 NLA_ALIGN(sizeof(*zone_limit)));
2013 }
2014
2015 if (rem)
2016 OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
2017
2018 return 0;
2019 }
2020
2021 static int ovs_ct_limit_get_all_zone_limit(struct net *net,
2022 struct ovs_ct_limit_info *info,
2023 struct sk_buff *reply)
2024 {
2025 struct ovs_ct_limit *ct_limit;
2026 struct hlist_head *head;
2027 int i, err = 0;
2028
2029 err = ovs_ct_limit_get_default_limit(info, reply);
2030 if (err)
2031 return err;
2032
2033 rcu_read_lock();
2034 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
2035 head = &info->limits[i];
2036 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
2037 err = __ovs_ct_limit_get_zone_limit(net, info->data,
2038 ct_limit->zone, ct_limit->limit, reply);
2039 if (err)
2040 goto exit_err;
2041 }
2042 }
2043
2044 exit_err:
2045 rcu_read_unlock();
2046 return err;
2047 }
2048
2049 static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
2050 {
2051 struct nlattr **a = info->attrs;
2052 struct sk_buff *reply;
2053 struct ovs_header *ovs_reply_header;
2054 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2055 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2056 int err;
2057
2058 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
2059 &ovs_reply_header);
2060 if (IS_ERR(reply))
2061 return PTR_ERR(reply);
2062
2063 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2064 err = -EINVAL;
2065 goto exit_err;
2066 }
2067
2068 err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2069 ct_limit_info);
2070 if (err)
2071 goto exit_err;
2072
2073 static_branch_enable(&ovs_ct_limit_enabled);
2074
2075 genlmsg_end(reply, ovs_reply_header);
2076 return genlmsg_reply(reply, info);
2077
2078 exit_err:
2079 nlmsg_free(reply);
2080 return err;
2081 }
2082
2083 static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
2084 {
2085 struct nlattr **a = info->attrs;
2086 struct sk_buff *reply;
2087 struct ovs_header *ovs_reply_header;
2088 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2089 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2090 int err;
2091
2092 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
2093 &ovs_reply_header);
2094 if (IS_ERR(reply))
2095 return PTR_ERR(reply);
2096
2097 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2098 err = -EINVAL;
2099 goto exit_err;
2100 }
2101
2102 err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2103 ct_limit_info);
2104 if (err)
2105 goto exit_err;
2106
2107 genlmsg_end(reply, ovs_reply_header);
2108 return genlmsg_reply(reply, info);
2109
2110 exit_err:
2111 nlmsg_free(reply);
2112 return err;
2113 }
2114
2115 static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
2116 {
2117 struct nlattr **a = info->attrs;
2118 struct nlattr *nla_reply;
2119 struct sk_buff *reply;
2120 struct ovs_header *ovs_reply_header;
2121 struct net *net = sock_net(skb->sk);
2122 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2123 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2124 int err;
2125
2126 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
2127 &ovs_reply_header);
2128 if (IS_ERR(reply))
2129 return PTR_ERR(reply);
2130
2131 nla_reply = nla_nest_start(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
2132
2133 if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2134 err = ovs_ct_limit_get_zone_limit(
2135 net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
2136 reply);
2137 if (err)
2138 goto exit_err;
2139 } else {
2140 err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
2141 reply);
2142 if (err)
2143 goto exit_err;
2144 }
2145
2146 nla_nest_end(reply, nla_reply);
2147 genlmsg_end(reply, ovs_reply_header);
2148 return genlmsg_reply(reply, info);
2149
2150 exit_err:
2151 nlmsg_free(reply);
2152 return err;
2153 }
2154
2155 static struct genl_ops ct_limit_genl_ops[] = {
2156 { .cmd = OVS_CT_LIMIT_CMD_SET,
2157 .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2158 * privilege. */
2159 .policy = ct_limit_policy,
2160 .doit = ovs_ct_limit_cmd_set,
2161 },
2162 { .cmd = OVS_CT_LIMIT_CMD_DEL,
2163 .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2164 * privilege. */
2165 .policy = ct_limit_policy,
2166 .doit = ovs_ct_limit_cmd_del,
2167 },
2168 { .cmd = OVS_CT_LIMIT_CMD_GET,
2169 .flags = 0, /* OK for unprivileged users. */
2170 .policy = ct_limit_policy,
2171 .doit = ovs_ct_limit_cmd_get,
2172 },
2173 };
2174
2175 static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
2176 .name = OVS_CT_LIMIT_MCGROUP,
2177 };
2178
2179 struct genl_family dp_ct_limit_genl_family __ro_after_init = {
2180 .hdrsize = sizeof(struct ovs_header),
2181 .name = OVS_CT_LIMIT_FAMILY,
2182 .version = OVS_CT_LIMIT_VERSION,
2183 .maxattr = OVS_CT_LIMIT_ATTR_MAX,
2184 .netnsok = true,
2185 .parallel_ops = true,
2186 .ops = ct_limit_genl_ops,
2187 .n_ops = ARRAY_SIZE(ct_limit_genl_ops),
2188 .mcgrps = &ovs_ct_limit_multicast_group,
2189 .n_mcgrps = 1,
2190 .module = THIS_MODULE,
2191 };
2192 #endif
2193
2194 int ovs_ct_init(struct net *net)
2195 {
2196 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
2197 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2198
2199 if (nf_connlabels_get(net, n_bits - 1)) {
2200 ovs_net->xt_label = false;
2201 OVS_NLERR(true, "Failed to set connlabel length");
2202 } else {
2203 ovs_net->xt_label = true;
2204 }
2205
2206 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2207 return ovs_ct_limit_init(net, ovs_net);
2208 #else
2209 return 0;
2210 #endif
2211 }
2212
2213 void ovs_ct_exit(struct net *net)
2214 {
2215 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2216
2217 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2218 ovs_ct_limit_exit(net, ovs_net);
2219 #endif
2220
2221 if (ovs_net->xt_label)
2222 nf_connlabels_put(net);
2223 }