]> git.ipfire.org Git - thirdparty/linux.git/blob - net/openvswitch/conntrack.c
riscv: select ARCH_HAS_STRICT_KERNEL_RWX only if MMU
[thirdparty/linux.git] / net / openvswitch / conntrack.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2015 Nicira, Inc.
4 */
5
6 #include <linux/module.h>
7 #include <linux/openvswitch.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/sctp.h>
11 #include <linux/static_key.h>
12 #include <net/ip.h>
13 #include <net/genetlink.h>
14 #include <net/netfilter/nf_conntrack_core.h>
15 #include <net/netfilter/nf_conntrack_count.h>
16 #include <net/netfilter/nf_conntrack_helper.h>
17 #include <net/netfilter/nf_conntrack_labels.h>
18 #include <net/netfilter/nf_conntrack_seqadj.h>
19 #include <net/netfilter/nf_conntrack_timeout.h>
20 #include <net/netfilter/nf_conntrack_zones.h>
21 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
22 #include <net/ipv6_frag.h>
23
24 #if IS_ENABLED(CONFIG_NF_NAT)
25 #include <net/netfilter/nf_nat.h>
26 #endif
27
28 #include "datapath.h"
29 #include "conntrack.h"
30 #include "flow.h"
31 #include "flow_netlink.h"
32
33 struct ovs_ct_len_tbl {
34 int maxlen;
35 int minlen;
36 };
37
38 /* Metadata mark for masked write to conntrack mark */
39 struct md_mark {
40 u32 value;
41 u32 mask;
42 };
43
44 /* Metadata label for masked write to conntrack label. */
45 struct md_labels {
46 struct ovs_key_ct_labels value;
47 struct ovs_key_ct_labels mask;
48 };
49
50 enum ovs_ct_nat {
51 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */
52 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
53 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
54 };
55
56 /* Conntrack action context for execution. */
57 struct ovs_conntrack_info {
58 struct nf_conntrack_helper *helper;
59 struct nf_conntrack_zone zone;
60 struct nf_conn *ct;
61 u8 commit : 1;
62 u8 nat : 3; /* enum ovs_ct_nat */
63 u8 force : 1;
64 u8 have_eventmask : 1;
65 u16 family;
66 u32 eventmask; /* Mask of 1 << IPCT_*. */
67 struct md_mark mark;
68 struct md_labels labels;
69 char timeout[CTNL_TIMEOUT_NAME_MAX];
70 struct nf_ct_timeout *nf_ct_timeout;
71 #if IS_ENABLED(CONFIG_NF_NAT)
72 struct nf_nat_range2 range; /* Only present for SRC NAT and DST NAT. */
73 #endif
74 };
75
76 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
77 #define OVS_CT_LIMIT_UNLIMITED 0
78 #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
79 #define CT_LIMIT_HASH_BUCKETS 512
80 static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
81
82 struct ovs_ct_limit {
83 /* Elements in ovs_ct_limit_info->limits hash table */
84 struct hlist_node hlist_node;
85 struct rcu_head rcu;
86 u16 zone;
87 u32 limit;
88 };
89
90 struct ovs_ct_limit_info {
91 u32 default_limit;
92 struct hlist_head *limits;
93 struct nf_conncount_data *data;
94 };
95
96 static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
97 [OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
98 };
99 #endif
100
101 static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
102
103 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
104
105 static u16 key_to_nfproto(const struct sw_flow_key *key)
106 {
107 switch (ntohs(key->eth.type)) {
108 case ETH_P_IP:
109 return NFPROTO_IPV4;
110 case ETH_P_IPV6:
111 return NFPROTO_IPV6;
112 default:
113 return NFPROTO_UNSPEC;
114 }
115 }
116
117 /* Map SKB connection state into the values used by flow definition. */
118 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
119 {
120 u8 ct_state = OVS_CS_F_TRACKED;
121
122 switch (ctinfo) {
123 case IP_CT_ESTABLISHED_REPLY:
124 case IP_CT_RELATED_REPLY:
125 ct_state |= OVS_CS_F_REPLY_DIR;
126 break;
127 default:
128 break;
129 }
130
131 switch (ctinfo) {
132 case IP_CT_ESTABLISHED:
133 case IP_CT_ESTABLISHED_REPLY:
134 ct_state |= OVS_CS_F_ESTABLISHED;
135 break;
136 case IP_CT_RELATED:
137 case IP_CT_RELATED_REPLY:
138 ct_state |= OVS_CS_F_RELATED;
139 break;
140 case IP_CT_NEW:
141 ct_state |= OVS_CS_F_NEW;
142 break;
143 default:
144 break;
145 }
146
147 return ct_state;
148 }
149
150 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
151 {
152 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
153 return ct ? ct->mark : 0;
154 #else
155 return 0;
156 #endif
157 }
158
159 /* Guard against conntrack labels max size shrinking below 128 bits. */
160 #if NF_CT_LABELS_MAX_SIZE < 16
161 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
162 #endif
163
164 static void ovs_ct_get_labels(const struct nf_conn *ct,
165 struct ovs_key_ct_labels *labels)
166 {
167 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
168
169 if (cl)
170 memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
171 else
172 memset(labels, 0, OVS_CT_LABELS_LEN);
173 }
174
175 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
176 const struct nf_conntrack_tuple *orig,
177 u8 icmp_proto)
178 {
179 key->ct_orig_proto = orig->dst.protonum;
180 if (orig->dst.protonum == icmp_proto) {
181 key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
182 key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
183 } else {
184 key->ct.orig_tp.src = orig->src.u.all;
185 key->ct.orig_tp.dst = orig->dst.u.all;
186 }
187 }
188
189 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
190 const struct nf_conntrack_zone *zone,
191 const struct nf_conn *ct)
192 {
193 key->ct_state = state;
194 key->ct_zone = zone->id;
195 key->ct.mark = ovs_ct_get_mark(ct);
196 ovs_ct_get_labels(ct, &key->ct.labels);
197
198 if (ct) {
199 const struct nf_conntrack_tuple *orig;
200
201 /* Use the master if we have one. */
202 if (ct->master)
203 ct = ct->master;
204 orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
205
206 /* IP version must match with the master connection. */
207 if (key->eth.type == htons(ETH_P_IP) &&
208 nf_ct_l3num(ct) == NFPROTO_IPV4) {
209 key->ipv4.ct_orig.src = orig->src.u3.ip;
210 key->ipv4.ct_orig.dst = orig->dst.u3.ip;
211 __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
212 return;
213 } else if (key->eth.type == htons(ETH_P_IPV6) &&
214 !sw_flow_key_is_nd(key) &&
215 nf_ct_l3num(ct) == NFPROTO_IPV6) {
216 key->ipv6.ct_orig.src = orig->src.u3.in6;
217 key->ipv6.ct_orig.dst = orig->dst.u3.in6;
218 __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
219 return;
220 }
221 }
222 /* Clear 'ct_orig_proto' to mark the non-existence of conntrack
223 * original direction key fields.
224 */
225 key->ct_orig_proto = 0;
226 }
227
228 /* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has
229 * previously sent the packet to conntrack via the ct action. If
230 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
231 * initialized from the connection status.
232 */
233 static void ovs_ct_update_key(const struct sk_buff *skb,
234 const struct ovs_conntrack_info *info,
235 struct sw_flow_key *key, bool post_ct,
236 bool keep_nat_flags)
237 {
238 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
239 enum ip_conntrack_info ctinfo;
240 struct nf_conn *ct;
241 u8 state = 0;
242
243 ct = nf_ct_get(skb, &ctinfo);
244 if (ct) {
245 state = ovs_ct_get_state(ctinfo);
246 /* All unconfirmed entries are NEW connections. */
247 if (!nf_ct_is_confirmed(ct))
248 state |= OVS_CS_F_NEW;
249 /* OVS persists the related flag for the duration of the
250 * connection.
251 */
252 if (ct->master)
253 state |= OVS_CS_F_RELATED;
254 if (keep_nat_flags) {
255 state |= key->ct_state & OVS_CS_F_NAT_MASK;
256 } else {
257 if (ct->status & IPS_SRC_NAT)
258 state |= OVS_CS_F_SRC_NAT;
259 if (ct->status & IPS_DST_NAT)
260 state |= OVS_CS_F_DST_NAT;
261 }
262 zone = nf_ct_zone(ct);
263 } else if (post_ct) {
264 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
265 if (info)
266 zone = &info->zone;
267 }
268 __ovs_ct_update_key(key, state, zone, ct);
269 }
270
271 /* This is called to initialize CT key fields possibly coming in from the local
272 * stack.
273 */
274 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
275 {
276 ovs_ct_update_key(skb, NULL, key, false, false);
277 }
278
279 #define IN6_ADDR_INITIALIZER(ADDR) \
280 { (ADDR).s6_addr32[0], (ADDR).s6_addr32[1], \
281 (ADDR).s6_addr32[2], (ADDR).s6_addr32[3] }
282
283 int ovs_ct_put_key(const struct sw_flow_key *swkey,
284 const struct sw_flow_key *output, struct sk_buff *skb)
285 {
286 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
287 return -EMSGSIZE;
288
289 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
290 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
291 return -EMSGSIZE;
292
293 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
294 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
295 return -EMSGSIZE;
296
297 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
298 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
299 &output->ct.labels))
300 return -EMSGSIZE;
301
302 if (swkey->ct_orig_proto) {
303 if (swkey->eth.type == htons(ETH_P_IP)) {
304 struct ovs_key_ct_tuple_ipv4 orig = {
305 output->ipv4.ct_orig.src,
306 output->ipv4.ct_orig.dst,
307 output->ct.orig_tp.src,
308 output->ct.orig_tp.dst,
309 output->ct_orig_proto,
310 };
311 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
312 sizeof(orig), &orig))
313 return -EMSGSIZE;
314 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
315 struct ovs_key_ct_tuple_ipv6 orig = {
316 IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.src),
317 IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.dst),
318 output->ct.orig_tp.src,
319 output->ct.orig_tp.dst,
320 output->ct_orig_proto,
321 };
322 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
323 sizeof(orig), &orig))
324 return -EMSGSIZE;
325 }
326 }
327
328 return 0;
329 }
330
331 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
332 u32 ct_mark, u32 mask)
333 {
334 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
335 u32 new_mark;
336
337 new_mark = ct_mark | (ct->mark & ~(mask));
338 if (ct->mark != new_mark) {
339 ct->mark = new_mark;
340 if (nf_ct_is_confirmed(ct))
341 nf_conntrack_event_cache(IPCT_MARK, ct);
342 key->ct.mark = new_mark;
343 }
344
345 return 0;
346 #else
347 return -ENOTSUPP;
348 #endif
349 }
350
351 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
352 {
353 struct nf_conn_labels *cl;
354
355 cl = nf_ct_labels_find(ct);
356 if (!cl) {
357 nf_ct_labels_ext_add(ct);
358 cl = nf_ct_labels_find(ct);
359 }
360
361 return cl;
362 }
363
364 /* Initialize labels for a new, yet to be committed conntrack entry. Note that
365 * since the new connection is not yet confirmed, and thus no-one else has
366 * access to it's labels, we simply write them over.
367 */
368 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
369 const struct ovs_key_ct_labels *labels,
370 const struct ovs_key_ct_labels *mask)
371 {
372 struct nf_conn_labels *cl, *master_cl;
373 bool have_mask = labels_nonzero(mask);
374
375 /* Inherit master's labels to the related connection? */
376 master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
377
378 if (!master_cl && !have_mask)
379 return 0; /* Nothing to do. */
380
381 cl = ovs_ct_get_conn_labels(ct);
382 if (!cl)
383 return -ENOSPC;
384
385 /* Inherit the master's labels, if any. */
386 if (master_cl)
387 *cl = *master_cl;
388
389 if (have_mask) {
390 u32 *dst = (u32 *)cl->bits;
391 int i;
392
393 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
394 dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
395 (labels->ct_labels_32[i]
396 & mask->ct_labels_32[i]);
397 }
398
399 /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
400 * IPCT_LABEL bit is set in the event cache.
401 */
402 nf_conntrack_event_cache(IPCT_LABEL, ct);
403
404 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
405
406 return 0;
407 }
408
409 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
410 const struct ovs_key_ct_labels *labels,
411 const struct ovs_key_ct_labels *mask)
412 {
413 struct nf_conn_labels *cl;
414 int err;
415
416 cl = ovs_ct_get_conn_labels(ct);
417 if (!cl)
418 return -ENOSPC;
419
420 err = nf_connlabels_replace(ct, labels->ct_labels_32,
421 mask->ct_labels_32,
422 OVS_CT_LABELS_LEN_32);
423 if (err)
424 return err;
425
426 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
427
428 return 0;
429 }
430
431 /* 'skb' should already be pulled to nh_ofs. */
432 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
433 {
434 const struct nf_conntrack_helper *helper;
435 const struct nf_conn_help *help;
436 enum ip_conntrack_info ctinfo;
437 unsigned int protoff;
438 struct nf_conn *ct;
439 int err;
440
441 ct = nf_ct_get(skb, &ctinfo);
442 if (!ct || ctinfo == IP_CT_RELATED_REPLY)
443 return NF_ACCEPT;
444
445 help = nfct_help(ct);
446 if (!help)
447 return NF_ACCEPT;
448
449 helper = rcu_dereference(help->helper);
450 if (!helper)
451 return NF_ACCEPT;
452
453 switch (proto) {
454 case NFPROTO_IPV4:
455 protoff = ip_hdrlen(skb);
456 break;
457 case NFPROTO_IPV6: {
458 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
459 __be16 frag_off;
460 int ofs;
461
462 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
463 &frag_off);
464 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
465 pr_debug("proto header not found\n");
466 return NF_ACCEPT;
467 }
468 protoff = ofs;
469 break;
470 }
471 default:
472 WARN_ONCE(1, "helper invoked on non-IP family!");
473 return NF_DROP;
474 }
475
476 err = helper->help(skb, protoff, ct, ctinfo);
477 if (err != NF_ACCEPT)
478 return err;
479
480 /* Adjust seqs after helper. This is needed due to some helpers (e.g.,
481 * FTP with NAT) adusting the TCP payload size when mangling IP
482 * addresses and/or port numbers in the text-based control connection.
483 */
484 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
485 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
486 return NF_DROP;
487 return NF_ACCEPT;
488 }
489
490 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
491 * value if 'skb' is freed.
492 */
493 static int handle_fragments(struct net *net, struct sw_flow_key *key,
494 u16 zone, struct sk_buff *skb)
495 {
496 struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
497 int err;
498
499 if (key->eth.type == htons(ETH_P_IP)) {
500 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
501
502 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
503 err = ip_defrag(net, skb, user);
504 if (err)
505 return err;
506
507 ovs_cb.mru = IPCB(skb)->frag_max_size;
508 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
509 } else if (key->eth.type == htons(ETH_P_IPV6)) {
510 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
511
512 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
513 err = nf_ct_frag6_gather(net, skb, user);
514 if (err) {
515 if (err != -EINPROGRESS)
516 kfree_skb(skb);
517 return err;
518 }
519
520 key->ip.proto = ipv6_hdr(skb)->nexthdr;
521 ovs_cb.mru = IP6CB(skb)->frag_max_size;
522 #endif
523 } else {
524 kfree_skb(skb);
525 return -EPFNOSUPPORT;
526 }
527
528 /* The key extracted from the fragment that completed this datagram
529 * likely didn't have an L4 header, so regenerate it.
530 */
531 ovs_flow_key_update_l3l4(skb, key);
532
533 key->ip.frag = OVS_FRAG_TYPE_NONE;
534 skb_clear_hash(skb);
535 skb->ignore_df = 1;
536 *OVS_CB(skb) = ovs_cb;
537
538 return 0;
539 }
540
541 static struct nf_conntrack_expect *
542 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
543 u16 proto, const struct sk_buff *skb)
544 {
545 struct nf_conntrack_tuple tuple;
546 struct nf_conntrack_expect *exp;
547
548 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
549 return NULL;
550
551 exp = __nf_ct_expect_find(net, zone, &tuple);
552 if (exp) {
553 struct nf_conntrack_tuple_hash *h;
554
555 /* Delete existing conntrack entry, if it clashes with the
556 * expectation. This can happen since conntrack ALGs do not
557 * check for clashes between (new) expectations and existing
558 * conntrack entries. nf_conntrack_in() will check the
559 * expectations only if a conntrack entry can not be found,
560 * which can lead to OVS finding the expectation (here) in the
561 * init direction, but which will not be removed by the
562 * nf_conntrack_in() call, if a matching conntrack entry is
563 * found instead. In this case all init direction packets
564 * would be reported as new related packets, while reply
565 * direction packets would be reported as un-related
566 * established packets.
567 */
568 h = nf_conntrack_find_get(net, zone, &tuple);
569 if (h) {
570 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
571
572 nf_ct_delete(ct, 0, 0);
573 nf_conntrack_put(&ct->ct_general);
574 }
575 }
576
577 return exp;
578 }
579
580 /* This replicates logic from nf_conntrack_core.c that is not exported. */
581 static enum ip_conntrack_info
582 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
583 {
584 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
585
586 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
587 return IP_CT_ESTABLISHED_REPLY;
588 /* Once we've had two way comms, always ESTABLISHED. */
589 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
590 return IP_CT_ESTABLISHED;
591 if (test_bit(IPS_EXPECTED_BIT, &ct->status))
592 return IP_CT_RELATED;
593 return IP_CT_NEW;
594 }
595
596 /* Find an existing connection which this packet belongs to without
597 * re-attributing statistics or modifying the connection state. This allows an
598 * skb->_nfct lost due to an upcall to be recovered during actions execution.
599 *
600 * Must be called with rcu_read_lock.
601 *
602 * On success, populates skb->_nfct and returns the connection. Returns NULL
603 * if there is no existing entry.
604 */
605 static struct nf_conn *
606 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
607 u8 l3num, struct sk_buff *skb, bool natted)
608 {
609 struct nf_conntrack_tuple tuple;
610 struct nf_conntrack_tuple_hash *h;
611 struct nf_conn *ct;
612
613 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
614 net, &tuple)) {
615 pr_debug("ovs_ct_find_existing: Can't get tuple\n");
616 return NULL;
617 }
618
619 /* Must invert the tuple if skb has been transformed by NAT. */
620 if (natted) {
621 struct nf_conntrack_tuple inverse;
622
623 if (!nf_ct_invert_tuple(&inverse, &tuple)) {
624 pr_debug("ovs_ct_find_existing: Inversion failed!\n");
625 return NULL;
626 }
627 tuple = inverse;
628 }
629
630 /* look for tuple match */
631 h = nf_conntrack_find_get(net, zone, &tuple);
632 if (!h)
633 return NULL; /* Not found. */
634
635 ct = nf_ct_tuplehash_to_ctrack(h);
636
637 /* Inverted packet tuple matches the reverse direction conntrack tuple,
638 * select the other tuplehash to get the right 'ctinfo' bits for this
639 * packet.
640 */
641 if (natted)
642 h = &ct->tuplehash[!h->tuple.dst.dir];
643
644 nf_ct_set(skb, ct, ovs_ct_get_info(h));
645 return ct;
646 }
647
648 static
649 struct nf_conn *ovs_ct_executed(struct net *net,
650 const struct sw_flow_key *key,
651 const struct ovs_conntrack_info *info,
652 struct sk_buff *skb,
653 bool *ct_executed)
654 {
655 struct nf_conn *ct = NULL;
656
657 /* If no ct, check if we have evidence that an existing conntrack entry
658 * might be found for this skb. This happens when we lose a skb->_nfct
659 * due to an upcall, or if the direction is being forced. If the
660 * connection was not confirmed, it is not cached and needs to be run
661 * through conntrack again.
662 */
663 *ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
664 !(key->ct_state & OVS_CS_F_INVALID) &&
665 (key->ct_zone == info->zone.id);
666
667 if (*ct_executed || (!key->ct_state && info->force)) {
668 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
669 !!(key->ct_state &
670 OVS_CS_F_NAT_MASK));
671 }
672
673 return ct;
674 }
675
676 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
677 static bool skb_nfct_cached(struct net *net,
678 const struct sw_flow_key *key,
679 const struct ovs_conntrack_info *info,
680 struct sk_buff *skb)
681 {
682 enum ip_conntrack_info ctinfo;
683 struct nf_conn *ct;
684 bool ct_executed = true;
685
686 ct = nf_ct_get(skb, &ctinfo);
687 if (!ct)
688 ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
689
690 if (ct)
691 nf_ct_get(skb, &ctinfo);
692 else
693 return false;
694
695 if (!net_eq(net, read_pnet(&ct->ct_net)))
696 return false;
697 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
698 return false;
699 if (info->helper) {
700 struct nf_conn_help *help;
701
702 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
703 if (help && rcu_access_pointer(help->helper) != info->helper)
704 return false;
705 }
706 if (info->nf_ct_timeout) {
707 struct nf_conn_timeout *timeout_ext;
708
709 timeout_ext = nf_ct_timeout_find(ct);
710 if (!timeout_ext || info->nf_ct_timeout !=
711 rcu_dereference(timeout_ext->timeout))
712 return false;
713 }
714 /* Force conntrack entry direction to the current packet? */
715 if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
716 /* Delete the conntrack entry if confirmed, else just release
717 * the reference.
718 */
719 if (nf_ct_is_confirmed(ct))
720 nf_ct_delete(ct, 0, 0);
721
722 nf_conntrack_put(&ct->ct_general);
723 nf_ct_set(skb, NULL, 0);
724 return false;
725 }
726
727 return ct_executed;
728 }
729
730 #if IS_ENABLED(CONFIG_NF_NAT)
731 /* Modelled after nf_nat_ipv[46]_fn().
732 * range is only used for new, uninitialized NAT state.
733 * Returns either NF_ACCEPT or NF_DROP.
734 */
735 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
736 enum ip_conntrack_info ctinfo,
737 const struct nf_nat_range2 *range,
738 enum nf_nat_manip_type maniptype)
739 {
740 int hooknum, nh_off, err = NF_ACCEPT;
741
742 nh_off = skb_network_offset(skb);
743 skb_pull_rcsum(skb, nh_off);
744
745 /* See HOOK2MANIP(). */
746 if (maniptype == NF_NAT_MANIP_SRC)
747 hooknum = NF_INET_LOCAL_IN; /* Source NAT */
748 else
749 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
750
751 switch (ctinfo) {
752 case IP_CT_RELATED:
753 case IP_CT_RELATED_REPLY:
754 if (IS_ENABLED(CONFIG_NF_NAT) &&
755 skb->protocol == htons(ETH_P_IP) &&
756 ip_hdr(skb)->protocol == IPPROTO_ICMP) {
757 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
758 hooknum))
759 err = NF_DROP;
760 goto push;
761 } else if (IS_ENABLED(CONFIG_IPV6) &&
762 skb->protocol == htons(ETH_P_IPV6)) {
763 __be16 frag_off;
764 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
765 int hdrlen = ipv6_skip_exthdr(skb,
766 sizeof(struct ipv6hdr),
767 &nexthdr, &frag_off);
768
769 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
770 if (!nf_nat_icmpv6_reply_translation(skb, ct,
771 ctinfo,
772 hooknum,
773 hdrlen))
774 err = NF_DROP;
775 goto push;
776 }
777 }
778 /* Non-ICMP, fall thru to initialize if needed. */
779 /* fall through */
780 case IP_CT_NEW:
781 /* Seen it before? This can happen for loopback, retrans,
782 * or local packets.
783 */
784 if (!nf_nat_initialized(ct, maniptype)) {
785 /* Initialize according to the NAT action. */
786 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
787 /* Action is set up to establish a new
788 * mapping.
789 */
790 ? nf_nat_setup_info(ct, range, maniptype)
791 : nf_nat_alloc_null_binding(ct, hooknum);
792 if (err != NF_ACCEPT)
793 goto push;
794 }
795 break;
796
797 case IP_CT_ESTABLISHED:
798 case IP_CT_ESTABLISHED_REPLY:
799 break;
800
801 default:
802 err = NF_DROP;
803 goto push;
804 }
805
806 err = nf_nat_packet(ct, ctinfo, hooknum, skb);
807 push:
808 skb_push(skb, nh_off);
809 skb_postpush_rcsum(skb, skb->data, nh_off);
810
811 return err;
812 }
813
814 static void ovs_nat_update_key(struct sw_flow_key *key,
815 const struct sk_buff *skb,
816 enum nf_nat_manip_type maniptype)
817 {
818 if (maniptype == NF_NAT_MANIP_SRC) {
819 __be16 src;
820
821 key->ct_state |= OVS_CS_F_SRC_NAT;
822 if (key->eth.type == htons(ETH_P_IP))
823 key->ipv4.addr.src = ip_hdr(skb)->saddr;
824 else if (key->eth.type == htons(ETH_P_IPV6))
825 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
826 sizeof(key->ipv6.addr.src));
827 else
828 return;
829
830 if (key->ip.proto == IPPROTO_UDP)
831 src = udp_hdr(skb)->source;
832 else if (key->ip.proto == IPPROTO_TCP)
833 src = tcp_hdr(skb)->source;
834 else if (key->ip.proto == IPPROTO_SCTP)
835 src = sctp_hdr(skb)->source;
836 else
837 return;
838
839 key->tp.src = src;
840 } else {
841 __be16 dst;
842
843 key->ct_state |= OVS_CS_F_DST_NAT;
844 if (key->eth.type == htons(ETH_P_IP))
845 key->ipv4.addr.dst = ip_hdr(skb)->daddr;
846 else if (key->eth.type == htons(ETH_P_IPV6))
847 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
848 sizeof(key->ipv6.addr.dst));
849 else
850 return;
851
852 if (key->ip.proto == IPPROTO_UDP)
853 dst = udp_hdr(skb)->dest;
854 else if (key->ip.proto == IPPROTO_TCP)
855 dst = tcp_hdr(skb)->dest;
856 else if (key->ip.proto == IPPROTO_SCTP)
857 dst = sctp_hdr(skb)->dest;
858 else
859 return;
860
861 key->tp.dst = dst;
862 }
863 }
864
865 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
866 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
867 const struct ovs_conntrack_info *info,
868 struct sk_buff *skb, struct nf_conn *ct,
869 enum ip_conntrack_info ctinfo)
870 {
871 enum nf_nat_manip_type maniptype;
872 int err;
873
874 /* Add NAT extension if not confirmed yet. */
875 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
876 return NF_ACCEPT; /* Can't NAT. */
877
878 /* Determine NAT type.
879 * Check if the NAT type can be deduced from the tracked connection.
880 * Make sure new expected connections (IP_CT_RELATED) are NATted only
881 * when committing.
882 */
883 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
884 ct->status & IPS_NAT_MASK &&
885 (ctinfo != IP_CT_RELATED || info->commit)) {
886 /* NAT an established or related connection like before. */
887 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
888 /* This is the REPLY direction for a connection
889 * for which NAT was applied in the forward
890 * direction. Do the reverse NAT.
891 */
892 maniptype = ct->status & IPS_SRC_NAT
893 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
894 else
895 maniptype = ct->status & IPS_SRC_NAT
896 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
897 } else if (info->nat & OVS_CT_SRC_NAT) {
898 maniptype = NF_NAT_MANIP_SRC;
899 } else if (info->nat & OVS_CT_DST_NAT) {
900 maniptype = NF_NAT_MANIP_DST;
901 } else {
902 return NF_ACCEPT; /* Connection is not NATed. */
903 }
904 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
905
906 if (err == NF_ACCEPT &&
907 ct->status & IPS_SRC_NAT && ct->status & IPS_DST_NAT) {
908 if (maniptype == NF_NAT_MANIP_SRC)
909 maniptype = NF_NAT_MANIP_DST;
910 else
911 maniptype = NF_NAT_MANIP_SRC;
912
913 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range,
914 maniptype);
915 }
916
917 /* Mark NAT done if successful and update the flow key. */
918 if (err == NF_ACCEPT)
919 ovs_nat_update_key(key, skb, maniptype);
920
921 return err;
922 }
923 #else /* !CONFIG_NF_NAT */
924 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
925 const struct ovs_conntrack_info *info,
926 struct sk_buff *skb, struct nf_conn *ct,
927 enum ip_conntrack_info ctinfo)
928 {
929 return NF_ACCEPT;
930 }
931 #endif
932
933 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
934 * not done already. Update key with new CT state after passing the packet
935 * through conntrack.
936 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
937 * set to NULL and 0 will be returned.
938 */
939 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
940 const struct ovs_conntrack_info *info,
941 struct sk_buff *skb)
942 {
943 /* If we are recirculating packets to match on conntrack fields and
944 * committing with a separate conntrack action, then we don't need to
945 * actually run the packet through conntrack twice unless it's for a
946 * different zone.
947 */
948 bool cached = skb_nfct_cached(net, key, info, skb);
949 enum ip_conntrack_info ctinfo;
950 struct nf_conn *ct;
951
952 if (!cached) {
953 struct nf_hook_state state = {
954 .hook = NF_INET_PRE_ROUTING,
955 .pf = info->family,
956 .net = net,
957 };
958 struct nf_conn *tmpl = info->ct;
959 int err;
960
961 /* Associate skb with specified zone. */
962 if (tmpl) {
963 if (skb_nfct(skb))
964 nf_conntrack_put(skb_nfct(skb));
965 nf_conntrack_get(&tmpl->ct_general);
966 nf_ct_set(skb, tmpl, IP_CT_NEW);
967 }
968
969 err = nf_conntrack_in(skb, &state);
970 if (err != NF_ACCEPT)
971 return -ENOENT;
972
973 /* Clear CT state NAT flags to mark that we have not yet done
974 * NAT after the nf_conntrack_in() call. We can actually clear
975 * the whole state, as it will be re-initialized below.
976 */
977 key->ct_state = 0;
978
979 /* Update the key, but keep the NAT flags. */
980 ovs_ct_update_key(skb, info, key, true, true);
981 }
982
983 ct = nf_ct_get(skb, &ctinfo);
984 if (ct) {
985 bool add_helper = false;
986
987 /* Packets starting a new connection must be NATted before the
988 * helper, so that the helper knows about the NAT. We enforce
989 * this by delaying both NAT and helper calls for unconfirmed
990 * connections until the committing CT action. For later
991 * packets NAT and Helper may be called in either order.
992 *
993 * NAT will be done only if the CT action has NAT, and only
994 * once per packet (per zone), as guarded by the NAT bits in
995 * the key->ct_state.
996 */
997 if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
998 (nf_ct_is_confirmed(ct) || info->commit) &&
999 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
1000 return -EINVAL;
1001 }
1002
1003 /* Userspace may decide to perform a ct lookup without a helper
1004 * specified followed by a (recirculate and) commit with one,
1005 * or attach a helper in a later commit. Therefore, for
1006 * connections which we will commit, we may need to attach
1007 * the helper here.
1008 */
1009 if (info->commit && info->helper && !nfct_help(ct)) {
1010 int err = __nf_ct_try_assign_helper(ct, info->ct,
1011 GFP_ATOMIC);
1012 if (err)
1013 return err;
1014 add_helper = true;
1015
1016 /* helper installed, add seqadj if NAT is required */
1017 if (info->nat && !nfct_seqadj(ct)) {
1018 if (!nfct_seqadj_ext_add(ct))
1019 return -EINVAL;
1020 }
1021 }
1022
1023 /* Call the helper only if:
1024 * - nf_conntrack_in() was executed above ("!cached") or a
1025 * helper was just attached ("add_helper") for a confirmed
1026 * connection, or
1027 * - When committing an unconfirmed connection.
1028 */
1029 if ((nf_ct_is_confirmed(ct) ? !cached || add_helper :
1030 info->commit) &&
1031 ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
1032 return -EINVAL;
1033 }
1034 }
1035
1036 return 0;
1037 }
1038
1039 /* Lookup connection and read fields into key. */
1040 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
1041 const struct ovs_conntrack_info *info,
1042 struct sk_buff *skb)
1043 {
1044 struct nf_conntrack_expect *exp;
1045
1046 /* If we pass an expected packet through nf_conntrack_in() the
1047 * expectation is typically removed, but the packet could still be
1048 * lost in upcall processing. To prevent this from happening we
1049 * perform an explicit expectation lookup. Expected connections are
1050 * always new, and will be passed through conntrack only when they are
1051 * committed, as it is OK to remove the expectation at that time.
1052 */
1053 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
1054 if (exp) {
1055 u8 state;
1056
1057 /* NOTE: New connections are NATted and Helped only when
1058 * committed, so we are not calling into NAT here.
1059 */
1060 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
1061 __ovs_ct_update_key(key, state, &info->zone, exp->master);
1062 } else {
1063 struct nf_conn *ct;
1064 int err;
1065
1066 err = __ovs_ct_lookup(net, key, info, skb);
1067 if (err)
1068 return err;
1069
1070 ct = (struct nf_conn *)skb_nfct(skb);
1071 if (ct)
1072 nf_ct_deliver_cached_events(ct);
1073 }
1074
1075 return 0;
1076 }
1077
1078 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
1079 {
1080 size_t i;
1081
1082 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
1083 if (labels->ct_labels_32[i])
1084 return true;
1085
1086 return false;
1087 }
1088
1089 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1090 static struct hlist_head *ct_limit_hash_bucket(
1091 const struct ovs_ct_limit_info *info, u16 zone)
1092 {
1093 return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
1094 }
1095
1096 /* Call with ovs_mutex */
1097 static void ct_limit_set(const struct ovs_ct_limit_info *info,
1098 struct ovs_ct_limit *new_ct_limit)
1099 {
1100 struct ovs_ct_limit *ct_limit;
1101 struct hlist_head *head;
1102
1103 head = ct_limit_hash_bucket(info, new_ct_limit->zone);
1104 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1105 if (ct_limit->zone == new_ct_limit->zone) {
1106 hlist_replace_rcu(&ct_limit->hlist_node,
1107 &new_ct_limit->hlist_node);
1108 kfree_rcu(ct_limit, rcu);
1109 return;
1110 }
1111 }
1112
1113 hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
1114 }
1115
1116 /* Call with ovs_mutex */
1117 static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
1118 {
1119 struct ovs_ct_limit *ct_limit;
1120 struct hlist_head *head;
1121 struct hlist_node *n;
1122
1123 head = ct_limit_hash_bucket(info, zone);
1124 hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
1125 if (ct_limit->zone == zone) {
1126 hlist_del_rcu(&ct_limit->hlist_node);
1127 kfree_rcu(ct_limit, rcu);
1128 return;
1129 }
1130 }
1131 }
1132
1133 /* Call with RCU read lock */
1134 static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
1135 {
1136 struct ovs_ct_limit *ct_limit;
1137 struct hlist_head *head;
1138
1139 head = ct_limit_hash_bucket(info, zone);
1140 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1141 if (ct_limit->zone == zone)
1142 return ct_limit->limit;
1143 }
1144
1145 return info->default_limit;
1146 }
1147
1148 static int ovs_ct_check_limit(struct net *net,
1149 const struct ovs_conntrack_info *info,
1150 const struct nf_conntrack_tuple *tuple)
1151 {
1152 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1153 const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1154 u32 per_zone_limit, connections;
1155 u32 conncount_key;
1156
1157 conncount_key = info->zone.id;
1158
1159 per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
1160 if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
1161 return 0;
1162
1163 connections = nf_conncount_count(net, ct_limit_info->data,
1164 &conncount_key, tuple, &info->zone);
1165 if (connections > per_zone_limit)
1166 return -ENOMEM;
1167
1168 return 0;
1169 }
1170 #endif
1171
1172 /* Lookup connection and confirm if unconfirmed. */
1173 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
1174 const struct ovs_conntrack_info *info,
1175 struct sk_buff *skb)
1176 {
1177 enum ip_conntrack_info ctinfo;
1178 struct nf_conn *ct;
1179 int err;
1180
1181 err = __ovs_ct_lookup(net, key, info, skb);
1182 if (err)
1183 return err;
1184
1185 /* The connection could be invalid, in which case this is a no-op.*/
1186 ct = nf_ct_get(skb, &ctinfo);
1187 if (!ct)
1188 return 0;
1189
1190 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1191 if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
1192 if (!nf_ct_is_confirmed(ct)) {
1193 err = ovs_ct_check_limit(net, info,
1194 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
1195 if (err) {
1196 net_warn_ratelimited("openvswitch: zone: %u "
1197 "exceeds conntrack limit\n",
1198 info->zone.id);
1199 return err;
1200 }
1201 }
1202 }
1203 #endif
1204
1205 /* Set the conntrack event mask if given. NEW and DELETE events have
1206 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1207 * typically would receive many kinds of updates. Setting the event
1208 * mask allows those events to be filtered. The set event mask will
1209 * remain in effect for the lifetime of the connection unless changed
1210 * by a further CT action with both the commit flag and the eventmask
1211 * option. */
1212 if (info->have_eventmask) {
1213 struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1214
1215 if (cache)
1216 cache->ctmask = info->eventmask;
1217 }
1218
1219 /* Apply changes before confirming the connection so that the initial
1220 * conntrack NEW netlink event carries the values given in the CT
1221 * action.
1222 */
1223 if (info->mark.mask) {
1224 err = ovs_ct_set_mark(ct, key, info->mark.value,
1225 info->mark.mask);
1226 if (err)
1227 return err;
1228 }
1229 if (!nf_ct_is_confirmed(ct)) {
1230 err = ovs_ct_init_labels(ct, key, &info->labels.value,
1231 &info->labels.mask);
1232 if (err)
1233 return err;
1234 } else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1235 labels_nonzero(&info->labels.mask)) {
1236 err = ovs_ct_set_labels(ct, key, &info->labels.value,
1237 &info->labels.mask);
1238 if (err)
1239 return err;
1240 }
1241 /* This will take care of sending queued events even if the connection
1242 * is already confirmed.
1243 */
1244 if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1245 return -EINVAL;
1246
1247 return 0;
1248 }
1249
1250 /* Trim the skb to the length specified by the IP/IPv6 header,
1251 * removing any trailing lower-layer padding. This prepares the skb
1252 * for higher-layer processing that assumes skb->len excludes padding
1253 * (such as nf_ip_checksum). The caller needs to pull the skb to the
1254 * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
1255 */
1256 static int ovs_skb_network_trim(struct sk_buff *skb)
1257 {
1258 unsigned int len;
1259 int err;
1260
1261 switch (skb->protocol) {
1262 case htons(ETH_P_IP):
1263 len = ntohs(ip_hdr(skb)->tot_len);
1264 break;
1265 case htons(ETH_P_IPV6):
1266 len = sizeof(struct ipv6hdr)
1267 + ntohs(ipv6_hdr(skb)->payload_len);
1268 break;
1269 default:
1270 len = skb->len;
1271 }
1272
1273 err = pskb_trim_rcsum(skb, len);
1274 if (err)
1275 kfree_skb(skb);
1276
1277 return err;
1278 }
1279
1280 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1281 * value if 'skb' is freed.
1282 */
1283 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1284 struct sw_flow_key *key,
1285 const struct ovs_conntrack_info *info)
1286 {
1287 int nh_ofs;
1288 int err;
1289
1290 /* The conntrack module expects to be working at L3. */
1291 nh_ofs = skb_network_offset(skb);
1292 skb_pull_rcsum(skb, nh_ofs);
1293
1294 err = ovs_skb_network_trim(skb);
1295 if (err)
1296 return err;
1297
1298 if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1299 err = handle_fragments(net, key, info->zone.id, skb);
1300 if (err)
1301 return err;
1302 }
1303
1304 if (info->commit)
1305 err = ovs_ct_commit(net, key, info, skb);
1306 else
1307 err = ovs_ct_lookup(net, key, info, skb);
1308
1309 skb_push(skb, nh_ofs);
1310 skb_postpush_rcsum(skb, skb->data, nh_ofs);
1311 if (err)
1312 kfree_skb(skb);
1313 return err;
1314 }
1315
1316 int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
1317 {
1318 if (skb_nfct(skb)) {
1319 nf_conntrack_put(skb_nfct(skb));
1320 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1321 ovs_ct_fill_key(skb, key);
1322 }
1323
1324 return 0;
1325 }
1326
1327 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1328 const struct sw_flow_key *key, bool log)
1329 {
1330 struct nf_conntrack_helper *helper;
1331 struct nf_conn_help *help;
1332 int ret = 0;
1333
1334 helper = nf_conntrack_helper_try_module_get(name, info->family,
1335 key->ip.proto);
1336 if (!helper) {
1337 OVS_NLERR(log, "Unknown helper \"%s\"", name);
1338 return -EINVAL;
1339 }
1340
1341 help = nf_ct_helper_ext_add(info->ct, GFP_KERNEL);
1342 if (!help) {
1343 nf_conntrack_helper_put(helper);
1344 return -ENOMEM;
1345 }
1346
1347 #if IS_ENABLED(CONFIG_NF_NAT)
1348 if (info->nat) {
1349 ret = nf_nat_helper_try_module_get(name, info->family,
1350 key->ip.proto);
1351 if (ret) {
1352 nf_conntrack_helper_put(helper);
1353 OVS_NLERR(log, "Failed to load \"%s\" NAT helper, error: %d",
1354 name, ret);
1355 return ret;
1356 }
1357 }
1358 #endif
1359 rcu_assign_pointer(help->helper, helper);
1360 info->helper = helper;
1361 return ret;
1362 }
1363
1364 #if IS_ENABLED(CONFIG_NF_NAT)
1365 static int parse_nat(const struct nlattr *attr,
1366 struct ovs_conntrack_info *info, bool log)
1367 {
1368 struct nlattr *a;
1369 int rem;
1370 bool have_ip_max = false;
1371 bool have_proto_max = false;
1372 bool ip_vers = (info->family == NFPROTO_IPV6);
1373
1374 nla_for_each_nested(a, attr, rem) {
1375 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1376 [OVS_NAT_ATTR_SRC] = {0, 0},
1377 [OVS_NAT_ATTR_DST] = {0, 0},
1378 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1379 sizeof(struct in6_addr)},
1380 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1381 sizeof(struct in6_addr)},
1382 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1383 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1384 [OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1385 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1386 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1387 };
1388 int type = nla_type(a);
1389
1390 if (type > OVS_NAT_ATTR_MAX) {
1391 OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
1392 type, OVS_NAT_ATTR_MAX);
1393 return -EINVAL;
1394 }
1395
1396 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1397 OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
1398 type, nla_len(a),
1399 ovs_nat_attr_lens[type][ip_vers]);
1400 return -EINVAL;
1401 }
1402
1403 switch (type) {
1404 case OVS_NAT_ATTR_SRC:
1405 case OVS_NAT_ATTR_DST:
1406 if (info->nat) {
1407 OVS_NLERR(log, "Only one type of NAT may be specified");
1408 return -ERANGE;
1409 }
1410 info->nat |= OVS_CT_NAT;
1411 info->nat |= ((type == OVS_NAT_ATTR_SRC)
1412 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1413 break;
1414
1415 case OVS_NAT_ATTR_IP_MIN:
1416 nla_memcpy(&info->range.min_addr, a,
1417 sizeof(info->range.min_addr));
1418 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1419 break;
1420
1421 case OVS_NAT_ATTR_IP_MAX:
1422 have_ip_max = true;
1423 nla_memcpy(&info->range.max_addr, a,
1424 sizeof(info->range.max_addr));
1425 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1426 break;
1427
1428 case OVS_NAT_ATTR_PROTO_MIN:
1429 info->range.min_proto.all = htons(nla_get_u16(a));
1430 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1431 break;
1432
1433 case OVS_NAT_ATTR_PROTO_MAX:
1434 have_proto_max = true;
1435 info->range.max_proto.all = htons(nla_get_u16(a));
1436 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1437 break;
1438
1439 case OVS_NAT_ATTR_PERSISTENT:
1440 info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1441 break;
1442
1443 case OVS_NAT_ATTR_PROTO_HASH:
1444 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1445 break;
1446
1447 case OVS_NAT_ATTR_PROTO_RANDOM:
1448 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1449 break;
1450
1451 default:
1452 OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1453 return -EINVAL;
1454 }
1455 }
1456
1457 if (rem > 0) {
1458 OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1459 return -EINVAL;
1460 }
1461 if (!info->nat) {
1462 /* Do not allow flags if no type is given. */
1463 if (info->range.flags) {
1464 OVS_NLERR(log,
1465 "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1466 );
1467 return -EINVAL;
1468 }
1469 info->nat = OVS_CT_NAT; /* NAT existing connections. */
1470 } else if (!info->commit) {
1471 OVS_NLERR(log,
1472 "NAT attributes may be specified only when CT COMMIT flag is also specified."
1473 );
1474 return -EINVAL;
1475 }
1476 /* Allow missing IP_MAX. */
1477 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1478 memcpy(&info->range.max_addr, &info->range.min_addr,
1479 sizeof(info->range.max_addr));
1480 }
1481 /* Allow missing PROTO_MAX. */
1482 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1483 !have_proto_max) {
1484 info->range.max_proto.all = info->range.min_proto.all;
1485 }
1486 return 0;
1487 }
1488 #endif
1489
1490 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1491 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 },
1492 [OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 },
1493 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16),
1494 .maxlen = sizeof(u16) },
1495 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark),
1496 .maxlen = sizeof(struct md_mark) },
1497 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels),
1498 .maxlen = sizeof(struct md_labels) },
1499 [OVS_CT_ATTR_HELPER] = { .minlen = 1,
1500 .maxlen = NF_CT_HELPER_NAME_LEN },
1501 #if IS_ENABLED(CONFIG_NF_NAT)
1502 /* NAT length is checked when parsing the nested attributes. */
1503 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX },
1504 #endif
1505 [OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32),
1506 .maxlen = sizeof(u32) },
1507 [OVS_CT_ATTR_TIMEOUT] = { .minlen = 1,
1508 .maxlen = CTNL_TIMEOUT_NAME_MAX },
1509 };
1510
1511 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1512 const char **helper, bool log)
1513 {
1514 struct nlattr *a;
1515 int rem;
1516
1517 nla_for_each_nested(a, attr, rem) {
1518 int type = nla_type(a);
1519 int maxlen;
1520 int minlen;
1521
1522 if (type > OVS_CT_ATTR_MAX) {
1523 OVS_NLERR(log,
1524 "Unknown conntrack attr (type=%d, max=%d)",
1525 type, OVS_CT_ATTR_MAX);
1526 return -EINVAL;
1527 }
1528
1529 maxlen = ovs_ct_attr_lens[type].maxlen;
1530 minlen = ovs_ct_attr_lens[type].minlen;
1531 if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1532 OVS_NLERR(log,
1533 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1534 type, nla_len(a), maxlen);
1535 return -EINVAL;
1536 }
1537
1538 switch (type) {
1539 case OVS_CT_ATTR_FORCE_COMMIT:
1540 info->force = true;
1541 /* fall through. */
1542 case OVS_CT_ATTR_COMMIT:
1543 info->commit = true;
1544 break;
1545 #ifdef CONFIG_NF_CONNTRACK_ZONES
1546 case OVS_CT_ATTR_ZONE:
1547 info->zone.id = nla_get_u16(a);
1548 break;
1549 #endif
1550 #ifdef CONFIG_NF_CONNTRACK_MARK
1551 case OVS_CT_ATTR_MARK: {
1552 struct md_mark *mark = nla_data(a);
1553
1554 if (!mark->mask) {
1555 OVS_NLERR(log, "ct_mark mask cannot be 0");
1556 return -EINVAL;
1557 }
1558 info->mark = *mark;
1559 break;
1560 }
1561 #endif
1562 #ifdef CONFIG_NF_CONNTRACK_LABELS
1563 case OVS_CT_ATTR_LABELS: {
1564 struct md_labels *labels = nla_data(a);
1565
1566 if (!labels_nonzero(&labels->mask)) {
1567 OVS_NLERR(log, "ct_labels mask cannot be 0");
1568 return -EINVAL;
1569 }
1570 info->labels = *labels;
1571 break;
1572 }
1573 #endif
1574 case OVS_CT_ATTR_HELPER:
1575 *helper = nla_data(a);
1576 if (!memchr(*helper, '\0', nla_len(a))) {
1577 OVS_NLERR(log, "Invalid conntrack helper");
1578 return -EINVAL;
1579 }
1580 break;
1581 #if IS_ENABLED(CONFIG_NF_NAT)
1582 case OVS_CT_ATTR_NAT: {
1583 int err = parse_nat(a, info, log);
1584
1585 if (err)
1586 return err;
1587 break;
1588 }
1589 #endif
1590 case OVS_CT_ATTR_EVENTMASK:
1591 info->have_eventmask = true;
1592 info->eventmask = nla_get_u32(a);
1593 break;
1594 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
1595 case OVS_CT_ATTR_TIMEOUT:
1596 memcpy(info->timeout, nla_data(a), nla_len(a));
1597 if (!memchr(info->timeout, '\0', nla_len(a))) {
1598 OVS_NLERR(log, "Invalid conntrack timeout");
1599 return -EINVAL;
1600 }
1601 break;
1602 #endif
1603
1604 default:
1605 OVS_NLERR(log, "Unknown conntrack attr (%d)",
1606 type);
1607 return -EINVAL;
1608 }
1609 }
1610
1611 #ifdef CONFIG_NF_CONNTRACK_MARK
1612 if (!info->commit && info->mark.mask) {
1613 OVS_NLERR(log,
1614 "Setting conntrack mark requires 'commit' flag.");
1615 return -EINVAL;
1616 }
1617 #endif
1618 #ifdef CONFIG_NF_CONNTRACK_LABELS
1619 if (!info->commit && labels_nonzero(&info->labels.mask)) {
1620 OVS_NLERR(log,
1621 "Setting conntrack labels requires 'commit' flag.");
1622 return -EINVAL;
1623 }
1624 #endif
1625 if (rem > 0) {
1626 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1627 return -EINVAL;
1628 }
1629
1630 return 0;
1631 }
1632
1633 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1634 {
1635 if (attr == OVS_KEY_ATTR_CT_STATE)
1636 return true;
1637 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1638 attr == OVS_KEY_ATTR_CT_ZONE)
1639 return true;
1640 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1641 attr == OVS_KEY_ATTR_CT_MARK)
1642 return true;
1643 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1644 attr == OVS_KEY_ATTR_CT_LABELS) {
1645 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1646
1647 return ovs_net->xt_label;
1648 }
1649
1650 return false;
1651 }
1652
1653 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1654 const struct sw_flow_key *key,
1655 struct sw_flow_actions **sfa, bool log)
1656 {
1657 struct ovs_conntrack_info ct_info;
1658 const char *helper = NULL;
1659 u16 family;
1660 int err;
1661
1662 family = key_to_nfproto(key);
1663 if (family == NFPROTO_UNSPEC) {
1664 OVS_NLERR(log, "ct family unspecified");
1665 return -EINVAL;
1666 }
1667
1668 memset(&ct_info, 0, sizeof(ct_info));
1669 ct_info.family = family;
1670
1671 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1672 NF_CT_DEFAULT_ZONE_DIR, 0);
1673
1674 err = parse_ct(attr, &ct_info, &helper, log);
1675 if (err)
1676 return err;
1677
1678 /* Set up template for tracking connections in specific zones. */
1679 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1680 if (!ct_info.ct) {
1681 OVS_NLERR(log, "Failed to allocate conntrack template");
1682 return -ENOMEM;
1683 }
1684
1685 if (ct_info.timeout[0]) {
1686 if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto,
1687 ct_info.timeout))
1688 pr_info_ratelimited("Failed to associated timeout "
1689 "policy `%s'\n", ct_info.timeout);
1690 else
1691 ct_info.nf_ct_timeout = rcu_dereference(
1692 nf_ct_timeout_find(ct_info.ct)->timeout);
1693
1694 }
1695
1696 if (helper) {
1697 err = ovs_ct_add_helper(&ct_info, helper, key, log);
1698 if (err)
1699 goto err_free_ct;
1700 }
1701
1702 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1703 sizeof(ct_info), log);
1704 if (err)
1705 goto err_free_ct;
1706
1707 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1708 nf_conntrack_get(&ct_info.ct->ct_general);
1709 return 0;
1710 err_free_ct:
1711 __ovs_ct_free_action(&ct_info);
1712 return err;
1713 }
1714
1715 #if IS_ENABLED(CONFIG_NF_NAT)
1716 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1717 struct sk_buff *skb)
1718 {
1719 struct nlattr *start;
1720
1721 start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT);
1722 if (!start)
1723 return false;
1724
1725 if (info->nat & OVS_CT_SRC_NAT) {
1726 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1727 return false;
1728 } else if (info->nat & OVS_CT_DST_NAT) {
1729 if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1730 return false;
1731 } else {
1732 goto out;
1733 }
1734
1735 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1736 if (IS_ENABLED(CONFIG_NF_NAT) &&
1737 info->family == NFPROTO_IPV4) {
1738 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1739 info->range.min_addr.ip) ||
1740 (info->range.max_addr.ip
1741 != info->range.min_addr.ip &&
1742 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1743 info->range.max_addr.ip))))
1744 return false;
1745 } else if (IS_ENABLED(CONFIG_IPV6) &&
1746 info->family == NFPROTO_IPV6) {
1747 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1748 &info->range.min_addr.in6) ||
1749 (memcmp(&info->range.max_addr.in6,
1750 &info->range.min_addr.in6,
1751 sizeof(info->range.max_addr.in6)) &&
1752 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1753 &info->range.max_addr.in6))))
1754 return false;
1755 } else {
1756 return false;
1757 }
1758 }
1759 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1760 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1761 ntohs(info->range.min_proto.all)) ||
1762 (info->range.max_proto.all != info->range.min_proto.all &&
1763 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1764 ntohs(info->range.max_proto.all)))))
1765 return false;
1766
1767 if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1768 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1769 return false;
1770 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1771 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1772 return false;
1773 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1774 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1775 return false;
1776 out:
1777 nla_nest_end(skb, start);
1778
1779 return true;
1780 }
1781 #endif
1782
1783 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1784 struct sk_buff *skb)
1785 {
1786 struct nlattr *start;
1787
1788 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT);
1789 if (!start)
1790 return -EMSGSIZE;
1791
1792 if (ct_info->commit && nla_put_flag(skb, ct_info->force
1793 ? OVS_CT_ATTR_FORCE_COMMIT
1794 : OVS_CT_ATTR_COMMIT))
1795 return -EMSGSIZE;
1796 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1797 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1798 return -EMSGSIZE;
1799 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1800 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1801 &ct_info->mark))
1802 return -EMSGSIZE;
1803 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1804 labels_nonzero(&ct_info->labels.mask) &&
1805 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1806 &ct_info->labels))
1807 return -EMSGSIZE;
1808 if (ct_info->helper) {
1809 if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1810 ct_info->helper->name))
1811 return -EMSGSIZE;
1812 }
1813 if (ct_info->have_eventmask &&
1814 nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1815 return -EMSGSIZE;
1816 if (ct_info->timeout[0]) {
1817 if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout))
1818 return -EMSGSIZE;
1819 }
1820
1821 #if IS_ENABLED(CONFIG_NF_NAT)
1822 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1823 return -EMSGSIZE;
1824 #endif
1825 nla_nest_end(skb, start);
1826
1827 return 0;
1828 }
1829
1830 void ovs_ct_free_action(const struct nlattr *a)
1831 {
1832 struct ovs_conntrack_info *ct_info = nla_data(a);
1833
1834 __ovs_ct_free_action(ct_info);
1835 }
1836
1837 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1838 {
1839 if (ct_info->helper) {
1840 #if IS_ENABLED(CONFIG_NF_NAT)
1841 if (ct_info->nat)
1842 nf_nat_helper_put(ct_info->helper);
1843 #endif
1844 nf_conntrack_helper_put(ct_info->helper);
1845 }
1846 if (ct_info->ct) {
1847 if (ct_info->timeout[0])
1848 nf_ct_destroy_timeout(ct_info->ct);
1849 nf_ct_tmpl_free(ct_info->ct);
1850 }
1851 }
1852
1853 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1854 static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1855 {
1856 int i, err;
1857
1858 ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1859 GFP_KERNEL);
1860 if (!ovs_net->ct_limit_info)
1861 return -ENOMEM;
1862
1863 ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1864 ovs_net->ct_limit_info->limits =
1865 kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1866 GFP_KERNEL);
1867 if (!ovs_net->ct_limit_info->limits) {
1868 kfree(ovs_net->ct_limit_info);
1869 return -ENOMEM;
1870 }
1871
1872 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1873 INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1874
1875 ovs_net->ct_limit_info->data =
1876 nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
1877
1878 if (IS_ERR(ovs_net->ct_limit_info->data)) {
1879 err = PTR_ERR(ovs_net->ct_limit_info->data);
1880 kfree(ovs_net->ct_limit_info->limits);
1881 kfree(ovs_net->ct_limit_info);
1882 pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1883 return err;
1884 }
1885 return 0;
1886 }
1887
1888 static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1889 {
1890 const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1891 int i;
1892
1893 nf_conncount_destroy(net, NFPROTO_INET, info->data);
1894 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1895 struct hlist_head *head = &info->limits[i];
1896 struct ovs_ct_limit *ct_limit;
1897
1898 hlist_for_each_entry_rcu(ct_limit, head, hlist_node)
1899 kfree_rcu(ct_limit, rcu);
1900 }
1901 kfree(ovs_net->ct_limit_info->limits);
1902 kfree(ovs_net->ct_limit_info);
1903 }
1904
1905 static struct sk_buff *
1906 ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1907 struct ovs_header **ovs_reply_header)
1908 {
1909 struct ovs_header *ovs_header = info->userhdr;
1910 struct sk_buff *skb;
1911
1912 skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1913 if (!skb)
1914 return ERR_PTR(-ENOMEM);
1915
1916 *ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1917 info->snd_seq,
1918 &dp_ct_limit_genl_family, 0, cmd);
1919
1920 if (!*ovs_reply_header) {
1921 nlmsg_free(skb);
1922 return ERR_PTR(-EMSGSIZE);
1923 }
1924 (*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1925
1926 return skb;
1927 }
1928
1929 static bool check_zone_id(int zone_id, u16 *pzone)
1930 {
1931 if (zone_id >= 0 && zone_id <= 65535) {
1932 *pzone = (u16)zone_id;
1933 return true;
1934 }
1935 return false;
1936 }
1937
1938 static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1939 struct ovs_ct_limit_info *info)
1940 {
1941 struct ovs_zone_limit *zone_limit;
1942 int rem;
1943 u16 zone;
1944
1945 rem = NLA_ALIGN(nla_len(nla_zone_limit));
1946 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1947
1948 while (rem >= sizeof(*zone_limit)) {
1949 if (unlikely(zone_limit->zone_id ==
1950 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1951 ovs_lock();
1952 info->default_limit = zone_limit->limit;
1953 ovs_unlock();
1954 } else if (unlikely(!check_zone_id(
1955 zone_limit->zone_id, &zone))) {
1956 OVS_NLERR(true, "zone id is out of range");
1957 } else {
1958 struct ovs_ct_limit *ct_limit;
1959
1960 ct_limit = kmalloc(sizeof(*ct_limit), GFP_KERNEL);
1961 if (!ct_limit)
1962 return -ENOMEM;
1963
1964 ct_limit->zone = zone;
1965 ct_limit->limit = zone_limit->limit;
1966
1967 ovs_lock();
1968 ct_limit_set(info, ct_limit);
1969 ovs_unlock();
1970 }
1971 rem -= NLA_ALIGN(sizeof(*zone_limit));
1972 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1973 NLA_ALIGN(sizeof(*zone_limit)));
1974 }
1975
1976 if (rem)
1977 OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1978
1979 return 0;
1980 }
1981
1982 static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1983 struct ovs_ct_limit_info *info)
1984 {
1985 struct ovs_zone_limit *zone_limit;
1986 int rem;
1987 u16 zone;
1988
1989 rem = NLA_ALIGN(nla_len(nla_zone_limit));
1990 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1991
1992 while (rem >= sizeof(*zone_limit)) {
1993 if (unlikely(zone_limit->zone_id ==
1994 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1995 ovs_lock();
1996 info->default_limit = OVS_CT_LIMIT_DEFAULT;
1997 ovs_unlock();
1998 } else if (unlikely(!check_zone_id(
1999 zone_limit->zone_id, &zone))) {
2000 OVS_NLERR(true, "zone id is out of range");
2001 } else {
2002 ovs_lock();
2003 ct_limit_del(info, zone);
2004 ovs_unlock();
2005 }
2006 rem -= NLA_ALIGN(sizeof(*zone_limit));
2007 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2008 NLA_ALIGN(sizeof(*zone_limit)));
2009 }
2010
2011 if (rem)
2012 OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
2013
2014 return 0;
2015 }
2016
2017 static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
2018 struct sk_buff *reply)
2019 {
2020 struct ovs_zone_limit zone_limit;
2021 int err;
2022
2023 zone_limit.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE;
2024 zone_limit.limit = info->default_limit;
2025 err = nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2026 if (err)
2027 return err;
2028
2029 return 0;
2030 }
2031
2032 static int __ovs_ct_limit_get_zone_limit(struct net *net,
2033 struct nf_conncount_data *data,
2034 u16 zone_id, u32 limit,
2035 struct sk_buff *reply)
2036 {
2037 struct nf_conntrack_zone ct_zone;
2038 struct ovs_zone_limit zone_limit;
2039 u32 conncount_key = zone_id;
2040
2041 zone_limit.zone_id = zone_id;
2042 zone_limit.limit = limit;
2043 nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
2044
2045 zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
2046 &ct_zone);
2047 return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2048 }
2049
2050 static int ovs_ct_limit_get_zone_limit(struct net *net,
2051 struct nlattr *nla_zone_limit,
2052 struct ovs_ct_limit_info *info,
2053 struct sk_buff *reply)
2054 {
2055 struct ovs_zone_limit *zone_limit;
2056 int rem, err;
2057 u32 limit;
2058 u16 zone;
2059
2060 rem = NLA_ALIGN(nla_len(nla_zone_limit));
2061 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
2062
2063 while (rem >= sizeof(*zone_limit)) {
2064 if (unlikely(zone_limit->zone_id ==
2065 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
2066 err = ovs_ct_limit_get_default_limit(info, reply);
2067 if (err)
2068 return err;
2069 } else if (unlikely(!check_zone_id(zone_limit->zone_id,
2070 &zone))) {
2071 OVS_NLERR(true, "zone id is out of range");
2072 } else {
2073 rcu_read_lock();
2074 limit = ct_limit_get(info, zone);
2075 rcu_read_unlock();
2076
2077 err = __ovs_ct_limit_get_zone_limit(
2078 net, info->data, zone, limit, reply);
2079 if (err)
2080 return err;
2081 }
2082 rem -= NLA_ALIGN(sizeof(*zone_limit));
2083 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2084 NLA_ALIGN(sizeof(*zone_limit)));
2085 }
2086
2087 if (rem)
2088 OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
2089
2090 return 0;
2091 }
2092
2093 static int ovs_ct_limit_get_all_zone_limit(struct net *net,
2094 struct ovs_ct_limit_info *info,
2095 struct sk_buff *reply)
2096 {
2097 struct ovs_ct_limit *ct_limit;
2098 struct hlist_head *head;
2099 int i, err = 0;
2100
2101 err = ovs_ct_limit_get_default_limit(info, reply);
2102 if (err)
2103 return err;
2104
2105 rcu_read_lock();
2106 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
2107 head = &info->limits[i];
2108 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
2109 err = __ovs_ct_limit_get_zone_limit(net, info->data,
2110 ct_limit->zone, ct_limit->limit, reply);
2111 if (err)
2112 goto exit_err;
2113 }
2114 }
2115
2116 exit_err:
2117 rcu_read_unlock();
2118 return err;
2119 }
2120
2121 static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
2122 {
2123 struct nlattr **a = info->attrs;
2124 struct sk_buff *reply;
2125 struct ovs_header *ovs_reply_header;
2126 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2127 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2128 int err;
2129
2130 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
2131 &ovs_reply_header);
2132 if (IS_ERR(reply))
2133 return PTR_ERR(reply);
2134
2135 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2136 err = -EINVAL;
2137 goto exit_err;
2138 }
2139
2140 err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2141 ct_limit_info);
2142 if (err)
2143 goto exit_err;
2144
2145 static_branch_enable(&ovs_ct_limit_enabled);
2146
2147 genlmsg_end(reply, ovs_reply_header);
2148 return genlmsg_reply(reply, info);
2149
2150 exit_err:
2151 nlmsg_free(reply);
2152 return err;
2153 }
2154
2155 static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
2156 {
2157 struct nlattr **a = info->attrs;
2158 struct sk_buff *reply;
2159 struct ovs_header *ovs_reply_header;
2160 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2161 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2162 int err;
2163
2164 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
2165 &ovs_reply_header);
2166 if (IS_ERR(reply))
2167 return PTR_ERR(reply);
2168
2169 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2170 err = -EINVAL;
2171 goto exit_err;
2172 }
2173
2174 err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2175 ct_limit_info);
2176 if (err)
2177 goto exit_err;
2178
2179 genlmsg_end(reply, ovs_reply_header);
2180 return genlmsg_reply(reply, info);
2181
2182 exit_err:
2183 nlmsg_free(reply);
2184 return err;
2185 }
2186
2187 static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
2188 {
2189 struct nlattr **a = info->attrs;
2190 struct nlattr *nla_reply;
2191 struct sk_buff *reply;
2192 struct ovs_header *ovs_reply_header;
2193 struct net *net = sock_net(skb->sk);
2194 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2195 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2196 int err;
2197
2198 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
2199 &ovs_reply_header);
2200 if (IS_ERR(reply))
2201 return PTR_ERR(reply);
2202
2203 nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
2204 if (!nla_reply) {
2205 err = -EMSGSIZE;
2206 goto exit_err;
2207 }
2208
2209 if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2210 err = ovs_ct_limit_get_zone_limit(
2211 net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
2212 reply);
2213 if (err)
2214 goto exit_err;
2215 } else {
2216 err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
2217 reply);
2218 if (err)
2219 goto exit_err;
2220 }
2221
2222 nla_nest_end(reply, nla_reply);
2223 genlmsg_end(reply, ovs_reply_header);
2224 return genlmsg_reply(reply, info);
2225
2226 exit_err:
2227 nlmsg_free(reply);
2228 return err;
2229 }
2230
2231 static struct genl_ops ct_limit_genl_ops[] = {
2232 { .cmd = OVS_CT_LIMIT_CMD_SET,
2233 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2234 .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2235 * privilege. */
2236 .doit = ovs_ct_limit_cmd_set,
2237 },
2238 { .cmd = OVS_CT_LIMIT_CMD_DEL,
2239 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2240 .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2241 * privilege. */
2242 .doit = ovs_ct_limit_cmd_del,
2243 },
2244 { .cmd = OVS_CT_LIMIT_CMD_GET,
2245 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2246 .flags = 0, /* OK for unprivileged users. */
2247 .doit = ovs_ct_limit_cmd_get,
2248 },
2249 };
2250
2251 static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
2252 .name = OVS_CT_LIMIT_MCGROUP,
2253 };
2254
2255 struct genl_family dp_ct_limit_genl_family __ro_after_init = {
2256 .hdrsize = sizeof(struct ovs_header),
2257 .name = OVS_CT_LIMIT_FAMILY,
2258 .version = OVS_CT_LIMIT_VERSION,
2259 .maxattr = OVS_CT_LIMIT_ATTR_MAX,
2260 .policy = ct_limit_policy,
2261 .netnsok = true,
2262 .parallel_ops = true,
2263 .ops = ct_limit_genl_ops,
2264 .n_ops = ARRAY_SIZE(ct_limit_genl_ops),
2265 .mcgrps = &ovs_ct_limit_multicast_group,
2266 .n_mcgrps = 1,
2267 .module = THIS_MODULE,
2268 };
2269 #endif
2270
2271 int ovs_ct_init(struct net *net)
2272 {
2273 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
2274 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2275
2276 if (nf_connlabels_get(net, n_bits - 1)) {
2277 ovs_net->xt_label = false;
2278 OVS_NLERR(true, "Failed to set connlabel length");
2279 } else {
2280 ovs_net->xt_label = true;
2281 }
2282
2283 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2284 return ovs_ct_limit_init(net, ovs_net);
2285 #else
2286 return 0;
2287 #endif
2288 }
2289
2290 void ovs_ct_exit(struct net *net)
2291 {
2292 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2293
2294 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2295 ovs_ct_limit_exit(net, ovs_net);
2296 #endif
2297
2298 if (ovs_net->xt_label)
2299 nf_connlabels_put(net);
2300 }