]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - net/rds/ib.c
Merge branch 'core/speculation' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/kernel/linux.git] / net / rds / ib.c
1 /*
2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/if.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/if_arp.h>
39 #include <linux/delay.h>
40 #include <linux/slab.h>
41 #include <linux/module.h>
42 #include <net/addrconf.h>
43
44 #include "rds_single_path.h"
45 #include "rds.h"
46 #include "ib.h"
47 #include "ib_mr.h"
48
49 static unsigned int rds_ib_mr_1m_pool_size = RDS_MR_1M_POOL_SIZE;
50 static unsigned int rds_ib_mr_8k_pool_size = RDS_MR_8K_POOL_SIZE;
51 unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT;
52 static atomic_t rds_ib_unloading;
53
54 module_param(rds_ib_mr_1m_pool_size, int, 0444);
55 MODULE_PARM_DESC(rds_ib_mr_1m_pool_size, " Max number of 1M mr per HCA");
56 module_param(rds_ib_mr_8k_pool_size, int, 0444);
57 MODULE_PARM_DESC(rds_ib_mr_8k_pool_size, " Max number of 8K mr per HCA");
58 module_param(rds_ib_retry_count, int, 0444);
59 MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error");
60
61 /*
62 * we have a clumsy combination of RCU and a rwsem protecting this list
63 * because it is used both in the get_mr fast path and while blocking in
64 * the FMR flushing path.
65 */
66 DECLARE_RWSEM(rds_ib_devices_lock);
67 struct list_head rds_ib_devices;
68
69 /* NOTE: if also grabbing ibdev lock, grab this first */
70 DEFINE_SPINLOCK(ib_nodev_conns_lock);
71 LIST_HEAD(ib_nodev_conns);
72
73 static void rds_ib_nodev_connect(void)
74 {
75 struct rds_ib_connection *ic;
76
77 spin_lock(&ib_nodev_conns_lock);
78 list_for_each_entry(ic, &ib_nodev_conns, ib_node)
79 rds_conn_connect_if_down(ic->conn);
80 spin_unlock(&ib_nodev_conns_lock);
81 }
82
83 static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev)
84 {
85 struct rds_ib_connection *ic;
86 unsigned long flags;
87
88 spin_lock_irqsave(&rds_ibdev->spinlock, flags);
89 list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node)
90 rds_conn_drop(ic->conn);
91 spin_unlock_irqrestore(&rds_ibdev->spinlock, flags);
92 }
93
94 /*
95 * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references
96 * from interrupt context so we push freing off into a work struct in krdsd.
97 */
98 static void rds_ib_dev_free(struct work_struct *work)
99 {
100 struct rds_ib_ipaddr *i_ipaddr, *i_next;
101 struct rds_ib_device *rds_ibdev = container_of(work,
102 struct rds_ib_device, free_work);
103
104 if (rds_ibdev->mr_8k_pool)
105 rds_ib_destroy_mr_pool(rds_ibdev->mr_8k_pool);
106 if (rds_ibdev->mr_1m_pool)
107 rds_ib_destroy_mr_pool(rds_ibdev->mr_1m_pool);
108 if (rds_ibdev->pd)
109 ib_dealloc_pd(rds_ibdev->pd);
110
111 list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) {
112 list_del(&i_ipaddr->list);
113 kfree(i_ipaddr);
114 }
115
116 kfree(rds_ibdev->vector_load);
117
118 kfree(rds_ibdev);
119 }
120
121 void rds_ib_dev_put(struct rds_ib_device *rds_ibdev)
122 {
123 BUG_ON(refcount_read(&rds_ibdev->refcount) == 0);
124 if (refcount_dec_and_test(&rds_ibdev->refcount))
125 queue_work(rds_wq, &rds_ibdev->free_work);
126 }
127
128 static void rds_ib_add_one(struct ib_device *device)
129 {
130 struct rds_ib_device *rds_ibdev;
131 bool has_fr, has_fmr;
132
133 /* Only handle IB (no iWARP) devices */
134 if (device->node_type != RDMA_NODE_IB_CA)
135 return;
136
137 rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL,
138 ibdev_to_node(device));
139 if (!rds_ibdev)
140 return;
141
142 spin_lock_init(&rds_ibdev->spinlock);
143 refcount_set(&rds_ibdev->refcount, 1);
144 INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free);
145
146 rds_ibdev->max_wrs = device->attrs.max_qp_wr;
147 rds_ibdev->max_sge = min(device->attrs.max_send_sge, RDS_IB_MAX_SGE);
148
149 has_fr = (device->attrs.device_cap_flags &
150 IB_DEVICE_MEM_MGT_EXTENSIONS);
151 has_fmr = (device->ops.alloc_fmr && device->ops.dealloc_fmr &&
152 device->ops.map_phys_fmr && device->ops.unmap_fmr);
153 rds_ibdev->use_fastreg = (has_fr && !has_fmr);
154
155 rds_ibdev->fmr_max_remaps = device->attrs.max_map_per_fmr?: 32;
156 rds_ibdev->max_1m_mrs = device->attrs.max_mr ?
157 min_t(unsigned int, (device->attrs.max_mr / 2),
158 rds_ib_mr_1m_pool_size) : rds_ib_mr_1m_pool_size;
159
160 rds_ibdev->max_8k_mrs = device->attrs.max_mr ?
161 min_t(unsigned int, ((device->attrs.max_mr / 2) * RDS_MR_8K_SCALE),
162 rds_ib_mr_8k_pool_size) : rds_ib_mr_8k_pool_size;
163
164 rds_ibdev->max_initiator_depth = device->attrs.max_qp_init_rd_atom;
165 rds_ibdev->max_responder_resources = device->attrs.max_qp_rd_atom;
166
167 rds_ibdev->vector_load = kcalloc(device->num_comp_vectors,
168 sizeof(int),
169 GFP_KERNEL);
170 if (!rds_ibdev->vector_load) {
171 pr_err("RDS/IB: %s failed to allocate vector memory\n",
172 __func__);
173 goto put_dev;
174 }
175
176 rds_ibdev->dev = device;
177 rds_ibdev->pd = ib_alloc_pd(device, 0);
178 if (IS_ERR(rds_ibdev->pd)) {
179 rds_ibdev->pd = NULL;
180 goto put_dev;
181 }
182
183 rds_ibdev->mr_1m_pool =
184 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_1M_POOL);
185 if (IS_ERR(rds_ibdev->mr_1m_pool)) {
186 rds_ibdev->mr_1m_pool = NULL;
187 goto put_dev;
188 }
189
190 rds_ibdev->mr_8k_pool =
191 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_8K_POOL);
192 if (IS_ERR(rds_ibdev->mr_8k_pool)) {
193 rds_ibdev->mr_8k_pool = NULL;
194 goto put_dev;
195 }
196
197 rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, fmr_max_remaps = %d, max_1m_mrs = %d, max_8k_mrs = %d\n",
198 device->attrs.max_fmr, rds_ibdev->max_wrs, rds_ibdev->max_sge,
199 rds_ibdev->fmr_max_remaps, rds_ibdev->max_1m_mrs,
200 rds_ibdev->max_8k_mrs);
201
202 pr_info("RDS/IB: %s: %s supported and preferred\n",
203 device->name,
204 rds_ibdev->use_fastreg ? "FRMR" : "FMR");
205
206 INIT_LIST_HEAD(&rds_ibdev->ipaddr_list);
207 INIT_LIST_HEAD(&rds_ibdev->conn_list);
208
209 down_write(&rds_ib_devices_lock);
210 list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices);
211 up_write(&rds_ib_devices_lock);
212 refcount_inc(&rds_ibdev->refcount);
213
214 ib_set_client_data(device, &rds_ib_client, rds_ibdev);
215 refcount_inc(&rds_ibdev->refcount);
216
217 rds_ib_nodev_connect();
218
219 put_dev:
220 rds_ib_dev_put(rds_ibdev);
221 }
222
223 /*
224 * New connections use this to find the device to associate with the
225 * connection. It's not in the fast path so we're not concerned about the
226 * performance of the IB call. (As of this writing, it uses an interrupt
227 * blocking spinlock to serialize walking a per-device list of all registered
228 * clients.)
229 *
230 * RCU is used to handle incoming connections racing with device teardown.
231 * Rather than use a lock to serialize removal from the client_data and
232 * getting a new reference, we use an RCU grace period. The destruction
233 * path removes the device from client_data and then waits for all RCU
234 * readers to finish.
235 *
236 * A new connection can get NULL from this if its arriving on a
237 * device that is in the process of being removed.
238 */
239 struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device)
240 {
241 struct rds_ib_device *rds_ibdev;
242
243 rcu_read_lock();
244 rds_ibdev = ib_get_client_data(device, &rds_ib_client);
245 if (rds_ibdev)
246 refcount_inc(&rds_ibdev->refcount);
247 rcu_read_unlock();
248 return rds_ibdev;
249 }
250
251 /*
252 * The IB stack is letting us know that a device is going away. This can
253 * happen if the underlying HCA driver is removed or if PCI hotplug is removing
254 * the pci function, for example.
255 *
256 * This can be called at any time and can be racing with any other RDS path.
257 */
258 static void rds_ib_remove_one(struct ib_device *device, void *client_data)
259 {
260 struct rds_ib_device *rds_ibdev = client_data;
261
262 if (!rds_ibdev)
263 return;
264
265 rds_ib_dev_shutdown(rds_ibdev);
266
267 /* stop connection attempts from getting a reference to this device. */
268 ib_set_client_data(device, &rds_ib_client, NULL);
269
270 down_write(&rds_ib_devices_lock);
271 list_del_rcu(&rds_ibdev->list);
272 up_write(&rds_ib_devices_lock);
273
274 /*
275 * This synchronize rcu is waiting for readers of both the ib
276 * client data and the devices list to finish before we drop
277 * both of those references.
278 */
279 synchronize_rcu();
280 rds_ib_dev_put(rds_ibdev);
281 rds_ib_dev_put(rds_ibdev);
282 }
283
284 struct ib_client rds_ib_client = {
285 .name = "rds_ib",
286 .add = rds_ib_add_one,
287 .remove = rds_ib_remove_one
288 };
289
290 static int rds_ib_conn_info_visitor(struct rds_connection *conn,
291 void *buffer)
292 {
293 struct rds_info_rdma_connection *iinfo = buffer;
294 struct rds_ib_connection *ic;
295
296 /* We will only ever look at IB transports */
297 if (conn->c_trans != &rds_ib_transport)
298 return 0;
299 if (conn->c_isv6)
300 return 0;
301
302 iinfo->src_addr = conn->c_laddr.s6_addr32[3];
303 iinfo->dst_addr = conn->c_faddr.s6_addr32[3];
304 iinfo->tos = conn->c_tos;
305
306 memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid));
307 memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid));
308 if (rds_conn_state(conn) == RDS_CONN_UP) {
309 struct rds_ib_device *rds_ibdev;
310
311 ic = conn->c_transport_data;
312
313 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo->src_gid,
314 (union ib_gid *)&iinfo->dst_gid);
315
316 rds_ibdev = ic->rds_ibdev;
317 iinfo->max_send_wr = ic->i_send_ring.w_nr;
318 iinfo->max_recv_wr = ic->i_recv_ring.w_nr;
319 iinfo->max_send_sge = rds_ibdev->max_sge;
320 rds_ib_get_mr_info(rds_ibdev, iinfo);
321 }
322 return 1;
323 }
324
325 #if IS_ENABLED(CONFIG_IPV6)
326 /* IPv6 version of rds_ib_conn_info_visitor(). */
327 static int rds6_ib_conn_info_visitor(struct rds_connection *conn,
328 void *buffer)
329 {
330 struct rds6_info_rdma_connection *iinfo6 = buffer;
331 struct rds_ib_connection *ic;
332
333 /* We will only ever look at IB transports */
334 if (conn->c_trans != &rds_ib_transport)
335 return 0;
336
337 iinfo6->src_addr = conn->c_laddr;
338 iinfo6->dst_addr = conn->c_faddr;
339
340 memset(&iinfo6->src_gid, 0, sizeof(iinfo6->src_gid));
341 memset(&iinfo6->dst_gid, 0, sizeof(iinfo6->dst_gid));
342
343 if (rds_conn_state(conn) == RDS_CONN_UP) {
344 struct rds_ib_device *rds_ibdev;
345
346 ic = conn->c_transport_data;
347 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo6->src_gid,
348 (union ib_gid *)&iinfo6->dst_gid);
349 rds_ibdev = ic->rds_ibdev;
350 iinfo6->max_send_wr = ic->i_send_ring.w_nr;
351 iinfo6->max_recv_wr = ic->i_recv_ring.w_nr;
352 iinfo6->max_send_sge = rds_ibdev->max_sge;
353 rds6_ib_get_mr_info(rds_ibdev, iinfo6);
354 }
355 return 1;
356 }
357 #endif
358
359 static void rds_ib_ic_info(struct socket *sock, unsigned int len,
360 struct rds_info_iterator *iter,
361 struct rds_info_lengths *lens)
362 {
363 u64 buffer[(sizeof(struct rds_info_rdma_connection) + 7) / 8];
364
365 rds_for_each_conn_info(sock, len, iter, lens,
366 rds_ib_conn_info_visitor,
367 buffer,
368 sizeof(struct rds_info_rdma_connection));
369 }
370
371 #if IS_ENABLED(CONFIG_IPV6)
372 /* IPv6 version of rds_ib_ic_info(). */
373 static void rds6_ib_ic_info(struct socket *sock, unsigned int len,
374 struct rds_info_iterator *iter,
375 struct rds_info_lengths *lens)
376 {
377 u64 buffer[(sizeof(struct rds6_info_rdma_connection) + 7) / 8];
378
379 rds_for_each_conn_info(sock, len, iter, lens,
380 rds6_ib_conn_info_visitor,
381 buffer,
382 sizeof(struct rds6_info_rdma_connection));
383 }
384 #endif
385
386 /*
387 * Early RDS/IB was built to only bind to an address if there is an IPoIB
388 * device with that address set.
389 *
390 * If it were me, I'd advocate for something more flexible. Sending and
391 * receiving should be device-agnostic. Transports would try and maintain
392 * connections between peers who have messages queued. Userspace would be
393 * allowed to influence which paths have priority. We could call userspace
394 * asserting this policy "routing".
395 */
396 static int rds_ib_laddr_check(struct net *net, const struct in6_addr *addr,
397 __u32 scope_id)
398 {
399 int ret;
400 struct rdma_cm_id *cm_id;
401 #if IS_ENABLED(CONFIG_IPV6)
402 struct sockaddr_in6 sin6;
403 #endif
404 struct sockaddr_in sin;
405 struct sockaddr *sa;
406 bool isv4;
407
408 isv4 = ipv6_addr_v4mapped(addr);
409 /* Create a CMA ID and try to bind it. This catches both
410 * IB and iWARP capable NICs.
411 */
412 cm_id = rdma_create_id(&init_net, rds_rdma_cm_event_handler,
413 NULL, RDMA_PS_TCP, IB_QPT_RC);
414 if (IS_ERR(cm_id))
415 return PTR_ERR(cm_id);
416
417 if (isv4) {
418 memset(&sin, 0, sizeof(sin));
419 sin.sin_family = AF_INET;
420 sin.sin_addr.s_addr = addr->s6_addr32[3];
421 sa = (struct sockaddr *)&sin;
422 } else {
423 #if IS_ENABLED(CONFIG_IPV6)
424 memset(&sin6, 0, sizeof(sin6));
425 sin6.sin6_family = AF_INET6;
426 sin6.sin6_addr = *addr;
427 sin6.sin6_scope_id = scope_id;
428 sa = (struct sockaddr *)&sin6;
429
430 /* XXX Do a special IPv6 link local address check here. The
431 * reason is that rdma_bind_addr() always succeeds with IPv6
432 * link local address regardless it is indeed configured in a
433 * system.
434 */
435 if (ipv6_addr_type(addr) & IPV6_ADDR_LINKLOCAL) {
436 struct net_device *dev;
437
438 if (scope_id == 0) {
439 ret = -EADDRNOTAVAIL;
440 goto out;
441 }
442
443 /* Use init_net for now as RDS is not network
444 * name space aware.
445 */
446 dev = dev_get_by_index(&init_net, scope_id);
447 if (!dev) {
448 ret = -EADDRNOTAVAIL;
449 goto out;
450 }
451 if (!ipv6_chk_addr(&init_net, addr, dev, 1)) {
452 dev_put(dev);
453 ret = -EADDRNOTAVAIL;
454 goto out;
455 }
456 dev_put(dev);
457 }
458 #else
459 ret = -EADDRNOTAVAIL;
460 goto out;
461 #endif
462 }
463
464 /* rdma_bind_addr will only succeed for IB & iWARP devices */
465 ret = rdma_bind_addr(cm_id, sa);
466 /* due to this, we will claim to support iWARP devices unless we
467 check node_type. */
468 if (ret || !cm_id->device ||
469 cm_id->device->node_type != RDMA_NODE_IB_CA)
470 ret = -EADDRNOTAVAIL;
471
472 rdsdebug("addr %pI6c%%%u ret %d node type %d\n",
473 addr, scope_id, ret,
474 cm_id->device ? cm_id->device->node_type : -1);
475
476 out:
477 rdma_destroy_id(cm_id);
478
479 return ret;
480 }
481
482 static void rds_ib_unregister_client(void)
483 {
484 ib_unregister_client(&rds_ib_client);
485 /* wait for rds_ib_dev_free() to complete */
486 flush_workqueue(rds_wq);
487 }
488
489 static void rds_ib_set_unloading(void)
490 {
491 atomic_set(&rds_ib_unloading, 1);
492 }
493
494 static bool rds_ib_is_unloading(struct rds_connection *conn)
495 {
496 struct rds_conn_path *cp = &conn->c_path[0];
497
498 return (test_bit(RDS_DESTROY_PENDING, &cp->cp_flags) ||
499 atomic_read(&rds_ib_unloading) != 0);
500 }
501
502 void rds_ib_exit(void)
503 {
504 rds_ib_set_unloading();
505 synchronize_rcu();
506 rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
507 #if IS_ENABLED(CONFIG_IPV6)
508 rds_info_deregister_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info);
509 #endif
510 rds_ib_unregister_client();
511 rds_ib_destroy_nodev_conns();
512 rds_ib_sysctl_exit();
513 rds_ib_recv_exit();
514 rds_trans_unregister(&rds_ib_transport);
515 rds_ib_mr_exit();
516 }
517
518 static u8 rds_ib_get_tos_map(u8 tos)
519 {
520 /* 1:1 user to transport map for RDMA transport.
521 * In future, if custom map is desired, hook can export
522 * user configurable map.
523 */
524 return tos;
525 }
526
527 struct rds_transport rds_ib_transport = {
528 .laddr_check = rds_ib_laddr_check,
529 .xmit_path_complete = rds_ib_xmit_path_complete,
530 .xmit = rds_ib_xmit,
531 .xmit_rdma = rds_ib_xmit_rdma,
532 .xmit_atomic = rds_ib_xmit_atomic,
533 .recv_path = rds_ib_recv_path,
534 .conn_alloc = rds_ib_conn_alloc,
535 .conn_free = rds_ib_conn_free,
536 .conn_path_connect = rds_ib_conn_path_connect,
537 .conn_path_shutdown = rds_ib_conn_path_shutdown,
538 .inc_copy_to_user = rds_ib_inc_copy_to_user,
539 .inc_free = rds_ib_inc_free,
540 .cm_initiate_connect = rds_ib_cm_initiate_connect,
541 .cm_handle_connect = rds_ib_cm_handle_connect,
542 .cm_connect_complete = rds_ib_cm_connect_complete,
543 .stats_info_copy = rds_ib_stats_info_copy,
544 .exit = rds_ib_exit,
545 .get_mr = rds_ib_get_mr,
546 .sync_mr = rds_ib_sync_mr,
547 .free_mr = rds_ib_free_mr,
548 .flush_mrs = rds_ib_flush_mrs,
549 .get_tos_map = rds_ib_get_tos_map,
550 .t_owner = THIS_MODULE,
551 .t_name = "infiniband",
552 .t_unloading = rds_ib_is_unloading,
553 .t_type = RDS_TRANS_IB
554 };
555
556 int rds_ib_init(void)
557 {
558 int ret;
559
560 INIT_LIST_HEAD(&rds_ib_devices);
561
562 ret = rds_ib_mr_init();
563 if (ret)
564 goto out;
565
566 ret = ib_register_client(&rds_ib_client);
567 if (ret)
568 goto out_mr_exit;
569
570 ret = rds_ib_sysctl_init();
571 if (ret)
572 goto out_ibreg;
573
574 ret = rds_ib_recv_init();
575 if (ret)
576 goto out_sysctl;
577
578 rds_trans_register(&rds_ib_transport);
579
580 rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
581 #if IS_ENABLED(CONFIG_IPV6)
582 rds_info_register_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info);
583 #endif
584
585 goto out;
586
587 out_sysctl:
588 rds_ib_sysctl_exit();
589 out_ibreg:
590 rds_ib_unregister_client();
591 out_mr_exit:
592 rds_ib_mr_exit();
593 out:
594 return ret;
595 }
596
597 MODULE_LICENSE("GPL");