]> git.ipfire.org Git - people/ms/linux.git/blob - net/rfkill/core.c
Merge tag 'arm-soc/for-5.20/defconfig-arm64' of https://github.com/Broadcom/stblinux...
[people/ms/linux.git] / net / rfkill / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2006 - 2007 Ivo van Doorn
4 * Copyright (C) 2007 Dmitry Torokhov
5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/workqueue.h>
12 #include <linux/capability.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/rfkill.h>
16 #include <linux/sched.h>
17 #include <linux/spinlock.h>
18 #include <linux/device.h>
19 #include <linux/miscdevice.h>
20 #include <linux/wait.h>
21 #include <linux/poll.h>
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24
25 #include "rfkill.h"
26
27 #define POLL_INTERVAL (5 * HZ)
28
29 #define RFKILL_BLOCK_HW BIT(0)
30 #define RFKILL_BLOCK_SW BIT(1)
31 #define RFKILL_BLOCK_SW_PREV BIT(2)
32 #define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
33 RFKILL_BLOCK_SW |\
34 RFKILL_BLOCK_SW_PREV)
35 #define RFKILL_BLOCK_SW_SETCALL BIT(31)
36
37 struct rfkill {
38 spinlock_t lock;
39
40 enum rfkill_type type;
41
42 unsigned long state;
43 unsigned long hard_block_reasons;
44
45 u32 idx;
46
47 bool registered;
48 bool persistent;
49 bool polling_paused;
50 bool suspended;
51
52 const struct rfkill_ops *ops;
53 void *data;
54
55 #ifdef CONFIG_RFKILL_LEDS
56 struct led_trigger led_trigger;
57 const char *ledtrigname;
58 #endif
59
60 struct device dev;
61 struct list_head node;
62
63 struct delayed_work poll_work;
64 struct work_struct uevent_work;
65 struct work_struct sync_work;
66 char name[];
67 };
68 #define to_rfkill(d) container_of(d, struct rfkill, dev)
69
70 struct rfkill_int_event {
71 struct list_head list;
72 struct rfkill_event_ext ev;
73 };
74
75 struct rfkill_data {
76 struct list_head list;
77 struct list_head events;
78 struct mutex mtx;
79 wait_queue_head_t read_wait;
80 bool input_handler;
81 u8 max_size;
82 };
83
84
85 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
86 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
87 MODULE_DESCRIPTION("RF switch support");
88 MODULE_LICENSE("GPL");
89
90
91 /*
92 * The locking here should be made much smarter, we currently have
93 * a bit of a stupid situation because drivers might want to register
94 * the rfkill struct under their own lock, and take this lock during
95 * rfkill method calls -- which will cause an AB-BA deadlock situation.
96 *
97 * To fix that, we need to rework this code here to be mostly lock-free
98 * and only use the mutex for list manipulations, not to protect the
99 * various other global variables. Then we can avoid holding the mutex
100 * around driver operations, and all is happy.
101 */
102 static LIST_HEAD(rfkill_list); /* list of registered rf switches */
103 static DEFINE_MUTEX(rfkill_global_mutex);
104 static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
105
106 static unsigned int rfkill_default_state = 1;
107 module_param_named(default_state, rfkill_default_state, uint, 0444);
108 MODULE_PARM_DESC(default_state,
109 "Default initial state for all radio types, 0 = radio off");
110
111 static struct {
112 bool cur, sav;
113 } rfkill_global_states[NUM_RFKILL_TYPES];
114
115 static bool rfkill_epo_lock_active;
116
117
118 #ifdef CONFIG_RFKILL_LEDS
119 static void rfkill_led_trigger_event(struct rfkill *rfkill)
120 {
121 struct led_trigger *trigger;
122
123 if (!rfkill->registered)
124 return;
125
126 trigger = &rfkill->led_trigger;
127
128 if (rfkill->state & RFKILL_BLOCK_ANY)
129 led_trigger_event(trigger, LED_OFF);
130 else
131 led_trigger_event(trigger, LED_FULL);
132 }
133
134 static int rfkill_led_trigger_activate(struct led_classdev *led)
135 {
136 struct rfkill *rfkill;
137
138 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
139
140 rfkill_led_trigger_event(rfkill);
141
142 return 0;
143 }
144
145 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
146 {
147 return rfkill->led_trigger.name;
148 }
149 EXPORT_SYMBOL(rfkill_get_led_trigger_name);
150
151 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
152 {
153 BUG_ON(!rfkill);
154
155 rfkill->ledtrigname = name;
156 }
157 EXPORT_SYMBOL(rfkill_set_led_trigger_name);
158
159 static int rfkill_led_trigger_register(struct rfkill *rfkill)
160 {
161 rfkill->led_trigger.name = rfkill->ledtrigname
162 ? : dev_name(&rfkill->dev);
163 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
164 return led_trigger_register(&rfkill->led_trigger);
165 }
166
167 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
168 {
169 led_trigger_unregister(&rfkill->led_trigger);
170 }
171
172 static struct led_trigger rfkill_any_led_trigger;
173 static struct led_trigger rfkill_none_led_trigger;
174 static struct work_struct rfkill_global_led_trigger_work;
175
176 static void rfkill_global_led_trigger_worker(struct work_struct *work)
177 {
178 enum led_brightness brightness = LED_OFF;
179 struct rfkill *rfkill;
180
181 mutex_lock(&rfkill_global_mutex);
182 list_for_each_entry(rfkill, &rfkill_list, node) {
183 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
184 brightness = LED_FULL;
185 break;
186 }
187 }
188 mutex_unlock(&rfkill_global_mutex);
189
190 led_trigger_event(&rfkill_any_led_trigger, brightness);
191 led_trigger_event(&rfkill_none_led_trigger,
192 brightness == LED_OFF ? LED_FULL : LED_OFF);
193 }
194
195 static void rfkill_global_led_trigger_event(void)
196 {
197 schedule_work(&rfkill_global_led_trigger_work);
198 }
199
200 static int rfkill_global_led_trigger_register(void)
201 {
202 int ret;
203
204 INIT_WORK(&rfkill_global_led_trigger_work,
205 rfkill_global_led_trigger_worker);
206
207 rfkill_any_led_trigger.name = "rfkill-any";
208 ret = led_trigger_register(&rfkill_any_led_trigger);
209 if (ret)
210 return ret;
211
212 rfkill_none_led_trigger.name = "rfkill-none";
213 ret = led_trigger_register(&rfkill_none_led_trigger);
214 if (ret)
215 led_trigger_unregister(&rfkill_any_led_trigger);
216 else
217 /* Delay activation until all global triggers are registered */
218 rfkill_global_led_trigger_event();
219
220 return ret;
221 }
222
223 static void rfkill_global_led_trigger_unregister(void)
224 {
225 led_trigger_unregister(&rfkill_none_led_trigger);
226 led_trigger_unregister(&rfkill_any_led_trigger);
227 cancel_work_sync(&rfkill_global_led_trigger_work);
228 }
229 #else
230 static void rfkill_led_trigger_event(struct rfkill *rfkill)
231 {
232 }
233
234 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
235 {
236 return 0;
237 }
238
239 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
240 {
241 }
242
243 static void rfkill_global_led_trigger_event(void)
244 {
245 }
246
247 static int rfkill_global_led_trigger_register(void)
248 {
249 return 0;
250 }
251
252 static void rfkill_global_led_trigger_unregister(void)
253 {
254 }
255 #endif /* CONFIG_RFKILL_LEDS */
256
257 static void rfkill_fill_event(struct rfkill_event_ext *ev,
258 struct rfkill *rfkill,
259 enum rfkill_operation op)
260 {
261 unsigned long flags;
262
263 ev->idx = rfkill->idx;
264 ev->type = rfkill->type;
265 ev->op = op;
266
267 spin_lock_irqsave(&rfkill->lock, flags);
268 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
269 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
270 RFKILL_BLOCK_SW_PREV));
271 ev->hard_block_reasons = rfkill->hard_block_reasons;
272 spin_unlock_irqrestore(&rfkill->lock, flags);
273 }
274
275 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
276 {
277 struct rfkill_data *data;
278 struct rfkill_int_event *ev;
279
280 list_for_each_entry(data, &rfkill_fds, list) {
281 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
282 if (!ev)
283 continue;
284 rfkill_fill_event(&ev->ev, rfkill, op);
285 mutex_lock(&data->mtx);
286 list_add_tail(&ev->list, &data->events);
287 mutex_unlock(&data->mtx);
288 wake_up_interruptible(&data->read_wait);
289 }
290 }
291
292 static void rfkill_event(struct rfkill *rfkill)
293 {
294 if (!rfkill->registered)
295 return;
296
297 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
298
299 /* also send event to /dev/rfkill */
300 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
301 }
302
303 /**
304 * rfkill_set_block - wrapper for set_block method
305 *
306 * @rfkill: the rfkill struct to use
307 * @blocked: the new software state
308 *
309 * Calls the set_block method (when applicable) and handles notifications
310 * etc. as well.
311 */
312 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
313 {
314 unsigned long flags;
315 bool prev, curr;
316 int err;
317
318 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
319 return;
320
321 /*
322 * Some platforms (...!) generate input events which affect the
323 * _hard_ kill state -- whenever something tries to change the
324 * current software state query the hardware state too.
325 */
326 if (rfkill->ops->query)
327 rfkill->ops->query(rfkill, rfkill->data);
328
329 spin_lock_irqsave(&rfkill->lock, flags);
330 prev = rfkill->state & RFKILL_BLOCK_SW;
331
332 if (prev)
333 rfkill->state |= RFKILL_BLOCK_SW_PREV;
334 else
335 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
336
337 if (blocked)
338 rfkill->state |= RFKILL_BLOCK_SW;
339 else
340 rfkill->state &= ~RFKILL_BLOCK_SW;
341
342 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
343 spin_unlock_irqrestore(&rfkill->lock, flags);
344
345 err = rfkill->ops->set_block(rfkill->data, blocked);
346
347 spin_lock_irqsave(&rfkill->lock, flags);
348 if (err) {
349 /*
350 * Failed -- reset status to _PREV, which may be different
351 * from what we have set _PREV to earlier in this function
352 * if rfkill_set_sw_state was invoked.
353 */
354 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
355 rfkill->state |= RFKILL_BLOCK_SW;
356 else
357 rfkill->state &= ~RFKILL_BLOCK_SW;
358 }
359 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
360 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
361 curr = rfkill->state & RFKILL_BLOCK_SW;
362 spin_unlock_irqrestore(&rfkill->lock, flags);
363
364 rfkill_led_trigger_event(rfkill);
365 rfkill_global_led_trigger_event();
366
367 if (prev != curr)
368 rfkill_event(rfkill);
369 }
370
371 static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
372 {
373 int i;
374
375 if (type != RFKILL_TYPE_ALL) {
376 rfkill_global_states[type].cur = blocked;
377 return;
378 }
379
380 for (i = 0; i < NUM_RFKILL_TYPES; i++)
381 rfkill_global_states[i].cur = blocked;
382 }
383
384 #ifdef CONFIG_RFKILL_INPUT
385 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
386
387 /**
388 * __rfkill_switch_all - Toggle state of all switches of given type
389 * @type: type of interfaces to be affected
390 * @blocked: the new state
391 *
392 * This function sets the state of all switches of given type,
393 * unless a specific switch is suspended.
394 *
395 * Caller must have acquired rfkill_global_mutex.
396 */
397 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
398 {
399 struct rfkill *rfkill;
400
401 rfkill_update_global_state(type, blocked);
402 list_for_each_entry(rfkill, &rfkill_list, node) {
403 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
404 continue;
405
406 rfkill_set_block(rfkill, blocked);
407 }
408 }
409
410 /**
411 * rfkill_switch_all - Toggle state of all switches of given type
412 * @type: type of interfaces to be affected
413 * @blocked: the new state
414 *
415 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
416 * Please refer to __rfkill_switch_all() for details.
417 *
418 * Does nothing if the EPO lock is active.
419 */
420 void rfkill_switch_all(enum rfkill_type type, bool blocked)
421 {
422 if (atomic_read(&rfkill_input_disabled))
423 return;
424
425 mutex_lock(&rfkill_global_mutex);
426
427 if (!rfkill_epo_lock_active)
428 __rfkill_switch_all(type, blocked);
429
430 mutex_unlock(&rfkill_global_mutex);
431 }
432
433 /**
434 * rfkill_epo - emergency power off all transmitters
435 *
436 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
437 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
438 *
439 * The global state before the EPO is saved and can be restored later
440 * using rfkill_restore_states().
441 */
442 void rfkill_epo(void)
443 {
444 struct rfkill *rfkill;
445 int i;
446
447 if (atomic_read(&rfkill_input_disabled))
448 return;
449
450 mutex_lock(&rfkill_global_mutex);
451
452 rfkill_epo_lock_active = true;
453 list_for_each_entry(rfkill, &rfkill_list, node)
454 rfkill_set_block(rfkill, true);
455
456 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
457 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
458 rfkill_global_states[i].cur = true;
459 }
460
461 mutex_unlock(&rfkill_global_mutex);
462 }
463
464 /**
465 * rfkill_restore_states - restore global states
466 *
467 * Restore (and sync switches to) the global state from the
468 * states in rfkill_default_states. This can undo the effects of
469 * a call to rfkill_epo().
470 */
471 void rfkill_restore_states(void)
472 {
473 int i;
474
475 if (atomic_read(&rfkill_input_disabled))
476 return;
477
478 mutex_lock(&rfkill_global_mutex);
479
480 rfkill_epo_lock_active = false;
481 for (i = 0; i < NUM_RFKILL_TYPES; i++)
482 __rfkill_switch_all(i, rfkill_global_states[i].sav);
483 mutex_unlock(&rfkill_global_mutex);
484 }
485
486 /**
487 * rfkill_remove_epo_lock - unlock state changes
488 *
489 * Used by rfkill-input manually unlock state changes, when
490 * the EPO switch is deactivated.
491 */
492 void rfkill_remove_epo_lock(void)
493 {
494 if (atomic_read(&rfkill_input_disabled))
495 return;
496
497 mutex_lock(&rfkill_global_mutex);
498 rfkill_epo_lock_active = false;
499 mutex_unlock(&rfkill_global_mutex);
500 }
501
502 /**
503 * rfkill_is_epo_lock_active - returns true EPO is active
504 *
505 * Returns 0 (false) if there is NOT an active EPO condition,
506 * and 1 (true) if there is an active EPO condition, which
507 * locks all radios in one of the BLOCKED states.
508 *
509 * Can be called in atomic context.
510 */
511 bool rfkill_is_epo_lock_active(void)
512 {
513 return rfkill_epo_lock_active;
514 }
515
516 /**
517 * rfkill_get_global_sw_state - returns global state for a type
518 * @type: the type to get the global state of
519 *
520 * Returns the current global state for a given wireless
521 * device type.
522 */
523 bool rfkill_get_global_sw_state(const enum rfkill_type type)
524 {
525 return rfkill_global_states[type].cur;
526 }
527 #endif
528
529 bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
530 bool blocked, unsigned long reason)
531 {
532 unsigned long flags;
533 bool ret, prev;
534
535 BUG_ON(!rfkill);
536
537 if (WARN(reason &
538 ~(RFKILL_HARD_BLOCK_SIGNAL | RFKILL_HARD_BLOCK_NOT_OWNER),
539 "hw_state reason not supported: 0x%lx", reason))
540 return blocked;
541
542 spin_lock_irqsave(&rfkill->lock, flags);
543 prev = !!(rfkill->hard_block_reasons & reason);
544 if (blocked) {
545 rfkill->state |= RFKILL_BLOCK_HW;
546 rfkill->hard_block_reasons |= reason;
547 } else {
548 rfkill->hard_block_reasons &= ~reason;
549 if (!rfkill->hard_block_reasons)
550 rfkill->state &= ~RFKILL_BLOCK_HW;
551 }
552 ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
553 spin_unlock_irqrestore(&rfkill->lock, flags);
554
555 rfkill_led_trigger_event(rfkill);
556 rfkill_global_led_trigger_event();
557
558 if (rfkill->registered && prev != blocked)
559 schedule_work(&rfkill->uevent_work);
560
561 return ret;
562 }
563 EXPORT_SYMBOL(rfkill_set_hw_state_reason);
564
565 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
566 {
567 u32 bit = RFKILL_BLOCK_SW;
568
569 /* if in a ops->set_block right now, use other bit */
570 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
571 bit = RFKILL_BLOCK_SW_PREV;
572
573 if (blocked)
574 rfkill->state |= bit;
575 else
576 rfkill->state &= ~bit;
577 }
578
579 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
580 {
581 unsigned long flags;
582 bool prev, hwblock;
583
584 BUG_ON(!rfkill);
585
586 spin_lock_irqsave(&rfkill->lock, flags);
587 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
588 __rfkill_set_sw_state(rfkill, blocked);
589 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
590 blocked = blocked || hwblock;
591 spin_unlock_irqrestore(&rfkill->lock, flags);
592
593 if (!rfkill->registered)
594 return blocked;
595
596 if (prev != blocked && !hwblock)
597 schedule_work(&rfkill->uevent_work);
598
599 rfkill_led_trigger_event(rfkill);
600 rfkill_global_led_trigger_event();
601
602 return blocked;
603 }
604 EXPORT_SYMBOL(rfkill_set_sw_state);
605
606 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
607 {
608 unsigned long flags;
609
610 BUG_ON(!rfkill);
611 BUG_ON(rfkill->registered);
612
613 spin_lock_irqsave(&rfkill->lock, flags);
614 __rfkill_set_sw_state(rfkill, blocked);
615 rfkill->persistent = true;
616 spin_unlock_irqrestore(&rfkill->lock, flags);
617 }
618 EXPORT_SYMBOL(rfkill_init_sw_state);
619
620 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
621 {
622 unsigned long flags;
623 bool swprev, hwprev;
624
625 BUG_ON(!rfkill);
626
627 spin_lock_irqsave(&rfkill->lock, flags);
628
629 /*
630 * No need to care about prev/setblock ... this is for uevent only
631 * and that will get triggered by rfkill_set_block anyway.
632 */
633 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
634 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
635 __rfkill_set_sw_state(rfkill, sw);
636 if (hw)
637 rfkill->state |= RFKILL_BLOCK_HW;
638 else
639 rfkill->state &= ~RFKILL_BLOCK_HW;
640
641 spin_unlock_irqrestore(&rfkill->lock, flags);
642
643 if (!rfkill->registered) {
644 rfkill->persistent = true;
645 } else {
646 if (swprev != sw || hwprev != hw)
647 schedule_work(&rfkill->uevent_work);
648
649 rfkill_led_trigger_event(rfkill);
650 rfkill_global_led_trigger_event();
651 }
652 }
653 EXPORT_SYMBOL(rfkill_set_states);
654
655 static const char * const rfkill_types[] = {
656 NULL, /* RFKILL_TYPE_ALL */
657 "wlan",
658 "bluetooth",
659 "ultrawideband",
660 "wimax",
661 "wwan",
662 "gps",
663 "fm",
664 "nfc",
665 };
666
667 enum rfkill_type rfkill_find_type(const char *name)
668 {
669 int i;
670
671 BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
672
673 if (!name)
674 return RFKILL_TYPE_ALL;
675
676 for (i = 1; i < NUM_RFKILL_TYPES; i++)
677 if (!strcmp(name, rfkill_types[i]))
678 return i;
679 return RFKILL_TYPE_ALL;
680 }
681 EXPORT_SYMBOL(rfkill_find_type);
682
683 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
684 char *buf)
685 {
686 struct rfkill *rfkill = to_rfkill(dev);
687
688 return sprintf(buf, "%s\n", rfkill->name);
689 }
690 static DEVICE_ATTR_RO(name);
691
692 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
693 char *buf)
694 {
695 struct rfkill *rfkill = to_rfkill(dev);
696
697 return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
698 }
699 static DEVICE_ATTR_RO(type);
700
701 static ssize_t index_show(struct device *dev, struct device_attribute *attr,
702 char *buf)
703 {
704 struct rfkill *rfkill = to_rfkill(dev);
705
706 return sprintf(buf, "%d\n", rfkill->idx);
707 }
708 static DEVICE_ATTR_RO(index);
709
710 static ssize_t persistent_show(struct device *dev,
711 struct device_attribute *attr, char *buf)
712 {
713 struct rfkill *rfkill = to_rfkill(dev);
714
715 return sprintf(buf, "%d\n", rfkill->persistent);
716 }
717 static DEVICE_ATTR_RO(persistent);
718
719 static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
720 char *buf)
721 {
722 struct rfkill *rfkill = to_rfkill(dev);
723
724 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
725 }
726 static DEVICE_ATTR_RO(hard);
727
728 static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
729 char *buf)
730 {
731 struct rfkill *rfkill = to_rfkill(dev);
732
733 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
734 }
735
736 static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
737 const char *buf, size_t count)
738 {
739 struct rfkill *rfkill = to_rfkill(dev);
740 unsigned long state;
741 int err;
742
743 if (!capable(CAP_NET_ADMIN))
744 return -EPERM;
745
746 err = kstrtoul(buf, 0, &state);
747 if (err)
748 return err;
749
750 if (state > 1 )
751 return -EINVAL;
752
753 mutex_lock(&rfkill_global_mutex);
754 rfkill_set_block(rfkill, state);
755 mutex_unlock(&rfkill_global_mutex);
756
757 return count;
758 }
759 static DEVICE_ATTR_RW(soft);
760
761 static ssize_t hard_block_reasons_show(struct device *dev,
762 struct device_attribute *attr,
763 char *buf)
764 {
765 struct rfkill *rfkill = to_rfkill(dev);
766
767 return sprintf(buf, "0x%lx\n", rfkill->hard_block_reasons);
768 }
769 static DEVICE_ATTR_RO(hard_block_reasons);
770
771 static u8 user_state_from_blocked(unsigned long state)
772 {
773 if (state & RFKILL_BLOCK_HW)
774 return RFKILL_USER_STATE_HARD_BLOCKED;
775 if (state & RFKILL_BLOCK_SW)
776 return RFKILL_USER_STATE_SOFT_BLOCKED;
777
778 return RFKILL_USER_STATE_UNBLOCKED;
779 }
780
781 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
782 char *buf)
783 {
784 struct rfkill *rfkill = to_rfkill(dev);
785
786 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
787 }
788
789 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
790 const char *buf, size_t count)
791 {
792 struct rfkill *rfkill = to_rfkill(dev);
793 unsigned long state;
794 int err;
795
796 if (!capable(CAP_NET_ADMIN))
797 return -EPERM;
798
799 err = kstrtoul(buf, 0, &state);
800 if (err)
801 return err;
802
803 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
804 state != RFKILL_USER_STATE_UNBLOCKED)
805 return -EINVAL;
806
807 mutex_lock(&rfkill_global_mutex);
808 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
809 mutex_unlock(&rfkill_global_mutex);
810
811 return count;
812 }
813 static DEVICE_ATTR_RW(state);
814
815 static struct attribute *rfkill_dev_attrs[] = {
816 &dev_attr_name.attr,
817 &dev_attr_type.attr,
818 &dev_attr_index.attr,
819 &dev_attr_persistent.attr,
820 &dev_attr_state.attr,
821 &dev_attr_soft.attr,
822 &dev_attr_hard.attr,
823 &dev_attr_hard_block_reasons.attr,
824 NULL,
825 };
826 ATTRIBUTE_GROUPS(rfkill_dev);
827
828 static void rfkill_release(struct device *dev)
829 {
830 struct rfkill *rfkill = to_rfkill(dev);
831
832 kfree(rfkill);
833 }
834
835 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
836 {
837 struct rfkill *rfkill = to_rfkill(dev);
838 unsigned long flags;
839 unsigned long reasons;
840 u32 state;
841 int error;
842
843 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
844 if (error)
845 return error;
846 error = add_uevent_var(env, "RFKILL_TYPE=%s",
847 rfkill_types[rfkill->type]);
848 if (error)
849 return error;
850 spin_lock_irqsave(&rfkill->lock, flags);
851 state = rfkill->state;
852 reasons = rfkill->hard_block_reasons;
853 spin_unlock_irqrestore(&rfkill->lock, flags);
854 error = add_uevent_var(env, "RFKILL_STATE=%d",
855 user_state_from_blocked(state));
856 if (error)
857 return error;
858 return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
859 }
860
861 void rfkill_pause_polling(struct rfkill *rfkill)
862 {
863 BUG_ON(!rfkill);
864
865 if (!rfkill->ops->poll)
866 return;
867
868 rfkill->polling_paused = true;
869 cancel_delayed_work_sync(&rfkill->poll_work);
870 }
871 EXPORT_SYMBOL(rfkill_pause_polling);
872
873 void rfkill_resume_polling(struct rfkill *rfkill)
874 {
875 BUG_ON(!rfkill);
876
877 if (!rfkill->ops->poll)
878 return;
879
880 rfkill->polling_paused = false;
881
882 if (rfkill->suspended)
883 return;
884
885 queue_delayed_work(system_power_efficient_wq,
886 &rfkill->poll_work, 0);
887 }
888 EXPORT_SYMBOL(rfkill_resume_polling);
889
890 #ifdef CONFIG_PM_SLEEP
891 static int rfkill_suspend(struct device *dev)
892 {
893 struct rfkill *rfkill = to_rfkill(dev);
894
895 rfkill->suspended = true;
896 cancel_delayed_work_sync(&rfkill->poll_work);
897
898 return 0;
899 }
900
901 static int rfkill_resume(struct device *dev)
902 {
903 struct rfkill *rfkill = to_rfkill(dev);
904 bool cur;
905
906 rfkill->suspended = false;
907
908 if (!rfkill->registered)
909 return 0;
910
911 if (!rfkill->persistent) {
912 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
913 rfkill_set_block(rfkill, cur);
914 }
915
916 if (rfkill->ops->poll && !rfkill->polling_paused)
917 queue_delayed_work(system_power_efficient_wq,
918 &rfkill->poll_work, 0);
919
920 return 0;
921 }
922
923 static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
924 #define RFKILL_PM_OPS (&rfkill_pm_ops)
925 #else
926 #define RFKILL_PM_OPS NULL
927 #endif
928
929 static struct class rfkill_class = {
930 .name = "rfkill",
931 .dev_release = rfkill_release,
932 .dev_groups = rfkill_dev_groups,
933 .dev_uevent = rfkill_dev_uevent,
934 .pm = RFKILL_PM_OPS,
935 };
936
937 bool rfkill_blocked(struct rfkill *rfkill)
938 {
939 unsigned long flags;
940 u32 state;
941
942 spin_lock_irqsave(&rfkill->lock, flags);
943 state = rfkill->state;
944 spin_unlock_irqrestore(&rfkill->lock, flags);
945
946 return !!(state & RFKILL_BLOCK_ANY);
947 }
948 EXPORT_SYMBOL(rfkill_blocked);
949
950 bool rfkill_soft_blocked(struct rfkill *rfkill)
951 {
952 unsigned long flags;
953 u32 state;
954
955 spin_lock_irqsave(&rfkill->lock, flags);
956 state = rfkill->state;
957 spin_unlock_irqrestore(&rfkill->lock, flags);
958
959 return !!(state & RFKILL_BLOCK_SW);
960 }
961 EXPORT_SYMBOL(rfkill_soft_blocked);
962
963 struct rfkill * __must_check rfkill_alloc(const char *name,
964 struct device *parent,
965 const enum rfkill_type type,
966 const struct rfkill_ops *ops,
967 void *ops_data)
968 {
969 struct rfkill *rfkill;
970 struct device *dev;
971
972 if (WARN_ON(!ops))
973 return NULL;
974
975 if (WARN_ON(!ops->set_block))
976 return NULL;
977
978 if (WARN_ON(!name))
979 return NULL;
980
981 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
982 return NULL;
983
984 rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
985 if (!rfkill)
986 return NULL;
987
988 spin_lock_init(&rfkill->lock);
989 INIT_LIST_HEAD(&rfkill->node);
990 rfkill->type = type;
991 strcpy(rfkill->name, name);
992 rfkill->ops = ops;
993 rfkill->data = ops_data;
994
995 dev = &rfkill->dev;
996 dev->class = &rfkill_class;
997 dev->parent = parent;
998 device_initialize(dev);
999
1000 return rfkill;
1001 }
1002 EXPORT_SYMBOL(rfkill_alloc);
1003
1004 static void rfkill_poll(struct work_struct *work)
1005 {
1006 struct rfkill *rfkill;
1007
1008 rfkill = container_of(work, struct rfkill, poll_work.work);
1009
1010 /*
1011 * Poll hardware state -- driver will use one of the
1012 * rfkill_set{,_hw,_sw}_state functions and use its
1013 * return value to update the current status.
1014 */
1015 rfkill->ops->poll(rfkill, rfkill->data);
1016
1017 queue_delayed_work(system_power_efficient_wq,
1018 &rfkill->poll_work,
1019 round_jiffies_relative(POLL_INTERVAL));
1020 }
1021
1022 static void rfkill_uevent_work(struct work_struct *work)
1023 {
1024 struct rfkill *rfkill;
1025
1026 rfkill = container_of(work, struct rfkill, uevent_work);
1027
1028 mutex_lock(&rfkill_global_mutex);
1029 rfkill_event(rfkill);
1030 mutex_unlock(&rfkill_global_mutex);
1031 }
1032
1033 static void rfkill_sync_work(struct work_struct *work)
1034 {
1035 struct rfkill *rfkill;
1036 bool cur;
1037
1038 rfkill = container_of(work, struct rfkill, sync_work);
1039
1040 mutex_lock(&rfkill_global_mutex);
1041 cur = rfkill_global_states[rfkill->type].cur;
1042 rfkill_set_block(rfkill, cur);
1043 mutex_unlock(&rfkill_global_mutex);
1044 }
1045
1046 int __must_check rfkill_register(struct rfkill *rfkill)
1047 {
1048 static unsigned long rfkill_no;
1049 struct device *dev;
1050 int error;
1051
1052 if (!rfkill)
1053 return -EINVAL;
1054
1055 dev = &rfkill->dev;
1056
1057 mutex_lock(&rfkill_global_mutex);
1058
1059 if (rfkill->registered) {
1060 error = -EALREADY;
1061 goto unlock;
1062 }
1063
1064 rfkill->idx = rfkill_no;
1065 dev_set_name(dev, "rfkill%lu", rfkill_no);
1066 rfkill_no++;
1067
1068 list_add_tail(&rfkill->node, &rfkill_list);
1069
1070 error = device_add(dev);
1071 if (error)
1072 goto remove;
1073
1074 error = rfkill_led_trigger_register(rfkill);
1075 if (error)
1076 goto devdel;
1077
1078 rfkill->registered = true;
1079
1080 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1081 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1082 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1083
1084 if (rfkill->ops->poll)
1085 queue_delayed_work(system_power_efficient_wq,
1086 &rfkill->poll_work,
1087 round_jiffies_relative(POLL_INTERVAL));
1088
1089 if (!rfkill->persistent || rfkill_epo_lock_active) {
1090 schedule_work(&rfkill->sync_work);
1091 } else {
1092 #ifdef CONFIG_RFKILL_INPUT
1093 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1094
1095 if (!atomic_read(&rfkill_input_disabled))
1096 __rfkill_switch_all(rfkill->type, soft_blocked);
1097 #endif
1098 }
1099
1100 rfkill_global_led_trigger_event();
1101 rfkill_send_events(rfkill, RFKILL_OP_ADD);
1102
1103 mutex_unlock(&rfkill_global_mutex);
1104 return 0;
1105
1106 devdel:
1107 device_del(&rfkill->dev);
1108 remove:
1109 list_del_init(&rfkill->node);
1110 unlock:
1111 mutex_unlock(&rfkill_global_mutex);
1112 return error;
1113 }
1114 EXPORT_SYMBOL(rfkill_register);
1115
1116 void rfkill_unregister(struct rfkill *rfkill)
1117 {
1118 BUG_ON(!rfkill);
1119
1120 if (rfkill->ops->poll)
1121 cancel_delayed_work_sync(&rfkill->poll_work);
1122
1123 cancel_work_sync(&rfkill->uevent_work);
1124 cancel_work_sync(&rfkill->sync_work);
1125
1126 rfkill->registered = false;
1127
1128 device_del(&rfkill->dev);
1129
1130 mutex_lock(&rfkill_global_mutex);
1131 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1132 list_del_init(&rfkill->node);
1133 rfkill_global_led_trigger_event();
1134 mutex_unlock(&rfkill_global_mutex);
1135
1136 rfkill_led_trigger_unregister(rfkill);
1137 }
1138 EXPORT_SYMBOL(rfkill_unregister);
1139
1140 void rfkill_destroy(struct rfkill *rfkill)
1141 {
1142 if (rfkill)
1143 put_device(&rfkill->dev);
1144 }
1145 EXPORT_SYMBOL(rfkill_destroy);
1146
1147 static int rfkill_fop_open(struct inode *inode, struct file *file)
1148 {
1149 struct rfkill_data *data;
1150 struct rfkill *rfkill;
1151 struct rfkill_int_event *ev, *tmp;
1152
1153 data = kzalloc(sizeof(*data), GFP_KERNEL);
1154 if (!data)
1155 return -ENOMEM;
1156
1157 data->max_size = RFKILL_EVENT_SIZE_V1;
1158
1159 INIT_LIST_HEAD(&data->events);
1160 mutex_init(&data->mtx);
1161 init_waitqueue_head(&data->read_wait);
1162
1163 mutex_lock(&rfkill_global_mutex);
1164 mutex_lock(&data->mtx);
1165 /*
1166 * start getting events from elsewhere but hold mtx to get
1167 * startup events added first
1168 */
1169
1170 list_for_each_entry(rfkill, &rfkill_list, node) {
1171 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1172 if (!ev)
1173 goto free;
1174 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1175 list_add_tail(&ev->list, &data->events);
1176 }
1177 list_add(&data->list, &rfkill_fds);
1178 mutex_unlock(&data->mtx);
1179 mutex_unlock(&rfkill_global_mutex);
1180
1181 file->private_data = data;
1182
1183 return stream_open(inode, file);
1184
1185 free:
1186 mutex_unlock(&data->mtx);
1187 mutex_unlock(&rfkill_global_mutex);
1188 mutex_destroy(&data->mtx);
1189 list_for_each_entry_safe(ev, tmp, &data->events, list)
1190 kfree(ev);
1191 kfree(data);
1192 return -ENOMEM;
1193 }
1194
1195 static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1196 {
1197 struct rfkill_data *data = file->private_data;
1198 __poll_t res = EPOLLOUT | EPOLLWRNORM;
1199
1200 poll_wait(file, &data->read_wait, wait);
1201
1202 mutex_lock(&data->mtx);
1203 if (!list_empty(&data->events))
1204 res = EPOLLIN | EPOLLRDNORM;
1205 mutex_unlock(&data->mtx);
1206
1207 return res;
1208 }
1209
1210 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1211 size_t count, loff_t *pos)
1212 {
1213 struct rfkill_data *data = file->private_data;
1214 struct rfkill_int_event *ev;
1215 unsigned long sz;
1216 int ret;
1217
1218 mutex_lock(&data->mtx);
1219
1220 while (list_empty(&data->events)) {
1221 if (file->f_flags & O_NONBLOCK) {
1222 ret = -EAGAIN;
1223 goto out;
1224 }
1225 mutex_unlock(&data->mtx);
1226 /* since we re-check and it just compares pointers,
1227 * using !list_empty() without locking isn't a problem
1228 */
1229 ret = wait_event_interruptible(data->read_wait,
1230 !list_empty(&data->events));
1231 mutex_lock(&data->mtx);
1232
1233 if (ret)
1234 goto out;
1235 }
1236
1237 ev = list_first_entry(&data->events, struct rfkill_int_event,
1238 list);
1239
1240 sz = min_t(unsigned long, sizeof(ev->ev), count);
1241 sz = min_t(unsigned long, sz, data->max_size);
1242 ret = sz;
1243 if (copy_to_user(buf, &ev->ev, sz))
1244 ret = -EFAULT;
1245
1246 list_del(&ev->list);
1247 kfree(ev);
1248 out:
1249 mutex_unlock(&data->mtx);
1250 return ret;
1251 }
1252
1253 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1254 size_t count, loff_t *pos)
1255 {
1256 struct rfkill_data *data = file->private_data;
1257 struct rfkill *rfkill;
1258 struct rfkill_event_ext ev;
1259 int ret;
1260
1261 /* we don't need the 'hard' variable but accept it */
1262 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1263 return -EINVAL;
1264
1265 /*
1266 * Copy as much data as we can accept into our 'ev' buffer,
1267 * but tell userspace how much we've copied so it can determine
1268 * our API version even in a write() call, if it cares.
1269 */
1270 count = min(count, sizeof(ev));
1271 count = min_t(size_t, count, data->max_size);
1272 if (copy_from_user(&ev, buf, count))
1273 return -EFAULT;
1274
1275 if (ev.type >= NUM_RFKILL_TYPES)
1276 return -EINVAL;
1277
1278 mutex_lock(&rfkill_global_mutex);
1279
1280 switch (ev.op) {
1281 case RFKILL_OP_CHANGE_ALL:
1282 rfkill_update_global_state(ev.type, ev.soft);
1283 list_for_each_entry(rfkill, &rfkill_list, node)
1284 if (rfkill->type == ev.type ||
1285 ev.type == RFKILL_TYPE_ALL)
1286 rfkill_set_block(rfkill, ev.soft);
1287 ret = 0;
1288 break;
1289 case RFKILL_OP_CHANGE:
1290 list_for_each_entry(rfkill, &rfkill_list, node)
1291 if (rfkill->idx == ev.idx &&
1292 (rfkill->type == ev.type ||
1293 ev.type == RFKILL_TYPE_ALL))
1294 rfkill_set_block(rfkill, ev.soft);
1295 ret = 0;
1296 break;
1297 default:
1298 ret = -EINVAL;
1299 break;
1300 }
1301
1302 mutex_unlock(&rfkill_global_mutex);
1303
1304 return ret ?: count;
1305 }
1306
1307 static int rfkill_fop_release(struct inode *inode, struct file *file)
1308 {
1309 struct rfkill_data *data = file->private_data;
1310 struct rfkill_int_event *ev, *tmp;
1311
1312 mutex_lock(&rfkill_global_mutex);
1313 list_del(&data->list);
1314 mutex_unlock(&rfkill_global_mutex);
1315
1316 mutex_destroy(&data->mtx);
1317 list_for_each_entry_safe(ev, tmp, &data->events, list)
1318 kfree(ev);
1319
1320 #ifdef CONFIG_RFKILL_INPUT
1321 if (data->input_handler)
1322 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1323 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1324 #endif
1325
1326 kfree(data);
1327
1328 return 0;
1329 }
1330
1331 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1332 unsigned long arg)
1333 {
1334 struct rfkill_data *data = file->private_data;
1335 int ret = -ENOSYS;
1336 u32 size;
1337
1338 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1339 return -ENOSYS;
1340
1341 mutex_lock(&data->mtx);
1342 switch (_IOC_NR(cmd)) {
1343 #ifdef CONFIG_RFKILL_INPUT
1344 case RFKILL_IOC_NOINPUT:
1345 if (!data->input_handler) {
1346 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1347 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1348 data->input_handler = true;
1349 }
1350 ret = 0;
1351 break;
1352 #endif
1353 case RFKILL_IOC_MAX_SIZE:
1354 if (get_user(size, (__u32 __user *)arg)) {
1355 ret = -EFAULT;
1356 break;
1357 }
1358 if (size < RFKILL_EVENT_SIZE_V1 || size > U8_MAX) {
1359 ret = -EINVAL;
1360 break;
1361 }
1362 data->max_size = size;
1363 ret = 0;
1364 break;
1365 default:
1366 break;
1367 }
1368 mutex_unlock(&data->mtx);
1369
1370 return ret;
1371 }
1372
1373 static const struct file_operations rfkill_fops = {
1374 .owner = THIS_MODULE,
1375 .open = rfkill_fop_open,
1376 .read = rfkill_fop_read,
1377 .write = rfkill_fop_write,
1378 .poll = rfkill_fop_poll,
1379 .release = rfkill_fop_release,
1380 .unlocked_ioctl = rfkill_fop_ioctl,
1381 .compat_ioctl = compat_ptr_ioctl,
1382 .llseek = no_llseek,
1383 };
1384
1385 #define RFKILL_NAME "rfkill"
1386
1387 static struct miscdevice rfkill_miscdev = {
1388 .fops = &rfkill_fops,
1389 .name = RFKILL_NAME,
1390 .minor = RFKILL_MINOR,
1391 };
1392
1393 static int __init rfkill_init(void)
1394 {
1395 int error;
1396
1397 rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1398
1399 error = class_register(&rfkill_class);
1400 if (error)
1401 goto error_class;
1402
1403 error = misc_register(&rfkill_miscdev);
1404 if (error)
1405 goto error_misc;
1406
1407 error = rfkill_global_led_trigger_register();
1408 if (error)
1409 goto error_led_trigger;
1410
1411 #ifdef CONFIG_RFKILL_INPUT
1412 error = rfkill_handler_init();
1413 if (error)
1414 goto error_input;
1415 #endif
1416
1417 return 0;
1418
1419 #ifdef CONFIG_RFKILL_INPUT
1420 error_input:
1421 rfkill_global_led_trigger_unregister();
1422 #endif
1423 error_led_trigger:
1424 misc_deregister(&rfkill_miscdev);
1425 error_misc:
1426 class_unregister(&rfkill_class);
1427 error_class:
1428 return error;
1429 }
1430 subsys_initcall(rfkill_init);
1431
1432 static void __exit rfkill_exit(void)
1433 {
1434 #ifdef CONFIG_RFKILL_INPUT
1435 rfkill_handler_exit();
1436 #endif
1437 rfkill_global_led_trigger_unregister();
1438 misc_deregister(&rfkill_miscdev);
1439 class_unregister(&rfkill_class);
1440 }
1441 module_exit(rfkill_exit);
1442
1443 MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1444 MODULE_ALIAS("devname:" RFKILL_NAME);