]> git.ipfire.org Git - people/ms/linux.git/blob - net/sched/act_ct.c
Merge tag 'tegra-for-5.20-arm64-defconfig' of git://git.kernel.org/pub/scm/linux...
[people/ms/linux.git] / net / sched / act_ct.c
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /* -
3 * net/sched/act_ct.c Connection Tracking action
4 *
5 * Authors: Paul Blakey <paulb@mellanox.com>
6 * Yossi Kuperman <yossiku@mellanox.com>
7 * Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>
8 */
9
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/skbuff.h>
14 #include <linux/rtnetlink.h>
15 #include <linux/pkt_cls.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/rhashtable.h>
19 #include <net/netlink.h>
20 #include <net/pkt_sched.h>
21 #include <net/pkt_cls.h>
22 #include <net/act_api.h>
23 #include <net/ip.h>
24 #include <net/ipv6_frag.h>
25 #include <uapi/linux/tc_act/tc_ct.h>
26 #include <net/tc_act/tc_ct.h>
27
28 #include <net/netfilter/nf_flow_table.h>
29 #include <net/netfilter/nf_conntrack.h>
30 #include <net/netfilter/nf_conntrack_core.h>
31 #include <net/netfilter/nf_conntrack_zones.h>
32 #include <net/netfilter/nf_conntrack_helper.h>
33 #include <net/netfilter/nf_conntrack_acct.h>
34 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
35 #include <net/netfilter/nf_conntrack_act_ct.h>
36 #include <uapi/linux/netfilter/nf_nat.h>
37
38 static struct workqueue_struct *act_ct_wq;
39 static struct rhashtable zones_ht;
40 static DEFINE_MUTEX(zones_mutex);
41
42 struct tcf_ct_flow_table {
43 struct rhash_head node; /* In zones tables */
44
45 struct rcu_work rwork;
46 struct nf_flowtable nf_ft;
47 refcount_t ref;
48 u16 zone;
49
50 bool dying;
51 };
52
53 static const struct rhashtable_params zones_params = {
54 .head_offset = offsetof(struct tcf_ct_flow_table, node),
55 .key_offset = offsetof(struct tcf_ct_flow_table, zone),
56 .key_len = sizeof_field(struct tcf_ct_flow_table, zone),
57 .automatic_shrinking = true,
58 };
59
60 static struct flow_action_entry *
61 tcf_ct_flow_table_flow_action_get_next(struct flow_action *flow_action)
62 {
63 int i = flow_action->num_entries++;
64
65 return &flow_action->entries[i];
66 }
67
68 static void tcf_ct_add_mangle_action(struct flow_action *action,
69 enum flow_action_mangle_base htype,
70 u32 offset,
71 u32 mask,
72 u32 val)
73 {
74 struct flow_action_entry *entry;
75
76 entry = tcf_ct_flow_table_flow_action_get_next(action);
77 entry->id = FLOW_ACTION_MANGLE;
78 entry->mangle.htype = htype;
79 entry->mangle.mask = ~mask;
80 entry->mangle.offset = offset;
81 entry->mangle.val = val;
82 }
83
84 /* The following nat helper functions check if the inverted reverse tuple
85 * (target) is different then the current dir tuple - meaning nat for ports
86 * and/or ip is needed, and add the relevant mangle actions.
87 */
88 static void
89 tcf_ct_flow_table_add_action_nat_ipv4(const struct nf_conntrack_tuple *tuple,
90 struct nf_conntrack_tuple target,
91 struct flow_action *action)
92 {
93 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3)))
94 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4,
95 offsetof(struct iphdr, saddr),
96 0xFFFFFFFF,
97 be32_to_cpu(target.src.u3.ip));
98 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3)))
99 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4,
100 offsetof(struct iphdr, daddr),
101 0xFFFFFFFF,
102 be32_to_cpu(target.dst.u3.ip));
103 }
104
105 static void
106 tcf_ct_add_ipv6_addr_mangle_action(struct flow_action *action,
107 union nf_inet_addr *addr,
108 u32 offset)
109 {
110 int i;
111
112 for (i = 0; i < sizeof(struct in6_addr) / sizeof(u32); i++)
113 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP6,
114 i * sizeof(u32) + offset,
115 0xFFFFFFFF, be32_to_cpu(addr->ip6[i]));
116 }
117
118 static void
119 tcf_ct_flow_table_add_action_nat_ipv6(const struct nf_conntrack_tuple *tuple,
120 struct nf_conntrack_tuple target,
121 struct flow_action *action)
122 {
123 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3)))
124 tcf_ct_add_ipv6_addr_mangle_action(action, &target.src.u3,
125 offsetof(struct ipv6hdr,
126 saddr));
127 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3)))
128 tcf_ct_add_ipv6_addr_mangle_action(action, &target.dst.u3,
129 offsetof(struct ipv6hdr,
130 daddr));
131 }
132
133 static void
134 tcf_ct_flow_table_add_action_nat_tcp(const struct nf_conntrack_tuple *tuple,
135 struct nf_conntrack_tuple target,
136 struct flow_action *action)
137 {
138 __be16 target_src = target.src.u.tcp.port;
139 __be16 target_dst = target.dst.u.tcp.port;
140
141 if (target_src != tuple->src.u.tcp.port)
142 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP,
143 offsetof(struct tcphdr, source),
144 0xFFFF, be16_to_cpu(target_src));
145 if (target_dst != tuple->dst.u.tcp.port)
146 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP,
147 offsetof(struct tcphdr, dest),
148 0xFFFF, be16_to_cpu(target_dst));
149 }
150
151 static void
152 tcf_ct_flow_table_add_action_nat_udp(const struct nf_conntrack_tuple *tuple,
153 struct nf_conntrack_tuple target,
154 struct flow_action *action)
155 {
156 __be16 target_src = target.src.u.udp.port;
157 __be16 target_dst = target.dst.u.udp.port;
158
159 if (target_src != tuple->src.u.udp.port)
160 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP,
161 offsetof(struct udphdr, source),
162 0xFFFF, be16_to_cpu(target_src));
163 if (target_dst != tuple->dst.u.udp.port)
164 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP,
165 offsetof(struct udphdr, dest),
166 0xFFFF, be16_to_cpu(target_dst));
167 }
168
169 static void tcf_ct_flow_table_add_action_meta(struct nf_conn *ct,
170 enum ip_conntrack_dir dir,
171 struct flow_action *action)
172 {
173 struct nf_conn_labels *ct_labels;
174 struct flow_action_entry *entry;
175 enum ip_conntrack_info ctinfo;
176 u32 *act_ct_labels;
177
178 entry = tcf_ct_flow_table_flow_action_get_next(action);
179 entry->id = FLOW_ACTION_CT_METADATA;
180 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
181 entry->ct_metadata.mark = ct->mark;
182 #endif
183 ctinfo = dir == IP_CT_DIR_ORIGINAL ? IP_CT_ESTABLISHED :
184 IP_CT_ESTABLISHED_REPLY;
185 /* aligns with the CT reference on the SKB nf_ct_set */
186 entry->ct_metadata.cookie = (unsigned long)ct | ctinfo;
187 entry->ct_metadata.orig_dir = dir == IP_CT_DIR_ORIGINAL;
188
189 act_ct_labels = entry->ct_metadata.labels;
190 ct_labels = nf_ct_labels_find(ct);
191 if (ct_labels)
192 memcpy(act_ct_labels, ct_labels->bits, NF_CT_LABELS_MAX_SIZE);
193 else
194 memset(act_ct_labels, 0, NF_CT_LABELS_MAX_SIZE);
195 }
196
197 static int tcf_ct_flow_table_add_action_nat(struct net *net,
198 struct nf_conn *ct,
199 enum ip_conntrack_dir dir,
200 struct flow_action *action)
201 {
202 const struct nf_conntrack_tuple *tuple = &ct->tuplehash[dir].tuple;
203 struct nf_conntrack_tuple target;
204
205 if (!(ct->status & IPS_NAT_MASK))
206 return 0;
207
208 nf_ct_invert_tuple(&target, &ct->tuplehash[!dir].tuple);
209
210 switch (tuple->src.l3num) {
211 case NFPROTO_IPV4:
212 tcf_ct_flow_table_add_action_nat_ipv4(tuple, target,
213 action);
214 break;
215 case NFPROTO_IPV6:
216 tcf_ct_flow_table_add_action_nat_ipv6(tuple, target,
217 action);
218 break;
219 default:
220 return -EOPNOTSUPP;
221 }
222
223 switch (nf_ct_protonum(ct)) {
224 case IPPROTO_TCP:
225 tcf_ct_flow_table_add_action_nat_tcp(tuple, target, action);
226 break;
227 case IPPROTO_UDP:
228 tcf_ct_flow_table_add_action_nat_udp(tuple, target, action);
229 break;
230 default:
231 return -EOPNOTSUPP;
232 }
233
234 return 0;
235 }
236
237 static int tcf_ct_flow_table_fill_actions(struct net *net,
238 const struct flow_offload *flow,
239 enum flow_offload_tuple_dir tdir,
240 struct nf_flow_rule *flow_rule)
241 {
242 struct flow_action *action = &flow_rule->rule->action;
243 int num_entries = action->num_entries;
244 struct nf_conn *ct = flow->ct;
245 enum ip_conntrack_dir dir;
246 int i, err;
247
248 switch (tdir) {
249 case FLOW_OFFLOAD_DIR_ORIGINAL:
250 dir = IP_CT_DIR_ORIGINAL;
251 break;
252 case FLOW_OFFLOAD_DIR_REPLY:
253 dir = IP_CT_DIR_REPLY;
254 break;
255 default:
256 return -EOPNOTSUPP;
257 }
258
259 err = tcf_ct_flow_table_add_action_nat(net, ct, dir, action);
260 if (err)
261 goto err_nat;
262
263 tcf_ct_flow_table_add_action_meta(ct, dir, action);
264 return 0;
265
266 err_nat:
267 /* Clear filled actions */
268 for (i = num_entries; i < action->num_entries; i++)
269 memset(&action->entries[i], 0, sizeof(action->entries[i]));
270 action->num_entries = num_entries;
271
272 return err;
273 }
274
275 static struct nf_flowtable_type flowtable_ct = {
276 .action = tcf_ct_flow_table_fill_actions,
277 .owner = THIS_MODULE,
278 };
279
280 static int tcf_ct_flow_table_get(struct tcf_ct_params *params)
281 {
282 struct tcf_ct_flow_table *ct_ft;
283 int err = -ENOMEM;
284
285 mutex_lock(&zones_mutex);
286 ct_ft = rhashtable_lookup_fast(&zones_ht, &params->zone, zones_params);
287 if (ct_ft && refcount_inc_not_zero(&ct_ft->ref))
288 goto out_unlock;
289
290 ct_ft = kzalloc(sizeof(*ct_ft), GFP_KERNEL);
291 if (!ct_ft)
292 goto err_alloc;
293 refcount_set(&ct_ft->ref, 1);
294
295 ct_ft->zone = params->zone;
296 err = rhashtable_insert_fast(&zones_ht, &ct_ft->node, zones_params);
297 if (err)
298 goto err_insert;
299
300 ct_ft->nf_ft.type = &flowtable_ct;
301 ct_ft->nf_ft.flags |= NF_FLOWTABLE_HW_OFFLOAD |
302 NF_FLOWTABLE_COUNTER;
303 err = nf_flow_table_init(&ct_ft->nf_ft);
304 if (err)
305 goto err_init;
306
307 __module_get(THIS_MODULE);
308 out_unlock:
309 params->ct_ft = ct_ft;
310 params->nf_ft = &ct_ft->nf_ft;
311 mutex_unlock(&zones_mutex);
312
313 return 0;
314
315 err_init:
316 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params);
317 err_insert:
318 kfree(ct_ft);
319 err_alloc:
320 mutex_unlock(&zones_mutex);
321 return err;
322 }
323
324 static void tcf_ct_flow_table_cleanup_work(struct work_struct *work)
325 {
326 struct flow_block_cb *block_cb, *tmp_cb;
327 struct tcf_ct_flow_table *ct_ft;
328 struct flow_block *block;
329
330 ct_ft = container_of(to_rcu_work(work), struct tcf_ct_flow_table,
331 rwork);
332 nf_flow_table_free(&ct_ft->nf_ft);
333
334 /* Remove any remaining callbacks before cleanup */
335 block = &ct_ft->nf_ft.flow_block;
336 down_write(&ct_ft->nf_ft.flow_block_lock);
337 list_for_each_entry_safe(block_cb, tmp_cb, &block->cb_list, list) {
338 list_del(&block_cb->list);
339 flow_block_cb_free(block_cb);
340 }
341 up_write(&ct_ft->nf_ft.flow_block_lock);
342 kfree(ct_ft);
343
344 module_put(THIS_MODULE);
345 }
346
347 static void tcf_ct_flow_table_put(struct tcf_ct_params *params)
348 {
349 struct tcf_ct_flow_table *ct_ft = params->ct_ft;
350
351 if (refcount_dec_and_test(&params->ct_ft->ref)) {
352 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params);
353 INIT_RCU_WORK(&ct_ft->rwork, tcf_ct_flow_table_cleanup_work);
354 queue_rcu_work(act_ct_wq, &ct_ft->rwork);
355 }
356 }
357
358 static void tcf_ct_flow_tc_ifidx(struct flow_offload *entry,
359 struct nf_conn_act_ct_ext *act_ct_ext, u8 dir)
360 {
361 entry->tuplehash[dir].tuple.xmit_type = FLOW_OFFLOAD_XMIT_TC;
362 entry->tuplehash[dir].tuple.tc.iifidx = act_ct_ext->ifindex[dir];
363 }
364
365 static void tcf_ct_flow_table_add(struct tcf_ct_flow_table *ct_ft,
366 struct nf_conn *ct,
367 bool tcp)
368 {
369 struct nf_conn_act_ct_ext *act_ct_ext;
370 struct flow_offload *entry;
371 int err;
372
373 if (test_and_set_bit(IPS_OFFLOAD_BIT, &ct->status))
374 return;
375
376 entry = flow_offload_alloc(ct);
377 if (!entry) {
378 WARN_ON_ONCE(1);
379 goto err_alloc;
380 }
381
382 if (tcp) {
383 ct->proto.tcp.seen[0].flags |= IP_CT_TCP_FLAG_BE_LIBERAL;
384 ct->proto.tcp.seen[1].flags |= IP_CT_TCP_FLAG_BE_LIBERAL;
385 }
386
387 act_ct_ext = nf_conn_act_ct_ext_find(ct);
388 if (act_ct_ext) {
389 tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_ORIGINAL);
390 tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_REPLY);
391 }
392
393 err = flow_offload_add(&ct_ft->nf_ft, entry);
394 if (err)
395 goto err_add;
396
397 return;
398
399 err_add:
400 flow_offload_free(entry);
401 err_alloc:
402 clear_bit(IPS_OFFLOAD_BIT, &ct->status);
403 }
404
405 static void tcf_ct_flow_table_process_conn(struct tcf_ct_flow_table *ct_ft,
406 struct nf_conn *ct,
407 enum ip_conntrack_info ctinfo)
408 {
409 bool tcp = false;
410
411 if ((ctinfo != IP_CT_ESTABLISHED && ctinfo != IP_CT_ESTABLISHED_REPLY) ||
412 !test_bit(IPS_ASSURED_BIT, &ct->status))
413 return;
414
415 switch (nf_ct_protonum(ct)) {
416 case IPPROTO_TCP:
417 tcp = true;
418 if (ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED)
419 return;
420 break;
421 case IPPROTO_UDP:
422 break;
423 #ifdef CONFIG_NF_CT_PROTO_GRE
424 case IPPROTO_GRE: {
425 struct nf_conntrack_tuple *tuple;
426
427 if (ct->status & IPS_NAT_MASK)
428 return;
429 tuple = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
430 /* No support for GRE v1 */
431 if (tuple->src.u.gre.key || tuple->dst.u.gre.key)
432 return;
433 break;
434 }
435 #endif
436 default:
437 return;
438 }
439
440 if (nf_ct_ext_exist(ct, NF_CT_EXT_HELPER) ||
441 ct->status & IPS_SEQ_ADJUST)
442 return;
443
444 tcf_ct_flow_table_add(ct_ft, ct, tcp);
445 }
446
447 static bool
448 tcf_ct_flow_table_fill_tuple_ipv4(struct sk_buff *skb,
449 struct flow_offload_tuple *tuple,
450 struct tcphdr **tcph)
451 {
452 struct flow_ports *ports;
453 unsigned int thoff;
454 struct iphdr *iph;
455 size_t hdrsize;
456 u8 ipproto;
457
458 if (!pskb_network_may_pull(skb, sizeof(*iph)))
459 return false;
460
461 iph = ip_hdr(skb);
462 thoff = iph->ihl * 4;
463
464 if (ip_is_fragment(iph) ||
465 unlikely(thoff != sizeof(struct iphdr)))
466 return false;
467
468 ipproto = iph->protocol;
469 switch (ipproto) {
470 case IPPROTO_TCP:
471 hdrsize = sizeof(struct tcphdr);
472 break;
473 case IPPROTO_UDP:
474 hdrsize = sizeof(*ports);
475 break;
476 #ifdef CONFIG_NF_CT_PROTO_GRE
477 case IPPROTO_GRE:
478 hdrsize = sizeof(struct gre_base_hdr);
479 break;
480 #endif
481 default:
482 return false;
483 }
484
485 if (iph->ttl <= 1)
486 return false;
487
488 if (!pskb_network_may_pull(skb, thoff + hdrsize))
489 return false;
490
491 switch (ipproto) {
492 case IPPROTO_TCP:
493 *tcph = (void *)(skb_network_header(skb) + thoff);
494 fallthrough;
495 case IPPROTO_UDP:
496 ports = (struct flow_ports *)(skb_network_header(skb) + thoff);
497 tuple->src_port = ports->source;
498 tuple->dst_port = ports->dest;
499 break;
500 case IPPROTO_GRE: {
501 struct gre_base_hdr *greh;
502
503 greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff);
504 if ((greh->flags & GRE_VERSION) != GRE_VERSION_0)
505 return false;
506 break;
507 }
508 }
509
510 iph = ip_hdr(skb);
511
512 tuple->src_v4.s_addr = iph->saddr;
513 tuple->dst_v4.s_addr = iph->daddr;
514 tuple->l3proto = AF_INET;
515 tuple->l4proto = ipproto;
516
517 return true;
518 }
519
520 static bool
521 tcf_ct_flow_table_fill_tuple_ipv6(struct sk_buff *skb,
522 struct flow_offload_tuple *tuple,
523 struct tcphdr **tcph)
524 {
525 struct flow_ports *ports;
526 struct ipv6hdr *ip6h;
527 unsigned int thoff;
528 size_t hdrsize;
529 u8 nexthdr;
530
531 if (!pskb_network_may_pull(skb, sizeof(*ip6h)))
532 return false;
533
534 ip6h = ipv6_hdr(skb);
535 thoff = sizeof(*ip6h);
536
537 nexthdr = ip6h->nexthdr;
538 switch (nexthdr) {
539 case IPPROTO_TCP:
540 hdrsize = sizeof(struct tcphdr);
541 break;
542 case IPPROTO_UDP:
543 hdrsize = sizeof(*ports);
544 break;
545 #ifdef CONFIG_NF_CT_PROTO_GRE
546 case IPPROTO_GRE:
547 hdrsize = sizeof(struct gre_base_hdr);
548 break;
549 #endif
550 default:
551 return false;
552 }
553
554 if (ip6h->hop_limit <= 1)
555 return false;
556
557 if (!pskb_network_may_pull(skb, thoff + hdrsize))
558 return false;
559
560 switch (nexthdr) {
561 case IPPROTO_TCP:
562 *tcph = (void *)(skb_network_header(skb) + thoff);
563 fallthrough;
564 case IPPROTO_UDP:
565 ports = (struct flow_ports *)(skb_network_header(skb) + thoff);
566 tuple->src_port = ports->source;
567 tuple->dst_port = ports->dest;
568 break;
569 case IPPROTO_GRE: {
570 struct gre_base_hdr *greh;
571
572 greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff);
573 if ((greh->flags & GRE_VERSION) != GRE_VERSION_0)
574 return false;
575 break;
576 }
577 }
578
579 ip6h = ipv6_hdr(skb);
580
581 tuple->src_v6 = ip6h->saddr;
582 tuple->dst_v6 = ip6h->daddr;
583 tuple->l3proto = AF_INET6;
584 tuple->l4proto = nexthdr;
585
586 return true;
587 }
588
589 static bool tcf_ct_flow_table_lookup(struct tcf_ct_params *p,
590 struct sk_buff *skb,
591 u8 family)
592 {
593 struct nf_flowtable *nf_ft = &p->ct_ft->nf_ft;
594 struct flow_offload_tuple_rhash *tuplehash;
595 struct flow_offload_tuple tuple = {};
596 enum ip_conntrack_info ctinfo;
597 struct tcphdr *tcph = NULL;
598 struct flow_offload *flow;
599 struct nf_conn *ct;
600 u8 dir;
601
602 switch (family) {
603 case NFPROTO_IPV4:
604 if (!tcf_ct_flow_table_fill_tuple_ipv4(skb, &tuple, &tcph))
605 return false;
606 break;
607 case NFPROTO_IPV6:
608 if (!tcf_ct_flow_table_fill_tuple_ipv6(skb, &tuple, &tcph))
609 return false;
610 break;
611 default:
612 return false;
613 }
614
615 tuplehash = flow_offload_lookup(nf_ft, &tuple);
616 if (!tuplehash)
617 return false;
618
619 dir = tuplehash->tuple.dir;
620 flow = container_of(tuplehash, struct flow_offload, tuplehash[dir]);
621 ct = flow->ct;
622
623 if (tcph && (unlikely(tcph->fin || tcph->rst))) {
624 flow_offload_teardown(flow);
625 return false;
626 }
627
628 ctinfo = dir == FLOW_OFFLOAD_DIR_ORIGINAL ? IP_CT_ESTABLISHED :
629 IP_CT_ESTABLISHED_REPLY;
630
631 flow_offload_refresh(nf_ft, flow);
632 nf_conntrack_get(&ct->ct_general);
633 nf_ct_set(skb, ct, ctinfo);
634 if (nf_ft->flags & NF_FLOWTABLE_COUNTER)
635 nf_ct_acct_update(ct, dir, skb->len);
636
637 return true;
638 }
639
640 static int tcf_ct_flow_tables_init(void)
641 {
642 return rhashtable_init(&zones_ht, &zones_params);
643 }
644
645 static void tcf_ct_flow_tables_uninit(void)
646 {
647 rhashtable_destroy(&zones_ht);
648 }
649
650 static struct tc_action_ops act_ct_ops;
651 static unsigned int ct_net_id;
652
653 struct tc_ct_action_net {
654 struct tc_action_net tn; /* Must be first */
655 bool labels;
656 };
657
658 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
659 static bool tcf_ct_skb_nfct_cached(struct net *net, struct sk_buff *skb,
660 u16 zone_id, bool force)
661 {
662 enum ip_conntrack_info ctinfo;
663 struct nf_conn *ct;
664
665 ct = nf_ct_get(skb, &ctinfo);
666 if (!ct)
667 return false;
668 if (!net_eq(net, read_pnet(&ct->ct_net)))
669 goto drop_ct;
670 if (nf_ct_zone(ct)->id != zone_id)
671 goto drop_ct;
672
673 /* Force conntrack entry direction. */
674 if (force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
675 if (nf_ct_is_confirmed(ct))
676 nf_ct_kill(ct);
677
678 goto drop_ct;
679 }
680
681 return true;
682
683 drop_ct:
684 nf_ct_put(ct);
685 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
686
687 return false;
688 }
689
690 /* Trim the skb to the length specified by the IP/IPv6 header,
691 * removing any trailing lower-layer padding. This prepares the skb
692 * for higher-layer processing that assumes skb->len excludes padding
693 * (such as nf_ip_checksum). The caller needs to pull the skb to the
694 * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
695 */
696 static int tcf_ct_skb_network_trim(struct sk_buff *skb, int family)
697 {
698 unsigned int len;
699 int err;
700
701 switch (family) {
702 case NFPROTO_IPV4:
703 len = ntohs(ip_hdr(skb)->tot_len);
704 break;
705 case NFPROTO_IPV6:
706 len = sizeof(struct ipv6hdr)
707 + ntohs(ipv6_hdr(skb)->payload_len);
708 break;
709 default:
710 len = skb->len;
711 }
712
713 err = pskb_trim_rcsum(skb, len);
714
715 return err;
716 }
717
718 static u8 tcf_ct_skb_nf_family(struct sk_buff *skb)
719 {
720 u8 family = NFPROTO_UNSPEC;
721
722 switch (skb_protocol(skb, true)) {
723 case htons(ETH_P_IP):
724 family = NFPROTO_IPV4;
725 break;
726 case htons(ETH_P_IPV6):
727 family = NFPROTO_IPV6;
728 break;
729 default:
730 break;
731 }
732
733 return family;
734 }
735
736 static int tcf_ct_ipv4_is_fragment(struct sk_buff *skb, bool *frag)
737 {
738 unsigned int len;
739
740 len = skb_network_offset(skb) + sizeof(struct iphdr);
741 if (unlikely(skb->len < len))
742 return -EINVAL;
743 if (unlikely(!pskb_may_pull(skb, len)))
744 return -ENOMEM;
745
746 *frag = ip_is_fragment(ip_hdr(skb));
747 return 0;
748 }
749
750 static int tcf_ct_ipv6_is_fragment(struct sk_buff *skb, bool *frag)
751 {
752 unsigned int flags = 0, len, payload_ofs = 0;
753 unsigned short frag_off;
754 int nexthdr;
755
756 len = skb_network_offset(skb) + sizeof(struct ipv6hdr);
757 if (unlikely(skb->len < len))
758 return -EINVAL;
759 if (unlikely(!pskb_may_pull(skb, len)))
760 return -ENOMEM;
761
762 nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
763 if (unlikely(nexthdr < 0))
764 return -EPROTO;
765
766 *frag = flags & IP6_FH_F_FRAG;
767 return 0;
768 }
769
770 static int tcf_ct_handle_fragments(struct net *net, struct sk_buff *skb,
771 u8 family, u16 zone, bool *defrag)
772 {
773 enum ip_conntrack_info ctinfo;
774 struct nf_conn *ct;
775 int err = 0;
776 bool frag;
777 u16 mru;
778
779 /* Previously seen (loopback)? Ignore. */
780 ct = nf_ct_get(skb, &ctinfo);
781 if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED)
782 return 0;
783
784 if (family == NFPROTO_IPV4)
785 err = tcf_ct_ipv4_is_fragment(skb, &frag);
786 else
787 err = tcf_ct_ipv6_is_fragment(skb, &frag);
788 if (err || !frag)
789 return err;
790
791 skb_get(skb);
792 mru = tc_skb_cb(skb)->mru;
793
794 if (family == NFPROTO_IPV4) {
795 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
796
797 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
798 local_bh_disable();
799 err = ip_defrag(net, skb, user);
800 local_bh_enable();
801 if (err && err != -EINPROGRESS)
802 return err;
803
804 if (!err) {
805 *defrag = true;
806 mru = IPCB(skb)->frag_max_size;
807 }
808 } else { /* NFPROTO_IPV6 */
809 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
810 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
811
812 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
813 err = nf_ct_frag6_gather(net, skb, user);
814 if (err && err != -EINPROGRESS)
815 goto out_free;
816
817 if (!err) {
818 *defrag = true;
819 mru = IP6CB(skb)->frag_max_size;
820 }
821 #else
822 err = -EOPNOTSUPP;
823 goto out_free;
824 #endif
825 }
826
827 if (err != -EINPROGRESS)
828 tc_skb_cb(skb)->mru = mru;
829 skb_clear_hash(skb);
830 skb->ignore_df = 1;
831 return err;
832
833 out_free:
834 kfree_skb(skb);
835 return err;
836 }
837
838 static void tcf_ct_params_free(struct rcu_head *head)
839 {
840 struct tcf_ct_params *params = container_of(head,
841 struct tcf_ct_params, rcu);
842
843 tcf_ct_flow_table_put(params);
844
845 if (params->tmpl)
846 nf_ct_put(params->tmpl);
847 kfree(params);
848 }
849
850 #if IS_ENABLED(CONFIG_NF_NAT)
851 /* Modelled after nf_nat_ipv[46]_fn().
852 * range is only used for new, uninitialized NAT state.
853 * Returns either NF_ACCEPT or NF_DROP.
854 */
855 static int ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
856 enum ip_conntrack_info ctinfo,
857 const struct nf_nat_range2 *range,
858 enum nf_nat_manip_type maniptype)
859 {
860 __be16 proto = skb_protocol(skb, true);
861 int hooknum, err = NF_ACCEPT;
862
863 /* See HOOK2MANIP(). */
864 if (maniptype == NF_NAT_MANIP_SRC)
865 hooknum = NF_INET_LOCAL_IN; /* Source NAT */
866 else
867 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
868
869 switch (ctinfo) {
870 case IP_CT_RELATED:
871 case IP_CT_RELATED_REPLY:
872 if (proto == htons(ETH_P_IP) &&
873 ip_hdr(skb)->protocol == IPPROTO_ICMP) {
874 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
875 hooknum))
876 err = NF_DROP;
877 goto out;
878 } else if (IS_ENABLED(CONFIG_IPV6) && proto == htons(ETH_P_IPV6)) {
879 __be16 frag_off;
880 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
881 int hdrlen = ipv6_skip_exthdr(skb,
882 sizeof(struct ipv6hdr),
883 &nexthdr, &frag_off);
884
885 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
886 if (!nf_nat_icmpv6_reply_translation(skb, ct,
887 ctinfo,
888 hooknum,
889 hdrlen))
890 err = NF_DROP;
891 goto out;
892 }
893 }
894 /* Non-ICMP, fall thru to initialize if needed. */
895 fallthrough;
896 case IP_CT_NEW:
897 /* Seen it before? This can happen for loopback, retrans,
898 * or local packets.
899 */
900 if (!nf_nat_initialized(ct, maniptype)) {
901 /* Initialize according to the NAT action. */
902 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
903 /* Action is set up to establish a new
904 * mapping.
905 */
906 ? nf_nat_setup_info(ct, range, maniptype)
907 : nf_nat_alloc_null_binding(ct, hooknum);
908 if (err != NF_ACCEPT)
909 goto out;
910 }
911 break;
912
913 case IP_CT_ESTABLISHED:
914 case IP_CT_ESTABLISHED_REPLY:
915 break;
916
917 default:
918 err = NF_DROP;
919 goto out;
920 }
921
922 err = nf_nat_packet(ct, ctinfo, hooknum, skb);
923 if (err == NF_ACCEPT) {
924 if (maniptype == NF_NAT_MANIP_SRC)
925 tc_skb_cb(skb)->post_ct_snat = 1;
926 if (maniptype == NF_NAT_MANIP_DST)
927 tc_skb_cb(skb)->post_ct_dnat = 1;
928 }
929 out:
930 return err;
931 }
932 #endif /* CONFIG_NF_NAT */
933
934 static void tcf_ct_act_set_mark(struct nf_conn *ct, u32 mark, u32 mask)
935 {
936 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
937 u32 new_mark;
938
939 if (!mask)
940 return;
941
942 new_mark = mark | (ct->mark & ~(mask));
943 if (ct->mark != new_mark) {
944 ct->mark = new_mark;
945 if (nf_ct_is_confirmed(ct))
946 nf_conntrack_event_cache(IPCT_MARK, ct);
947 }
948 #endif
949 }
950
951 static void tcf_ct_act_set_labels(struct nf_conn *ct,
952 u32 *labels,
953 u32 *labels_m)
954 {
955 #if IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)
956 size_t labels_sz = sizeof_field(struct tcf_ct_params, labels);
957
958 if (!memchr_inv(labels_m, 0, labels_sz))
959 return;
960
961 nf_connlabels_replace(ct, labels, labels_m, 4);
962 #endif
963 }
964
965 static int tcf_ct_act_nat(struct sk_buff *skb,
966 struct nf_conn *ct,
967 enum ip_conntrack_info ctinfo,
968 int ct_action,
969 struct nf_nat_range2 *range,
970 bool commit)
971 {
972 #if IS_ENABLED(CONFIG_NF_NAT)
973 int err;
974 enum nf_nat_manip_type maniptype;
975
976 if (!(ct_action & TCA_CT_ACT_NAT))
977 return NF_ACCEPT;
978
979 /* Add NAT extension if not confirmed yet. */
980 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
981 return NF_DROP; /* Can't NAT. */
982
983 if (ctinfo != IP_CT_NEW && (ct->status & IPS_NAT_MASK) &&
984 (ctinfo != IP_CT_RELATED || commit)) {
985 /* NAT an established or related connection like before. */
986 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
987 /* This is the REPLY direction for a connection
988 * for which NAT was applied in the forward
989 * direction. Do the reverse NAT.
990 */
991 maniptype = ct->status & IPS_SRC_NAT
992 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
993 else
994 maniptype = ct->status & IPS_SRC_NAT
995 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
996 } else if (ct_action & TCA_CT_ACT_NAT_SRC) {
997 maniptype = NF_NAT_MANIP_SRC;
998 } else if (ct_action & TCA_CT_ACT_NAT_DST) {
999 maniptype = NF_NAT_MANIP_DST;
1000 } else {
1001 return NF_ACCEPT;
1002 }
1003
1004 err = ct_nat_execute(skb, ct, ctinfo, range, maniptype);
1005 if (err == NF_ACCEPT && ct->status & IPS_DST_NAT) {
1006 if (ct->status & IPS_SRC_NAT) {
1007 if (maniptype == NF_NAT_MANIP_SRC)
1008 maniptype = NF_NAT_MANIP_DST;
1009 else
1010 maniptype = NF_NAT_MANIP_SRC;
1011
1012 err = ct_nat_execute(skb, ct, ctinfo, range,
1013 maniptype);
1014 } else if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL) {
1015 err = ct_nat_execute(skb, ct, ctinfo, NULL,
1016 NF_NAT_MANIP_SRC);
1017 }
1018 }
1019 return err;
1020 #else
1021 return NF_ACCEPT;
1022 #endif
1023 }
1024
1025 static int tcf_ct_act(struct sk_buff *skb, const struct tc_action *a,
1026 struct tcf_result *res)
1027 {
1028 struct net *net = dev_net(skb->dev);
1029 bool cached, commit, clear, force;
1030 enum ip_conntrack_info ctinfo;
1031 struct tcf_ct *c = to_ct(a);
1032 struct nf_conn *tmpl = NULL;
1033 struct nf_hook_state state;
1034 int nh_ofs, err, retval;
1035 struct tcf_ct_params *p;
1036 bool skip_add = false;
1037 bool defrag = false;
1038 struct nf_conn *ct;
1039 u8 family;
1040
1041 p = rcu_dereference_bh(c->params);
1042
1043 retval = READ_ONCE(c->tcf_action);
1044 commit = p->ct_action & TCA_CT_ACT_COMMIT;
1045 clear = p->ct_action & TCA_CT_ACT_CLEAR;
1046 force = p->ct_action & TCA_CT_ACT_FORCE;
1047 tmpl = p->tmpl;
1048
1049 tcf_lastuse_update(&c->tcf_tm);
1050 tcf_action_update_bstats(&c->common, skb);
1051
1052 if (clear) {
1053 tc_skb_cb(skb)->post_ct = false;
1054 ct = nf_ct_get(skb, &ctinfo);
1055 if (ct) {
1056 nf_ct_put(ct);
1057 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1058 }
1059
1060 goto out_clear;
1061 }
1062
1063 family = tcf_ct_skb_nf_family(skb);
1064 if (family == NFPROTO_UNSPEC)
1065 goto drop;
1066
1067 /* The conntrack module expects to be working at L3.
1068 * We also try to pull the IPv4/6 header to linear area
1069 */
1070 nh_ofs = skb_network_offset(skb);
1071 skb_pull_rcsum(skb, nh_ofs);
1072 err = tcf_ct_handle_fragments(net, skb, family, p->zone, &defrag);
1073 if (err == -EINPROGRESS) {
1074 retval = TC_ACT_STOLEN;
1075 goto out_clear;
1076 }
1077 if (err)
1078 goto drop;
1079
1080 err = tcf_ct_skb_network_trim(skb, family);
1081 if (err)
1082 goto drop;
1083
1084 /* If we are recirculating packets to match on ct fields and
1085 * committing with a separate ct action, then we don't need to
1086 * actually run the packet through conntrack twice unless it's for a
1087 * different zone.
1088 */
1089 cached = tcf_ct_skb_nfct_cached(net, skb, p->zone, force);
1090 if (!cached) {
1091 if (tcf_ct_flow_table_lookup(p, skb, family)) {
1092 skip_add = true;
1093 goto do_nat;
1094 }
1095
1096 /* Associate skb with specified zone. */
1097 if (tmpl) {
1098 nf_conntrack_put(skb_nfct(skb));
1099 nf_conntrack_get(&tmpl->ct_general);
1100 nf_ct_set(skb, tmpl, IP_CT_NEW);
1101 }
1102
1103 state.hook = NF_INET_PRE_ROUTING;
1104 state.net = net;
1105 state.pf = family;
1106 err = nf_conntrack_in(skb, &state);
1107 if (err != NF_ACCEPT)
1108 goto out_push;
1109 }
1110
1111 do_nat:
1112 ct = nf_ct_get(skb, &ctinfo);
1113 if (!ct)
1114 goto out_push;
1115 nf_ct_deliver_cached_events(ct);
1116 nf_conn_act_ct_ext_fill(skb, ct, ctinfo);
1117
1118 err = tcf_ct_act_nat(skb, ct, ctinfo, p->ct_action, &p->range, commit);
1119 if (err != NF_ACCEPT)
1120 goto drop;
1121
1122 if (commit) {
1123 tcf_ct_act_set_mark(ct, p->mark, p->mark_mask);
1124 tcf_ct_act_set_labels(ct, p->labels, p->labels_mask);
1125
1126 if (!nf_ct_is_confirmed(ct))
1127 nf_conn_act_ct_ext_add(ct);
1128
1129 /* This will take care of sending queued events
1130 * even if the connection is already confirmed.
1131 */
1132 if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1133 goto drop;
1134 }
1135
1136 if (!skip_add)
1137 tcf_ct_flow_table_process_conn(p->ct_ft, ct, ctinfo);
1138
1139 out_push:
1140 skb_push_rcsum(skb, nh_ofs);
1141
1142 tc_skb_cb(skb)->post_ct = true;
1143 tc_skb_cb(skb)->zone = p->zone;
1144 out_clear:
1145 if (defrag)
1146 qdisc_skb_cb(skb)->pkt_len = skb->len;
1147 return retval;
1148
1149 drop:
1150 tcf_action_inc_drop_qstats(&c->common);
1151 return TC_ACT_SHOT;
1152 }
1153
1154 static const struct nla_policy ct_policy[TCA_CT_MAX + 1] = {
1155 [TCA_CT_ACTION] = { .type = NLA_U16 },
1156 [TCA_CT_PARMS] = NLA_POLICY_EXACT_LEN(sizeof(struct tc_ct)),
1157 [TCA_CT_ZONE] = { .type = NLA_U16 },
1158 [TCA_CT_MARK] = { .type = NLA_U32 },
1159 [TCA_CT_MARK_MASK] = { .type = NLA_U32 },
1160 [TCA_CT_LABELS] = { .type = NLA_BINARY,
1161 .len = 128 / BITS_PER_BYTE },
1162 [TCA_CT_LABELS_MASK] = { .type = NLA_BINARY,
1163 .len = 128 / BITS_PER_BYTE },
1164 [TCA_CT_NAT_IPV4_MIN] = { .type = NLA_U32 },
1165 [TCA_CT_NAT_IPV4_MAX] = { .type = NLA_U32 },
1166 [TCA_CT_NAT_IPV6_MIN] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)),
1167 [TCA_CT_NAT_IPV6_MAX] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)),
1168 [TCA_CT_NAT_PORT_MIN] = { .type = NLA_U16 },
1169 [TCA_CT_NAT_PORT_MAX] = { .type = NLA_U16 },
1170 };
1171
1172 static int tcf_ct_fill_params_nat(struct tcf_ct_params *p,
1173 struct tc_ct *parm,
1174 struct nlattr **tb,
1175 struct netlink_ext_ack *extack)
1176 {
1177 struct nf_nat_range2 *range;
1178
1179 if (!(p->ct_action & TCA_CT_ACT_NAT))
1180 return 0;
1181
1182 if (!IS_ENABLED(CONFIG_NF_NAT)) {
1183 NL_SET_ERR_MSG_MOD(extack, "Netfilter nat isn't enabled in kernel");
1184 return -EOPNOTSUPP;
1185 }
1186
1187 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST)))
1188 return 0;
1189
1190 if ((p->ct_action & TCA_CT_ACT_NAT_SRC) &&
1191 (p->ct_action & TCA_CT_ACT_NAT_DST)) {
1192 NL_SET_ERR_MSG_MOD(extack, "dnat and snat can't be enabled at the same time");
1193 return -EOPNOTSUPP;
1194 }
1195
1196 range = &p->range;
1197 if (tb[TCA_CT_NAT_IPV4_MIN]) {
1198 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV4_MAX];
1199
1200 p->ipv4_range = true;
1201 range->flags |= NF_NAT_RANGE_MAP_IPS;
1202 range->min_addr.ip =
1203 nla_get_in_addr(tb[TCA_CT_NAT_IPV4_MIN]);
1204
1205 range->max_addr.ip = max_attr ?
1206 nla_get_in_addr(max_attr) :
1207 range->min_addr.ip;
1208 } else if (tb[TCA_CT_NAT_IPV6_MIN]) {
1209 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV6_MAX];
1210
1211 p->ipv4_range = false;
1212 range->flags |= NF_NAT_RANGE_MAP_IPS;
1213 range->min_addr.in6 =
1214 nla_get_in6_addr(tb[TCA_CT_NAT_IPV6_MIN]);
1215
1216 range->max_addr.in6 = max_attr ?
1217 nla_get_in6_addr(max_attr) :
1218 range->min_addr.in6;
1219 }
1220
1221 if (tb[TCA_CT_NAT_PORT_MIN]) {
1222 range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1223 range->min_proto.all = nla_get_be16(tb[TCA_CT_NAT_PORT_MIN]);
1224
1225 range->max_proto.all = tb[TCA_CT_NAT_PORT_MAX] ?
1226 nla_get_be16(tb[TCA_CT_NAT_PORT_MAX]) :
1227 range->min_proto.all;
1228 }
1229
1230 return 0;
1231 }
1232
1233 static void tcf_ct_set_key_val(struct nlattr **tb,
1234 void *val, int val_type,
1235 void *mask, int mask_type,
1236 int len)
1237 {
1238 if (!tb[val_type])
1239 return;
1240 nla_memcpy(val, tb[val_type], len);
1241
1242 if (!mask)
1243 return;
1244
1245 if (mask_type == TCA_CT_UNSPEC || !tb[mask_type])
1246 memset(mask, 0xff, len);
1247 else
1248 nla_memcpy(mask, tb[mask_type], len);
1249 }
1250
1251 static int tcf_ct_fill_params(struct net *net,
1252 struct tcf_ct_params *p,
1253 struct tc_ct *parm,
1254 struct nlattr **tb,
1255 struct netlink_ext_ack *extack)
1256 {
1257 struct tc_ct_action_net *tn = net_generic(net, ct_net_id);
1258 struct nf_conntrack_zone zone;
1259 struct nf_conn *tmpl;
1260 int err;
1261
1262 p->zone = NF_CT_DEFAULT_ZONE_ID;
1263
1264 tcf_ct_set_key_val(tb,
1265 &p->ct_action, TCA_CT_ACTION,
1266 NULL, TCA_CT_UNSPEC,
1267 sizeof(p->ct_action));
1268
1269 if (p->ct_action & TCA_CT_ACT_CLEAR)
1270 return 0;
1271
1272 err = tcf_ct_fill_params_nat(p, parm, tb, extack);
1273 if (err)
1274 return err;
1275
1276 if (tb[TCA_CT_MARK]) {
1277 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)) {
1278 NL_SET_ERR_MSG_MOD(extack, "Conntrack mark isn't enabled.");
1279 return -EOPNOTSUPP;
1280 }
1281 tcf_ct_set_key_val(tb,
1282 &p->mark, TCA_CT_MARK,
1283 &p->mark_mask, TCA_CT_MARK_MASK,
1284 sizeof(p->mark));
1285 }
1286
1287 if (tb[TCA_CT_LABELS]) {
1288 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)) {
1289 NL_SET_ERR_MSG_MOD(extack, "Conntrack labels isn't enabled.");
1290 return -EOPNOTSUPP;
1291 }
1292
1293 if (!tn->labels) {
1294 NL_SET_ERR_MSG_MOD(extack, "Failed to set connlabel length");
1295 return -EOPNOTSUPP;
1296 }
1297 tcf_ct_set_key_val(tb,
1298 p->labels, TCA_CT_LABELS,
1299 p->labels_mask, TCA_CT_LABELS_MASK,
1300 sizeof(p->labels));
1301 }
1302
1303 if (tb[TCA_CT_ZONE]) {
1304 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)) {
1305 NL_SET_ERR_MSG_MOD(extack, "Conntrack zones isn't enabled.");
1306 return -EOPNOTSUPP;
1307 }
1308
1309 tcf_ct_set_key_val(tb,
1310 &p->zone, TCA_CT_ZONE,
1311 NULL, TCA_CT_UNSPEC,
1312 sizeof(p->zone));
1313 }
1314
1315 nf_ct_zone_init(&zone, p->zone, NF_CT_DEFAULT_ZONE_DIR, 0);
1316 tmpl = nf_ct_tmpl_alloc(net, &zone, GFP_KERNEL);
1317 if (!tmpl) {
1318 NL_SET_ERR_MSG_MOD(extack, "Failed to allocate conntrack template");
1319 return -ENOMEM;
1320 }
1321 __set_bit(IPS_CONFIRMED_BIT, &tmpl->status);
1322 p->tmpl = tmpl;
1323
1324 return 0;
1325 }
1326
1327 static int tcf_ct_init(struct net *net, struct nlattr *nla,
1328 struct nlattr *est, struct tc_action **a,
1329 struct tcf_proto *tp, u32 flags,
1330 struct netlink_ext_ack *extack)
1331 {
1332 struct tc_action_net *tn = net_generic(net, ct_net_id);
1333 bool bind = flags & TCA_ACT_FLAGS_BIND;
1334 struct tcf_ct_params *params = NULL;
1335 struct nlattr *tb[TCA_CT_MAX + 1];
1336 struct tcf_chain *goto_ch = NULL;
1337 struct tc_ct *parm;
1338 struct tcf_ct *c;
1339 int err, res = 0;
1340 u32 index;
1341
1342 if (!nla) {
1343 NL_SET_ERR_MSG_MOD(extack, "Ct requires attributes to be passed");
1344 return -EINVAL;
1345 }
1346
1347 err = nla_parse_nested(tb, TCA_CT_MAX, nla, ct_policy, extack);
1348 if (err < 0)
1349 return err;
1350
1351 if (!tb[TCA_CT_PARMS]) {
1352 NL_SET_ERR_MSG_MOD(extack, "Missing required ct parameters");
1353 return -EINVAL;
1354 }
1355 parm = nla_data(tb[TCA_CT_PARMS]);
1356 index = parm->index;
1357 err = tcf_idr_check_alloc(tn, &index, a, bind);
1358 if (err < 0)
1359 return err;
1360
1361 if (!err) {
1362 err = tcf_idr_create_from_flags(tn, index, est, a,
1363 &act_ct_ops, bind, flags);
1364 if (err) {
1365 tcf_idr_cleanup(tn, index);
1366 return err;
1367 }
1368 res = ACT_P_CREATED;
1369 } else {
1370 if (bind)
1371 return 0;
1372
1373 if (!(flags & TCA_ACT_FLAGS_REPLACE)) {
1374 tcf_idr_release(*a, bind);
1375 return -EEXIST;
1376 }
1377 }
1378 err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack);
1379 if (err < 0)
1380 goto cleanup;
1381
1382 c = to_ct(*a);
1383
1384 params = kzalloc(sizeof(*params), GFP_KERNEL);
1385 if (unlikely(!params)) {
1386 err = -ENOMEM;
1387 goto cleanup;
1388 }
1389
1390 err = tcf_ct_fill_params(net, params, parm, tb, extack);
1391 if (err)
1392 goto cleanup;
1393
1394 err = tcf_ct_flow_table_get(params);
1395 if (err)
1396 goto cleanup;
1397
1398 spin_lock_bh(&c->tcf_lock);
1399 goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
1400 params = rcu_replace_pointer(c->params, params,
1401 lockdep_is_held(&c->tcf_lock));
1402 spin_unlock_bh(&c->tcf_lock);
1403
1404 if (goto_ch)
1405 tcf_chain_put_by_act(goto_ch);
1406 if (params)
1407 call_rcu(&params->rcu, tcf_ct_params_free);
1408
1409 return res;
1410
1411 cleanup:
1412 if (goto_ch)
1413 tcf_chain_put_by_act(goto_ch);
1414 kfree(params);
1415 tcf_idr_release(*a, bind);
1416 return err;
1417 }
1418
1419 static void tcf_ct_cleanup(struct tc_action *a)
1420 {
1421 struct tcf_ct_params *params;
1422 struct tcf_ct *c = to_ct(a);
1423
1424 params = rcu_dereference_protected(c->params, 1);
1425 if (params)
1426 call_rcu(&params->rcu, tcf_ct_params_free);
1427 }
1428
1429 static int tcf_ct_dump_key_val(struct sk_buff *skb,
1430 void *val, int val_type,
1431 void *mask, int mask_type,
1432 int len)
1433 {
1434 int err;
1435
1436 if (mask && !memchr_inv(mask, 0, len))
1437 return 0;
1438
1439 err = nla_put(skb, val_type, len, val);
1440 if (err)
1441 return err;
1442
1443 if (mask_type != TCA_CT_UNSPEC) {
1444 err = nla_put(skb, mask_type, len, mask);
1445 if (err)
1446 return err;
1447 }
1448
1449 return 0;
1450 }
1451
1452 static int tcf_ct_dump_nat(struct sk_buff *skb, struct tcf_ct_params *p)
1453 {
1454 struct nf_nat_range2 *range = &p->range;
1455
1456 if (!(p->ct_action & TCA_CT_ACT_NAT))
1457 return 0;
1458
1459 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST)))
1460 return 0;
1461
1462 if (range->flags & NF_NAT_RANGE_MAP_IPS) {
1463 if (p->ipv4_range) {
1464 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MIN,
1465 range->min_addr.ip))
1466 return -1;
1467 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MAX,
1468 range->max_addr.ip))
1469 return -1;
1470 } else {
1471 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MIN,
1472 &range->min_addr.in6))
1473 return -1;
1474 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MAX,
1475 &range->max_addr.in6))
1476 return -1;
1477 }
1478 }
1479
1480 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
1481 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MIN,
1482 range->min_proto.all))
1483 return -1;
1484 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MAX,
1485 range->max_proto.all))
1486 return -1;
1487 }
1488
1489 return 0;
1490 }
1491
1492 static inline int tcf_ct_dump(struct sk_buff *skb, struct tc_action *a,
1493 int bind, int ref)
1494 {
1495 unsigned char *b = skb_tail_pointer(skb);
1496 struct tcf_ct *c = to_ct(a);
1497 struct tcf_ct_params *p;
1498
1499 struct tc_ct opt = {
1500 .index = c->tcf_index,
1501 .refcnt = refcount_read(&c->tcf_refcnt) - ref,
1502 .bindcnt = atomic_read(&c->tcf_bindcnt) - bind,
1503 };
1504 struct tcf_t t;
1505
1506 spin_lock_bh(&c->tcf_lock);
1507 p = rcu_dereference_protected(c->params,
1508 lockdep_is_held(&c->tcf_lock));
1509 opt.action = c->tcf_action;
1510
1511 if (tcf_ct_dump_key_val(skb,
1512 &p->ct_action, TCA_CT_ACTION,
1513 NULL, TCA_CT_UNSPEC,
1514 sizeof(p->ct_action)))
1515 goto nla_put_failure;
1516
1517 if (p->ct_action & TCA_CT_ACT_CLEAR)
1518 goto skip_dump;
1519
1520 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1521 tcf_ct_dump_key_val(skb,
1522 &p->mark, TCA_CT_MARK,
1523 &p->mark_mask, TCA_CT_MARK_MASK,
1524 sizeof(p->mark)))
1525 goto nla_put_failure;
1526
1527 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1528 tcf_ct_dump_key_val(skb,
1529 p->labels, TCA_CT_LABELS,
1530 p->labels_mask, TCA_CT_LABELS_MASK,
1531 sizeof(p->labels)))
1532 goto nla_put_failure;
1533
1534 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1535 tcf_ct_dump_key_val(skb,
1536 &p->zone, TCA_CT_ZONE,
1537 NULL, TCA_CT_UNSPEC,
1538 sizeof(p->zone)))
1539 goto nla_put_failure;
1540
1541 if (tcf_ct_dump_nat(skb, p))
1542 goto nla_put_failure;
1543
1544 skip_dump:
1545 if (nla_put(skb, TCA_CT_PARMS, sizeof(opt), &opt))
1546 goto nla_put_failure;
1547
1548 tcf_tm_dump(&t, &c->tcf_tm);
1549 if (nla_put_64bit(skb, TCA_CT_TM, sizeof(t), &t, TCA_CT_PAD))
1550 goto nla_put_failure;
1551 spin_unlock_bh(&c->tcf_lock);
1552
1553 return skb->len;
1554 nla_put_failure:
1555 spin_unlock_bh(&c->tcf_lock);
1556 nlmsg_trim(skb, b);
1557 return -1;
1558 }
1559
1560 static int tcf_ct_walker(struct net *net, struct sk_buff *skb,
1561 struct netlink_callback *cb, int type,
1562 const struct tc_action_ops *ops,
1563 struct netlink_ext_ack *extack)
1564 {
1565 struct tc_action_net *tn = net_generic(net, ct_net_id);
1566
1567 return tcf_generic_walker(tn, skb, cb, type, ops, extack);
1568 }
1569
1570 static int tcf_ct_search(struct net *net, struct tc_action **a, u32 index)
1571 {
1572 struct tc_action_net *tn = net_generic(net, ct_net_id);
1573
1574 return tcf_idr_search(tn, a, index);
1575 }
1576
1577 static void tcf_stats_update(struct tc_action *a, u64 bytes, u64 packets,
1578 u64 drops, u64 lastuse, bool hw)
1579 {
1580 struct tcf_ct *c = to_ct(a);
1581
1582 tcf_action_update_stats(a, bytes, packets, drops, hw);
1583 c->tcf_tm.lastuse = max_t(u64, c->tcf_tm.lastuse, lastuse);
1584 }
1585
1586 static int tcf_ct_offload_act_setup(struct tc_action *act, void *entry_data,
1587 u32 *index_inc, bool bind,
1588 struct netlink_ext_ack *extack)
1589 {
1590 if (bind) {
1591 struct flow_action_entry *entry = entry_data;
1592
1593 entry->id = FLOW_ACTION_CT;
1594 entry->ct.action = tcf_ct_action(act);
1595 entry->ct.zone = tcf_ct_zone(act);
1596 entry->ct.flow_table = tcf_ct_ft(act);
1597 *index_inc = 1;
1598 } else {
1599 struct flow_offload_action *fl_action = entry_data;
1600
1601 fl_action->id = FLOW_ACTION_CT;
1602 }
1603
1604 return 0;
1605 }
1606
1607 static struct tc_action_ops act_ct_ops = {
1608 .kind = "ct",
1609 .id = TCA_ID_CT,
1610 .owner = THIS_MODULE,
1611 .act = tcf_ct_act,
1612 .dump = tcf_ct_dump,
1613 .init = tcf_ct_init,
1614 .cleanup = tcf_ct_cleanup,
1615 .walk = tcf_ct_walker,
1616 .lookup = tcf_ct_search,
1617 .stats_update = tcf_stats_update,
1618 .offload_act_setup = tcf_ct_offload_act_setup,
1619 .size = sizeof(struct tcf_ct),
1620 };
1621
1622 static __net_init int ct_init_net(struct net *net)
1623 {
1624 unsigned int n_bits = sizeof_field(struct tcf_ct_params, labels) * 8;
1625 struct tc_ct_action_net *tn = net_generic(net, ct_net_id);
1626
1627 if (nf_connlabels_get(net, n_bits - 1)) {
1628 tn->labels = false;
1629 pr_err("act_ct: Failed to set connlabels length");
1630 } else {
1631 tn->labels = true;
1632 }
1633
1634 return tc_action_net_init(net, &tn->tn, &act_ct_ops);
1635 }
1636
1637 static void __net_exit ct_exit_net(struct list_head *net_list)
1638 {
1639 struct net *net;
1640
1641 rtnl_lock();
1642 list_for_each_entry(net, net_list, exit_list) {
1643 struct tc_ct_action_net *tn = net_generic(net, ct_net_id);
1644
1645 if (tn->labels)
1646 nf_connlabels_put(net);
1647 }
1648 rtnl_unlock();
1649
1650 tc_action_net_exit(net_list, ct_net_id);
1651 }
1652
1653 static struct pernet_operations ct_net_ops = {
1654 .init = ct_init_net,
1655 .exit_batch = ct_exit_net,
1656 .id = &ct_net_id,
1657 .size = sizeof(struct tc_ct_action_net),
1658 };
1659
1660 static int __init ct_init_module(void)
1661 {
1662 int err;
1663
1664 act_ct_wq = alloc_ordered_workqueue("act_ct_workqueue", 0);
1665 if (!act_ct_wq)
1666 return -ENOMEM;
1667
1668 err = tcf_ct_flow_tables_init();
1669 if (err)
1670 goto err_tbl_init;
1671
1672 err = tcf_register_action(&act_ct_ops, &ct_net_ops);
1673 if (err)
1674 goto err_register;
1675
1676 static_branch_inc(&tcf_frag_xmit_count);
1677
1678 return 0;
1679
1680 err_register:
1681 tcf_ct_flow_tables_uninit();
1682 err_tbl_init:
1683 destroy_workqueue(act_ct_wq);
1684 return err;
1685 }
1686
1687 static void __exit ct_cleanup_module(void)
1688 {
1689 static_branch_dec(&tcf_frag_xmit_count);
1690 tcf_unregister_action(&act_ct_ops, &ct_net_ops);
1691 tcf_ct_flow_tables_uninit();
1692 destroy_workqueue(act_ct_wq);
1693 }
1694
1695 module_init(ct_init_module);
1696 module_exit(ct_cleanup_module);
1697 MODULE_AUTHOR("Paul Blakey <paulb@mellanox.com>");
1698 MODULE_AUTHOR("Yossi Kuperman <yossiku@mellanox.com>");
1699 MODULE_AUTHOR("Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>");
1700 MODULE_DESCRIPTION("Connection tracking action");
1701 MODULE_LICENSE("GPL v2");