]> git.ipfire.org Git - people/ms/linux.git/blob - net/sched/sch_choke.c
Merge tag 'tegra-for-5.20-arm64-defconfig' of git://git.kernel.org/pub/scm/linux...
[people/ms/linux.git] / net / sched / sch_choke.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * net/sched/sch_choke.c CHOKE scheduler
4 *
5 * Copyright (c) 2011 Stephen Hemminger <shemminger@vyatta.com>
6 * Copyright (c) 2011 Eric Dumazet <eric.dumazet@gmail.com>
7 */
8
9 #include <linux/module.h>
10 #include <linux/types.h>
11 #include <linux/kernel.h>
12 #include <linux/skbuff.h>
13 #include <linux/vmalloc.h>
14 #include <net/pkt_sched.h>
15 #include <net/pkt_cls.h>
16 #include <net/inet_ecn.h>
17 #include <net/red.h>
18 #include <net/flow_dissector.h>
19
20 /*
21 CHOKe stateless AQM for fair bandwidth allocation
22 =================================================
23
24 CHOKe (CHOose and Keep for responsive flows, CHOose and Kill for
25 unresponsive flows) is a variant of RED that penalizes misbehaving flows but
26 maintains no flow state. The difference from RED is an additional step
27 during the enqueuing process. If average queue size is over the
28 low threshold (qmin), a packet is chosen at random from the queue.
29 If both the new and chosen packet are from the same flow, both
30 are dropped. Unlike RED, CHOKe is not really a "classful" qdisc because it
31 needs to access packets in queue randomly. It has a minimal class
32 interface to allow overriding the builtin flow classifier with
33 filters.
34
35 Source:
36 R. Pan, B. Prabhakar, and K. Psounis, "CHOKe, A Stateless
37 Active Queue Management Scheme for Approximating Fair Bandwidth Allocation",
38 IEEE INFOCOM, 2000.
39
40 A. Tang, J. Wang, S. Low, "Understanding CHOKe: Throughput and Spatial
41 Characteristics", IEEE/ACM Transactions on Networking, 2004
42
43 */
44
45 /* Upper bound on size of sk_buff table (packets) */
46 #define CHOKE_MAX_QUEUE (128*1024 - 1)
47
48 struct choke_sched_data {
49 /* Parameters */
50 u32 limit;
51 unsigned char flags;
52
53 struct red_parms parms;
54
55 /* Variables */
56 struct red_vars vars;
57 struct {
58 u32 prob_drop; /* Early probability drops */
59 u32 prob_mark; /* Early probability marks */
60 u32 forced_drop; /* Forced drops, qavg > max_thresh */
61 u32 forced_mark; /* Forced marks, qavg > max_thresh */
62 u32 pdrop; /* Drops due to queue limits */
63 u32 other; /* Drops due to drop() calls */
64 u32 matched; /* Drops to flow match */
65 } stats;
66
67 unsigned int head;
68 unsigned int tail;
69
70 unsigned int tab_mask; /* size - 1 */
71
72 struct sk_buff **tab;
73 };
74
75 /* number of elements in queue including holes */
76 static unsigned int choke_len(const struct choke_sched_data *q)
77 {
78 return (q->tail - q->head) & q->tab_mask;
79 }
80
81 /* Is ECN parameter configured */
82 static int use_ecn(const struct choke_sched_data *q)
83 {
84 return q->flags & TC_RED_ECN;
85 }
86
87 /* Should packets over max just be dropped (versus marked) */
88 static int use_harddrop(const struct choke_sched_data *q)
89 {
90 return q->flags & TC_RED_HARDDROP;
91 }
92
93 /* Move head pointer forward to skip over holes */
94 static void choke_zap_head_holes(struct choke_sched_data *q)
95 {
96 do {
97 q->head = (q->head + 1) & q->tab_mask;
98 if (q->head == q->tail)
99 break;
100 } while (q->tab[q->head] == NULL);
101 }
102
103 /* Move tail pointer backwards to reuse holes */
104 static void choke_zap_tail_holes(struct choke_sched_data *q)
105 {
106 do {
107 q->tail = (q->tail - 1) & q->tab_mask;
108 if (q->head == q->tail)
109 break;
110 } while (q->tab[q->tail] == NULL);
111 }
112
113 /* Drop packet from queue array by creating a "hole" */
114 static void choke_drop_by_idx(struct Qdisc *sch, unsigned int idx,
115 struct sk_buff **to_free)
116 {
117 struct choke_sched_data *q = qdisc_priv(sch);
118 struct sk_buff *skb = q->tab[idx];
119
120 q->tab[idx] = NULL;
121
122 if (idx == q->head)
123 choke_zap_head_holes(q);
124 if (idx == q->tail)
125 choke_zap_tail_holes(q);
126
127 qdisc_qstats_backlog_dec(sch, skb);
128 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
129 qdisc_drop(skb, sch, to_free);
130 --sch->q.qlen;
131 }
132
133 struct choke_skb_cb {
134 u8 keys_valid;
135 struct flow_keys_digest keys;
136 };
137
138 static inline struct choke_skb_cb *choke_skb_cb(const struct sk_buff *skb)
139 {
140 qdisc_cb_private_validate(skb, sizeof(struct choke_skb_cb));
141 return (struct choke_skb_cb *)qdisc_skb_cb(skb)->data;
142 }
143
144 /*
145 * Compare flow of two packets
146 * Returns true only if source and destination address and port match.
147 * false for special cases
148 */
149 static bool choke_match_flow(struct sk_buff *skb1,
150 struct sk_buff *skb2)
151 {
152 struct flow_keys temp;
153
154 if (skb1->protocol != skb2->protocol)
155 return false;
156
157 if (!choke_skb_cb(skb1)->keys_valid) {
158 choke_skb_cb(skb1)->keys_valid = 1;
159 skb_flow_dissect_flow_keys(skb1, &temp, 0);
160 make_flow_keys_digest(&choke_skb_cb(skb1)->keys, &temp);
161 }
162
163 if (!choke_skb_cb(skb2)->keys_valid) {
164 choke_skb_cb(skb2)->keys_valid = 1;
165 skb_flow_dissect_flow_keys(skb2, &temp, 0);
166 make_flow_keys_digest(&choke_skb_cb(skb2)->keys, &temp);
167 }
168
169 return !memcmp(&choke_skb_cb(skb1)->keys,
170 &choke_skb_cb(skb2)->keys,
171 sizeof(choke_skb_cb(skb1)->keys));
172 }
173
174 /*
175 * Select a packet at random from queue
176 * HACK: since queue can have holes from previous deletion; retry several
177 * times to find a random skb but then just give up and return the head
178 * Will return NULL if queue is empty (q->head == q->tail)
179 */
180 static struct sk_buff *choke_peek_random(const struct choke_sched_data *q,
181 unsigned int *pidx)
182 {
183 struct sk_buff *skb;
184 int retrys = 3;
185
186 do {
187 *pidx = (q->head + prandom_u32_max(choke_len(q))) & q->tab_mask;
188 skb = q->tab[*pidx];
189 if (skb)
190 return skb;
191 } while (--retrys > 0);
192
193 return q->tab[*pidx = q->head];
194 }
195
196 /*
197 * Compare new packet with random packet in queue
198 * returns true if matched and sets *pidx
199 */
200 static bool choke_match_random(const struct choke_sched_data *q,
201 struct sk_buff *nskb,
202 unsigned int *pidx)
203 {
204 struct sk_buff *oskb;
205
206 if (q->head == q->tail)
207 return false;
208
209 oskb = choke_peek_random(q, pidx);
210 return choke_match_flow(oskb, nskb);
211 }
212
213 static int choke_enqueue(struct sk_buff *skb, struct Qdisc *sch,
214 struct sk_buff **to_free)
215 {
216 struct choke_sched_data *q = qdisc_priv(sch);
217 const struct red_parms *p = &q->parms;
218
219 choke_skb_cb(skb)->keys_valid = 0;
220 /* Compute average queue usage (see RED) */
221 q->vars.qavg = red_calc_qavg(p, &q->vars, sch->q.qlen);
222 if (red_is_idling(&q->vars))
223 red_end_of_idle_period(&q->vars);
224
225 /* Is queue small? */
226 if (q->vars.qavg <= p->qth_min)
227 q->vars.qcount = -1;
228 else {
229 unsigned int idx;
230
231 /* Draw a packet at random from queue and compare flow */
232 if (choke_match_random(q, skb, &idx)) {
233 q->stats.matched++;
234 choke_drop_by_idx(sch, idx, to_free);
235 goto congestion_drop;
236 }
237
238 /* Queue is large, always mark/drop */
239 if (q->vars.qavg > p->qth_max) {
240 q->vars.qcount = -1;
241
242 qdisc_qstats_overlimit(sch);
243 if (use_harddrop(q) || !use_ecn(q) ||
244 !INET_ECN_set_ce(skb)) {
245 q->stats.forced_drop++;
246 goto congestion_drop;
247 }
248
249 q->stats.forced_mark++;
250 } else if (++q->vars.qcount) {
251 if (red_mark_probability(p, &q->vars, q->vars.qavg)) {
252 q->vars.qcount = 0;
253 q->vars.qR = red_random(p);
254
255 qdisc_qstats_overlimit(sch);
256 if (!use_ecn(q) || !INET_ECN_set_ce(skb)) {
257 q->stats.prob_drop++;
258 goto congestion_drop;
259 }
260
261 q->stats.prob_mark++;
262 }
263 } else
264 q->vars.qR = red_random(p);
265 }
266
267 /* Admit new packet */
268 if (sch->q.qlen < q->limit) {
269 q->tab[q->tail] = skb;
270 q->tail = (q->tail + 1) & q->tab_mask;
271 ++sch->q.qlen;
272 qdisc_qstats_backlog_inc(sch, skb);
273 return NET_XMIT_SUCCESS;
274 }
275
276 q->stats.pdrop++;
277 return qdisc_drop(skb, sch, to_free);
278
279 congestion_drop:
280 qdisc_drop(skb, sch, to_free);
281 return NET_XMIT_CN;
282 }
283
284 static struct sk_buff *choke_dequeue(struct Qdisc *sch)
285 {
286 struct choke_sched_data *q = qdisc_priv(sch);
287 struct sk_buff *skb;
288
289 if (q->head == q->tail) {
290 if (!red_is_idling(&q->vars))
291 red_start_of_idle_period(&q->vars);
292 return NULL;
293 }
294
295 skb = q->tab[q->head];
296 q->tab[q->head] = NULL;
297 choke_zap_head_holes(q);
298 --sch->q.qlen;
299 qdisc_qstats_backlog_dec(sch, skb);
300 qdisc_bstats_update(sch, skb);
301
302 return skb;
303 }
304
305 static void choke_reset(struct Qdisc *sch)
306 {
307 struct choke_sched_data *q = qdisc_priv(sch);
308
309 while (q->head != q->tail) {
310 struct sk_buff *skb = q->tab[q->head];
311
312 q->head = (q->head + 1) & q->tab_mask;
313 if (!skb)
314 continue;
315 rtnl_qdisc_drop(skb, sch);
316 }
317
318 sch->q.qlen = 0;
319 sch->qstats.backlog = 0;
320 if (q->tab)
321 memset(q->tab, 0, (q->tab_mask + 1) * sizeof(struct sk_buff *));
322 q->head = q->tail = 0;
323 red_restart(&q->vars);
324 }
325
326 static const struct nla_policy choke_policy[TCA_CHOKE_MAX + 1] = {
327 [TCA_CHOKE_PARMS] = { .len = sizeof(struct tc_red_qopt) },
328 [TCA_CHOKE_STAB] = { .len = RED_STAB_SIZE },
329 [TCA_CHOKE_MAX_P] = { .type = NLA_U32 },
330 };
331
332
333 static void choke_free(void *addr)
334 {
335 kvfree(addr);
336 }
337
338 static int choke_change(struct Qdisc *sch, struct nlattr *opt,
339 struct netlink_ext_ack *extack)
340 {
341 struct choke_sched_data *q = qdisc_priv(sch);
342 struct nlattr *tb[TCA_CHOKE_MAX + 1];
343 const struct tc_red_qopt *ctl;
344 int err;
345 struct sk_buff **old = NULL;
346 unsigned int mask;
347 u32 max_P;
348 u8 *stab;
349
350 if (opt == NULL)
351 return -EINVAL;
352
353 err = nla_parse_nested_deprecated(tb, TCA_CHOKE_MAX, opt,
354 choke_policy, NULL);
355 if (err < 0)
356 return err;
357
358 if (tb[TCA_CHOKE_PARMS] == NULL ||
359 tb[TCA_CHOKE_STAB] == NULL)
360 return -EINVAL;
361
362 max_P = tb[TCA_CHOKE_MAX_P] ? nla_get_u32(tb[TCA_CHOKE_MAX_P]) : 0;
363
364 ctl = nla_data(tb[TCA_CHOKE_PARMS]);
365 stab = nla_data(tb[TCA_CHOKE_STAB]);
366 if (!red_check_params(ctl->qth_min, ctl->qth_max, ctl->Wlog, ctl->Scell_log, stab))
367 return -EINVAL;
368
369 if (ctl->limit > CHOKE_MAX_QUEUE)
370 return -EINVAL;
371
372 mask = roundup_pow_of_two(ctl->limit + 1) - 1;
373 if (mask != q->tab_mask) {
374 struct sk_buff **ntab;
375
376 ntab = kvcalloc(mask + 1, sizeof(struct sk_buff *), GFP_KERNEL);
377 if (!ntab)
378 return -ENOMEM;
379
380 sch_tree_lock(sch);
381 old = q->tab;
382 if (old) {
383 unsigned int oqlen = sch->q.qlen, tail = 0;
384 unsigned dropped = 0;
385
386 while (q->head != q->tail) {
387 struct sk_buff *skb = q->tab[q->head];
388
389 q->head = (q->head + 1) & q->tab_mask;
390 if (!skb)
391 continue;
392 if (tail < mask) {
393 ntab[tail++] = skb;
394 continue;
395 }
396 dropped += qdisc_pkt_len(skb);
397 qdisc_qstats_backlog_dec(sch, skb);
398 --sch->q.qlen;
399 rtnl_qdisc_drop(skb, sch);
400 }
401 qdisc_tree_reduce_backlog(sch, oqlen - sch->q.qlen, dropped);
402 q->head = 0;
403 q->tail = tail;
404 }
405
406 q->tab_mask = mask;
407 q->tab = ntab;
408 } else
409 sch_tree_lock(sch);
410
411 q->flags = ctl->flags;
412 q->limit = ctl->limit;
413
414 red_set_parms(&q->parms, ctl->qth_min, ctl->qth_max, ctl->Wlog,
415 ctl->Plog, ctl->Scell_log,
416 stab,
417 max_P);
418 red_set_vars(&q->vars);
419
420 if (q->head == q->tail)
421 red_end_of_idle_period(&q->vars);
422
423 sch_tree_unlock(sch);
424 choke_free(old);
425 return 0;
426 }
427
428 static int choke_init(struct Qdisc *sch, struct nlattr *opt,
429 struct netlink_ext_ack *extack)
430 {
431 return choke_change(sch, opt, extack);
432 }
433
434 static int choke_dump(struct Qdisc *sch, struct sk_buff *skb)
435 {
436 struct choke_sched_data *q = qdisc_priv(sch);
437 struct nlattr *opts = NULL;
438 struct tc_red_qopt opt = {
439 .limit = q->limit,
440 .flags = q->flags,
441 .qth_min = q->parms.qth_min >> q->parms.Wlog,
442 .qth_max = q->parms.qth_max >> q->parms.Wlog,
443 .Wlog = q->parms.Wlog,
444 .Plog = q->parms.Plog,
445 .Scell_log = q->parms.Scell_log,
446 };
447
448 opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
449 if (opts == NULL)
450 goto nla_put_failure;
451
452 if (nla_put(skb, TCA_CHOKE_PARMS, sizeof(opt), &opt) ||
453 nla_put_u32(skb, TCA_CHOKE_MAX_P, q->parms.max_P))
454 goto nla_put_failure;
455 return nla_nest_end(skb, opts);
456
457 nla_put_failure:
458 nla_nest_cancel(skb, opts);
459 return -EMSGSIZE;
460 }
461
462 static int choke_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
463 {
464 struct choke_sched_data *q = qdisc_priv(sch);
465 struct tc_choke_xstats st = {
466 .early = q->stats.prob_drop + q->stats.forced_drop,
467 .marked = q->stats.prob_mark + q->stats.forced_mark,
468 .pdrop = q->stats.pdrop,
469 .other = q->stats.other,
470 .matched = q->stats.matched,
471 };
472
473 return gnet_stats_copy_app(d, &st, sizeof(st));
474 }
475
476 static void choke_destroy(struct Qdisc *sch)
477 {
478 struct choke_sched_data *q = qdisc_priv(sch);
479
480 choke_free(q->tab);
481 }
482
483 static struct sk_buff *choke_peek_head(struct Qdisc *sch)
484 {
485 struct choke_sched_data *q = qdisc_priv(sch);
486
487 return (q->head != q->tail) ? q->tab[q->head] : NULL;
488 }
489
490 static struct Qdisc_ops choke_qdisc_ops __read_mostly = {
491 .id = "choke",
492 .priv_size = sizeof(struct choke_sched_data),
493
494 .enqueue = choke_enqueue,
495 .dequeue = choke_dequeue,
496 .peek = choke_peek_head,
497 .init = choke_init,
498 .destroy = choke_destroy,
499 .reset = choke_reset,
500 .change = choke_change,
501 .dump = choke_dump,
502 .dump_stats = choke_dump_stats,
503 .owner = THIS_MODULE,
504 };
505
506 static int __init choke_module_init(void)
507 {
508 return register_qdisc(&choke_qdisc_ops);
509 }
510
511 static void __exit choke_module_exit(void)
512 {
513 unregister_qdisc(&choke_qdisc_ops);
514 }
515
516 module_init(choke_module_init)
517 module_exit(choke_module_exit)
518
519 MODULE_LICENSE("GPL");