]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - net/sctp/auth.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 104
[thirdparty/kernel/stable.git] / net / sctp / auth.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
4 *
5 * This file is part of the SCTP kernel implementation
6 *
7 * Please send any bug reports or fixes you make to the
8 * email address(es):
9 * lksctp developers <linux-sctp@vger.kernel.org>
10 *
11 * Written or modified by:
12 * Vlad Yasevich <vladislav.yasevich@hp.com>
13 */
14
15 #include <crypto/hash.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/scatterlist.h>
19 #include <net/sctp/sctp.h>
20 #include <net/sctp/auth.h>
21
22 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
23 {
24 /* id 0 is reserved. as all 0 */
25 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
26 },
27 {
28 .hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
29 .hmac_name = "hmac(sha1)",
30 .hmac_len = SCTP_SHA1_SIG_SIZE,
31 },
32 {
33 /* id 2 is reserved as well */
34 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
35 },
36 #if IS_ENABLED(CONFIG_CRYPTO_SHA256)
37 {
38 .hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
39 .hmac_name = "hmac(sha256)",
40 .hmac_len = SCTP_SHA256_SIG_SIZE,
41 }
42 #endif
43 };
44
45
46 void sctp_auth_key_put(struct sctp_auth_bytes *key)
47 {
48 if (!key)
49 return;
50
51 if (refcount_dec_and_test(&key->refcnt)) {
52 kzfree(key);
53 SCTP_DBG_OBJCNT_DEC(keys);
54 }
55 }
56
57 /* Create a new key structure of a given length */
58 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
59 {
60 struct sctp_auth_bytes *key;
61
62 /* Verify that we are not going to overflow INT_MAX */
63 if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
64 return NULL;
65
66 /* Allocate the shared key */
67 key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
68 if (!key)
69 return NULL;
70
71 key->len = key_len;
72 refcount_set(&key->refcnt, 1);
73 SCTP_DBG_OBJCNT_INC(keys);
74
75 return key;
76 }
77
78 /* Create a new shared key container with a give key id */
79 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
80 {
81 struct sctp_shared_key *new;
82
83 /* Allocate the shared key container */
84 new = kzalloc(sizeof(struct sctp_shared_key), gfp);
85 if (!new)
86 return NULL;
87
88 INIT_LIST_HEAD(&new->key_list);
89 refcount_set(&new->refcnt, 1);
90 new->key_id = key_id;
91
92 return new;
93 }
94
95 /* Free the shared key structure */
96 static void sctp_auth_shkey_destroy(struct sctp_shared_key *sh_key)
97 {
98 BUG_ON(!list_empty(&sh_key->key_list));
99 sctp_auth_key_put(sh_key->key);
100 sh_key->key = NULL;
101 kfree(sh_key);
102 }
103
104 void sctp_auth_shkey_release(struct sctp_shared_key *sh_key)
105 {
106 if (refcount_dec_and_test(&sh_key->refcnt))
107 sctp_auth_shkey_destroy(sh_key);
108 }
109
110 void sctp_auth_shkey_hold(struct sctp_shared_key *sh_key)
111 {
112 refcount_inc(&sh_key->refcnt);
113 }
114
115 /* Destroy the entire key list. This is done during the
116 * associon and endpoint free process.
117 */
118 void sctp_auth_destroy_keys(struct list_head *keys)
119 {
120 struct sctp_shared_key *ep_key;
121 struct sctp_shared_key *tmp;
122
123 if (list_empty(keys))
124 return;
125
126 key_for_each_safe(ep_key, tmp, keys) {
127 list_del_init(&ep_key->key_list);
128 sctp_auth_shkey_release(ep_key);
129 }
130 }
131
132 /* Compare two byte vectors as numbers. Return values
133 * are:
134 * 0 - vectors are equal
135 * < 0 - vector 1 is smaller than vector2
136 * > 0 - vector 1 is greater than vector2
137 *
138 * Algorithm is:
139 * This is performed by selecting the numerically smaller key vector...
140 * If the key vectors are equal as numbers but differ in length ...
141 * the shorter vector is considered smaller
142 *
143 * Examples (with small values):
144 * 000123456789 > 123456789 (first number is longer)
145 * 000123456789 < 234567891 (second number is larger numerically)
146 * 123456789 > 2345678 (first number is both larger & longer)
147 */
148 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
149 struct sctp_auth_bytes *vector2)
150 {
151 int diff;
152 int i;
153 const __u8 *longer;
154
155 diff = vector1->len - vector2->len;
156 if (diff) {
157 longer = (diff > 0) ? vector1->data : vector2->data;
158
159 /* Check to see if the longer number is
160 * lead-zero padded. If it is not, it
161 * is automatically larger numerically.
162 */
163 for (i = 0; i < abs(diff); i++) {
164 if (longer[i] != 0)
165 return diff;
166 }
167 }
168
169 /* lengths are the same, compare numbers */
170 return memcmp(vector1->data, vector2->data, vector1->len);
171 }
172
173 /*
174 * Create a key vector as described in SCTP-AUTH, Section 6.1
175 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
176 * parameter sent by each endpoint are concatenated as byte vectors.
177 * These parameters include the parameter type, parameter length, and
178 * the parameter value, but padding is omitted; all padding MUST be
179 * removed from this concatenation before proceeding with further
180 * computation of keys. Parameters which were not sent are simply
181 * omitted from the concatenation process. The resulting two vectors
182 * are called the two key vectors.
183 */
184 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
185 struct sctp_random_param *random,
186 struct sctp_chunks_param *chunks,
187 struct sctp_hmac_algo_param *hmacs,
188 gfp_t gfp)
189 {
190 struct sctp_auth_bytes *new;
191 __u32 len;
192 __u32 offset = 0;
193 __u16 random_len, hmacs_len, chunks_len = 0;
194
195 random_len = ntohs(random->param_hdr.length);
196 hmacs_len = ntohs(hmacs->param_hdr.length);
197 if (chunks)
198 chunks_len = ntohs(chunks->param_hdr.length);
199
200 len = random_len + hmacs_len + chunks_len;
201
202 new = sctp_auth_create_key(len, gfp);
203 if (!new)
204 return NULL;
205
206 memcpy(new->data, random, random_len);
207 offset += random_len;
208
209 if (chunks) {
210 memcpy(new->data + offset, chunks, chunks_len);
211 offset += chunks_len;
212 }
213
214 memcpy(new->data + offset, hmacs, hmacs_len);
215
216 return new;
217 }
218
219
220 /* Make a key vector based on our local parameters */
221 static struct sctp_auth_bytes *sctp_auth_make_local_vector(
222 const struct sctp_association *asoc,
223 gfp_t gfp)
224 {
225 return sctp_auth_make_key_vector(
226 (struct sctp_random_param *)asoc->c.auth_random,
227 (struct sctp_chunks_param *)asoc->c.auth_chunks,
228 (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs, gfp);
229 }
230
231 /* Make a key vector based on peer's parameters */
232 static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
233 const struct sctp_association *asoc,
234 gfp_t gfp)
235 {
236 return sctp_auth_make_key_vector(asoc->peer.peer_random,
237 asoc->peer.peer_chunks,
238 asoc->peer.peer_hmacs,
239 gfp);
240 }
241
242
243 /* Set the value of the association shared key base on the parameters
244 * given. The algorithm is:
245 * From the endpoint pair shared keys and the key vectors the
246 * association shared keys are computed. This is performed by selecting
247 * the numerically smaller key vector and concatenating it to the
248 * endpoint pair shared key, and then concatenating the numerically
249 * larger key vector to that. The result of the concatenation is the
250 * association shared key.
251 */
252 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
253 struct sctp_shared_key *ep_key,
254 struct sctp_auth_bytes *first_vector,
255 struct sctp_auth_bytes *last_vector,
256 gfp_t gfp)
257 {
258 struct sctp_auth_bytes *secret;
259 __u32 offset = 0;
260 __u32 auth_len;
261
262 auth_len = first_vector->len + last_vector->len;
263 if (ep_key->key)
264 auth_len += ep_key->key->len;
265
266 secret = sctp_auth_create_key(auth_len, gfp);
267 if (!secret)
268 return NULL;
269
270 if (ep_key->key) {
271 memcpy(secret->data, ep_key->key->data, ep_key->key->len);
272 offset += ep_key->key->len;
273 }
274
275 memcpy(secret->data + offset, first_vector->data, first_vector->len);
276 offset += first_vector->len;
277
278 memcpy(secret->data + offset, last_vector->data, last_vector->len);
279
280 return secret;
281 }
282
283 /* Create an association shared key. Follow the algorithm
284 * described in SCTP-AUTH, Section 6.1
285 */
286 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
287 const struct sctp_association *asoc,
288 struct sctp_shared_key *ep_key,
289 gfp_t gfp)
290 {
291 struct sctp_auth_bytes *local_key_vector;
292 struct sctp_auth_bytes *peer_key_vector;
293 struct sctp_auth_bytes *first_vector,
294 *last_vector;
295 struct sctp_auth_bytes *secret = NULL;
296 int cmp;
297
298
299 /* Now we need to build the key vectors
300 * SCTP-AUTH , Section 6.1
301 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
302 * parameter sent by each endpoint are concatenated as byte vectors.
303 * These parameters include the parameter type, parameter length, and
304 * the parameter value, but padding is omitted; all padding MUST be
305 * removed from this concatenation before proceeding with further
306 * computation of keys. Parameters which were not sent are simply
307 * omitted from the concatenation process. The resulting two vectors
308 * are called the two key vectors.
309 */
310
311 local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
312 peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
313
314 if (!peer_key_vector || !local_key_vector)
315 goto out;
316
317 /* Figure out the order in which the key_vectors will be
318 * added to the endpoint shared key.
319 * SCTP-AUTH, Section 6.1:
320 * This is performed by selecting the numerically smaller key
321 * vector and concatenating it to the endpoint pair shared
322 * key, and then concatenating the numerically larger key
323 * vector to that. If the key vectors are equal as numbers
324 * but differ in length, then the concatenation order is the
325 * endpoint shared key, followed by the shorter key vector,
326 * followed by the longer key vector. Otherwise, the key
327 * vectors are identical, and may be concatenated to the
328 * endpoint pair key in any order.
329 */
330 cmp = sctp_auth_compare_vectors(local_key_vector,
331 peer_key_vector);
332 if (cmp < 0) {
333 first_vector = local_key_vector;
334 last_vector = peer_key_vector;
335 } else {
336 first_vector = peer_key_vector;
337 last_vector = local_key_vector;
338 }
339
340 secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
341 gfp);
342 out:
343 sctp_auth_key_put(local_key_vector);
344 sctp_auth_key_put(peer_key_vector);
345
346 return secret;
347 }
348
349 /*
350 * Populate the association overlay list with the list
351 * from the endpoint.
352 */
353 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
354 struct sctp_association *asoc,
355 gfp_t gfp)
356 {
357 struct sctp_shared_key *sh_key;
358 struct sctp_shared_key *new;
359
360 BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
361
362 key_for_each(sh_key, &ep->endpoint_shared_keys) {
363 new = sctp_auth_shkey_create(sh_key->key_id, gfp);
364 if (!new)
365 goto nomem;
366
367 new->key = sh_key->key;
368 sctp_auth_key_hold(new->key);
369 list_add(&new->key_list, &asoc->endpoint_shared_keys);
370 }
371
372 return 0;
373
374 nomem:
375 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
376 return -ENOMEM;
377 }
378
379
380 /* Public interface to create the association shared key.
381 * See code above for the algorithm.
382 */
383 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
384 {
385 struct sctp_auth_bytes *secret;
386 struct sctp_shared_key *ep_key;
387 struct sctp_chunk *chunk;
388
389 /* If we don't support AUTH, or peer is not capable
390 * we don't need to do anything.
391 */
392 if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
393 return 0;
394
395 /* If the key_id is non-zero and we couldn't find an
396 * endpoint pair shared key, we can't compute the
397 * secret.
398 * For key_id 0, endpoint pair shared key is a NULL key.
399 */
400 ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
401 BUG_ON(!ep_key);
402
403 secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
404 if (!secret)
405 return -ENOMEM;
406
407 sctp_auth_key_put(asoc->asoc_shared_key);
408 asoc->asoc_shared_key = secret;
409 asoc->shkey = ep_key;
410
411 /* Update send queue in case any chunk already in there now
412 * needs authenticating
413 */
414 list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) {
415 if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc)) {
416 chunk->auth = 1;
417 if (!chunk->shkey) {
418 chunk->shkey = asoc->shkey;
419 sctp_auth_shkey_hold(chunk->shkey);
420 }
421 }
422 }
423
424 return 0;
425 }
426
427
428 /* Find the endpoint pair shared key based on the key_id */
429 struct sctp_shared_key *sctp_auth_get_shkey(
430 const struct sctp_association *asoc,
431 __u16 key_id)
432 {
433 struct sctp_shared_key *key;
434
435 /* First search associations set of endpoint pair shared keys */
436 key_for_each(key, &asoc->endpoint_shared_keys) {
437 if (key->key_id == key_id) {
438 if (!key->deactivated)
439 return key;
440 break;
441 }
442 }
443
444 return NULL;
445 }
446
447 /*
448 * Initialize all the possible digest transforms that we can use. Right now
449 * now, the supported digests are SHA1 and SHA256. We do this here once
450 * because of the restrictiong that transforms may only be allocated in
451 * user context. This forces us to pre-allocated all possible transforms
452 * at the endpoint init time.
453 */
454 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
455 {
456 struct crypto_shash *tfm = NULL;
457 __u16 id;
458
459 /* If the transforms are already allocated, we are done */
460 if (ep->auth_hmacs)
461 return 0;
462
463 /* Allocated the array of pointers to transorms */
464 ep->auth_hmacs = kcalloc(SCTP_AUTH_NUM_HMACS,
465 sizeof(struct crypto_shash *),
466 gfp);
467 if (!ep->auth_hmacs)
468 return -ENOMEM;
469
470 for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
471
472 /* See is we support the id. Supported IDs have name and
473 * length fields set, so that we can allocated and use
474 * them. We can safely just check for name, for without the
475 * name, we can't allocate the TFM.
476 */
477 if (!sctp_hmac_list[id].hmac_name)
478 continue;
479
480 /* If this TFM has been allocated, we are all set */
481 if (ep->auth_hmacs[id])
482 continue;
483
484 /* Allocate the ID */
485 tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0);
486 if (IS_ERR(tfm))
487 goto out_err;
488
489 ep->auth_hmacs[id] = tfm;
490 }
491
492 return 0;
493
494 out_err:
495 /* Clean up any successful allocations */
496 sctp_auth_destroy_hmacs(ep->auth_hmacs);
497 return -ENOMEM;
498 }
499
500 /* Destroy the hmac tfm array */
501 void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[])
502 {
503 int i;
504
505 if (!auth_hmacs)
506 return;
507
508 for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
509 crypto_free_shash(auth_hmacs[i]);
510 }
511 kfree(auth_hmacs);
512 }
513
514
515 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
516 {
517 return &sctp_hmac_list[hmac_id];
518 }
519
520 /* Get an hmac description information that we can use to build
521 * the AUTH chunk
522 */
523 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
524 {
525 struct sctp_hmac_algo_param *hmacs;
526 __u16 n_elt;
527 __u16 id = 0;
528 int i;
529
530 /* If we have a default entry, use it */
531 if (asoc->default_hmac_id)
532 return &sctp_hmac_list[asoc->default_hmac_id];
533
534 /* Since we do not have a default entry, find the first entry
535 * we support and return that. Do not cache that id.
536 */
537 hmacs = asoc->peer.peer_hmacs;
538 if (!hmacs)
539 return NULL;
540
541 n_elt = (ntohs(hmacs->param_hdr.length) -
542 sizeof(struct sctp_paramhdr)) >> 1;
543 for (i = 0; i < n_elt; i++) {
544 id = ntohs(hmacs->hmac_ids[i]);
545
546 /* Check the id is in the supported range. And
547 * see if we support the id. Supported IDs have name and
548 * length fields set, so that we can allocate and use
549 * them. We can safely just check for name, for without the
550 * name, we can't allocate the TFM.
551 */
552 if (id > SCTP_AUTH_HMAC_ID_MAX ||
553 !sctp_hmac_list[id].hmac_name) {
554 id = 0;
555 continue;
556 }
557
558 break;
559 }
560
561 if (id == 0)
562 return NULL;
563
564 return &sctp_hmac_list[id];
565 }
566
567 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
568 {
569 int found = 0;
570 int i;
571
572 for (i = 0; i < n_elts; i++) {
573 if (hmac_id == hmacs[i]) {
574 found = 1;
575 break;
576 }
577 }
578
579 return found;
580 }
581
582 /* See if the HMAC_ID is one that we claim as supported */
583 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
584 __be16 hmac_id)
585 {
586 struct sctp_hmac_algo_param *hmacs;
587 __u16 n_elt;
588
589 if (!asoc)
590 return 0;
591
592 hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
593 n_elt = (ntohs(hmacs->param_hdr.length) -
594 sizeof(struct sctp_paramhdr)) >> 1;
595
596 return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
597 }
598
599
600 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
601 * Section 6.1:
602 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed
603 * algorithm it supports.
604 */
605 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
606 struct sctp_hmac_algo_param *hmacs)
607 {
608 struct sctp_endpoint *ep;
609 __u16 id;
610 int i;
611 int n_params;
612
613 /* if the default id is already set, use it */
614 if (asoc->default_hmac_id)
615 return;
616
617 n_params = (ntohs(hmacs->param_hdr.length) -
618 sizeof(struct sctp_paramhdr)) >> 1;
619 ep = asoc->ep;
620 for (i = 0; i < n_params; i++) {
621 id = ntohs(hmacs->hmac_ids[i]);
622
623 /* Check the id is in the supported range */
624 if (id > SCTP_AUTH_HMAC_ID_MAX)
625 continue;
626
627 /* If this TFM has been allocated, use this id */
628 if (ep->auth_hmacs[id]) {
629 asoc->default_hmac_id = id;
630 break;
631 }
632 }
633 }
634
635
636 /* Check to see if the given chunk is supposed to be authenticated */
637 static int __sctp_auth_cid(enum sctp_cid chunk, struct sctp_chunks_param *param)
638 {
639 unsigned short len;
640 int found = 0;
641 int i;
642
643 if (!param || param->param_hdr.length == 0)
644 return 0;
645
646 len = ntohs(param->param_hdr.length) - sizeof(struct sctp_paramhdr);
647
648 /* SCTP-AUTH, Section 3.2
649 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
650 * chunks MUST NOT be listed in the CHUNKS parameter. However, if
651 * a CHUNKS parameter is received then the types for INIT, INIT-ACK,
652 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
653 */
654 for (i = 0; !found && i < len; i++) {
655 switch (param->chunks[i]) {
656 case SCTP_CID_INIT:
657 case SCTP_CID_INIT_ACK:
658 case SCTP_CID_SHUTDOWN_COMPLETE:
659 case SCTP_CID_AUTH:
660 break;
661
662 default:
663 if (param->chunks[i] == chunk)
664 found = 1;
665 break;
666 }
667 }
668
669 return found;
670 }
671
672 /* Check if peer requested that this chunk is authenticated */
673 int sctp_auth_send_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
674 {
675 if (!asoc)
676 return 0;
677
678 if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
679 return 0;
680
681 return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
682 }
683
684 /* Check if we requested that peer authenticate this chunk. */
685 int sctp_auth_recv_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
686 {
687 if (!asoc)
688 return 0;
689
690 if (!asoc->ep->auth_enable)
691 return 0;
692
693 return __sctp_auth_cid(chunk,
694 (struct sctp_chunks_param *)asoc->c.auth_chunks);
695 }
696
697 /* SCTP-AUTH: Section 6.2:
698 * The sender MUST calculate the MAC as described in RFC2104 [2] using
699 * the hash function H as described by the MAC Identifier and the shared
700 * association key K based on the endpoint pair shared key described by
701 * the shared key identifier. The 'data' used for the computation of
702 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
703 * zero (as shown in Figure 6) followed by all chunks that are placed
704 * after the AUTH chunk in the SCTP packet.
705 */
706 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
707 struct sk_buff *skb, struct sctp_auth_chunk *auth,
708 struct sctp_shared_key *ep_key, gfp_t gfp)
709 {
710 struct sctp_auth_bytes *asoc_key;
711 struct crypto_shash *tfm;
712 __u16 key_id, hmac_id;
713 unsigned char *end;
714 int free_key = 0;
715 __u8 *digest;
716
717 /* Extract the info we need:
718 * - hmac id
719 * - key id
720 */
721 key_id = ntohs(auth->auth_hdr.shkey_id);
722 hmac_id = ntohs(auth->auth_hdr.hmac_id);
723
724 if (key_id == asoc->active_key_id)
725 asoc_key = asoc->asoc_shared_key;
726 else {
727 /* ep_key can't be NULL here */
728 asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
729 if (!asoc_key)
730 return;
731
732 free_key = 1;
733 }
734
735 /* set up scatter list */
736 end = skb_tail_pointer(skb);
737
738 tfm = asoc->ep->auth_hmacs[hmac_id];
739
740 digest = auth->auth_hdr.hmac;
741 if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len))
742 goto free;
743
744 {
745 SHASH_DESC_ON_STACK(desc, tfm);
746
747 desc->tfm = tfm;
748 crypto_shash_digest(desc, (u8 *)auth,
749 end - (unsigned char *)auth, digest);
750 shash_desc_zero(desc);
751 }
752
753 free:
754 if (free_key)
755 sctp_auth_key_put(asoc_key);
756 }
757
758 /* API Helpers */
759
760 /* Add a chunk to the endpoint authenticated chunk list */
761 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
762 {
763 struct sctp_chunks_param *p = ep->auth_chunk_list;
764 __u16 nchunks;
765 __u16 param_len;
766
767 /* If this chunk is already specified, we are done */
768 if (__sctp_auth_cid(chunk_id, p))
769 return 0;
770
771 /* Check if we can add this chunk to the array */
772 param_len = ntohs(p->param_hdr.length);
773 nchunks = param_len - sizeof(struct sctp_paramhdr);
774 if (nchunks == SCTP_NUM_CHUNK_TYPES)
775 return -EINVAL;
776
777 p->chunks[nchunks] = chunk_id;
778 p->param_hdr.length = htons(param_len + 1);
779 return 0;
780 }
781
782 /* Add hmac identifires to the endpoint list of supported hmac ids */
783 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
784 struct sctp_hmacalgo *hmacs)
785 {
786 int has_sha1 = 0;
787 __u16 id;
788 int i;
789
790 /* Scan the list looking for unsupported id. Also make sure that
791 * SHA1 is specified.
792 */
793 for (i = 0; i < hmacs->shmac_num_idents; i++) {
794 id = hmacs->shmac_idents[i];
795
796 if (id > SCTP_AUTH_HMAC_ID_MAX)
797 return -EOPNOTSUPP;
798
799 if (SCTP_AUTH_HMAC_ID_SHA1 == id)
800 has_sha1 = 1;
801
802 if (!sctp_hmac_list[id].hmac_name)
803 return -EOPNOTSUPP;
804 }
805
806 if (!has_sha1)
807 return -EINVAL;
808
809 for (i = 0; i < hmacs->shmac_num_idents; i++)
810 ep->auth_hmacs_list->hmac_ids[i] =
811 htons(hmacs->shmac_idents[i]);
812 ep->auth_hmacs_list->param_hdr.length =
813 htons(sizeof(struct sctp_paramhdr) +
814 hmacs->shmac_num_idents * sizeof(__u16));
815 return 0;
816 }
817
818 /* Set a new shared key on either endpoint or association. If the
819 * the key with a same ID already exists, replace the key (remove the
820 * old key and add a new one).
821 */
822 int sctp_auth_set_key(struct sctp_endpoint *ep,
823 struct sctp_association *asoc,
824 struct sctp_authkey *auth_key)
825 {
826 struct sctp_shared_key *cur_key, *shkey;
827 struct sctp_auth_bytes *key;
828 struct list_head *sh_keys;
829 int replace = 0;
830
831 /* Try to find the given key id to see if
832 * we are doing a replace, or adding a new key
833 */
834 if (asoc)
835 sh_keys = &asoc->endpoint_shared_keys;
836 else
837 sh_keys = &ep->endpoint_shared_keys;
838
839 key_for_each(shkey, sh_keys) {
840 if (shkey->key_id == auth_key->sca_keynumber) {
841 replace = 1;
842 break;
843 }
844 }
845
846 cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, GFP_KERNEL);
847 if (!cur_key)
848 return -ENOMEM;
849
850 /* Create a new key data based on the info passed in */
851 key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
852 if (!key) {
853 kfree(cur_key);
854 return -ENOMEM;
855 }
856
857 memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
858 cur_key->key = key;
859
860 if (replace) {
861 list_del_init(&shkey->key_list);
862 sctp_auth_shkey_release(shkey);
863 }
864 list_add(&cur_key->key_list, sh_keys);
865
866 return 0;
867 }
868
869 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
870 struct sctp_association *asoc,
871 __u16 key_id)
872 {
873 struct sctp_shared_key *key;
874 struct list_head *sh_keys;
875 int found = 0;
876
877 /* The key identifier MUST correst to an existing key */
878 if (asoc)
879 sh_keys = &asoc->endpoint_shared_keys;
880 else
881 sh_keys = &ep->endpoint_shared_keys;
882
883 key_for_each(key, sh_keys) {
884 if (key->key_id == key_id) {
885 found = 1;
886 break;
887 }
888 }
889
890 if (!found || key->deactivated)
891 return -EINVAL;
892
893 if (asoc) {
894 asoc->active_key_id = key_id;
895 sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
896 } else
897 ep->active_key_id = key_id;
898
899 return 0;
900 }
901
902 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
903 struct sctp_association *asoc,
904 __u16 key_id)
905 {
906 struct sctp_shared_key *key;
907 struct list_head *sh_keys;
908 int found = 0;
909
910 /* The key identifier MUST NOT be the current active key
911 * The key identifier MUST correst to an existing key
912 */
913 if (asoc) {
914 if (asoc->active_key_id == key_id)
915 return -EINVAL;
916
917 sh_keys = &asoc->endpoint_shared_keys;
918 } else {
919 if (ep->active_key_id == key_id)
920 return -EINVAL;
921
922 sh_keys = &ep->endpoint_shared_keys;
923 }
924
925 key_for_each(key, sh_keys) {
926 if (key->key_id == key_id) {
927 found = 1;
928 break;
929 }
930 }
931
932 if (!found)
933 return -EINVAL;
934
935 /* Delete the shared key */
936 list_del_init(&key->key_list);
937 sctp_auth_shkey_release(key);
938
939 return 0;
940 }
941
942 int sctp_auth_deact_key_id(struct sctp_endpoint *ep,
943 struct sctp_association *asoc, __u16 key_id)
944 {
945 struct sctp_shared_key *key;
946 struct list_head *sh_keys;
947 int found = 0;
948
949 /* The key identifier MUST NOT be the current active key
950 * The key identifier MUST correst to an existing key
951 */
952 if (asoc) {
953 if (asoc->active_key_id == key_id)
954 return -EINVAL;
955
956 sh_keys = &asoc->endpoint_shared_keys;
957 } else {
958 if (ep->active_key_id == key_id)
959 return -EINVAL;
960
961 sh_keys = &ep->endpoint_shared_keys;
962 }
963
964 key_for_each(key, sh_keys) {
965 if (key->key_id == key_id) {
966 found = 1;
967 break;
968 }
969 }
970
971 if (!found)
972 return -EINVAL;
973
974 /* refcnt == 1 and !list_empty mean it's not being used anywhere
975 * and deactivated will be set, so it's time to notify userland
976 * that this shkey can be freed.
977 */
978 if (asoc && !list_empty(&key->key_list) &&
979 refcount_read(&key->refcnt) == 1) {
980 struct sctp_ulpevent *ev;
981
982 ev = sctp_ulpevent_make_authkey(asoc, key->key_id,
983 SCTP_AUTH_FREE_KEY, GFP_KERNEL);
984 if (ev)
985 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
986 }
987
988 key->deactivated = 1;
989
990 return 0;
991 }