]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - net/sctp/outqueue.c
fd33281999b559ecdcfbd2dc9eca9d4e053d96fd
[thirdparty/kernel/stable.git] / net / sctp / outqueue.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 *
7 * This file is part of the SCTP kernel implementation
8 *
9 * These functions implement the sctp_outq class. The outqueue handles
10 * bundling and queueing of outgoing SCTP chunks.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
27 *
28 * Please send any bug reports or fixes you make to the
29 * email address(es):
30 * lksctp developers <linux-sctp@vger.kernel.org>
31 *
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Perry Melange <pmelange@null.cc.uic.edu>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Hui Huang <hui.huang@nokia.com>
38 * Sridhar Samudrala <sri@us.ibm.com>
39 * Jon Grimm <jgrimm@us.ibm.com>
40 */
41
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/slab.h>
49 #include <net/sock.h> /* For skb_set_owner_w */
50
51 #include <net/sctp/sctp.h>
52 #include <net/sctp/sm.h>
53 #include <net/sctp/stream_sched.h>
54
55 /* Declare internal functions here. */
56 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
57 static void sctp_check_transmitted(struct sctp_outq *q,
58 struct list_head *transmitted_queue,
59 struct sctp_transport *transport,
60 union sctp_addr *saddr,
61 struct sctp_sackhdr *sack,
62 __u32 *highest_new_tsn);
63
64 static void sctp_mark_missing(struct sctp_outq *q,
65 struct list_head *transmitted_queue,
66 struct sctp_transport *transport,
67 __u32 highest_new_tsn,
68 int count_of_newacks);
69
70 static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp);
71
72 /* Add data to the front of the queue. */
73 static inline void sctp_outq_head_data(struct sctp_outq *q,
74 struct sctp_chunk *ch)
75 {
76 struct sctp_stream_out_ext *oute;
77 __u16 stream;
78
79 list_add(&ch->list, &q->out_chunk_list);
80 q->out_qlen += ch->skb->len;
81
82 stream = sctp_chunk_stream_no(ch);
83 oute = SCTP_SO(&q->asoc->stream, stream)->ext;
84 list_add(&ch->stream_list, &oute->outq);
85 }
86
87 /* Take data from the front of the queue. */
88 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
89 {
90 return q->sched->dequeue(q);
91 }
92
93 /* Add data chunk to the end of the queue. */
94 static inline void sctp_outq_tail_data(struct sctp_outq *q,
95 struct sctp_chunk *ch)
96 {
97 struct sctp_stream_out_ext *oute;
98 __u16 stream;
99
100 list_add_tail(&ch->list, &q->out_chunk_list);
101 q->out_qlen += ch->skb->len;
102
103 stream = sctp_chunk_stream_no(ch);
104 oute = SCTP_SO(&q->asoc->stream, stream)->ext;
105 list_add_tail(&ch->stream_list, &oute->outq);
106 }
107
108 /*
109 * SFR-CACC algorithm:
110 * D) If count_of_newacks is greater than or equal to 2
111 * and t was not sent to the current primary then the
112 * sender MUST NOT increment missing report count for t.
113 */
114 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
115 struct sctp_transport *transport,
116 int count_of_newacks)
117 {
118 if (count_of_newacks >= 2 && transport != primary)
119 return 1;
120 return 0;
121 }
122
123 /*
124 * SFR-CACC algorithm:
125 * F) If count_of_newacks is less than 2, let d be the
126 * destination to which t was sent. If cacc_saw_newack
127 * is 0 for destination d, then the sender MUST NOT
128 * increment missing report count for t.
129 */
130 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
131 int count_of_newacks)
132 {
133 if (count_of_newacks < 2 &&
134 (transport && !transport->cacc.cacc_saw_newack))
135 return 1;
136 return 0;
137 }
138
139 /*
140 * SFR-CACC algorithm:
141 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
142 * execute steps C, D, F.
143 *
144 * C has been implemented in sctp_outq_sack
145 */
146 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
147 struct sctp_transport *transport,
148 int count_of_newacks)
149 {
150 if (!primary->cacc.cycling_changeover) {
151 if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
152 return 1;
153 if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
154 return 1;
155 return 0;
156 }
157 return 0;
158 }
159
160 /*
161 * SFR-CACC algorithm:
162 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
163 * than next_tsn_at_change of the current primary, then
164 * the sender MUST NOT increment missing report count
165 * for t.
166 */
167 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
168 {
169 if (primary->cacc.cycling_changeover &&
170 TSN_lt(tsn, primary->cacc.next_tsn_at_change))
171 return 1;
172 return 0;
173 }
174
175 /*
176 * SFR-CACC algorithm:
177 * 3) If the missing report count for TSN t is to be
178 * incremented according to [RFC2960] and
179 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
180 * then the sender MUST further execute steps 3.1 and
181 * 3.2 to determine if the missing report count for
182 * TSN t SHOULD NOT be incremented.
183 *
184 * 3.3) If 3.1 and 3.2 do not dictate that the missing
185 * report count for t should not be incremented, then
186 * the sender SHOULD increment missing report count for
187 * t (according to [RFC2960] and [SCTP_STEWART_2002]).
188 */
189 static inline int sctp_cacc_skip(struct sctp_transport *primary,
190 struct sctp_transport *transport,
191 int count_of_newacks,
192 __u32 tsn)
193 {
194 if (primary->cacc.changeover_active &&
195 (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) ||
196 sctp_cacc_skip_3_2(primary, tsn)))
197 return 1;
198 return 0;
199 }
200
201 /* Initialize an existing sctp_outq. This does the boring stuff.
202 * You still need to define handlers if you really want to DO
203 * something with this structure...
204 */
205 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
206 {
207 memset(q, 0, sizeof(struct sctp_outq));
208
209 q->asoc = asoc;
210 INIT_LIST_HEAD(&q->out_chunk_list);
211 INIT_LIST_HEAD(&q->control_chunk_list);
212 INIT_LIST_HEAD(&q->retransmit);
213 INIT_LIST_HEAD(&q->sacked);
214 INIT_LIST_HEAD(&q->abandoned);
215 sctp_sched_set_sched(asoc, sctp_sk(asoc->base.sk)->default_ss);
216 }
217
218 /* Free the outqueue structure and any related pending chunks.
219 */
220 static void __sctp_outq_teardown(struct sctp_outq *q)
221 {
222 struct sctp_transport *transport;
223 struct list_head *lchunk, *temp;
224 struct sctp_chunk *chunk, *tmp;
225
226 /* Throw away unacknowledged chunks. */
227 list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
228 transports) {
229 while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
230 chunk = list_entry(lchunk, struct sctp_chunk,
231 transmitted_list);
232 /* Mark as part of a failed message. */
233 sctp_chunk_fail(chunk, q->error);
234 sctp_chunk_free(chunk);
235 }
236 }
237
238 /* Throw away chunks that have been gap ACKed. */
239 list_for_each_safe(lchunk, temp, &q->sacked) {
240 list_del_init(lchunk);
241 chunk = list_entry(lchunk, struct sctp_chunk,
242 transmitted_list);
243 sctp_chunk_fail(chunk, q->error);
244 sctp_chunk_free(chunk);
245 }
246
247 /* Throw away any chunks in the retransmit queue. */
248 list_for_each_safe(lchunk, temp, &q->retransmit) {
249 list_del_init(lchunk);
250 chunk = list_entry(lchunk, struct sctp_chunk,
251 transmitted_list);
252 sctp_chunk_fail(chunk, q->error);
253 sctp_chunk_free(chunk);
254 }
255
256 /* Throw away any chunks that are in the abandoned queue. */
257 list_for_each_safe(lchunk, temp, &q->abandoned) {
258 list_del_init(lchunk);
259 chunk = list_entry(lchunk, struct sctp_chunk,
260 transmitted_list);
261 sctp_chunk_fail(chunk, q->error);
262 sctp_chunk_free(chunk);
263 }
264
265 /* Throw away any leftover data chunks. */
266 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
267 sctp_sched_dequeue_done(q, chunk);
268
269 /* Mark as send failure. */
270 sctp_chunk_fail(chunk, q->error);
271 sctp_chunk_free(chunk);
272 }
273
274 /* Throw away any leftover control chunks. */
275 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
276 list_del_init(&chunk->list);
277 sctp_chunk_free(chunk);
278 }
279 }
280
281 void sctp_outq_teardown(struct sctp_outq *q)
282 {
283 __sctp_outq_teardown(q);
284 sctp_outq_init(q->asoc, q);
285 }
286
287 /* Free the outqueue structure and any related pending chunks. */
288 void sctp_outq_free(struct sctp_outq *q)
289 {
290 /* Throw away leftover chunks. */
291 __sctp_outq_teardown(q);
292 }
293
294 /* Put a new chunk in an sctp_outq. */
295 void sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk, gfp_t gfp)
296 {
297 struct net *net = sock_net(q->asoc->base.sk);
298
299 pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__, q, chunk,
300 chunk && chunk->chunk_hdr ?
301 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
302 "illegal chunk");
303
304 /* If it is data, queue it up, otherwise, send it
305 * immediately.
306 */
307 if (sctp_chunk_is_data(chunk)) {
308 pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n",
309 __func__, q, chunk, chunk && chunk->chunk_hdr ?
310 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
311 "illegal chunk");
312
313 sctp_outq_tail_data(q, chunk);
314 if (chunk->asoc->peer.prsctp_capable &&
315 SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
316 chunk->asoc->sent_cnt_removable++;
317 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
318 SCTP_INC_STATS(net, SCTP_MIB_OUTUNORDERCHUNKS);
319 else
320 SCTP_INC_STATS(net, SCTP_MIB_OUTORDERCHUNKS);
321 } else {
322 list_add_tail(&chunk->list, &q->control_chunk_list);
323 SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
324 }
325
326 if (!q->cork)
327 sctp_outq_flush(q, 0, gfp);
328 }
329
330 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list
331 * and the abandoned list are in ascending order.
332 */
333 static void sctp_insert_list(struct list_head *head, struct list_head *new)
334 {
335 struct list_head *pos;
336 struct sctp_chunk *nchunk, *lchunk;
337 __u32 ntsn, ltsn;
338 int done = 0;
339
340 nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
341 ntsn = ntohl(nchunk->subh.data_hdr->tsn);
342
343 list_for_each(pos, head) {
344 lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
345 ltsn = ntohl(lchunk->subh.data_hdr->tsn);
346 if (TSN_lt(ntsn, ltsn)) {
347 list_add(new, pos->prev);
348 done = 1;
349 break;
350 }
351 }
352 if (!done)
353 list_add_tail(new, head);
354 }
355
356 static int sctp_prsctp_prune_sent(struct sctp_association *asoc,
357 struct sctp_sndrcvinfo *sinfo,
358 struct list_head *queue, int msg_len)
359 {
360 struct sctp_chunk *chk, *temp;
361
362 list_for_each_entry_safe(chk, temp, queue, transmitted_list) {
363 struct sctp_stream_out *streamout;
364
365 if (!chk->msg->abandoned &&
366 (!SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
367 chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive))
368 continue;
369
370 chk->msg->abandoned = 1;
371 list_del_init(&chk->transmitted_list);
372 sctp_insert_list(&asoc->outqueue.abandoned,
373 &chk->transmitted_list);
374
375 streamout = SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream);
376 asoc->sent_cnt_removable--;
377 asoc->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
378 streamout->ext->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
379
380 if (queue != &asoc->outqueue.retransmit &&
381 !chk->tsn_gap_acked) {
382 if (chk->transport)
383 chk->transport->flight_size -=
384 sctp_data_size(chk);
385 asoc->outqueue.outstanding_bytes -= sctp_data_size(chk);
386 }
387
388 msg_len -= chk->skb->truesize + sizeof(struct sctp_chunk);
389 if (msg_len <= 0)
390 break;
391 }
392
393 return msg_len;
394 }
395
396 static int sctp_prsctp_prune_unsent(struct sctp_association *asoc,
397 struct sctp_sndrcvinfo *sinfo, int msg_len)
398 {
399 struct sctp_outq *q = &asoc->outqueue;
400 struct sctp_chunk *chk, *temp;
401
402 q->sched->unsched_all(&asoc->stream);
403
404 list_for_each_entry_safe(chk, temp, &q->out_chunk_list, list) {
405 if (!chk->msg->abandoned &&
406 (!(chk->chunk_hdr->flags & SCTP_DATA_FIRST_FRAG) ||
407 !SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
408 chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive))
409 continue;
410
411 chk->msg->abandoned = 1;
412 sctp_sched_dequeue_common(q, chk);
413 asoc->sent_cnt_removable--;
414 asoc->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
415 if (chk->sinfo.sinfo_stream < asoc->stream.outcnt) {
416 struct sctp_stream_out *streamout =
417 SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream);
418
419 streamout->ext->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
420 }
421
422 msg_len -= chk->skb->truesize + sizeof(struct sctp_chunk);
423 sctp_chunk_free(chk);
424 if (msg_len <= 0)
425 break;
426 }
427
428 q->sched->sched_all(&asoc->stream);
429
430 return msg_len;
431 }
432
433 /* Abandon the chunks according their priorities */
434 void sctp_prsctp_prune(struct sctp_association *asoc,
435 struct sctp_sndrcvinfo *sinfo, int msg_len)
436 {
437 struct sctp_transport *transport;
438
439 if (!asoc->peer.prsctp_capable || !asoc->sent_cnt_removable)
440 return;
441
442 msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
443 &asoc->outqueue.retransmit,
444 msg_len);
445 if (msg_len <= 0)
446 return;
447
448 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
449 transports) {
450 msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
451 &transport->transmitted,
452 msg_len);
453 if (msg_len <= 0)
454 return;
455 }
456
457 sctp_prsctp_prune_unsent(asoc, sinfo, msg_len);
458 }
459
460 /* Mark all the eligible packets on a transport for retransmission. */
461 void sctp_retransmit_mark(struct sctp_outq *q,
462 struct sctp_transport *transport,
463 __u8 reason)
464 {
465 struct list_head *lchunk, *ltemp;
466 struct sctp_chunk *chunk;
467
468 /* Walk through the specified transmitted queue. */
469 list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
470 chunk = list_entry(lchunk, struct sctp_chunk,
471 transmitted_list);
472
473 /* If the chunk is abandoned, move it to abandoned list. */
474 if (sctp_chunk_abandoned(chunk)) {
475 list_del_init(lchunk);
476 sctp_insert_list(&q->abandoned, lchunk);
477
478 /* If this chunk has not been previousely acked,
479 * stop considering it 'outstanding'. Our peer
480 * will most likely never see it since it will
481 * not be retransmitted
482 */
483 if (!chunk->tsn_gap_acked) {
484 if (chunk->transport)
485 chunk->transport->flight_size -=
486 sctp_data_size(chunk);
487 q->outstanding_bytes -= sctp_data_size(chunk);
488 q->asoc->peer.rwnd += sctp_data_size(chunk);
489 }
490 continue;
491 }
492
493 /* If we are doing retransmission due to a timeout or pmtu
494 * discovery, only the chunks that are not yet acked should
495 * be added to the retransmit queue.
496 */
497 if ((reason == SCTP_RTXR_FAST_RTX &&
498 (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
499 (reason != SCTP_RTXR_FAST_RTX && !chunk->tsn_gap_acked)) {
500 /* RFC 2960 6.2.1 Processing a Received SACK
501 *
502 * C) Any time a DATA chunk is marked for
503 * retransmission (via either T3-rtx timer expiration
504 * (Section 6.3.3) or via fast retransmit
505 * (Section 7.2.4)), add the data size of those
506 * chunks to the rwnd.
507 */
508 q->asoc->peer.rwnd += sctp_data_size(chunk);
509 q->outstanding_bytes -= sctp_data_size(chunk);
510 if (chunk->transport)
511 transport->flight_size -= sctp_data_size(chunk);
512
513 /* sctpimpguide-05 Section 2.8.2
514 * M5) If a T3-rtx timer expires, the
515 * 'TSN.Missing.Report' of all affected TSNs is set
516 * to 0.
517 */
518 chunk->tsn_missing_report = 0;
519
520 /* If a chunk that is being used for RTT measurement
521 * has to be retransmitted, we cannot use this chunk
522 * anymore for RTT measurements. Reset rto_pending so
523 * that a new RTT measurement is started when a new
524 * data chunk is sent.
525 */
526 if (chunk->rtt_in_progress) {
527 chunk->rtt_in_progress = 0;
528 transport->rto_pending = 0;
529 }
530
531 /* Move the chunk to the retransmit queue. The chunks
532 * on the retransmit queue are always kept in order.
533 */
534 list_del_init(lchunk);
535 sctp_insert_list(&q->retransmit, lchunk);
536 }
537 }
538
539 pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, "
540 "flight_size:%d, pba:%d\n", __func__, transport, reason,
541 transport->cwnd, transport->ssthresh, transport->flight_size,
542 transport->partial_bytes_acked);
543 }
544
545 /* Mark all the eligible packets on a transport for retransmission and force
546 * one packet out.
547 */
548 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
549 enum sctp_retransmit_reason reason)
550 {
551 struct net *net = sock_net(q->asoc->base.sk);
552
553 switch (reason) {
554 case SCTP_RTXR_T3_RTX:
555 SCTP_INC_STATS(net, SCTP_MIB_T3_RETRANSMITS);
556 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
557 /* Update the retran path if the T3-rtx timer has expired for
558 * the current retran path.
559 */
560 if (transport == transport->asoc->peer.retran_path)
561 sctp_assoc_update_retran_path(transport->asoc);
562 transport->asoc->rtx_data_chunks +=
563 transport->asoc->unack_data;
564 break;
565 case SCTP_RTXR_FAST_RTX:
566 SCTP_INC_STATS(net, SCTP_MIB_FAST_RETRANSMITS);
567 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
568 q->fast_rtx = 1;
569 break;
570 case SCTP_RTXR_PMTUD:
571 SCTP_INC_STATS(net, SCTP_MIB_PMTUD_RETRANSMITS);
572 break;
573 case SCTP_RTXR_T1_RTX:
574 SCTP_INC_STATS(net, SCTP_MIB_T1_RETRANSMITS);
575 transport->asoc->init_retries++;
576 break;
577 default:
578 BUG();
579 }
580
581 sctp_retransmit_mark(q, transport, reason);
582
583 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
584 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
585 * following the procedures outlined in C1 - C5.
586 */
587 if (reason == SCTP_RTXR_T3_RTX)
588 q->asoc->stream.si->generate_ftsn(q, q->asoc->ctsn_ack_point);
589
590 /* Flush the queues only on timeout, since fast_rtx is only
591 * triggered during sack processing and the queue
592 * will be flushed at the end.
593 */
594 if (reason != SCTP_RTXR_FAST_RTX)
595 sctp_outq_flush(q, /* rtx_timeout */ 1, GFP_ATOMIC);
596 }
597
598 /*
599 * Transmit DATA chunks on the retransmit queue. Upon return from
600 * __sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
601 * need to be transmitted by the caller.
602 * We assume that pkt->transport has already been set.
603 *
604 * The return value is a normal kernel error return value.
605 */
606 static int __sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
607 int rtx_timeout, int *start_timer, gfp_t gfp)
608 {
609 struct sctp_transport *transport = pkt->transport;
610 struct sctp_chunk *chunk, *chunk1;
611 struct list_head *lqueue;
612 enum sctp_xmit status;
613 int error = 0;
614 int timer = 0;
615 int done = 0;
616 int fast_rtx;
617
618 lqueue = &q->retransmit;
619 fast_rtx = q->fast_rtx;
620
621 /* This loop handles time-out retransmissions, fast retransmissions,
622 * and retransmissions due to opening of whindow.
623 *
624 * RFC 2960 6.3.3 Handle T3-rtx Expiration
625 *
626 * E3) Determine how many of the earliest (i.e., lowest TSN)
627 * outstanding DATA chunks for the address for which the
628 * T3-rtx has expired will fit into a single packet, subject
629 * to the MTU constraint for the path corresponding to the
630 * destination transport address to which the retransmission
631 * is being sent (this may be different from the address for
632 * which the timer expires [see Section 6.4]). Call this value
633 * K. Bundle and retransmit those K DATA chunks in a single
634 * packet to the destination endpoint.
635 *
636 * [Just to be painfully clear, if we are retransmitting
637 * because a timeout just happened, we should send only ONE
638 * packet of retransmitted data.]
639 *
640 * For fast retransmissions we also send only ONE packet. However,
641 * if we are just flushing the queue due to open window, we'll
642 * try to send as much as possible.
643 */
644 list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
645 /* If the chunk is abandoned, move it to abandoned list. */
646 if (sctp_chunk_abandoned(chunk)) {
647 list_del_init(&chunk->transmitted_list);
648 sctp_insert_list(&q->abandoned,
649 &chunk->transmitted_list);
650 continue;
651 }
652
653 /* Make sure that Gap Acked TSNs are not retransmitted. A
654 * simple approach is just to move such TSNs out of the
655 * way and into a 'transmitted' queue and skip to the
656 * next chunk.
657 */
658 if (chunk->tsn_gap_acked) {
659 list_move_tail(&chunk->transmitted_list,
660 &transport->transmitted);
661 continue;
662 }
663
664 /* If we are doing fast retransmit, ignore non-fast_rtransmit
665 * chunks
666 */
667 if (fast_rtx && !chunk->fast_retransmit)
668 continue;
669
670 redo:
671 /* Attempt to append this chunk to the packet. */
672 status = sctp_packet_append_chunk(pkt, chunk);
673
674 switch (status) {
675 case SCTP_XMIT_PMTU_FULL:
676 if (!pkt->has_data && !pkt->has_cookie_echo) {
677 /* If this packet did not contain DATA then
678 * retransmission did not happen, so do it
679 * again. We'll ignore the error here since
680 * control chunks are already freed so there
681 * is nothing we can do.
682 */
683 sctp_packet_transmit(pkt, gfp);
684 goto redo;
685 }
686
687 /* Send this packet. */
688 error = sctp_packet_transmit(pkt, gfp);
689
690 /* If we are retransmitting, we should only
691 * send a single packet.
692 * Otherwise, try appending this chunk again.
693 */
694 if (rtx_timeout || fast_rtx)
695 done = 1;
696 else
697 goto redo;
698
699 /* Bundle next chunk in the next round. */
700 break;
701
702 case SCTP_XMIT_RWND_FULL:
703 /* Send this packet. */
704 error = sctp_packet_transmit(pkt, gfp);
705
706 /* Stop sending DATA as there is no more room
707 * at the receiver.
708 */
709 done = 1;
710 break;
711
712 case SCTP_XMIT_DELAY:
713 /* Send this packet. */
714 error = sctp_packet_transmit(pkt, gfp);
715
716 /* Stop sending DATA because of nagle delay. */
717 done = 1;
718 break;
719
720 default:
721 /* The append was successful, so add this chunk to
722 * the transmitted list.
723 */
724 list_move_tail(&chunk->transmitted_list,
725 &transport->transmitted);
726
727 /* Mark the chunk as ineligible for fast retransmit
728 * after it is retransmitted.
729 */
730 if (chunk->fast_retransmit == SCTP_NEED_FRTX)
731 chunk->fast_retransmit = SCTP_DONT_FRTX;
732
733 q->asoc->stats.rtxchunks++;
734 break;
735 }
736
737 /* Set the timer if there were no errors */
738 if (!error && !timer)
739 timer = 1;
740
741 if (done)
742 break;
743 }
744
745 /* If we are here due to a retransmit timeout or a fast
746 * retransmit and if there are any chunks left in the retransmit
747 * queue that could not fit in the PMTU sized packet, they need
748 * to be marked as ineligible for a subsequent fast retransmit.
749 */
750 if (rtx_timeout || fast_rtx) {
751 list_for_each_entry(chunk1, lqueue, transmitted_list) {
752 if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
753 chunk1->fast_retransmit = SCTP_DONT_FRTX;
754 }
755 }
756
757 *start_timer = timer;
758
759 /* Clear fast retransmit hint */
760 if (fast_rtx)
761 q->fast_rtx = 0;
762
763 return error;
764 }
765
766 /* Cork the outqueue so queued chunks are really queued. */
767 void sctp_outq_uncork(struct sctp_outq *q, gfp_t gfp)
768 {
769 if (q->cork)
770 q->cork = 0;
771
772 sctp_outq_flush(q, 0, gfp);
773 }
774
775 static int sctp_packet_singleton(struct sctp_transport *transport,
776 struct sctp_chunk *chunk, gfp_t gfp)
777 {
778 const struct sctp_association *asoc = transport->asoc;
779 const __u16 sport = asoc->base.bind_addr.port;
780 const __u16 dport = asoc->peer.port;
781 const __u32 vtag = asoc->peer.i.init_tag;
782 struct sctp_packet singleton;
783
784 sctp_packet_init(&singleton, transport, sport, dport);
785 sctp_packet_config(&singleton, vtag, 0);
786 sctp_packet_append_chunk(&singleton, chunk);
787 return sctp_packet_transmit(&singleton, gfp);
788 }
789
790 /* Struct to hold the context during sctp outq flush */
791 struct sctp_flush_ctx {
792 struct sctp_outq *q;
793 /* Current transport being used. It's NOT the same as curr active one */
794 struct sctp_transport *transport;
795 /* These transports have chunks to send. */
796 struct list_head transport_list;
797 struct sctp_association *asoc;
798 /* Packet on the current transport above */
799 struct sctp_packet *packet;
800 gfp_t gfp;
801 };
802
803 /* transport: current transport */
804 static void sctp_outq_select_transport(struct sctp_flush_ctx *ctx,
805 struct sctp_chunk *chunk)
806 {
807 struct sctp_transport *new_transport = chunk->transport;
808
809 if (!new_transport) {
810 if (!sctp_chunk_is_data(chunk)) {
811 /* If we have a prior transport pointer, see if
812 * the destination address of the chunk
813 * matches the destination address of the
814 * current transport. If not a match, then
815 * try to look up the transport with a given
816 * destination address. We do this because
817 * after processing ASCONFs, we may have new
818 * transports created.
819 */
820 if (ctx->transport && sctp_cmp_addr_exact(&chunk->dest,
821 &ctx->transport->ipaddr))
822 new_transport = ctx->transport;
823 else
824 new_transport = sctp_assoc_lookup_paddr(ctx->asoc,
825 &chunk->dest);
826 }
827
828 /* if we still don't have a new transport, then
829 * use the current active path.
830 */
831 if (!new_transport)
832 new_transport = ctx->asoc->peer.active_path;
833 } else {
834 __u8 type;
835
836 switch (new_transport->state) {
837 case SCTP_INACTIVE:
838 case SCTP_UNCONFIRMED:
839 case SCTP_PF:
840 /* If the chunk is Heartbeat or Heartbeat Ack,
841 * send it to chunk->transport, even if it's
842 * inactive.
843 *
844 * 3.3.6 Heartbeat Acknowledgement:
845 * ...
846 * A HEARTBEAT ACK is always sent to the source IP
847 * address of the IP datagram containing the
848 * HEARTBEAT chunk to which this ack is responding.
849 * ...
850 *
851 * ASCONF_ACKs also must be sent to the source.
852 */
853 type = chunk->chunk_hdr->type;
854 if (type != SCTP_CID_HEARTBEAT &&
855 type != SCTP_CID_HEARTBEAT_ACK &&
856 type != SCTP_CID_ASCONF_ACK)
857 new_transport = ctx->asoc->peer.active_path;
858 break;
859 default:
860 break;
861 }
862 }
863
864 /* Are we switching transports? Take care of transport locks. */
865 if (new_transport != ctx->transport) {
866 ctx->transport = new_transport;
867 ctx->packet = &ctx->transport->packet;
868
869 if (list_empty(&ctx->transport->send_ready))
870 list_add_tail(&ctx->transport->send_ready,
871 &ctx->transport_list);
872
873 sctp_packet_config(ctx->packet,
874 ctx->asoc->peer.i.init_tag,
875 ctx->asoc->peer.ecn_capable);
876 /* We've switched transports, so apply the
877 * Burst limit to the new transport.
878 */
879 sctp_transport_burst_limited(ctx->transport);
880 }
881 }
882
883 static void sctp_outq_flush_ctrl(struct sctp_flush_ctx *ctx)
884 {
885 struct sctp_chunk *chunk, *tmp;
886 enum sctp_xmit status;
887 int one_packet, error;
888
889 list_for_each_entry_safe(chunk, tmp, &ctx->q->control_chunk_list, list) {
890 one_packet = 0;
891
892 /* RFC 5061, 5.3
893 * F1) This means that until such time as the ASCONF
894 * containing the add is acknowledged, the sender MUST
895 * NOT use the new IP address as a source for ANY SCTP
896 * packet except on carrying an ASCONF Chunk.
897 */
898 if (ctx->asoc->src_out_of_asoc_ok &&
899 chunk->chunk_hdr->type != SCTP_CID_ASCONF)
900 continue;
901
902 list_del_init(&chunk->list);
903
904 /* Pick the right transport to use. Should always be true for
905 * the first chunk as we don't have a transport by then.
906 */
907 sctp_outq_select_transport(ctx, chunk);
908
909 switch (chunk->chunk_hdr->type) {
910 /* 6.10 Bundling
911 * ...
912 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
913 * COMPLETE with any other chunks. [Send them immediately.]
914 */
915 case SCTP_CID_INIT:
916 case SCTP_CID_INIT_ACK:
917 case SCTP_CID_SHUTDOWN_COMPLETE:
918 error = sctp_packet_singleton(ctx->transport, chunk,
919 ctx->gfp);
920 if (error < 0) {
921 ctx->asoc->base.sk->sk_err = -error;
922 return;
923 }
924 break;
925
926 case SCTP_CID_ABORT:
927 if (sctp_test_T_bit(chunk))
928 ctx->packet->vtag = ctx->asoc->c.my_vtag;
929 /* fallthru */
930
931 /* The following chunks are "response" chunks, i.e.
932 * they are generated in response to something we
933 * received. If we are sending these, then we can
934 * send only 1 packet containing these chunks.
935 */
936 case SCTP_CID_HEARTBEAT_ACK:
937 case SCTP_CID_SHUTDOWN_ACK:
938 case SCTP_CID_COOKIE_ACK:
939 case SCTP_CID_COOKIE_ECHO:
940 case SCTP_CID_ERROR:
941 case SCTP_CID_ECN_CWR:
942 case SCTP_CID_ASCONF_ACK:
943 one_packet = 1;
944 /* Fall through */
945
946 case SCTP_CID_SACK:
947 case SCTP_CID_HEARTBEAT:
948 case SCTP_CID_SHUTDOWN:
949 case SCTP_CID_ECN_ECNE:
950 case SCTP_CID_ASCONF:
951 case SCTP_CID_FWD_TSN:
952 case SCTP_CID_I_FWD_TSN:
953 case SCTP_CID_RECONF:
954 status = sctp_packet_transmit_chunk(ctx->packet, chunk,
955 one_packet, ctx->gfp);
956 if (status != SCTP_XMIT_OK) {
957 /* put the chunk back */
958 list_add(&chunk->list, &ctx->q->control_chunk_list);
959 break;
960 }
961
962 ctx->asoc->stats.octrlchunks++;
963 /* PR-SCTP C5) If a FORWARD TSN is sent, the
964 * sender MUST assure that at least one T3-rtx
965 * timer is running.
966 */
967 if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN ||
968 chunk->chunk_hdr->type == SCTP_CID_I_FWD_TSN) {
969 sctp_transport_reset_t3_rtx(ctx->transport);
970 ctx->transport->last_time_sent = jiffies;
971 }
972
973 if (chunk == ctx->asoc->strreset_chunk)
974 sctp_transport_reset_reconf_timer(ctx->transport);
975
976 break;
977
978 default:
979 /* We built a chunk with an illegal type! */
980 BUG();
981 }
982 }
983 }
984
985 /* Returns false if new data shouldn't be sent */
986 static bool sctp_outq_flush_rtx(struct sctp_flush_ctx *ctx,
987 int rtx_timeout)
988 {
989 int error, start_timer = 0;
990
991 if (ctx->asoc->peer.retran_path->state == SCTP_UNCONFIRMED)
992 return false;
993
994 if (ctx->transport != ctx->asoc->peer.retran_path) {
995 /* Switch transports & prepare the packet. */
996 ctx->transport = ctx->asoc->peer.retran_path;
997 ctx->packet = &ctx->transport->packet;
998
999 if (list_empty(&ctx->transport->send_ready))
1000 list_add_tail(&ctx->transport->send_ready,
1001 &ctx->transport_list);
1002
1003 sctp_packet_config(ctx->packet, ctx->asoc->peer.i.init_tag,
1004 ctx->asoc->peer.ecn_capable);
1005 }
1006
1007 error = __sctp_outq_flush_rtx(ctx->q, ctx->packet, rtx_timeout,
1008 &start_timer, ctx->gfp);
1009 if (error < 0)
1010 ctx->asoc->base.sk->sk_err = -error;
1011
1012 if (start_timer) {
1013 sctp_transport_reset_t3_rtx(ctx->transport);
1014 ctx->transport->last_time_sent = jiffies;
1015 }
1016
1017 /* This can happen on COOKIE-ECHO resend. Only
1018 * one chunk can get bundled with a COOKIE-ECHO.
1019 */
1020 if (ctx->packet->has_cookie_echo)
1021 return false;
1022
1023 /* Don't send new data if there is still data
1024 * waiting to retransmit.
1025 */
1026 if (!list_empty(&ctx->q->retransmit))
1027 return false;
1028
1029 return true;
1030 }
1031
1032 static void sctp_outq_flush_data(struct sctp_flush_ctx *ctx,
1033 int rtx_timeout)
1034 {
1035 struct sctp_chunk *chunk;
1036 enum sctp_xmit status;
1037
1038 /* Is it OK to send data chunks? */
1039 switch (ctx->asoc->state) {
1040 case SCTP_STATE_COOKIE_ECHOED:
1041 /* Only allow bundling when this packet has a COOKIE-ECHO
1042 * chunk.
1043 */
1044 if (!ctx->packet || !ctx->packet->has_cookie_echo)
1045 return;
1046
1047 /* fall through */
1048 case SCTP_STATE_ESTABLISHED:
1049 case SCTP_STATE_SHUTDOWN_PENDING:
1050 case SCTP_STATE_SHUTDOWN_RECEIVED:
1051 break;
1052
1053 default:
1054 /* Do nothing. */
1055 return;
1056 }
1057
1058 /* RFC 2960 6.1 Transmission of DATA Chunks
1059 *
1060 * C) When the time comes for the sender to transmit,
1061 * before sending new DATA chunks, the sender MUST
1062 * first transmit any outstanding DATA chunks which
1063 * are marked for retransmission (limited by the
1064 * current cwnd).
1065 */
1066 if (!list_empty(&ctx->q->retransmit) &&
1067 !sctp_outq_flush_rtx(ctx, rtx_timeout))
1068 return;
1069
1070 /* Apply Max.Burst limitation to the current transport in
1071 * case it will be used for new data. We are going to
1072 * rest it before we return, but we want to apply the limit
1073 * to the currently queued data.
1074 */
1075 if (ctx->transport)
1076 sctp_transport_burst_limited(ctx->transport);
1077
1078 /* Finally, transmit new packets. */
1079 while ((chunk = sctp_outq_dequeue_data(ctx->q)) != NULL) {
1080 __u32 sid = ntohs(chunk->subh.data_hdr->stream);
1081 __u8 stream_state = SCTP_SO(&ctx->asoc->stream, sid)->state;
1082
1083 /* Has this chunk expired? */
1084 if (sctp_chunk_abandoned(chunk)) {
1085 sctp_sched_dequeue_done(ctx->q, chunk);
1086 sctp_chunk_fail(chunk, 0);
1087 sctp_chunk_free(chunk);
1088 continue;
1089 }
1090
1091 if (stream_state == SCTP_STREAM_CLOSED) {
1092 sctp_outq_head_data(ctx->q, chunk);
1093 break;
1094 }
1095
1096 sctp_outq_select_transport(ctx, chunk);
1097
1098 pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p skb->users:%d\n",
1099 __func__, ctx->q, chunk, chunk && chunk->chunk_hdr ?
1100 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
1101 "illegal chunk", ntohl(chunk->subh.data_hdr->tsn),
1102 chunk->skb ? chunk->skb->head : NULL, chunk->skb ?
1103 refcount_read(&chunk->skb->users) : -1);
1104
1105 /* Add the chunk to the packet. */
1106 status = sctp_packet_transmit_chunk(ctx->packet, chunk, 0,
1107 ctx->gfp);
1108 if (status != SCTP_XMIT_OK) {
1109 /* We could not append this chunk, so put
1110 * the chunk back on the output queue.
1111 */
1112 pr_debug("%s: could not transmit tsn:0x%x, status:%d\n",
1113 __func__, ntohl(chunk->subh.data_hdr->tsn),
1114 status);
1115
1116 sctp_outq_head_data(ctx->q, chunk);
1117 break;
1118 }
1119
1120 /* The sender is in the SHUTDOWN-PENDING state,
1121 * The sender MAY set the I-bit in the DATA
1122 * chunk header.
1123 */
1124 if (ctx->asoc->state == SCTP_STATE_SHUTDOWN_PENDING)
1125 chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM;
1126 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
1127 ctx->asoc->stats.ouodchunks++;
1128 else
1129 ctx->asoc->stats.oodchunks++;
1130
1131 /* Only now it's safe to consider this
1132 * chunk as sent, sched-wise.
1133 */
1134 sctp_sched_dequeue_done(ctx->q, chunk);
1135
1136 list_add_tail(&chunk->transmitted_list,
1137 &ctx->transport->transmitted);
1138
1139 sctp_transport_reset_t3_rtx(ctx->transport);
1140 ctx->transport->last_time_sent = jiffies;
1141
1142 /* Only let one DATA chunk get bundled with a
1143 * COOKIE-ECHO chunk.
1144 */
1145 if (ctx->packet->has_cookie_echo)
1146 break;
1147 }
1148 }
1149
1150 static void sctp_outq_flush_transports(struct sctp_flush_ctx *ctx)
1151 {
1152 struct list_head *ltransport;
1153 struct sctp_packet *packet;
1154 struct sctp_transport *t;
1155 int error = 0;
1156
1157 while ((ltransport = sctp_list_dequeue(&ctx->transport_list)) != NULL) {
1158 t = list_entry(ltransport, struct sctp_transport, send_ready);
1159 packet = &t->packet;
1160 if (!sctp_packet_empty(packet)) {
1161 error = sctp_packet_transmit(packet, ctx->gfp);
1162 if (error < 0)
1163 ctx->q->asoc->base.sk->sk_err = -error;
1164 }
1165
1166 /* Clear the burst limited state, if any */
1167 sctp_transport_burst_reset(t);
1168 }
1169 }
1170
1171 /* Try to flush an outqueue.
1172 *
1173 * Description: Send everything in q which we legally can, subject to
1174 * congestion limitations.
1175 * * Note: This function can be called from multiple contexts so appropriate
1176 * locking concerns must be made. Today we use the sock lock to protect
1177 * this function.
1178 */
1179
1180 static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp)
1181 {
1182 struct sctp_flush_ctx ctx = {
1183 .q = q,
1184 .transport = NULL,
1185 .transport_list = LIST_HEAD_INIT(ctx.transport_list),
1186 .asoc = q->asoc,
1187 .packet = NULL,
1188 .gfp = gfp,
1189 };
1190
1191 /* 6.10 Bundling
1192 * ...
1193 * When bundling control chunks with DATA chunks, an
1194 * endpoint MUST place control chunks first in the outbound
1195 * SCTP packet. The transmitter MUST transmit DATA chunks
1196 * within a SCTP packet in increasing order of TSN.
1197 * ...
1198 */
1199
1200 sctp_outq_flush_ctrl(&ctx);
1201
1202 if (q->asoc->src_out_of_asoc_ok)
1203 goto sctp_flush_out;
1204
1205 sctp_outq_flush_data(&ctx, rtx_timeout);
1206
1207 sctp_flush_out:
1208
1209 sctp_outq_flush_transports(&ctx);
1210 }
1211
1212 /* Update unack_data based on the incoming SACK chunk */
1213 static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1214 struct sctp_sackhdr *sack)
1215 {
1216 union sctp_sack_variable *frags;
1217 __u16 unack_data;
1218 int i;
1219
1220 unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1221
1222 frags = sack->variable;
1223 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1224 unack_data -= ((ntohs(frags[i].gab.end) -
1225 ntohs(frags[i].gab.start) + 1));
1226 }
1227
1228 assoc->unack_data = unack_data;
1229 }
1230
1231 /* This is where we REALLY process a SACK.
1232 *
1233 * Process the SACK against the outqueue. Mostly, this just frees
1234 * things off the transmitted queue.
1235 */
1236 int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk)
1237 {
1238 struct sctp_association *asoc = q->asoc;
1239 struct sctp_sackhdr *sack = chunk->subh.sack_hdr;
1240 struct sctp_transport *transport;
1241 struct sctp_chunk *tchunk = NULL;
1242 struct list_head *lchunk, *transport_list, *temp;
1243 union sctp_sack_variable *frags = sack->variable;
1244 __u32 sack_ctsn, ctsn, tsn;
1245 __u32 highest_tsn, highest_new_tsn;
1246 __u32 sack_a_rwnd;
1247 unsigned int outstanding;
1248 struct sctp_transport *primary = asoc->peer.primary_path;
1249 int count_of_newacks = 0;
1250 int gap_ack_blocks;
1251 u8 accum_moved = 0;
1252
1253 /* Grab the association's destination address list. */
1254 transport_list = &asoc->peer.transport_addr_list;
1255
1256 sack_ctsn = ntohl(sack->cum_tsn_ack);
1257 gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1258 asoc->stats.gapcnt += gap_ack_blocks;
1259 /*
1260 * SFR-CACC algorithm:
1261 * On receipt of a SACK the sender SHOULD execute the
1262 * following statements.
1263 *
1264 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1265 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1266 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1267 * all destinations.
1268 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1269 * is set the receiver of the SACK MUST take the following actions:
1270 *
1271 * A) Initialize the cacc_saw_newack to 0 for all destination
1272 * addresses.
1273 *
1274 * Only bother if changeover_active is set. Otherwise, this is
1275 * totally suboptimal to do on every SACK.
1276 */
1277 if (primary->cacc.changeover_active) {
1278 u8 clear_cycling = 0;
1279
1280 if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1281 primary->cacc.changeover_active = 0;
1282 clear_cycling = 1;
1283 }
1284
1285 if (clear_cycling || gap_ack_blocks) {
1286 list_for_each_entry(transport, transport_list,
1287 transports) {
1288 if (clear_cycling)
1289 transport->cacc.cycling_changeover = 0;
1290 if (gap_ack_blocks)
1291 transport->cacc.cacc_saw_newack = 0;
1292 }
1293 }
1294 }
1295
1296 /* Get the highest TSN in the sack. */
1297 highest_tsn = sack_ctsn;
1298 if (gap_ack_blocks)
1299 highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1300
1301 if (TSN_lt(asoc->highest_sacked, highest_tsn))
1302 asoc->highest_sacked = highest_tsn;
1303
1304 highest_new_tsn = sack_ctsn;
1305
1306 /* Run through the retransmit queue. Credit bytes received
1307 * and free those chunks that we can.
1308 */
1309 sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn);
1310
1311 /* Run through the transmitted queue.
1312 * Credit bytes received and free those chunks which we can.
1313 *
1314 * This is a MASSIVE candidate for optimization.
1315 */
1316 list_for_each_entry(transport, transport_list, transports) {
1317 sctp_check_transmitted(q, &transport->transmitted,
1318 transport, &chunk->source, sack,
1319 &highest_new_tsn);
1320 /*
1321 * SFR-CACC algorithm:
1322 * C) Let count_of_newacks be the number of
1323 * destinations for which cacc_saw_newack is set.
1324 */
1325 if (transport->cacc.cacc_saw_newack)
1326 count_of_newacks++;
1327 }
1328
1329 /* Move the Cumulative TSN Ack Point if appropriate. */
1330 if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) {
1331 asoc->ctsn_ack_point = sack_ctsn;
1332 accum_moved = 1;
1333 }
1334
1335 if (gap_ack_blocks) {
1336
1337 if (asoc->fast_recovery && accum_moved)
1338 highest_new_tsn = highest_tsn;
1339
1340 list_for_each_entry(transport, transport_list, transports)
1341 sctp_mark_missing(q, &transport->transmitted, transport,
1342 highest_new_tsn, count_of_newacks);
1343 }
1344
1345 /* Update unack_data field in the assoc. */
1346 sctp_sack_update_unack_data(asoc, sack);
1347
1348 ctsn = asoc->ctsn_ack_point;
1349
1350 /* Throw away stuff rotting on the sack queue. */
1351 list_for_each_safe(lchunk, temp, &q->sacked) {
1352 tchunk = list_entry(lchunk, struct sctp_chunk,
1353 transmitted_list);
1354 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1355 if (TSN_lte(tsn, ctsn)) {
1356 list_del_init(&tchunk->transmitted_list);
1357 if (asoc->peer.prsctp_capable &&
1358 SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
1359 asoc->sent_cnt_removable--;
1360 sctp_chunk_free(tchunk);
1361 }
1362 }
1363
1364 /* ii) Set rwnd equal to the newly received a_rwnd minus the
1365 * number of bytes still outstanding after processing the
1366 * Cumulative TSN Ack and the Gap Ack Blocks.
1367 */
1368
1369 sack_a_rwnd = ntohl(sack->a_rwnd);
1370 asoc->peer.zero_window_announced = !sack_a_rwnd;
1371 outstanding = q->outstanding_bytes;
1372
1373 if (outstanding < sack_a_rwnd)
1374 sack_a_rwnd -= outstanding;
1375 else
1376 sack_a_rwnd = 0;
1377
1378 asoc->peer.rwnd = sack_a_rwnd;
1379
1380 asoc->stream.si->generate_ftsn(q, sack_ctsn);
1381
1382 pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__, sack_ctsn);
1383 pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, "
1384 "advertised peer ack point:0x%x\n", __func__, asoc, ctsn,
1385 asoc->adv_peer_ack_point);
1386
1387 return sctp_outq_is_empty(q);
1388 }
1389
1390 /* Is the outqueue empty?
1391 * The queue is empty when we have not pending data, no in-flight data
1392 * and nothing pending retransmissions.
1393 */
1394 int sctp_outq_is_empty(const struct sctp_outq *q)
1395 {
1396 return q->out_qlen == 0 && q->outstanding_bytes == 0 &&
1397 list_empty(&q->retransmit);
1398 }
1399
1400 /********************************************************************
1401 * 2nd Level Abstractions
1402 ********************************************************************/
1403
1404 /* Go through a transport's transmitted list or the association's retransmit
1405 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1406 * The retransmit list will not have an associated transport.
1407 *
1408 * I added coherent debug information output. --xguo
1409 *
1410 * Instead of printing 'sacked' or 'kept' for each TSN on the
1411 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1412 * KEPT TSN6-TSN7, etc.
1413 */
1414 static void sctp_check_transmitted(struct sctp_outq *q,
1415 struct list_head *transmitted_queue,
1416 struct sctp_transport *transport,
1417 union sctp_addr *saddr,
1418 struct sctp_sackhdr *sack,
1419 __u32 *highest_new_tsn_in_sack)
1420 {
1421 struct list_head *lchunk;
1422 struct sctp_chunk *tchunk;
1423 struct list_head tlist;
1424 __u32 tsn;
1425 __u32 sack_ctsn;
1426 __u32 rtt;
1427 __u8 restart_timer = 0;
1428 int bytes_acked = 0;
1429 int migrate_bytes = 0;
1430 bool forward_progress = false;
1431
1432 sack_ctsn = ntohl(sack->cum_tsn_ack);
1433
1434 INIT_LIST_HEAD(&tlist);
1435
1436 /* The while loop will skip empty transmitted queues. */
1437 while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1438 tchunk = list_entry(lchunk, struct sctp_chunk,
1439 transmitted_list);
1440
1441 if (sctp_chunk_abandoned(tchunk)) {
1442 /* Move the chunk to abandoned list. */
1443 sctp_insert_list(&q->abandoned, lchunk);
1444
1445 /* If this chunk has not been acked, stop
1446 * considering it as 'outstanding'.
1447 */
1448 if (transmitted_queue != &q->retransmit &&
1449 !tchunk->tsn_gap_acked) {
1450 if (tchunk->transport)
1451 tchunk->transport->flight_size -=
1452 sctp_data_size(tchunk);
1453 q->outstanding_bytes -= sctp_data_size(tchunk);
1454 }
1455 continue;
1456 }
1457
1458 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1459 if (sctp_acked(sack, tsn)) {
1460 /* If this queue is the retransmit queue, the
1461 * retransmit timer has already reclaimed
1462 * the outstanding bytes for this chunk, so only
1463 * count bytes associated with a transport.
1464 */
1465 if (transport && !tchunk->tsn_gap_acked) {
1466 /* If this chunk is being used for RTT
1467 * measurement, calculate the RTT and update
1468 * the RTO using this value.
1469 *
1470 * 6.3.1 C5) Karn's algorithm: RTT measurements
1471 * MUST NOT be made using packets that were
1472 * retransmitted (and thus for which it is
1473 * ambiguous whether the reply was for the
1474 * first instance of the packet or a later
1475 * instance).
1476 */
1477 if (!sctp_chunk_retransmitted(tchunk) &&
1478 tchunk->rtt_in_progress) {
1479 tchunk->rtt_in_progress = 0;
1480 rtt = jiffies - tchunk->sent_at;
1481 sctp_transport_update_rto(transport,
1482 rtt);
1483 }
1484
1485 if (TSN_lte(tsn, sack_ctsn)) {
1486 /*
1487 * SFR-CACC algorithm:
1488 * 2) If the SACK contains gap acks
1489 * and the flag CHANGEOVER_ACTIVE is
1490 * set the receiver of the SACK MUST
1491 * take the following action:
1492 *
1493 * B) For each TSN t being acked that
1494 * has not been acked in any SACK so
1495 * far, set cacc_saw_newack to 1 for
1496 * the destination that the TSN was
1497 * sent to.
1498 */
1499 if (sack->num_gap_ack_blocks &&
1500 q->asoc->peer.primary_path->cacc.
1501 changeover_active)
1502 transport->cacc.cacc_saw_newack
1503 = 1;
1504 }
1505 }
1506
1507 /* If the chunk hasn't been marked as ACKED,
1508 * mark it and account bytes_acked if the
1509 * chunk had a valid transport (it will not
1510 * have a transport if ASCONF had deleted it
1511 * while DATA was outstanding).
1512 */
1513 if (!tchunk->tsn_gap_acked) {
1514 tchunk->tsn_gap_acked = 1;
1515 if (TSN_lt(*highest_new_tsn_in_sack, tsn))
1516 *highest_new_tsn_in_sack = tsn;
1517 bytes_acked += sctp_data_size(tchunk);
1518 if (!tchunk->transport)
1519 migrate_bytes += sctp_data_size(tchunk);
1520 forward_progress = true;
1521 }
1522
1523 if (TSN_lte(tsn, sack_ctsn)) {
1524 /* RFC 2960 6.3.2 Retransmission Timer Rules
1525 *
1526 * R3) Whenever a SACK is received
1527 * that acknowledges the DATA chunk
1528 * with the earliest outstanding TSN
1529 * for that address, restart T3-rtx
1530 * timer for that address with its
1531 * current RTO.
1532 */
1533 restart_timer = 1;
1534 forward_progress = true;
1535
1536 list_add_tail(&tchunk->transmitted_list,
1537 &q->sacked);
1538 } else {
1539 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1540 * M2) Each time a SACK arrives reporting
1541 * 'Stray DATA chunk(s)' record the highest TSN
1542 * reported as newly acknowledged, call this
1543 * value 'HighestTSNinSack'. A newly
1544 * acknowledged DATA chunk is one not
1545 * previously acknowledged in a SACK.
1546 *
1547 * When the SCTP sender of data receives a SACK
1548 * chunk that acknowledges, for the first time,
1549 * the receipt of a DATA chunk, all the still
1550 * unacknowledged DATA chunks whose TSN is
1551 * older than that newly acknowledged DATA
1552 * chunk, are qualified as 'Stray DATA chunks'.
1553 */
1554 list_add_tail(lchunk, &tlist);
1555 }
1556 } else {
1557 if (tchunk->tsn_gap_acked) {
1558 pr_debug("%s: receiver reneged on data TSN:0x%x\n",
1559 __func__, tsn);
1560
1561 tchunk->tsn_gap_acked = 0;
1562
1563 if (tchunk->transport)
1564 bytes_acked -= sctp_data_size(tchunk);
1565
1566 /* RFC 2960 6.3.2 Retransmission Timer Rules
1567 *
1568 * R4) Whenever a SACK is received missing a
1569 * TSN that was previously acknowledged via a
1570 * Gap Ack Block, start T3-rtx for the
1571 * destination address to which the DATA
1572 * chunk was originally
1573 * transmitted if it is not already running.
1574 */
1575 restart_timer = 1;
1576 }
1577
1578 list_add_tail(lchunk, &tlist);
1579 }
1580 }
1581
1582 if (transport) {
1583 if (bytes_acked) {
1584 struct sctp_association *asoc = transport->asoc;
1585
1586 /* We may have counted DATA that was migrated
1587 * to this transport due to DEL-IP operation.
1588 * Subtract those bytes, since the were never
1589 * send on this transport and shouldn't be
1590 * credited to this transport.
1591 */
1592 bytes_acked -= migrate_bytes;
1593
1594 /* 8.2. When an outstanding TSN is acknowledged,
1595 * the endpoint shall clear the error counter of
1596 * the destination transport address to which the
1597 * DATA chunk was last sent.
1598 * The association's overall error counter is
1599 * also cleared.
1600 */
1601 transport->error_count = 0;
1602 transport->asoc->overall_error_count = 0;
1603 forward_progress = true;
1604
1605 /*
1606 * While in SHUTDOWN PENDING, we may have started
1607 * the T5 shutdown guard timer after reaching the
1608 * retransmission limit. Stop that timer as soon
1609 * as the receiver acknowledged any data.
1610 */
1611 if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING &&
1612 del_timer(&asoc->timers
1613 [SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]))
1614 sctp_association_put(asoc);
1615
1616 /* Mark the destination transport address as
1617 * active if it is not so marked.
1618 */
1619 if ((transport->state == SCTP_INACTIVE ||
1620 transport->state == SCTP_UNCONFIRMED) &&
1621 sctp_cmp_addr_exact(&transport->ipaddr, saddr)) {
1622 sctp_assoc_control_transport(
1623 transport->asoc,
1624 transport,
1625 SCTP_TRANSPORT_UP,
1626 SCTP_RECEIVED_SACK);
1627 }
1628
1629 sctp_transport_raise_cwnd(transport, sack_ctsn,
1630 bytes_acked);
1631
1632 transport->flight_size -= bytes_acked;
1633 if (transport->flight_size == 0)
1634 transport->partial_bytes_acked = 0;
1635 q->outstanding_bytes -= bytes_acked + migrate_bytes;
1636 } else {
1637 /* RFC 2960 6.1, sctpimpguide-06 2.15.2
1638 * When a sender is doing zero window probing, it
1639 * should not timeout the association if it continues
1640 * to receive new packets from the receiver. The
1641 * reason is that the receiver MAY keep its window
1642 * closed for an indefinite time.
1643 * A sender is doing zero window probing when the
1644 * receiver's advertised window is zero, and there is
1645 * only one data chunk in flight to the receiver.
1646 *
1647 * Allow the association to timeout while in SHUTDOWN
1648 * PENDING or SHUTDOWN RECEIVED in case the receiver
1649 * stays in zero window mode forever.
1650 */
1651 if (!q->asoc->peer.rwnd &&
1652 !list_empty(&tlist) &&
1653 (sack_ctsn+2 == q->asoc->next_tsn) &&
1654 q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) {
1655 pr_debug("%s: sack received for zero window "
1656 "probe:%u\n", __func__, sack_ctsn);
1657
1658 q->asoc->overall_error_count = 0;
1659 transport->error_count = 0;
1660 }
1661 }
1662
1663 /* RFC 2960 6.3.2 Retransmission Timer Rules
1664 *
1665 * R2) Whenever all outstanding data sent to an address have
1666 * been acknowledged, turn off the T3-rtx timer of that
1667 * address.
1668 */
1669 if (!transport->flight_size) {
1670 if (del_timer(&transport->T3_rtx_timer))
1671 sctp_transport_put(transport);
1672 } else if (restart_timer) {
1673 if (!mod_timer(&transport->T3_rtx_timer,
1674 jiffies + transport->rto))
1675 sctp_transport_hold(transport);
1676 }
1677
1678 if (forward_progress) {
1679 if (transport->dst)
1680 sctp_transport_dst_confirm(transport);
1681 }
1682 }
1683
1684 list_splice(&tlist, transmitted_queue);
1685 }
1686
1687 /* Mark chunks as missing and consequently may get retransmitted. */
1688 static void sctp_mark_missing(struct sctp_outq *q,
1689 struct list_head *transmitted_queue,
1690 struct sctp_transport *transport,
1691 __u32 highest_new_tsn_in_sack,
1692 int count_of_newacks)
1693 {
1694 struct sctp_chunk *chunk;
1695 __u32 tsn;
1696 char do_fast_retransmit = 0;
1697 struct sctp_association *asoc = q->asoc;
1698 struct sctp_transport *primary = asoc->peer.primary_path;
1699
1700 list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1701
1702 tsn = ntohl(chunk->subh.data_hdr->tsn);
1703
1704 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1705 * 'Unacknowledged TSN's', if the TSN number of an
1706 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1707 * value, increment the 'TSN.Missing.Report' count on that
1708 * chunk if it has NOT been fast retransmitted or marked for
1709 * fast retransmit already.
1710 */
1711 if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1712 !chunk->tsn_gap_acked &&
1713 TSN_lt(tsn, highest_new_tsn_in_sack)) {
1714
1715 /* SFR-CACC may require us to skip marking
1716 * this chunk as missing.
1717 */
1718 if (!transport || !sctp_cacc_skip(primary,
1719 chunk->transport,
1720 count_of_newacks, tsn)) {
1721 chunk->tsn_missing_report++;
1722
1723 pr_debug("%s: tsn:0x%x missing counter:%d\n",
1724 __func__, tsn, chunk->tsn_missing_report);
1725 }
1726 }
1727 /*
1728 * M4) If any DATA chunk is found to have a
1729 * 'TSN.Missing.Report'
1730 * value larger than or equal to 3, mark that chunk for
1731 * retransmission and start the fast retransmit procedure.
1732 */
1733
1734 if (chunk->tsn_missing_report >= 3) {
1735 chunk->fast_retransmit = SCTP_NEED_FRTX;
1736 do_fast_retransmit = 1;
1737 }
1738 }
1739
1740 if (transport) {
1741 if (do_fast_retransmit)
1742 sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1743
1744 pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, "
1745 "flight_size:%d, pba:%d\n", __func__, transport,
1746 transport->cwnd, transport->ssthresh,
1747 transport->flight_size, transport->partial_bytes_acked);
1748 }
1749 }
1750
1751 /* Is the given TSN acked by this packet? */
1752 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1753 {
1754 __u32 ctsn = ntohl(sack->cum_tsn_ack);
1755 union sctp_sack_variable *frags;
1756 __u16 tsn_offset, blocks;
1757 int i;
1758
1759 if (TSN_lte(tsn, ctsn))
1760 goto pass;
1761
1762 /* 3.3.4 Selective Acknowledgment (SACK) (3):
1763 *
1764 * Gap Ack Blocks:
1765 * These fields contain the Gap Ack Blocks. They are repeated
1766 * for each Gap Ack Block up to the number of Gap Ack Blocks
1767 * defined in the Number of Gap Ack Blocks field. All DATA
1768 * chunks with TSNs greater than or equal to (Cumulative TSN
1769 * Ack + Gap Ack Block Start) and less than or equal to
1770 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1771 * Block are assumed to have been received correctly.
1772 */
1773
1774 frags = sack->variable;
1775 blocks = ntohs(sack->num_gap_ack_blocks);
1776 tsn_offset = tsn - ctsn;
1777 for (i = 0; i < blocks; ++i) {
1778 if (tsn_offset >= ntohs(frags[i].gab.start) &&
1779 tsn_offset <= ntohs(frags[i].gab.end))
1780 goto pass;
1781 }
1782
1783 return 0;
1784 pass:
1785 return 1;
1786 }
1787
1788 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1789 int nskips, __be16 stream)
1790 {
1791 int i;
1792
1793 for (i = 0; i < nskips; i++) {
1794 if (skiplist[i].stream == stream)
1795 return i;
1796 }
1797 return i;
1798 }
1799
1800 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1801 void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1802 {
1803 struct sctp_association *asoc = q->asoc;
1804 struct sctp_chunk *ftsn_chunk = NULL;
1805 struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1806 int nskips = 0;
1807 int skip_pos = 0;
1808 __u32 tsn;
1809 struct sctp_chunk *chunk;
1810 struct list_head *lchunk, *temp;
1811
1812 if (!asoc->peer.prsctp_capable)
1813 return;
1814
1815 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1816 * received SACK.
1817 *
1818 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1819 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1820 */
1821 if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1822 asoc->adv_peer_ack_point = ctsn;
1823
1824 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1825 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1826 * the chunk next in the out-queue space is marked as "abandoned" as
1827 * shown in the following example:
1828 *
1829 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1830 * and the Advanced.Peer.Ack.Point is updated to this value:
1831 *
1832 * out-queue at the end of ==> out-queue after Adv.Ack.Point
1833 * normal SACK processing local advancement
1834 * ... ...
1835 * Adv.Ack.Pt-> 102 acked 102 acked
1836 * 103 abandoned 103 abandoned
1837 * 104 abandoned Adv.Ack.P-> 104 abandoned
1838 * 105 105
1839 * 106 acked 106 acked
1840 * ... ...
1841 *
1842 * In this example, the data sender successfully advanced the
1843 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1844 */
1845 list_for_each_safe(lchunk, temp, &q->abandoned) {
1846 chunk = list_entry(lchunk, struct sctp_chunk,
1847 transmitted_list);
1848 tsn = ntohl(chunk->subh.data_hdr->tsn);
1849
1850 /* Remove any chunks in the abandoned queue that are acked by
1851 * the ctsn.
1852 */
1853 if (TSN_lte(tsn, ctsn)) {
1854 list_del_init(lchunk);
1855 sctp_chunk_free(chunk);
1856 } else {
1857 if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1858 asoc->adv_peer_ack_point = tsn;
1859 if (chunk->chunk_hdr->flags &
1860 SCTP_DATA_UNORDERED)
1861 continue;
1862 skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1863 nskips,
1864 chunk->subh.data_hdr->stream);
1865 ftsn_skip_arr[skip_pos].stream =
1866 chunk->subh.data_hdr->stream;
1867 ftsn_skip_arr[skip_pos].ssn =
1868 chunk->subh.data_hdr->ssn;
1869 if (skip_pos == nskips)
1870 nskips++;
1871 if (nskips == 10)
1872 break;
1873 } else
1874 break;
1875 }
1876 }
1877
1878 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1879 * is greater than the Cumulative TSN ACK carried in the received
1880 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1881 * chunk containing the latest value of the
1882 * "Advanced.Peer.Ack.Point".
1883 *
1884 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1885 * list each stream and sequence number in the forwarded TSN. This
1886 * information will enable the receiver to easily find any
1887 * stranded TSN's waiting on stream reorder queues. Each stream
1888 * SHOULD only be reported once; this means that if multiple
1889 * abandoned messages occur in the same stream then only the
1890 * highest abandoned stream sequence number is reported. If the
1891 * total size of the FORWARD TSN does NOT fit in a single MTU then
1892 * the sender of the FORWARD TSN SHOULD lower the
1893 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1894 * single MTU.
1895 */
1896 if (asoc->adv_peer_ack_point > ctsn)
1897 ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1898 nskips, &ftsn_skip_arr[0]);
1899
1900 if (ftsn_chunk) {
1901 list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1902 SCTP_INC_STATS(sock_net(asoc->base.sk), SCTP_MIB_OUTCTRLCHUNKS);
1903 }
1904 }