]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - net/sctp/socket.c
KVM: x86/mmu: Remove unnecessary ‘NULL’ values from sptep
[thirdparty/kernel/stable.git] / net / sctp / socket.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3 * (C) Copyright IBM Corp. 2001, 2004
4 * Copyright (c) 1999-2000 Cisco, Inc.
5 * Copyright (c) 1999-2001 Motorola, Inc.
6 * Copyright (c) 2001-2003 Intel Corp.
7 * Copyright (c) 2001-2002 Nokia, Inc.
8 * Copyright (c) 2001 La Monte H.P. Yarroll
9 *
10 * This file is part of the SCTP kernel implementation
11 *
12 * These functions interface with the sockets layer to implement the
13 * SCTP Extensions for the Sockets API.
14 *
15 * Note that the descriptions from the specification are USER level
16 * functions--this file is the functions which populate the struct proto
17 * for SCTP which is the BOTTOM of the sockets interface.
18 *
19 * Please send any bug reports or fixes you make to the
20 * email address(es):
21 * lksctp developers <linux-sctp@vger.kernel.org>
22 *
23 * Written or modified by:
24 * La Monte H.P. Yarroll <piggy@acm.org>
25 * Narasimha Budihal <narsi@refcode.org>
26 * Karl Knutson <karl@athena.chicago.il.us>
27 * Jon Grimm <jgrimm@us.ibm.com>
28 * Xingang Guo <xingang.guo@intel.com>
29 * Daisy Chang <daisyc@us.ibm.com>
30 * Sridhar Samudrala <samudrala@us.ibm.com>
31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
32 * Ardelle Fan <ardelle.fan@intel.com>
33 * Ryan Layer <rmlayer@us.ibm.com>
34 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
35 * Kevin Gao <kevin.gao@intel.com>
36 */
37
38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39
40 #include <crypto/hash.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/wait.h>
44 #include <linux/time.h>
45 #include <linux/sched/signal.h>
46 #include <linux/ip.h>
47 #include <linux/capability.h>
48 #include <linux/fcntl.h>
49 #include <linux/poll.h>
50 #include <linux/init.h>
51 #include <linux/slab.h>
52 #include <linux/file.h>
53 #include <linux/compat.h>
54 #include <linux/rhashtable.h>
55
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/route.h>
59 #include <net/ipv6.h>
60 #include <net/inet_common.h>
61 #include <net/busy_poll.h>
62 #include <trace/events/sock.h>
63
64 #include <linux/socket.h> /* for sa_family_t */
65 #include <linux/export.h>
66 #include <net/sock.h>
67 #include <net/sctp/sctp.h>
68 #include <net/sctp/sm.h>
69 #include <net/sctp/stream_sched.h>
70
71 /* Forward declarations for internal helper functions. */
72 static bool sctp_writeable(const struct sock *sk);
73 static void sctp_wfree(struct sk_buff *skb);
74 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
75 size_t msg_len);
76 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
77 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
78 static int sctp_wait_for_accept(struct sock *sk, long timeo);
79 static void sctp_wait_for_close(struct sock *sk, long timeo);
80 static void sctp_destruct_sock(struct sock *sk);
81 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
82 union sctp_addr *addr, int len);
83 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
84 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
85 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
86 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
87 static int sctp_send_asconf(struct sctp_association *asoc,
88 struct sctp_chunk *chunk);
89 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
90 static int sctp_autobind(struct sock *sk);
91 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
92 struct sctp_association *assoc,
93 enum sctp_socket_type type);
94
95 static unsigned long sctp_memory_pressure;
96 static atomic_long_t sctp_memory_allocated;
97 static DEFINE_PER_CPU(int, sctp_memory_per_cpu_fw_alloc);
98 struct percpu_counter sctp_sockets_allocated;
99
100 static void sctp_enter_memory_pressure(struct sock *sk)
101 {
102 WRITE_ONCE(sctp_memory_pressure, 1);
103 }
104
105
106 /* Get the sndbuf space available at the time on the association. */
107 static inline int sctp_wspace(struct sctp_association *asoc)
108 {
109 struct sock *sk = asoc->base.sk;
110
111 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
112 : sk_stream_wspace(sk);
113 }
114
115 /* Increment the used sndbuf space count of the corresponding association by
116 * the size of the outgoing data chunk.
117 * Also, set the skb destructor for sndbuf accounting later.
118 *
119 * Since it is always 1-1 between chunk and skb, and also a new skb is always
120 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
121 * destructor in the data chunk skb for the purpose of the sndbuf space
122 * tracking.
123 */
124 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
125 {
126 struct sctp_association *asoc = chunk->asoc;
127 struct sock *sk = asoc->base.sk;
128
129 /* The sndbuf space is tracked per association. */
130 sctp_association_hold(asoc);
131
132 if (chunk->shkey)
133 sctp_auth_shkey_hold(chunk->shkey);
134
135 skb_set_owner_w(chunk->skb, sk);
136
137 chunk->skb->destructor = sctp_wfree;
138 /* Save the chunk pointer in skb for sctp_wfree to use later. */
139 skb_shinfo(chunk->skb)->destructor_arg = chunk;
140
141 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
142 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
143 sk_wmem_queued_add(sk, chunk->skb->truesize + sizeof(struct sctp_chunk));
144 sk_mem_charge(sk, chunk->skb->truesize);
145 }
146
147 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
148 {
149 skb_orphan(chunk->skb);
150 }
151
152 #define traverse_and_process() \
153 do { \
154 msg = chunk->msg; \
155 if (msg == prev_msg) \
156 continue; \
157 list_for_each_entry(c, &msg->chunks, frag_list) { \
158 if ((clear && asoc->base.sk == c->skb->sk) || \
159 (!clear && asoc->base.sk != c->skb->sk)) \
160 cb(c); \
161 } \
162 prev_msg = msg; \
163 } while (0)
164
165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
166 bool clear,
167 void (*cb)(struct sctp_chunk *))
168
169 {
170 struct sctp_datamsg *msg, *prev_msg = NULL;
171 struct sctp_outq *q = &asoc->outqueue;
172 struct sctp_chunk *chunk, *c;
173 struct sctp_transport *t;
174
175 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
176 list_for_each_entry(chunk, &t->transmitted, transmitted_list)
177 traverse_and_process();
178
179 list_for_each_entry(chunk, &q->retransmit, transmitted_list)
180 traverse_and_process();
181
182 list_for_each_entry(chunk, &q->sacked, transmitted_list)
183 traverse_and_process();
184
185 list_for_each_entry(chunk, &q->abandoned, transmitted_list)
186 traverse_and_process();
187
188 list_for_each_entry(chunk, &q->out_chunk_list, list)
189 traverse_and_process();
190 }
191
192 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
193 void (*cb)(struct sk_buff *, struct sock *))
194
195 {
196 struct sk_buff *skb, *tmp;
197
198 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
199 cb(skb, sk);
200
201 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
202 cb(skb, sk);
203
204 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
205 cb(skb, sk);
206 }
207
208 /* Verify that this is a valid address. */
209 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
210 int len)
211 {
212 struct sctp_af *af;
213
214 /* Verify basic sockaddr. */
215 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
216 if (!af)
217 return -EINVAL;
218
219 /* Is this a valid SCTP address? */
220 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
221 return -EINVAL;
222
223 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
224 return -EINVAL;
225
226 return 0;
227 }
228
229 /* Look up the association by its id. If this is not a UDP-style
230 * socket, the ID field is always ignored.
231 */
232 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
233 {
234 struct sctp_association *asoc = NULL;
235
236 /* If this is not a UDP-style socket, assoc id should be ignored. */
237 if (!sctp_style(sk, UDP)) {
238 /* Return NULL if the socket state is not ESTABLISHED. It
239 * could be a TCP-style listening socket or a socket which
240 * hasn't yet called connect() to establish an association.
241 */
242 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
243 return NULL;
244
245 /* Get the first and the only association from the list. */
246 if (!list_empty(&sctp_sk(sk)->ep->asocs))
247 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
248 struct sctp_association, asocs);
249 return asoc;
250 }
251
252 /* Otherwise this is a UDP-style socket. */
253 if (id <= SCTP_ALL_ASSOC)
254 return NULL;
255
256 spin_lock_bh(&sctp_assocs_id_lock);
257 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
258 if (asoc && (asoc->base.sk != sk || asoc->base.dead))
259 asoc = NULL;
260 spin_unlock_bh(&sctp_assocs_id_lock);
261
262 return asoc;
263 }
264
265 /* Look up the transport from an address and an assoc id. If both address and
266 * id are specified, the associations matching the address and the id should be
267 * the same.
268 */
269 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
270 struct sockaddr_storage *addr,
271 sctp_assoc_t id)
272 {
273 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
274 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
275 union sctp_addr *laddr = (union sctp_addr *)addr;
276 struct sctp_transport *transport;
277
278 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
279 return NULL;
280
281 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
282 laddr,
283 &transport);
284
285 if (!addr_asoc)
286 return NULL;
287
288 id_asoc = sctp_id2assoc(sk, id);
289 if (id_asoc && (id_asoc != addr_asoc))
290 return NULL;
291
292 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
293 (union sctp_addr *)addr);
294
295 return transport;
296 }
297
298 /* API 3.1.2 bind() - UDP Style Syntax
299 * The syntax of bind() is,
300 *
301 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
302 *
303 * sd - the socket descriptor returned by socket().
304 * addr - the address structure (struct sockaddr_in or struct
305 * sockaddr_in6 [RFC 2553]),
306 * addr_len - the size of the address structure.
307 */
308 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
309 {
310 int retval = 0;
311
312 lock_sock(sk);
313
314 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
315 addr, addr_len);
316
317 /* Disallow binding twice. */
318 if (!sctp_sk(sk)->ep->base.bind_addr.port)
319 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
320 addr_len);
321 else
322 retval = -EINVAL;
323
324 release_sock(sk);
325
326 return retval;
327 }
328
329 static int sctp_get_port_local(struct sock *, union sctp_addr *);
330
331 /* Verify this is a valid sockaddr. */
332 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
333 union sctp_addr *addr, int len)
334 {
335 struct sctp_af *af;
336
337 /* Check minimum size. */
338 if (len < sizeof (struct sockaddr))
339 return NULL;
340
341 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
342 return NULL;
343
344 if (addr->sa.sa_family == AF_INET6) {
345 if (len < SIN6_LEN_RFC2133)
346 return NULL;
347 /* V4 mapped address are really of AF_INET family */
348 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
349 !opt->pf->af_supported(AF_INET, opt))
350 return NULL;
351 }
352
353 /* If we get this far, af is valid. */
354 af = sctp_get_af_specific(addr->sa.sa_family);
355
356 if (len < af->sockaddr_len)
357 return NULL;
358
359 return af;
360 }
361
362 static void sctp_auto_asconf_init(struct sctp_sock *sp)
363 {
364 struct net *net = sock_net(&sp->inet.sk);
365
366 if (net->sctp.default_auto_asconf) {
367 spin_lock_bh(&net->sctp.addr_wq_lock);
368 list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist);
369 spin_unlock_bh(&net->sctp.addr_wq_lock);
370 sp->do_auto_asconf = 1;
371 }
372 }
373
374 /* Bind a local address either to an endpoint or to an association. */
375 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
376 {
377 struct net *net = sock_net(sk);
378 struct sctp_sock *sp = sctp_sk(sk);
379 struct sctp_endpoint *ep = sp->ep;
380 struct sctp_bind_addr *bp = &ep->base.bind_addr;
381 struct sctp_af *af;
382 unsigned short snum;
383 int ret = 0;
384
385 /* Common sockaddr verification. */
386 af = sctp_sockaddr_af(sp, addr, len);
387 if (!af) {
388 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
389 __func__, sk, addr, len);
390 return -EINVAL;
391 }
392
393 snum = ntohs(addr->v4.sin_port);
394
395 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
396 __func__, sk, &addr->sa, bp->port, snum, len);
397
398 /* PF specific bind() address verification. */
399 if (!sp->pf->bind_verify(sp, addr))
400 return -EADDRNOTAVAIL;
401
402 /* We must either be unbound, or bind to the same port.
403 * It's OK to allow 0 ports if we are already bound.
404 * We'll just inhert an already bound port in this case
405 */
406 if (bp->port) {
407 if (!snum)
408 snum = bp->port;
409 else if (snum != bp->port) {
410 pr_debug("%s: new port %d doesn't match existing port "
411 "%d\n", __func__, snum, bp->port);
412 return -EINVAL;
413 }
414 }
415
416 if (snum && inet_port_requires_bind_service(net, snum) &&
417 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
418 return -EACCES;
419
420 /* See if the address matches any of the addresses we may have
421 * already bound before checking against other endpoints.
422 */
423 if (sctp_bind_addr_match(bp, addr, sp))
424 return -EINVAL;
425
426 /* Make sure we are allowed to bind here.
427 * The function sctp_get_port_local() does duplicate address
428 * detection.
429 */
430 addr->v4.sin_port = htons(snum);
431 if (sctp_get_port_local(sk, addr))
432 return -EADDRINUSE;
433
434 /* Refresh ephemeral port. */
435 if (!bp->port) {
436 bp->port = inet_sk(sk)->inet_num;
437 sctp_auto_asconf_init(sp);
438 }
439
440 /* Add the address to the bind address list.
441 * Use GFP_ATOMIC since BHs will be disabled.
442 */
443 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
444 SCTP_ADDR_SRC, GFP_ATOMIC);
445
446 if (ret) {
447 sctp_put_port(sk);
448 return ret;
449 }
450 /* Copy back into socket for getsockname() use. */
451 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
452 sp->pf->to_sk_saddr(addr, sk);
453
454 return ret;
455 }
456
457 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
458 *
459 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
460 * at any one time. If a sender, after sending an ASCONF chunk, decides
461 * it needs to transfer another ASCONF Chunk, it MUST wait until the
462 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
463 * subsequent ASCONF. Note this restriction binds each side, so at any
464 * time two ASCONF may be in-transit on any given association (one sent
465 * from each endpoint).
466 */
467 static int sctp_send_asconf(struct sctp_association *asoc,
468 struct sctp_chunk *chunk)
469 {
470 int retval = 0;
471
472 /* If there is an outstanding ASCONF chunk, queue it for later
473 * transmission.
474 */
475 if (asoc->addip_last_asconf) {
476 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
477 goto out;
478 }
479
480 /* Hold the chunk until an ASCONF_ACK is received. */
481 sctp_chunk_hold(chunk);
482 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk);
483 if (retval)
484 sctp_chunk_free(chunk);
485 else
486 asoc->addip_last_asconf = chunk;
487
488 out:
489 return retval;
490 }
491
492 /* Add a list of addresses as bind addresses to local endpoint or
493 * association.
494 *
495 * Basically run through each address specified in the addrs/addrcnt
496 * array/length pair, determine if it is IPv6 or IPv4 and call
497 * sctp_do_bind() on it.
498 *
499 * If any of them fails, then the operation will be reversed and the
500 * ones that were added will be removed.
501 *
502 * Only sctp_setsockopt_bindx() is supposed to call this function.
503 */
504 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
505 {
506 int cnt;
507 int retval = 0;
508 void *addr_buf;
509 struct sockaddr *sa_addr;
510 struct sctp_af *af;
511
512 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
513 addrs, addrcnt);
514
515 addr_buf = addrs;
516 for (cnt = 0; cnt < addrcnt; cnt++) {
517 /* The list may contain either IPv4 or IPv6 address;
518 * determine the address length for walking thru the list.
519 */
520 sa_addr = addr_buf;
521 af = sctp_get_af_specific(sa_addr->sa_family);
522 if (!af) {
523 retval = -EINVAL;
524 goto err_bindx_add;
525 }
526
527 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
528 af->sockaddr_len);
529
530 addr_buf += af->sockaddr_len;
531
532 err_bindx_add:
533 if (retval < 0) {
534 /* Failed. Cleanup the ones that have been added */
535 if (cnt > 0)
536 sctp_bindx_rem(sk, addrs, cnt);
537 return retval;
538 }
539 }
540
541 return retval;
542 }
543
544 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
545 * associations that are part of the endpoint indicating that a list of local
546 * addresses are added to the endpoint.
547 *
548 * If any of the addresses is already in the bind address list of the
549 * association, we do not send the chunk for that association. But it will not
550 * affect other associations.
551 *
552 * Only sctp_setsockopt_bindx() is supposed to call this function.
553 */
554 static int sctp_send_asconf_add_ip(struct sock *sk,
555 struct sockaddr *addrs,
556 int addrcnt)
557 {
558 struct sctp_sock *sp;
559 struct sctp_endpoint *ep;
560 struct sctp_association *asoc;
561 struct sctp_bind_addr *bp;
562 struct sctp_chunk *chunk;
563 struct sctp_sockaddr_entry *laddr;
564 union sctp_addr *addr;
565 union sctp_addr saveaddr;
566 void *addr_buf;
567 struct sctp_af *af;
568 struct list_head *p;
569 int i;
570 int retval = 0;
571
572 sp = sctp_sk(sk);
573 ep = sp->ep;
574
575 if (!ep->asconf_enable)
576 return retval;
577
578 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
579 __func__, sk, addrs, addrcnt);
580
581 list_for_each_entry(asoc, &ep->asocs, asocs) {
582 if (!asoc->peer.asconf_capable)
583 continue;
584
585 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
586 continue;
587
588 if (!sctp_state(asoc, ESTABLISHED))
589 continue;
590
591 /* Check if any address in the packed array of addresses is
592 * in the bind address list of the association. If so,
593 * do not send the asconf chunk to its peer, but continue with
594 * other associations.
595 */
596 addr_buf = addrs;
597 for (i = 0; i < addrcnt; i++) {
598 addr = addr_buf;
599 af = sctp_get_af_specific(addr->v4.sin_family);
600 if (!af) {
601 retval = -EINVAL;
602 goto out;
603 }
604
605 if (sctp_assoc_lookup_laddr(asoc, addr))
606 break;
607
608 addr_buf += af->sockaddr_len;
609 }
610 if (i < addrcnt)
611 continue;
612
613 /* Use the first valid address in bind addr list of
614 * association as Address Parameter of ASCONF CHUNK.
615 */
616 bp = &asoc->base.bind_addr;
617 p = bp->address_list.next;
618 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
619 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
620 addrcnt, SCTP_PARAM_ADD_IP);
621 if (!chunk) {
622 retval = -ENOMEM;
623 goto out;
624 }
625
626 /* Add the new addresses to the bind address list with
627 * use_as_src set to 0.
628 */
629 addr_buf = addrs;
630 for (i = 0; i < addrcnt; i++) {
631 addr = addr_buf;
632 af = sctp_get_af_specific(addr->v4.sin_family);
633 memcpy(&saveaddr, addr, af->sockaddr_len);
634 retval = sctp_add_bind_addr(bp, &saveaddr,
635 sizeof(saveaddr),
636 SCTP_ADDR_NEW, GFP_ATOMIC);
637 addr_buf += af->sockaddr_len;
638 }
639 if (asoc->src_out_of_asoc_ok) {
640 struct sctp_transport *trans;
641
642 list_for_each_entry(trans,
643 &asoc->peer.transport_addr_list, transports) {
644 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
645 2*asoc->pathmtu, 4380));
646 trans->ssthresh = asoc->peer.i.a_rwnd;
647 trans->rto = asoc->rto_initial;
648 sctp_max_rto(asoc, trans);
649 trans->rtt = trans->srtt = trans->rttvar = 0;
650 /* Clear the source and route cache */
651 sctp_transport_route(trans, NULL,
652 sctp_sk(asoc->base.sk));
653 }
654 }
655 retval = sctp_send_asconf(asoc, chunk);
656 }
657
658 out:
659 return retval;
660 }
661
662 /* Remove a list of addresses from bind addresses list. Do not remove the
663 * last address.
664 *
665 * Basically run through each address specified in the addrs/addrcnt
666 * array/length pair, determine if it is IPv6 or IPv4 and call
667 * sctp_del_bind() on it.
668 *
669 * If any of them fails, then the operation will be reversed and the
670 * ones that were removed will be added back.
671 *
672 * At least one address has to be left; if only one address is
673 * available, the operation will return -EBUSY.
674 *
675 * Only sctp_setsockopt_bindx() is supposed to call this function.
676 */
677 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
678 {
679 struct sctp_sock *sp = sctp_sk(sk);
680 struct sctp_endpoint *ep = sp->ep;
681 int cnt;
682 struct sctp_bind_addr *bp = &ep->base.bind_addr;
683 int retval = 0;
684 void *addr_buf;
685 union sctp_addr *sa_addr;
686 struct sctp_af *af;
687
688 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
689 __func__, sk, addrs, addrcnt);
690
691 addr_buf = addrs;
692 for (cnt = 0; cnt < addrcnt; cnt++) {
693 /* If the bind address list is empty or if there is only one
694 * bind address, there is nothing more to be removed (we need
695 * at least one address here).
696 */
697 if (list_empty(&bp->address_list) ||
698 (sctp_list_single_entry(&bp->address_list))) {
699 retval = -EBUSY;
700 goto err_bindx_rem;
701 }
702
703 sa_addr = addr_buf;
704 af = sctp_get_af_specific(sa_addr->sa.sa_family);
705 if (!af) {
706 retval = -EINVAL;
707 goto err_bindx_rem;
708 }
709
710 if (!af->addr_valid(sa_addr, sp, NULL)) {
711 retval = -EADDRNOTAVAIL;
712 goto err_bindx_rem;
713 }
714
715 if (sa_addr->v4.sin_port &&
716 sa_addr->v4.sin_port != htons(bp->port)) {
717 retval = -EINVAL;
718 goto err_bindx_rem;
719 }
720
721 if (!sa_addr->v4.sin_port)
722 sa_addr->v4.sin_port = htons(bp->port);
723
724 /* FIXME - There is probably a need to check if sk->sk_saddr and
725 * sk->sk_rcv_addr are currently set to one of the addresses to
726 * be removed. This is something which needs to be looked into
727 * when we are fixing the outstanding issues with multi-homing
728 * socket routing and failover schemes. Refer to comments in
729 * sctp_do_bind(). -daisy
730 */
731 retval = sctp_del_bind_addr(bp, sa_addr);
732
733 addr_buf += af->sockaddr_len;
734 err_bindx_rem:
735 if (retval < 0) {
736 /* Failed. Add the ones that has been removed back */
737 if (cnt > 0)
738 sctp_bindx_add(sk, addrs, cnt);
739 return retval;
740 }
741 }
742
743 return retval;
744 }
745
746 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
747 * the associations that are part of the endpoint indicating that a list of
748 * local addresses are removed from the endpoint.
749 *
750 * If any of the addresses is already in the bind address list of the
751 * association, we do not send the chunk for that association. But it will not
752 * affect other associations.
753 *
754 * Only sctp_setsockopt_bindx() is supposed to call this function.
755 */
756 static int sctp_send_asconf_del_ip(struct sock *sk,
757 struct sockaddr *addrs,
758 int addrcnt)
759 {
760 struct sctp_sock *sp;
761 struct sctp_endpoint *ep;
762 struct sctp_association *asoc;
763 struct sctp_transport *transport;
764 struct sctp_bind_addr *bp;
765 struct sctp_chunk *chunk;
766 union sctp_addr *laddr;
767 void *addr_buf;
768 struct sctp_af *af;
769 struct sctp_sockaddr_entry *saddr;
770 int i;
771 int retval = 0;
772 int stored = 0;
773
774 chunk = NULL;
775 sp = sctp_sk(sk);
776 ep = sp->ep;
777
778 if (!ep->asconf_enable)
779 return retval;
780
781 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
782 __func__, sk, addrs, addrcnt);
783
784 list_for_each_entry(asoc, &ep->asocs, asocs) {
785
786 if (!asoc->peer.asconf_capable)
787 continue;
788
789 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
790 continue;
791
792 if (!sctp_state(asoc, ESTABLISHED))
793 continue;
794
795 /* Check if any address in the packed array of addresses is
796 * not present in the bind address list of the association.
797 * If so, do not send the asconf chunk to its peer, but
798 * continue with other associations.
799 */
800 addr_buf = addrs;
801 for (i = 0; i < addrcnt; i++) {
802 laddr = addr_buf;
803 af = sctp_get_af_specific(laddr->v4.sin_family);
804 if (!af) {
805 retval = -EINVAL;
806 goto out;
807 }
808
809 if (!sctp_assoc_lookup_laddr(asoc, laddr))
810 break;
811
812 addr_buf += af->sockaddr_len;
813 }
814 if (i < addrcnt)
815 continue;
816
817 /* Find one address in the association's bind address list
818 * that is not in the packed array of addresses. This is to
819 * make sure that we do not delete all the addresses in the
820 * association.
821 */
822 bp = &asoc->base.bind_addr;
823 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
824 addrcnt, sp);
825 if ((laddr == NULL) && (addrcnt == 1)) {
826 if (asoc->asconf_addr_del_pending)
827 continue;
828 asoc->asconf_addr_del_pending =
829 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
830 if (asoc->asconf_addr_del_pending == NULL) {
831 retval = -ENOMEM;
832 goto out;
833 }
834 asoc->asconf_addr_del_pending->sa.sa_family =
835 addrs->sa_family;
836 asoc->asconf_addr_del_pending->v4.sin_port =
837 htons(bp->port);
838 if (addrs->sa_family == AF_INET) {
839 struct sockaddr_in *sin;
840
841 sin = (struct sockaddr_in *)addrs;
842 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
843 } else if (addrs->sa_family == AF_INET6) {
844 struct sockaddr_in6 *sin6;
845
846 sin6 = (struct sockaddr_in6 *)addrs;
847 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
848 }
849
850 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
851 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
852 asoc->asconf_addr_del_pending);
853
854 asoc->src_out_of_asoc_ok = 1;
855 stored = 1;
856 goto skip_mkasconf;
857 }
858
859 if (laddr == NULL)
860 return -EINVAL;
861
862 /* We do not need RCU protection throughout this loop
863 * because this is done under a socket lock from the
864 * setsockopt call.
865 */
866 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
867 SCTP_PARAM_DEL_IP);
868 if (!chunk) {
869 retval = -ENOMEM;
870 goto out;
871 }
872
873 skip_mkasconf:
874 /* Reset use_as_src flag for the addresses in the bind address
875 * list that are to be deleted.
876 */
877 addr_buf = addrs;
878 for (i = 0; i < addrcnt; i++) {
879 laddr = addr_buf;
880 af = sctp_get_af_specific(laddr->v4.sin_family);
881 list_for_each_entry(saddr, &bp->address_list, list) {
882 if (sctp_cmp_addr_exact(&saddr->a, laddr))
883 saddr->state = SCTP_ADDR_DEL;
884 }
885 addr_buf += af->sockaddr_len;
886 }
887
888 /* Update the route and saddr entries for all the transports
889 * as some of the addresses in the bind address list are
890 * about to be deleted and cannot be used as source addresses.
891 */
892 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
893 transports) {
894 sctp_transport_route(transport, NULL,
895 sctp_sk(asoc->base.sk));
896 }
897
898 if (stored)
899 /* We don't need to transmit ASCONF */
900 continue;
901 retval = sctp_send_asconf(asoc, chunk);
902 }
903 out:
904 return retval;
905 }
906
907 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
908 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
909 {
910 struct sock *sk = sctp_opt2sk(sp);
911 union sctp_addr *addr;
912 struct sctp_af *af;
913
914 /* It is safe to write port space in caller. */
915 addr = &addrw->a;
916 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
917 af = sctp_get_af_specific(addr->sa.sa_family);
918 if (!af)
919 return -EINVAL;
920 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
921 return -EINVAL;
922
923 if (addrw->state == SCTP_ADDR_NEW)
924 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
925 else
926 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
927 }
928
929 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
930 *
931 * API 8.1
932 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
933 * int flags);
934 *
935 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
936 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
937 * or IPv6 addresses.
938 *
939 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
940 * Section 3.1.2 for this usage.
941 *
942 * addrs is a pointer to an array of one or more socket addresses. Each
943 * address is contained in its appropriate structure (i.e. struct
944 * sockaddr_in or struct sockaddr_in6) the family of the address type
945 * must be used to distinguish the address length (note that this
946 * representation is termed a "packed array" of addresses). The caller
947 * specifies the number of addresses in the array with addrcnt.
948 *
949 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
950 * -1, and sets errno to the appropriate error code.
951 *
952 * For SCTP, the port given in each socket address must be the same, or
953 * sctp_bindx() will fail, setting errno to EINVAL.
954 *
955 * The flags parameter is formed from the bitwise OR of zero or more of
956 * the following currently defined flags:
957 *
958 * SCTP_BINDX_ADD_ADDR
959 *
960 * SCTP_BINDX_REM_ADDR
961 *
962 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
963 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
964 * addresses from the association. The two flags are mutually exclusive;
965 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
966 * not remove all addresses from an association; sctp_bindx() will
967 * reject such an attempt with EINVAL.
968 *
969 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
970 * additional addresses with an endpoint after calling bind(). Or use
971 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
972 * socket is associated with so that no new association accepted will be
973 * associated with those addresses. If the endpoint supports dynamic
974 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
975 * endpoint to send the appropriate message to the peer to change the
976 * peers address lists.
977 *
978 * Adding and removing addresses from a connected association is
979 * optional functionality. Implementations that do not support this
980 * functionality should return EOPNOTSUPP.
981 *
982 * Basically do nothing but copying the addresses from user to kernel
983 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
984 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
985 * from userspace.
986 *
987 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
988 * it.
989 *
990 * sk The sk of the socket
991 * addrs The pointer to the addresses
992 * addrssize Size of the addrs buffer
993 * op Operation to perform (add or remove, see the flags of
994 * sctp_bindx)
995 *
996 * Returns 0 if ok, <0 errno code on error.
997 */
998 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs,
999 int addrs_size, int op)
1000 {
1001 int err;
1002 int addrcnt = 0;
1003 int walk_size = 0;
1004 struct sockaddr *sa_addr;
1005 void *addr_buf = addrs;
1006 struct sctp_af *af;
1007
1008 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
1009 __func__, sk, addr_buf, addrs_size, op);
1010
1011 if (unlikely(addrs_size <= 0))
1012 return -EINVAL;
1013
1014 /* Walk through the addrs buffer and count the number of addresses. */
1015 while (walk_size < addrs_size) {
1016 if (walk_size + sizeof(sa_family_t) > addrs_size)
1017 return -EINVAL;
1018
1019 sa_addr = addr_buf;
1020 af = sctp_get_af_specific(sa_addr->sa_family);
1021
1022 /* If the address family is not supported or if this address
1023 * causes the address buffer to overflow return EINVAL.
1024 */
1025 if (!af || (walk_size + af->sockaddr_len) > addrs_size)
1026 return -EINVAL;
1027 addrcnt++;
1028 addr_buf += af->sockaddr_len;
1029 walk_size += af->sockaddr_len;
1030 }
1031
1032 /* Do the work. */
1033 switch (op) {
1034 case SCTP_BINDX_ADD_ADDR:
1035 /* Allow security module to validate bindx addresses. */
1036 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1037 addrs, addrs_size);
1038 if (err)
1039 return err;
1040 err = sctp_bindx_add(sk, addrs, addrcnt);
1041 if (err)
1042 return err;
1043 return sctp_send_asconf_add_ip(sk, addrs, addrcnt);
1044 case SCTP_BINDX_REM_ADDR:
1045 err = sctp_bindx_rem(sk, addrs, addrcnt);
1046 if (err)
1047 return err;
1048 return sctp_send_asconf_del_ip(sk, addrs, addrcnt);
1049
1050 default:
1051 return -EINVAL;
1052 }
1053 }
1054
1055 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs,
1056 int addrlen)
1057 {
1058 int err;
1059
1060 lock_sock(sk);
1061 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR);
1062 release_sock(sk);
1063 return err;
1064 }
1065
1066 static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
1067 const union sctp_addr *daddr,
1068 const struct sctp_initmsg *init,
1069 struct sctp_transport **tp)
1070 {
1071 struct sctp_association *asoc;
1072 struct sock *sk = ep->base.sk;
1073 struct net *net = sock_net(sk);
1074 enum sctp_scope scope;
1075 int err;
1076
1077 if (sctp_endpoint_is_peeled_off(ep, daddr))
1078 return -EADDRNOTAVAIL;
1079
1080 if (!ep->base.bind_addr.port) {
1081 if (sctp_autobind(sk))
1082 return -EAGAIN;
1083 } else {
1084 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) &&
1085 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1086 return -EACCES;
1087 }
1088
1089 scope = sctp_scope(daddr);
1090 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1091 if (!asoc)
1092 return -ENOMEM;
1093
1094 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1095 if (err < 0)
1096 goto free;
1097
1098 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1099 if (!*tp) {
1100 err = -ENOMEM;
1101 goto free;
1102 }
1103
1104 if (!init)
1105 return 0;
1106
1107 if (init->sinit_num_ostreams) {
1108 __u16 outcnt = init->sinit_num_ostreams;
1109
1110 asoc->c.sinit_num_ostreams = outcnt;
1111 /* outcnt has been changed, need to re-init stream */
1112 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
1113 if (err)
1114 goto free;
1115 }
1116
1117 if (init->sinit_max_instreams)
1118 asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1119
1120 if (init->sinit_max_attempts)
1121 asoc->max_init_attempts = init->sinit_max_attempts;
1122
1123 if (init->sinit_max_init_timeo)
1124 asoc->max_init_timeo =
1125 msecs_to_jiffies(init->sinit_max_init_timeo);
1126
1127 return 0;
1128 free:
1129 sctp_association_free(asoc);
1130 return err;
1131 }
1132
1133 static int sctp_connect_add_peer(struct sctp_association *asoc,
1134 union sctp_addr *daddr, int addr_len)
1135 {
1136 struct sctp_endpoint *ep = asoc->ep;
1137 struct sctp_association *old;
1138 struct sctp_transport *t;
1139 int err;
1140
1141 err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
1142 if (err)
1143 return err;
1144
1145 old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
1146 if (old && old != asoc)
1147 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1148 : -EALREADY;
1149
1150 if (sctp_endpoint_is_peeled_off(ep, daddr))
1151 return -EADDRNOTAVAIL;
1152
1153 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1154 if (!t)
1155 return -ENOMEM;
1156
1157 return 0;
1158 }
1159
1160 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1161 *
1162 * Common routine for handling connect() and sctp_connectx().
1163 * Connect will come in with just a single address.
1164 */
1165 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
1166 int addrs_size, int flags, sctp_assoc_t *assoc_id)
1167 {
1168 struct sctp_sock *sp = sctp_sk(sk);
1169 struct sctp_endpoint *ep = sp->ep;
1170 struct sctp_transport *transport;
1171 struct sctp_association *asoc;
1172 void *addr_buf = kaddrs;
1173 union sctp_addr *daddr;
1174 struct sctp_af *af;
1175 int walk_size, err;
1176 long timeo;
1177
1178 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1179 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
1180 return -EISCONN;
1181
1182 daddr = addr_buf;
1183 af = sctp_get_af_specific(daddr->sa.sa_family);
1184 if (!af || af->sockaddr_len > addrs_size)
1185 return -EINVAL;
1186
1187 err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
1188 if (err)
1189 return err;
1190
1191 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1192 if (asoc)
1193 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1194 : -EALREADY;
1195
1196 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
1197 if (err)
1198 return err;
1199 asoc = transport->asoc;
1200
1201 addr_buf += af->sockaddr_len;
1202 walk_size = af->sockaddr_len;
1203 while (walk_size < addrs_size) {
1204 err = -EINVAL;
1205 if (walk_size + sizeof(sa_family_t) > addrs_size)
1206 goto out_free;
1207
1208 daddr = addr_buf;
1209 af = sctp_get_af_specific(daddr->sa.sa_family);
1210 if (!af || af->sockaddr_len + walk_size > addrs_size)
1211 goto out_free;
1212
1213 if (asoc->peer.port != ntohs(daddr->v4.sin_port))
1214 goto out_free;
1215
1216 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
1217 if (err)
1218 goto out_free;
1219
1220 addr_buf += af->sockaddr_len;
1221 walk_size += af->sockaddr_len;
1222 }
1223
1224 /* In case the user of sctp_connectx() wants an association
1225 * id back, assign one now.
1226 */
1227 if (assoc_id) {
1228 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1229 if (err < 0)
1230 goto out_free;
1231 }
1232
1233 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
1234 if (err < 0)
1235 goto out_free;
1236
1237 /* Initialize sk's dport and daddr for getpeername() */
1238 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1239 sp->pf->to_sk_daddr(daddr, sk);
1240 sk->sk_err = 0;
1241
1242 if (assoc_id)
1243 *assoc_id = asoc->assoc_id;
1244
1245 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1246 return sctp_wait_for_connect(asoc, &timeo);
1247
1248 out_free:
1249 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1250 __func__, asoc, kaddrs, err);
1251 sctp_association_free(asoc);
1252 return err;
1253 }
1254
1255 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1256 *
1257 * API 8.9
1258 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1259 * sctp_assoc_t *asoc);
1260 *
1261 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1262 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1263 * or IPv6 addresses.
1264 *
1265 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1266 * Section 3.1.2 for this usage.
1267 *
1268 * addrs is a pointer to an array of one or more socket addresses. Each
1269 * address is contained in its appropriate structure (i.e. struct
1270 * sockaddr_in or struct sockaddr_in6) the family of the address type
1271 * must be used to distengish the address length (note that this
1272 * representation is termed a "packed array" of addresses). The caller
1273 * specifies the number of addresses in the array with addrcnt.
1274 *
1275 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1276 * the association id of the new association. On failure, sctp_connectx()
1277 * returns -1, and sets errno to the appropriate error code. The assoc_id
1278 * is not touched by the kernel.
1279 *
1280 * For SCTP, the port given in each socket address must be the same, or
1281 * sctp_connectx() will fail, setting errno to EINVAL.
1282 *
1283 * An application can use sctp_connectx to initiate an association with
1284 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1285 * allows a caller to specify multiple addresses at which a peer can be
1286 * reached. The way the SCTP stack uses the list of addresses to set up
1287 * the association is implementation dependent. This function only
1288 * specifies that the stack will try to make use of all the addresses in
1289 * the list when needed.
1290 *
1291 * Note that the list of addresses passed in is only used for setting up
1292 * the association. It does not necessarily equal the set of addresses
1293 * the peer uses for the resulting association. If the caller wants to
1294 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1295 * retrieve them after the association has been set up.
1296 *
1297 * Basically do nothing but copying the addresses from user to kernel
1298 * land and invoking either sctp_connectx(). This is used for tunneling
1299 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1300 *
1301 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1302 * it.
1303 *
1304 * sk The sk of the socket
1305 * addrs The pointer to the addresses
1306 * addrssize Size of the addrs buffer
1307 *
1308 * Returns >=0 if ok, <0 errno code on error.
1309 */
1310 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs,
1311 int addrs_size, sctp_assoc_t *assoc_id)
1312 {
1313 int err = 0, flags = 0;
1314
1315 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1316 __func__, sk, kaddrs, addrs_size);
1317
1318 /* make sure the 1st addr's sa_family is accessible later */
1319 if (unlikely(addrs_size < sizeof(sa_family_t)))
1320 return -EINVAL;
1321
1322 /* Allow security module to validate connectx addresses. */
1323 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1324 (struct sockaddr *)kaddrs,
1325 addrs_size);
1326 if (err)
1327 return err;
1328
1329 /* in-kernel sockets don't generally have a file allocated to them
1330 * if all they do is call sock_create_kern().
1331 */
1332 if (sk->sk_socket->file)
1333 flags = sk->sk_socket->file->f_flags;
1334
1335 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1336 }
1337
1338 /*
1339 * This is an older interface. It's kept for backward compatibility
1340 * to the option that doesn't provide association id.
1341 */
1342 static int sctp_setsockopt_connectx_old(struct sock *sk,
1343 struct sockaddr *kaddrs,
1344 int addrs_size)
1345 {
1346 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL);
1347 }
1348
1349 /*
1350 * New interface for the API. The since the API is done with a socket
1351 * option, to make it simple we feed back the association id is as a return
1352 * indication to the call. Error is always negative and association id is
1353 * always positive.
1354 */
1355 static int sctp_setsockopt_connectx(struct sock *sk,
1356 struct sockaddr *kaddrs,
1357 int addrs_size)
1358 {
1359 sctp_assoc_t assoc_id = 0;
1360 int err = 0;
1361
1362 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id);
1363
1364 if (err)
1365 return err;
1366 else
1367 return assoc_id;
1368 }
1369
1370 /*
1371 * New (hopefully final) interface for the API.
1372 * We use the sctp_getaddrs_old structure so that use-space library
1373 * can avoid any unnecessary allocations. The only different part
1374 * is that we store the actual length of the address buffer into the
1375 * addrs_num structure member. That way we can re-use the existing
1376 * code.
1377 */
1378 #ifdef CONFIG_COMPAT
1379 struct compat_sctp_getaddrs_old {
1380 sctp_assoc_t assoc_id;
1381 s32 addr_num;
1382 compat_uptr_t addrs; /* struct sockaddr * */
1383 };
1384 #endif
1385
1386 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1387 char __user *optval,
1388 int __user *optlen)
1389 {
1390 struct sctp_getaddrs_old param;
1391 sctp_assoc_t assoc_id = 0;
1392 struct sockaddr *kaddrs;
1393 int err = 0;
1394
1395 #ifdef CONFIG_COMPAT
1396 if (in_compat_syscall()) {
1397 struct compat_sctp_getaddrs_old param32;
1398
1399 if (len < sizeof(param32))
1400 return -EINVAL;
1401 if (copy_from_user(&param32, optval, sizeof(param32)))
1402 return -EFAULT;
1403
1404 param.assoc_id = param32.assoc_id;
1405 param.addr_num = param32.addr_num;
1406 param.addrs = compat_ptr(param32.addrs);
1407 } else
1408 #endif
1409 {
1410 if (len < sizeof(param))
1411 return -EINVAL;
1412 if (copy_from_user(&param, optval, sizeof(param)))
1413 return -EFAULT;
1414 }
1415
1416 kaddrs = memdup_user(param.addrs, param.addr_num);
1417 if (IS_ERR(kaddrs))
1418 return PTR_ERR(kaddrs);
1419
1420 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id);
1421 kfree(kaddrs);
1422 if (err == 0 || err == -EINPROGRESS) {
1423 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1424 return -EFAULT;
1425 if (put_user(sizeof(assoc_id), optlen))
1426 return -EFAULT;
1427 }
1428
1429 return err;
1430 }
1431
1432 /* API 3.1.4 close() - UDP Style Syntax
1433 * Applications use close() to perform graceful shutdown (as described in
1434 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1435 * by a UDP-style socket.
1436 *
1437 * The syntax is
1438 *
1439 * ret = close(int sd);
1440 *
1441 * sd - the socket descriptor of the associations to be closed.
1442 *
1443 * To gracefully shutdown a specific association represented by the
1444 * UDP-style socket, an application should use the sendmsg() call,
1445 * passing no user data, but including the appropriate flag in the
1446 * ancillary data (see Section xxxx).
1447 *
1448 * If sd in the close() call is a branched-off socket representing only
1449 * one association, the shutdown is performed on that association only.
1450 *
1451 * 4.1.6 close() - TCP Style Syntax
1452 *
1453 * Applications use close() to gracefully close down an association.
1454 *
1455 * The syntax is:
1456 *
1457 * int close(int sd);
1458 *
1459 * sd - the socket descriptor of the association to be closed.
1460 *
1461 * After an application calls close() on a socket descriptor, no further
1462 * socket operations will succeed on that descriptor.
1463 *
1464 * API 7.1.4 SO_LINGER
1465 *
1466 * An application using the TCP-style socket can use this option to
1467 * perform the SCTP ABORT primitive. The linger option structure is:
1468 *
1469 * struct linger {
1470 * int l_onoff; // option on/off
1471 * int l_linger; // linger time
1472 * };
1473 *
1474 * To enable the option, set l_onoff to 1. If the l_linger value is set
1475 * to 0, calling close() is the same as the ABORT primitive. If the
1476 * value is set to a negative value, the setsockopt() call will return
1477 * an error. If the value is set to a positive value linger_time, the
1478 * close() can be blocked for at most linger_time ms. If the graceful
1479 * shutdown phase does not finish during this period, close() will
1480 * return but the graceful shutdown phase continues in the system.
1481 */
1482 static void sctp_close(struct sock *sk, long timeout)
1483 {
1484 struct net *net = sock_net(sk);
1485 struct sctp_endpoint *ep;
1486 struct sctp_association *asoc;
1487 struct list_head *pos, *temp;
1488 unsigned int data_was_unread;
1489
1490 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1491
1492 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1493 sk->sk_shutdown = SHUTDOWN_MASK;
1494 inet_sk_set_state(sk, SCTP_SS_CLOSING);
1495
1496 ep = sctp_sk(sk)->ep;
1497
1498 /* Clean up any skbs sitting on the receive queue. */
1499 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1500 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1501
1502 /* Walk all associations on an endpoint. */
1503 list_for_each_safe(pos, temp, &ep->asocs) {
1504 asoc = list_entry(pos, struct sctp_association, asocs);
1505
1506 if (sctp_style(sk, TCP)) {
1507 /* A closed association can still be in the list if
1508 * it belongs to a TCP-style listening socket that is
1509 * not yet accepted. If so, free it. If not, send an
1510 * ABORT or SHUTDOWN based on the linger options.
1511 */
1512 if (sctp_state(asoc, CLOSED)) {
1513 sctp_association_free(asoc);
1514 continue;
1515 }
1516 }
1517
1518 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1519 !skb_queue_empty(&asoc->ulpq.reasm) ||
1520 !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1521 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1522 struct sctp_chunk *chunk;
1523
1524 chunk = sctp_make_abort_user(asoc, NULL, 0);
1525 sctp_primitive_ABORT(net, asoc, chunk);
1526 } else
1527 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1528 }
1529
1530 /* On a TCP-style socket, block for at most linger_time if set. */
1531 if (sctp_style(sk, TCP) && timeout)
1532 sctp_wait_for_close(sk, timeout);
1533
1534 /* This will run the backlog queue. */
1535 release_sock(sk);
1536
1537 /* Supposedly, no process has access to the socket, but
1538 * the net layers still may.
1539 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1540 * held and that should be grabbed before socket lock.
1541 */
1542 spin_lock_bh(&net->sctp.addr_wq_lock);
1543 bh_lock_sock_nested(sk);
1544
1545 /* Hold the sock, since sk_common_release() will put sock_put()
1546 * and we have just a little more cleanup.
1547 */
1548 sock_hold(sk);
1549 sk_common_release(sk);
1550
1551 bh_unlock_sock(sk);
1552 spin_unlock_bh(&net->sctp.addr_wq_lock);
1553
1554 sock_put(sk);
1555
1556 SCTP_DBG_OBJCNT_DEC(sock);
1557 }
1558
1559 /* Handle EPIPE error. */
1560 static int sctp_error(struct sock *sk, int flags, int err)
1561 {
1562 if (err == -EPIPE)
1563 err = sock_error(sk) ? : -EPIPE;
1564 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1565 send_sig(SIGPIPE, current, 0);
1566 return err;
1567 }
1568
1569 /* API 3.1.3 sendmsg() - UDP Style Syntax
1570 *
1571 * An application uses sendmsg() and recvmsg() calls to transmit data to
1572 * and receive data from its peer.
1573 *
1574 * ssize_t sendmsg(int socket, const struct msghdr *message,
1575 * int flags);
1576 *
1577 * socket - the socket descriptor of the endpoint.
1578 * message - pointer to the msghdr structure which contains a single
1579 * user message and possibly some ancillary data.
1580 *
1581 * See Section 5 for complete description of the data
1582 * structures.
1583 *
1584 * flags - flags sent or received with the user message, see Section
1585 * 5 for complete description of the flags.
1586 *
1587 * Note: This function could use a rewrite especially when explicit
1588 * connect support comes in.
1589 */
1590 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1591
1592 static int sctp_msghdr_parse(const struct msghdr *msg,
1593 struct sctp_cmsgs *cmsgs);
1594
1595 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1596 struct sctp_sndrcvinfo *srinfo,
1597 const struct msghdr *msg, size_t msg_len)
1598 {
1599 __u16 sflags;
1600 int err;
1601
1602 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1603 return -EPIPE;
1604
1605 if (msg_len > sk->sk_sndbuf)
1606 return -EMSGSIZE;
1607
1608 memset(cmsgs, 0, sizeof(*cmsgs));
1609 err = sctp_msghdr_parse(msg, cmsgs);
1610 if (err) {
1611 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1612 return err;
1613 }
1614
1615 memset(srinfo, 0, sizeof(*srinfo));
1616 if (cmsgs->srinfo) {
1617 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1618 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1619 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1620 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1621 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1622 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1623 }
1624
1625 if (cmsgs->sinfo) {
1626 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1627 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1628 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1629 srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1630 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1631 }
1632
1633 if (cmsgs->prinfo) {
1634 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1635 SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1636 cmsgs->prinfo->pr_policy);
1637 }
1638
1639 sflags = srinfo->sinfo_flags;
1640 if (!sflags && msg_len)
1641 return 0;
1642
1643 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1644 return -EINVAL;
1645
1646 if (((sflags & SCTP_EOF) && msg_len > 0) ||
1647 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1648 return -EINVAL;
1649
1650 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1651 return -EINVAL;
1652
1653 return 0;
1654 }
1655
1656 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1657 struct sctp_cmsgs *cmsgs,
1658 union sctp_addr *daddr,
1659 struct sctp_transport **tp)
1660 {
1661 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1662 struct sctp_association *asoc;
1663 struct cmsghdr *cmsg;
1664 __be32 flowinfo = 0;
1665 struct sctp_af *af;
1666 int err;
1667
1668 *tp = NULL;
1669
1670 if (sflags & (SCTP_EOF | SCTP_ABORT))
1671 return -EINVAL;
1672
1673 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1674 sctp_sstate(sk, CLOSING)))
1675 return -EADDRNOTAVAIL;
1676
1677 /* Label connection socket for first association 1-to-many
1678 * style for client sequence socket()->sendmsg(). This
1679 * needs to be done before sctp_assoc_add_peer() as that will
1680 * set up the initial packet that needs to account for any
1681 * security ip options (CIPSO/CALIPSO) added to the packet.
1682 */
1683 af = sctp_get_af_specific(daddr->sa.sa_family);
1684 if (!af)
1685 return -EINVAL;
1686 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1687 (struct sockaddr *)daddr,
1688 af->sockaddr_len);
1689 if (err < 0)
1690 return err;
1691
1692 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
1693 if (err)
1694 return err;
1695 asoc = (*tp)->asoc;
1696
1697 if (!cmsgs->addrs_msg)
1698 return 0;
1699
1700 if (daddr->sa.sa_family == AF_INET6)
1701 flowinfo = daddr->v6.sin6_flowinfo;
1702
1703 /* sendv addr list parse */
1704 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1705 union sctp_addr _daddr;
1706 int dlen;
1707
1708 if (cmsg->cmsg_level != IPPROTO_SCTP ||
1709 (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1710 cmsg->cmsg_type != SCTP_DSTADDRV6))
1711 continue;
1712
1713 daddr = &_daddr;
1714 memset(daddr, 0, sizeof(*daddr));
1715 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1716 if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1717 if (dlen < sizeof(struct in_addr)) {
1718 err = -EINVAL;
1719 goto free;
1720 }
1721
1722 dlen = sizeof(struct in_addr);
1723 daddr->v4.sin_family = AF_INET;
1724 daddr->v4.sin_port = htons(asoc->peer.port);
1725 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1726 } else {
1727 if (dlen < sizeof(struct in6_addr)) {
1728 err = -EINVAL;
1729 goto free;
1730 }
1731
1732 dlen = sizeof(struct in6_addr);
1733 daddr->v6.sin6_flowinfo = flowinfo;
1734 daddr->v6.sin6_family = AF_INET6;
1735 daddr->v6.sin6_port = htons(asoc->peer.port);
1736 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1737 }
1738
1739 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
1740 if (err)
1741 goto free;
1742 }
1743
1744 return 0;
1745
1746 free:
1747 sctp_association_free(asoc);
1748 return err;
1749 }
1750
1751 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1752 __u16 sflags, struct msghdr *msg,
1753 size_t msg_len)
1754 {
1755 struct sock *sk = asoc->base.sk;
1756 struct net *net = sock_net(sk);
1757
1758 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1759 return -EPIPE;
1760
1761 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1762 !sctp_state(asoc, ESTABLISHED))
1763 return 0;
1764
1765 if (sflags & SCTP_EOF) {
1766 pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1767 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1768
1769 return 0;
1770 }
1771
1772 if (sflags & SCTP_ABORT) {
1773 struct sctp_chunk *chunk;
1774
1775 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1776 if (!chunk)
1777 return -ENOMEM;
1778
1779 pr_debug("%s: aborting association:%p\n", __func__, asoc);
1780 sctp_primitive_ABORT(net, asoc, chunk);
1781 iov_iter_revert(&msg->msg_iter, msg_len);
1782
1783 return 0;
1784 }
1785
1786 return 1;
1787 }
1788
1789 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1790 struct msghdr *msg, size_t msg_len,
1791 struct sctp_transport *transport,
1792 struct sctp_sndrcvinfo *sinfo)
1793 {
1794 struct sock *sk = asoc->base.sk;
1795 struct sctp_sock *sp = sctp_sk(sk);
1796 struct net *net = sock_net(sk);
1797 struct sctp_datamsg *datamsg;
1798 bool wait_connect = false;
1799 struct sctp_chunk *chunk;
1800 long timeo;
1801 int err;
1802
1803 if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1804 err = -EINVAL;
1805 goto err;
1806 }
1807
1808 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1809 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1810 if (err)
1811 goto err;
1812 }
1813
1814 if (sp->disable_fragments && msg_len > asoc->frag_point) {
1815 err = -EMSGSIZE;
1816 goto err;
1817 }
1818
1819 if (asoc->pmtu_pending) {
1820 if (sp->param_flags & SPP_PMTUD_ENABLE)
1821 sctp_assoc_sync_pmtu(asoc);
1822 asoc->pmtu_pending = 0;
1823 }
1824
1825 if (sctp_wspace(asoc) < (int)msg_len)
1826 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1827
1828 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1829 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1830 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1831 if (err)
1832 goto err;
1833 if (unlikely(sinfo->sinfo_stream >= asoc->stream.outcnt)) {
1834 err = -EINVAL;
1835 goto err;
1836 }
1837 }
1838
1839 if (sctp_state(asoc, CLOSED)) {
1840 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1841 if (err)
1842 goto err;
1843
1844 if (asoc->ep->intl_enable) {
1845 timeo = sock_sndtimeo(sk, 0);
1846 err = sctp_wait_for_connect(asoc, &timeo);
1847 if (err) {
1848 err = -ESRCH;
1849 goto err;
1850 }
1851 } else {
1852 wait_connect = true;
1853 }
1854
1855 pr_debug("%s: we associated primitively\n", __func__);
1856 }
1857
1858 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1859 if (IS_ERR(datamsg)) {
1860 err = PTR_ERR(datamsg);
1861 goto err;
1862 }
1863
1864 asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1865
1866 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1867 sctp_chunk_hold(chunk);
1868 sctp_set_owner_w(chunk);
1869 chunk->transport = transport;
1870 }
1871
1872 err = sctp_primitive_SEND(net, asoc, datamsg);
1873 if (err) {
1874 sctp_datamsg_free(datamsg);
1875 goto err;
1876 }
1877
1878 pr_debug("%s: we sent primitively\n", __func__);
1879
1880 sctp_datamsg_put(datamsg);
1881
1882 if (unlikely(wait_connect)) {
1883 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1884 sctp_wait_for_connect(asoc, &timeo);
1885 }
1886
1887 err = msg_len;
1888
1889 err:
1890 return err;
1891 }
1892
1893 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1894 const struct msghdr *msg,
1895 struct sctp_cmsgs *cmsgs)
1896 {
1897 union sctp_addr *daddr = NULL;
1898 int err;
1899
1900 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1901 int len = msg->msg_namelen;
1902
1903 if (len > sizeof(*daddr))
1904 len = sizeof(*daddr);
1905
1906 daddr = (union sctp_addr *)msg->msg_name;
1907
1908 err = sctp_verify_addr(sk, daddr, len);
1909 if (err)
1910 return ERR_PTR(err);
1911 }
1912
1913 return daddr;
1914 }
1915
1916 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1917 struct sctp_sndrcvinfo *sinfo,
1918 struct sctp_cmsgs *cmsgs)
1919 {
1920 if (!cmsgs->srinfo && !cmsgs->sinfo) {
1921 sinfo->sinfo_stream = asoc->default_stream;
1922 sinfo->sinfo_ppid = asoc->default_ppid;
1923 sinfo->sinfo_context = asoc->default_context;
1924 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1925
1926 if (!cmsgs->prinfo)
1927 sinfo->sinfo_flags = asoc->default_flags;
1928 }
1929
1930 if (!cmsgs->srinfo && !cmsgs->prinfo)
1931 sinfo->sinfo_timetolive = asoc->default_timetolive;
1932
1933 if (cmsgs->authinfo) {
1934 /* Reuse sinfo_tsn to indicate that authinfo was set and
1935 * sinfo_ssn to save the keyid on tx path.
1936 */
1937 sinfo->sinfo_tsn = 1;
1938 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
1939 }
1940 }
1941
1942 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1943 {
1944 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1945 struct sctp_transport *transport = NULL;
1946 struct sctp_sndrcvinfo _sinfo, *sinfo;
1947 struct sctp_association *asoc, *tmp;
1948 struct sctp_cmsgs cmsgs;
1949 union sctp_addr *daddr;
1950 bool new = false;
1951 __u16 sflags;
1952 int err;
1953
1954 /* Parse and get snd_info */
1955 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
1956 if (err)
1957 goto out;
1958
1959 sinfo = &_sinfo;
1960 sflags = sinfo->sinfo_flags;
1961
1962 /* Get daddr from msg */
1963 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
1964 if (IS_ERR(daddr)) {
1965 err = PTR_ERR(daddr);
1966 goto out;
1967 }
1968
1969 lock_sock(sk);
1970
1971 /* SCTP_SENDALL process */
1972 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
1973 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
1974 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1975 msg_len);
1976 if (err == 0)
1977 continue;
1978 if (err < 0)
1979 goto out_unlock;
1980
1981 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
1982
1983 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
1984 NULL, sinfo);
1985 if (err < 0)
1986 goto out_unlock;
1987
1988 iov_iter_revert(&msg->msg_iter, err);
1989 }
1990
1991 goto out_unlock;
1992 }
1993
1994 /* Get and check or create asoc */
1995 if (daddr) {
1996 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1997 if (asoc) {
1998 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1999 msg_len);
2000 if (err <= 0)
2001 goto out_unlock;
2002 } else {
2003 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2004 &transport);
2005 if (err)
2006 goto out_unlock;
2007
2008 asoc = transport->asoc;
2009 new = true;
2010 }
2011
2012 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2013 transport = NULL;
2014 } else {
2015 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2016 if (!asoc) {
2017 err = -EPIPE;
2018 goto out_unlock;
2019 }
2020
2021 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2022 if (err <= 0)
2023 goto out_unlock;
2024 }
2025
2026 /* Update snd_info with the asoc */
2027 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2028
2029 /* Send msg to the asoc */
2030 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2031 if (err < 0 && err != -ESRCH && new)
2032 sctp_association_free(asoc);
2033
2034 out_unlock:
2035 release_sock(sk);
2036 out:
2037 return sctp_error(sk, msg->msg_flags, err);
2038 }
2039
2040 /* This is an extended version of skb_pull() that removes the data from the
2041 * start of a skb even when data is spread across the list of skb's in the
2042 * frag_list. len specifies the total amount of data that needs to be removed.
2043 * when 'len' bytes could be removed from the skb, it returns 0.
2044 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2045 * could not be removed.
2046 */
2047 static int sctp_skb_pull(struct sk_buff *skb, int len)
2048 {
2049 struct sk_buff *list;
2050 int skb_len = skb_headlen(skb);
2051 int rlen;
2052
2053 if (len <= skb_len) {
2054 __skb_pull(skb, len);
2055 return 0;
2056 }
2057 len -= skb_len;
2058 __skb_pull(skb, skb_len);
2059
2060 skb_walk_frags(skb, list) {
2061 rlen = sctp_skb_pull(list, len);
2062 skb->len -= (len-rlen);
2063 skb->data_len -= (len-rlen);
2064
2065 if (!rlen)
2066 return 0;
2067
2068 len = rlen;
2069 }
2070
2071 return len;
2072 }
2073
2074 /* API 3.1.3 recvmsg() - UDP Style Syntax
2075 *
2076 * ssize_t recvmsg(int socket, struct msghdr *message,
2077 * int flags);
2078 *
2079 * socket - the socket descriptor of the endpoint.
2080 * message - pointer to the msghdr structure which contains a single
2081 * user message and possibly some ancillary data.
2082 *
2083 * See Section 5 for complete description of the data
2084 * structures.
2085 *
2086 * flags - flags sent or received with the user message, see Section
2087 * 5 for complete description of the flags.
2088 */
2089 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2090 int flags, int *addr_len)
2091 {
2092 struct sctp_ulpevent *event = NULL;
2093 struct sctp_sock *sp = sctp_sk(sk);
2094 struct sk_buff *skb, *head_skb;
2095 int copied;
2096 int err = 0;
2097 int skb_len;
2098
2099 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, flags:0x%x, addr_len:%p)\n",
2100 __func__, sk, msg, len, flags, addr_len);
2101
2102 lock_sock(sk);
2103
2104 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2105 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2106 err = -ENOTCONN;
2107 goto out;
2108 }
2109
2110 skb = sctp_skb_recv_datagram(sk, flags, &err);
2111 if (!skb)
2112 goto out;
2113
2114 /* Get the total length of the skb including any skb's in the
2115 * frag_list.
2116 */
2117 skb_len = skb->len;
2118
2119 copied = skb_len;
2120 if (copied > len)
2121 copied = len;
2122
2123 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2124
2125 event = sctp_skb2event(skb);
2126
2127 if (err)
2128 goto out_free;
2129
2130 if (event->chunk && event->chunk->head_skb)
2131 head_skb = event->chunk->head_skb;
2132 else
2133 head_skb = skb;
2134 sock_recv_cmsgs(msg, sk, head_skb);
2135 if (sctp_ulpevent_is_notification(event)) {
2136 msg->msg_flags |= MSG_NOTIFICATION;
2137 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2138 } else {
2139 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2140 }
2141
2142 /* Check if we allow SCTP_NXTINFO. */
2143 if (sp->recvnxtinfo)
2144 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2145 /* Check if we allow SCTP_RCVINFO. */
2146 if (sp->recvrcvinfo)
2147 sctp_ulpevent_read_rcvinfo(event, msg);
2148 /* Check if we allow SCTP_SNDRCVINFO. */
2149 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2150 sctp_ulpevent_read_sndrcvinfo(event, msg);
2151
2152 err = copied;
2153
2154 /* If skb's length exceeds the user's buffer, update the skb and
2155 * push it back to the receive_queue so that the next call to
2156 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2157 */
2158 if (skb_len > copied) {
2159 msg->msg_flags &= ~MSG_EOR;
2160 if (flags & MSG_PEEK)
2161 goto out_free;
2162 sctp_skb_pull(skb, copied);
2163 skb_queue_head(&sk->sk_receive_queue, skb);
2164
2165 /* When only partial message is copied to the user, increase
2166 * rwnd by that amount. If all the data in the skb is read,
2167 * rwnd is updated when the event is freed.
2168 */
2169 if (!sctp_ulpevent_is_notification(event))
2170 sctp_assoc_rwnd_increase(event->asoc, copied);
2171 goto out;
2172 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2173 (event->msg_flags & MSG_EOR))
2174 msg->msg_flags |= MSG_EOR;
2175 else
2176 msg->msg_flags &= ~MSG_EOR;
2177
2178 out_free:
2179 if (flags & MSG_PEEK) {
2180 /* Release the skb reference acquired after peeking the skb in
2181 * sctp_skb_recv_datagram().
2182 */
2183 kfree_skb(skb);
2184 } else {
2185 /* Free the event which includes releasing the reference to
2186 * the owner of the skb, freeing the skb and updating the
2187 * rwnd.
2188 */
2189 sctp_ulpevent_free(event);
2190 }
2191 out:
2192 release_sock(sk);
2193 return err;
2194 }
2195
2196 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2197 *
2198 * This option is a on/off flag. If enabled no SCTP message
2199 * fragmentation will be performed. Instead if a message being sent
2200 * exceeds the current PMTU size, the message will NOT be sent and
2201 * instead a error will be indicated to the user.
2202 */
2203 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val,
2204 unsigned int optlen)
2205 {
2206 if (optlen < sizeof(int))
2207 return -EINVAL;
2208 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1;
2209 return 0;
2210 }
2211
2212 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type,
2213 unsigned int optlen)
2214 {
2215 struct sctp_sock *sp = sctp_sk(sk);
2216 struct sctp_association *asoc;
2217 int i;
2218
2219 if (optlen > sizeof(struct sctp_event_subscribe))
2220 return -EINVAL;
2221
2222 for (i = 0; i < optlen; i++)
2223 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2224 sn_type[i]);
2225
2226 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2227 asoc->subscribe = sctp_sk(sk)->subscribe;
2228
2229 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2230 * if there is no data to be sent or retransmit, the stack will
2231 * immediately send up this notification.
2232 */
2233 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2234 struct sctp_ulpevent *event;
2235
2236 asoc = sctp_id2assoc(sk, 0);
2237 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2238 event = sctp_ulpevent_make_sender_dry_event(asoc,
2239 GFP_USER | __GFP_NOWARN);
2240 if (!event)
2241 return -ENOMEM;
2242
2243 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2244 }
2245 }
2246
2247 return 0;
2248 }
2249
2250 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2251 *
2252 * This socket option is applicable to the UDP-style socket only. When
2253 * set it will cause associations that are idle for more than the
2254 * specified number of seconds to automatically close. An association
2255 * being idle is defined an association that has NOT sent or received
2256 * user data. The special value of '0' indicates that no automatic
2257 * close of any associations should be performed. The option expects an
2258 * integer defining the number of seconds of idle time before an
2259 * association is closed.
2260 */
2261 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval,
2262 unsigned int optlen)
2263 {
2264 struct sctp_sock *sp = sctp_sk(sk);
2265 struct net *net = sock_net(sk);
2266
2267 /* Applicable to UDP-style socket only */
2268 if (sctp_style(sk, TCP))
2269 return -EOPNOTSUPP;
2270 if (optlen != sizeof(int))
2271 return -EINVAL;
2272
2273 sp->autoclose = *optval;
2274 if (sp->autoclose > net->sctp.max_autoclose)
2275 sp->autoclose = net->sctp.max_autoclose;
2276
2277 return 0;
2278 }
2279
2280 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2281 *
2282 * Applications can enable or disable heartbeats for any peer address of
2283 * an association, modify an address's heartbeat interval, force a
2284 * heartbeat to be sent immediately, and adjust the address's maximum
2285 * number of retransmissions sent before an address is considered
2286 * unreachable. The following structure is used to access and modify an
2287 * address's parameters:
2288 *
2289 * struct sctp_paddrparams {
2290 * sctp_assoc_t spp_assoc_id;
2291 * struct sockaddr_storage spp_address;
2292 * uint32_t spp_hbinterval;
2293 * uint16_t spp_pathmaxrxt;
2294 * uint32_t spp_pathmtu;
2295 * uint32_t spp_sackdelay;
2296 * uint32_t spp_flags;
2297 * uint32_t spp_ipv6_flowlabel;
2298 * uint8_t spp_dscp;
2299 * };
2300 *
2301 * spp_assoc_id - (one-to-many style socket) This is filled in the
2302 * application, and identifies the association for
2303 * this query.
2304 * spp_address - This specifies which address is of interest.
2305 * spp_hbinterval - This contains the value of the heartbeat interval,
2306 * in milliseconds. If a value of zero
2307 * is present in this field then no changes are to
2308 * be made to this parameter.
2309 * spp_pathmaxrxt - This contains the maximum number of
2310 * retransmissions before this address shall be
2311 * considered unreachable. If a value of zero
2312 * is present in this field then no changes are to
2313 * be made to this parameter.
2314 * spp_pathmtu - When Path MTU discovery is disabled the value
2315 * specified here will be the "fixed" path mtu.
2316 * Note that if the spp_address field is empty
2317 * then all associations on this address will
2318 * have this fixed path mtu set upon them.
2319 *
2320 * spp_sackdelay - When delayed sack is enabled, this value specifies
2321 * the number of milliseconds that sacks will be delayed
2322 * for. This value will apply to all addresses of an
2323 * association if the spp_address field is empty. Note
2324 * also, that if delayed sack is enabled and this
2325 * value is set to 0, no change is made to the last
2326 * recorded delayed sack timer value.
2327 *
2328 * spp_flags - These flags are used to control various features
2329 * on an association. The flag field may contain
2330 * zero or more of the following options.
2331 *
2332 * SPP_HB_ENABLE - Enable heartbeats on the
2333 * specified address. Note that if the address
2334 * field is empty all addresses for the association
2335 * have heartbeats enabled upon them.
2336 *
2337 * SPP_HB_DISABLE - Disable heartbeats on the
2338 * speicifed address. Note that if the address
2339 * field is empty all addresses for the association
2340 * will have their heartbeats disabled. Note also
2341 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2342 * mutually exclusive, only one of these two should
2343 * be specified. Enabling both fields will have
2344 * undetermined results.
2345 *
2346 * SPP_HB_DEMAND - Request a user initiated heartbeat
2347 * to be made immediately.
2348 *
2349 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2350 * heartbeat delayis to be set to the value of 0
2351 * milliseconds.
2352 *
2353 * SPP_PMTUD_ENABLE - This field will enable PMTU
2354 * discovery upon the specified address. Note that
2355 * if the address feild is empty then all addresses
2356 * on the association are effected.
2357 *
2358 * SPP_PMTUD_DISABLE - This field will disable PMTU
2359 * discovery upon the specified address. Note that
2360 * if the address feild is empty then all addresses
2361 * on the association are effected. Not also that
2362 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2363 * exclusive. Enabling both will have undetermined
2364 * results.
2365 *
2366 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2367 * on delayed sack. The time specified in spp_sackdelay
2368 * is used to specify the sack delay for this address. Note
2369 * that if spp_address is empty then all addresses will
2370 * enable delayed sack and take on the sack delay
2371 * value specified in spp_sackdelay.
2372 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2373 * off delayed sack. If the spp_address field is blank then
2374 * delayed sack is disabled for the entire association. Note
2375 * also that this field is mutually exclusive to
2376 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2377 * results.
2378 *
2379 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
2380 * setting of the IPV6 flow label value. The value is
2381 * contained in the spp_ipv6_flowlabel field.
2382 * Upon retrieval, this flag will be set to indicate that
2383 * the spp_ipv6_flowlabel field has a valid value returned.
2384 * If a specific destination address is set (in the
2385 * spp_address field), then the value returned is that of
2386 * the address. If just an association is specified (and
2387 * no address), then the association's default flow label
2388 * is returned. If neither an association nor a destination
2389 * is specified, then the socket's default flow label is
2390 * returned. For non-IPv6 sockets, this flag will be left
2391 * cleared.
2392 *
2393 * SPP_DSCP: Setting this flag enables the setting of the
2394 * Differentiated Services Code Point (DSCP) value
2395 * associated with either the association or a specific
2396 * address. The value is obtained in the spp_dscp field.
2397 * Upon retrieval, this flag will be set to indicate that
2398 * the spp_dscp field has a valid value returned. If a
2399 * specific destination address is set when called (in the
2400 * spp_address field), then that specific destination
2401 * address's DSCP value is returned. If just an association
2402 * is specified, then the association's default DSCP is
2403 * returned. If neither an association nor a destination is
2404 * specified, then the socket's default DSCP is returned.
2405 *
2406 * spp_ipv6_flowlabel
2407 * - This field is used in conjunction with the
2408 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2409 * The 20 least significant bits are used for the flow
2410 * label. This setting has precedence over any IPv6-layer
2411 * setting.
2412 *
2413 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
2414 * and contains the DSCP. The 6 most significant bits are
2415 * used for the DSCP. This setting has precedence over any
2416 * IPv4- or IPv6- layer setting.
2417 */
2418 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2419 struct sctp_transport *trans,
2420 struct sctp_association *asoc,
2421 struct sctp_sock *sp,
2422 int hb_change,
2423 int pmtud_change,
2424 int sackdelay_change)
2425 {
2426 int error;
2427
2428 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2429 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net,
2430 trans->asoc, trans);
2431 if (error)
2432 return error;
2433 }
2434
2435 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2436 * this field is ignored. Note also that a value of zero indicates
2437 * the current setting should be left unchanged.
2438 */
2439 if (params->spp_flags & SPP_HB_ENABLE) {
2440
2441 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2442 * set. This lets us use 0 value when this flag
2443 * is set.
2444 */
2445 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2446 params->spp_hbinterval = 0;
2447
2448 if (params->spp_hbinterval ||
2449 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2450 if (trans) {
2451 trans->hbinterval =
2452 msecs_to_jiffies(params->spp_hbinterval);
2453 } else if (asoc) {
2454 asoc->hbinterval =
2455 msecs_to_jiffies(params->spp_hbinterval);
2456 } else {
2457 sp->hbinterval = params->spp_hbinterval;
2458 }
2459 }
2460 }
2461
2462 if (hb_change) {
2463 if (trans) {
2464 trans->param_flags =
2465 (trans->param_flags & ~SPP_HB) | hb_change;
2466 } else if (asoc) {
2467 asoc->param_flags =
2468 (asoc->param_flags & ~SPP_HB) | hb_change;
2469 } else {
2470 sp->param_flags =
2471 (sp->param_flags & ~SPP_HB) | hb_change;
2472 }
2473 }
2474
2475 /* When Path MTU discovery is disabled the value specified here will
2476 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2477 * include the flag SPP_PMTUD_DISABLE for this field to have any
2478 * effect).
2479 */
2480 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2481 if (trans) {
2482 trans->pathmtu = params->spp_pathmtu;
2483 sctp_assoc_sync_pmtu(asoc);
2484 } else if (asoc) {
2485 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2486 } else {
2487 sp->pathmtu = params->spp_pathmtu;
2488 }
2489 }
2490
2491 if (pmtud_change) {
2492 if (trans) {
2493 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2494 (params->spp_flags & SPP_PMTUD_ENABLE);
2495 trans->param_flags =
2496 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2497 if (update) {
2498 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2499 sctp_assoc_sync_pmtu(asoc);
2500 }
2501 sctp_transport_pl_reset(trans);
2502 } else if (asoc) {
2503 asoc->param_flags =
2504 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2505 } else {
2506 sp->param_flags =
2507 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2508 }
2509 }
2510
2511 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2512 * value of this field is ignored. Note also that a value of zero
2513 * indicates the current setting should be left unchanged.
2514 */
2515 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2516 if (trans) {
2517 trans->sackdelay =
2518 msecs_to_jiffies(params->spp_sackdelay);
2519 } else if (asoc) {
2520 asoc->sackdelay =
2521 msecs_to_jiffies(params->spp_sackdelay);
2522 } else {
2523 sp->sackdelay = params->spp_sackdelay;
2524 }
2525 }
2526
2527 if (sackdelay_change) {
2528 if (trans) {
2529 trans->param_flags =
2530 (trans->param_flags & ~SPP_SACKDELAY) |
2531 sackdelay_change;
2532 } else if (asoc) {
2533 asoc->param_flags =
2534 (asoc->param_flags & ~SPP_SACKDELAY) |
2535 sackdelay_change;
2536 } else {
2537 sp->param_flags =
2538 (sp->param_flags & ~SPP_SACKDELAY) |
2539 sackdelay_change;
2540 }
2541 }
2542
2543 /* Note that a value of zero indicates the current setting should be
2544 left unchanged.
2545 */
2546 if (params->spp_pathmaxrxt) {
2547 if (trans) {
2548 trans->pathmaxrxt = params->spp_pathmaxrxt;
2549 } else if (asoc) {
2550 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2551 } else {
2552 sp->pathmaxrxt = params->spp_pathmaxrxt;
2553 }
2554 }
2555
2556 if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2557 if (trans) {
2558 if (trans->ipaddr.sa.sa_family == AF_INET6) {
2559 trans->flowlabel = params->spp_ipv6_flowlabel &
2560 SCTP_FLOWLABEL_VAL_MASK;
2561 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2562 }
2563 } else if (asoc) {
2564 struct sctp_transport *t;
2565
2566 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2567 transports) {
2568 if (t->ipaddr.sa.sa_family != AF_INET6)
2569 continue;
2570 t->flowlabel = params->spp_ipv6_flowlabel &
2571 SCTP_FLOWLABEL_VAL_MASK;
2572 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2573 }
2574 asoc->flowlabel = params->spp_ipv6_flowlabel &
2575 SCTP_FLOWLABEL_VAL_MASK;
2576 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2577 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2578 sp->flowlabel = params->spp_ipv6_flowlabel &
2579 SCTP_FLOWLABEL_VAL_MASK;
2580 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2581 }
2582 }
2583
2584 if (params->spp_flags & SPP_DSCP) {
2585 if (trans) {
2586 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2587 trans->dscp |= SCTP_DSCP_SET_MASK;
2588 } else if (asoc) {
2589 struct sctp_transport *t;
2590
2591 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2592 transports) {
2593 t->dscp = params->spp_dscp &
2594 SCTP_DSCP_VAL_MASK;
2595 t->dscp |= SCTP_DSCP_SET_MASK;
2596 }
2597 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2598 asoc->dscp |= SCTP_DSCP_SET_MASK;
2599 } else {
2600 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2601 sp->dscp |= SCTP_DSCP_SET_MASK;
2602 }
2603 }
2604
2605 return 0;
2606 }
2607
2608 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2609 struct sctp_paddrparams *params,
2610 unsigned int optlen)
2611 {
2612 struct sctp_transport *trans = NULL;
2613 struct sctp_association *asoc = NULL;
2614 struct sctp_sock *sp = sctp_sk(sk);
2615 int error;
2616 int hb_change, pmtud_change, sackdelay_change;
2617
2618 if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2619 spp_ipv6_flowlabel), 4)) {
2620 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2621 return -EINVAL;
2622 } else if (optlen != sizeof(*params)) {
2623 return -EINVAL;
2624 }
2625
2626 /* Validate flags and value parameters. */
2627 hb_change = params->spp_flags & SPP_HB;
2628 pmtud_change = params->spp_flags & SPP_PMTUD;
2629 sackdelay_change = params->spp_flags & SPP_SACKDELAY;
2630
2631 if (hb_change == SPP_HB ||
2632 pmtud_change == SPP_PMTUD ||
2633 sackdelay_change == SPP_SACKDELAY ||
2634 params->spp_sackdelay > 500 ||
2635 (params->spp_pathmtu &&
2636 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2637 return -EINVAL;
2638
2639 /* If an address other than INADDR_ANY is specified, and
2640 * no transport is found, then the request is invalid.
2641 */
2642 if (!sctp_is_any(sk, (union sctp_addr *)&params->spp_address)) {
2643 trans = sctp_addr_id2transport(sk, &params->spp_address,
2644 params->spp_assoc_id);
2645 if (!trans)
2646 return -EINVAL;
2647 }
2648
2649 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2650 * socket is a one to many style socket, and an association
2651 * was not found, then the id was invalid.
2652 */
2653 asoc = sctp_id2assoc(sk, params->spp_assoc_id);
2654 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC &&
2655 sctp_style(sk, UDP))
2656 return -EINVAL;
2657
2658 /* Heartbeat demand can only be sent on a transport or
2659 * association, but not a socket.
2660 */
2661 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2662 return -EINVAL;
2663
2664 /* Process parameters. */
2665 error = sctp_apply_peer_addr_params(params, trans, asoc, sp,
2666 hb_change, pmtud_change,
2667 sackdelay_change);
2668
2669 if (error)
2670 return error;
2671
2672 /* If changes are for association, also apply parameters to each
2673 * transport.
2674 */
2675 if (!trans && asoc) {
2676 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2677 transports) {
2678 sctp_apply_peer_addr_params(params, trans, asoc, sp,
2679 hb_change, pmtud_change,
2680 sackdelay_change);
2681 }
2682 }
2683
2684 return 0;
2685 }
2686
2687 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2688 {
2689 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2690 }
2691
2692 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2693 {
2694 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2695 }
2696
2697 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2698 struct sctp_association *asoc)
2699 {
2700 struct sctp_transport *trans;
2701
2702 if (params->sack_delay) {
2703 asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2704 asoc->param_flags =
2705 sctp_spp_sackdelay_enable(asoc->param_flags);
2706 }
2707 if (params->sack_freq == 1) {
2708 asoc->param_flags =
2709 sctp_spp_sackdelay_disable(asoc->param_flags);
2710 } else if (params->sack_freq > 1) {
2711 asoc->sackfreq = params->sack_freq;
2712 asoc->param_flags =
2713 sctp_spp_sackdelay_enable(asoc->param_flags);
2714 }
2715
2716 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2717 transports) {
2718 if (params->sack_delay) {
2719 trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2720 trans->param_flags =
2721 sctp_spp_sackdelay_enable(trans->param_flags);
2722 }
2723 if (params->sack_freq == 1) {
2724 trans->param_flags =
2725 sctp_spp_sackdelay_disable(trans->param_flags);
2726 } else if (params->sack_freq > 1) {
2727 trans->sackfreq = params->sack_freq;
2728 trans->param_flags =
2729 sctp_spp_sackdelay_enable(trans->param_flags);
2730 }
2731 }
2732 }
2733
2734 /*
2735 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2736 *
2737 * This option will effect the way delayed acks are performed. This
2738 * option allows you to get or set the delayed ack time, in
2739 * milliseconds. It also allows changing the delayed ack frequency.
2740 * Changing the frequency to 1 disables the delayed sack algorithm. If
2741 * the assoc_id is 0, then this sets or gets the endpoints default
2742 * values. If the assoc_id field is non-zero, then the set or get
2743 * effects the specified association for the one to many model (the
2744 * assoc_id field is ignored by the one to one model). Note that if
2745 * sack_delay or sack_freq are 0 when setting this option, then the
2746 * current values will remain unchanged.
2747 *
2748 * struct sctp_sack_info {
2749 * sctp_assoc_t sack_assoc_id;
2750 * uint32_t sack_delay;
2751 * uint32_t sack_freq;
2752 * };
2753 *
2754 * sack_assoc_id - This parameter, indicates which association the user
2755 * is performing an action upon. Note that if this field's value is
2756 * zero then the endpoints default value is changed (effecting future
2757 * associations only).
2758 *
2759 * sack_delay - This parameter contains the number of milliseconds that
2760 * the user is requesting the delayed ACK timer be set to. Note that
2761 * this value is defined in the standard to be between 200 and 500
2762 * milliseconds.
2763 *
2764 * sack_freq - This parameter contains the number of packets that must
2765 * be received before a sack is sent without waiting for the delay
2766 * timer to expire. The default value for this is 2, setting this
2767 * value to 1 will disable the delayed sack algorithm.
2768 */
2769 static int __sctp_setsockopt_delayed_ack(struct sock *sk,
2770 struct sctp_sack_info *params)
2771 {
2772 struct sctp_sock *sp = sctp_sk(sk);
2773 struct sctp_association *asoc;
2774
2775 /* Validate value parameter. */
2776 if (params->sack_delay > 500)
2777 return -EINVAL;
2778
2779 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2780 * socket is a one to many style socket, and an association
2781 * was not found, then the id was invalid.
2782 */
2783 asoc = sctp_id2assoc(sk, params->sack_assoc_id);
2784 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC &&
2785 sctp_style(sk, UDP))
2786 return -EINVAL;
2787
2788 if (asoc) {
2789 sctp_apply_asoc_delayed_ack(params, asoc);
2790
2791 return 0;
2792 }
2793
2794 if (sctp_style(sk, TCP))
2795 params->sack_assoc_id = SCTP_FUTURE_ASSOC;
2796
2797 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC ||
2798 params->sack_assoc_id == SCTP_ALL_ASSOC) {
2799 if (params->sack_delay) {
2800 sp->sackdelay = params->sack_delay;
2801 sp->param_flags =
2802 sctp_spp_sackdelay_enable(sp->param_flags);
2803 }
2804 if (params->sack_freq == 1) {
2805 sp->param_flags =
2806 sctp_spp_sackdelay_disable(sp->param_flags);
2807 } else if (params->sack_freq > 1) {
2808 sp->sackfreq = params->sack_freq;
2809 sp->param_flags =
2810 sctp_spp_sackdelay_enable(sp->param_flags);
2811 }
2812 }
2813
2814 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC ||
2815 params->sack_assoc_id == SCTP_ALL_ASSOC)
2816 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2817 sctp_apply_asoc_delayed_ack(params, asoc);
2818
2819 return 0;
2820 }
2821
2822 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2823 struct sctp_sack_info *params,
2824 unsigned int optlen)
2825 {
2826 if (optlen == sizeof(struct sctp_assoc_value)) {
2827 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params;
2828 struct sctp_sack_info p;
2829
2830 pr_warn_ratelimited(DEPRECATED
2831 "%s (pid %d) "
2832 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2833 "Use struct sctp_sack_info instead\n",
2834 current->comm, task_pid_nr(current));
2835
2836 p.sack_assoc_id = v->assoc_id;
2837 p.sack_delay = v->assoc_value;
2838 p.sack_freq = v->assoc_value ? 0 : 1;
2839 return __sctp_setsockopt_delayed_ack(sk, &p);
2840 }
2841
2842 if (optlen != sizeof(struct sctp_sack_info))
2843 return -EINVAL;
2844 if (params->sack_delay == 0 && params->sack_freq == 0)
2845 return 0;
2846 return __sctp_setsockopt_delayed_ack(sk, params);
2847 }
2848
2849 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2850 *
2851 * Applications can specify protocol parameters for the default association
2852 * initialization. The option name argument to setsockopt() and getsockopt()
2853 * is SCTP_INITMSG.
2854 *
2855 * Setting initialization parameters is effective only on an unconnected
2856 * socket (for UDP-style sockets only future associations are effected
2857 * by the change). With TCP-style sockets, this option is inherited by
2858 * sockets derived from a listener socket.
2859 */
2860 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit,
2861 unsigned int optlen)
2862 {
2863 struct sctp_sock *sp = sctp_sk(sk);
2864
2865 if (optlen != sizeof(struct sctp_initmsg))
2866 return -EINVAL;
2867
2868 if (sinit->sinit_num_ostreams)
2869 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams;
2870 if (sinit->sinit_max_instreams)
2871 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams;
2872 if (sinit->sinit_max_attempts)
2873 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts;
2874 if (sinit->sinit_max_init_timeo)
2875 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo;
2876
2877 return 0;
2878 }
2879
2880 /*
2881 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2882 *
2883 * Applications that wish to use the sendto() system call may wish to
2884 * specify a default set of parameters that would normally be supplied
2885 * through the inclusion of ancillary data. This socket option allows
2886 * such an application to set the default sctp_sndrcvinfo structure.
2887 * The application that wishes to use this socket option simply passes
2888 * in to this call the sctp_sndrcvinfo structure defined in Section
2889 * 5.2.2) The input parameters accepted by this call include
2890 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2891 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2892 * to this call if the caller is using the UDP model.
2893 */
2894 static int sctp_setsockopt_default_send_param(struct sock *sk,
2895 struct sctp_sndrcvinfo *info,
2896 unsigned int optlen)
2897 {
2898 struct sctp_sock *sp = sctp_sk(sk);
2899 struct sctp_association *asoc;
2900
2901 if (optlen != sizeof(*info))
2902 return -EINVAL;
2903 if (info->sinfo_flags &
2904 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2905 SCTP_ABORT | SCTP_EOF))
2906 return -EINVAL;
2907
2908 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id);
2909 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC &&
2910 sctp_style(sk, UDP))
2911 return -EINVAL;
2912
2913 if (asoc) {
2914 asoc->default_stream = info->sinfo_stream;
2915 asoc->default_flags = info->sinfo_flags;
2916 asoc->default_ppid = info->sinfo_ppid;
2917 asoc->default_context = info->sinfo_context;
2918 asoc->default_timetolive = info->sinfo_timetolive;
2919
2920 return 0;
2921 }
2922
2923 if (sctp_style(sk, TCP))
2924 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC;
2925
2926 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
2927 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2928 sp->default_stream = info->sinfo_stream;
2929 sp->default_flags = info->sinfo_flags;
2930 sp->default_ppid = info->sinfo_ppid;
2931 sp->default_context = info->sinfo_context;
2932 sp->default_timetolive = info->sinfo_timetolive;
2933 }
2934
2935 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
2936 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2937 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2938 asoc->default_stream = info->sinfo_stream;
2939 asoc->default_flags = info->sinfo_flags;
2940 asoc->default_ppid = info->sinfo_ppid;
2941 asoc->default_context = info->sinfo_context;
2942 asoc->default_timetolive = info->sinfo_timetolive;
2943 }
2944 }
2945
2946 return 0;
2947 }
2948
2949 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2950 * (SCTP_DEFAULT_SNDINFO)
2951 */
2952 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2953 struct sctp_sndinfo *info,
2954 unsigned int optlen)
2955 {
2956 struct sctp_sock *sp = sctp_sk(sk);
2957 struct sctp_association *asoc;
2958
2959 if (optlen != sizeof(*info))
2960 return -EINVAL;
2961 if (info->snd_flags &
2962 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2963 SCTP_ABORT | SCTP_EOF))
2964 return -EINVAL;
2965
2966 asoc = sctp_id2assoc(sk, info->snd_assoc_id);
2967 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC &&
2968 sctp_style(sk, UDP))
2969 return -EINVAL;
2970
2971 if (asoc) {
2972 asoc->default_stream = info->snd_sid;
2973 asoc->default_flags = info->snd_flags;
2974 asoc->default_ppid = info->snd_ppid;
2975 asoc->default_context = info->snd_context;
2976
2977 return 0;
2978 }
2979
2980 if (sctp_style(sk, TCP))
2981 info->snd_assoc_id = SCTP_FUTURE_ASSOC;
2982
2983 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC ||
2984 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2985 sp->default_stream = info->snd_sid;
2986 sp->default_flags = info->snd_flags;
2987 sp->default_ppid = info->snd_ppid;
2988 sp->default_context = info->snd_context;
2989 }
2990
2991 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC ||
2992 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2993 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2994 asoc->default_stream = info->snd_sid;
2995 asoc->default_flags = info->snd_flags;
2996 asoc->default_ppid = info->snd_ppid;
2997 asoc->default_context = info->snd_context;
2998 }
2999 }
3000
3001 return 0;
3002 }
3003
3004 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3005 *
3006 * Requests that the local SCTP stack use the enclosed peer address as
3007 * the association primary. The enclosed address must be one of the
3008 * association peer's addresses.
3009 */
3010 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim,
3011 unsigned int optlen)
3012 {
3013 struct sctp_transport *trans;
3014 struct sctp_af *af;
3015 int err;
3016
3017 if (optlen != sizeof(struct sctp_prim))
3018 return -EINVAL;
3019
3020 /* Allow security module to validate address but need address len. */
3021 af = sctp_get_af_specific(prim->ssp_addr.ss_family);
3022 if (!af)
3023 return -EINVAL;
3024
3025 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3026 (struct sockaddr *)&prim->ssp_addr,
3027 af->sockaddr_len);
3028 if (err)
3029 return err;
3030
3031 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id);
3032 if (!trans)
3033 return -EINVAL;
3034
3035 sctp_assoc_set_primary(trans->asoc, trans);
3036
3037 return 0;
3038 }
3039
3040 /*
3041 * 7.1.5 SCTP_NODELAY
3042 *
3043 * Turn on/off any Nagle-like algorithm. This means that packets are
3044 * generally sent as soon as possible and no unnecessary delays are
3045 * introduced, at the cost of more packets in the network. Expects an
3046 * integer boolean flag.
3047 */
3048 static int sctp_setsockopt_nodelay(struct sock *sk, int *val,
3049 unsigned int optlen)
3050 {
3051 if (optlen < sizeof(int))
3052 return -EINVAL;
3053 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1;
3054 return 0;
3055 }
3056
3057 /*
3058 *
3059 * 7.1.1 SCTP_RTOINFO
3060 *
3061 * The protocol parameters used to initialize and bound retransmission
3062 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3063 * and modify these parameters.
3064 * All parameters are time values, in milliseconds. A value of 0, when
3065 * modifying the parameters, indicates that the current value should not
3066 * be changed.
3067 *
3068 */
3069 static int sctp_setsockopt_rtoinfo(struct sock *sk,
3070 struct sctp_rtoinfo *rtoinfo,
3071 unsigned int optlen)
3072 {
3073 struct sctp_association *asoc;
3074 unsigned long rto_min, rto_max;
3075 struct sctp_sock *sp = sctp_sk(sk);
3076
3077 if (optlen != sizeof (struct sctp_rtoinfo))
3078 return -EINVAL;
3079
3080 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id);
3081
3082 /* Set the values to the specific association */
3083 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC &&
3084 sctp_style(sk, UDP))
3085 return -EINVAL;
3086
3087 rto_max = rtoinfo->srto_max;
3088 rto_min = rtoinfo->srto_min;
3089
3090 if (rto_max)
3091 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3092 else
3093 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3094
3095 if (rto_min)
3096 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3097 else
3098 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3099
3100 if (rto_min > rto_max)
3101 return -EINVAL;
3102
3103 if (asoc) {
3104 if (rtoinfo->srto_initial != 0)
3105 asoc->rto_initial =
3106 msecs_to_jiffies(rtoinfo->srto_initial);
3107 asoc->rto_max = rto_max;
3108 asoc->rto_min = rto_min;
3109 } else {
3110 /* If there is no association or the association-id = 0
3111 * set the values to the endpoint.
3112 */
3113 if (rtoinfo->srto_initial != 0)
3114 sp->rtoinfo.srto_initial = rtoinfo->srto_initial;
3115 sp->rtoinfo.srto_max = rto_max;
3116 sp->rtoinfo.srto_min = rto_min;
3117 }
3118
3119 return 0;
3120 }
3121
3122 /*
3123 *
3124 * 7.1.2 SCTP_ASSOCINFO
3125 *
3126 * This option is used to tune the maximum retransmission attempts
3127 * of the association.
3128 * Returns an error if the new association retransmission value is
3129 * greater than the sum of the retransmission value of the peer.
3130 * See [SCTP] for more information.
3131 *
3132 */
3133 static int sctp_setsockopt_associnfo(struct sock *sk,
3134 struct sctp_assocparams *assocparams,
3135 unsigned int optlen)
3136 {
3137
3138 struct sctp_association *asoc;
3139
3140 if (optlen != sizeof(struct sctp_assocparams))
3141 return -EINVAL;
3142
3143 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id);
3144
3145 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3146 sctp_style(sk, UDP))
3147 return -EINVAL;
3148
3149 /* Set the values to the specific association */
3150 if (asoc) {
3151 if (assocparams->sasoc_asocmaxrxt != 0) {
3152 __u32 path_sum = 0;
3153 int paths = 0;
3154 struct sctp_transport *peer_addr;
3155
3156 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3157 transports) {
3158 path_sum += peer_addr->pathmaxrxt;
3159 paths++;
3160 }
3161
3162 /* Only validate asocmaxrxt if we have more than
3163 * one path/transport. We do this because path
3164 * retransmissions are only counted when we have more
3165 * then one path.
3166 */
3167 if (paths > 1 &&
3168 assocparams->sasoc_asocmaxrxt > path_sum)
3169 return -EINVAL;
3170
3171 asoc->max_retrans = assocparams->sasoc_asocmaxrxt;
3172 }
3173
3174 if (assocparams->sasoc_cookie_life != 0)
3175 asoc->cookie_life =
3176 ms_to_ktime(assocparams->sasoc_cookie_life);
3177 } else {
3178 /* Set the values to the endpoint */
3179 struct sctp_sock *sp = sctp_sk(sk);
3180
3181 if (assocparams->sasoc_asocmaxrxt != 0)
3182 sp->assocparams.sasoc_asocmaxrxt =
3183 assocparams->sasoc_asocmaxrxt;
3184 if (assocparams->sasoc_cookie_life != 0)
3185 sp->assocparams.sasoc_cookie_life =
3186 assocparams->sasoc_cookie_life;
3187 }
3188 return 0;
3189 }
3190
3191 /*
3192 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3193 *
3194 * This socket option is a boolean flag which turns on or off mapped V4
3195 * addresses. If this option is turned on and the socket is type
3196 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3197 * If this option is turned off, then no mapping will be done of V4
3198 * addresses and a user will receive both PF_INET6 and PF_INET type
3199 * addresses on the socket.
3200 */
3201 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val,
3202 unsigned int optlen)
3203 {
3204 struct sctp_sock *sp = sctp_sk(sk);
3205
3206 if (optlen < sizeof(int))
3207 return -EINVAL;
3208 if (*val)
3209 sp->v4mapped = 1;
3210 else
3211 sp->v4mapped = 0;
3212
3213 return 0;
3214 }
3215
3216 /*
3217 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3218 * This option will get or set the maximum size to put in any outgoing
3219 * SCTP DATA chunk. If a message is larger than this size it will be
3220 * fragmented by SCTP into the specified size. Note that the underlying
3221 * SCTP implementation may fragment into smaller sized chunks when the
3222 * PMTU of the underlying association is smaller than the value set by
3223 * the user. The default value for this option is '0' which indicates
3224 * the user is NOT limiting fragmentation and only the PMTU will effect
3225 * SCTP's choice of DATA chunk size. Note also that values set larger
3226 * than the maximum size of an IP datagram will effectively let SCTP
3227 * control fragmentation (i.e. the same as setting this option to 0).
3228 *
3229 * The following structure is used to access and modify this parameter:
3230 *
3231 * struct sctp_assoc_value {
3232 * sctp_assoc_t assoc_id;
3233 * uint32_t assoc_value;
3234 * };
3235 *
3236 * assoc_id: This parameter is ignored for one-to-one style sockets.
3237 * For one-to-many style sockets this parameter indicates which
3238 * association the user is performing an action upon. Note that if
3239 * this field's value is zero then the endpoints default value is
3240 * changed (effecting future associations only).
3241 * assoc_value: This parameter specifies the maximum size in bytes.
3242 */
3243 static int sctp_setsockopt_maxseg(struct sock *sk,
3244 struct sctp_assoc_value *params,
3245 unsigned int optlen)
3246 {
3247 struct sctp_sock *sp = sctp_sk(sk);
3248 struct sctp_association *asoc;
3249 sctp_assoc_t assoc_id;
3250 int val;
3251
3252 if (optlen == sizeof(int)) {
3253 pr_warn_ratelimited(DEPRECATED
3254 "%s (pid %d) "
3255 "Use of int in maxseg socket option.\n"
3256 "Use struct sctp_assoc_value instead\n",
3257 current->comm, task_pid_nr(current));
3258 assoc_id = SCTP_FUTURE_ASSOC;
3259 val = *(int *)params;
3260 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3261 assoc_id = params->assoc_id;
3262 val = params->assoc_value;
3263 } else {
3264 return -EINVAL;
3265 }
3266
3267 asoc = sctp_id2assoc(sk, assoc_id);
3268 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC &&
3269 sctp_style(sk, UDP))
3270 return -EINVAL;
3271
3272 if (val) {
3273 int min_len, max_len;
3274 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3275 sizeof(struct sctp_data_chunk);
3276
3277 min_len = sctp_min_frag_point(sp, datasize);
3278 max_len = SCTP_MAX_CHUNK_LEN - datasize;
3279
3280 if (val < min_len || val > max_len)
3281 return -EINVAL;
3282 }
3283
3284 if (asoc) {
3285 asoc->user_frag = val;
3286 sctp_assoc_update_frag_point(asoc);
3287 } else {
3288 sp->user_frag = val;
3289 }
3290
3291 return 0;
3292 }
3293
3294
3295 /*
3296 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3297 *
3298 * Requests that the peer mark the enclosed address as the association
3299 * primary. The enclosed address must be one of the association's
3300 * locally bound addresses. The following structure is used to make a
3301 * set primary request:
3302 */
3303 static int sctp_setsockopt_peer_primary_addr(struct sock *sk,
3304 struct sctp_setpeerprim *prim,
3305 unsigned int optlen)
3306 {
3307 struct sctp_sock *sp;
3308 struct sctp_association *asoc = NULL;
3309 struct sctp_chunk *chunk;
3310 struct sctp_af *af;
3311 int err;
3312
3313 sp = sctp_sk(sk);
3314
3315 if (!sp->ep->asconf_enable)
3316 return -EPERM;
3317
3318 if (optlen != sizeof(struct sctp_setpeerprim))
3319 return -EINVAL;
3320
3321 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id);
3322 if (!asoc)
3323 return -EINVAL;
3324
3325 if (!asoc->peer.asconf_capable)
3326 return -EPERM;
3327
3328 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3329 return -EPERM;
3330
3331 if (!sctp_state(asoc, ESTABLISHED))
3332 return -ENOTCONN;
3333
3334 af = sctp_get_af_specific(prim->sspp_addr.ss_family);
3335 if (!af)
3336 return -EINVAL;
3337
3338 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL))
3339 return -EADDRNOTAVAIL;
3340
3341 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr))
3342 return -EADDRNOTAVAIL;
3343
3344 /* Allow security module to validate address. */
3345 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3346 (struct sockaddr *)&prim->sspp_addr,
3347 af->sockaddr_len);
3348 if (err)
3349 return err;
3350
3351 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3352 chunk = sctp_make_asconf_set_prim(asoc,
3353 (union sctp_addr *)&prim->sspp_addr);
3354 if (!chunk)
3355 return -ENOMEM;
3356
3357 err = sctp_send_asconf(asoc, chunk);
3358
3359 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3360
3361 return err;
3362 }
3363
3364 static int sctp_setsockopt_adaptation_layer(struct sock *sk,
3365 struct sctp_setadaptation *adapt,
3366 unsigned int optlen)
3367 {
3368 if (optlen != sizeof(struct sctp_setadaptation))
3369 return -EINVAL;
3370
3371 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind;
3372
3373 return 0;
3374 }
3375
3376 /*
3377 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3378 *
3379 * The context field in the sctp_sndrcvinfo structure is normally only
3380 * used when a failed message is retrieved holding the value that was
3381 * sent down on the actual send call. This option allows the setting of
3382 * a default context on an association basis that will be received on
3383 * reading messages from the peer. This is especially helpful in the
3384 * one-2-many model for an application to keep some reference to an
3385 * internal state machine that is processing messages on the
3386 * association. Note that the setting of this value only effects
3387 * received messages from the peer and does not effect the value that is
3388 * saved with outbound messages.
3389 */
3390 static int sctp_setsockopt_context(struct sock *sk,
3391 struct sctp_assoc_value *params,
3392 unsigned int optlen)
3393 {
3394 struct sctp_sock *sp = sctp_sk(sk);
3395 struct sctp_association *asoc;
3396
3397 if (optlen != sizeof(struct sctp_assoc_value))
3398 return -EINVAL;
3399
3400 asoc = sctp_id2assoc(sk, params->assoc_id);
3401 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
3402 sctp_style(sk, UDP))
3403 return -EINVAL;
3404
3405 if (asoc) {
3406 asoc->default_rcv_context = params->assoc_value;
3407
3408 return 0;
3409 }
3410
3411 if (sctp_style(sk, TCP))
3412 params->assoc_id = SCTP_FUTURE_ASSOC;
3413
3414 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
3415 params->assoc_id == SCTP_ALL_ASSOC)
3416 sp->default_rcv_context = params->assoc_value;
3417
3418 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
3419 params->assoc_id == SCTP_ALL_ASSOC)
3420 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3421 asoc->default_rcv_context = params->assoc_value;
3422
3423 return 0;
3424 }
3425
3426 /*
3427 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3428 *
3429 * This options will at a minimum specify if the implementation is doing
3430 * fragmented interleave. Fragmented interleave, for a one to many
3431 * socket, is when subsequent calls to receive a message may return
3432 * parts of messages from different associations. Some implementations
3433 * may allow you to turn this value on or off. If so, when turned off,
3434 * no fragment interleave will occur (which will cause a head of line
3435 * blocking amongst multiple associations sharing the same one to many
3436 * socket). When this option is turned on, then each receive call may
3437 * come from a different association (thus the user must receive data
3438 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3439 * association each receive belongs to.
3440 *
3441 * This option takes a boolean value. A non-zero value indicates that
3442 * fragmented interleave is on. A value of zero indicates that
3443 * fragmented interleave is off.
3444 *
3445 * Note that it is important that an implementation that allows this
3446 * option to be turned on, have it off by default. Otherwise an unaware
3447 * application using the one to many model may become confused and act
3448 * incorrectly.
3449 */
3450 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val,
3451 unsigned int optlen)
3452 {
3453 if (optlen != sizeof(int))
3454 return -EINVAL;
3455
3456 sctp_sk(sk)->frag_interleave = !!*val;
3457
3458 if (!sctp_sk(sk)->frag_interleave)
3459 sctp_sk(sk)->ep->intl_enable = 0;
3460
3461 return 0;
3462 }
3463
3464 /*
3465 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3466 * (SCTP_PARTIAL_DELIVERY_POINT)
3467 *
3468 * This option will set or get the SCTP partial delivery point. This
3469 * point is the size of a message where the partial delivery API will be
3470 * invoked to help free up rwnd space for the peer. Setting this to a
3471 * lower value will cause partial deliveries to happen more often. The
3472 * calls argument is an integer that sets or gets the partial delivery
3473 * point. Note also that the call will fail if the user attempts to set
3474 * this value larger than the socket receive buffer size.
3475 *
3476 * Note that any single message having a length smaller than or equal to
3477 * the SCTP partial delivery point will be delivered in one single read
3478 * call as long as the user provided buffer is large enough to hold the
3479 * message.
3480 */
3481 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val,
3482 unsigned int optlen)
3483 {
3484 if (optlen != sizeof(u32))
3485 return -EINVAL;
3486
3487 /* Note: We double the receive buffer from what the user sets
3488 * it to be, also initial rwnd is based on rcvbuf/2.
3489 */
3490 if (*val > (sk->sk_rcvbuf >> 1))
3491 return -EINVAL;
3492
3493 sctp_sk(sk)->pd_point = *val;
3494
3495 return 0; /* is this the right error code? */
3496 }
3497
3498 /*
3499 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3500 *
3501 * This option will allow a user to change the maximum burst of packets
3502 * that can be emitted by this association. Note that the default value
3503 * is 4, and some implementations may restrict this setting so that it
3504 * can only be lowered.
3505 *
3506 * NOTE: This text doesn't seem right. Do this on a socket basis with
3507 * future associations inheriting the socket value.
3508 */
3509 static int sctp_setsockopt_maxburst(struct sock *sk,
3510 struct sctp_assoc_value *params,
3511 unsigned int optlen)
3512 {
3513 struct sctp_sock *sp = sctp_sk(sk);
3514 struct sctp_association *asoc;
3515 sctp_assoc_t assoc_id;
3516 u32 assoc_value;
3517
3518 if (optlen == sizeof(int)) {
3519 pr_warn_ratelimited(DEPRECATED
3520 "%s (pid %d) "
3521 "Use of int in max_burst socket option deprecated.\n"
3522 "Use struct sctp_assoc_value instead\n",
3523 current->comm, task_pid_nr(current));
3524 assoc_id = SCTP_FUTURE_ASSOC;
3525 assoc_value = *((int *)params);
3526 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3527 assoc_id = params->assoc_id;
3528 assoc_value = params->assoc_value;
3529 } else
3530 return -EINVAL;
3531
3532 asoc = sctp_id2assoc(sk, assoc_id);
3533 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP))
3534 return -EINVAL;
3535
3536 if (asoc) {
3537 asoc->max_burst = assoc_value;
3538
3539 return 0;
3540 }
3541
3542 if (sctp_style(sk, TCP))
3543 assoc_id = SCTP_FUTURE_ASSOC;
3544
3545 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3546 sp->max_burst = assoc_value;
3547
3548 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3549 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3550 asoc->max_burst = assoc_value;
3551
3552 return 0;
3553 }
3554
3555 /*
3556 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3557 *
3558 * This set option adds a chunk type that the user is requesting to be
3559 * received only in an authenticated way. Changes to the list of chunks
3560 * will only effect future associations on the socket.
3561 */
3562 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3563 struct sctp_authchunk *val,
3564 unsigned int optlen)
3565 {
3566 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3567
3568 if (!ep->auth_enable)
3569 return -EACCES;
3570
3571 if (optlen != sizeof(struct sctp_authchunk))
3572 return -EINVAL;
3573
3574 switch (val->sauth_chunk) {
3575 case SCTP_CID_INIT:
3576 case SCTP_CID_INIT_ACK:
3577 case SCTP_CID_SHUTDOWN_COMPLETE:
3578 case SCTP_CID_AUTH:
3579 return -EINVAL;
3580 }
3581
3582 /* add this chunk id to the endpoint */
3583 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk);
3584 }
3585
3586 /*
3587 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3588 *
3589 * This option gets or sets the list of HMAC algorithms that the local
3590 * endpoint requires the peer to use.
3591 */
3592 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3593 struct sctp_hmacalgo *hmacs,
3594 unsigned int optlen)
3595 {
3596 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3597 u32 idents;
3598
3599 if (!ep->auth_enable)
3600 return -EACCES;
3601
3602 if (optlen < sizeof(struct sctp_hmacalgo))
3603 return -EINVAL;
3604 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3605 SCTP_AUTH_NUM_HMACS * sizeof(u16));
3606
3607 idents = hmacs->shmac_num_idents;
3608 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3609 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo)))
3610 return -EINVAL;
3611
3612 return sctp_auth_ep_set_hmacs(ep, hmacs);
3613 }
3614
3615 /*
3616 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3617 *
3618 * This option will set a shared secret key which is used to build an
3619 * association shared key.
3620 */
3621 static int sctp_setsockopt_auth_key(struct sock *sk,
3622 struct sctp_authkey *authkey,
3623 unsigned int optlen)
3624 {
3625 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3626 struct sctp_association *asoc;
3627 int ret = -EINVAL;
3628
3629 if (optlen <= sizeof(struct sctp_authkey))
3630 return -EINVAL;
3631 /* authkey->sca_keylength is u16, so optlen can't be bigger than
3632 * this.
3633 */
3634 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3635
3636 if (authkey->sca_keylength > optlen - sizeof(*authkey))
3637 goto out;
3638
3639 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3640 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3641 sctp_style(sk, UDP))
3642 goto out;
3643
3644 if (asoc) {
3645 ret = sctp_auth_set_key(ep, asoc, authkey);
3646 goto out;
3647 }
3648
3649 if (sctp_style(sk, TCP))
3650 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3651
3652 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3653 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3654 ret = sctp_auth_set_key(ep, asoc, authkey);
3655 if (ret)
3656 goto out;
3657 }
3658
3659 ret = 0;
3660
3661 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3662 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3663 list_for_each_entry(asoc, &ep->asocs, asocs) {
3664 int res = sctp_auth_set_key(ep, asoc, authkey);
3665
3666 if (res && !ret)
3667 ret = res;
3668 }
3669 }
3670
3671 out:
3672 memzero_explicit(authkey, optlen);
3673 return ret;
3674 }
3675
3676 /*
3677 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3678 *
3679 * This option will get or set the active shared key to be used to build
3680 * the association shared key.
3681 */
3682 static int sctp_setsockopt_active_key(struct sock *sk,
3683 struct sctp_authkeyid *val,
3684 unsigned int optlen)
3685 {
3686 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3687 struct sctp_association *asoc;
3688 int ret = 0;
3689
3690 if (optlen != sizeof(struct sctp_authkeyid))
3691 return -EINVAL;
3692
3693 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3694 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3695 sctp_style(sk, UDP))
3696 return -EINVAL;
3697
3698 if (asoc)
3699 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3700
3701 if (sctp_style(sk, TCP))
3702 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3703
3704 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3705 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3706 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3707 if (ret)
3708 return ret;
3709 }
3710
3711 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3712 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3713 list_for_each_entry(asoc, &ep->asocs, asocs) {
3714 int res = sctp_auth_set_active_key(ep, asoc,
3715 val->scact_keynumber);
3716
3717 if (res && !ret)
3718 ret = res;
3719 }
3720 }
3721
3722 return ret;
3723 }
3724
3725 /*
3726 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3727 *
3728 * This set option will delete a shared secret key from use.
3729 */
3730 static int sctp_setsockopt_del_key(struct sock *sk,
3731 struct sctp_authkeyid *val,
3732 unsigned int optlen)
3733 {
3734 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3735 struct sctp_association *asoc;
3736 int ret = 0;
3737
3738 if (optlen != sizeof(struct sctp_authkeyid))
3739 return -EINVAL;
3740
3741 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3742 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3743 sctp_style(sk, UDP))
3744 return -EINVAL;
3745
3746 if (asoc)
3747 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3748
3749 if (sctp_style(sk, TCP))
3750 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3751
3752 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3753 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3754 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3755 if (ret)
3756 return ret;
3757 }
3758
3759 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3760 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3761 list_for_each_entry(asoc, &ep->asocs, asocs) {
3762 int res = sctp_auth_del_key_id(ep, asoc,
3763 val->scact_keynumber);
3764
3765 if (res && !ret)
3766 ret = res;
3767 }
3768 }
3769
3770 return ret;
3771 }
3772
3773 /*
3774 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3775 *
3776 * This set option will deactivate a shared secret key.
3777 */
3778 static int sctp_setsockopt_deactivate_key(struct sock *sk,
3779 struct sctp_authkeyid *val,
3780 unsigned int optlen)
3781 {
3782 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3783 struct sctp_association *asoc;
3784 int ret = 0;
3785
3786 if (optlen != sizeof(struct sctp_authkeyid))
3787 return -EINVAL;
3788
3789 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3790 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3791 sctp_style(sk, UDP))
3792 return -EINVAL;
3793
3794 if (asoc)
3795 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3796
3797 if (sctp_style(sk, TCP))
3798 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3799
3800 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3801 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3802 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3803 if (ret)
3804 return ret;
3805 }
3806
3807 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3808 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3809 list_for_each_entry(asoc, &ep->asocs, asocs) {
3810 int res = sctp_auth_deact_key_id(ep, asoc,
3811 val->scact_keynumber);
3812
3813 if (res && !ret)
3814 ret = res;
3815 }
3816 }
3817
3818 return ret;
3819 }
3820
3821 /*
3822 * 8.1.23 SCTP_AUTO_ASCONF
3823 *
3824 * This option will enable or disable the use of the automatic generation of
3825 * ASCONF chunks to add and delete addresses to an existing association. Note
3826 * that this option has two caveats namely: a) it only affects sockets that
3827 * are bound to all addresses available to the SCTP stack, and b) the system
3828 * administrator may have an overriding control that turns the ASCONF feature
3829 * off no matter what setting the socket option may have.
3830 * This option expects an integer boolean flag, where a non-zero value turns on
3831 * the option, and a zero value turns off the option.
3832 * Note. In this implementation, socket operation overrides default parameter
3833 * being set by sysctl as well as FreeBSD implementation
3834 */
3835 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val,
3836 unsigned int optlen)
3837 {
3838 struct sctp_sock *sp = sctp_sk(sk);
3839
3840 if (optlen < sizeof(int))
3841 return -EINVAL;
3842 if (!sctp_is_ep_boundall(sk) && *val)
3843 return -EINVAL;
3844 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf))
3845 return 0;
3846
3847 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3848 if (*val == 0 && sp->do_auto_asconf) {
3849 list_del(&sp->auto_asconf_list);
3850 sp->do_auto_asconf = 0;
3851 } else if (*val && !sp->do_auto_asconf) {
3852 list_add_tail(&sp->auto_asconf_list,
3853 &sock_net(sk)->sctp.auto_asconf_splist);
3854 sp->do_auto_asconf = 1;
3855 }
3856 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3857 return 0;
3858 }
3859
3860 /*
3861 * SCTP_PEER_ADDR_THLDS
3862 *
3863 * This option allows us to alter the partially failed threshold for one or all
3864 * transports in an association. See Section 6.1 of:
3865 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3866 */
3867 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3868 struct sctp_paddrthlds_v2 *val,
3869 unsigned int optlen, bool v2)
3870 {
3871 struct sctp_transport *trans;
3872 struct sctp_association *asoc;
3873 int len;
3874
3875 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds);
3876 if (optlen < len)
3877 return -EINVAL;
3878
3879 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld)
3880 return -EINVAL;
3881
3882 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) {
3883 trans = sctp_addr_id2transport(sk, &val->spt_address,
3884 val->spt_assoc_id);
3885 if (!trans)
3886 return -ENOENT;
3887
3888 if (val->spt_pathmaxrxt)
3889 trans->pathmaxrxt = val->spt_pathmaxrxt;
3890 if (v2)
3891 trans->ps_retrans = val->spt_pathcpthld;
3892 trans->pf_retrans = val->spt_pathpfthld;
3893
3894 return 0;
3895 }
3896
3897 asoc = sctp_id2assoc(sk, val->spt_assoc_id);
3898 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC &&
3899 sctp_style(sk, UDP))
3900 return -EINVAL;
3901
3902 if (asoc) {
3903 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3904 transports) {
3905 if (val->spt_pathmaxrxt)
3906 trans->pathmaxrxt = val->spt_pathmaxrxt;
3907 if (v2)
3908 trans->ps_retrans = val->spt_pathcpthld;
3909 trans->pf_retrans = val->spt_pathpfthld;
3910 }
3911
3912 if (val->spt_pathmaxrxt)
3913 asoc->pathmaxrxt = val->spt_pathmaxrxt;
3914 if (v2)
3915 asoc->ps_retrans = val->spt_pathcpthld;
3916 asoc->pf_retrans = val->spt_pathpfthld;
3917 } else {
3918 struct sctp_sock *sp = sctp_sk(sk);
3919
3920 if (val->spt_pathmaxrxt)
3921 sp->pathmaxrxt = val->spt_pathmaxrxt;
3922 if (v2)
3923 sp->ps_retrans = val->spt_pathcpthld;
3924 sp->pf_retrans = val->spt_pathpfthld;
3925 }
3926
3927 return 0;
3928 }
3929
3930 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val,
3931 unsigned int optlen)
3932 {
3933 if (optlen < sizeof(int))
3934 return -EINVAL;
3935
3936 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1;
3937
3938 return 0;
3939 }
3940
3941 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val,
3942 unsigned int optlen)
3943 {
3944 if (optlen < sizeof(int))
3945 return -EINVAL;
3946
3947 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1;
3948
3949 return 0;
3950 }
3951
3952 static int sctp_setsockopt_pr_supported(struct sock *sk,
3953 struct sctp_assoc_value *params,
3954 unsigned int optlen)
3955 {
3956 struct sctp_association *asoc;
3957
3958 if (optlen != sizeof(*params))
3959 return -EINVAL;
3960
3961 asoc = sctp_id2assoc(sk, params->assoc_id);
3962 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
3963 sctp_style(sk, UDP))
3964 return -EINVAL;
3965
3966 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value;
3967
3968 return 0;
3969 }
3970
3971 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3972 struct sctp_default_prinfo *info,
3973 unsigned int optlen)
3974 {
3975 struct sctp_sock *sp = sctp_sk(sk);
3976 struct sctp_association *asoc;
3977 int retval = -EINVAL;
3978
3979 if (optlen != sizeof(*info))
3980 goto out;
3981
3982 if (info->pr_policy & ~SCTP_PR_SCTP_MASK)
3983 goto out;
3984
3985 if (info->pr_policy == SCTP_PR_SCTP_NONE)
3986 info->pr_value = 0;
3987
3988 asoc = sctp_id2assoc(sk, info->pr_assoc_id);
3989 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC &&
3990 sctp_style(sk, UDP))
3991 goto out;
3992
3993 retval = 0;
3994
3995 if (asoc) {
3996 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy);
3997 asoc->default_timetolive = info->pr_value;
3998 goto out;
3999 }
4000
4001 if (sctp_style(sk, TCP))
4002 info->pr_assoc_id = SCTP_FUTURE_ASSOC;
4003
4004 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC ||
4005 info->pr_assoc_id == SCTP_ALL_ASSOC) {
4006 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy);
4007 sp->default_timetolive = info->pr_value;
4008 }
4009
4010 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC ||
4011 info->pr_assoc_id == SCTP_ALL_ASSOC) {
4012 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4013 SCTP_PR_SET_POLICY(asoc->default_flags,
4014 info->pr_policy);
4015 asoc->default_timetolive = info->pr_value;
4016 }
4017 }
4018
4019 out:
4020 return retval;
4021 }
4022
4023 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4024 struct sctp_assoc_value *params,
4025 unsigned int optlen)
4026 {
4027 struct sctp_association *asoc;
4028 int retval = -EINVAL;
4029
4030 if (optlen != sizeof(*params))
4031 goto out;
4032
4033 asoc = sctp_id2assoc(sk, params->assoc_id);
4034 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4035 sctp_style(sk, UDP))
4036 goto out;
4037
4038 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value;
4039
4040 retval = 0;
4041
4042 out:
4043 return retval;
4044 }
4045
4046 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4047 struct sctp_assoc_value *params,
4048 unsigned int optlen)
4049 {
4050 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4051 struct sctp_association *asoc;
4052 int retval = -EINVAL;
4053
4054 if (optlen != sizeof(*params))
4055 goto out;
4056
4057 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4058 goto out;
4059
4060 asoc = sctp_id2assoc(sk, params->assoc_id);
4061 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4062 sctp_style(sk, UDP))
4063 goto out;
4064
4065 retval = 0;
4066
4067 if (asoc) {
4068 asoc->strreset_enable = params->assoc_value;
4069 goto out;
4070 }
4071
4072 if (sctp_style(sk, TCP))
4073 params->assoc_id = SCTP_FUTURE_ASSOC;
4074
4075 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4076 params->assoc_id == SCTP_ALL_ASSOC)
4077 ep->strreset_enable = params->assoc_value;
4078
4079 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4080 params->assoc_id == SCTP_ALL_ASSOC)
4081 list_for_each_entry(asoc, &ep->asocs, asocs)
4082 asoc->strreset_enable = params->assoc_value;
4083
4084 out:
4085 return retval;
4086 }
4087
4088 static int sctp_setsockopt_reset_streams(struct sock *sk,
4089 struct sctp_reset_streams *params,
4090 unsigned int optlen)
4091 {
4092 struct sctp_association *asoc;
4093
4094 if (optlen < sizeof(*params))
4095 return -EINVAL;
4096 /* srs_number_streams is u16, so optlen can't be bigger than this. */
4097 optlen = min_t(unsigned int, optlen, USHRT_MAX +
4098 sizeof(__u16) * sizeof(*params));
4099
4100 if (params->srs_number_streams * sizeof(__u16) >
4101 optlen - sizeof(*params))
4102 return -EINVAL;
4103
4104 asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4105 if (!asoc)
4106 return -EINVAL;
4107
4108 return sctp_send_reset_streams(asoc, params);
4109 }
4110
4111 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd,
4112 unsigned int optlen)
4113 {
4114 struct sctp_association *asoc;
4115
4116 if (optlen != sizeof(*associd))
4117 return -EINVAL;
4118
4119 asoc = sctp_id2assoc(sk, *associd);
4120 if (!asoc)
4121 return -EINVAL;
4122
4123 return sctp_send_reset_assoc(asoc);
4124 }
4125
4126 static int sctp_setsockopt_add_streams(struct sock *sk,
4127 struct sctp_add_streams *params,
4128 unsigned int optlen)
4129 {
4130 struct sctp_association *asoc;
4131
4132 if (optlen != sizeof(*params))
4133 return -EINVAL;
4134
4135 asoc = sctp_id2assoc(sk, params->sas_assoc_id);
4136 if (!asoc)
4137 return -EINVAL;
4138
4139 return sctp_send_add_streams(asoc, params);
4140 }
4141
4142 static int sctp_setsockopt_scheduler(struct sock *sk,
4143 struct sctp_assoc_value *params,
4144 unsigned int optlen)
4145 {
4146 struct sctp_sock *sp = sctp_sk(sk);
4147 struct sctp_association *asoc;
4148 int retval = 0;
4149
4150 if (optlen < sizeof(*params))
4151 return -EINVAL;
4152
4153 if (params->assoc_value > SCTP_SS_MAX)
4154 return -EINVAL;
4155
4156 asoc = sctp_id2assoc(sk, params->assoc_id);
4157 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4158 sctp_style(sk, UDP))
4159 return -EINVAL;
4160
4161 if (asoc)
4162 return sctp_sched_set_sched(asoc, params->assoc_value);
4163
4164 if (sctp_style(sk, TCP))
4165 params->assoc_id = SCTP_FUTURE_ASSOC;
4166
4167 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4168 params->assoc_id == SCTP_ALL_ASSOC)
4169 sp->default_ss = params->assoc_value;
4170
4171 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4172 params->assoc_id == SCTP_ALL_ASSOC) {
4173 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4174 int ret = sctp_sched_set_sched(asoc,
4175 params->assoc_value);
4176
4177 if (ret && !retval)
4178 retval = ret;
4179 }
4180 }
4181
4182 return retval;
4183 }
4184
4185 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4186 struct sctp_stream_value *params,
4187 unsigned int optlen)
4188 {
4189 struct sctp_association *asoc;
4190 int retval = -EINVAL;
4191
4192 if (optlen < sizeof(*params))
4193 goto out;
4194
4195 asoc = sctp_id2assoc(sk, params->assoc_id);
4196 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC &&
4197 sctp_style(sk, UDP))
4198 goto out;
4199
4200 if (asoc) {
4201 retval = sctp_sched_set_value(asoc, params->stream_id,
4202 params->stream_value, GFP_KERNEL);
4203 goto out;
4204 }
4205
4206 retval = 0;
4207
4208 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4209 int ret = sctp_sched_set_value(asoc, params->stream_id,
4210 params->stream_value,
4211 GFP_KERNEL);
4212 if (ret && !retval) /* try to return the 1st error. */
4213 retval = ret;
4214 }
4215
4216 out:
4217 return retval;
4218 }
4219
4220 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4221 struct sctp_assoc_value *p,
4222 unsigned int optlen)
4223 {
4224 struct sctp_sock *sp = sctp_sk(sk);
4225 struct sctp_association *asoc;
4226
4227 if (optlen < sizeof(*p))
4228 return -EINVAL;
4229
4230 asoc = sctp_id2assoc(sk, p->assoc_id);
4231 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP))
4232 return -EINVAL;
4233
4234 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4235 return -EPERM;
4236 }
4237
4238 sp->ep->intl_enable = !!p->assoc_value;
4239 return 0;
4240 }
4241
4242 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val,
4243 unsigned int optlen)
4244 {
4245 if (!sctp_style(sk, TCP))
4246 return -EOPNOTSUPP;
4247
4248 if (sctp_sk(sk)->ep->base.bind_addr.port)
4249 return -EFAULT;
4250
4251 if (optlen < sizeof(int))
4252 return -EINVAL;
4253
4254 sctp_sk(sk)->reuse = !!*val;
4255
4256 return 0;
4257 }
4258
4259 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4260 struct sctp_association *asoc)
4261 {
4262 struct sctp_ulpevent *event;
4263
4264 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4265
4266 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4267 if (sctp_outq_is_empty(&asoc->outqueue)) {
4268 event = sctp_ulpevent_make_sender_dry_event(asoc,
4269 GFP_USER | __GFP_NOWARN);
4270 if (!event)
4271 return -ENOMEM;
4272
4273 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4274 }
4275 }
4276
4277 return 0;
4278 }
4279
4280 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param,
4281 unsigned int optlen)
4282 {
4283 struct sctp_sock *sp = sctp_sk(sk);
4284 struct sctp_association *asoc;
4285 int retval = 0;
4286
4287 if (optlen < sizeof(*param))
4288 return -EINVAL;
4289
4290 if (param->se_type < SCTP_SN_TYPE_BASE ||
4291 param->se_type > SCTP_SN_TYPE_MAX)
4292 return -EINVAL;
4293
4294 asoc = sctp_id2assoc(sk, param->se_assoc_id);
4295 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC &&
4296 sctp_style(sk, UDP))
4297 return -EINVAL;
4298
4299 if (asoc)
4300 return sctp_assoc_ulpevent_type_set(param, asoc);
4301
4302 if (sctp_style(sk, TCP))
4303 param->se_assoc_id = SCTP_FUTURE_ASSOC;
4304
4305 if (param->se_assoc_id == SCTP_FUTURE_ASSOC ||
4306 param->se_assoc_id == SCTP_ALL_ASSOC)
4307 sctp_ulpevent_type_set(&sp->subscribe,
4308 param->se_type, param->se_on);
4309
4310 if (param->se_assoc_id == SCTP_CURRENT_ASSOC ||
4311 param->se_assoc_id == SCTP_ALL_ASSOC) {
4312 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4313 int ret = sctp_assoc_ulpevent_type_set(param, asoc);
4314
4315 if (ret && !retval)
4316 retval = ret;
4317 }
4318 }
4319
4320 return retval;
4321 }
4322
4323 static int sctp_setsockopt_asconf_supported(struct sock *sk,
4324 struct sctp_assoc_value *params,
4325 unsigned int optlen)
4326 {
4327 struct sctp_association *asoc;
4328 struct sctp_endpoint *ep;
4329 int retval = -EINVAL;
4330
4331 if (optlen != sizeof(*params))
4332 goto out;
4333
4334 asoc = sctp_id2assoc(sk, params->assoc_id);
4335 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4336 sctp_style(sk, UDP))
4337 goto out;
4338
4339 ep = sctp_sk(sk)->ep;
4340 ep->asconf_enable = !!params->assoc_value;
4341
4342 if (ep->asconf_enable && ep->auth_enable) {
4343 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4344 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4345 }
4346
4347 retval = 0;
4348
4349 out:
4350 return retval;
4351 }
4352
4353 static int sctp_setsockopt_auth_supported(struct sock *sk,
4354 struct sctp_assoc_value *params,
4355 unsigned int optlen)
4356 {
4357 struct sctp_association *asoc;
4358 struct sctp_endpoint *ep;
4359 int retval = -EINVAL;
4360
4361 if (optlen != sizeof(*params))
4362 goto out;
4363
4364 asoc = sctp_id2assoc(sk, params->assoc_id);
4365 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4366 sctp_style(sk, UDP))
4367 goto out;
4368
4369 ep = sctp_sk(sk)->ep;
4370 if (params->assoc_value) {
4371 retval = sctp_auth_init(ep, GFP_KERNEL);
4372 if (retval)
4373 goto out;
4374 if (ep->asconf_enable) {
4375 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4376 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4377 }
4378 }
4379
4380 ep->auth_enable = !!params->assoc_value;
4381 retval = 0;
4382
4383 out:
4384 return retval;
4385 }
4386
4387 static int sctp_setsockopt_ecn_supported(struct sock *sk,
4388 struct sctp_assoc_value *params,
4389 unsigned int optlen)
4390 {
4391 struct sctp_association *asoc;
4392 int retval = -EINVAL;
4393
4394 if (optlen != sizeof(*params))
4395 goto out;
4396
4397 asoc = sctp_id2assoc(sk, params->assoc_id);
4398 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4399 sctp_style(sk, UDP))
4400 goto out;
4401
4402 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value;
4403 retval = 0;
4404
4405 out:
4406 return retval;
4407 }
4408
4409 static int sctp_setsockopt_pf_expose(struct sock *sk,
4410 struct sctp_assoc_value *params,
4411 unsigned int optlen)
4412 {
4413 struct sctp_association *asoc;
4414 int retval = -EINVAL;
4415
4416 if (optlen != sizeof(*params))
4417 goto out;
4418
4419 if (params->assoc_value > SCTP_PF_EXPOSE_MAX)
4420 goto out;
4421
4422 asoc = sctp_id2assoc(sk, params->assoc_id);
4423 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4424 sctp_style(sk, UDP))
4425 goto out;
4426
4427 if (asoc)
4428 asoc->pf_expose = params->assoc_value;
4429 else
4430 sctp_sk(sk)->pf_expose = params->assoc_value;
4431 retval = 0;
4432
4433 out:
4434 return retval;
4435 }
4436
4437 static int sctp_setsockopt_encap_port(struct sock *sk,
4438 struct sctp_udpencaps *encap,
4439 unsigned int optlen)
4440 {
4441 struct sctp_association *asoc;
4442 struct sctp_transport *t;
4443 __be16 encap_port;
4444
4445 if (optlen != sizeof(*encap))
4446 return -EINVAL;
4447
4448 /* If an address other than INADDR_ANY is specified, and
4449 * no transport is found, then the request is invalid.
4450 */
4451 encap_port = (__force __be16)encap->sue_port;
4452 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) {
4453 t = sctp_addr_id2transport(sk, &encap->sue_address,
4454 encap->sue_assoc_id);
4455 if (!t)
4456 return -EINVAL;
4457
4458 t->encap_port = encap_port;
4459 return 0;
4460 }
4461
4462 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4463 * socket is a one to many style socket, and an association
4464 * was not found, then the id was invalid.
4465 */
4466 asoc = sctp_id2assoc(sk, encap->sue_assoc_id);
4467 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC &&
4468 sctp_style(sk, UDP))
4469 return -EINVAL;
4470
4471 /* If changes are for association, also apply encap_port to
4472 * each transport.
4473 */
4474 if (asoc) {
4475 list_for_each_entry(t, &asoc->peer.transport_addr_list,
4476 transports)
4477 t->encap_port = encap_port;
4478
4479 asoc->encap_port = encap_port;
4480 return 0;
4481 }
4482
4483 sctp_sk(sk)->encap_port = encap_port;
4484 return 0;
4485 }
4486
4487 static int sctp_setsockopt_probe_interval(struct sock *sk,
4488 struct sctp_probeinterval *params,
4489 unsigned int optlen)
4490 {
4491 struct sctp_association *asoc;
4492 struct sctp_transport *t;
4493 __u32 probe_interval;
4494
4495 if (optlen != sizeof(*params))
4496 return -EINVAL;
4497
4498 probe_interval = params->spi_interval;
4499 if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN)
4500 return -EINVAL;
4501
4502 /* If an address other than INADDR_ANY is specified, and
4503 * no transport is found, then the request is invalid.
4504 */
4505 if (!sctp_is_any(sk, (union sctp_addr *)&params->spi_address)) {
4506 t = sctp_addr_id2transport(sk, &params->spi_address,
4507 params->spi_assoc_id);
4508 if (!t)
4509 return -EINVAL;
4510
4511 t->probe_interval = msecs_to_jiffies(probe_interval);
4512 sctp_transport_pl_reset(t);
4513 return 0;
4514 }
4515
4516 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4517 * socket is a one to many style socket, and an association
4518 * was not found, then the id was invalid.
4519 */
4520 asoc = sctp_id2assoc(sk, params->spi_assoc_id);
4521 if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC &&
4522 sctp_style(sk, UDP))
4523 return -EINVAL;
4524
4525 /* If changes are for association, also apply probe_interval to
4526 * each transport.
4527 */
4528 if (asoc) {
4529 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
4530 t->probe_interval = msecs_to_jiffies(probe_interval);
4531 sctp_transport_pl_reset(t);
4532 }
4533
4534 asoc->probe_interval = msecs_to_jiffies(probe_interval);
4535 return 0;
4536 }
4537
4538 sctp_sk(sk)->probe_interval = probe_interval;
4539 return 0;
4540 }
4541
4542 /* API 6.2 setsockopt(), getsockopt()
4543 *
4544 * Applications use setsockopt() and getsockopt() to set or retrieve
4545 * socket options. Socket options are used to change the default
4546 * behavior of sockets calls. They are described in Section 7.
4547 *
4548 * The syntax is:
4549 *
4550 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
4551 * int __user *optlen);
4552 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4553 * int optlen);
4554 *
4555 * sd - the socket descript.
4556 * level - set to IPPROTO_SCTP for all SCTP options.
4557 * optname - the option name.
4558 * optval - the buffer to store the value of the option.
4559 * optlen - the size of the buffer.
4560 */
4561 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4562 sockptr_t optval, unsigned int optlen)
4563 {
4564 void *kopt = NULL;
4565 int retval = 0;
4566
4567 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4568
4569 /* I can hardly begin to describe how wrong this is. This is
4570 * so broken as to be worse than useless. The API draft
4571 * REALLY is NOT helpful here... I am not convinced that the
4572 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4573 * are at all well-founded.
4574 */
4575 if (level != SOL_SCTP) {
4576 struct sctp_af *af = sctp_sk(sk)->pf->af;
4577
4578 return af->setsockopt(sk, level, optname, optval, optlen);
4579 }
4580
4581 if (optlen > 0) {
4582 /* Trim it to the biggest size sctp sockopt may need if necessary */
4583 optlen = min_t(unsigned int, optlen,
4584 PAGE_ALIGN(USHRT_MAX +
4585 sizeof(__u16) * sizeof(struct sctp_reset_streams)));
4586 kopt = memdup_sockptr(optval, optlen);
4587 if (IS_ERR(kopt))
4588 return PTR_ERR(kopt);
4589 }
4590
4591 lock_sock(sk);
4592
4593 switch (optname) {
4594 case SCTP_SOCKOPT_BINDX_ADD:
4595 /* 'optlen' is the size of the addresses buffer. */
4596 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4597 SCTP_BINDX_ADD_ADDR);
4598 break;
4599
4600 case SCTP_SOCKOPT_BINDX_REM:
4601 /* 'optlen' is the size of the addresses buffer. */
4602 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4603 SCTP_BINDX_REM_ADDR);
4604 break;
4605
4606 case SCTP_SOCKOPT_CONNECTX_OLD:
4607 /* 'optlen' is the size of the addresses buffer. */
4608 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen);
4609 break;
4610
4611 case SCTP_SOCKOPT_CONNECTX:
4612 /* 'optlen' is the size of the addresses buffer. */
4613 retval = sctp_setsockopt_connectx(sk, kopt, optlen);
4614 break;
4615
4616 case SCTP_DISABLE_FRAGMENTS:
4617 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen);
4618 break;
4619
4620 case SCTP_EVENTS:
4621 retval = sctp_setsockopt_events(sk, kopt, optlen);
4622 break;
4623
4624 case SCTP_AUTOCLOSE:
4625 retval = sctp_setsockopt_autoclose(sk, kopt, optlen);
4626 break;
4627
4628 case SCTP_PEER_ADDR_PARAMS:
4629 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen);
4630 break;
4631
4632 case SCTP_DELAYED_SACK:
4633 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen);
4634 break;
4635 case SCTP_PARTIAL_DELIVERY_POINT:
4636 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen);
4637 break;
4638
4639 case SCTP_INITMSG:
4640 retval = sctp_setsockopt_initmsg(sk, kopt, optlen);
4641 break;
4642 case SCTP_DEFAULT_SEND_PARAM:
4643 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen);
4644 break;
4645 case SCTP_DEFAULT_SNDINFO:
4646 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen);
4647 break;
4648 case SCTP_PRIMARY_ADDR:
4649 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen);
4650 break;
4651 case SCTP_SET_PEER_PRIMARY_ADDR:
4652 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen);
4653 break;
4654 case SCTP_NODELAY:
4655 retval = sctp_setsockopt_nodelay(sk, kopt, optlen);
4656 break;
4657 case SCTP_RTOINFO:
4658 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen);
4659 break;
4660 case SCTP_ASSOCINFO:
4661 retval = sctp_setsockopt_associnfo(sk, kopt, optlen);
4662 break;
4663 case SCTP_I_WANT_MAPPED_V4_ADDR:
4664 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen);
4665 break;
4666 case SCTP_MAXSEG:
4667 retval = sctp_setsockopt_maxseg(sk, kopt, optlen);
4668 break;
4669 case SCTP_ADAPTATION_LAYER:
4670 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen);
4671 break;
4672 case SCTP_CONTEXT:
4673 retval = sctp_setsockopt_context(sk, kopt, optlen);
4674 break;
4675 case SCTP_FRAGMENT_INTERLEAVE:
4676 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen);
4677 break;
4678 case SCTP_MAX_BURST:
4679 retval = sctp_setsockopt_maxburst(sk, kopt, optlen);
4680 break;
4681 case SCTP_AUTH_CHUNK:
4682 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen);
4683 break;
4684 case SCTP_HMAC_IDENT:
4685 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen);
4686 break;
4687 case SCTP_AUTH_KEY:
4688 retval = sctp_setsockopt_auth_key(sk, kopt, optlen);
4689 break;
4690 case SCTP_AUTH_ACTIVE_KEY:
4691 retval = sctp_setsockopt_active_key(sk, kopt, optlen);
4692 break;
4693 case SCTP_AUTH_DELETE_KEY:
4694 retval = sctp_setsockopt_del_key(sk, kopt, optlen);
4695 break;
4696 case SCTP_AUTH_DEACTIVATE_KEY:
4697 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen);
4698 break;
4699 case SCTP_AUTO_ASCONF:
4700 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen);
4701 break;
4702 case SCTP_PEER_ADDR_THLDS:
4703 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4704 false);
4705 break;
4706 case SCTP_PEER_ADDR_THLDS_V2:
4707 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4708 true);
4709 break;
4710 case SCTP_RECVRCVINFO:
4711 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen);
4712 break;
4713 case SCTP_RECVNXTINFO:
4714 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen);
4715 break;
4716 case SCTP_PR_SUPPORTED:
4717 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen);
4718 break;
4719 case SCTP_DEFAULT_PRINFO:
4720 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen);
4721 break;
4722 case SCTP_RECONFIG_SUPPORTED:
4723 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen);
4724 break;
4725 case SCTP_ENABLE_STREAM_RESET:
4726 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen);
4727 break;
4728 case SCTP_RESET_STREAMS:
4729 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen);
4730 break;
4731 case SCTP_RESET_ASSOC:
4732 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen);
4733 break;
4734 case SCTP_ADD_STREAMS:
4735 retval = sctp_setsockopt_add_streams(sk, kopt, optlen);
4736 break;
4737 case SCTP_STREAM_SCHEDULER:
4738 retval = sctp_setsockopt_scheduler(sk, kopt, optlen);
4739 break;
4740 case SCTP_STREAM_SCHEDULER_VALUE:
4741 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen);
4742 break;
4743 case SCTP_INTERLEAVING_SUPPORTED:
4744 retval = sctp_setsockopt_interleaving_supported(sk, kopt,
4745 optlen);
4746 break;
4747 case SCTP_REUSE_PORT:
4748 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen);
4749 break;
4750 case SCTP_EVENT:
4751 retval = sctp_setsockopt_event(sk, kopt, optlen);
4752 break;
4753 case SCTP_ASCONF_SUPPORTED:
4754 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen);
4755 break;
4756 case SCTP_AUTH_SUPPORTED:
4757 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen);
4758 break;
4759 case SCTP_ECN_SUPPORTED:
4760 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen);
4761 break;
4762 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
4763 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen);
4764 break;
4765 case SCTP_REMOTE_UDP_ENCAPS_PORT:
4766 retval = sctp_setsockopt_encap_port(sk, kopt, optlen);
4767 break;
4768 case SCTP_PLPMTUD_PROBE_INTERVAL:
4769 retval = sctp_setsockopt_probe_interval(sk, kopt, optlen);
4770 break;
4771 default:
4772 retval = -ENOPROTOOPT;
4773 break;
4774 }
4775
4776 release_sock(sk);
4777 kfree(kopt);
4778 return retval;
4779 }
4780
4781 /* API 3.1.6 connect() - UDP Style Syntax
4782 *
4783 * An application may use the connect() call in the UDP model to initiate an
4784 * association without sending data.
4785 *
4786 * The syntax is:
4787 *
4788 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4789 *
4790 * sd: the socket descriptor to have a new association added to.
4791 *
4792 * nam: the address structure (either struct sockaddr_in or struct
4793 * sockaddr_in6 defined in RFC2553 [7]).
4794 *
4795 * len: the size of the address.
4796 */
4797 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4798 int addr_len, int flags)
4799 {
4800 struct sctp_af *af;
4801 int err = -EINVAL;
4802
4803 lock_sock(sk);
4804 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4805 addr, addr_len);
4806
4807 /* Validate addr_len before calling common connect/connectx routine. */
4808 af = sctp_get_af_specific(addr->sa_family);
4809 if (af && addr_len >= af->sockaddr_len)
4810 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4811
4812 release_sock(sk);
4813 return err;
4814 }
4815
4816 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4817 int addr_len, int flags)
4818 {
4819 if (addr_len < sizeof(uaddr->sa_family))
4820 return -EINVAL;
4821
4822 if (uaddr->sa_family == AF_UNSPEC)
4823 return -EOPNOTSUPP;
4824
4825 return sctp_connect(sock->sk, uaddr, addr_len, flags);
4826 }
4827
4828 /* FIXME: Write comments. */
4829 static int sctp_disconnect(struct sock *sk, int flags)
4830 {
4831 return -EOPNOTSUPP; /* STUB */
4832 }
4833
4834 /* 4.1.4 accept() - TCP Style Syntax
4835 *
4836 * Applications use accept() call to remove an established SCTP
4837 * association from the accept queue of the endpoint. A new socket
4838 * descriptor will be returned from accept() to represent the newly
4839 * formed association.
4840 */
4841 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4842 {
4843 struct sctp_sock *sp;
4844 struct sctp_endpoint *ep;
4845 struct sock *newsk = NULL;
4846 struct sctp_association *asoc;
4847 long timeo;
4848 int error = 0;
4849
4850 lock_sock(sk);
4851
4852 sp = sctp_sk(sk);
4853 ep = sp->ep;
4854
4855 if (!sctp_style(sk, TCP)) {
4856 error = -EOPNOTSUPP;
4857 goto out;
4858 }
4859
4860 if (!sctp_sstate(sk, LISTENING)) {
4861 error = -EINVAL;
4862 goto out;
4863 }
4864
4865 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4866
4867 error = sctp_wait_for_accept(sk, timeo);
4868 if (error)
4869 goto out;
4870
4871 /* We treat the list of associations on the endpoint as the accept
4872 * queue and pick the first association on the list.
4873 */
4874 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4875
4876 newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4877 if (!newsk) {
4878 error = -ENOMEM;
4879 goto out;
4880 }
4881
4882 /* Populate the fields of the newsk from the oldsk and migrate the
4883 * asoc to the newsk.
4884 */
4885 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4886 if (error) {
4887 sk_common_release(newsk);
4888 newsk = NULL;
4889 }
4890
4891 out:
4892 release_sock(sk);
4893 *err = error;
4894 return newsk;
4895 }
4896
4897 /* The SCTP ioctl handler. */
4898 static int sctp_ioctl(struct sock *sk, int cmd, int *karg)
4899 {
4900 int rc = -ENOTCONN;
4901
4902 lock_sock(sk);
4903
4904 /*
4905 * SEQPACKET-style sockets in LISTENING state are valid, for
4906 * SCTP, so only discard TCP-style sockets in LISTENING state.
4907 */
4908 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4909 goto out;
4910
4911 switch (cmd) {
4912 case SIOCINQ: {
4913 struct sk_buff *skb;
4914 *karg = 0;
4915
4916 skb = skb_peek(&sk->sk_receive_queue);
4917 if (skb != NULL) {
4918 /*
4919 * We will only return the amount of this packet since
4920 * that is all that will be read.
4921 */
4922 *karg = skb->len;
4923 }
4924 rc = 0;
4925 break;
4926 }
4927 default:
4928 rc = -ENOIOCTLCMD;
4929 break;
4930 }
4931 out:
4932 release_sock(sk);
4933 return rc;
4934 }
4935
4936 /* This is the function which gets called during socket creation to
4937 * initialized the SCTP-specific portion of the sock.
4938 * The sock structure should already be zero-filled memory.
4939 */
4940 static int sctp_init_sock(struct sock *sk)
4941 {
4942 struct net *net = sock_net(sk);
4943 struct sctp_sock *sp;
4944
4945 pr_debug("%s: sk:%p\n", __func__, sk);
4946
4947 sp = sctp_sk(sk);
4948
4949 /* Initialize the SCTP per socket area. */
4950 switch (sk->sk_type) {
4951 case SOCK_SEQPACKET:
4952 sp->type = SCTP_SOCKET_UDP;
4953 break;
4954 case SOCK_STREAM:
4955 sp->type = SCTP_SOCKET_TCP;
4956 break;
4957 default:
4958 return -ESOCKTNOSUPPORT;
4959 }
4960
4961 sk->sk_gso_type = SKB_GSO_SCTP;
4962
4963 /* Initialize default send parameters. These parameters can be
4964 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4965 */
4966 sp->default_stream = 0;
4967 sp->default_ppid = 0;
4968 sp->default_flags = 0;
4969 sp->default_context = 0;
4970 sp->default_timetolive = 0;
4971
4972 sp->default_rcv_context = 0;
4973 sp->max_burst = net->sctp.max_burst;
4974
4975 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4976
4977 /* Initialize default setup parameters. These parameters
4978 * can be modified with the SCTP_INITMSG socket option or
4979 * overridden by the SCTP_INIT CMSG.
4980 */
4981 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4982 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4983 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4984 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4985
4986 /* Initialize default RTO related parameters. These parameters can
4987 * be modified for with the SCTP_RTOINFO socket option.
4988 */
4989 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4990 sp->rtoinfo.srto_max = net->sctp.rto_max;
4991 sp->rtoinfo.srto_min = net->sctp.rto_min;
4992
4993 /* Initialize default association related parameters. These parameters
4994 * can be modified with the SCTP_ASSOCINFO socket option.
4995 */
4996 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4997 sp->assocparams.sasoc_number_peer_destinations = 0;
4998 sp->assocparams.sasoc_peer_rwnd = 0;
4999 sp->assocparams.sasoc_local_rwnd = 0;
5000 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
5001
5002 /* Initialize default event subscriptions. By default, all the
5003 * options are off.
5004 */
5005 sp->subscribe = 0;
5006
5007 /* Default Peer Address Parameters. These defaults can
5008 * be modified via SCTP_PEER_ADDR_PARAMS
5009 */
5010 sp->hbinterval = net->sctp.hb_interval;
5011 sp->udp_port = htons(net->sctp.udp_port);
5012 sp->encap_port = htons(net->sctp.encap_port);
5013 sp->pathmaxrxt = net->sctp.max_retrans_path;
5014 sp->pf_retrans = net->sctp.pf_retrans;
5015 sp->ps_retrans = net->sctp.ps_retrans;
5016 sp->pf_expose = net->sctp.pf_expose;
5017 sp->pathmtu = 0; /* allow default discovery */
5018 sp->sackdelay = net->sctp.sack_timeout;
5019 sp->sackfreq = 2;
5020 sp->param_flags = SPP_HB_ENABLE |
5021 SPP_PMTUD_ENABLE |
5022 SPP_SACKDELAY_ENABLE;
5023 sp->default_ss = SCTP_SS_DEFAULT;
5024
5025 /* If enabled no SCTP message fragmentation will be performed.
5026 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
5027 */
5028 sp->disable_fragments = 0;
5029
5030 /* Enable Nagle algorithm by default. */
5031 sp->nodelay = 0;
5032
5033 sp->recvrcvinfo = 0;
5034 sp->recvnxtinfo = 0;
5035
5036 /* Enable by default. */
5037 sp->v4mapped = 1;
5038
5039 /* Auto-close idle associations after the configured
5040 * number of seconds. A value of 0 disables this
5041 * feature. Configure through the SCTP_AUTOCLOSE socket option,
5042 * for UDP-style sockets only.
5043 */
5044 sp->autoclose = 0;
5045
5046 /* User specified fragmentation limit. */
5047 sp->user_frag = 0;
5048
5049 sp->adaptation_ind = 0;
5050
5051 sp->pf = sctp_get_pf_specific(sk->sk_family);
5052
5053 /* Control variables for partial data delivery. */
5054 atomic_set(&sp->pd_mode, 0);
5055 skb_queue_head_init(&sp->pd_lobby);
5056 sp->frag_interleave = 0;
5057 sp->probe_interval = net->sctp.probe_interval;
5058
5059 /* Create a per socket endpoint structure. Even if we
5060 * change the data structure relationships, this may still
5061 * be useful for storing pre-connect address information.
5062 */
5063 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
5064 if (!sp->ep)
5065 return -ENOMEM;
5066
5067 sp->hmac = NULL;
5068
5069 sk->sk_destruct = sctp_destruct_sock;
5070
5071 SCTP_DBG_OBJCNT_INC(sock);
5072
5073 sk_sockets_allocated_inc(sk);
5074 sock_prot_inuse_add(net, sk->sk_prot, 1);
5075
5076 return 0;
5077 }
5078
5079 /* Cleanup any SCTP per socket resources. Must be called with
5080 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5081 */
5082 static void sctp_destroy_sock(struct sock *sk)
5083 {
5084 struct sctp_sock *sp;
5085
5086 pr_debug("%s: sk:%p\n", __func__, sk);
5087
5088 /* Release our hold on the endpoint. */
5089 sp = sctp_sk(sk);
5090 /* This could happen during socket init, thus we bail out
5091 * early, since the rest of the below is not setup either.
5092 */
5093 if (sp->ep == NULL)
5094 return;
5095
5096 if (sp->do_auto_asconf) {
5097 sp->do_auto_asconf = 0;
5098 list_del(&sp->auto_asconf_list);
5099 }
5100 sctp_endpoint_free(sp->ep);
5101 sk_sockets_allocated_dec(sk);
5102 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
5103 }
5104
5105 /* Triggered when there are no references on the socket anymore */
5106 static void sctp_destruct_common(struct sock *sk)
5107 {
5108 struct sctp_sock *sp = sctp_sk(sk);
5109
5110 /* Free up the HMAC transform. */
5111 crypto_free_shash(sp->hmac);
5112 }
5113
5114 static void sctp_destruct_sock(struct sock *sk)
5115 {
5116 sctp_destruct_common(sk);
5117 inet_sock_destruct(sk);
5118 }
5119
5120 /* API 4.1.7 shutdown() - TCP Style Syntax
5121 * int shutdown(int socket, int how);
5122 *
5123 * sd - the socket descriptor of the association to be closed.
5124 * how - Specifies the type of shutdown. The values are
5125 * as follows:
5126 * SHUT_RD
5127 * Disables further receive operations. No SCTP
5128 * protocol action is taken.
5129 * SHUT_WR
5130 * Disables further send operations, and initiates
5131 * the SCTP shutdown sequence.
5132 * SHUT_RDWR
5133 * Disables further send and receive operations
5134 * and initiates the SCTP shutdown sequence.
5135 */
5136 static void sctp_shutdown(struct sock *sk, int how)
5137 {
5138 struct net *net = sock_net(sk);
5139 struct sctp_endpoint *ep;
5140
5141 if (!sctp_style(sk, TCP))
5142 return;
5143
5144 ep = sctp_sk(sk)->ep;
5145 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5146 struct sctp_association *asoc;
5147
5148 inet_sk_set_state(sk, SCTP_SS_CLOSING);
5149 asoc = list_entry(ep->asocs.next,
5150 struct sctp_association, asocs);
5151 sctp_primitive_SHUTDOWN(net, asoc, NULL);
5152 }
5153 }
5154
5155 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5156 struct sctp_info *info)
5157 {
5158 struct sctp_transport *prim;
5159 struct list_head *pos;
5160 int mask;
5161
5162 memset(info, 0, sizeof(*info));
5163 if (!asoc) {
5164 struct sctp_sock *sp = sctp_sk(sk);
5165
5166 info->sctpi_s_autoclose = sp->autoclose;
5167 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5168 info->sctpi_s_pd_point = sp->pd_point;
5169 info->sctpi_s_nodelay = sp->nodelay;
5170 info->sctpi_s_disable_fragments = sp->disable_fragments;
5171 info->sctpi_s_v4mapped = sp->v4mapped;
5172 info->sctpi_s_frag_interleave = sp->frag_interleave;
5173 info->sctpi_s_type = sp->type;
5174
5175 return 0;
5176 }
5177
5178 info->sctpi_tag = asoc->c.my_vtag;
5179 info->sctpi_state = asoc->state;
5180 info->sctpi_rwnd = asoc->a_rwnd;
5181 info->sctpi_unackdata = asoc->unack_data;
5182 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5183 info->sctpi_instrms = asoc->stream.incnt;
5184 info->sctpi_outstrms = asoc->stream.outcnt;
5185 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5186 info->sctpi_inqueue++;
5187 list_for_each(pos, &asoc->outqueue.out_chunk_list)
5188 info->sctpi_outqueue++;
5189 info->sctpi_overall_error = asoc->overall_error_count;
5190 info->sctpi_max_burst = asoc->max_burst;
5191 info->sctpi_maxseg = asoc->frag_point;
5192 info->sctpi_peer_rwnd = asoc->peer.rwnd;
5193 info->sctpi_peer_tag = asoc->c.peer_vtag;
5194
5195 mask = asoc->peer.intl_capable << 1;
5196 mask = (mask | asoc->peer.ecn_capable) << 1;
5197 mask = (mask | asoc->peer.ipv4_address) << 1;
5198 mask = (mask | asoc->peer.ipv6_address) << 1;
5199 mask = (mask | asoc->peer.reconf_capable) << 1;
5200 mask = (mask | asoc->peer.asconf_capable) << 1;
5201 mask = (mask | asoc->peer.prsctp_capable) << 1;
5202 mask = (mask | asoc->peer.auth_capable);
5203 info->sctpi_peer_capable = mask;
5204 mask = asoc->peer.sack_needed << 1;
5205 mask = (mask | asoc->peer.sack_generation) << 1;
5206 mask = (mask | asoc->peer.zero_window_announced);
5207 info->sctpi_peer_sack = mask;
5208
5209 info->sctpi_isacks = asoc->stats.isacks;
5210 info->sctpi_osacks = asoc->stats.osacks;
5211 info->sctpi_opackets = asoc->stats.opackets;
5212 info->sctpi_ipackets = asoc->stats.ipackets;
5213 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5214 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5215 info->sctpi_idupchunks = asoc->stats.idupchunks;
5216 info->sctpi_gapcnt = asoc->stats.gapcnt;
5217 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5218 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5219 info->sctpi_oodchunks = asoc->stats.oodchunks;
5220 info->sctpi_iodchunks = asoc->stats.iodchunks;
5221 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5222 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5223
5224 prim = asoc->peer.primary_path;
5225 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5226 info->sctpi_p_state = prim->state;
5227 info->sctpi_p_cwnd = prim->cwnd;
5228 info->sctpi_p_srtt = prim->srtt;
5229 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5230 info->sctpi_p_hbinterval = prim->hbinterval;
5231 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5232 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5233 info->sctpi_p_ssthresh = prim->ssthresh;
5234 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5235 info->sctpi_p_flight_size = prim->flight_size;
5236 info->sctpi_p_error = prim->error_count;
5237
5238 return 0;
5239 }
5240 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5241
5242 /* use callback to avoid exporting the core structure */
5243 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU)
5244 {
5245 rhltable_walk_enter(&sctp_transport_hashtable, iter);
5246
5247 rhashtable_walk_start(iter);
5248 }
5249
5250 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU)
5251 {
5252 rhashtable_walk_stop(iter);
5253 rhashtable_walk_exit(iter);
5254 }
5255
5256 struct sctp_transport *sctp_transport_get_next(struct net *net,
5257 struct rhashtable_iter *iter)
5258 {
5259 struct sctp_transport *t;
5260
5261 t = rhashtable_walk_next(iter);
5262 for (; t; t = rhashtable_walk_next(iter)) {
5263 if (IS_ERR(t)) {
5264 if (PTR_ERR(t) == -EAGAIN)
5265 continue;
5266 break;
5267 }
5268
5269 if (!sctp_transport_hold(t))
5270 continue;
5271
5272 if (net_eq(t->asoc->base.net, net) &&
5273 t->asoc->peer.primary_path == t)
5274 break;
5275
5276 sctp_transport_put(t);
5277 }
5278
5279 return t;
5280 }
5281
5282 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5283 struct rhashtable_iter *iter,
5284 int pos)
5285 {
5286 struct sctp_transport *t;
5287
5288 if (!pos)
5289 return SEQ_START_TOKEN;
5290
5291 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5292 if (!--pos)
5293 break;
5294 sctp_transport_put(t);
5295 }
5296
5297 return t;
5298 }
5299
5300 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5301 void *p) {
5302 int err = 0;
5303 int hash = 0;
5304 struct sctp_endpoint *ep;
5305 struct sctp_hashbucket *head;
5306
5307 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5308 hash++, head++) {
5309 read_lock_bh(&head->lock);
5310 sctp_for_each_hentry(ep, &head->chain) {
5311 err = cb(ep, p);
5312 if (err)
5313 break;
5314 }
5315 read_unlock_bh(&head->lock);
5316 }
5317
5318 return err;
5319 }
5320 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5321
5322 int sctp_transport_lookup_process(sctp_callback_t cb, struct net *net,
5323 const union sctp_addr *laddr,
5324 const union sctp_addr *paddr, void *p, int dif)
5325 {
5326 struct sctp_transport *transport;
5327 struct sctp_endpoint *ep;
5328 int err = -ENOENT;
5329
5330 rcu_read_lock();
5331 transport = sctp_addrs_lookup_transport(net, laddr, paddr, dif, dif);
5332 if (!transport) {
5333 rcu_read_unlock();
5334 return err;
5335 }
5336 ep = transport->asoc->ep;
5337 if (!sctp_endpoint_hold(ep)) { /* asoc can be peeled off */
5338 sctp_transport_put(transport);
5339 rcu_read_unlock();
5340 return err;
5341 }
5342 rcu_read_unlock();
5343
5344 err = cb(ep, transport, p);
5345 sctp_endpoint_put(ep);
5346 sctp_transport_put(transport);
5347 return err;
5348 }
5349 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5350
5351 int sctp_transport_traverse_process(sctp_callback_t cb, sctp_callback_t cb_done,
5352 struct net *net, int *pos, void *p)
5353 {
5354 struct rhashtable_iter hti;
5355 struct sctp_transport *tsp;
5356 struct sctp_endpoint *ep;
5357 int ret;
5358
5359 again:
5360 ret = 0;
5361 sctp_transport_walk_start(&hti);
5362
5363 tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5364 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5365 ep = tsp->asoc->ep;
5366 if (sctp_endpoint_hold(ep)) { /* asoc can be peeled off */
5367 ret = cb(ep, tsp, p);
5368 if (ret)
5369 break;
5370 sctp_endpoint_put(ep);
5371 }
5372 (*pos)++;
5373 sctp_transport_put(tsp);
5374 }
5375 sctp_transport_walk_stop(&hti);
5376
5377 if (ret) {
5378 if (cb_done && !cb_done(ep, tsp, p)) {
5379 (*pos)++;
5380 sctp_endpoint_put(ep);
5381 sctp_transport_put(tsp);
5382 goto again;
5383 }
5384 sctp_endpoint_put(ep);
5385 sctp_transport_put(tsp);
5386 }
5387
5388 return ret;
5389 }
5390 EXPORT_SYMBOL_GPL(sctp_transport_traverse_process);
5391
5392 /* 7.2.1 Association Status (SCTP_STATUS)
5393
5394 * Applications can retrieve current status information about an
5395 * association, including association state, peer receiver window size,
5396 * number of unacked data chunks, and number of data chunks pending
5397 * receipt. This information is read-only.
5398 */
5399 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5400 char __user *optval,
5401 int __user *optlen)
5402 {
5403 struct sctp_status status;
5404 struct sctp_association *asoc = NULL;
5405 struct sctp_transport *transport;
5406 sctp_assoc_t associd;
5407 int retval = 0;
5408
5409 if (len < sizeof(status)) {
5410 retval = -EINVAL;
5411 goto out;
5412 }
5413
5414 len = sizeof(status);
5415 if (copy_from_user(&status, optval, len)) {
5416 retval = -EFAULT;
5417 goto out;
5418 }
5419
5420 associd = status.sstat_assoc_id;
5421 asoc = sctp_id2assoc(sk, associd);
5422 if (!asoc) {
5423 retval = -EINVAL;
5424 goto out;
5425 }
5426
5427 transport = asoc->peer.primary_path;
5428
5429 status.sstat_assoc_id = sctp_assoc2id(asoc);
5430 status.sstat_state = sctp_assoc_to_state(asoc);
5431 status.sstat_rwnd = asoc->peer.rwnd;
5432 status.sstat_unackdata = asoc->unack_data;
5433
5434 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5435 status.sstat_instrms = asoc->stream.incnt;
5436 status.sstat_outstrms = asoc->stream.outcnt;
5437 status.sstat_fragmentation_point = asoc->frag_point;
5438 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5439 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5440 transport->af_specific->sockaddr_len);
5441 /* Map ipv4 address into v4-mapped-on-v6 address. */
5442 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5443 (union sctp_addr *)&status.sstat_primary.spinfo_address);
5444 status.sstat_primary.spinfo_state = transport->state;
5445 status.sstat_primary.spinfo_cwnd = transport->cwnd;
5446 status.sstat_primary.spinfo_srtt = transport->srtt;
5447 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5448 status.sstat_primary.spinfo_mtu = transport->pathmtu;
5449
5450 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5451 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5452
5453 if (put_user(len, optlen)) {
5454 retval = -EFAULT;
5455 goto out;
5456 }
5457
5458 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5459 __func__, len, status.sstat_state, status.sstat_rwnd,
5460 status.sstat_assoc_id);
5461
5462 if (copy_to_user(optval, &status, len)) {
5463 retval = -EFAULT;
5464 goto out;
5465 }
5466
5467 out:
5468 return retval;
5469 }
5470
5471
5472 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5473 *
5474 * Applications can retrieve information about a specific peer address
5475 * of an association, including its reachability state, congestion
5476 * window, and retransmission timer values. This information is
5477 * read-only.
5478 */
5479 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5480 char __user *optval,
5481 int __user *optlen)
5482 {
5483 struct sctp_paddrinfo pinfo;
5484 struct sctp_transport *transport;
5485 int retval = 0;
5486
5487 if (len < sizeof(pinfo)) {
5488 retval = -EINVAL;
5489 goto out;
5490 }
5491
5492 len = sizeof(pinfo);
5493 if (copy_from_user(&pinfo, optval, len)) {
5494 retval = -EFAULT;
5495 goto out;
5496 }
5497
5498 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5499 pinfo.spinfo_assoc_id);
5500 if (!transport) {
5501 retval = -EINVAL;
5502 goto out;
5503 }
5504
5505 if (transport->state == SCTP_PF &&
5506 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) {
5507 retval = -EACCES;
5508 goto out;
5509 }
5510
5511 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5512 pinfo.spinfo_state = transport->state;
5513 pinfo.spinfo_cwnd = transport->cwnd;
5514 pinfo.spinfo_srtt = transport->srtt;
5515 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5516 pinfo.spinfo_mtu = transport->pathmtu;
5517
5518 if (pinfo.spinfo_state == SCTP_UNKNOWN)
5519 pinfo.spinfo_state = SCTP_ACTIVE;
5520
5521 if (put_user(len, optlen)) {
5522 retval = -EFAULT;
5523 goto out;
5524 }
5525
5526 if (copy_to_user(optval, &pinfo, len)) {
5527 retval = -EFAULT;
5528 goto out;
5529 }
5530
5531 out:
5532 return retval;
5533 }
5534
5535 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5536 *
5537 * This option is a on/off flag. If enabled no SCTP message
5538 * fragmentation will be performed. Instead if a message being sent
5539 * exceeds the current PMTU size, the message will NOT be sent and
5540 * instead a error will be indicated to the user.
5541 */
5542 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5543 char __user *optval, int __user *optlen)
5544 {
5545 int val;
5546
5547 if (len < sizeof(int))
5548 return -EINVAL;
5549
5550 len = sizeof(int);
5551 val = (sctp_sk(sk)->disable_fragments == 1);
5552 if (put_user(len, optlen))
5553 return -EFAULT;
5554 if (copy_to_user(optval, &val, len))
5555 return -EFAULT;
5556 return 0;
5557 }
5558
5559 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5560 *
5561 * This socket option is used to specify various notifications and
5562 * ancillary data the user wishes to receive.
5563 */
5564 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5565 int __user *optlen)
5566 {
5567 struct sctp_event_subscribe subscribe;
5568 __u8 *sn_type = (__u8 *)&subscribe;
5569 int i;
5570
5571 if (len == 0)
5572 return -EINVAL;
5573 if (len > sizeof(struct sctp_event_subscribe))
5574 len = sizeof(struct sctp_event_subscribe);
5575 if (put_user(len, optlen))
5576 return -EFAULT;
5577
5578 for (i = 0; i < len; i++)
5579 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5580 SCTP_SN_TYPE_BASE + i);
5581
5582 if (copy_to_user(optval, &subscribe, len))
5583 return -EFAULT;
5584
5585 return 0;
5586 }
5587
5588 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5589 *
5590 * This socket option is applicable to the UDP-style socket only. When
5591 * set it will cause associations that are idle for more than the
5592 * specified number of seconds to automatically close. An association
5593 * being idle is defined an association that has NOT sent or received
5594 * user data. The special value of '0' indicates that no automatic
5595 * close of any associations should be performed. The option expects an
5596 * integer defining the number of seconds of idle time before an
5597 * association is closed.
5598 */
5599 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5600 {
5601 /* Applicable to UDP-style socket only */
5602 if (sctp_style(sk, TCP))
5603 return -EOPNOTSUPP;
5604 if (len < sizeof(int))
5605 return -EINVAL;
5606 len = sizeof(int);
5607 if (put_user(len, optlen))
5608 return -EFAULT;
5609 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5610 return -EFAULT;
5611 return 0;
5612 }
5613
5614 /* Helper routine to branch off an association to a new socket. */
5615 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5616 {
5617 struct sctp_association *asoc = sctp_id2assoc(sk, id);
5618 struct sctp_sock *sp = sctp_sk(sk);
5619 struct socket *sock;
5620 int err = 0;
5621
5622 /* Do not peel off from one netns to another one. */
5623 if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5624 return -EINVAL;
5625
5626 if (!asoc)
5627 return -EINVAL;
5628
5629 /* An association cannot be branched off from an already peeled-off
5630 * socket, nor is this supported for tcp style sockets.
5631 */
5632 if (!sctp_style(sk, UDP))
5633 return -EINVAL;
5634
5635 /* Create a new socket. */
5636 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5637 if (err < 0)
5638 return err;
5639
5640 sctp_copy_sock(sock->sk, sk, asoc);
5641
5642 /* Make peeled-off sockets more like 1-1 accepted sockets.
5643 * Set the daddr and initialize id to something more random and also
5644 * copy over any ip options.
5645 */
5646 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sock->sk);
5647 sp->pf->copy_ip_options(sk, sock->sk);
5648
5649 /* Populate the fields of the newsk from the oldsk and migrate the
5650 * asoc to the newsk.
5651 */
5652 err = sctp_sock_migrate(sk, sock->sk, asoc,
5653 SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5654 if (err) {
5655 sock_release(sock);
5656 sock = NULL;
5657 }
5658
5659 *sockp = sock;
5660
5661 return err;
5662 }
5663 EXPORT_SYMBOL(sctp_do_peeloff);
5664
5665 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5666 struct file **newfile, unsigned flags)
5667 {
5668 struct socket *newsock;
5669 int retval;
5670
5671 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5672 if (retval < 0)
5673 goto out;
5674
5675 /* Map the socket to an unused fd that can be returned to the user. */
5676 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5677 if (retval < 0) {
5678 sock_release(newsock);
5679 goto out;
5680 }
5681
5682 *newfile = sock_alloc_file(newsock, 0, NULL);
5683 if (IS_ERR(*newfile)) {
5684 put_unused_fd(retval);
5685 retval = PTR_ERR(*newfile);
5686 *newfile = NULL;
5687 return retval;
5688 }
5689
5690 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5691 retval);
5692
5693 peeloff->sd = retval;
5694
5695 if (flags & SOCK_NONBLOCK)
5696 (*newfile)->f_flags |= O_NONBLOCK;
5697 out:
5698 return retval;
5699 }
5700
5701 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5702 {
5703 sctp_peeloff_arg_t peeloff;
5704 struct file *newfile = NULL;
5705 int retval = 0;
5706
5707 if (len < sizeof(sctp_peeloff_arg_t))
5708 return -EINVAL;
5709 len = sizeof(sctp_peeloff_arg_t);
5710 if (copy_from_user(&peeloff, optval, len))
5711 return -EFAULT;
5712
5713 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5714 if (retval < 0)
5715 goto out;
5716
5717 /* Return the fd mapped to the new socket. */
5718 if (put_user(len, optlen)) {
5719 fput(newfile);
5720 put_unused_fd(retval);
5721 return -EFAULT;
5722 }
5723
5724 if (copy_to_user(optval, &peeloff, len)) {
5725 fput(newfile);
5726 put_unused_fd(retval);
5727 return -EFAULT;
5728 }
5729 fd_install(retval, newfile);
5730 out:
5731 return retval;
5732 }
5733
5734 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5735 char __user *optval, int __user *optlen)
5736 {
5737 sctp_peeloff_flags_arg_t peeloff;
5738 struct file *newfile = NULL;
5739 int retval = 0;
5740
5741 if (len < sizeof(sctp_peeloff_flags_arg_t))
5742 return -EINVAL;
5743 len = sizeof(sctp_peeloff_flags_arg_t);
5744 if (copy_from_user(&peeloff, optval, len))
5745 return -EFAULT;
5746
5747 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5748 &newfile, peeloff.flags);
5749 if (retval < 0)
5750 goto out;
5751
5752 /* Return the fd mapped to the new socket. */
5753 if (put_user(len, optlen)) {
5754 fput(newfile);
5755 put_unused_fd(retval);
5756 return -EFAULT;
5757 }
5758
5759 if (copy_to_user(optval, &peeloff, len)) {
5760 fput(newfile);
5761 put_unused_fd(retval);
5762 return -EFAULT;
5763 }
5764 fd_install(retval, newfile);
5765 out:
5766 return retval;
5767 }
5768
5769 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5770 *
5771 * Applications can enable or disable heartbeats for any peer address of
5772 * an association, modify an address's heartbeat interval, force a
5773 * heartbeat to be sent immediately, and adjust the address's maximum
5774 * number of retransmissions sent before an address is considered
5775 * unreachable. The following structure is used to access and modify an
5776 * address's parameters:
5777 *
5778 * struct sctp_paddrparams {
5779 * sctp_assoc_t spp_assoc_id;
5780 * struct sockaddr_storage spp_address;
5781 * uint32_t spp_hbinterval;
5782 * uint16_t spp_pathmaxrxt;
5783 * uint32_t spp_pathmtu;
5784 * uint32_t spp_sackdelay;
5785 * uint32_t spp_flags;
5786 * };
5787 *
5788 * spp_assoc_id - (one-to-many style socket) This is filled in the
5789 * application, and identifies the association for
5790 * this query.
5791 * spp_address - This specifies which address is of interest.
5792 * spp_hbinterval - This contains the value of the heartbeat interval,
5793 * in milliseconds. If a value of zero
5794 * is present in this field then no changes are to
5795 * be made to this parameter.
5796 * spp_pathmaxrxt - This contains the maximum number of
5797 * retransmissions before this address shall be
5798 * considered unreachable. If a value of zero
5799 * is present in this field then no changes are to
5800 * be made to this parameter.
5801 * spp_pathmtu - When Path MTU discovery is disabled the value
5802 * specified here will be the "fixed" path mtu.
5803 * Note that if the spp_address field is empty
5804 * then all associations on this address will
5805 * have this fixed path mtu set upon them.
5806 *
5807 * spp_sackdelay - When delayed sack is enabled, this value specifies
5808 * the number of milliseconds that sacks will be delayed
5809 * for. This value will apply to all addresses of an
5810 * association if the spp_address field is empty. Note
5811 * also, that if delayed sack is enabled and this
5812 * value is set to 0, no change is made to the last
5813 * recorded delayed sack timer value.
5814 *
5815 * spp_flags - These flags are used to control various features
5816 * on an association. The flag field may contain
5817 * zero or more of the following options.
5818 *
5819 * SPP_HB_ENABLE - Enable heartbeats on the
5820 * specified address. Note that if the address
5821 * field is empty all addresses for the association
5822 * have heartbeats enabled upon them.
5823 *
5824 * SPP_HB_DISABLE - Disable heartbeats on the
5825 * speicifed address. Note that if the address
5826 * field is empty all addresses for the association
5827 * will have their heartbeats disabled. Note also
5828 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
5829 * mutually exclusive, only one of these two should
5830 * be specified. Enabling both fields will have
5831 * undetermined results.
5832 *
5833 * SPP_HB_DEMAND - Request a user initiated heartbeat
5834 * to be made immediately.
5835 *
5836 * SPP_PMTUD_ENABLE - This field will enable PMTU
5837 * discovery upon the specified address. Note that
5838 * if the address feild is empty then all addresses
5839 * on the association are effected.
5840 *
5841 * SPP_PMTUD_DISABLE - This field will disable PMTU
5842 * discovery upon the specified address. Note that
5843 * if the address feild is empty then all addresses
5844 * on the association are effected. Not also that
5845 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5846 * exclusive. Enabling both will have undetermined
5847 * results.
5848 *
5849 * SPP_SACKDELAY_ENABLE - Setting this flag turns
5850 * on delayed sack. The time specified in spp_sackdelay
5851 * is used to specify the sack delay for this address. Note
5852 * that if spp_address is empty then all addresses will
5853 * enable delayed sack and take on the sack delay
5854 * value specified in spp_sackdelay.
5855 * SPP_SACKDELAY_DISABLE - Setting this flag turns
5856 * off delayed sack. If the spp_address field is blank then
5857 * delayed sack is disabled for the entire association. Note
5858 * also that this field is mutually exclusive to
5859 * SPP_SACKDELAY_ENABLE, setting both will have undefined
5860 * results.
5861 *
5862 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
5863 * setting of the IPV6 flow label value. The value is
5864 * contained in the spp_ipv6_flowlabel field.
5865 * Upon retrieval, this flag will be set to indicate that
5866 * the spp_ipv6_flowlabel field has a valid value returned.
5867 * If a specific destination address is set (in the
5868 * spp_address field), then the value returned is that of
5869 * the address. If just an association is specified (and
5870 * no address), then the association's default flow label
5871 * is returned. If neither an association nor a destination
5872 * is specified, then the socket's default flow label is
5873 * returned. For non-IPv6 sockets, this flag will be left
5874 * cleared.
5875 *
5876 * SPP_DSCP: Setting this flag enables the setting of the
5877 * Differentiated Services Code Point (DSCP) value
5878 * associated with either the association or a specific
5879 * address. The value is obtained in the spp_dscp field.
5880 * Upon retrieval, this flag will be set to indicate that
5881 * the spp_dscp field has a valid value returned. If a
5882 * specific destination address is set when called (in the
5883 * spp_address field), then that specific destination
5884 * address's DSCP value is returned. If just an association
5885 * is specified, then the association's default DSCP is
5886 * returned. If neither an association nor a destination is
5887 * specified, then the socket's default DSCP is returned.
5888 *
5889 * spp_ipv6_flowlabel
5890 * - This field is used in conjunction with the
5891 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5892 * The 20 least significant bits are used for the flow
5893 * label. This setting has precedence over any IPv6-layer
5894 * setting.
5895 *
5896 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
5897 * and contains the DSCP. The 6 most significant bits are
5898 * used for the DSCP. This setting has precedence over any
5899 * IPv4- or IPv6- layer setting.
5900 */
5901 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5902 char __user *optval, int __user *optlen)
5903 {
5904 struct sctp_paddrparams params;
5905 struct sctp_transport *trans = NULL;
5906 struct sctp_association *asoc = NULL;
5907 struct sctp_sock *sp = sctp_sk(sk);
5908
5909 if (len >= sizeof(params))
5910 len = sizeof(params);
5911 else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5912 spp_ipv6_flowlabel), 4))
5913 len = ALIGN(offsetof(struct sctp_paddrparams,
5914 spp_ipv6_flowlabel), 4);
5915 else
5916 return -EINVAL;
5917
5918 if (copy_from_user(&params, optval, len))
5919 return -EFAULT;
5920
5921 /* If an address other than INADDR_ANY is specified, and
5922 * no transport is found, then the request is invalid.
5923 */
5924 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5925 trans = sctp_addr_id2transport(sk, &params.spp_address,
5926 params.spp_assoc_id);
5927 if (!trans) {
5928 pr_debug("%s: failed no transport\n", __func__);
5929 return -EINVAL;
5930 }
5931 }
5932
5933 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5934 * socket is a one to many style socket, and an association
5935 * was not found, then the id was invalid.
5936 */
5937 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5938 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5939 sctp_style(sk, UDP)) {
5940 pr_debug("%s: failed no association\n", __func__);
5941 return -EINVAL;
5942 }
5943
5944 if (trans) {
5945 /* Fetch transport values. */
5946 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5947 params.spp_pathmtu = trans->pathmtu;
5948 params.spp_pathmaxrxt = trans->pathmaxrxt;
5949 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
5950
5951 /*draft-11 doesn't say what to return in spp_flags*/
5952 params.spp_flags = trans->param_flags;
5953 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5954 params.spp_ipv6_flowlabel = trans->flowlabel &
5955 SCTP_FLOWLABEL_VAL_MASK;
5956 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5957 }
5958 if (trans->dscp & SCTP_DSCP_SET_MASK) {
5959 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK;
5960 params.spp_flags |= SPP_DSCP;
5961 }
5962 } else if (asoc) {
5963 /* Fetch association values. */
5964 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5965 params.spp_pathmtu = asoc->pathmtu;
5966 params.spp_pathmaxrxt = asoc->pathmaxrxt;
5967 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
5968
5969 /*draft-11 doesn't say what to return in spp_flags*/
5970 params.spp_flags = asoc->param_flags;
5971 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5972 params.spp_ipv6_flowlabel = asoc->flowlabel &
5973 SCTP_FLOWLABEL_VAL_MASK;
5974 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5975 }
5976 if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5977 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK;
5978 params.spp_flags |= SPP_DSCP;
5979 }
5980 } else {
5981 /* Fetch socket values. */
5982 params.spp_hbinterval = sp->hbinterval;
5983 params.spp_pathmtu = sp->pathmtu;
5984 params.spp_sackdelay = sp->sackdelay;
5985 params.spp_pathmaxrxt = sp->pathmaxrxt;
5986
5987 /*draft-11 doesn't say what to return in spp_flags*/
5988 params.spp_flags = sp->param_flags;
5989 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5990 params.spp_ipv6_flowlabel = sp->flowlabel &
5991 SCTP_FLOWLABEL_VAL_MASK;
5992 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5993 }
5994 if (sp->dscp & SCTP_DSCP_SET_MASK) {
5995 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK;
5996 params.spp_flags |= SPP_DSCP;
5997 }
5998 }
5999
6000 if (copy_to_user(optval, &params, len))
6001 return -EFAULT;
6002
6003 if (put_user(len, optlen))
6004 return -EFAULT;
6005
6006 return 0;
6007 }
6008
6009 /*
6010 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
6011 *
6012 * This option will effect the way delayed acks are performed. This
6013 * option allows you to get or set the delayed ack time, in
6014 * milliseconds. It also allows changing the delayed ack frequency.
6015 * Changing the frequency to 1 disables the delayed sack algorithm. If
6016 * the assoc_id is 0, then this sets or gets the endpoints default
6017 * values. If the assoc_id field is non-zero, then the set or get
6018 * effects the specified association for the one to many model (the
6019 * assoc_id field is ignored by the one to one model). Note that if
6020 * sack_delay or sack_freq are 0 when setting this option, then the
6021 * current values will remain unchanged.
6022 *
6023 * struct sctp_sack_info {
6024 * sctp_assoc_t sack_assoc_id;
6025 * uint32_t sack_delay;
6026 * uint32_t sack_freq;
6027 * };
6028 *
6029 * sack_assoc_id - This parameter, indicates which association the user
6030 * is performing an action upon. Note that if this field's value is
6031 * zero then the endpoints default value is changed (effecting future
6032 * associations only).
6033 *
6034 * sack_delay - This parameter contains the number of milliseconds that
6035 * the user is requesting the delayed ACK timer be set to. Note that
6036 * this value is defined in the standard to be between 200 and 500
6037 * milliseconds.
6038 *
6039 * sack_freq - This parameter contains the number of packets that must
6040 * be received before a sack is sent without waiting for the delay
6041 * timer to expire. The default value for this is 2, setting this
6042 * value to 1 will disable the delayed sack algorithm.
6043 */
6044 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
6045 char __user *optval,
6046 int __user *optlen)
6047 {
6048 struct sctp_sack_info params;
6049 struct sctp_association *asoc = NULL;
6050 struct sctp_sock *sp = sctp_sk(sk);
6051
6052 if (len >= sizeof(struct sctp_sack_info)) {
6053 len = sizeof(struct sctp_sack_info);
6054
6055 if (copy_from_user(&params, optval, len))
6056 return -EFAULT;
6057 } else if (len == sizeof(struct sctp_assoc_value)) {
6058 pr_warn_ratelimited(DEPRECATED
6059 "%s (pid %d) "
6060 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
6061 "Use struct sctp_sack_info instead\n",
6062 current->comm, task_pid_nr(current));
6063 if (copy_from_user(&params, optval, len))
6064 return -EFAULT;
6065 } else
6066 return -EINVAL;
6067
6068 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
6069 * socket is a one to many style socket, and an association
6070 * was not found, then the id was invalid.
6071 */
6072 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
6073 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
6074 sctp_style(sk, UDP))
6075 return -EINVAL;
6076
6077 if (asoc) {
6078 /* Fetch association values. */
6079 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
6080 params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
6081 params.sack_freq = asoc->sackfreq;
6082
6083 } else {
6084 params.sack_delay = 0;
6085 params.sack_freq = 1;
6086 }
6087 } else {
6088 /* Fetch socket values. */
6089 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6090 params.sack_delay = sp->sackdelay;
6091 params.sack_freq = sp->sackfreq;
6092 } else {
6093 params.sack_delay = 0;
6094 params.sack_freq = 1;
6095 }
6096 }
6097
6098 if (copy_to_user(optval, &params, len))
6099 return -EFAULT;
6100
6101 if (put_user(len, optlen))
6102 return -EFAULT;
6103
6104 return 0;
6105 }
6106
6107 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6108 *
6109 * Applications can specify protocol parameters for the default association
6110 * initialization. The option name argument to setsockopt() and getsockopt()
6111 * is SCTP_INITMSG.
6112 *
6113 * Setting initialization parameters is effective only on an unconnected
6114 * socket (for UDP-style sockets only future associations are effected
6115 * by the change). With TCP-style sockets, this option is inherited by
6116 * sockets derived from a listener socket.
6117 */
6118 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6119 {
6120 if (len < sizeof(struct sctp_initmsg))
6121 return -EINVAL;
6122 len = sizeof(struct sctp_initmsg);
6123 if (put_user(len, optlen))
6124 return -EFAULT;
6125 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6126 return -EFAULT;
6127 return 0;
6128 }
6129
6130
6131 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6132 char __user *optval, int __user *optlen)
6133 {
6134 struct sctp_association *asoc;
6135 int cnt = 0;
6136 struct sctp_getaddrs getaddrs;
6137 struct sctp_transport *from;
6138 void __user *to;
6139 union sctp_addr temp;
6140 struct sctp_sock *sp = sctp_sk(sk);
6141 int addrlen;
6142 size_t space_left;
6143 int bytes_copied;
6144
6145 if (len < sizeof(struct sctp_getaddrs))
6146 return -EINVAL;
6147
6148 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6149 return -EFAULT;
6150
6151 /* For UDP-style sockets, id specifies the association to query. */
6152 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6153 if (!asoc)
6154 return -EINVAL;
6155
6156 to = optval + offsetof(struct sctp_getaddrs, addrs);
6157 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6158
6159 list_for_each_entry(from, &asoc->peer.transport_addr_list,
6160 transports) {
6161 memcpy(&temp, &from->ipaddr, sizeof(temp));
6162 addrlen = sctp_get_pf_specific(sk->sk_family)
6163 ->addr_to_user(sp, &temp);
6164 if (space_left < addrlen)
6165 return -ENOMEM;
6166 if (copy_to_user(to, &temp, addrlen))
6167 return -EFAULT;
6168 to += addrlen;
6169 cnt++;
6170 space_left -= addrlen;
6171 }
6172
6173 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6174 return -EFAULT;
6175 bytes_copied = ((char __user *)to) - optval;
6176 if (put_user(bytes_copied, optlen))
6177 return -EFAULT;
6178
6179 return 0;
6180 }
6181
6182 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6183 size_t space_left, int *bytes_copied)
6184 {
6185 struct sctp_sockaddr_entry *addr;
6186 union sctp_addr temp;
6187 int cnt = 0;
6188 int addrlen;
6189 struct net *net = sock_net(sk);
6190
6191 rcu_read_lock();
6192 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6193 if (!addr->valid)
6194 continue;
6195
6196 if ((PF_INET == sk->sk_family) &&
6197 (AF_INET6 == addr->a.sa.sa_family))
6198 continue;
6199 if ((PF_INET6 == sk->sk_family) &&
6200 inet_v6_ipv6only(sk) &&
6201 (AF_INET == addr->a.sa.sa_family))
6202 continue;
6203 memcpy(&temp, &addr->a, sizeof(temp));
6204 if (!temp.v4.sin_port)
6205 temp.v4.sin_port = htons(port);
6206
6207 addrlen = sctp_get_pf_specific(sk->sk_family)
6208 ->addr_to_user(sctp_sk(sk), &temp);
6209
6210 if (space_left < addrlen) {
6211 cnt = -ENOMEM;
6212 break;
6213 }
6214 memcpy(to, &temp, addrlen);
6215
6216 to += addrlen;
6217 cnt++;
6218 space_left -= addrlen;
6219 *bytes_copied += addrlen;
6220 }
6221 rcu_read_unlock();
6222
6223 return cnt;
6224 }
6225
6226
6227 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6228 char __user *optval, int __user *optlen)
6229 {
6230 struct sctp_bind_addr *bp;
6231 struct sctp_association *asoc;
6232 int cnt = 0;
6233 struct sctp_getaddrs getaddrs;
6234 struct sctp_sockaddr_entry *addr;
6235 void __user *to;
6236 union sctp_addr temp;
6237 struct sctp_sock *sp = sctp_sk(sk);
6238 int addrlen;
6239 int err = 0;
6240 size_t space_left;
6241 int bytes_copied = 0;
6242 void *addrs;
6243 void *buf;
6244
6245 if (len < sizeof(struct sctp_getaddrs))
6246 return -EINVAL;
6247
6248 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6249 return -EFAULT;
6250
6251 /*
6252 * For UDP-style sockets, id specifies the association to query.
6253 * If the id field is set to the value '0' then the locally bound
6254 * addresses are returned without regard to any particular
6255 * association.
6256 */
6257 if (0 == getaddrs.assoc_id) {
6258 bp = &sctp_sk(sk)->ep->base.bind_addr;
6259 } else {
6260 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6261 if (!asoc)
6262 return -EINVAL;
6263 bp = &asoc->base.bind_addr;
6264 }
6265
6266 to = optval + offsetof(struct sctp_getaddrs, addrs);
6267 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6268
6269 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6270 if (!addrs)
6271 return -ENOMEM;
6272
6273 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6274 * addresses from the global local address list.
6275 */
6276 if (sctp_list_single_entry(&bp->address_list)) {
6277 addr = list_entry(bp->address_list.next,
6278 struct sctp_sockaddr_entry, list);
6279 if (sctp_is_any(sk, &addr->a)) {
6280 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6281 space_left, &bytes_copied);
6282 if (cnt < 0) {
6283 err = cnt;
6284 goto out;
6285 }
6286 goto copy_getaddrs;
6287 }
6288 }
6289
6290 buf = addrs;
6291 /* Protection on the bound address list is not needed since
6292 * in the socket option context we hold a socket lock and
6293 * thus the bound address list can't change.
6294 */
6295 list_for_each_entry(addr, &bp->address_list, list) {
6296 memcpy(&temp, &addr->a, sizeof(temp));
6297 addrlen = sctp_get_pf_specific(sk->sk_family)
6298 ->addr_to_user(sp, &temp);
6299 if (space_left < addrlen) {
6300 err = -ENOMEM; /*fixme: right error?*/
6301 goto out;
6302 }
6303 memcpy(buf, &temp, addrlen);
6304 buf += addrlen;
6305 bytes_copied += addrlen;
6306 cnt++;
6307 space_left -= addrlen;
6308 }
6309
6310 copy_getaddrs:
6311 if (copy_to_user(to, addrs, bytes_copied)) {
6312 err = -EFAULT;
6313 goto out;
6314 }
6315 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6316 err = -EFAULT;
6317 goto out;
6318 }
6319 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6320 * but we can't change it anymore.
6321 */
6322 if (put_user(bytes_copied, optlen))
6323 err = -EFAULT;
6324 out:
6325 kfree(addrs);
6326 return err;
6327 }
6328
6329 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6330 *
6331 * Requests that the local SCTP stack use the enclosed peer address as
6332 * the association primary. The enclosed address must be one of the
6333 * association peer's addresses.
6334 */
6335 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6336 char __user *optval, int __user *optlen)
6337 {
6338 struct sctp_prim prim;
6339 struct sctp_association *asoc;
6340 struct sctp_sock *sp = sctp_sk(sk);
6341
6342 if (len < sizeof(struct sctp_prim))
6343 return -EINVAL;
6344
6345 len = sizeof(struct sctp_prim);
6346
6347 if (copy_from_user(&prim, optval, len))
6348 return -EFAULT;
6349
6350 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6351 if (!asoc)
6352 return -EINVAL;
6353
6354 if (!asoc->peer.primary_path)
6355 return -ENOTCONN;
6356
6357 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6358 asoc->peer.primary_path->af_specific->sockaddr_len);
6359
6360 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6361 (union sctp_addr *)&prim.ssp_addr);
6362
6363 if (put_user(len, optlen))
6364 return -EFAULT;
6365 if (copy_to_user(optval, &prim, len))
6366 return -EFAULT;
6367
6368 return 0;
6369 }
6370
6371 /*
6372 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6373 *
6374 * Requests that the local endpoint set the specified Adaptation Layer
6375 * Indication parameter for all future INIT and INIT-ACK exchanges.
6376 */
6377 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6378 char __user *optval, int __user *optlen)
6379 {
6380 struct sctp_setadaptation adaptation;
6381
6382 if (len < sizeof(struct sctp_setadaptation))
6383 return -EINVAL;
6384
6385 len = sizeof(struct sctp_setadaptation);
6386
6387 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6388
6389 if (put_user(len, optlen))
6390 return -EFAULT;
6391 if (copy_to_user(optval, &adaptation, len))
6392 return -EFAULT;
6393
6394 return 0;
6395 }
6396
6397 /*
6398 *
6399 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6400 *
6401 * Applications that wish to use the sendto() system call may wish to
6402 * specify a default set of parameters that would normally be supplied
6403 * through the inclusion of ancillary data. This socket option allows
6404 * such an application to set the default sctp_sndrcvinfo structure.
6405
6406
6407 * The application that wishes to use this socket option simply passes
6408 * in to this call the sctp_sndrcvinfo structure defined in Section
6409 * 5.2.2) The input parameters accepted by this call include
6410 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6411 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
6412 * to this call if the caller is using the UDP model.
6413 *
6414 * For getsockopt, it get the default sctp_sndrcvinfo structure.
6415 */
6416 static int sctp_getsockopt_default_send_param(struct sock *sk,
6417 int len, char __user *optval,
6418 int __user *optlen)
6419 {
6420 struct sctp_sock *sp = sctp_sk(sk);
6421 struct sctp_association *asoc;
6422 struct sctp_sndrcvinfo info;
6423
6424 if (len < sizeof(info))
6425 return -EINVAL;
6426
6427 len = sizeof(info);
6428
6429 if (copy_from_user(&info, optval, len))
6430 return -EFAULT;
6431
6432 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6433 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6434 sctp_style(sk, UDP))
6435 return -EINVAL;
6436
6437 if (asoc) {
6438 info.sinfo_stream = asoc->default_stream;
6439 info.sinfo_flags = asoc->default_flags;
6440 info.sinfo_ppid = asoc->default_ppid;
6441 info.sinfo_context = asoc->default_context;
6442 info.sinfo_timetolive = asoc->default_timetolive;
6443 } else {
6444 info.sinfo_stream = sp->default_stream;
6445 info.sinfo_flags = sp->default_flags;
6446 info.sinfo_ppid = sp->default_ppid;
6447 info.sinfo_context = sp->default_context;
6448 info.sinfo_timetolive = sp->default_timetolive;
6449 }
6450
6451 if (put_user(len, optlen))
6452 return -EFAULT;
6453 if (copy_to_user(optval, &info, len))
6454 return -EFAULT;
6455
6456 return 0;
6457 }
6458
6459 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6460 * (SCTP_DEFAULT_SNDINFO)
6461 */
6462 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6463 char __user *optval,
6464 int __user *optlen)
6465 {
6466 struct sctp_sock *sp = sctp_sk(sk);
6467 struct sctp_association *asoc;
6468 struct sctp_sndinfo info;
6469
6470 if (len < sizeof(info))
6471 return -EINVAL;
6472
6473 len = sizeof(info);
6474
6475 if (copy_from_user(&info, optval, len))
6476 return -EFAULT;
6477
6478 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6479 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6480 sctp_style(sk, UDP))
6481 return -EINVAL;
6482
6483 if (asoc) {
6484 info.snd_sid = asoc->default_stream;
6485 info.snd_flags = asoc->default_flags;
6486 info.snd_ppid = asoc->default_ppid;
6487 info.snd_context = asoc->default_context;
6488 } else {
6489 info.snd_sid = sp->default_stream;
6490 info.snd_flags = sp->default_flags;
6491 info.snd_ppid = sp->default_ppid;
6492 info.snd_context = sp->default_context;
6493 }
6494
6495 if (put_user(len, optlen))
6496 return -EFAULT;
6497 if (copy_to_user(optval, &info, len))
6498 return -EFAULT;
6499
6500 return 0;
6501 }
6502
6503 /*
6504 *
6505 * 7.1.5 SCTP_NODELAY
6506 *
6507 * Turn on/off any Nagle-like algorithm. This means that packets are
6508 * generally sent as soon as possible and no unnecessary delays are
6509 * introduced, at the cost of more packets in the network. Expects an
6510 * integer boolean flag.
6511 */
6512
6513 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6514 char __user *optval, int __user *optlen)
6515 {
6516 int val;
6517
6518 if (len < sizeof(int))
6519 return -EINVAL;
6520
6521 len = sizeof(int);
6522 val = (sctp_sk(sk)->nodelay == 1);
6523 if (put_user(len, optlen))
6524 return -EFAULT;
6525 if (copy_to_user(optval, &val, len))
6526 return -EFAULT;
6527 return 0;
6528 }
6529
6530 /*
6531 *
6532 * 7.1.1 SCTP_RTOINFO
6533 *
6534 * The protocol parameters used to initialize and bound retransmission
6535 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6536 * and modify these parameters.
6537 * All parameters are time values, in milliseconds. A value of 0, when
6538 * modifying the parameters, indicates that the current value should not
6539 * be changed.
6540 *
6541 */
6542 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6543 char __user *optval,
6544 int __user *optlen) {
6545 struct sctp_rtoinfo rtoinfo;
6546 struct sctp_association *asoc;
6547
6548 if (len < sizeof (struct sctp_rtoinfo))
6549 return -EINVAL;
6550
6551 len = sizeof(struct sctp_rtoinfo);
6552
6553 if (copy_from_user(&rtoinfo, optval, len))
6554 return -EFAULT;
6555
6556 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6557
6558 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6559 sctp_style(sk, UDP))
6560 return -EINVAL;
6561
6562 /* Values corresponding to the specific association. */
6563 if (asoc) {
6564 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6565 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6566 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6567 } else {
6568 /* Values corresponding to the endpoint. */
6569 struct sctp_sock *sp = sctp_sk(sk);
6570
6571 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6572 rtoinfo.srto_max = sp->rtoinfo.srto_max;
6573 rtoinfo.srto_min = sp->rtoinfo.srto_min;
6574 }
6575
6576 if (put_user(len, optlen))
6577 return -EFAULT;
6578
6579 if (copy_to_user(optval, &rtoinfo, len))
6580 return -EFAULT;
6581
6582 return 0;
6583 }
6584
6585 /*
6586 *
6587 * 7.1.2 SCTP_ASSOCINFO
6588 *
6589 * This option is used to tune the maximum retransmission attempts
6590 * of the association.
6591 * Returns an error if the new association retransmission value is
6592 * greater than the sum of the retransmission value of the peer.
6593 * See [SCTP] for more information.
6594 *
6595 */
6596 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6597 char __user *optval,
6598 int __user *optlen)
6599 {
6600
6601 struct sctp_assocparams assocparams;
6602 struct sctp_association *asoc;
6603 struct list_head *pos;
6604 int cnt = 0;
6605
6606 if (len < sizeof (struct sctp_assocparams))
6607 return -EINVAL;
6608
6609 len = sizeof(struct sctp_assocparams);
6610
6611 if (copy_from_user(&assocparams, optval, len))
6612 return -EFAULT;
6613
6614 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6615
6616 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6617 sctp_style(sk, UDP))
6618 return -EINVAL;
6619
6620 /* Values correspoinding to the specific association */
6621 if (asoc) {
6622 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6623 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6624 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6625 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6626
6627 list_for_each(pos, &asoc->peer.transport_addr_list) {
6628 cnt++;
6629 }
6630
6631 assocparams.sasoc_number_peer_destinations = cnt;
6632 } else {
6633 /* Values corresponding to the endpoint */
6634 struct sctp_sock *sp = sctp_sk(sk);
6635
6636 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6637 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6638 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6639 assocparams.sasoc_cookie_life =
6640 sp->assocparams.sasoc_cookie_life;
6641 assocparams.sasoc_number_peer_destinations =
6642 sp->assocparams.
6643 sasoc_number_peer_destinations;
6644 }
6645
6646 if (put_user(len, optlen))
6647 return -EFAULT;
6648
6649 if (copy_to_user(optval, &assocparams, len))
6650 return -EFAULT;
6651
6652 return 0;
6653 }
6654
6655 /*
6656 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6657 *
6658 * This socket option is a boolean flag which turns on or off mapped V4
6659 * addresses. If this option is turned on and the socket is type
6660 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6661 * If this option is turned off, then no mapping will be done of V4
6662 * addresses and a user will receive both PF_INET6 and PF_INET type
6663 * addresses on the socket.
6664 */
6665 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6666 char __user *optval, int __user *optlen)
6667 {
6668 int val;
6669 struct sctp_sock *sp = sctp_sk(sk);
6670
6671 if (len < sizeof(int))
6672 return -EINVAL;
6673
6674 len = sizeof(int);
6675 val = sp->v4mapped;
6676 if (put_user(len, optlen))
6677 return -EFAULT;
6678 if (copy_to_user(optval, &val, len))
6679 return -EFAULT;
6680
6681 return 0;
6682 }
6683
6684 /*
6685 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
6686 * (chapter and verse is quoted at sctp_setsockopt_context())
6687 */
6688 static int sctp_getsockopt_context(struct sock *sk, int len,
6689 char __user *optval, int __user *optlen)
6690 {
6691 struct sctp_assoc_value params;
6692 struct sctp_association *asoc;
6693
6694 if (len < sizeof(struct sctp_assoc_value))
6695 return -EINVAL;
6696
6697 len = sizeof(struct sctp_assoc_value);
6698
6699 if (copy_from_user(&params, optval, len))
6700 return -EFAULT;
6701
6702 asoc = sctp_id2assoc(sk, params.assoc_id);
6703 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6704 sctp_style(sk, UDP))
6705 return -EINVAL;
6706
6707 params.assoc_value = asoc ? asoc->default_rcv_context
6708 : sctp_sk(sk)->default_rcv_context;
6709
6710 if (put_user(len, optlen))
6711 return -EFAULT;
6712 if (copy_to_user(optval, &params, len))
6713 return -EFAULT;
6714
6715 return 0;
6716 }
6717
6718 /*
6719 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6720 * This option will get or set the maximum size to put in any outgoing
6721 * SCTP DATA chunk. If a message is larger than this size it will be
6722 * fragmented by SCTP into the specified size. Note that the underlying
6723 * SCTP implementation may fragment into smaller sized chunks when the
6724 * PMTU of the underlying association is smaller than the value set by
6725 * the user. The default value for this option is '0' which indicates
6726 * the user is NOT limiting fragmentation and only the PMTU will effect
6727 * SCTP's choice of DATA chunk size. Note also that values set larger
6728 * than the maximum size of an IP datagram will effectively let SCTP
6729 * control fragmentation (i.e. the same as setting this option to 0).
6730 *
6731 * The following structure is used to access and modify this parameter:
6732 *
6733 * struct sctp_assoc_value {
6734 * sctp_assoc_t assoc_id;
6735 * uint32_t assoc_value;
6736 * };
6737 *
6738 * assoc_id: This parameter is ignored for one-to-one style sockets.
6739 * For one-to-many style sockets this parameter indicates which
6740 * association the user is performing an action upon. Note that if
6741 * this field's value is zero then the endpoints default value is
6742 * changed (effecting future associations only).
6743 * assoc_value: This parameter specifies the maximum size in bytes.
6744 */
6745 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6746 char __user *optval, int __user *optlen)
6747 {
6748 struct sctp_assoc_value params;
6749 struct sctp_association *asoc;
6750
6751 if (len == sizeof(int)) {
6752 pr_warn_ratelimited(DEPRECATED
6753 "%s (pid %d) "
6754 "Use of int in maxseg socket option.\n"
6755 "Use struct sctp_assoc_value instead\n",
6756 current->comm, task_pid_nr(current));
6757 params.assoc_id = SCTP_FUTURE_ASSOC;
6758 } else if (len >= sizeof(struct sctp_assoc_value)) {
6759 len = sizeof(struct sctp_assoc_value);
6760 if (copy_from_user(&params, optval, len))
6761 return -EFAULT;
6762 } else
6763 return -EINVAL;
6764
6765 asoc = sctp_id2assoc(sk, params.assoc_id);
6766 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6767 sctp_style(sk, UDP))
6768 return -EINVAL;
6769
6770 if (asoc)
6771 params.assoc_value = asoc->frag_point;
6772 else
6773 params.assoc_value = sctp_sk(sk)->user_frag;
6774
6775 if (put_user(len, optlen))
6776 return -EFAULT;
6777 if (len == sizeof(int)) {
6778 if (copy_to_user(optval, &params.assoc_value, len))
6779 return -EFAULT;
6780 } else {
6781 if (copy_to_user(optval, &params, len))
6782 return -EFAULT;
6783 }
6784
6785 return 0;
6786 }
6787
6788 /*
6789 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6790 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6791 */
6792 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6793 char __user *optval, int __user *optlen)
6794 {
6795 int val;
6796
6797 if (len < sizeof(int))
6798 return -EINVAL;
6799
6800 len = sizeof(int);
6801
6802 val = sctp_sk(sk)->frag_interleave;
6803 if (put_user(len, optlen))
6804 return -EFAULT;
6805 if (copy_to_user(optval, &val, len))
6806 return -EFAULT;
6807
6808 return 0;
6809 }
6810
6811 /*
6812 * 7.1.25. Set or Get the sctp partial delivery point
6813 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6814 */
6815 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6816 char __user *optval,
6817 int __user *optlen)
6818 {
6819 u32 val;
6820
6821 if (len < sizeof(u32))
6822 return -EINVAL;
6823
6824 len = sizeof(u32);
6825
6826 val = sctp_sk(sk)->pd_point;
6827 if (put_user(len, optlen))
6828 return -EFAULT;
6829 if (copy_to_user(optval, &val, len))
6830 return -EFAULT;
6831
6832 return 0;
6833 }
6834
6835 /*
6836 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
6837 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6838 */
6839 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6840 char __user *optval,
6841 int __user *optlen)
6842 {
6843 struct sctp_assoc_value params;
6844 struct sctp_association *asoc;
6845
6846 if (len == sizeof(int)) {
6847 pr_warn_ratelimited(DEPRECATED
6848 "%s (pid %d) "
6849 "Use of int in max_burst socket option.\n"
6850 "Use struct sctp_assoc_value instead\n",
6851 current->comm, task_pid_nr(current));
6852 params.assoc_id = SCTP_FUTURE_ASSOC;
6853 } else if (len >= sizeof(struct sctp_assoc_value)) {
6854 len = sizeof(struct sctp_assoc_value);
6855 if (copy_from_user(&params, optval, len))
6856 return -EFAULT;
6857 } else
6858 return -EINVAL;
6859
6860 asoc = sctp_id2assoc(sk, params.assoc_id);
6861 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6862 sctp_style(sk, UDP))
6863 return -EINVAL;
6864
6865 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6866
6867 if (len == sizeof(int)) {
6868 if (copy_to_user(optval, &params.assoc_value, len))
6869 return -EFAULT;
6870 } else {
6871 if (copy_to_user(optval, &params, len))
6872 return -EFAULT;
6873 }
6874
6875 return 0;
6876
6877 }
6878
6879 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6880 char __user *optval, int __user *optlen)
6881 {
6882 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6883 struct sctp_hmacalgo __user *p = (void __user *)optval;
6884 struct sctp_hmac_algo_param *hmacs;
6885 __u16 data_len = 0;
6886 u32 num_idents;
6887 int i;
6888
6889 if (!ep->auth_enable)
6890 return -EACCES;
6891
6892 hmacs = ep->auth_hmacs_list;
6893 data_len = ntohs(hmacs->param_hdr.length) -
6894 sizeof(struct sctp_paramhdr);
6895
6896 if (len < sizeof(struct sctp_hmacalgo) + data_len)
6897 return -EINVAL;
6898
6899 len = sizeof(struct sctp_hmacalgo) + data_len;
6900 num_idents = data_len / sizeof(u16);
6901
6902 if (put_user(len, optlen))
6903 return -EFAULT;
6904 if (put_user(num_idents, &p->shmac_num_idents))
6905 return -EFAULT;
6906 for (i = 0; i < num_idents; i++) {
6907 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6908
6909 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6910 return -EFAULT;
6911 }
6912 return 0;
6913 }
6914
6915 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6916 char __user *optval, int __user *optlen)
6917 {
6918 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6919 struct sctp_authkeyid val;
6920 struct sctp_association *asoc;
6921
6922 if (len < sizeof(struct sctp_authkeyid))
6923 return -EINVAL;
6924
6925 len = sizeof(struct sctp_authkeyid);
6926 if (copy_from_user(&val, optval, len))
6927 return -EFAULT;
6928
6929 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6930 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6931 return -EINVAL;
6932
6933 if (asoc) {
6934 if (!asoc->peer.auth_capable)
6935 return -EACCES;
6936 val.scact_keynumber = asoc->active_key_id;
6937 } else {
6938 if (!ep->auth_enable)
6939 return -EACCES;
6940 val.scact_keynumber = ep->active_key_id;
6941 }
6942
6943 if (put_user(len, optlen))
6944 return -EFAULT;
6945 if (copy_to_user(optval, &val, len))
6946 return -EFAULT;
6947
6948 return 0;
6949 }
6950
6951 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6952 char __user *optval, int __user *optlen)
6953 {
6954 struct sctp_authchunks __user *p = (void __user *)optval;
6955 struct sctp_authchunks val;
6956 struct sctp_association *asoc;
6957 struct sctp_chunks_param *ch;
6958 u32 num_chunks = 0;
6959 char __user *to;
6960
6961 if (len < sizeof(struct sctp_authchunks))
6962 return -EINVAL;
6963
6964 if (copy_from_user(&val, optval, sizeof(val)))
6965 return -EFAULT;
6966
6967 to = p->gauth_chunks;
6968 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6969 if (!asoc)
6970 return -EINVAL;
6971
6972 if (!asoc->peer.auth_capable)
6973 return -EACCES;
6974
6975 ch = asoc->peer.peer_chunks;
6976 if (!ch)
6977 goto num;
6978
6979 /* See if the user provided enough room for all the data */
6980 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6981 if (len < num_chunks)
6982 return -EINVAL;
6983
6984 if (copy_to_user(to, ch->chunks, num_chunks))
6985 return -EFAULT;
6986 num:
6987 len = sizeof(struct sctp_authchunks) + num_chunks;
6988 if (put_user(len, optlen))
6989 return -EFAULT;
6990 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6991 return -EFAULT;
6992 return 0;
6993 }
6994
6995 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6996 char __user *optval, int __user *optlen)
6997 {
6998 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6999 struct sctp_authchunks __user *p = (void __user *)optval;
7000 struct sctp_authchunks val;
7001 struct sctp_association *asoc;
7002 struct sctp_chunks_param *ch;
7003 u32 num_chunks = 0;
7004 char __user *to;
7005
7006 if (len < sizeof(struct sctp_authchunks))
7007 return -EINVAL;
7008
7009 if (copy_from_user(&val, optval, sizeof(val)))
7010 return -EFAULT;
7011
7012 to = p->gauth_chunks;
7013 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
7014 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
7015 sctp_style(sk, UDP))
7016 return -EINVAL;
7017
7018 if (asoc) {
7019 if (!asoc->peer.auth_capable)
7020 return -EACCES;
7021 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
7022 } else {
7023 if (!ep->auth_enable)
7024 return -EACCES;
7025 ch = ep->auth_chunk_list;
7026 }
7027 if (!ch)
7028 goto num;
7029
7030 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
7031 if (len < sizeof(struct sctp_authchunks) + num_chunks)
7032 return -EINVAL;
7033
7034 if (copy_to_user(to, ch->chunks, num_chunks))
7035 return -EFAULT;
7036 num:
7037 len = sizeof(struct sctp_authchunks) + num_chunks;
7038 if (put_user(len, optlen))
7039 return -EFAULT;
7040 if (put_user(num_chunks, &p->gauth_number_of_chunks))
7041 return -EFAULT;
7042
7043 return 0;
7044 }
7045
7046 /*
7047 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
7048 * This option gets the current number of associations that are attached
7049 * to a one-to-many style socket. The option value is an uint32_t.
7050 */
7051 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
7052 char __user *optval, int __user *optlen)
7053 {
7054 struct sctp_sock *sp = sctp_sk(sk);
7055 struct sctp_association *asoc;
7056 u32 val = 0;
7057
7058 if (sctp_style(sk, TCP))
7059 return -EOPNOTSUPP;
7060
7061 if (len < sizeof(u32))
7062 return -EINVAL;
7063
7064 len = sizeof(u32);
7065
7066 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7067 val++;
7068 }
7069
7070 if (put_user(len, optlen))
7071 return -EFAULT;
7072 if (copy_to_user(optval, &val, len))
7073 return -EFAULT;
7074
7075 return 0;
7076 }
7077
7078 /*
7079 * 8.1.23 SCTP_AUTO_ASCONF
7080 * See the corresponding setsockopt entry as description
7081 */
7082 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
7083 char __user *optval, int __user *optlen)
7084 {
7085 int val = 0;
7086
7087 if (len < sizeof(int))
7088 return -EINVAL;
7089
7090 len = sizeof(int);
7091 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7092 val = 1;
7093 if (put_user(len, optlen))
7094 return -EFAULT;
7095 if (copy_to_user(optval, &val, len))
7096 return -EFAULT;
7097 return 0;
7098 }
7099
7100 /*
7101 * 8.2.6. Get the Current Identifiers of Associations
7102 * (SCTP_GET_ASSOC_ID_LIST)
7103 *
7104 * This option gets the current list of SCTP association identifiers of
7105 * the SCTP associations handled by a one-to-many style socket.
7106 */
7107 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7108 char __user *optval, int __user *optlen)
7109 {
7110 struct sctp_sock *sp = sctp_sk(sk);
7111 struct sctp_association *asoc;
7112 struct sctp_assoc_ids *ids;
7113 u32 num = 0;
7114
7115 if (sctp_style(sk, TCP))
7116 return -EOPNOTSUPP;
7117
7118 if (len < sizeof(struct sctp_assoc_ids))
7119 return -EINVAL;
7120
7121 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7122 num++;
7123 }
7124
7125 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7126 return -EINVAL;
7127
7128 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7129
7130 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7131 if (unlikely(!ids))
7132 return -ENOMEM;
7133
7134 ids->gaids_number_of_ids = num;
7135 num = 0;
7136 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7137 ids->gaids_assoc_id[num++] = asoc->assoc_id;
7138 }
7139
7140 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7141 kfree(ids);
7142 return -EFAULT;
7143 }
7144
7145 kfree(ids);
7146 return 0;
7147 }
7148
7149 /*
7150 * SCTP_PEER_ADDR_THLDS
7151 *
7152 * This option allows us to fetch the partially failed threshold for one or all
7153 * transports in an association. See Section 6.1 of:
7154 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7155 */
7156 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7157 char __user *optval, int len,
7158 int __user *optlen, bool v2)
7159 {
7160 struct sctp_paddrthlds_v2 val;
7161 struct sctp_transport *trans;
7162 struct sctp_association *asoc;
7163 int min;
7164
7165 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds);
7166 if (len < min)
7167 return -EINVAL;
7168 len = min;
7169 if (copy_from_user(&val, optval, len))
7170 return -EFAULT;
7171
7172 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7173 trans = sctp_addr_id2transport(sk, &val.spt_address,
7174 val.spt_assoc_id);
7175 if (!trans)
7176 return -ENOENT;
7177
7178 val.spt_pathmaxrxt = trans->pathmaxrxt;
7179 val.spt_pathpfthld = trans->pf_retrans;
7180 val.spt_pathcpthld = trans->ps_retrans;
7181
7182 goto out;
7183 }
7184
7185 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7186 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7187 sctp_style(sk, UDP))
7188 return -EINVAL;
7189
7190 if (asoc) {
7191 val.spt_pathpfthld = asoc->pf_retrans;
7192 val.spt_pathmaxrxt = asoc->pathmaxrxt;
7193 val.spt_pathcpthld = asoc->ps_retrans;
7194 } else {
7195 struct sctp_sock *sp = sctp_sk(sk);
7196
7197 val.spt_pathpfthld = sp->pf_retrans;
7198 val.spt_pathmaxrxt = sp->pathmaxrxt;
7199 val.spt_pathcpthld = sp->ps_retrans;
7200 }
7201
7202 out:
7203 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7204 return -EFAULT;
7205
7206 return 0;
7207 }
7208
7209 /*
7210 * SCTP_GET_ASSOC_STATS
7211 *
7212 * This option retrieves local per endpoint statistics. It is modeled
7213 * after OpenSolaris' implementation
7214 */
7215 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7216 char __user *optval,
7217 int __user *optlen)
7218 {
7219 struct sctp_assoc_stats sas;
7220 struct sctp_association *asoc = NULL;
7221
7222 /* User must provide at least the assoc id */
7223 if (len < sizeof(sctp_assoc_t))
7224 return -EINVAL;
7225
7226 /* Allow the struct to grow and fill in as much as possible */
7227 len = min_t(size_t, len, sizeof(sas));
7228
7229 if (copy_from_user(&sas, optval, len))
7230 return -EFAULT;
7231
7232 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7233 if (!asoc)
7234 return -EINVAL;
7235
7236 sas.sas_rtxchunks = asoc->stats.rtxchunks;
7237 sas.sas_gapcnt = asoc->stats.gapcnt;
7238 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7239 sas.sas_osacks = asoc->stats.osacks;
7240 sas.sas_isacks = asoc->stats.isacks;
7241 sas.sas_octrlchunks = asoc->stats.octrlchunks;
7242 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7243 sas.sas_oodchunks = asoc->stats.oodchunks;
7244 sas.sas_iodchunks = asoc->stats.iodchunks;
7245 sas.sas_ouodchunks = asoc->stats.ouodchunks;
7246 sas.sas_iuodchunks = asoc->stats.iuodchunks;
7247 sas.sas_idupchunks = asoc->stats.idupchunks;
7248 sas.sas_opackets = asoc->stats.opackets;
7249 sas.sas_ipackets = asoc->stats.ipackets;
7250
7251 /* New high max rto observed, will return 0 if not a single
7252 * RTO update took place. obs_rto_ipaddr will be bogus
7253 * in such a case
7254 */
7255 sas.sas_maxrto = asoc->stats.max_obs_rto;
7256 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7257 sizeof(struct sockaddr_storage));
7258
7259 /* Mark beginning of a new observation period */
7260 asoc->stats.max_obs_rto = asoc->rto_min;
7261
7262 if (put_user(len, optlen))
7263 return -EFAULT;
7264
7265 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7266
7267 if (copy_to_user(optval, &sas, len))
7268 return -EFAULT;
7269
7270 return 0;
7271 }
7272
7273 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
7274 char __user *optval,
7275 int __user *optlen)
7276 {
7277 int val = 0;
7278
7279 if (len < sizeof(int))
7280 return -EINVAL;
7281
7282 len = sizeof(int);
7283 if (sctp_sk(sk)->recvrcvinfo)
7284 val = 1;
7285 if (put_user(len, optlen))
7286 return -EFAULT;
7287 if (copy_to_user(optval, &val, len))
7288 return -EFAULT;
7289
7290 return 0;
7291 }
7292
7293 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
7294 char __user *optval,
7295 int __user *optlen)
7296 {
7297 int val = 0;
7298
7299 if (len < sizeof(int))
7300 return -EINVAL;
7301
7302 len = sizeof(int);
7303 if (sctp_sk(sk)->recvnxtinfo)
7304 val = 1;
7305 if (put_user(len, optlen))
7306 return -EFAULT;
7307 if (copy_to_user(optval, &val, len))
7308 return -EFAULT;
7309
7310 return 0;
7311 }
7312
7313 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7314 char __user *optval,
7315 int __user *optlen)
7316 {
7317 struct sctp_assoc_value params;
7318 struct sctp_association *asoc;
7319 int retval = -EFAULT;
7320
7321 if (len < sizeof(params)) {
7322 retval = -EINVAL;
7323 goto out;
7324 }
7325
7326 len = sizeof(params);
7327 if (copy_from_user(&params, optval, len))
7328 goto out;
7329
7330 asoc = sctp_id2assoc(sk, params.assoc_id);
7331 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7332 sctp_style(sk, UDP)) {
7333 retval = -EINVAL;
7334 goto out;
7335 }
7336
7337 params.assoc_value = asoc ? asoc->peer.prsctp_capable
7338 : sctp_sk(sk)->ep->prsctp_enable;
7339
7340 if (put_user(len, optlen))
7341 goto out;
7342
7343 if (copy_to_user(optval, &params, len))
7344 goto out;
7345
7346 retval = 0;
7347
7348 out:
7349 return retval;
7350 }
7351
7352 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7353 char __user *optval,
7354 int __user *optlen)
7355 {
7356 struct sctp_default_prinfo info;
7357 struct sctp_association *asoc;
7358 int retval = -EFAULT;
7359
7360 if (len < sizeof(info)) {
7361 retval = -EINVAL;
7362 goto out;
7363 }
7364
7365 len = sizeof(info);
7366 if (copy_from_user(&info, optval, len))
7367 goto out;
7368
7369 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7370 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7371 sctp_style(sk, UDP)) {
7372 retval = -EINVAL;
7373 goto out;
7374 }
7375
7376 if (asoc) {
7377 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7378 info.pr_value = asoc->default_timetolive;
7379 } else {
7380 struct sctp_sock *sp = sctp_sk(sk);
7381
7382 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7383 info.pr_value = sp->default_timetolive;
7384 }
7385
7386 if (put_user(len, optlen))
7387 goto out;
7388
7389 if (copy_to_user(optval, &info, len))
7390 goto out;
7391
7392 retval = 0;
7393
7394 out:
7395 return retval;
7396 }
7397
7398 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7399 char __user *optval,
7400 int __user *optlen)
7401 {
7402 struct sctp_prstatus params;
7403 struct sctp_association *asoc;
7404 int policy;
7405 int retval = -EINVAL;
7406
7407 if (len < sizeof(params))
7408 goto out;
7409
7410 len = sizeof(params);
7411 if (copy_from_user(&params, optval, len)) {
7412 retval = -EFAULT;
7413 goto out;
7414 }
7415
7416 policy = params.sprstat_policy;
7417 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7418 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7419 goto out;
7420
7421 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7422 if (!asoc)
7423 goto out;
7424
7425 if (policy == SCTP_PR_SCTP_ALL) {
7426 params.sprstat_abandoned_unsent = 0;
7427 params.sprstat_abandoned_sent = 0;
7428 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7429 params.sprstat_abandoned_unsent +=
7430 asoc->abandoned_unsent[policy];
7431 params.sprstat_abandoned_sent +=
7432 asoc->abandoned_sent[policy];
7433 }
7434 } else {
7435 params.sprstat_abandoned_unsent =
7436 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7437 params.sprstat_abandoned_sent =
7438 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7439 }
7440
7441 if (put_user(len, optlen)) {
7442 retval = -EFAULT;
7443 goto out;
7444 }
7445
7446 if (copy_to_user(optval, &params, len)) {
7447 retval = -EFAULT;
7448 goto out;
7449 }
7450
7451 retval = 0;
7452
7453 out:
7454 return retval;
7455 }
7456
7457 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7458 char __user *optval,
7459 int __user *optlen)
7460 {
7461 struct sctp_stream_out_ext *streamoute;
7462 struct sctp_association *asoc;
7463 struct sctp_prstatus params;
7464 int retval = -EINVAL;
7465 int policy;
7466
7467 if (len < sizeof(params))
7468 goto out;
7469
7470 len = sizeof(params);
7471 if (copy_from_user(&params, optval, len)) {
7472 retval = -EFAULT;
7473 goto out;
7474 }
7475
7476 policy = params.sprstat_policy;
7477 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7478 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7479 goto out;
7480
7481 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7482 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7483 goto out;
7484
7485 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7486 if (!streamoute) {
7487 /* Not allocated yet, means all stats are 0 */
7488 params.sprstat_abandoned_unsent = 0;
7489 params.sprstat_abandoned_sent = 0;
7490 retval = 0;
7491 goto out;
7492 }
7493
7494 if (policy == SCTP_PR_SCTP_ALL) {
7495 params.sprstat_abandoned_unsent = 0;
7496 params.sprstat_abandoned_sent = 0;
7497 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7498 params.sprstat_abandoned_unsent +=
7499 streamoute->abandoned_unsent[policy];
7500 params.sprstat_abandoned_sent +=
7501 streamoute->abandoned_sent[policy];
7502 }
7503 } else {
7504 params.sprstat_abandoned_unsent =
7505 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7506 params.sprstat_abandoned_sent =
7507 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7508 }
7509
7510 if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
7511 retval = -EFAULT;
7512 goto out;
7513 }
7514
7515 retval = 0;
7516
7517 out:
7518 return retval;
7519 }
7520
7521 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7522 char __user *optval,
7523 int __user *optlen)
7524 {
7525 struct sctp_assoc_value params;
7526 struct sctp_association *asoc;
7527 int retval = -EFAULT;
7528
7529 if (len < sizeof(params)) {
7530 retval = -EINVAL;
7531 goto out;
7532 }
7533
7534 len = sizeof(params);
7535 if (copy_from_user(&params, optval, len))
7536 goto out;
7537
7538 asoc = sctp_id2assoc(sk, params.assoc_id);
7539 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7540 sctp_style(sk, UDP)) {
7541 retval = -EINVAL;
7542 goto out;
7543 }
7544
7545 params.assoc_value = asoc ? asoc->peer.reconf_capable
7546 : sctp_sk(sk)->ep->reconf_enable;
7547
7548 if (put_user(len, optlen))
7549 goto out;
7550
7551 if (copy_to_user(optval, &params, len))
7552 goto out;
7553
7554 retval = 0;
7555
7556 out:
7557 return retval;
7558 }
7559
7560 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7561 char __user *optval,
7562 int __user *optlen)
7563 {
7564 struct sctp_assoc_value params;
7565 struct sctp_association *asoc;
7566 int retval = -EFAULT;
7567
7568 if (len < sizeof(params)) {
7569 retval = -EINVAL;
7570 goto out;
7571 }
7572
7573 len = sizeof(params);
7574 if (copy_from_user(&params, optval, len))
7575 goto out;
7576
7577 asoc = sctp_id2assoc(sk, params.assoc_id);
7578 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7579 sctp_style(sk, UDP)) {
7580 retval = -EINVAL;
7581 goto out;
7582 }
7583
7584 params.assoc_value = asoc ? asoc->strreset_enable
7585 : sctp_sk(sk)->ep->strreset_enable;
7586
7587 if (put_user(len, optlen))
7588 goto out;
7589
7590 if (copy_to_user(optval, &params, len))
7591 goto out;
7592
7593 retval = 0;
7594
7595 out:
7596 return retval;
7597 }
7598
7599 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7600 char __user *optval,
7601 int __user *optlen)
7602 {
7603 struct sctp_assoc_value params;
7604 struct sctp_association *asoc;
7605 int retval = -EFAULT;
7606
7607 if (len < sizeof(params)) {
7608 retval = -EINVAL;
7609 goto out;
7610 }
7611
7612 len = sizeof(params);
7613 if (copy_from_user(&params, optval, len))
7614 goto out;
7615
7616 asoc = sctp_id2assoc(sk, params.assoc_id);
7617 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7618 sctp_style(sk, UDP)) {
7619 retval = -EINVAL;
7620 goto out;
7621 }
7622
7623 params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7624 : sctp_sk(sk)->default_ss;
7625
7626 if (put_user(len, optlen))
7627 goto out;
7628
7629 if (copy_to_user(optval, &params, len))
7630 goto out;
7631
7632 retval = 0;
7633
7634 out:
7635 return retval;
7636 }
7637
7638 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7639 char __user *optval,
7640 int __user *optlen)
7641 {
7642 struct sctp_stream_value params;
7643 struct sctp_association *asoc;
7644 int retval = -EFAULT;
7645
7646 if (len < sizeof(params)) {
7647 retval = -EINVAL;
7648 goto out;
7649 }
7650
7651 len = sizeof(params);
7652 if (copy_from_user(&params, optval, len))
7653 goto out;
7654
7655 asoc = sctp_id2assoc(sk, params.assoc_id);
7656 if (!asoc) {
7657 retval = -EINVAL;
7658 goto out;
7659 }
7660
7661 retval = sctp_sched_get_value(asoc, params.stream_id,
7662 &params.stream_value);
7663 if (retval)
7664 goto out;
7665
7666 if (put_user(len, optlen)) {
7667 retval = -EFAULT;
7668 goto out;
7669 }
7670
7671 if (copy_to_user(optval, &params, len)) {
7672 retval = -EFAULT;
7673 goto out;
7674 }
7675
7676 out:
7677 return retval;
7678 }
7679
7680 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7681 char __user *optval,
7682 int __user *optlen)
7683 {
7684 struct sctp_assoc_value params;
7685 struct sctp_association *asoc;
7686 int retval = -EFAULT;
7687
7688 if (len < sizeof(params)) {
7689 retval = -EINVAL;
7690 goto out;
7691 }
7692
7693 len = sizeof(params);
7694 if (copy_from_user(&params, optval, len))
7695 goto out;
7696
7697 asoc = sctp_id2assoc(sk, params.assoc_id);
7698 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7699 sctp_style(sk, UDP)) {
7700 retval = -EINVAL;
7701 goto out;
7702 }
7703
7704 params.assoc_value = asoc ? asoc->peer.intl_capable
7705 : sctp_sk(sk)->ep->intl_enable;
7706
7707 if (put_user(len, optlen))
7708 goto out;
7709
7710 if (copy_to_user(optval, &params, len))
7711 goto out;
7712
7713 retval = 0;
7714
7715 out:
7716 return retval;
7717 }
7718
7719 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7720 char __user *optval,
7721 int __user *optlen)
7722 {
7723 int val;
7724
7725 if (len < sizeof(int))
7726 return -EINVAL;
7727
7728 len = sizeof(int);
7729 val = sctp_sk(sk)->reuse;
7730 if (put_user(len, optlen))
7731 return -EFAULT;
7732
7733 if (copy_to_user(optval, &val, len))
7734 return -EFAULT;
7735
7736 return 0;
7737 }
7738
7739 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7740 int __user *optlen)
7741 {
7742 struct sctp_association *asoc;
7743 struct sctp_event param;
7744 __u16 subscribe;
7745
7746 if (len < sizeof(param))
7747 return -EINVAL;
7748
7749 len = sizeof(param);
7750 if (copy_from_user(&param, optval, len))
7751 return -EFAULT;
7752
7753 if (param.se_type < SCTP_SN_TYPE_BASE ||
7754 param.se_type > SCTP_SN_TYPE_MAX)
7755 return -EINVAL;
7756
7757 asoc = sctp_id2assoc(sk, param.se_assoc_id);
7758 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7759 sctp_style(sk, UDP))
7760 return -EINVAL;
7761
7762 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7763 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7764
7765 if (put_user(len, optlen))
7766 return -EFAULT;
7767
7768 if (copy_to_user(optval, &param, len))
7769 return -EFAULT;
7770
7771 return 0;
7772 }
7773
7774 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len,
7775 char __user *optval,
7776 int __user *optlen)
7777 {
7778 struct sctp_assoc_value params;
7779 struct sctp_association *asoc;
7780 int retval = -EFAULT;
7781
7782 if (len < sizeof(params)) {
7783 retval = -EINVAL;
7784 goto out;
7785 }
7786
7787 len = sizeof(params);
7788 if (copy_from_user(&params, optval, len))
7789 goto out;
7790
7791 asoc = sctp_id2assoc(sk, params.assoc_id);
7792 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7793 sctp_style(sk, UDP)) {
7794 retval = -EINVAL;
7795 goto out;
7796 }
7797
7798 params.assoc_value = asoc ? asoc->peer.asconf_capable
7799 : sctp_sk(sk)->ep->asconf_enable;
7800
7801 if (put_user(len, optlen))
7802 goto out;
7803
7804 if (copy_to_user(optval, &params, len))
7805 goto out;
7806
7807 retval = 0;
7808
7809 out:
7810 return retval;
7811 }
7812
7813 static int sctp_getsockopt_auth_supported(struct sock *sk, int len,
7814 char __user *optval,
7815 int __user *optlen)
7816 {
7817 struct sctp_assoc_value params;
7818 struct sctp_association *asoc;
7819 int retval = -EFAULT;
7820
7821 if (len < sizeof(params)) {
7822 retval = -EINVAL;
7823 goto out;
7824 }
7825
7826 len = sizeof(params);
7827 if (copy_from_user(&params, optval, len))
7828 goto out;
7829
7830 asoc = sctp_id2assoc(sk, params.assoc_id);
7831 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7832 sctp_style(sk, UDP)) {
7833 retval = -EINVAL;
7834 goto out;
7835 }
7836
7837 params.assoc_value = asoc ? asoc->peer.auth_capable
7838 : sctp_sk(sk)->ep->auth_enable;
7839
7840 if (put_user(len, optlen))
7841 goto out;
7842
7843 if (copy_to_user(optval, &params, len))
7844 goto out;
7845
7846 retval = 0;
7847
7848 out:
7849 return retval;
7850 }
7851
7852 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len,
7853 char __user *optval,
7854 int __user *optlen)
7855 {
7856 struct sctp_assoc_value params;
7857 struct sctp_association *asoc;
7858 int retval = -EFAULT;
7859
7860 if (len < sizeof(params)) {
7861 retval = -EINVAL;
7862 goto out;
7863 }
7864
7865 len = sizeof(params);
7866 if (copy_from_user(&params, optval, len))
7867 goto out;
7868
7869 asoc = sctp_id2assoc(sk, params.assoc_id);
7870 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7871 sctp_style(sk, UDP)) {
7872 retval = -EINVAL;
7873 goto out;
7874 }
7875
7876 params.assoc_value = asoc ? asoc->peer.ecn_capable
7877 : sctp_sk(sk)->ep->ecn_enable;
7878
7879 if (put_user(len, optlen))
7880 goto out;
7881
7882 if (copy_to_user(optval, &params, len))
7883 goto out;
7884
7885 retval = 0;
7886
7887 out:
7888 return retval;
7889 }
7890
7891 static int sctp_getsockopt_pf_expose(struct sock *sk, int len,
7892 char __user *optval,
7893 int __user *optlen)
7894 {
7895 struct sctp_assoc_value params;
7896 struct sctp_association *asoc;
7897 int retval = -EFAULT;
7898
7899 if (len < sizeof(params)) {
7900 retval = -EINVAL;
7901 goto out;
7902 }
7903
7904 len = sizeof(params);
7905 if (copy_from_user(&params, optval, len))
7906 goto out;
7907
7908 asoc = sctp_id2assoc(sk, params.assoc_id);
7909 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7910 sctp_style(sk, UDP)) {
7911 retval = -EINVAL;
7912 goto out;
7913 }
7914
7915 params.assoc_value = asoc ? asoc->pf_expose
7916 : sctp_sk(sk)->pf_expose;
7917
7918 if (put_user(len, optlen))
7919 goto out;
7920
7921 if (copy_to_user(optval, &params, len))
7922 goto out;
7923
7924 retval = 0;
7925
7926 out:
7927 return retval;
7928 }
7929
7930 static int sctp_getsockopt_encap_port(struct sock *sk, int len,
7931 char __user *optval, int __user *optlen)
7932 {
7933 struct sctp_association *asoc;
7934 struct sctp_udpencaps encap;
7935 struct sctp_transport *t;
7936 __be16 encap_port;
7937
7938 if (len < sizeof(encap))
7939 return -EINVAL;
7940
7941 len = sizeof(encap);
7942 if (copy_from_user(&encap, optval, len))
7943 return -EFAULT;
7944
7945 /* If an address other than INADDR_ANY is specified, and
7946 * no transport is found, then the request is invalid.
7947 */
7948 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) {
7949 t = sctp_addr_id2transport(sk, &encap.sue_address,
7950 encap.sue_assoc_id);
7951 if (!t) {
7952 pr_debug("%s: failed no transport\n", __func__);
7953 return -EINVAL;
7954 }
7955
7956 encap_port = t->encap_port;
7957 goto out;
7958 }
7959
7960 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
7961 * socket is a one to many style socket, and an association
7962 * was not found, then the id was invalid.
7963 */
7964 asoc = sctp_id2assoc(sk, encap.sue_assoc_id);
7965 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC &&
7966 sctp_style(sk, UDP)) {
7967 pr_debug("%s: failed no association\n", __func__);
7968 return -EINVAL;
7969 }
7970
7971 if (asoc) {
7972 encap_port = asoc->encap_port;
7973 goto out;
7974 }
7975
7976 encap_port = sctp_sk(sk)->encap_port;
7977
7978 out:
7979 encap.sue_port = (__force uint16_t)encap_port;
7980 if (copy_to_user(optval, &encap, len))
7981 return -EFAULT;
7982
7983 if (put_user(len, optlen))
7984 return -EFAULT;
7985
7986 return 0;
7987 }
7988
7989 static int sctp_getsockopt_probe_interval(struct sock *sk, int len,
7990 char __user *optval,
7991 int __user *optlen)
7992 {
7993 struct sctp_probeinterval params;
7994 struct sctp_association *asoc;
7995 struct sctp_transport *t;
7996 __u32 probe_interval;
7997
7998 if (len < sizeof(params))
7999 return -EINVAL;
8000
8001 len = sizeof(params);
8002 if (copy_from_user(&params, optval, len))
8003 return -EFAULT;
8004
8005 /* If an address other than INADDR_ANY is specified, and
8006 * no transport is found, then the request is invalid.
8007 */
8008 if (!sctp_is_any(sk, (union sctp_addr *)&params.spi_address)) {
8009 t = sctp_addr_id2transport(sk, &params.spi_address,
8010 params.spi_assoc_id);
8011 if (!t) {
8012 pr_debug("%s: failed no transport\n", __func__);
8013 return -EINVAL;
8014 }
8015
8016 probe_interval = jiffies_to_msecs(t->probe_interval);
8017 goto out;
8018 }
8019
8020 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
8021 * socket is a one to many style socket, and an association
8022 * was not found, then the id was invalid.
8023 */
8024 asoc = sctp_id2assoc(sk, params.spi_assoc_id);
8025 if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC &&
8026 sctp_style(sk, UDP)) {
8027 pr_debug("%s: failed no association\n", __func__);
8028 return -EINVAL;
8029 }
8030
8031 if (asoc) {
8032 probe_interval = jiffies_to_msecs(asoc->probe_interval);
8033 goto out;
8034 }
8035
8036 probe_interval = sctp_sk(sk)->probe_interval;
8037
8038 out:
8039 params.spi_interval = probe_interval;
8040 if (copy_to_user(optval, &params, len))
8041 return -EFAULT;
8042
8043 if (put_user(len, optlen))
8044 return -EFAULT;
8045
8046 return 0;
8047 }
8048
8049 static int sctp_getsockopt(struct sock *sk, int level, int optname,
8050 char __user *optval, int __user *optlen)
8051 {
8052 int retval = 0;
8053 int len;
8054
8055 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
8056
8057 /* I can hardly begin to describe how wrong this is. This is
8058 * so broken as to be worse than useless. The API draft
8059 * REALLY is NOT helpful here... I am not convinced that the
8060 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
8061 * are at all well-founded.
8062 */
8063 if (level != SOL_SCTP) {
8064 struct sctp_af *af = sctp_sk(sk)->pf->af;
8065
8066 retval = af->getsockopt(sk, level, optname, optval, optlen);
8067 return retval;
8068 }
8069
8070 if (get_user(len, optlen))
8071 return -EFAULT;
8072
8073 if (len < 0)
8074 return -EINVAL;
8075
8076 lock_sock(sk);
8077
8078 switch (optname) {
8079 case SCTP_STATUS:
8080 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
8081 break;
8082 case SCTP_DISABLE_FRAGMENTS:
8083 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
8084 optlen);
8085 break;
8086 case SCTP_EVENTS:
8087 retval = sctp_getsockopt_events(sk, len, optval, optlen);
8088 break;
8089 case SCTP_AUTOCLOSE:
8090 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
8091 break;
8092 case SCTP_SOCKOPT_PEELOFF:
8093 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
8094 break;
8095 case SCTP_SOCKOPT_PEELOFF_FLAGS:
8096 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
8097 break;
8098 case SCTP_PEER_ADDR_PARAMS:
8099 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
8100 optlen);
8101 break;
8102 case SCTP_DELAYED_SACK:
8103 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
8104 optlen);
8105 break;
8106 case SCTP_INITMSG:
8107 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
8108 break;
8109 case SCTP_GET_PEER_ADDRS:
8110 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
8111 optlen);
8112 break;
8113 case SCTP_GET_LOCAL_ADDRS:
8114 retval = sctp_getsockopt_local_addrs(sk, len, optval,
8115 optlen);
8116 break;
8117 case SCTP_SOCKOPT_CONNECTX3:
8118 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
8119 break;
8120 case SCTP_DEFAULT_SEND_PARAM:
8121 retval = sctp_getsockopt_default_send_param(sk, len,
8122 optval, optlen);
8123 break;
8124 case SCTP_DEFAULT_SNDINFO:
8125 retval = sctp_getsockopt_default_sndinfo(sk, len,
8126 optval, optlen);
8127 break;
8128 case SCTP_PRIMARY_ADDR:
8129 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
8130 break;
8131 case SCTP_NODELAY:
8132 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
8133 break;
8134 case SCTP_RTOINFO:
8135 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
8136 break;
8137 case SCTP_ASSOCINFO:
8138 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
8139 break;
8140 case SCTP_I_WANT_MAPPED_V4_ADDR:
8141 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
8142 break;
8143 case SCTP_MAXSEG:
8144 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
8145 break;
8146 case SCTP_GET_PEER_ADDR_INFO:
8147 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
8148 optlen);
8149 break;
8150 case SCTP_ADAPTATION_LAYER:
8151 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
8152 optlen);
8153 break;
8154 case SCTP_CONTEXT:
8155 retval = sctp_getsockopt_context(sk, len, optval, optlen);
8156 break;
8157 case SCTP_FRAGMENT_INTERLEAVE:
8158 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
8159 optlen);
8160 break;
8161 case SCTP_PARTIAL_DELIVERY_POINT:
8162 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
8163 optlen);
8164 break;
8165 case SCTP_MAX_BURST:
8166 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
8167 break;
8168 case SCTP_AUTH_KEY:
8169 case SCTP_AUTH_CHUNK:
8170 case SCTP_AUTH_DELETE_KEY:
8171 case SCTP_AUTH_DEACTIVATE_KEY:
8172 retval = -EOPNOTSUPP;
8173 break;
8174 case SCTP_HMAC_IDENT:
8175 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
8176 break;
8177 case SCTP_AUTH_ACTIVE_KEY:
8178 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
8179 break;
8180 case SCTP_PEER_AUTH_CHUNKS:
8181 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
8182 optlen);
8183 break;
8184 case SCTP_LOCAL_AUTH_CHUNKS:
8185 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
8186 optlen);
8187 break;
8188 case SCTP_GET_ASSOC_NUMBER:
8189 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
8190 break;
8191 case SCTP_GET_ASSOC_ID_LIST:
8192 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
8193 break;
8194 case SCTP_AUTO_ASCONF:
8195 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
8196 break;
8197 case SCTP_PEER_ADDR_THLDS:
8198 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8199 optlen, false);
8200 break;
8201 case SCTP_PEER_ADDR_THLDS_V2:
8202 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8203 optlen, true);
8204 break;
8205 case SCTP_GET_ASSOC_STATS:
8206 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
8207 break;
8208 case SCTP_RECVRCVINFO:
8209 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
8210 break;
8211 case SCTP_RECVNXTINFO:
8212 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
8213 break;
8214 case SCTP_PR_SUPPORTED:
8215 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
8216 break;
8217 case SCTP_DEFAULT_PRINFO:
8218 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
8219 optlen);
8220 break;
8221 case SCTP_PR_ASSOC_STATUS:
8222 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
8223 optlen);
8224 break;
8225 case SCTP_PR_STREAM_STATUS:
8226 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
8227 optlen);
8228 break;
8229 case SCTP_RECONFIG_SUPPORTED:
8230 retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
8231 optlen);
8232 break;
8233 case SCTP_ENABLE_STREAM_RESET:
8234 retval = sctp_getsockopt_enable_strreset(sk, len, optval,
8235 optlen);
8236 break;
8237 case SCTP_STREAM_SCHEDULER:
8238 retval = sctp_getsockopt_scheduler(sk, len, optval,
8239 optlen);
8240 break;
8241 case SCTP_STREAM_SCHEDULER_VALUE:
8242 retval = sctp_getsockopt_scheduler_value(sk, len, optval,
8243 optlen);
8244 break;
8245 case SCTP_INTERLEAVING_SUPPORTED:
8246 retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
8247 optlen);
8248 break;
8249 case SCTP_REUSE_PORT:
8250 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
8251 break;
8252 case SCTP_EVENT:
8253 retval = sctp_getsockopt_event(sk, len, optval, optlen);
8254 break;
8255 case SCTP_ASCONF_SUPPORTED:
8256 retval = sctp_getsockopt_asconf_supported(sk, len, optval,
8257 optlen);
8258 break;
8259 case SCTP_AUTH_SUPPORTED:
8260 retval = sctp_getsockopt_auth_supported(sk, len, optval,
8261 optlen);
8262 break;
8263 case SCTP_ECN_SUPPORTED:
8264 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen);
8265 break;
8266 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
8267 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen);
8268 break;
8269 case SCTP_REMOTE_UDP_ENCAPS_PORT:
8270 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen);
8271 break;
8272 case SCTP_PLPMTUD_PROBE_INTERVAL:
8273 retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen);
8274 break;
8275 default:
8276 retval = -ENOPROTOOPT;
8277 break;
8278 }
8279
8280 release_sock(sk);
8281 return retval;
8282 }
8283
8284 static bool sctp_bpf_bypass_getsockopt(int level, int optname)
8285 {
8286 if (level == SOL_SCTP) {
8287 switch (optname) {
8288 case SCTP_SOCKOPT_PEELOFF:
8289 case SCTP_SOCKOPT_PEELOFF_FLAGS:
8290 case SCTP_SOCKOPT_CONNECTX3:
8291 return true;
8292 default:
8293 return false;
8294 }
8295 }
8296
8297 return false;
8298 }
8299
8300 static int sctp_hash(struct sock *sk)
8301 {
8302 /* STUB */
8303 return 0;
8304 }
8305
8306 static void sctp_unhash(struct sock *sk)
8307 {
8308 /* STUB */
8309 }
8310
8311 /* Check if port is acceptable. Possibly find first available port.
8312 *
8313 * The port hash table (contained in the 'global' SCTP protocol storage
8314 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8315 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8316 * list (the list number is the port number hashed out, so as you
8317 * would expect from a hash function, all the ports in a given list have
8318 * such a number that hashes out to the same list number; you were
8319 * expecting that, right?); so each list has a set of ports, with a
8320 * link to the socket (struct sock) that uses it, the port number and
8321 * a fastreuse flag (FIXME: NPI ipg).
8322 */
8323 static struct sctp_bind_bucket *sctp_bucket_create(
8324 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8325
8326 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8327 {
8328 struct sctp_sock *sp = sctp_sk(sk);
8329 bool reuse = (sk->sk_reuse || sp->reuse);
8330 struct sctp_bind_hashbucket *head; /* hash list */
8331 struct net *net = sock_net(sk);
8332 kuid_t uid = sock_i_uid(sk);
8333 struct sctp_bind_bucket *pp;
8334 unsigned short snum;
8335 int ret;
8336
8337 snum = ntohs(addr->v4.sin_port);
8338
8339 pr_debug("%s: begins, snum:%d\n", __func__, snum);
8340
8341 if (snum == 0) {
8342 /* Search for an available port. */
8343 int low, high, remaining, index;
8344 unsigned int rover;
8345
8346 inet_sk_get_local_port_range(sk, &low, &high);
8347 remaining = (high - low) + 1;
8348 rover = get_random_u32_below(remaining) + low;
8349
8350 do {
8351 rover++;
8352 if ((rover < low) || (rover > high))
8353 rover = low;
8354 if (inet_is_local_reserved_port(net, rover))
8355 continue;
8356 index = sctp_phashfn(net, rover);
8357 head = &sctp_port_hashtable[index];
8358 spin_lock_bh(&head->lock);
8359 sctp_for_each_hentry(pp, &head->chain)
8360 if ((pp->port == rover) &&
8361 net_eq(net, pp->net))
8362 goto next;
8363 break;
8364 next:
8365 spin_unlock_bh(&head->lock);
8366 cond_resched();
8367 } while (--remaining > 0);
8368
8369 /* Exhausted local port range during search? */
8370 ret = 1;
8371 if (remaining <= 0)
8372 return ret;
8373
8374 /* OK, here is the one we will use. HEAD (the port
8375 * hash table list entry) is non-NULL and we hold it's
8376 * mutex.
8377 */
8378 snum = rover;
8379 } else {
8380 /* We are given an specific port number; we verify
8381 * that it is not being used. If it is used, we will
8382 * exahust the search in the hash list corresponding
8383 * to the port number (snum) - we detect that with the
8384 * port iterator, pp being NULL.
8385 */
8386 head = &sctp_port_hashtable[sctp_phashfn(net, snum)];
8387 spin_lock_bh(&head->lock);
8388 sctp_for_each_hentry(pp, &head->chain) {
8389 if ((pp->port == snum) && net_eq(pp->net, net))
8390 goto pp_found;
8391 }
8392 }
8393 pp = NULL;
8394 goto pp_not_found;
8395 pp_found:
8396 if (!hlist_empty(&pp->owner)) {
8397 /* We had a port hash table hit - there is an
8398 * available port (pp != NULL) and it is being
8399 * used by other socket (pp->owner not empty); that other
8400 * socket is going to be sk2.
8401 */
8402 struct sock *sk2;
8403
8404 pr_debug("%s: found a possible match\n", __func__);
8405
8406 if ((pp->fastreuse && reuse &&
8407 sk->sk_state != SCTP_SS_LISTENING) ||
8408 (pp->fastreuseport && sk->sk_reuseport &&
8409 uid_eq(pp->fastuid, uid)))
8410 goto success;
8411
8412 /* Run through the list of sockets bound to the port
8413 * (pp->port) [via the pointers bind_next and
8414 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8415 * we get the endpoint they describe and run through
8416 * the endpoint's list of IP (v4 or v6) addresses,
8417 * comparing each of the addresses with the address of
8418 * the socket sk. If we find a match, then that means
8419 * that this port/socket (sk) combination are already
8420 * in an endpoint.
8421 */
8422 sk_for_each_bound(sk2, &pp->owner) {
8423 int bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
8424 struct sctp_sock *sp2 = sctp_sk(sk2);
8425 struct sctp_endpoint *ep2 = sp2->ep;
8426
8427 if (sk == sk2 ||
8428 (reuse && (sk2->sk_reuse || sp2->reuse) &&
8429 sk2->sk_state != SCTP_SS_LISTENING) ||
8430 (sk->sk_reuseport && sk2->sk_reuseport &&
8431 uid_eq(uid, sock_i_uid(sk2))))
8432 continue;
8433
8434 if ((!sk->sk_bound_dev_if || !bound_dev_if2 ||
8435 sk->sk_bound_dev_if == bound_dev_if2) &&
8436 sctp_bind_addr_conflict(&ep2->base.bind_addr,
8437 addr, sp2, sp)) {
8438 ret = 1;
8439 goto fail_unlock;
8440 }
8441 }
8442
8443 pr_debug("%s: found a match\n", __func__);
8444 }
8445 pp_not_found:
8446 /* If there was a hash table miss, create a new port. */
8447 ret = 1;
8448 if (!pp && !(pp = sctp_bucket_create(head, net, snum)))
8449 goto fail_unlock;
8450
8451 /* In either case (hit or miss), make sure fastreuse is 1 only
8452 * if sk->sk_reuse is too (that is, if the caller requested
8453 * SO_REUSEADDR on this socket -sk-).
8454 */
8455 if (hlist_empty(&pp->owner)) {
8456 if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8457 pp->fastreuse = 1;
8458 else
8459 pp->fastreuse = 0;
8460
8461 if (sk->sk_reuseport) {
8462 pp->fastreuseport = 1;
8463 pp->fastuid = uid;
8464 } else {
8465 pp->fastreuseport = 0;
8466 }
8467 } else {
8468 if (pp->fastreuse &&
8469 (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8470 pp->fastreuse = 0;
8471
8472 if (pp->fastreuseport &&
8473 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8474 pp->fastreuseport = 0;
8475 }
8476
8477 /* We are set, so fill up all the data in the hash table
8478 * entry, tie the socket list information with the rest of the
8479 * sockets FIXME: Blurry, NPI (ipg).
8480 */
8481 success:
8482 if (!sp->bind_hash) {
8483 inet_sk(sk)->inet_num = snum;
8484 sk_add_bind_node(sk, &pp->owner);
8485 sp->bind_hash = pp;
8486 }
8487 ret = 0;
8488
8489 fail_unlock:
8490 spin_unlock_bh(&head->lock);
8491 return ret;
8492 }
8493
8494 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
8495 * port is requested.
8496 */
8497 static int sctp_get_port(struct sock *sk, unsigned short snum)
8498 {
8499 union sctp_addr addr;
8500 struct sctp_af *af = sctp_sk(sk)->pf->af;
8501
8502 /* Set up a dummy address struct from the sk. */
8503 af->from_sk(&addr, sk);
8504 addr.v4.sin_port = htons(snum);
8505
8506 /* Note: sk->sk_num gets filled in if ephemeral port request. */
8507 return sctp_get_port_local(sk, &addr);
8508 }
8509
8510 /*
8511 * Move a socket to LISTENING state.
8512 */
8513 static int sctp_listen_start(struct sock *sk, int backlog)
8514 {
8515 struct sctp_sock *sp = sctp_sk(sk);
8516 struct sctp_endpoint *ep = sp->ep;
8517 struct crypto_shash *tfm = NULL;
8518 char alg[32];
8519
8520 /* Allocate HMAC for generating cookie. */
8521 if (!sp->hmac && sp->sctp_hmac_alg) {
8522 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8523 tfm = crypto_alloc_shash(alg, 0, 0);
8524 if (IS_ERR(tfm)) {
8525 net_info_ratelimited("failed to load transform for %s: %ld\n",
8526 sp->sctp_hmac_alg, PTR_ERR(tfm));
8527 return -ENOSYS;
8528 }
8529 sctp_sk(sk)->hmac = tfm;
8530 }
8531
8532 /*
8533 * If a bind() or sctp_bindx() is not called prior to a listen()
8534 * call that allows new associations to be accepted, the system
8535 * picks an ephemeral port and will choose an address set equivalent
8536 * to binding with a wildcard address.
8537 *
8538 * This is not currently spelled out in the SCTP sockets
8539 * extensions draft, but follows the practice as seen in TCP
8540 * sockets.
8541 *
8542 */
8543 inet_sk_set_state(sk, SCTP_SS_LISTENING);
8544 if (!ep->base.bind_addr.port) {
8545 if (sctp_autobind(sk))
8546 return -EAGAIN;
8547 } else {
8548 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8549 inet_sk_set_state(sk, SCTP_SS_CLOSED);
8550 return -EADDRINUSE;
8551 }
8552 }
8553
8554 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8555 return sctp_hash_endpoint(ep);
8556 }
8557
8558 /*
8559 * 4.1.3 / 5.1.3 listen()
8560 *
8561 * By default, new associations are not accepted for UDP style sockets.
8562 * An application uses listen() to mark a socket as being able to
8563 * accept new associations.
8564 *
8565 * On TCP style sockets, applications use listen() to ready the SCTP
8566 * endpoint for accepting inbound associations.
8567 *
8568 * On both types of endpoints a backlog of '0' disables listening.
8569 *
8570 * Move a socket to LISTENING state.
8571 */
8572 int sctp_inet_listen(struct socket *sock, int backlog)
8573 {
8574 struct sock *sk = sock->sk;
8575 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8576 int err = -EINVAL;
8577
8578 if (unlikely(backlog < 0))
8579 return err;
8580
8581 lock_sock(sk);
8582
8583 /* Peeled-off sockets are not allowed to listen(). */
8584 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8585 goto out;
8586
8587 if (sock->state != SS_UNCONNECTED)
8588 goto out;
8589
8590 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8591 goto out;
8592
8593 /* If backlog is zero, disable listening. */
8594 if (!backlog) {
8595 if (sctp_sstate(sk, CLOSED))
8596 goto out;
8597
8598 err = 0;
8599 sctp_unhash_endpoint(ep);
8600 sk->sk_state = SCTP_SS_CLOSED;
8601 if (sk->sk_reuse || sctp_sk(sk)->reuse)
8602 sctp_sk(sk)->bind_hash->fastreuse = 1;
8603 goto out;
8604 }
8605
8606 /* If we are already listening, just update the backlog */
8607 if (sctp_sstate(sk, LISTENING))
8608 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8609 else {
8610 err = sctp_listen_start(sk, backlog);
8611 if (err)
8612 goto out;
8613 }
8614
8615 err = 0;
8616 out:
8617 release_sock(sk);
8618 return err;
8619 }
8620
8621 /*
8622 * This function is done by modeling the current datagram_poll() and the
8623 * tcp_poll(). Note that, based on these implementations, we don't
8624 * lock the socket in this function, even though it seems that,
8625 * ideally, locking or some other mechanisms can be used to ensure
8626 * the integrity of the counters (sndbuf and wmem_alloc) used
8627 * in this place. We assume that we don't need locks either until proven
8628 * otherwise.
8629 *
8630 * Another thing to note is that we include the Async I/O support
8631 * here, again, by modeling the current TCP/UDP code. We don't have
8632 * a good way to test with it yet.
8633 */
8634 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8635 {
8636 struct sock *sk = sock->sk;
8637 struct sctp_sock *sp = sctp_sk(sk);
8638 __poll_t mask;
8639
8640 poll_wait(file, sk_sleep(sk), wait);
8641
8642 sock_rps_record_flow(sk);
8643
8644 /* A TCP-style listening socket becomes readable when the accept queue
8645 * is not empty.
8646 */
8647 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8648 return (!list_empty(&sp->ep->asocs)) ?
8649 (EPOLLIN | EPOLLRDNORM) : 0;
8650
8651 mask = 0;
8652
8653 /* Is there any exceptional events? */
8654 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
8655 mask |= EPOLLERR |
8656 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8657 if (sk->sk_shutdown & RCV_SHUTDOWN)
8658 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8659 if (sk->sk_shutdown == SHUTDOWN_MASK)
8660 mask |= EPOLLHUP;
8661
8662 /* Is it readable? Reconsider this code with TCP-style support. */
8663 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8664 mask |= EPOLLIN | EPOLLRDNORM;
8665
8666 /* The association is either gone or not ready. */
8667 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8668 return mask;
8669
8670 /* Is it writable? */
8671 if (sctp_writeable(sk)) {
8672 mask |= EPOLLOUT | EPOLLWRNORM;
8673 } else {
8674 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8675 /*
8676 * Since the socket is not locked, the buffer
8677 * might be made available after the writeable check and
8678 * before the bit is set. This could cause a lost I/O
8679 * signal. tcp_poll() has a race breaker for this race
8680 * condition. Based on their implementation, we put
8681 * in the following code to cover it as well.
8682 */
8683 if (sctp_writeable(sk))
8684 mask |= EPOLLOUT | EPOLLWRNORM;
8685 }
8686 return mask;
8687 }
8688
8689 /********************************************************************
8690 * 2nd Level Abstractions
8691 ********************************************************************/
8692
8693 static struct sctp_bind_bucket *sctp_bucket_create(
8694 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8695 {
8696 struct sctp_bind_bucket *pp;
8697
8698 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8699 if (pp) {
8700 SCTP_DBG_OBJCNT_INC(bind_bucket);
8701 pp->port = snum;
8702 pp->fastreuse = 0;
8703 INIT_HLIST_HEAD(&pp->owner);
8704 pp->net = net;
8705 hlist_add_head(&pp->node, &head->chain);
8706 }
8707 return pp;
8708 }
8709
8710 /* Caller must hold hashbucket lock for this tb with local BH disabled */
8711 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8712 {
8713 if (pp && hlist_empty(&pp->owner)) {
8714 __hlist_del(&pp->node);
8715 kmem_cache_free(sctp_bucket_cachep, pp);
8716 SCTP_DBG_OBJCNT_DEC(bind_bucket);
8717 }
8718 }
8719
8720 /* Release this socket's reference to a local port. */
8721 static inline void __sctp_put_port(struct sock *sk)
8722 {
8723 struct sctp_bind_hashbucket *head =
8724 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8725 inet_sk(sk)->inet_num)];
8726 struct sctp_bind_bucket *pp;
8727
8728 spin_lock(&head->lock);
8729 pp = sctp_sk(sk)->bind_hash;
8730 __sk_del_bind_node(sk);
8731 sctp_sk(sk)->bind_hash = NULL;
8732 inet_sk(sk)->inet_num = 0;
8733 sctp_bucket_destroy(pp);
8734 spin_unlock(&head->lock);
8735 }
8736
8737 void sctp_put_port(struct sock *sk)
8738 {
8739 local_bh_disable();
8740 __sctp_put_port(sk);
8741 local_bh_enable();
8742 }
8743
8744 /*
8745 * The system picks an ephemeral port and choose an address set equivalent
8746 * to binding with a wildcard address.
8747 * One of those addresses will be the primary address for the association.
8748 * This automatically enables the multihoming capability of SCTP.
8749 */
8750 static int sctp_autobind(struct sock *sk)
8751 {
8752 union sctp_addr autoaddr;
8753 struct sctp_af *af;
8754 __be16 port;
8755
8756 /* Initialize a local sockaddr structure to INADDR_ANY. */
8757 af = sctp_sk(sk)->pf->af;
8758
8759 port = htons(inet_sk(sk)->inet_num);
8760 af->inaddr_any(&autoaddr, port);
8761
8762 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8763 }
8764
8765 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
8766 *
8767 * From RFC 2292
8768 * 4.2 The cmsghdr Structure *
8769 *
8770 * When ancillary data is sent or received, any number of ancillary data
8771 * objects can be specified by the msg_control and msg_controllen members of
8772 * the msghdr structure, because each object is preceded by
8773 * a cmsghdr structure defining the object's length (the cmsg_len member).
8774 * Historically Berkeley-derived implementations have passed only one object
8775 * at a time, but this API allows multiple objects to be
8776 * passed in a single call to sendmsg() or recvmsg(). The following example
8777 * shows two ancillary data objects in a control buffer.
8778 *
8779 * |<--------------------------- msg_controllen -------------------------->|
8780 * | |
8781 *
8782 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
8783 *
8784 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8785 * | | |
8786 *
8787 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
8788 *
8789 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
8790 * | | | | |
8791 *
8792 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8793 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
8794 *
8795 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
8796 *
8797 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8798 * ^
8799 * |
8800 *
8801 * msg_control
8802 * points here
8803 */
8804 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8805 {
8806 struct msghdr *my_msg = (struct msghdr *)msg;
8807 struct cmsghdr *cmsg;
8808
8809 for_each_cmsghdr(cmsg, my_msg) {
8810 if (!CMSG_OK(my_msg, cmsg))
8811 return -EINVAL;
8812
8813 /* Should we parse this header or ignore? */
8814 if (cmsg->cmsg_level != IPPROTO_SCTP)
8815 continue;
8816
8817 /* Strictly check lengths following example in SCM code. */
8818 switch (cmsg->cmsg_type) {
8819 case SCTP_INIT:
8820 /* SCTP Socket API Extension
8821 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8822 *
8823 * This cmsghdr structure provides information for
8824 * initializing new SCTP associations with sendmsg().
8825 * The SCTP_INITMSG socket option uses this same data
8826 * structure. This structure is not used for
8827 * recvmsg().
8828 *
8829 * cmsg_level cmsg_type cmsg_data[]
8830 * ------------ ------------ ----------------------
8831 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
8832 */
8833 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8834 return -EINVAL;
8835
8836 cmsgs->init = CMSG_DATA(cmsg);
8837 break;
8838
8839 case SCTP_SNDRCV:
8840 /* SCTP Socket API Extension
8841 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8842 *
8843 * This cmsghdr structure specifies SCTP options for
8844 * sendmsg() and describes SCTP header information
8845 * about a received message through recvmsg().
8846 *
8847 * cmsg_level cmsg_type cmsg_data[]
8848 * ------------ ------------ ----------------------
8849 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
8850 */
8851 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8852 return -EINVAL;
8853
8854 cmsgs->srinfo = CMSG_DATA(cmsg);
8855
8856 if (cmsgs->srinfo->sinfo_flags &
8857 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8858 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8859 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8860 return -EINVAL;
8861 break;
8862
8863 case SCTP_SNDINFO:
8864 /* SCTP Socket API Extension
8865 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8866 *
8867 * This cmsghdr structure specifies SCTP options for
8868 * sendmsg(). This structure and SCTP_RCVINFO replaces
8869 * SCTP_SNDRCV which has been deprecated.
8870 *
8871 * cmsg_level cmsg_type cmsg_data[]
8872 * ------------ ------------ ---------------------
8873 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
8874 */
8875 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8876 return -EINVAL;
8877
8878 cmsgs->sinfo = CMSG_DATA(cmsg);
8879
8880 if (cmsgs->sinfo->snd_flags &
8881 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8882 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8883 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8884 return -EINVAL;
8885 break;
8886 case SCTP_PRINFO:
8887 /* SCTP Socket API Extension
8888 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8889 *
8890 * This cmsghdr structure specifies SCTP options for sendmsg().
8891 *
8892 * cmsg_level cmsg_type cmsg_data[]
8893 * ------------ ------------ ---------------------
8894 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo
8895 */
8896 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8897 return -EINVAL;
8898
8899 cmsgs->prinfo = CMSG_DATA(cmsg);
8900 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8901 return -EINVAL;
8902
8903 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8904 cmsgs->prinfo->pr_value = 0;
8905 break;
8906 case SCTP_AUTHINFO:
8907 /* SCTP Socket API Extension
8908 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8909 *
8910 * This cmsghdr structure specifies SCTP options for sendmsg().
8911 *
8912 * cmsg_level cmsg_type cmsg_data[]
8913 * ------------ ------------ ---------------------
8914 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo
8915 */
8916 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8917 return -EINVAL;
8918
8919 cmsgs->authinfo = CMSG_DATA(cmsg);
8920 break;
8921 case SCTP_DSTADDRV4:
8922 case SCTP_DSTADDRV6:
8923 /* SCTP Socket API Extension
8924 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8925 *
8926 * This cmsghdr structure specifies SCTP options for sendmsg().
8927 *
8928 * cmsg_level cmsg_type cmsg_data[]
8929 * ------------ ------------ ---------------------
8930 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr
8931 * ------------ ------------ ---------------------
8932 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr
8933 */
8934 cmsgs->addrs_msg = my_msg;
8935 break;
8936 default:
8937 return -EINVAL;
8938 }
8939 }
8940
8941 return 0;
8942 }
8943
8944 /*
8945 * Wait for a packet..
8946 * Note: This function is the same function as in core/datagram.c
8947 * with a few modifications to make lksctp work.
8948 */
8949 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8950 {
8951 int error;
8952 DEFINE_WAIT(wait);
8953
8954 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8955
8956 /* Socket errors? */
8957 error = sock_error(sk);
8958 if (error)
8959 goto out;
8960
8961 if (!skb_queue_empty(&sk->sk_receive_queue))
8962 goto ready;
8963
8964 /* Socket shut down? */
8965 if (sk->sk_shutdown & RCV_SHUTDOWN)
8966 goto out;
8967
8968 /* Sequenced packets can come disconnected. If so we report the
8969 * problem.
8970 */
8971 error = -ENOTCONN;
8972
8973 /* Is there a good reason to think that we may receive some data? */
8974 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8975 goto out;
8976
8977 /* Handle signals. */
8978 if (signal_pending(current))
8979 goto interrupted;
8980
8981 /* Let another process have a go. Since we are going to sleep
8982 * anyway. Note: This may cause odd behaviors if the message
8983 * does not fit in the user's buffer, but this seems to be the
8984 * only way to honor MSG_DONTWAIT realistically.
8985 */
8986 release_sock(sk);
8987 *timeo_p = schedule_timeout(*timeo_p);
8988 lock_sock(sk);
8989
8990 ready:
8991 finish_wait(sk_sleep(sk), &wait);
8992 return 0;
8993
8994 interrupted:
8995 error = sock_intr_errno(*timeo_p);
8996
8997 out:
8998 finish_wait(sk_sleep(sk), &wait);
8999 *err = error;
9000 return error;
9001 }
9002
9003 /* Receive a datagram.
9004 * Note: This is pretty much the same routine as in core/datagram.c
9005 * with a few changes to make lksctp work.
9006 */
9007 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, int *err)
9008 {
9009 int error;
9010 struct sk_buff *skb;
9011 long timeo;
9012
9013 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
9014
9015 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
9016 MAX_SCHEDULE_TIMEOUT);
9017
9018 do {
9019 /* Again only user level code calls this function,
9020 * so nothing interrupt level
9021 * will suddenly eat the receive_queue.
9022 *
9023 * Look at current nfs client by the way...
9024 * However, this function was correct in any case. 8)
9025 */
9026 if (flags & MSG_PEEK) {
9027 skb = skb_peek(&sk->sk_receive_queue);
9028 if (skb)
9029 refcount_inc(&skb->users);
9030 } else {
9031 skb = __skb_dequeue(&sk->sk_receive_queue);
9032 }
9033
9034 if (skb)
9035 return skb;
9036
9037 /* Caller is allowed not to check sk->sk_err before calling. */
9038 error = sock_error(sk);
9039 if (error)
9040 goto no_packet;
9041
9042 if (sk->sk_shutdown & RCV_SHUTDOWN)
9043 break;
9044
9045 if (sk_can_busy_loop(sk)) {
9046 sk_busy_loop(sk, flags & MSG_DONTWAIT);
9047
9048 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
9049 continue;
9050 }
9051
9052 /* User doesn't want to wait. */
9053 error = -EAGAIN;
9054 if (!timeo)
9055 goto no_packet;
9056 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
9057
9058 return NULL;
9059
9060 no_packet:
9061 *err = error;
9062 return NULL;
9063 }
9064
9065 /* If sndbuf has changed, wake up per association sndbuf waiters. */
9066 static void __sctp_write_space(struct sctp_association *asoc)
9067 {
9068 struct sock *sk = asoc->base.sk;
9069
9070 if (sctp_wspace(asoc) <= 0)
9071 return;
9072
9073 if (waitqueue_active(&asoc->wait))
9074 wake_up_interruptible(&asoc->wait);
9075
9076 if (sctp_writeable(sk)) {
9077 struct socket_wq *wq;
9078
9079 rcu_read_lock();
9080 wq = rcu_dereference(sk->sk_wq);
9081 if (wq) {
9082 if (waitqueue_active(&wq->wait))
9083 wake_up_interruptible(&wq->wait);
9084
9085 /* Note that we try to include the Async I/O support
9086 * here by modeling from the current TCP/UDP code.
9087 * We have not tested with it yet.
9088 */
9089 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
9090 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
9091 }
9092 rcu_read_unlock();
9093 }
9094 }
9095
9096 static void sctp_wake_up_waiters(struct sock *sk,
9097 struct sctp_association *asoc)
9098 {
9099 struct sctp_association *tmp = asoc;
9100
9101 /* We do accounting for the sndbuf space per association,
9102 * so we only need to wake our own association.
9103 */
9104 if (asoc->ep->sndbuf_policy)
9105 return __sctp_write_space(asoc);
9106
9107 /* If association goes down and is just flushing its
9108 * outq, then just normally notify others.
9109 */
9110 if (asoc->base.dead)
9111 return sctp_write_space(sk);
9112
9113 /* Accounting for the sndbuf space is per socket, so we
9114 * need to wake up others, try to be fair and in case of
9115 * other associations, let them have a go first instead
9116 * of just doing a sctp_write_space() call.
9117 *
9118 * Note that we reach sctp_wake_up_waiters() only when
9119 * associations free up queued chunks, thus we are under
9120 * lock and the list of associations on a socket is
9121 * guaranteed not to change.
9122 */
9123 for (tmp = list_next_entry(tmp, asocs); 1;
9124 tmp = list_next_entry(tmp, asocs)) {
9125 /* Manually skip the head element. */
9126 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
9127 continue;
9128 /* Wake up association. */
9129 __sctp_write_space(tmp);
9130 /* We've reached the end. */
9131 if (tmp == asoc)
9132 break;
9133 }
9134 }
9135
9136 /* Do accounting for the sndbuf space.
9137 * Decrement the used sndbuf space of the corresponding association by the
9138 * data size which was just transmitted(freed).
9139 */
9140 static void sctp_wfree(struct sk_buff *skb)
9141 {
9142 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
9143 struct sctp_association *asoc = chunk->asoc;
9144 struct sock *sk = asoc->base.sk;
9145
9146 sk_mem_uncharge(sk, skb->truesize);
9147 sk_wmem_queued_add(sk, -(skb->truesize + sizeof(struct sctp_chunk)));
9148 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
9149 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
9150 &sk->sk_wmem_alloc));
9151
9152 if (chunk->shkey) {
9153 struct sctp_shared_key *shkey = chunk->shkey;
9154
9155 /* refcnt == 2 and !list_empty mean after this release, it's
9156 * not being used anywhere, and it's time to notify userland
9157 * that this shkey can be freed if it's been deactivated.
9158 */
9159 if (shkey->deactivated && !list_empty(&shkey->key_list) &&
9160 refcount_read(&shkey->refcnt) == 2) {
9161 struct sctp_ulpevent *ev;
9162
9163 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
9164 SCTP_AUTH_FREE_KEY,
9165 GFP_KERNEL);
9166 if (ev)
9167 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
9168 }
9169 sctp_auth_shkey_release(chunk->shkey);
9170 }
9171
9172 sock_wfree(skb);
9173 sctp_wake_up_waiters(sk, asoc);
9174
9175 sctp_association_put(asoc);
9176 }
9177
9178 /* Do accounting for the receive space on the socket.
9179 * Accounting for the association is done in ulpevent.c
9180 * We set this as a destructor for the cloned data skbs so that
9181 * accounting is done at the correct time.
9182 */
9183 void sctp_sock_rfree(struct sk_buff *skb)
9184 {
9185 struct sock *sk = skb->sk;
9186 struct sctp_ulpevent *event = sctp_skb2event(skb);
9187
9188 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
9189
9190 /*
9191 * Mimic the behavior of sock_rfree
9192 */
9193 sk_mem_uncharge(sk, event->rmem_len);
9194 }
9195
9196
9197 /* Helper function to wait for space in the sndbuf. */
9198 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
9199 size_t msg_len)
9200 {
9201 struct sock *sk = asoc->base.sk;
9202 long current_timeo = *timeo_p;
9203 DEFINE_WAIT(wait);
9204 int err = 0;
9205
9206 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
9207 *timeo_p, msg_len);
9208
9209 /* Increment the association's refcnt. */
9210 sctp_association_hold(asoc);
9211
9212 /* Wait on the association specific sndbuf space. */
9213 for (;;) {
9214 prepare_to_wait_exclusive(&asoc->wait, &wait,
9215 TASK_INTERRUPTIBLE);
9216 if (asoc->base.dead)
9217 goto do_dead;
9218 if (!*timeo_p)
9219 goto do_nonblock;
9220 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
9221 goto do_error;
9222 if (signal_pending(current))
9223 goto do_interrupted;
9224 if ((int)msg_len <= sctp_wspace(asoc) &&
9225 sk_wmem_schedule(sk, msg_len))
9226 break;
9227
9228 /* Let another process have a go. Since we are going
9229 * to sleep anyway.
9230 */
9231 release_sock(sk);
9232 current_timeo = schedule_timeout(current_timeo);
9233 lock_sock(sk);
9234 if (sk != asoc->base.sk)
9235 goto do_error;
9236
9237 *timeo_p = current_timeo;
9238 }
9239
9240 out:
9241 finish_wait(&asoc->wait, &wait);
9242
9243 /* Release the association's refcnt. */
9244 sctp_association_put(asoc);
9245
9246 return err;
9247
9248 do_dead:
9249 err = -ESRCH;
9250 goto out;
9251
9252 do_error:
9253 err = -EPIPE;
9254 goto out;
9255
9256 do_interrupted:
9257 err = sock_intr_errno(*timeo_p);
9258 goto out;
9259
9260 do_nonblock:
9261 err = -EAGAIN;
9262 goto out;
9263 }
9264
9265 void sctp_data_ready(struct sock *sk)
9266 {
9267 struct socket_wq *wq;
9268
9269 trace_sk_data_ready(sk);
9270
9271 rcu_read_lock();
9272 wq = rcu_dereference(sk->sk_wq);
9273 if (skwq_has_sleeper(wq))
9274 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
9275 EPOLLRDNORM | EPOLLRDBAND);
9276 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
9277 rcu_read_unlock();
9278 }
9279
9280 /* If socket sndbuf has changed, wake up all per association waiters. */
9281 void sctp_write_space(struct sock *sk)
9282 {
9283 struct sctp_association *asoc;
9284
9285 /* Wake up the tasks in each wait queue. */
9286 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
9287 __sctp_write_space(asoc);
9288 }
9289 }
9290
9291 /* Is there any sndbuf space available on the socket?
9292 *
9293 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9294 * associations on the same socket. For a UDP-style socket with
9295 * multiple associations, it is possible for it to be "unwriteable"
9296 * prematurely. I assume that this is acceptable because
9297 * a premature "unwriteable" is better than an accidental "writeable" which
9298 * would cause an unwanted block under certain circumstances. For the 1-1
9299 * UDP-style sockets or TCP-style sockets, this code should work.
9300 * - Daisy
9301 */
9302 static bool sctp_writeable(const struct sock *sk)
9303 {
9304 return READ_ONCE(sk->sk_sndbuf) > READ_ONCE(sk->sk_wmem_queued);
9305 }
9306
9307 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9308 * returns immediately with EINPROGRESS.
9309 */
9310 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9311 {
9312 struct sock *sk = asoc->base.sk;
9313 int err = 0;
9314 long current_timeo = *timeo_p;
9315 DEFINE_WAIT(wait);
9316
9317 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9318
9319 /* Increment the association's refcnt. */
9320 sctp_association_hold(asoc);
9321
9322 for (;;) {
9323 prepare_to_wait_exclusive(&asoc->wait, &wait,
9324 TASK_INTERRUPTIBLE);
9325 if (!*timeo_p)
9326 goto do_nonblock;
9327 if (sk->sk_shutdown & RCV_SHUTDOWN)
9328 break;
9329 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9330 asoc->base.dead)
9331 goto do_error;
9332 if (signal_pending(current))
9333 goto do_interrupted;
9334
9335 if (sctp_state(asoc, ESTABLISHED))
9336 break;
9337
9338 /* Let another process have a go. Since we are going
9339 * to sleep anyway.
9340 */
9341 release_sock(sk);
9342 current_timeo = schedule_timeout(current_timeo);
9343 lock_sock(sk);
9344
9345 *timeo_p = current_timeo;
9346 }
9347
9348 out:
9349 finish_wait(&asoc->wait, &wait);
9350
9351 /* Release the association's refcnt. */
9352 sctp_association_put(asoc);
9353
9354 return err;
9355
9356 do_error:
9357 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9358 err = -ETIMEDOUT;
9359 else
9360 err = -ECONNREFUSED;
9361 goto out;
9362
9363 do_interrupted:
9364 err = sock_intr_errno(*timeo_p);
9365 goto out;
9366
9367 do_nonblock:
9368 err = -EINPROGRESS;
9369 goto out;
9370 }
9371
9372 static int sctp_wait_for_accept(struct sock *sk, long timeo)
9373 {
9374 struct sctp_endpoint *ep;
9375 int err = 0;
9376 DEFINE_WAIT(wait);
9377
9378 ep = sctp_sk(sk)->ep;
9379
9380
9381 for (;;) {
9382 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9383 TASK_INTERRUPTIBLE);
9384
9385 if (list_empty(&ep->asocs)) {
9386 release_sock(sk);
9387 timeo = schedule_timeout(timeo);
9388 lock_sock(sk);
9389 }
9390
9391 err = -EINVAL;
9392 if (!sctp_sstate(sk, LISTENING))
9393 break;
9394
9395 err = 0;
9396 if (!list_empty(&ep->asocs))
9397 break;
9398
9399 err = sock_intr_errno(timeo);
9400 if (signal_pending(current))
9401 break;
9402
9403 err = -EAGAIN;
9404 if (!timeo)
9405 break;
9406 }
9407
9408 finish_wait(sk_sleep(sk), &wait);
9409
9410 return err;
9411 }
9412
9413 static void sctp_wait_for_close(struct sock *sk, long timeout)
9414 {
9415 DEFINE_WAIT(wait);
9416
9417 do {
9418 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9419 if (list_empty(&sctp_sk(sk)->ep->asocs))
9420 break;
9421 release_sock(sk);
9422 timeout = schedule_timeout(timeout);
9423 lock_sock(sk);
9424 } while (!signal_pending(current) && timeout);
9425
9426 finish_wait(sk_sleep(sk), &wait);
9427 }
9428
9429 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9430 {
9431 struct sk_buff *frag;
9432
9433 if (!skb->data_len)
9434 goto done;
9435
9436 /* Don't forget the fragments. */
9437 skb_walk_frags(skb, frag)
9438 sctp_skb_set_owner_r_frag(frag, sk);
9439
9440 done:
9441 sctp_skb_set_owner_r(skb, sk);
9442 }
9443
9444 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9445 struct sctp_association *asoc)
9446 {
9447 struct inet_sock *inet = inet_sk(sk);
9448 struct inet_sock *newinet;
9449 struct sctp_sock *sp = sctp_sk(sk);
9450
9451 newsk->sk_type = sk->sk_type;
9452 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9453 newsk->sk_flags = sk->sk_flags;
9454 newsk->sk_tsflags = sk->sk_tsflags;
9455 newsk->sk_no_check_tx = sk->sk_no_check_tx;
9456 newsk->sk_no_check_rx = sk->sk_no_check_rx;
9457 newsk->sk_reuse = sk->sk_reuse;
9458 sctp_sk(newsk)->reuse = sp->reuse;
9459
9460 newsk->sk_shutdown = sk->sk_shutdown;
9461 newsk->sk_destruct = sk->sk_destruct;
9462 newsk->sk_family = sk->sk_family;
9463 newsk->sk_protocol = IPPROTO_SCTP;
9464 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9465 newsk->sk_sndbuf = sk->sk_sndbuf;
9466 newsk->sk_rcvbuf = sk->sk_rcvbuf;
9467 newsk->sk_lingertime = sk->sk_lingertime;
9468 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9469 newsk->sk_sndtimeo = sk->sk_sndtimeo;
9470 newsk->sk_rxhash = sk->sk_rxhash;
9471
9472 newinet = inet_sk(newsk);
9473
9474 /* Initialize sk's sport, dport, rcv_saddr and daddr for
9475 * getsockname() and getpeername()
9476 */
9477 newinet->inet_sport = inet->inet_sport;
9478 newinet->inet_saddr = inet->inet_saddr;
9479 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9480 newinet->inet_dport = htons(asoc->peer.port);
9481 newinet->pmtudisc = inet->pmtudisc;
9482 atomic_set(&newinet->inet_id, get_random_u16());
9483
9484 newinet->uc_ttl = inet->uc_ttl;
9485 inet_set_bit(MC_LOOP, newsk);
9486 newinet->mc_ttl = 1;
9487 newinet->mc_index = 0;
9488 newinet->mc_list = NULL;
9489
9490 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9491 net_enable_timestamp();
9492
9493 /* Set newsk security attributes from original sk and connection
9494 * security attribute from asoc.
9495 */
9496 security_sctp_sk_clone(asoc, sk, newsk);
9497 }
9498
9499 static inline void sctp_copy_descendant(struct sock *sk_to,
9500 const struct sock *sk_from)
9501 {
9502 size_t ancestor_size = sizeof(struct inet_sock);
9503
9504 ancestor_size += sk_from->sk_prot->obj_size;
9505 ancestor_size -= offsetof(struct sctp_sock, pd_lobby);
9506 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9507 }
9508
9509 /* Populate the fields of the newsk from the oldsk and migrate the assoc
9510 * and its messages to the newsk.
9511 */
9512 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9513 struct sctp_association *assoc,
9514 enum sctp_socket_type type)
9515 {
9516 struct sctp_sock *oldsp = sctp_sk(oldsk);
9517 struct sctp_sock *newsp = sctp_sk(newsk);
9518 struct sctp_bind_bucket *pp; /* hash list port iterator */
9519 struct sctp_endpoint *newep = newsp->ep;
9520 struct sk_buff *skb, *tmp;
9521 struct sctp_ulpevent *event;
9522 struct sctp_bind_hashbucket *head;
9523 int err;
9524
9525 /* Migrate socket buffer sizes and all the socket level options to the
9526 * new socket.
9527 */
9528 newsk->sk_sndbuf = oldsk->sk_sndbuf;
9529 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9530 /* Brute force copy old sctp opt. */
9531 sctp_copy_descendant(newsk, oldsk);
9532
9533 /* Restore the ep value that was overwritten with the above structure
9534 * copy.
9535 */
9536 newsp->ep = newep;
9537 newsp->hmac = NULL;
9538
9539 /* Hook this new socket in to the bind_hash list. */
9540 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9541 inet_sk(oldsk)->inet_num)];
9542 spin_lock_bh(&head->lock);
9543 pp = sctp_sk(oldsk)->bind_hash;
9544 sk_add_bind_node(newsk, &pp->owner);
9545 sctp_sk(newsk)->bind_hash = pp;
9546 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9547 spin_unlock_bh(&head->lock);
9548
9549 /* Copy the bind_addr list from the original endpoint to the new
9550 * endpoint so that we can handle restarts properly
9551 */
9552 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9553 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9554 if (err)
9555 return err;
9556
9557 /* New ep's auth_hmacs should be set if old ep's is set, in case
9558 * that net->sctp.auth_enable has been changed to 0 by users and
9559 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9560 */
9561 if (oldsp->ep->auth_hmacs) {
9562 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9563 if (err)
9564 return err;
9565 }
9566
9567 sctp_auto_asconf_init(newsp);
9568
9569 /* Move any messages in the old socket's receive queue that are for the
9570 * peeled off association to the new socket's receive queue.
9571 */
9572 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9573 event = sctp_skb2event(skb);
9574 if (event->asoc == assoc) {
9575 __skb_unlink(skb, &oldsk->sk_receive_queue);
9576 __skb_queue_tail(&newsk->sk_receive_queue, skb);
9577 sctp_skb_set_owner_r_frag(skb, newsk);
9578 }
9579 }
9580
9581 /* Clean up any messages pending delivery due to partial
9582 * delivery. Three cases:
9583 * 1) No partial deliver; no work.
9584 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9585 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9586 */
9587 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9588
9589 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9590 struct sk_buff_head *queue;
9591
9592 /* Decide which queue to move pd_lobby skbs to. */
9593 if (assoc->ulpq.pd_mode) {
9594 queue = &newsp->pd_lobby;
9595 } else
9596 queue = &newsk->sk_receive_queue;
9597
9598 /* Walk through the pd_lobby, looking for skbs that
9599 * need moved to the new socket.
9600 */
9601 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9602 event = sctp_skb2event(skb);
9603 if (event->asoc == assoc) {
9604 __skb_unlink(skb, &oldsp->pd_lobby);
9605 __skb_queue_tail(queue, skb);
9606 sctp_skb_set_owner_r_frag(skb, newsk);
9607 }
9608 }
9609
9610 /* Clear up any skbs waiting for the partial
9611 * delivery to finish.
9612 */
9613 if (assoc->ulpq.pd_mode)
9614 sctp_clear_pd(oldsk, NULL);
9615
9616 }
9617
9618 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9619
9620 /* Set the type of socket to indicate that it is peeled off from the
9621 * original UDP-style socket or created with the accept() call on a
9622 * TCP-style socket..
9623 */
9624 newsp->type = type;
9625
9626 /* Mark the new socket "in-use" by the user so that any packets
9627 * that may arrive on the association after we've moved it are
9628 * queued to the backlog. This prevents a potential race between
9629 * backlog processing on the old socket and new-packet processing
9630 * on the new socket.
9631 *
9632 * The caller has just allocated newsk so we can guarantee that other
9633 * paths won't try to lock it and then oldsk.
9634 */
9635 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9636 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w);
9637 sctp_assoc_migrate(assoc, newsk);
9638 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w);
9639
9640 /* If the association on the newsk is already closed before accept()
9641 * is called, set RCV_SHUTDOWN flag.
9642 */
9643 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9644 inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9645 newsk->sk_shutdown |= RCV_SHUTDOWN;
9646 } else {
9647 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9648 }
9649
9650 release_sock(newsk);
9651
9652 return 0;
9653 }
9654
9655
9656 /* This proto struct describes the ULP interface for SCTP. */
9657 struct proto sctp_prot = {
9658 .name = "SCTP",
9659 .owner = THIS_MODULE,
9660 .close = sctp_close,
9661 .disconnect = sctp_disconnect,
9662 .accept = sctp_accept,
9663 .ioctl = sctp_ioctl,
9664 .init = sctp_init_sock,
9665 .destroy = sctp_destroy_sock,
9666 .shutdown = sctp_shutdown,
9667 .setsockopt = sctp_setsockopt,
9668 .getsockopt = sctp_getsockopt,
9669 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt,
9670 .sendmsg = sctp_sendmsg,
9671 .recvmsg = sctp_recvmsg,
9672 .bind = sctp_bind,
9673 .bind_add = sctp_bind_add,
9674 .backlog_rcv = sctp_backlog_rcv,
9675 .hash = sctp_hash,
9676 .unhash = sctp_unhash,
9677 .no_autobind = true,
9678 .obj_size = sizeof(struct sctp_sock),
9679 .useroffset = offsetof(struct sctp_sock, subscribe),
9680 .usersize = offsetof(struct sctp_sock, initmsg) -
9681 offsetof(struct sctp_sock, subscribe) +
9682 sizeof_field(struct sctp_sock, initmsg),
9683 .sysctl_mem = sysctl_sctp_mem,
9684 .sysctl_rmem = sysctl_sctp_rmem,
9685 .sysctl_wmem = sysctl_sctp_wmem,
9686 .memory_pressure = &sctp_memory_pressure,
9687 .enter_memory_pressure = sctp_enter_memory_pressure,
9688
9689 .memory_allocated = &sctp_memory_allocated,
9690 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc,
9691
9692 .sockets_allocated = &sctp_sockets_allocated,
9693 };
9694
9695 #if IS_ENABLED(CONFIG_IPV6)
9696
9697 static void sctp_v6_destruct_sock(struct sock *sk)
9698 {
9699 sctp_destruct_common(sk);
9700 inet6_sock_destruct(sk);
9701 }
9702
9703 static int sctp_v6_init_sock(struct sock *sk)
9704 {
9705 int ret = sctp_init_sock(sk);
9706
9707 if (!ret)
9708 sk->sk_destruct = sctp_v6_destruct_sock;
9709
9710 return ret;
9711 }
9712
9713 struct proto sctpv6_prot = {
9714 .name = "SCTPv6",
9715 .owner = THIS_MODULE,
9716 .close = sctp_close,
9717 .disconnect = sctp_disconnect,
9718 .accept = sctp_accept,
9719 .ioctl = sctp_ioctl,
9720 .init = sctp_v6_init_sock,
9721 .destroy = sctp_destroy_sock,
9722 .shutdown = sctp_shutdown,
9723 .setsockopt = sctp_setsockopt,
9724 .getsockopt = sctp_getsockopt,
9725 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt,
9726 .sendmsg = sctp_sendmsg,
9727 .recvmsg = sctp_recvmsg,
9728 .bind = sctp_bind,
9729 .bind_add = sctp_bind_add,
9730 .backlog_rcv = sctp_backlog_rcv,
9731 .hash = sctp_hash,
9732 .unhash = sctp_unhash,
9733 .no_autobind = true,
9734 .obj_size = sizeof(struct sctp6_sock),
9735 .ipv6_pinfo_offset = offsetof(struct sctp6_sock, inet6),
9736 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe),
9737 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) -
9738 offsetof(struct sctp6_sock, sctp.subscribe) +
9739 sizeof_field(struct sctp6_sock, sctp.initmsg),
9740 .sysctl_mem = sysctl_sctp_mem,
9741 .sysctl_rmem = sysctl_sctp_rmem,
9742 .sysctl_wmem = sysctl_sctp_wmem,
9743 .memory_pressure = &sctp_memory_pressure,
9744 .enter_memory_pressure = sctp_enter_memory_pressure,
9745
9746 .memory_allocated = &sctp_memory_allocated,
9747 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc,
9748
9749 .sockets_allocated = &sctp_sockets_allocated,
9750 };
9751 #endif /* IS_ENABLED(CONFIG_IPV6) */