]> git.ipfire.org Git - people/arne_f/kernel.git/blob - net/sctp/socket.c
sctp: fix the issue that flags are ignored when using kernel_connect
[people/arne_f/kernel.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, see
32 * <http://www.gnu.org/licenses/>.
33 *
34 * Please send any bug reports or fixes you make to the
35 * email address(es):
36 * lksctp developers <linux-sctp@vger.kernel.org>
37 *
38 * Written or modified by:
39 * La Monte H.P. Yarroll <piggy@acm.org>
40 * Narasimha Budihal <narsi@refcode.org>
41 * Karl Knutson <karl@athena.chicago.il.us>
42 * Jon Grimm <jgrimm@us.ibm.com>
43 * Xingang Guo <xingang.guo@intel.com>
44 * Daisy Chang <daisyc@us.ibm.com>
45 * Sridhar Samudrala <samudrala@us.ibm.com>
46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
47 * Ardelle Fan <ardelle.fan@intel.com>
48 * Ryan Layer <rmlayer@us.ibm.com>
49 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
50 * Kevin Gao <kevin.gao@intel.com>
51 */
52
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/sched/signal.h>
61 #include <linux/ip.h>
62 #include <linux/capability.h>
63 #include <linux/fcntl.h>
64 #include <linux/poll.h>
65 #include <linux/init.h>
66 #include <linux/slab.h>
67 #include <linux/file.h>
68 #include <linux/compat.h>
69
70 #include <net/ip.h>
71 #include <net/icmp.h>
72 #include <net/route.h>
73 #include <net/ipv6.h>
74 #include <net/inet_common.h>
75 #include <net/busy_poll.h>
76
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <linux/export.h>
79 #include <net/sock.h>
80 #include <net/sctp/sctp.h>
81 #include <net/sctp/sm.h>
82
83 /* Forward declarations for internal helper functions. */
84 static int sctp_writeable(struct sock *sk);
85 static void sctp_wfree(struct sk_buff *skb);
86 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
87 size_t msg_len);
88 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
89 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
90 static int sctp_wait_for_accept(struct sock *sk, long timeo);
91 static void sctp_wait_for_close(struct sock *sk, long timeo);
92 static void sctp_destruct_sock(struct sock *sk);
93 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
94 union sctp_addr *addr, int len);
95 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
96 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
99 static int sctp_send_asconf(struct sctp_association *asoc,
100 struct sctp_chunk *chunk);
101 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
102 static int sctp_autobind(struct sock *sk);
103 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
104 struct sctp_association *assoc,
105 enum sctp_socket_type type);
106
107 static unsigned long sctp_memory_pressure;
108 static atomic_long_t sctp_memory_allocated;
109 struct percpu_counter sctp_sockets_allocated;
110
111 static void sctp_enter_memory_pressure(struct sock *sk)
112 {
113 sctp_memory_pressure = 1;
114 }
115
116
117 /* Get the sndbuf space available at the time on the association. */
118 static inline int sctp_wspace(struct sctp_association *asoc)
119 {
120 int amt;
121
122 if (asoc->ep->sndbuf_policy)
123 amt = asoc->sndbuf_used;
124 else
125 amt = sk_wmem_alloc_get(asoc->base.sk);
126
127 if (amt >= asoc->base.sk->sk_sndbuf) {
128 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
129 amt = 0;
130 else {
131 amt = sk_stream_wspace(asoc->base.sk);
132 if (amt < 0)
133 amt = 0;
134 }
135 } else {
136 amt = asoc->base.sk->sk_sndbuf - amt;
137 }
138 return amt;
139 }
140
141 /* Increment the used sndbuf space count of the corresponding association by
142 * the size of the outgoing data chunk.
143 * Also, set the skb destructor for sndbuf accounting later.
144 *
145 * Since it is always 1-1 between chunk and skb, and also a new skb is always
146 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
147 * destructor in the data chunk skb for the purpose of the sndbuf space
148 * tracking.
149 */
150 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
151 {
152 struct sctp_association *asoc = chunk->asoc;
153 struct sock *sk = asoc->base.sk;
154
155 /* The sndbuf space is tracked per association. */
156 sctp_association_hold(asoc);
157
158 skb_set_owner_w(chunk->skb, sk);
159
160 chunk->skb->destructor = sctp_wfree;
161 /* Save the chunk pointer in skb for sctp_wfree to use later. */
162 skb_shinfo(chunk->skb)->destructor_arg = chunk;
163
164 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
165 sizeof(struct sk_buff) +
166 sizeof(struct sctp_chunk);
167
168 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
169 sk->sk_wmem_queued += chunk->skb->truesize;
170 sk_mem_charge(sk, chunk->skb->truesize);
171 }
172
173 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
174 {
175 skb_orphan(chunk->skb);
176 }
177
178 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
179 void (*cb)(struct sctp_chunk *))
180
181 {
182 struct sctp_outq *q = &asoc->outqueue;
183 struct sctp_transport *t;
184 struct sctp_chunk *chunk;
185
186 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
187 list_for_each_entry(chunk, &t->transmitted, transmitted_list)
188 cb(chunk);
189
190 list_for_each_entry(chunk, &q->retransmit, transmitted_list)
191 cb(chunk);
192
193 list_for_each_entry(chunk, &q->sacked, transmitted_list)
194 cb(chunk);
195
196 list_for_each_entry(chunk, &q->abandoned, transmitted_list)
197 cb(chunk);
198
199 list_for_each_entry(chunk, &q->out_chunk_list, list)
200 cb(chunk);
201 }
202
203 /* Verify that this is a valid address. */
204 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
205 int len)
206 {
207 struct sctp_af *af;
208
209 /* Verify basic sockaddr. */
210 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
211 if (!af)
212 return -EINVAL;
213
214 /* Is this a valid SCTP address? */
215 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
216 return -EINVAL;
217
218 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
219 return -EINVAL;
220
221 return 0;
222 }
223
224 /* Look up the association by its id. If this is not a UDP-style
225 * socket, the ID field is always ignored.
226 */
227 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
228 {
229 struct sctp_association *asoc = NULL;
230
231 /* If this is not a UDP-style socket, assoc id should be ignored. */
232 if (!sctp_style(sk, UDP)) {
233 /* Return NULL if the socket state is not ESTABLISHED. It
234 * could be a TCP-style listening socket or a socket which
235 * hasn't yet called connect() to establish an association.
236 */
237 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
238 return NULL;
239
240 /* Get the first and the only association from the list. */
241 if (!list_empty(&sctp_sk(sk)->ep->asocs))
242 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
243 struct sctp_association, asocs);
244 return asoc;
245 }
246
247 /* Otherwise this is a UDP-style socket. */
248 if (!id || (id == (sctp_assoc_t)-1))
249 return NULL;
250
251 spin_lock_bh(&sctp_assocs_id_lock);
252 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
253 if (asoc && (asoc->base.sk != sk || asoc->base.dead))
254 asoc = NULL;
255 spin_unlock_bh(&sctp_assocs_id_lock);
256
257 return asoc;
258 }
259
260 /* Look up the transport from an address and an assoc id. If both address and
261 * id are specified, the associations matching the address and the id should be
262 * the same.
263 */
264 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
265 struct sockaddr_storage *addr,
266 sctp_assoc_t id)
267 {
268 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
269 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
270 union sctp_addr *laddr = (union sctp_addr *)addr;
271 struct sctp_transport *transport;
272
273 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
274 return NULL;
275
276 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
277 laddr,
278 &transport);
279
280 if (!addr_asoc)
281 return NULL;
282
283 id_asoc = sctp_id2assoc(sk, id);
284 if (id_asoc && (id_asoc != addr_asoc))
285 return NULL;
286
287 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
288 (union sctp_addr *)addr);
289
290 return transport;
291 }
292
293 /* API 3.1.2 bind() - UDP Style Syntax
294 * The syntax of bind() is,
295 *
296 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
297 *
298 * sd - the socket descriptor returned by socket().
299 * addr - the address structure (struct sockaddr_in or struct
300 * sockaddr_in6 [RFC 2553]),
301 * addr_len - the size of the address structure.
302 */
303 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
304 {
305 int retval = 0;
306
307 lock_sock(sk);
308
309 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
310 addr, addr_len);
311
312 /* Disallow binding twice. */
313 if (!sctp_sk(sk)->ep->base.bind_addr.port)
314 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
315 addr_len);
316 else
317 retval = -EINVAL;
318
319 release_sock(sk);
320
321 return retval;
322 }
323
324 static long sctp_get_port_local(struct sock *, union sctp_addr *);
325
326 /* Verify this is a valid sockaddr. */
327 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
328 union sctp_addr *addr, int len)
329 {
330 struct sctp_af *af;
331
332 /* Check minimum size. */
333 if (len < sizeof (struct sockaddr))
334 return NULL;
335
336 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
337 return NULL;
338
339 if (addr->sa.sa_family == AF_INET6) {
340 if (len < SIN6_LEN_RFC2133)
341 return NULL;
342 /* V4 mapped address are really of AF_INET family */
343 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
344 !opt->pf->af_supported(AF_INET, opt))
345 return NULL;
346 }
347
348 /* If we get this far, af is valid. */
349 af = sctp_get_af_specific(addr->sa.sa_family);
350
351 if (len < af->sockaddr_len)
352 return NULL;
353
354 return af;
355 }
356
357 /* Bind a local address either to an endpoint or to an association. */
358 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
359 {
360 struct net *net = sock_net(sk);
361 struct sctp_sock *sp = sctp_sk(sk);
362 struct sctp_endpoint *ep = sp->ep;
363 struct sctp_bind_addr *bp = &ep->base.bind_addr;
364 struct sctp_af *af;
365 unsigned short snum;
366 int ret = 0;
367
368 /* Common sockaddr verification. */
369 af = sctp_sockaddr_af(sp, addr, len);
370 if (!af) {
371 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
372 __func__, sk, addr, len);
373 return -EINVAL;
374 }
375
376 snum = ntohs(addr->v4.sin_port);
377
378 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
379 __func__, sk, &addr->sa, bp->port, snum, len);
380
381 /* PF specific bind() address verification. */
382 if (!sp->pf->bind_verify(sp, addr))
383 return -EADDRNOTAVAIL;
384
385 /* We must either be unbound, or bind to the same port.
386 * It's OK to allow 0 ports if we are already bound.
387 * We'll just inhert an already bound port in this case
388 */
389 if (bp->port) {
390 if (!snum)
391 snum = bp->port;
392 else if (snum != bp->port) {
393 pr_debug("%s: new port %d doesn't match existing port "
394 "%d\n", __func__, snum, bp->port);
395 return -EINVAL;
396 }
397 }
398
399 if (snum && snum < inet_prot_sock(net) &&
400 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
401 return -EACCES;
402
403 /* See if the address matches any of the addresses we may have
404 * already bound before checking against other endpoints.
405 */
406 if (sctp_bind_addr_match(bp, addr, sp))
407 return -EINVAL;
408
409 /* Make sure we are allowed to bind here.
410 * The function sctp_get_port_local() does duplicate address
411 * detection.
412 */
413 addr->v4.sin_port = htons(snum);
414 if ((ret = sctp_get_port_local(sk, addr))) {
415 return -EADDRINUSE;
416 }
417
418 /* Refresh ephemeral port. */
419 if (!bp->port)
420 bp->port = inet_sk(sk)->inet_num;
421
422 /* Add the address to the bind address list.
423 * Use GFP_ATOMIC since BHs will be disabled.
424 */
425 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
426 SCTP_ADDR_SRC, GFP_ATOMIC);
427
428 /* Copy back into socket for getsockname() use. */
429 if (!ret) {
430 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
431 sp->pf->to_sk_saddr(addr, sk);
432 }
433
434 return ret;
435 }
436
437 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
438 *
439 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
440 * at any one time. If a sender, after sending an ASCONF chunk, decides
441 * it needs to transfer another ASCONF Chunk, it MUST wait until the
442 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
443 * subsequent ASCONF. Note this restriction binds each side, so at any
444 * time two ASCONF may be in-transit on any given association (one sent
445 * from each endpoint).
446 */
447 static int sctp_send_asconf(struct sctp_association *asoc,
448 struct sctp_chunk *chunk)
449 {
450 struct net *net = sock_net(asoc->base.sk);
451 int retval = 0;
452
453 /* If there is an outstanding ASCONF chunk, queue it for later
454 * transmission.
455 */
456 if (asoc->addip_last_asconf) {
457 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
458 goto out;
459 }
460
461 /* Hold the chunk until an ASCONF_ACK is received. */
462 sctp_chunk_hold(chunk);
463 retval = sctp_primitive_ASCONF(net, asoc, chunk);
464 if (retval)
465 sctp_chunk_free(chunk);
466 else
467 asoc->addip_last_asconf = chunk;
468
469 out:
470 return retval;
471 }
472
473 /* Add a list of addresses as bind addresses to local endpoint or
474 * association.
475 *
476 * Basically run through each address specified in the addrs/addrcnt
477 * array/length pair, determine if it is IPv6 or IPv4 and call
478 * sctp_do_bind() on it.
479 *
480 * If any of them fails, then the operation will be reversed and the
481 * ones that were added will be removed.
482 *
483 * Only sctp_setsockopt_bindx() is supposed to call this function.
484 */
485 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
486 {
487 int cnt;
488 int retval = 0;
489 void *addr_buf;
490 struct sockaddr *sa_addr;
491 struct sctp_af *af;
492
493 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
494 addrs, addrcnt);
495
496 addr_buf = addrs;
497 for (cnt = 0; cnt < addrcnt; cnt++) {
498 /* The list may contain either IPv4 or IPv6 address;
499 * determine the address length for walking thru the list.
500 */
501 sa_addr = addr_buf;
502 af = sctp_get_af_specific(sa_addr->sa_family);
503 if (!af) {
504 retval = -EINVAL;
505 goto err_bindx_add;
506 }
507
508 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
509 af->sockaddr_len);
510
511 addr_buf += af->sockaddr_len;
512
513 err_bindx_add:
514 if (retval < 0) {
515 /* Failed. Cleanup the ones that have been added */
516 if (cnt > 0)
517 sctp_bindx_rem(sk, addrs, cnt);
518 return retval;
519 }
520 }
521
522 return retval;
523 }
524
525 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
526 * associations that are part of the endpoint indicating that a list of local
527 * addresses are added to the endpoint.
528 *
529 * If any of the addresses is already in the bind address list of the
530 * association, we do not send the chunk for that association. But it will not
531 * affect other associations.
532 *
533 * Only sctp_setsockopt_bindx() is supposed to call this function.
534 */
535 static int sctp_send_asconf_add_ip(struct sock *sk,
536 struct sockaddr *addrs,
537 int addrcnt)
538 {
539 struct net *net = sock_net(sk);
540 struct sctp_sock *sp;
541 struct sctp_endpoint *ep;
542 struct sctp_association *asoc;
543 struct sctp_bind_addr *bp;
544 struct sctp_chunk *chunk;
545 struct sctp_sockaddr_entry *laddr;
546 union sctp_addr *addr;
547 union sctp_addr saveaddr;
548 void *addr_buf;
549 struct sctp_af *af;
550 struct list_head *p;
551 int i;
552 int retval = 0;
553
554 if (!net->sctp.addip_enable)
555 return retval;
556
557 sp = sctp_sk(sk);
558 ep = sp->ep;
559
560 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
561 __func__, sk, addrs, addrcnt);
562
563 list_for_each_entry(asoc, &ep->asocs, asocs) {
564 if (!asoc->peer.asconf_capable)
565 continue;
566
567 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
568 continue;
569
570 if (!sctp_state(asoc, ESTABLISHED))
571 continue;
572
573 /* Check if any address in the packed array of addresses is
574 * in the bind address list of the association. If so,
575 * do not send the asconf chunk to its peer, but continue with
576 * other associations.
577 */
578 addr_buf = addrs;
579 for (i = 0; i < addrcnt; i++) {
580 addr = addr_buf;
581 af = sctp_get_af_specific(addr->v4.sin_family);
582 if (!af) {
583 retval = -EINVAL;
584 goto out;
585 }
586
587 if (sctp_assoc_lookup_laddr(asoc, addr))
588 break;
589
590 addr_buf += af->sockaddr_len;
591 }
592 if (i < addrcnt)
593 continue;
594
595 /* Use the first valid address in bind addr list of
596 * association as Address Parameter of ASCONF CHUNK.
597 */
598 bp = &asoc->base.bind_addr;
599 p = bp->address_list.next;
600 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
601 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
602 addrcnt, SCTP_PARAM_ADD_IP);
603 if (!chunk) {
604 retval = -ENOMEM;
605 goto out;
606 }
607
608 /* Add the new addresses to the bind address list with
609 * use_as_src set to 0.
610 */
611 addr_buf = addrs;
612 for (i = 0; i < addrcnt; i++) {
613 addr = addr_buf;
614 af = sctp_get_af_specific(addr->v4.sin_family);
615 memcpy(&saveaddr, addr, af->sockaddr_len);
616 retval = sctp_add_bind_addr(bp, &saveaddr,
617 sizeof(saveaddr),
618 SCTP_ADDR_NEW, GFP_ATOMIC);
619 addr_buf += af->sockaddr_len;
620 }
621 if (asoc->src_out_of_asoc_ok) {
622 struct sctp_transport *trans;
623
624 list_for_each_entry(trans,
625 &asoc->peer.transport_addr_list, transports) {
626 /* Clear the source and route cache */
627 sctp_transport_dst_release(trans);
628 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
629 2*asoc->pathmtu, 4380));
630 trans->ssthresh = asoc->peer.i.a_rwnd;
631 trans->rto = asoc->rto_initial;
632 sctp_max_rto(asoc, trans);
633 trans->rtt = trans->srtt = trans->rttvar = 0;
634 sctp_transport_route(trans, NULL,
635 sctp_sk(asoc->base.sk));
636 }
637 }
638 retval = sctp_send_asconf(asoc, chunk);
639 }
640
641 out:
642 return retval;
643 }
644
645 /* Remove a list of addresses from bind addresses list. Do not remove the
646 * last address.
647 *
648 * Basically run through each address specified in the addrs/addrcnt
649 * array/length pair, determine if it is IPv6 or IPv4 and call
650 * sctp_del_bind() on it.
651 *
652 * If any of them fails, then the operation will be reversed and the
653 * ones that were removed will be added back.
654 *
655 * At least one address has to be left; if only one address is
656 * available, the operation will return -EBUSY.
657 *
658 * Only sctp_setsockopt_bindx() is supposed to call this function.
659 */
660 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
661 {
662 struct sctp_sock *sp = sctp_sk(sk);
663 struct sctp_endpoint *ep = sp->ep;
664 int cnt;
665 struct sctp_bind_addr *bp = &ep->base.bind_addr;
666 int retval = 0;
667 void *addr_buf;
668 union sctp_addr *sa_addr;
669 struct sctp_af *af;
670
671 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
672 __func__, sk, addrs, addrcnt);
673
674 addr_buf = addrs;
675 for (cnt = 0; cnt < addrcnt; cnt++) {
676 /* If the bind address list is empty or if there is only one
677 * bind address, there is nothing more to be removed (we need
678 * at least one address here).
679 */
680 if (list_empty(&bp->address_list) ||
681 (sctp_list_single_entry(&bp->address_list))) {
682 retval = -EBUSY;
683 goto err_bindx_rem;
684 }
685
686 sa_addr = addr_buf;
687 af = sctp_get_af_specific(sa_addr->sa.sa_family);
688 if (!af) {
689 retval = -EINVAL;
690 goto err_bindx_rem;
691 }
692
693 if (!af->addr_valid(sa_addr, sp, NULL)) {
694 retval = -EADDRNOTAVAIL;
695 goto err_bindx_rem;
696 }
697
698 if (sa_addr->v4.sin_port &&
699 sa_addr->v4.sin_port != htons(bp->port)) {
700 retval = -EINVAL;
701 goto err_bindx_rem;
702 }
703
704 if (!sa_addr->v4.sin_port)
705 sa_addr->v4.sin_port = htons(bp->port);
706
707 /* FIXME - There is probably a need to check if sk->sk_saddr and
708 * sk->sk_rcv_addr are currently set to one of the addresses to
709 * be removed. This is something which needs to be looked into
710 * when we are fixing the outstanding issues with multi-homing
711 * socket routing and failover schemes. Refer to comments in
712 * sctp_do_bind(). -daisy
713 */
714 retval = sctp_del_bind_addr(bp, sa_addr);
715
716 addr_buf += af->sockaddr_len;
717 err_bindx_rem:
718 if (retval < 0) {
719 /* Failed. Add the ones that has been removed back */
720 if (cnt > 0)
721 sctp_bindx_add(sk, addrs, cnt);
722 return retval;
723 }
724 }
725
726 return retval;
727 }
728
729 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
730 * the associations that are part of the endpoint indicating that a list of
731 * local addresses are removed from the endpoint.
732 *
733 * If any of the addresses is already in the bind address list of the
734 * association, we do not send the chunk for that association. But it will not
735 * affect other associations.
736 *
737 * Only sctp_setsockopt_bindx() is supposed to call this function.
738 */
739 static int sctp_send_asconf_del_ip(struct sock *sk,
740 struct sockaddr *addrs,
741 int addrcnt)
742 {
743 struct net *net = sock_net(sk);
744 struct sctp_sock *sp;
745 struct sctp_endpoint *ep;
746 struct sctp_association *asoc;
747 struct sctp_transport *transport;
748 struct sctp_bind_addr *bp;
749 struct sctp_chunk *chunk;
750 union sctp_addr *laddr;
751 void *addr_buf;
752 struct sctp_af *af;
753 struct sctp_sockaddr_entry *saddr;
754 int i;
755 int retval = 0;
756 int stored = 0;
757
758 chunk = NULL;
759 if (!net->sctp.addip_enable)
760 return retval;
761
762 sp = sctp_sk(sk);
763 ep = sp->ep;
764
765 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
766 __func__, sk, addrs, addrcnt);
767
768 list_for_each_entry(asoc, &ep->asocs, asocs) {
769
770 if (!asoc->peer.asconf_capable)
771 continue;
772
773 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
774 continue;
775
776 if (!sctp_state(asoc, ESTABLISHED))
777 continue;
778
779 /* Check if any address in the packed array of addresses is
780 * not present in the bind address list of the association.
781 * If so, do not send the asconf chunk to its peer, but
782 * continue with other associations.
783 */
784 addr_buf = addrs;
785 for (i = 0; i < addrcnt; i++) {
786 laddr = addr_buf;
787 af = sctp_get_af_specific(laddr->v4.sin_family);
788 if (!af) {
789 retval = -EINVAL;
790 goto out;
791 }
792
793 if (!sctp_assoc_lookup_laddr(asoc, laddr))
794 break;
795
796 addr_buf += af->sockaddr_len;
797 }
798 if (i < addrcnt)
799 continue;
800
801 /* Find one address in the association's bind address list
802 * that is not in the packed array of addresses. This is to
803 * make sure that we do not delete all the addresses in the
804 * association.
805 */
806 bp = &asoc->base.bind_addr;
807 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
808 addrcnt, sp);
809 if ((laddr == NULL) && (addrcnt == 1)) {
810 if (asoc->asconf_addr_del_pending)
811 continue;
812 asoc->asconf_addr_del_pending =
813 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
814 if (asoc->asconf_addr_del_pending == NULL) {
815 retval = -ENOMEM;
816 goto out;
817 }
818 asoc->asconf_addr_del_pending->sa.sa_family =
819 addrs->sa_family;
820 asoc->asconf_addr_del_pending->v4.sin_port =
821 htons(bp->port);
822 if (addrs->sa_family == AF_INET) {
823 struct sockaddr_in *sin;
824
825 sin = (struct sockaddr_in *)addrs;
826 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
827 } else if (addrs->sa_family == AF_INET6) {
828 struct sockaddr_in6 *sin6;
829
830 sin6 = (struct sockaddr_in6 *)addrs;
831 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
832 }
833
834 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
835 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
836 asoc->asconf_addr_del_pending);
837
838 asoc->src_out_of_asoc_ok = 1;
839 stored = 1;
840 goto skip_mkasconf;
841 }
842
843 if (laddr == NULL)
844 return -EINVAL;
845
846 /* We do not need RCU protection throughout this loop
847 * because this is done under a socket lock from the
848 * setsockopt call.
849 */
850 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
851 SCTP_PARAM_DEL_IP);
852 if (!chunk) {
853 retval = -ENOMEM;
854 goto out;
855 }
856
857 skip_mkasconf:
858 /* Reset use_as_src flag for the addresses in the bind address
859 * list that are to be deleted.
860 */
861 addr_buf = addrs;
862 for (i = 0; i < addrcnt; i++) {
863 laddr = addr_buf;
864 af = sctp_get_af_specific(laddr->v4.sin_family);
865 list_for_each_entry(saddr, &bp->address_list, list) {
866 if (sctp_cmp_addr_exact(&saddr->a, laddr))
867 saddr->state = SCTP_ADDR_DEL;
868 }
869 addr_buf += af->sockaddr_len;
870 }
871
872 /* Update the route and saddr entries for all the transports
873 * as some of the addresses in the bind address list are
874 * about to be deleted and cannot be used as source addresses.
875 */
876 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
877 transports) {
878 sctp_transport_dst_release(transport);
879 sctp_transport_route(transport, NULL,
880 sctp_sk(asoc->base.sk));
881 }
882
883 if (stored)
884 /* We don't need to transmit ASCONF */
885 continue;
886 retval = sctp_send_asconf(asoc, chunk);
887 }
888 out:
889 return retval;
890 }
891
892 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
893 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
894 {
895 struct sock *sk = sctp_opt2sk(sp);
896 union sctp_addr *addr;
897 struct sctp_af *af;
898
899 /* It is safe to write port space in caller. */
900 addr = &addrw->a;
901 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
902 af = sctp_get_af_specific(addr->sa.sa_family);
903 if (!af)
904 return -EINVAL;
905 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
906 return -EINVAL;
907
908 if (addrw->state == SCTP_ADDR_NEW)
909 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
910 else
911 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
912 }
913
914 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
915 *
916 * API 8.1
917 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
918 * int flags);
919 *
920 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
921 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
922 * or IPv6 addresses.
923 *
924 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
925 * Section 3.1.2 for this usage.
926 *
927 * addrs is a pointer to an array of one or more socket addresses. Each
928 * address is contained in its appropriate structure (i.e. struct
929 * sockaddr_in or struct sockaddr_in6) the family of the address type
930 * must be used to distinguish the address length (note that this
931 * representation is termed a "packed array" of addresses). The caller
932 * specifies the number of addresses in the array with addrcnt.
933 *
934 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
935 * -1, and sets errno to the appropriate error code.
936 *
937 * For SCTP, the port given in each socket address must be the same, or
938 * sctp_bindx() will fail, setting errno to EINVAL.
939 *
940 * The flags parameter is formed from the bitwise OR of zero or more of
941 * the following currently defined flags:
942 *
943 * SCTP_BINDX_ADD_ADDR
944 *
945 * SCTP_BINDX_REM_ADDR
946 *
947 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
948 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
949 * addresses from the association. The two flags are mutually exclusive;
950 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
951 * not remove all addresses from an association; sctp_bindx() will
952 * reject such an attempt with EINVAL.
953 *
954 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
955 * additional addresses with an endpoint after calling bind(). Or use
956 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
957 * socket is associated with so that no new association accepted will be
958 * associated with those addresses. If the endpoint supports dynamic
959 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
960 * endpoint to send the appropriate message to the peer to change the
961 * peers address lists.
962 *
963 * Adding and removing addresses from a connected association is
964 * optional functionality. Implementations that do not support this
965 * functionality should return EOPNOTSUPP.
966 *
967 * Basically do nothing but copying the addresses from user to kernel
968 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
969 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
970 * from userspace.
971 *
972 * We don't use copy_from_user() for optimization: we first do the
973 * sanity checks (buffer size -fast- and access check-healthy
974 * pointer); if all of those succeed, then we can alloc the memory
975 * (expensive operation) needed to copy the data to kernel. Then we do
976 * the copying without checking the user space area
977 * (__copy_from_user()).
978 *
979 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
980 * it.
981 *
982 * sk The sk of the socket
983 * addrs The pointer to the addresses in user land
984 * addrssize Size of the addrs buffer
985 * op Operation to perform (add or remove, see the flags of
986 * sctp_bindx)
987 *
988 * Returns 0 if ok, <0 errno code on error.
989 */
990 static int sctp_setsockopt_bindx(struct sock *sk,
991 struct sockaddr __user *addrs,
992 int addrs_size, int op)
993 {
994 struct sockaddr *kaddrs;
995 int err;
996 int addrcnt = 0;
997 int walk_size = 0;
998 struct sockaddr *sa_addr;
999 void *addr_buf;
1000 struct sctp_af *af;
1001
1002 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
1003 __func__, sk, addrs, addrs_size, op);
1004
1005 if (unlikely(addrs_size <= 0))
1006 return -EINVAL;
1007
1008 /* Check the user passed a healthy pointer. */
1009 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1010 return -EFAULT;
1011
1012 /* Alloc space for the address array in kernel memory. */
1013 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN);
1014 if (unlikely(!kaddrs))
1015 return -ENOMEM;
1016
1017 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1018 kfree(kaddrs);
1019 return -EFAULT;
1020 }
1021
1022 /* Walk through the addrs buffer and count the number of addresses. */
1023 addr_buf = kaddrs;
1024 while (walk_size < addrs_size) {
1025 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1026 kfree(kaddrs);
1027 return -EINVAL;
1028 }
1029
1030 sa_addr = addr_buf;
1031 af = sctp_get_af_specific(sa_addr->sa_family);
1032
1033 /* If the address family is not supported or if this address
1034 * causes the address buffer to overflow return EINVAL.
1035 */
1036 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1037 kfree(kaddrs);
1038 return -EINVAL;
1039 }
1040 addrcnt++;
1041 addr_buf += af->sockaddr_len;
1042 walk_size += af->sockaddr_len;
1043 }
1044
1045 /* Do the work. */
1046 switch (op) {
1047 case SCTP_BINDX_ADD_ADDR:
1048 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1049 if (err)
1050 goto out;
1051 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1052 break;
1053
1054 case SCTP_BINDX_REM_ADDR:
1055 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1056 if (err)
1057 goto out;
1058 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1059 break;
1060
1061 default:
1062 err = -EINVAL;
1063 break;
1064 }
1065
1066 out:
1067 kfree(kaddrs);
1068
1069 return err;
1070 }
1071
1072 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1073 *
1074 * Common routine for handling connect() and sctp_connectx().
1075 * Connect will come in with just a single address.
1076 */
1077 static int __sctp_connect(struct sock *sk,
1078 struct sockaddr *kaddrs,
1079 int addrs_size, int flags,
1080 sctp_assoc_t *assoc_id)
1081 {
1082 struct net *net = sock_net(sk);
1083 struct sctp_sock *sp;
1084 struct sctp_endpoint *ep;
1085 struct sctp_association *asoc = NULL;
1086 struct sctp_association *asoc2;
1087 struct sctp_transport *transport;
1088 union sctp_addr to;
1089 enum sctp_scope scope;
1090 long timeo;
1091 int err = 0;
1092 int addrcnt = 0;
1093 int walk_size = 0;
1094 union sctp_addr *sa_addr = NULL;
1095 void *addr_buf;
1096 unsigned short port;
1097
1098 sp = sctp_sk(sk);
1099 ep = sp->ep;
1100
1101 /* connect() cannot be done on a socket that is already in ESTABLISHED
1102 * state - UDP-style peeled off socket or a TCP-style socket that
1103 * is already connected.
1104 * It cannot be done even on a TCP-style listening socket.
1105 */
1106 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1107 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1108 err = -EISCONN;
1109 goto out_free;
1110 }
1111
1112 /* Walk through the addrs buffer and count the number of addresses. */
1113 addr_buf = kaddrs;
1114 while (walk_size < addrs_size) {
1115 struct sctp_af *af;
1116
1117 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1118 err = -EINVAL;
1119 goto out_free;
1120 }
1121
1122 sa_addr = addr_buf;
1123 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1124
1125 /* If the address family is not supported or if this address
1126 * causes the address buffer to overflow return EINVAL.
1127 */
1128 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1129 err = -EINVAL;
1130 goto out_free;
1131 }
1132
1133 port = ntohs(sa_addr->v4.sin_port);
1134
1135 /* Save current address so we can work with it */
1136 memcpy(&to, sa_addr, af->sockaddr_len);
1137
1138 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1139 if (err)
1140 goto out_free;
1141
1142 /* Make sure the destination port is correctly set
1143 * in all addresses.
1144 */
1145 if (asoc && asoc->peer.port && asoc->peer.port != port) {
1146 err = -EINVAL;
1147 goto out_free;
1148 }
1149
1150 /* Check if there already is a matching association on the
1151 * endpoint (other than the one created here).
1152 */
1153 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1154 if (asoc2 && asoc2 != asoc) {
1155 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1156 err = -EISCONN;
1157 else
1158 err = -EALREADY;
1159 goto out_free;
1160 }
1161
1162 /* If we could not find a matching association on the endpoint,
1163 * make sure that there is no peeled-off association matching
1164 * the peer address even on another socket.
1165 */
1166 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1167 err = -EADDRNOTAVAIL;
1168 goto out_free;
1169 }
1170
1171 if (!asoc) {
1172 /* If a bind() or sctp_bindx() is not called prior to
1173 * an sctp_connectx() call, the system picks an
1174 * ephemeral port and will choose an address set
1175 * equivalent to binding with a wildcard address.
1176 */
1177 if (!ep->base.bind_addr.port) {
1178 if (sctp_autobind(sk)) {
1179 err = -EAGAIN;
1180 goto out_free;
1181 }
1182 } else {
1183 /*
1184 * If an unprivileged user inherits a 1-many
1185 * style socket with open associations on a
1186 * privileged port, it MAY be permitted to
1187 * accept new associations, but it SHOULD NOT
1188 * be permitted to open new associations.
1189 */
1190 if (ep->base.bind_addr.port <
1191 inet_prot_sock(net) &&
1192 !ns_capable(net->user_ns,
1193 CAP_NET_BIND_SERVICE)) {
1194 err = -EACCES;
1195 goto out_free;
1196 }
1197 }
1198
1199 scope = sctp_scope(&to);
1200 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1201 if (!asoc) {
1202 err = -ENOMEM;
1203 goto out_free;
1204 }
1205
1206 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1207 GFP_KERNEL);
1208 if (err < 0) {
1209 goto out_free;
1210 }
1211
1212 }
1213
1214 /* Prime the peer's transport structures. */
1215 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1216 SCTP_UNKNOWN);
1217 if (!transport) {
1218 err = -ENOMEM;
1219 goto out_free;
1220 }
1221
1222 addrcnt++;
1223 addr_buf += af->sockaddr_len;
1224 walk_size += af->sockaddr_len;
1225 }
1226
1227 /* In case the user of sctp_connectx() wants an association
1228 * id back, assign one now.
1229 */
1230 if (assoc_id) {
1231 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1232 if (err < 0)
1233 goto out_free;
1234 }
1235
1236 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1237 if (err < 0) {
1238 goto out_free;
1239 }
1240
1241 /* Initialize sk's dport and daddr for getpeername() */
1242 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1243 sp->pf->to_sk_daddr(sa_addr, sk);
1244 sk->sk_err = 0;
1245
1246 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1247
1248 if (assoc_id)
1249 *assoc_id = asoc->assoc_id;
1250 err = sctp_wait_for_connect(asoc, &timeo);
1251 /* Note: the asoc may be freed after the return of
1252 * sctp_wait_for_connect.
1253 */
1254
1255 /* Don't free association on exit. */
1256 asoc = NULL;
1257
1258 out_free:
1259 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1260 __func__, asoc, kaddrs, err);
1261
1262 if (asoc) {
1263 /* sctp_primitive_ASSOCIATE may have added this association
1264 * To the hash table, try to unhash it, just in case, its a noop
1265 * if it wasn't hashed so we're safe
1266 */
1267 sctp_association_free(asoc);
1268 }
1269 return err;
1270 }
1271
1272 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1273 *
1274 * API 8.9
1275 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1276 * sctp_assoc_t *asoc);
1277 *
1278 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1279 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1280 * or IPv6 addresses.
1281 *
1282 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1283 * Section 3.1.2 for this usage.
1284 *
1285 * addrs is a pointer to an array of one or more socket addresses. Each
1286 * address is contained in its appropriate structure (i.e. struct
1287 * sockaddr_in or struct sockaddr_in6) the family of the address type
1288 * must be used to distengish the address length (note that this
1289 * representation is termed a "packed array" of addresses). The caller
1290 * specifies the number of addresses in the array with addrcnt.
1291 *
1292 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1293 * the association id of the new association. On failure, sctp_connectx()
1294 * returns -1, and sets errno to the appropriate error code. The assoc_id
1295 * is not touched by the kernel.
1296 *
1297 * For SCTP, the port given in each socket address must be the same, or
1298 * sctp_connectx() will fail, setting errno to EINVAL.
1299 *
1300 * An application can use sctp_connectx to initiate an association with
1301 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1302 * allows a caller to specify multiple addresses at which a peer can be
1303 * reached. The way the SCTP stack uses the list of addresses to set up
1304 * the association is implementation dependent. This function only
1305 * specifies that the stack will try to make use of all the addresses in
1306 * the list when needed.
1307 *
1308 * Note that the list of addresses passed in is only used for setting up
1309 * the association. It does not necessarily equal the set of addresses
1310 * the peer uses for the resulting association. If the caller wants to
1311 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1312 * retrieve them after the association has been set up.
1313 *
1314 * Basically do nothing but copying the addresses from user to kernel
1315 * land and invoking either sctp_connectx(). This is used for tunneling
1316 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1317 *
1318 * We don't use copy_from_user() for optimization: we first do the
1319 * sanity checks (buffer size -fast- and access check-healthy
1320 * pointer); if all of those succeed, then we can alloc the memory
1321 * (expensive operation) needed to copy the data to kernel. Then we do
1322 * the copying without checking the user space area
1323 * (__copy_from_user()).
1324 *
1325 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1326 * it.
1327 *
1328 * sk The sk of the socket
1329 * addrs The pointer to the addresses in user land
1330 * addrssize Size of the addrs buffer
1331 *
1332 * Returns >=0 if ok, <0 errno code on error.
1333 */
1334 static int __sctp_setsockopt_connectx(struct sock *sk,
1335 struct sockaddr __user *addrs,
1336 int addrs_size,
1337 sctp_assoc_t *assoc_id)
1338 {
1339 struct sockaddr *kaddrs;
1340 gfp_t gfp = GFP_KERNEL;
1341 int err = 0, flags = 0;
1342
1343 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1344 __func__, sk, addrs, addrs_size);
1345
1346 if (unlikely(addrs_size <= 0))
1347 return -EINVAL;
1348
1349 /* Check the user passed a healthy pointer. */
1350 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1351 return -EFAULT;
1352
1353 /* Alloc space for the address array in kernel memory. */
1354 if (sk->sk_socket->file)
1355 gfp = GFP_USER | __GFP_NOWARN;
1356 kaddrs = kmalloc(addrs_size, gfp);
1357 if (unlikely(!kaddrs))
1358 return -ENOMEM;
1359
1360 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1361 kfree(kaddrs);
1362 return -EFAULT;
1363 }
1364
1365 /* in-kernel sockets don't generally have a file allocated to them
1366 * if all they do is call sock_create_kern().
1367 */
1368 if (sk->sk_socket->file)
1369 flags = sk->sk_socket->file->f_flags;
1370
1371 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1372
1373 kfree(kaddrs);
1374
1375 return err;
1376 }
1377
1378 /*
1379 * This is an older interface. It's kept for backward compatibility
1380 * to the option that doesn't provide association id.
1381 */
1382 static int sctp_setsockopt_connectx_old(struct sock *sk,
1383 struct sockaddr __user *addrs,
1384 int addrs_size)
1385 {
1386 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1387 }
1388
1389 /*
1390 * New interface for the API. The since the API is done with a socket
1391 * option, to make it simple we feed back the association id is as a return
1392 * indication to the call. Error is always negative and association id is
1393 * always positive.
1394 */
1395 static int sctp_setsockopt_connectx(struct sock *sk,
1396 struct sockaddr __user *addrs,
1397 int addrs_size)
1398 {
1399 sctp_assoc_t assoc_id = 0;
1400 int err = 0;
1401
1402 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1403
1404 if (err)
1405 return err;
1406 else
1407 return assoc_id;
1408 }
1409
1410 /*
1411 * New (hopefully final) interface for the API.
1412 * We use the sctp_getaddrs_old structure so that use-space library
1413 * can avoid any unnecessary allocations. The only different part
1414 * is that we store the actual length of the address buffer into the
1415 * addrs_num structure member. That way we can re-use the existing
1416 * code.
1417 */
1418 #ifdef CONFIG_COMPAT
1419 struct compat_sctp_getaddrs_old {
1420 sctp_assoc_t assoc_id;
1421 s32 addr_num;
1422 compat_uptr_t addrs; /* struct sockaddr * */
1423 };
1424 #endif
1425
1426 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1427 char __user *optval,
1428 int __user *optlen)
1429 {
1430 struct sctp_getaddrs_old param;
1431 sctp_assoc_t assoc_id = 0;
1432 int err = 0;
1433
1434 #ifdef CONFIG_COMPAT
1435 if (in_compat_syscall()) {
1436 struct compat_sctp_getaddrs_old param32;
1437
1438 if (len < sizeof(param32))
1439 return -EINVAL;
1440 if (copy_from_user(&param32, optval, sizeof(param32)))
1441 return -EFAULT;
1442
1443 param.assoc_id = param32.assoc_id;
1444 param.addr_num = param32.addr_num;
1445 param.addrs = compat_ptr(param32.addrs);
1446 } else
1447 #endif
1448 {
1449 if (len < sizeof(param))
1450 return -EINVAL;
1451 if (copy_from_user(&param, optval, sizeof(param)))
1452 return -EFAULT;
1453 }
1454
1455 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1456 param.addrs, param.addr_num,
1457 &assoc_id);
1458 if (err == 0 || err == -EINPROGRESS) {
1459 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1460 return -EFAULT;
1461 if (put_user(sizeof(assoc_id), optlen))
1462 return -EFAULT;
1463 }
1464
1465 return err;
1466 }
1467
1468 /* API 3.1.4 close() - UDP Style Syntax
1469 * Applications use close() to perform graceful shutdown (as described in
1470 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1471 * by a UDP-style socket.
1472 *
1473 * The syntax is
1474 *
1475 * ret = close(int sd);
1476 *
1477 * sd - the socket descriptor of the associations to be closed.
1478 *
1479 * To gracefully shutdown a specific association represented by the
1480 * UDP-style socket, an application should use the sendmsg() call,
1481 * passing no user data, but including the appropriate flag in the
1482 * ancillary data (see Section xxxx).
1483 *
1484 * If sd in the close() call is a branched-off socket representing only
1485 * one association, the shutdown is performed on that association only.
1486 *
1487 * 4.1.6 close() - TCP Style Syntax
1488 *
1489 * Applications use close() to gracefully close down an association.
1490 *
1491 * The syntax is:
1492 *
1493 * int close(int sd);
1494 *
1495 * sd - the socket descriptor of the association to be closed.
1496 *
1497 * After an application calls close() on a socket descriptor, no further
1498 * socket operations will succeed on that descriptor.
1499 *
1500 * API 7.1.4 SO_LINGER
1501 *
1502 * An application using the TCP-style socket can use this option to
1503 * perform the SCTP ABORT primitive. The linger option structure is:
1504 *
1505 * struct linger {
1506 * int l_onoff; // option on/off
1507 * int l_linger; // linger time
1508 * };
1509 *
1510 * To enable the option, set l_onoff to 1. If the l_linger value is set
1511 * to 0, calling close() is the same as the ABORT primitive. If the
1512 * value is set to a negative value, the setsockopt() call will return
1513 * an error. If the value is set to a positive value linger_time, the
1514 * close() can be blocked for at most linger_time ms. If the graceful
1515 * shutdown phase does not finish during this period, close() will
1516 * return but the graceful shutdown phase continues in the system.
1517 */
1518 static void sctp_close(struct sock *sk, long timeout)
1519 {
1520 struct net *net = sock_net(sk);
1521 struct sctp_endpoint *ep;
1522 struct sctp_association *asoc;
1523 struct list_head *pos, *temp;
1524 unsigned int data_was_unread;
1525
1526 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1527
1528 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1529 sk->sk_shutdown = SHUTDOWN_MASK;
1530 sk->sk_state = SCTP_SS_CLOSING;
1531
1532 ep = sctp_sk(sk)->ep;
1533
1534 /* Clean up any skbs sitting on the receive queue. */
1535 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1536 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1537
1538 /* Walk all associations on an endpoint. */
1539 list_for_each_safe(pos, temp, &ep->asocs) {
1540 asoc = list_entry(pos, struct sctp_association, asocs);
1541
1542 if (sctp_style(sk, TCP)) {
1543 /* A closed association can still be in the list if
1544 * it belongs to a TCP-style listening socket that is
1545 * not yet accepted. If so, free it. If not, send an
1546 * ABORT or SHUTDOWN based on the linger options.
1547 */
1548 if (sctp_state(asoc, CLOSED)) {
1549 sctp_association_free(asoc);
1550 continue;
1551 }
1552 }
1553
1554 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1555 !skb_queue_empty(&asoc->ulpq.reasm) ||
1556 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1557 struct sctp_chunk *chunk;
1558
1559 chunk = sctp_make_abort_user(asoc, NULL, 0);
1560 sctp_primitive_ABORT(net, asoc, chunk);
1561 } else
1562 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1563 }
1564
1565 /* On a TCP-style socket, block for at most linger_time if set. */
1566 if (sctp_style(sk, TCP) && timeout)
1567 sctp_wait_for_close(sk, timeout);
1568
1569 /* This will run the backlog queue. */
1570 release_sock(sk);
1571
1572 /* Supposedly, no process has access to the socket, but
1573 * the net layers still may.
1574 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1575 * held and that should be grabbed before socket lock.
1576 */
1577 spin_lock_bh(&net->sctp.addr_wq_lock);
1578 bh_lock_sock_nested(sk);
1579
1580 /* Hold the sock, since sk_common_release() will put sock_put()
1581 * and we have just a little more cleanup.
1582 */
1583 sock_hold(sk);
1584 sk_common_release(sk);
1585
1586 bh_unlock_sock(sk);
1587 spin_unlock_bh(&net->sctp.addr_wq_lock);
1588
1589 sock_put(sk);
1590
1591 SCTP_DBG_OBJCNT_DEC(sock);
1592 }
1593
1594 /* Handle EPIPE error. */
1595 static int sctp_error(struct sock *sk, int flags, int err)
1596 {
1597 if (err == -EPIPE)
1598 err = sock_error(sk) ? : -EPIPE;
1599 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1600 send_sig(SIGPIPE, current, 0);
1601 return err;
1602 }
1603
1604 /* API 3.1.3 sendmsg() - UDP Style Syntax
1605 *
1606 * An application uses sendmsg() and recvmsg() calls to transmit data to
1607 * and receive data from its peer.
1608 *
1609 * ssize_t sendmsg(int socket, const struct msghdr *message,
1610 * int flags);
1611 *
1612 * socket - the socket descriptor of the endpoint.
1613 * message - pointer to the msghdr structure which contains a single
1614 * user message and possibly some ancillary data.
1615 *
1616 * See Section 5 for complete description of the data
1617 * structures.
1618 *
1619 * flags - flags sent or received with the user message, see Section
1620 * 5 for complete description of the flags.
1621 *
1622 * Note: This function could use a rewrite especially when explicit
1623 * connect support comes in.
1624 */
1625 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1626
1627 static int sctp_msghdr_parse(const struct msghdr *msg,
1628 struct sctp_cmsgs *cmsgs);
1629
1630 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1631 {
1632 struct net *net = sock_net(sk);
1633 struct sctp_sock *sp;
1634 struct sctp_endpoint *ep;
1635 struct sctp_association *new_asoc = NULL, *asoc = NULL;
1636 struct sctp_transport *transport, *chunk_tp;
1637 struct sctp_chunk *chunk;
1638 union sctp_addr to;
1639 struct sockaddr *msg_name = NULL;
1640 struct sctp_sndrcvinfo default_sinfo;
1641 struct sctp_sndrcvinfo *sinfo;
1642 struct sctp_initmsg *sinit;
1643 sctp_assoc_t associd = 0;
1644 struct sctp_cmsgs cmsgs = { NULL };
1645 enum sctp_scope scope;
1646 bool fill_sinfo_ttl = false, wait_connect = false;
1647 struct sctp_datamsg *datamsg;
1648 int msg_flags = msg->msg_flags;
1649 __u16 sinfo_flags = 0;
1650 long timeo;
1651 int err;
1652
1653 err = 0;
1654 sp = sctp_sk(sk);
1655 ep = sp->ep;
1656
1657 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1658 msg, msg_len, ep);
1659
1660 /* We cannot send a message over a TCP-style listening socket. */
1661 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1662 err = -EPIPE;
1663 goto out_nounlock;
1664 }
1665
1666 /* Parse out the SCTP CMSGs. */
1667 err = sctp_msghdr_parse(msg, &cmsgs);
1668 if (err) {
1669 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1670 goto out_nounlock;
1671 }
1672
1673 /* Fetch the destination address for this packet. This
1674 * address only selects the association--it is not necessarily
1675 * the address we will send to.
1676 * For a peeled-off socket, msg_name is ignored.
1677 */
1678 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1679 int msg_namelen = msg->msg_namelen;
1680
1681 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1682 msg_namelen);
1683 if (err)
1684 return err;
1685
1686 if (msg_namelen > sizeof(to))
1687 msg_namelen = sizeof(to);
1688 memcpy(&to, msg->msg_name, msg_namelen);
1689 msg_name = msg->msg_name;
1690 }
1691
1692 sinit = cmsgs.init;
1693 if (cmsgs.sinfo != NULL) {
1694 memset(&default_sinfo, 0, sizeof(default_sinfo));
1695 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1696 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1697 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1698 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1699 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1700
1701 sinfo = &default_sinfo;
1702 fill_sinfo_ttl = true;
1703 } else {
1704 sinfo = cmsgs.srinfo;
1705 }
1706 /* Did the user specify SNDINFO/SNDRCVINFO? */
1707 if (sinfo) {
1708 sinfo_flags = sinfo->sinfo_flags;
1709 associd = sinfo->sinfo_assoc_id;
1710 }
1711
1712 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1713 msg_len, sinfo_flags);
1714
1715 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1716 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1717 err = -EINVAL;
1718 goto out_nounlock;
1719 }
1720
1721 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1722 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1723 * If SCTP_ABORT is set, the message length could be non zero with
1724 * the msg_iov set to the user abort reason.
1725 */
1726 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1727 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1728 err = -EINVAL;
1729 goto out_nounlock;
1730 }
1731
1732 /* If SCTP_ADDR_OVER is set, there must be an address
1733 * specified in msg_name.
1734 */
1735 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1736 err = -EINVAL;
1737 goto out_nounlock;
1738 }
1739
1740 transport = NULL;
1741
1742 pr_debug("%s: about to look up association\n", __func__);
1743
1744 lock_sock(sk);
1745
1746 /* If a msg_name has been specified, assume this is to be used. */
1747 if (msg_name) {
1748 /* Look for a matching association on the endpoint. */
1749 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1750
1751 /* If we could not find a matching association on the
1752 * endpoint, make sure that it is not a TCP-style
1753 * socket that already has an association or there is
1754 * no peeled-off association on another socket.
1755 */
1756 if (!asoc &&
1757 ((sctp_style(sk, TCP) &&
1758 (sctp_sstate(sk, ESTABLISHED) ||
1759 sctp_sstate(sk, CLOSING))) ||
1760 sctp_endpoint_is_peeled_off(ep, &to))) {
1761 err = -EADDRNOTAVAIL;
1762 goto out_unlock;
1763 }
1764 } else {
1765 asoc = sctp_id2assoc(sk, associd);
1766 if (!asoc) {
1767 err = -EPIPE;
1768 goto out_unlock;
1769 }
1770 }
1771
1772 if (asoc) {
1773 pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1774
1775 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1776 * socket that has an association in CLOSED state. This can
1777 * happen when an accepted socket has an association that is
1778 * already CLOSED.
1779 */
1780 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1781 err = -EPIPE;
1782 goto out_unlock;
1783 }
1784
1785 if (sinfo_flags & SCTP_EOF) {
1786 pr_debug("%s: shutting down association:%p\n",
1787 __func__, asoc);
1788
1789 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1790 err = 0;
1791 goto out_unlock;
1792 }
1793 if (sinfo_flags & SCTP_ABORT) {
1794
1795 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1796 if (!chunk) {
1797 err = -ENOMEM;
1798 goto out_unlock;
1799 }
1800
1801 pr_debug("%s: aborting association:%p\n",
1802 __func__, asoc);
1803
1804 sctp_primitive_ABORT(net, asoc, chunk);
1805 err = 0;
1806 goto out_unlock;
1807 }
1808 }
1809
1810 /* Do we need to create the association? */
1811 if (!asoc) {
1812 pr_debug("%s: there is no association yet\n", __func__);
1813
1814 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1815 err = -EINVAL;
1816 goto out_unlock;
1817 }
1818
1819 /* Check for invalid stream against the stream counts,
1820 * either the default or the user specified stream counts.
1821 */
1822 if (sinfo) {
1823 if (!sinit || !sinit->sinit_num_ostreams) {
1824 /* Check against the defaults. */
1825 if (sinfo->sinfo_stream >=
1826 sp->initmsg.sinit_num_ostreams) {
1827 err = -EINVAL;
1828 goto out_unlock;
1829 }
1830 } else {
1831 /* Check against the requested. */
1832 if (sinfo->sinfo_stream >=
1833 sinit->sinit_num_ostreams) {
1834 err = -EINVAL;
1835 goto out_unlock;
1836 }
1837 }
1838 }
1839
1840 /*
1841 * API 3.1.2 bind() - UDP Style Syntax
1842 * If a bind() or sctp_bindx() is not called prior to a
1843 * sendmsg() call that initiates a new association, the
1844 * system picks an ephemeral port and will choose an address
1845 * set equivalent to binding with a wildcard address.
1846 */
1847 if (!ep->base.bind_addr.port) {
1848 if (sctp_autobind(sk)) {
1849 err = -EAGAIN;
1850 goto out_unlock;
1851 }
1852 } else {
1853 /*
1854 * If an unprivileged user inherits a one-to-many
1855 * style socket with open associations on a privileged
1856 * port, it MAY be permitted to accept new associations,
1857 * but it SHOULD NOT be permitted to open new
1858 * associations.
1859 */
1860 if (ep->base.bind_addr.port < inet_prot_sock(net) &&
1861 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1862 err = -EACCES;
1863 goto out_unlock;
1864 }
1865 }
1866
1867 scope = sctp_scope(&to);
1868 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1869 if (!new_asoc) {
1870 err = -ENOMEM;
1871 goto out_unlock;
1872 }
1873 asoc = new_asoc;
1874 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1875 if (err < 0) {
1876 err = -ENOMEM;
1877 goto out_free;
1878 }
1879
1880 /* If the SCTP_INIT ancillary data is specified, set all
1881 * the association init values accordingly.
1882 */
1883 if (sinit) {
1884 if (sinit->sinit_num_ostreams) {
1885 __u16 outcnt = sinit->sinit_num_ostreams;
1886
1887 asoc->c.sinit_num_ostreams = outcnt;
1888 /* outcnt has been changed, so re-init stream */
1889 err = sctp_stream_init(&asoc->stream, outcnt, 0,
1890 GFP_KERNEL);
1891 if (err)
1892 goto out_free;
1893 }
1894 if (sinit->sinit_max_instreams) {
1895 asoc->c.sinit_max_instreams =
1896 sinit->sinit_max_instreams;
1897 }
1898 if (sinit->sinit_max_attempts) {
1899 asoc->max_init_attempts
1900 = sinit->sinit_max_attempts;
1901 }
1902 if (sinit->sinit_max_init_timeo) {
1903 asoc->max_init_timeo =
1904 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1905 }
1906 }
1907
1908 /* Prime the peer's transport structures. */
1909 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1910 if (!transport) {
1911 err = -ENOMEM;
1912 goto out_free;
1913 }
1914 }
1915
1916 /* ASSERT: we have a valid association at this point. */
1917 pr_debug("%s: we have a valid association\n", __func__);
1918
1919 if (!sinfo) {
1920 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1921 * one with some defaults.
1922 */
1923 memset(&default_sinfo, 0, sizeof(default_sinfo));
1924 default_sinfo.sinfo_stream = asoc->default_stream;
1925 default_sinfo.sinfo_flags = asoc->default_flags;
1926 default_sinfo.sinfo_ppid = asoc->default_ppid;
1927 default_sinfo.sinfo_context = asoc->default_context;
1928 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1929 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1930
1931 sinfo = &default_sinfo;
1932 } else if (fill_sinfo_ttl) {
1933 /* In case SNDINFO was specified, we still need to fill
1934 * it with a default ttl from the assoc here.
1935 */
1936 sinfo->sinfo_timetolive = asoc->default_timetolive;
1937 }
1938
1939 /* API 7.1.7, the sndbuf size per association bounds the
1940 * maximum size of data that can be sent in a single send call.
1941 */
1942 if (msg_len > sk->sk_sndbuf) {
1943 err = -EMSGSIZE;
1944 goto out_free;
1945 }
1946
1947 if (asoc->pmtu_pending)
1948 sctp_assoc_pending_pmtu(asoc);
1949
1950 /* If fragmentation is disabled and the message length exceeds the
1951 * association fragmentation point, return EMSGSIZE. The I-D
1952 * does not specify what this error is, but this looks like
1953 * a great fit.
1954 */
1955 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1956 err = -EMSGSIZE;
1957 goto out_free;
1958 }
1959
1960 /* Check for invalid stream. */
1961 if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1962 err = -EINVAL;
1963 goto out_free;
1964 }
1965
1966 if (sctp_wspace(asoc) < msg_len)
1967 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1968
1969 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1970 if (!sctp_wspace(asoc)) {
1971 /* sk can be changed by peel off when waiting for buf. */
1972 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1973 if (err) {
1974 if (err == -ESRCH) {
1975 /* asoc is already dead. */
1976 new_asoc = NULL;
1977 err = -EPIPE;
1978 }
1979 goto out_free;
1980 }
1981 }
1982
1983 /* If an address is passed with the sendto/sendmsg call, it is used
1984 * to override the primary destination address in the TCP model, or
1985 * when SCTP_ADDR_OVER flag is set in the UDP model.
1986 */
1987 if ((sctp_style(sk, TCP) && msg_name) ||
1988 (sinfo_flags & SCTP_ADDR_OVER)) {
1989 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1990 if (!chunk_tp) {
1991 err = -EINVAL;
1992 goto out_free;
1993 }
1994 } else
1995 chunk_tp = NULL;
1996
1997 /* Auto-connect, if we aren't connected already. */
1998 if (sctp_state(asoc, CLOSED)) {
1999 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
2000 if (err < 0)
2001 goto out_free;
2002
2003 wait_connect = true;
2004 pr_debug("%s: we associated primitively\n", __func__);
2005 }
2006
2007 /* Break the message into multiple chunks of maximum size. */
2008 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
2009 if (IS_ERR(datamsg)) {
2010 err = PTR_ERR(datamsg);
2011 goto out_free;
2012 }
2013 asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
2014
2015 /* Now send the (possibly) fragmented message. */
2016 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
2017 sctp_chunk_hold(chunk);
2018
2019 /* Do accounting for the write space. */
2020 sctp_set_owner_w(chunk);
2021
2022 chunk->transport = chunk_tp;
2023 }
2024
2025 /* Send it to the lower layers. Note: all chunks
2026 * must either fail or succeed. The lower layer
2027 * works that way today. Keep it that way or this
2028 * breaks.
2029 */
2030 err = sctp_primitive_SEND(net, asoc, datamsg);
2031 /* Did the lower layer accept the chunk? */
2032 if (err) {
2033 sctp_datamsg_free(datamsg);
2034 goto out_free;
2035 }
2036
2037 pr_debug("%s: we sent primitively\n", __func__);
2038
2039 sctp_datamsg_put(datamsg);
2040 err = msg_len;
2041
2042 if (unlikely(wait_connect)) {
2043 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
2044 sctp_wait_for_connect(asoc, &timeo);
2045 }
2046
2047 /* If we are already past ASSOCIATE, the lower
2048 * layers are responsible for association cleanup.
2049 */
2050 goto out_unlock;
2051
2052 out_free:
2053 if (new_asoc)
2054 sctp_association_free(asoc);
2055 out_unlock:
2056 release_sock(sk);
2057
2058 out_nounlock:
2059 return sctp_error(sk, msg_flags, err);
2060
2061 #if 0
2062 do_sock_err:
2063 if (msg_len)
2064 err = msg_len;
2065 else
2066 err = sock_error(sk);
2067 goto out;
2068
2069 do_interrupted:
2070 if (msg_len)
2071 err = msg_len;
2072 goto out;
2073 #endif /* 0 */
2074 }
2075
2076 /* This is an extended version of skb_pull() that removes the data from the
2077 * start of a skb even when data is spread across the list of skb's in the
2078 * frag_list. len specifies the total amount of data that needs to be removed.
2079 * when 'len' bytes could be removed from the skb, it returns 0.
2080 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2081 * could not be removed.
2082 */
2083 static int sctp_skb_pull(struct sk_buff *skb, int len)
2084 {
2085 struct sk_buff *list;
2086 int skb_len = skb_headlen(skb);
2087 int rlen;
2088
2089 if (len <= skb_len) {
2090 __skb_pull(skb, len);
2091 return 0;
2092 }
2093 len -= skb_len;
2094 __skb_pull(skb, skb_len);
2095
2096 skb_walk_frags(skb, list) {
2097 rlen = sctp_skb_pull(list, len);
2098 skb->len -= (len-rlen);
2099 skb->data_len -= (len-rlen);
2100
2101 if (!rlen)
2102 return 0;
2103
2104 len = rlen;
2105 }
2106
2107 return len;
2108 }
2109
2110 /* API 3.1.3 recvmsg() - UDP Style Syntax
2111 *
2112 * ssize_t recvmsg(int socket, struct msghdr *message,
2113 * int flags);
2114 *
2115 * socket - the socket descriptor of the endpoint.
2116 * message - pointer to the msghdr structure which contains a single
2117 * user message and possibly some ancillary data.
2118 *
2119 * See Section 5 for complete description of the data
2120 * structures.
2121 *
2122 * flags - flags sent or received with the user message, see Section
2123 * 5 for complete description of the flags.
2124 */
2125 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2126 int noblock, int flags, int *addr_len)
2127 {
2128 struct sctp_ulpevent *event = NULL;
2129 struct sctp_sock *sp = sctp_sk(sk);
2130 struct sk_buff *skb, *head_skb;
2131 int copied;
2132 int err = 0;
2133 int skb_len;
2134
2135 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2136 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2137 addr_len);
2138
2139 lock_sock(sk);
2140
2141 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2142 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2143 err = -ENOTCONN;
2144 goto out;
2145 }
2146
2147 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2148 if (!skb)
2149 goto out;
2150
2151 /* Get the total length of the skb including any skb's in the
2152 * frag_list.
2153 */
2154 skb_len = skb->len;
2155
2156 copied = skb_len;
2157 if (copied > len)
2158 copied = len;
2159
2160 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2161
2162 event = sctp_skb2event(skb);
2163
2164 if (err)
2165 goto out_free;
2166
2167 if (event->chunk && event->chunk->head_skb)
2168 head_skb = event->chunk->head_skb;
2169 else
2170 head_skb = skb;
2171 sock_recv_ts_and_drops(msg, sk, head_skb);
2172 if (sctp_ulpevent_is_notification(event)) {
2173 msg->msg_flags |= MSG_NOTIFICATION;
2174 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2175 } else {
2176 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2177 }
2178
2179 /* Check if we allow SCTP_NXTINFO. */
2180 if (sp->recvnxtinfo)
2181 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2182 /* Check if we allow SCTP_RCVINFO. */
2183 if (sp->recvrcvinfo)
2184 sctp_ulpevent_read_rcvinfo(event, msg);
2185 /* Check if we allow SCTP_SNDRCVINFO. */
2186 if (sp->subscribe.sctp_data_io_event)
2187 sctp_ulpevent_read_sndrcvinfo(event, msg);
2188
2189 err = copied;
2190
2191 /* If skb's length exceeds the user's buffer, update the skb and
2192 * push it back to the receive_queue so that the next call to
2193 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2194 */
2195 if (skb_len > copied) {
2196 msg->msg_flags &= ~MSG_EOR;
2197 if (flags & MSG_PEEK)
2198 goto out_free;
2199 sctp_skb_pull(skb, copied);
2200 skb_queue_head(&sk->sk_receive_queue, skb);
2201
2202 /* When only partial message is copied to the user, increase
2203 * rwnd by that amount. If all the data in the skb is read,
2204 * rwnd is updated when the event is freed.
2205 */
2206 if (!sctp_ulpevent_is_notification(event))
2207 sctp_assoc_rwnd_increase(event->asoc, copied);
2208 goto out;
2209 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2210 (event->msg_flags & MSG_EOR))
2211 msg->msg_flags |= MSG_EOR;
2212 else
2213 msg->msg_flags &= ~MSG_EOR;
2214
2215 out_free:
2216 if (flags & MSG_PEEK) {
2217 /* Release the skb reference acquired after peeking the skb in
2218 * sctp_skb_recv_datagram().
2219 */
2220 kfree_skb(skb);
2221 } else {
2222 /* Free the event which includes releasing the reference to
2223 * the owner of the skb, freeing the skb and updating the
2224 * rwnd.
2225 */
2226 sctp_ulpevent_free(event);
2227 }
2228 out:
2229 release_sock(sk);
2230 return err;
2231 }
2232
2233 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2234 *
2235 * This option is a on/off flag. If enabled no SCTP message
2236 * fragmentation will be performed. Instead if a message being sent
2237 * exceeds the current PMTU size, the message will NOT be sent and
2238 * instead a error will be indicated to the user.
2239 */
2240 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2241 char __user *optval,
2242 unsigned int optlen)
2243 {
2244 int val;
2245
2246 if (optlen < sizeof(int))
2247 return -EINVAL;
2248
2249 if (get_user(val, (int __user *)optval))
2250 return -EFAULT;
2251
2252 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2253
2254 return 0;
2255 }
2256
2257 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2258 unsigned int optlen)
2259 {
2260 struct sctp_association *asoc;
2261 struct sctp_ulpevent *event;
2262
2263 if (optlen > sizeof(struct sctp_event_subscribe))
2264 return -EINVAL;
2265 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2266 return -EFAULT;
2267
2268 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2269 * if there is no data to be sent or retransmit, the stack will
2270 * immediately send up this notification.
2271 */
2272 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2273 &sctp_sk(sk)->subscribe)) {
2274 asoc = sctp_id2assoc(sk, 0);
2275
2276 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2277 event = sctp_ulpevent_make_sender_dry_event(asoc,
2278 GFP_ATOMIC);
2279 if (!event)
2280 return -ENOMEM;
2281
2282 sctp_ulpq_tail_event(&asoc->ulpq, event);
2283 }
2284 }
2285
2286 return 0;
2287 }
2288
2289 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2290 *
2291 * This socket option is applicable to the UDP-style socket only. When
2292 * set it will cause associations that are idle for more than the
2293 * specified number of seconds to automatically close. An association
2294 * being idle is defined an association that has NOT sent or received
2295 * user data. The special value of '0' indicates that no automatic
2296 * close of any associations should be performed. The option expects an
2297 * integer defining the number of seconds of idle time before an
2298 * association is closed.
2299 */
2300 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2301 unsigned int optlen)
2302 {
2303 struct sctp_sock *sp = sctp_sk(sk);
2304 struct net *net = sock_net(sk);
2305
2306 /* Applicable to UDP-style socket only */
2307 if (sctp_style(sk, TCP))
2308 return -EOPNOTSUPP;
2309 if (optlen != sizeof(int))
2310 return -EINVAL;
2311 if (copy_from_user(&sp->autoclose, optval, optlen))
2312 return -EFAULT;
2313
2314 if (sp->autoclose > net->sctp.max_autoclose)
2315 sp->autoclose = net->sctp.max_autoclose;
2316
2317 return 0;
2318 }
2319
2320 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2321 *
2322 * Applications can enable or disable heartbeats for any peer address of
2323 * an association, modify an address's heartbeat interval, force a
2324 * heartbeat to be sent immediately, and adjust the address's maximum
2325 * number of retransmissions sent before an address is considered
2326 * unreachable. The following structure is used to access and modify an
2327 * address's parameters:
2328 *
2329 * struct sctp_paddrparams {
2330 * sctp_assoc_t spp_assoc_id;
2331 * struct sockaddr_storage spp_address;
2332 * uint32_t spp_hbinterval;
2333 * uint16_t spp_pathmaxrxt;
2334 * uint32_t spp_pathmtu;
2335 * uint32_t spp_sackdelay;
2336 * uint32_t spp_flags;
2337 * };
2338 *
2339 * spp_assoc_id - (one-to-many style socket) This is filled in the
2340 * application, and identifies the association for
2341 * this query.
2342 * spp_address - This specifies which address is of interest.
2343 * spp_hbinterval - This contains the value of the heartbeat interval,
2344 * in milliseconds. If a value of zero
2345 * is present in this field then no changes are to
2346 * be made to this parameter.
2347 * spp_pathmaxrxt - This contains the maximum number of
2348 * retransmissions before this address shall be
2349 * considered unreachable. If a value of zero
2350 * is present in this field then no changes are to
2351 * be made to this parameter.
2352 * spp_pathmtu - When Path MTU discovery is disabled the value
2353 * specified here will be the "fixed" path mtu.
2354 * Note that if the spp_address field is empty
2355 * then all associations on this address will
2356 * have this fixed path mtu set upon them.
2357 *
2358 * spp_sackdelay - When delayed sack is enabled, this value specifies
2359 * the number of milliseconds that sacks will be delayed
2360 * for. This value will apply to all addresses of an
2361 * association if the spp_address field is empty. Note
2362 * also, that if delayed sack is enabled and this
2363 * value is set to 0, no change is made to the last
2364 * recorded delayed sack timer value.
2365 *
2366 * spp_flags - These flags are used to control various features
2367 * on an association. The flag field may contain
2368 * zero or more of the following options.
2369 *
2370 * SPP_HB_ENABLE - Enable heartbeats on the
2371 * specified address. Note that if the address
2372 * field is empty all addresses for the association
2373 * have heartbeats enabled upon them.
2374 *
2375 * SPP_HB_DISABLE - Disable heartbeats on the
2376 * speicifed address. Note that if the address
2377 * field is empty all addresses for the association
2378 * will have their heartbeats disabled. Note also
2379 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2380 * mutually exclusive, only one of these two should
2381 * be specified. Enabling both fields will have
2382 * undetermined results.
2383 *
2384 * SPP_HB_DEMAND - Request a user initiated heartbeat
2385 * to be made immediately.
2386 *
2387 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2388 * heartbeat delayis to be set to the value of 0
2389 * milliseconds.
2390 *
2391 * SPP_PMTUD_ENABLE - This field will enable PMTU
2392 * discovery upon the specified address. Note that
2393 * if the address feild is empty then all addresses
2394 * on the association are effected.
2395 *
2396 * SPP_PMTUD_DISABLE - This field will disable PMTU
2397 * discovery upon the specified address. Note that
2398 * if the address feild is empty then all addresses
2399 * on the association are effected. Not also that
2400 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2401 * exclusive. Enabling both will have undetermined
2402 * results.
2403 *
2404 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2405 * on delayed sack. The time specified in spp_sackdelay
2406 * is used to specify the sack delay for this address. Note
2407 * that if spp_address is empty then all addresses will
2408 * enable delayed sack and take on the sack delay
2409 * value specified in spp_sackdelay.
2410 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2411 * off delayed sack. If the spp_address field is blank then
2412 * delayed sack is disabled for the entire association. Note
2413 * also that this field is mutually exclusive to
2414 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2415 * results.
2416 */
2417 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2418 struct sctp_transport *trans,
2419 struct sctp_association *asoc,
2420 struct sctp_sock *sp,
2421 int hb_change,
2422 int pmtud_change,
2423 int sackdelay_change)
2424 {
2425 int error;
2426
2427 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2428 struct net *net = sock_net(trans->asoc->base.sk);
2429
2430 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2431 if (error)
2432 return error;
2433 }
2434
2435 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2436 * this field is ignored. Note also that a value of zero indicates
2437 * the current setting should be left unchanged.
2438 */
2439 if (params->spp_flags & SPP_HB_ENABLE) {
2440
2441 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2442 * set. This lets us use 0 value when this flag
2443 * is set.
2444 */
2445 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2446 params->spp_hbinterval = 0;
2447
2448 if (params->spp_hbinterval ||
2449 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2450 if (trans) {
2451 trans->hbinterval =
2452 msecs_to_jiffies(params->spp_hbinterval);
2453 } else if (asoc) {
2454 asoc->hbinterval =
2455 msecs_to_jiffies(params->spp_hbinterval);
2456 } else {
2457 sp->hbinterval = params->spp_hbinterval;
2458 }
2459 }
2460 }
2461
2462 if (hb_change) {
2463 if (trans) {
2464 trans->param_flags =
2465 (trans->param_flags & ~SPP_HB) | hb_change;
2466 } else if (asoc) {
2467 asoc->param_flags =
2468 (asoc->param_flags & ~SPP_HB) | hb_change;
2469 } else {
2470 sp->param_flags =
2471 (sp->param_flags & ~SPP_HB) | hb_change;
2472 }
2473 }
2474
2475 /* When Path MTU discovery is disabled the value specified here will
2476 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2477 * include the flag SPP_PMTUD_DISABLE for this field to have any
2478 * effect).
2479 */
2480 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2481 if (trans) {
2482 trans->pathmtu = params->spp_pathmtu;
2483 sctp_assoc_sync_pmtu(asoc);
2484 } else if (asoc) {
2485 asoc->pathmtu = params->spp_pathmtu;
2486 } else {
2487 sp->pathmtu = params->spp_pathmtu;
2488 }
2489 }
2490
2491 if (pmtud_change) {
2492 if (trans) {
2493 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2494 (params->spp_flags & SPP_PMTUD_ENABLE);
2495 trans->param_flags =
2496 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2497 if (update) {
2498 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2499 sctp_assoc_sync_pmtu(asoc);
2500 }
2501 } else if (asoc) {
2502 asoc->param_flags =
2503 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2504 } else {
2505 sp->param_flags =
2506 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2507 }
2508 }
2509
2510 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2511 * value of this field is ignored. Note also that a value of zero
2512 * indicates the current setting should be left unchanged.
2513 */
2514 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2515 if (trans) {
2516 trans->sackdelay =
2517 msecs_to_jiffies(params->spp_sackdelay);
2518 } else if (asoc) {
2519 asoc->sackdelay =
2520 msecs_to_jiffies(params->spp_sackdelay);
2521 } else {
2522 sp->sackdelay = params->spp_sackdelay;
2523 }
2524 }
2525
2526 if (sackdelay_change) {
2527 if (trans) {
2528 trans->param_flags =
2529 (trans->param_flags & ~SPP_SACKDELAY) |
2530 sackdelay_change;
2531 } else if (asoc) {
2532 asoc->param_flags =
2533 (asoc->param_flags & ~SPP_SACKDELAY) |
2534 sackdelay_change;
2535 } else {
2536 sp->param_flags =
2537 (sp->param_flags & ~SPP_SACKDELAY) |
2538 sackdelay_change;
2539 }
2540 }
2541
2542 /* Note that a value of zero indicates the current setting should be
2543 left unchanged.
2544 */
2545 if (params->spp_pathmaxrxt) {
2546 if (trans) {
2547 trans->pathmaxrxt = params->spp_pathmaxrxt;
2548 } else if (asoc) {
2549 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2550 } else {
2551 sp->pathmaxrxt = params->spp_pathmaxrxt;
2552 }
2553 }
2554
2555 return 0;
2556 }
2557
2558 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2559 char __user *optval,
2560 unsigned int optlen)
2561 {
2562 struct sctp_paddrparams params;
2563 struct sctp_transport *trans = NULL;
2564 struct sctp_association *asoc = NULL;
2565 struct sctp_sock *sp = sctp_sk(sk);
2566 int error;
2567 int hb_change, pmtud_change, sackdelay_change;
2568
2569 if (optlen != sizeof(struct sctp_paddrparams))
2570 return -EINVAL;
2571
2572 if (copy_from_user(&params, optval, optlen))
2573 return -EFAULT;
2574
2575 /* Validate flags and value parameters. */
2576 hb_change = params.spp_flags & SPP_HB;
2577 pmtud_change = params.spp_flags & SPP_PMTUD;
2578 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2579
2580 if (hb_change == SPP_HB ||
2581 pmtud_change == SPP_PMTUD ||
2582 sackdelay_change == SPP_SACKDELAY ||
2583 params.spp_sackdelay > 500 ||
2584 (params.spp_pathmtu &&
2585 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2586 return -EINVAL;
2587
2588 /* If an address other than INADDR_ANY is specified, and
2589 * no transport is found, then the request is invalid.
2590 */
2591 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2592 trans = sctp_addr_id2transport(sk, &params.spp_address,
2593 params.spp_assoc_id);
2594 if (!trans)
2595 return -EINVAL;
2596 }
2597
2598 /* Get association, if assoc_id != 0 and the socket is a one
2599 * to many style socket, and an association was not found, then
2600 * the id was invalid.
2601 */
2602 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2603 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2604 return -EINVAL;
2605
2606 /* Heartbeat demand can only be sent on a transport or
2607 * association, but not a socket.
2608 */
2609 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2610 return -EINVAL;
2611
2612 /* Process parameters. */
2613 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2614 hb_change, pmtud_change,
2615 sackdelay_change);
2616
2617 if (error)
2618 return error;
2619
2620 /* If changes are for association, also apply parameters to each
2621 * transport.
2622 */
2623 if (!trans && asoc) {
2624 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2625 transports) {
2626 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2627 hb_change, pmtud_change,
2628 sackdelay_change);
2629 }
2630 }
2631
2632 return 0;
2633 }
2634
2635 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2636 {
2637 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2638 }
2639
2640 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2641 {
2642 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2643 }
2644
2645 /*
2646 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2647 *
2648 * This option will effect the way delayed acks are performed. This
2649 * option allows you to get or set the delayed ack time, in
2650 * milliseconds. It also allows changing the delayed ack frequency.
2651 * Changing the frequency to 1 disables the delayed sack algorithm. If
2652 * the assoc_id is 0, then this sets or gets the endpoints default
2653 * values. If the assoc_id field is non-zero, then the set or get
2654 * effects the specified association for the one to many model (the
2655 * assoc_id field is ignored by the one to one model). Note that if
2656 * sack_delay or sack_freq are 0 when setting this option, then the
2657 * current values will remain unchanged.
2658 *
2659 * struct sctp_sack_info {
2660 * sctp_assoc_t sack_assoc_id;
2661 * uint32_t sack_delay;
2662 * uint32_t sack_freq;
2663 * };
2664 *
2665 * sack_assoc_id - This parameter, indicates which association the user
2666 * is performing an action upon. Note that if this field's value is
2667 * zero then the endpoints default value is changed (effecting future
2668 * associations only).
2669 *
2670 * sack_delay - This parameter contains the number of milliseconds that
2671 * the user is requesting the delayed ACK timer be set to. Note that
2672 * this value is defined in the standard to be between 200 and 500
2673 * milliseconds.
2674 *
2675 * sack_freq - This parameter contains the number of packets that must
2676 * be received before a sack is sent without waiting for the delay
2677 * timer to expire. The default value for this is 2, setting this
2678 * value to 1 will disable the delayed sack algorithm.
2679 */
2680
2681 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2682 char __user *optval, unsigned int optlen)
2683 {
2684 struct sctp_sack_info params;
2685 struct sctp_transport *trans = NULL;
2686 struct sctp_association *asoc = NULL;
2687 struct sctp_sock *sp = sctp_sk(sk);
2688
2689 if (optlen == sizeof(struct sctp_sack_info)) {
2690 if (copy_from_user(&params, optval, optlen))
2691 return -EFAULT;
2692
2693 if (params.sack_delay == 0 && params.sack_freq == 0)
2694 return 0;
2695 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2696 pr_warn_ratelimited(DEPRECATED
2697 "%s (pid %d) "
2698 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2699 "Use struct sctp_sack_info instead\n",
2700 current->comm, task_pid_nr(current));
2701 if (copy_from_user(&params, optval, optlen))
2702 return -EFAULT;
2703
2704 if (params.sack_delay == 0)
2705 params.sack_freq = 1;
2706 else
2707 params.sack_freq = 0;
2708 } else
2709 return -EINVAL;
2710
2711 /* Validate value parameter. */
2712 if (params.sack_delay > 500)
2713 return -EINVAL;
2714
2715 /* Get association, if sack_assoc_id != 0 and the socket is a one
2716 * to many style socket, and an association was not found, then
2717 * the id was invalid.
2718 */
2719 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2720 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2721 return -EINVAL;
2722
2723 if (params.sack_delay) {
2724 if (asoc) {
2725 asoc->sackdelay =
2726 msecs_to_jiffies(params.sack_delay);
2727 asoc->param_flags =
2728 sctp_spp_sackdelay_enable(asoc->param_flags);
2729 } else {
2730 sp->sackdelay = params.sack_delay;
2731 sp->param_flags =
2732 sctp_spp_sackdelay_enable(sp->param_flags);
2733 }
2734 }
2735
2736 if (params.sack_freq == 1) {
2737 if (asoc) {
2738 asoc->param_flags =
2739 sctp_spp_sackdelay_disable(asoc->param_flags);
2740 } else {
2741 sp->param_flags =
2742 sctp_spp_sackdelay_disable(sp->param_flags);
2743 }
2744 } else if (params.sack_freq > 1) {
2745 if (asoc) {
2746 asoc->sackfreq = params.sack_freq;
2747 asoc->param_flags =
2748 sctp_spp_sackdelay_enable(asoc->param_flags);
2749 } else {
2750 sp->sackfreq = params.sack_freq;
2751 sp->param_flags =
2752 sctp_spp_sackdelay_enable(sp->param_flags);
2753 }
2754 }
2755
2756 /* If change is for association, also apply to each transport. */
2757 if (asoc) {
2758 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2759 transports) {
2760 if (params.sack_delay) {
2761 trans->sackdelay =
2762 msecs_to_jiffies(params.sack_delay);
2763 trans->param_flags =
2764 sctp_spp_sackdelay_enable(trans->param_flags);
2765 }
2766 if (params.sack_freq == 1) {
2767 trans->param_flags =
2768 sctp_spp_sackdelay_disable(trans->param_flags);
2769 } else if (params.sack_freq > 1) {
2770 trans->sackfreq = params.sack_freq;
2771 trans->param_flags =
2772 sctp_spp_sackdelay_enable(trans->param_flags);
2773 }
2774 }
2775 }
2776
2777 return 0;
2778 }
2779
2780 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2781 *
2782 * Applications can specify protocol parameters for the default association
2783 * initialization. The option name argument to setsockopt() and getsockopt()
2784 * is SCTP_INITMSG.
2785 *
2786 * Setting initialization parameters is effective only on an unconnected
2787 * socket (for UDP-style sockets only future associations are effected
2788 * by the change). With TCP-style sockets, this option is inherited by
2789 * sockets derived from a listener socket.
2790 */
2791 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2792 {
2793 struct sctp_initmsg sinit;
2794 struct sctp_sock *sp = sctp_sk(sk);
2795
2796 if (optlen != sizeof(struct sctp_initmsg))
2797 return -EINVAL;
2798 if (copy_from_user(&sinit, optval, optlen))
2799 return -EFAULT;
2800
2801 if (sinit.sinit_num_ostreams)
2802 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2803 if (sinit.sinit_max_instreams)
2804 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2805 if (sinit.sinit_max_attempts)
2806 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2807 if (sinit.sinit_max_init_timeo)
2808 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2809
2810 return 0;
2811 }
2812
2813 /*
2814 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2815 *
2816 * Applications that wish to use the sendto() system call may wish to
2817 * specify a default set of parameters that would normally be supplied
2818 * through the inclusion of ancillary data. This socket option allows
2819 * such an application to set the default sctp_sndrcvinfo structure.
2820 * The application that wishes to use this socket option simply passes
2821 * in to this call the sctp_sndrcvinfo structure defined in Section
2822 * 5.2.2) The input parameters accepted by this call include
2823 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2824 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2825 * to this call if the caller is using the UDP model.
2826 */
2827 static int sctp_setsockopt_default_send_param(struct sock *sk,
2828 char __user *optval,
2829 unsigned int optlen)
2830 {
2831 struct sctp_sock *sp = sctp_sk(sk);
2832 struct sctp_association *asoc;
2833 struct sctp_sndrcvinfo info;
2834
2835 if (optlen != sizeof(info))
2836 return -EINVAL;
2837 if (copy_from_user(&info, optval, optlen))
2838 return -EFAULT;
2839 if (info.sinfo_flags &
2840 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2841 SCTP_ABORT | SCTP_EOF))
2842 return -EINVAL;
2843
2844 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2845 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2846 return -EINVAL;
2847 if (asoc) {
2848 asoc->default_stream = info.sinfo_stream;
2849 asoc->default_flags = info.sinfo_flags;
2850 asoc->default_ppid = info.sinfo_ppid;
2851 asoc->default_context = info.sinfo_context;
2852 asoc->default_timetolive = info.sinfo_timetolive;
2853 } else {
2854 sp->default_stream = info.sinfo_stream;
2855 sp->default_flags = info.sinfo_flags;
2856 sp->default_ppid = info.sinfo_ppid;
2857 sp->default_context = info.sinfo_context;
2858 sp->default_timetolive = info.sinfo_timetolive;
2859 }
2860
2861 return 0;
2862 }
2863
2864 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2865 * (SCTP_DEFAULT_SNDINFO)
2866 */
2867 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2868 char __user *optval,
2869 unsigned int optlen)
2870 {
2871 struct sctp_sock *sp = sctp_sk(sk);
2872 struct sctp_association *asoc;
2873 struct sctp_sndinfo info;
2874
2875 if (optlen != sizeof(info))
2876 return -EINVAL;
2877 if (copy_from_user(&info, optval, optlen))
2878 return -EFAULT;
2879 if (info.snd_flags &
2880 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2881 SCTP_ABORT | SCTP_EOF))
2882 return -EINVAL;
2883
2884 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2885 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2886 return -EINVAL;
2887 if (asoc) {
2888 asoc->default_stream = info.snd_sid;
2889 asoc->default_flags = info.snd_flags;
2890 asoc->default_ppid = info.snd_ppid;
2891 asoc->default_context = info.snd_context;
2892 } else {
2893 sp->default_stream = info.snd_sid;
2894 sp->default_flags = info.snd_flags;
2895 sp->default_ppid = info.snd_ppid;
2896 sp->default_context = info.snd_context;
2897 }
2898
2899 return 0;
2900 }
2901
2902 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2903 *
2904 * Requests that the local SCTP stack use the enclosed peer address as
2905 * the association primary. The enclosed address must be one of the
2906 * association peer's addresses.
2907 */
2908 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2909 unsigned int optlen)
2910 {
2911 struct sctp_prim prim;
2912 struct sctp_transport *trans;
2913
2914 if (optlen != sizeof(struct sctp_prim))
2915 return -EINVAL;
2916
2917 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2918 return -EFAULT;
2919
2920 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2921 if (!trans)
2922 return -EINVAL;
2923
2924 sctp_assoc_set_primary(trans->asoc, trans);
2925
2926 return 0;
2927 }
2928
2929 /*
2930 * 7.1.5 SCTP_NODELAY
2931 *
2932 * Turn on/off any Nagle-like algorithm. This means that packets are
2933 * generally sent as soon as possible and no unnecessary delays are
2934 * introduced, at the cost of more packets in the network. Expects an
2935 * integer boolean flag.
2936 */
2937 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2938 unsigned int optlen)
2939 {
2940 int val;
2941
2942 if (optlen < sizeof(int))
2943 return -EINVAL;
2944 if (get_user(val, (int __user *)optval))
2945 return -EFAULT;
2946
2947 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2948 return 0;
2949 }
2950
2951 /*
2952 *
2953 * 7.1.1 SCTP_RTOINFO
2954 *
2955 * The protocol parameters used to initialize and bound retransmission
2956 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2957 * and modify these parameters.
2958 * All parameters are time values, in milliseconds. A value of 0, when
2959 * modifying the parameters, indicates that the current value should not
2960 * be changed.
2961 *
2962 */
2963 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2964 {
2965 struct sctp_rtoinfo rtoinfo;
2966 struct sctp_association *asoc;
2967 unsigned long rto_min, rto_max;
2968 struct sctp_sock *sp = sctp_sk(sk);
2969
2970 if (optlen != sizeof (struct sctp_rtoinfo))
2971 return -EINVAL;
2972
2973 if (copy_from_user(&rtoinfo, optval, optlen))
2974 return -EFAULT;
2975
2976 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2977
2978 /* Set the values to the specific association */
2979 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2980 return -EINVAL;
2981
2982 rto_max = rtoinfo.srto_max;
2983 rto_min = rtoinfo.srto_min;
2984
2985 if (rto_max)
2986 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2987 else
2988 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2989
2990 if (rto_min)
2991 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2992 else
2993 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2994
2995 if (rto_min > rto_max)
2996 return -EINVAL;
2997
2998 if (asoc) {
2999 if (rtoinfo.srto_initial != 0)
3000 asoc->rto_initial =
3001 msecs_to_jiffies(rtoinfo.srto_initial);
3002 asoc->rto_max = rto_max;
3003 asoc->rto_min = rto_min;
3004 } else {
3005 /* If there is no association or the association-id = 0
3006 * set the values to the endpoint.
3007 */
3008 if (rtoinfo.srto_initial != 0)
3009 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
3010 sp->rtoinfo.srto_max = rto_max;
3011 sp->rtoinfo.srto_min = rto_min;
3012 }
3013
3014 return 0;
3015 }
3016
3017 /*
3018 *
3019 * 7.1.2 SCTP_ASSOCINFO
3020 *
3021 * This option is used to tune the maximum retransmission attempts
3022 * of the association.
3023 * Returns an error if the new association retransmission value is
3024 * greater than the sum of the retransmission value of the peer.
3025 * See [SCTP] for more information.
3026 *
3027 */
3028 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
3029 {
3030
3031 struct sctp_assocparams assocparams;
3032 struct sctp_association *asoc;
3033
3034 if (optlen != sizeof(struct sctp_assocparams))
3035 return -EINVAL;
3036 if (copy_from_user(&assocparams, optval, optlen))
3037 return -EFAULT;
3038
3039 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3040
3041 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
3042 return -EINVAL;
3043
3044 /* Set the values to the specific association */
3045 if (asoc) {
3046 if (assocparams.sasoc_asocmaxrxt != 0) {
3047 __u32 path_sum = 0;
3048 int paths = 0;
3049 struct sctp_transport *peer_addr;
3050
3051 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3052 transports) {
3053 path_sum += peer_addr->pathmaxrxt;
3054 paths++;
3055 }
3056
3057 /* Only validate asocmaxrxt if we have more than
3058 * one path/transport. We do this because path
3059 * retransmissions are only counted when we have more
3060 * then one path.
3061 */
3062 if (paths > 1 &&
3063 assocparams.sasoc_asocmaxrxt > path_sum)
3064 return -EINVAL;
3065
3066 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3067 }
3068
3069 if (assocparams.sasoc_cookie_life != 0)
3070 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3071 } else {
3072 /* Set the values to the endpoint */
3073 struct sctp_sock *sp = sctp_sk(sk);
3074
3075 if (assocparams.sasoc_asocmaxrxt != 0)
3076 sp->assocparams.sasoc_asocmaxrxt =
3077 assocparams.sasoc_asocmaxrxt;
3078 if (assocparams.sasoc_cookie_life != 0)
3079 sp->assocparams.sasoc_cookie_life =
3080 assocparams.sasoc_cookie_life;
3081 }
3082 return 0;
3083 }
3084
3085 /*
3086 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3087 *
3088 * This socket option is a boolean flag which turns on or off mapped V4
3089 * addresses. If this option is turned on and the socket is type
3090 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3091 * If this option is turned off, then no mapping will be done of V4
3092 * addresses and a user will receive both PF_INET6 and PF_INET type
3093 * addresses on the socket.
3094 */
3095 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3096 {
3097 int val;
3098 struct sctp_sock *sp = sctp_sk(sk);
3099
3100 if (optlen < sizeof(int))
3101 return -EINVAL;
3102 if (get_user(val, (int __user *)optval))
3103 return -EFAULT;
3104 if (val)
3105 sp->v4mapped = 1;
3106 else
3107 sp->v4mapped = 0;
3108
3109 return 0;
3110 }
3111
3112 /*
3113 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3114 * This option will get or set the maximum size to put in any outgoing
3115 * SCTP DATA chunk. If a message is larger than this size it will be
3116 * fragmented by SCTP into the specified size. Note that the underlying
3117 * SCTP implementation may fragment into smaller sized chunks when the
3118 * PMTU of the underlying association is smaller than the value set by
3119 * the user. The default value for this option is '0' which indicates
3120 * the user is NOT limiting fragmentation and only the PMTU will effect
3121 * SCTP's choice of DATA chunk size. Note also that values set larger
3122 * than the maximum size of an IP datagram will effectively let SCTP
3123 * control fragmentation (i.e. the same as setting this option to 0).
3124 *
3125 * The following structure is used to access and modify this parameter:
3126 *
3127 * struct sctp_assoc_value {
3128 * sctp_assoc_t assoc_id;
3129 * uint32_t assoc_value;
3130 * };
3131 *
3132 * assoc_id: This parameter is ignored for one-to-one style sockets.
3133 * For one-to-many style sockets this parameter indicates which
3134 * association the user is performing an action upon. Note that if
3135 * this field's value is zero then the endpoints default value is
3136 * changed (effecting future associations only).
3137 * assoc_value: This parameter specifies the maximum size in bytes.
3138 */
3139 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3140 {
3141 struct sctp_sock *sp = sctp_sk(sk);
3142 struct sctp_assoc_value params;
3143 struct sctp_association *asoc;
3144 int val;
3145
3146 if (optlen == sizeof(int)) {
3147 pr_warn_ratelimited(DEPRECATED
3148 "%s (pid %d) "
3149 "Use of int in maxseg socket option.\n"
3150 "Use struct sctp_assoc_value instead\n",
3151 current->comm, task_pid_nr(current));
3152 if (copy_from_user(&val, optval, optlen))
3153 return -EFAULT;
3154 params.assoc_id = 0;
3155 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3156 if (copy_from_user(&params, optval, optlen))
3157 return -EFAULT;
3158 val = params.assoc_value;
3159 } else {
3160 return -EINVAL;
3161 }
3162
3163 if (val) {
3164 int min_len, max_len;
3165
3166 min_len = SCTP_DEFAULT_MINSEGMENT - sp->pf->af->net_header_len;
3167 min_len -= sizeof(struct sctphdr) +
3168 sizeof(struct sctp_data_chunk);
3169
3170 max_len = SCTP_MAX_CHUNK_LEN - sizeof(struct sctp_data_chunk);
3171
3172 if (val < min_len || val > max_len)
3173 return -EINVAL;
3174 }
3175
3176 asoc = sctp_id2assoc(sk, params.assoc_id);
3177 if (asoc) {
3178 if (val == 0) {
3179 val = asoc->pathmtu - sp->pf->af->net_header_len;
3180 val -= sizeof(struct sctphdr) +
3181 sizeof(struct sctp_data_chunk);
3182 }
3183 asoc->user_frag = val;
3184 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3185 } else {
3186 if (params.assoc_id && sctp_style(sk, UDP))
3187 return -EINVAL;
3188 sp->user_frag = val;
3189 }
3190
3191 return 0;
3192 }
3193
3194
3195 /*
3196 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3197 *
3198 * Requests that the peer mark the enclosed address as the association
3199 * primary. The enclosed address must be one of the association's
3200 * locally bound addresses. The following structure is used to make a
3201 * set primary request:
3202 */
3203 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3204 unsigned int optlen)
3205 {
3206 struct net *net = sock_net(sk);
3207 struct sctp_sock *sp;
3208 struct sctp_association *asoc = NULL;
3209 struct sctp_setpeerprim prim;
3210 struct sctp_chunk *chunk;
3211 struct sctp_af *af;
3212 int err;
3213
3214 sp = sctp_sk(sk);
3215
3216 if (!net->sctp.addip_enable)
3217 return -EPERM;
3218
3219 if (optlen != sizeof(struct sctp_setpeerprim))
3220 return -EINVAL;
3221
3222 if (copy_from_user(&prim, optval, optlen))
3223 return -EFAULT;
3224
3225 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3226 if (!asoc)
3227 return -EINVAL;
3228
3229 if (!asoc->peer.asconf_capable)
3230 return -EPERM;
3231
3232 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3233 return -EPERM;
3234
3235 if (!sctp_state(asoc, ESTABLISHED))
3236 return -ENOTCONN;
3237
3238 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3239 if (!af)
3240 return -EINVAL;
3241
3242 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3243 return -EADDRNOTAVAIL;
3244
3245 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3246 return -EADDRNOTAVAIL;
3247
3248 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3249 chunk = sctp_make_asconf_set_prim(asoc,
3250 (union sctp_addr *)&prim.sspp_addr);
3251 if (!chunk)
3252 return -ENOMEM;
3253
3254 err = sctp_send_asconf(asoc, chunk);
3255
3256 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3257
3258 return err;
3259 }
3260
3261 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3262 unsigned int optlen)
3263 {
3264 struct sctp_setadaptation adaptation;
3265
3266 if (optlen != sizeof(struct sctp_setadaptation))
3267 return -EINVAL;
3268 if (copy_from_user(&adaptation, optval, optlen))
3269 return -EFAULT;
3270
3271 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3272
3273 return 0;
3274 }
3275
3276 /*
3277 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3278 *
3279 * The context field in the sctp_sndrcvinfo structure is normally only
3280 * used when a failed message is retrieved holding the value that was
3281 * sent down on the actual send call. This option allows the setting of
3282 * a default context on an association basis that will be received on
3283 * reading messages from the peer. This is especially helpful in the
3284 * one-2-many model for an application to keep some reference to an
3285 * internal state machine that is processing messages on the
3286 * association. Note that the setting of this value only effects
3287 * received messages from the peer and does not effect the value that is
3288 * saved with outbound messages.
3289 */
3290 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3291 unsigned int optlen)
3292 {
3293 struct sctp_assoc_value params;
3294 struct sctp_sock *sp;
3295 struct sctp_association *asoc;
3296
3297 if (optlen != sizeof(struct sctp_assoc_value))
3298 return -EINVAL;
3299 if (copy_from_user(&params, optval, optlen))
3300 return -EFAULT;
3301
3302 sp = sctp_sk(sk);
3303
3304 if (params.assoc_id != 0) {
3305 asoc = sctp_id2assoc(sk, params.assoc_id);
3306 if (!asoc)
3307 return -EINVAL;
3308 asoc->default_rcv_context = params.assoc_value;
3309 } else {
3310 sp->default_rcv_context = params.assoc_value;
3311 }
3312
3313 return 0;
3314 }
3315
3316 /*
3317 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3318 *
3319 * This options will at a minimum specify if the implementation is doing
3320 * fragmented interleave. Fragmented interleave, for a one to many
3321 * socket, is when subsequent calls to receive a message may return
3322 * parts of messages from different associations. Some implementations
3323 * may allow you to turn this value on or off. If so, when turned off,
3324 * no fragment interleave will occur (which will cause a head of line
3325 * blocking amongst multiple associations sharing the same one to many
3326 * socket). When this option is turned on, then each receive call may
3327 * come from a different association (thus the user must receive data
3328 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3329 * association each receive belongs to.
3330 *
3331 * This option takes a boolean value. A non-zero value indicates that
3332 * fragmented interleave is on. A value of zero indicates that
3333 * fragmented interleave is off.
3334 *
3335 * Note that it is important that an implementation that allows this
3336 * option to be turned on, have it off by default. Otherwise an unaware
3337 * application using the one to many model may become confused and act
3338 * incorrectly.
3339 */
3340 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3341 char __user *optval,
3342 unsigned int optlen)
3343 {
3344 int val;
3345
3346 if (optlen != sizeof(int))
3347 return -EINVAL;
3348 if (get_user(val, (int __user *)optval))
3349 return -EFAULT;
3350
3351 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3352
3353 return 0;
3354 }
3355
3356 /*
3357 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3358 * (SCTP_PARTIAL_DELIVERY_POINT)
3359 *
3360 * This option will set or get the SCTP partial delivery point. This
3361 * point is the size of a message where the partial delivery API will be
3362 * invoked to help free up rwnd space for the peer. Setting this to a
3363 * lower value will cause partial deliveries to happen more often. The
3364 * calls argument is an integer that sets or gets the partial delivery
3365 * point. Note also that the call will fail if the user attempts to set
3366 * this value larger than the socket receive buffer size.
3367 *
3368 * Note that any single message having a length smaller than or equal to
3369 * the SCTP partial delivery point will be delivered in one single read
3370 * call as long as the user provided buffer is large enough to hold the
3371 * message.
3372 */
3373 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3374 char __user *optval,
3375 unsigned int optlen)
3376 {
3377 u32 val;
3378
3379 if (optlen != sizeof(u32))
3380 return -EINVAL;
3381 if (get_user(val, (int __user *)optval))
3382 return -EFAULT;
3383
3384 /* Note: We double the receive buffer from what the user sets
3385 * it to be, also initial rwnd is based on rcvbuf/2.
3386 */
3387 if (val > (sk->sk_rcvbuf >> 1))
3388 return -EINVAL;
3389
3390 sctp_sk(sk)->pd_point = val;
3391
3392 return 0; /* is this the right error code? */
3393 }
3394
3395 /*
3396 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3397 *
3398 * This option will allow a user to change the maximum burst of packets
3399 * that can be emitted by this association. Note that the default value
3400 * is 4, and some implementations may restrict this setting so that it
3401 * can only be lowered.
3402 *
3403 * NOTE: This text doesn't seem right. Do this on a socket basis with
3404 * future associations inheriting the socket value.
3405 */
3406 static int sctp_setsockopt_maxburst(struct sock *sk,
3407 char __user *optval,
3408 unsigned int optlen)
3409 {
3410 struct sctp_assoc_value params;
3411 struct sctp_sock *sp;
3412 struct sctp_association *asoc;
3413 int val;
3414 int assoc_id = 0;
3415
3416 if (optlen == sizeof(int)) {
3417 pr_warn_ratelimited(DEPRECATED
3418 "%s (pid %d) "
3419 "Use of int in max_burst socket option deprecated.\n"
3420 "Use struct sctp_assoc_value instead\n",
3421 current->comm, task_pid_nr(current));
3422 if (copy_from_user(&val, optval, optlen))
3423 return -EFAULT;
3424 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3425 if (copy_from_user(&params, optval, optlen))
3426 return -EFAULT;
3427 val = params.assoc_value;
3428 assoc_id = params.assoc_id;
3429 } else
3430 return -EINVAL;
3431
3432 sp = sctp_sk(sk);
3433
3434 if (assoc_id != 0) {
3435 asoc = sctp_id2assoc(sk, assoc_id);
3436 if (!asoc)
3437 return -EINVAL;
3438 asoc->max_burst = val;
3439 } else
3440 sp->max_burst = val;
3441
3442 return 0;
3443 }
3444
3445 /*
3446 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3447 *
3448 * This set option adds a chunk type that the user is requesting to be
3449 * received only in an authenticated way. Changes to the list of chunks
3450 * will only effect future associations on the socket.
3451 */
3452 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3453 char __user *optval,
3454 unsigned int optlen)
3455 {
3456 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3457 struct sctp_authchunk val;
3458
3459 if (!ep->auth_enable)
3460 return -EACCES;
3461
3462 if (optlen != sizeof(struct sctp_authchunk))
3463 return -EINVAL;
3464 if (copy_from_user(&val, optval, optlen))
3465 return -EFAULT;
3466
3467 switch (val.sauth_chunk) {
3468 case SCTP_CID_INIT:
3469 case SCTP_CID_INIT_ACK:
3470 case SCTP_CID_SHUTDOWN_COMPLETE:
3471 case SCTP_CID_AUTH:
3472 return -EINVAL;
3473 }
3474
3475 /* add this chunk id to the endpoint */
3476 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3477 }
3478
3479 /*
3480 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3481 *
3482 * This option gets or sets the list of HMAC algorithms that the local
3483 * endpoint requires the peer to use.
3484 */
3485 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3486 char __user *optval,
3487 unsigned int optlen)
3488 {
3489 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3490 struct sctp_hmacalgo *hmacs;
3491 u32 idents;
3492 int err;
3493
3494 if (!ep->auth_enable)
3495 return -EACCES;
3496
3497 if (optlen < sizeof(struct sctp_hmacalgo))
3498 return -EINVAL;
3499 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3500 SCTP_AUTH_NUM_HMACS * sizeof(u16));
3501
3502 hmacs = memdup_user(optval, optlen);
3503 if (IS_ERR(hmacs))
3504 return PTR_ERR(hmacs);
3505
3506 idents = hmacs->shmac_num_idents;
3507 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3508 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3509 err = -EINVAL;
3510 goto out;
3511 }
3512
3513 err = sctp_auth_ep_set_hmacs(ep, hmacs);
3514 out:
3515 kfree(hmacs);
3516 return err;
3517 }
3518
3519 /*
3520 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3521 *
3522 * This option will set a shared secret key which is used to build an
3523 * association shared key.
3524 */
3525 static int sctp_setsockopt_auth_key(struct sock *sk,
3526 char __user *optval,
3527 unsigned int optlen)
3528 {
3529 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3530 struct sctp_authkey *authkey;
3531 struct sctp_association *asoc;
3532 int ret;
3533
3534 if (!ep->auth_enable)
3535 return -EACCES;
3536
3537 if (optlen <= sizeof(struct sctp_authkey))
3538 return -EINVAL;
3539 /* authkey->sca_keylength is u16, so optlen can't be bigger than
3540 * this.
3541 */
3542 optlen = min_t(unsigned int, optlen, USHRT_MAX +
3543 sizeof(struct sctp_authkey));
3544
3545 authkey = memdup_user(optval, optlen);
3546 if (IS_ERR(authkey))
3547 return PTR_ERR(authkey);
3548
3549 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3550 ret = -EINVAL;
3551 goto out;
3552 }
3553
3554 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3555 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3556 ret = -EINVAL;
3557 goto out;
3558 }
3559
3560 ret = sctp_auth_set_key(ep, asoc, authkey);
3561 out:
3562 kzfree(authkey);
3563 return ret;
3564 }
3565
3566 /*
3567 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3568 *
3569 * This option will get or set the active shared key to be used to build
3570 * the association shared key.
3571 */
3572 static int sctp_setsockopt_active_key(struct sock *sk,
3573 char __user *optval,
3574 unsigned int optlen)
3575 {
3576 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3577 struct sctp_authkeyid val;
3578 struct sctp_association *asoc;
3579
3580 if (!ep->auth_enable)
3581 return -EACCES;
3582
3583 if (optlen != sizeof(struct sctp_authkeyid))
3584 return -EINVAL;
3585 if (copy_from_user(&val, optval, optlen))
3586 return -EFAULT;
3587
3588 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3589 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3590 return -EINVAL;
3591
3592 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3593 }
3594
3595 /*
3596 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3597 *
3598 * This set option will delete a shared secret key from use.
3599 */
3600 static int sctp_setsockopt_del_key(struct sock *sk,
3601 char __user *optval,
3602 unsigned int optlen)
3603 {
3604 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3605 struct sctp_authkeyid val;
3606 struct sctp_association *asoc;
3607
3608 if (!ep->auth_enable)
3609 return -EACCES;
3610
3611 if (optlen != sizeof(struct sctp_authkeyid))
3612 return -EINVAL;
3613 if (copy_from_user(&val, optval, optlen))
3614 return -EFAULT;
3615
3616 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3617 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3618 return -EINVAL;
3619
3620 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3621
3622 }
3623
3624 /*
3625 * 8.1.23 SCTP_AUTO_ASCONF
3626 *
3627 * This option will enable or disable the use of the automatic generation of
3628 * ASCONF chunks to add and delete addresses to an existing association. Note
3629 * that this option has two caveats namely: a) it only affects sockets that
3630 * are bound to all addresses available to the SCTP stack, and b) the system
3631 * administrator may have an overriding control that turns the ASCONF feature
3632 * off no matter what setting the socket option may have.
3633 * This option expects an integer boolean flag, where a non-zero value turns on
3634 * the option, and a zero value turns off the option.
3635 * Note. In this implementation, socket operation overrides default parameter
3636 * being set by sysctl as well as FreeBSD implementation
3637 */
3638 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3639 unsigned int optlen)
3640 {
3641 int val;
3642 struct sctp_sock *sp = sctp_sk(sk);
3643
3644 if (optlen < sizeof(int))
3645 return -EINVAL;
3646 if (get_user(val, (int __user *)optval))
3647 return -EFAULT;
3648 if (!sctp_is_ep_boundall(sk) && val)
3649 return -EINVAL;
3650 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3651 return 0;
3652
3653 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3654 if (val == 0 && sp->do_auto_asconf) {
3655 list_del(&sp->auto_asconf_list);
3656 sp->do_auto_asconf = 0;
3657 } else if (val && !sp->do_auto_asconf) {
3658 list_add_tail(&sp->auto_asconf_list,
3659 &sock_net(sk)->sctp.auto_asconf_splist);
3660 sp->do_auto_asconf = 1;
3661 }
3662 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3663 return 0;
3664 }
3665
3666 /*
3667 * SCTP_PEER_ADDR_THLDS
3668 *
3669 * This option allows us to alter the partially failed threshold for one or all
3670 * transports in an association. See Section 6.1 of:
3671 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3672 */
3673 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3674 char __user *optval,
3675 unsigned int optlen)
3676 {
3677 struct sctp_paddrthlds val;
3678 struct sctp_transport *trans;
3679 struct sctp_association *asoc;
3680
3681 if (optlen < sizeof(struct sctp_paddrthlds))
3682 return -EINVAL;
3683 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3684 sizeof(struct sctp_paddrthlds)))
3685 return -EFAULT;
3686
3687
3688 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3689 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3690 if (!asoc)
3691 return -ENOENT;
3692 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3693 transports) {
3694 if (val.spt_pathmaxrxt)
3695 trans->pathmaxrxt = val.spt_pathmaxrxt;
3696 trans->pf_retrans = val.spt_pathpfthld;
3697 }
3698
3699 if (val.spt_pathmaxrxt)
3700 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3701 asoc->pf_retrans = val.spt_pathpfthld;
3702 } else {
3703 trans = sctp_addr_id2transport(sk, &val.spt_address,
3704 val.spt_assoc_id);
3705 if (!trans)
3706 return -ENOENT;
3707
3708 if (val.spt_pathmaxrxt)
3709 trans->pathmaxrxt = val.spt_pathmaxrxt;
3710 trans->pf_retrans = val.spt_pathpfthld;
3711 }
3712
3713 return 0;
3714 }
3715
3716 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3717 char __user *optval,
3718 unsigned int optlen)
3719 {
3720 int val;
3721
3722 if (optlen < sizeof(int))
3723 return -EINVAL;
3724 if (get_user(val, (int __user *) optval))
3725 return -EFAULT;
3726
3727 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3728
3729 return 0;
3730 }
3731
3732 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3733 char __user *optval,
3734 unsigned int optlen)
3735 {
3736 int val;
3737
3738 if (optlen < sizeof(int))
3739 return -EINVAL;
3740 if (get_user(val, (int __user *) optval))
3741 return -EFAULT;
3742
3743 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3744
3745 return 0;
3746 }
3747
3748 static int sctp_setsockopt_pr_supported(struct sock *sk,
3749 char __user *optval,
3750 unsigned int optlen)
3751 {
3752 struct sctp_assoc_value params;
3753
3754 if (optlen != sizeof(params))
3755 return -EINVAL;
3756
3757 if (copy_from_user(&params, optval, optlen))
3758 return -EFAULT;
3759
3760 sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value;
3761
3762 return 0;
3763 }
3764
3765 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3766 char __user *optval,
3767 unsigned int optlen)
3768 {
3769 struct sctp_default_prinfo info;
3770 struct sctp_association *asoc;
3771 int retval = -EINVAL;
3772
3773 if (optlen != sizeof(info))
3774 goto out;
3775
3776 if (copy_from_user(&info, optval, sizeof(info))) {
3777 retval = -EFAULT;
3778 goto out;
3779 }
3780
3781 if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
3782 goto out;
3783
3784 if (info.pr_policy == SCTP_PR_SCTP_NONE)
3785 info.pr_value = 0;
3786
3787 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
3788 if (asoc) {
3789 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
3790 asoc->default_timetolive = info.pr_value;
3791 } else if (!info.pr_assoc_id) {
3792 struct sctp_sock *sp = sctp_sk(sk);
3793
3794 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
3795 sp->default_timetolive = info.pr_value;
3796 } else {
3797 goto out;
3798 }
3799
3800 retval = 0;
3801
3802 out:
3803 return retval;
3804 }
3805
3806 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
3807 char __user *optval,
3808 unsigned int optlen)
3809 {
3810 struct sctp_assoc_value params;
3811 struct sctp_association *asoc;
3812 int retval = -EINVAL;
3813
3814 if (optlen != sizeof(params))
3815 goto out;
3816
3817 if (copy_from_user(&params, optval, optlen)) {
3818 retval = -EFAULT;
3819 goto out;
3820 }
3821
3822 asoc = sctp_id2assoc(sk, params.assoc_id);
3823 if (asoc) {
3824 asoc->reconf_enable = !!params.assoc_value;
3825 } else if (!params.assoc_id) {
3826 struct sctp_sock *sp = sctp_sk(sk);
3827
3828 sp->ep->reconf_enable = !!params.assoc_value;
3829 } else {
3830 goto out;
3831 }
3832
3833 retval = 0;
3834
3835 out:
3836 return retval;
3837 }
3838
3839 static int sctp_setsockopt_enable_strreset(struct sock *sk,
3840 char __user *optval,
3841 unsigned int optlen)
3842 {
3843 struct sctp_assoc_value params;
3844 struct sctp_association *asoc;
3845 int retval = -EINVAL;
3846
3847 if (optlen != sizeof(params))
3848 goto out;
3849
3850 if (copy_from_user(&params, optval, optlen)) {
3851 retval = -EFAULT;
3852 goto out;
3853 }
3854
3855 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
3856 goto out;
3857
3858 asoc = sctp_id2assoc(sk, params.assoc_id);
3859 if (asoc) {
3860 asoc->strreset_enable = params.assoc_value;
3861 } else if (!params.assoc_id) {
3862 struct sctp_sock *sp = sctp_sk(sk);
3863
3864 sp->ep->strreset_enable = params.assoc_value;
3865 } else {
3866 goto out;
3867 }
3868
3869 retval = 0;
3870
3871 out:
3872 return retval;
3873 }
3874
3875 static int sctp_setsockopt_reset_streams(struct sock *sk,
3876 char __user *optval,
3877 unsigned int optlen)
3878 {
3879 struct sctp_reset_streams *params;
3880 struct sctp_association *asoc;
3881 int retval = -EINVAL;
3882
3883 if (optlen < sizeof(*params))
3884 return -EINVAL;
3885 /* srs_number_streams is u16, so optlen can't be bigger than this. */
3886 optlen = min_t(unsigned int, optlen, USHRT_MAX +
3887 sizeof(__u16) * sizeof(*params));
3888
3889 params = memdup_user(optval, optlen);
3890 if (IS_ERR(params))
3891 return PTR_ERR(params);
3892
3893 if (params->srs_number_streams * sizeof(__u16) >
3894 optlen - sizeof(*params))
3895 goto out;
3896
3897 asoc = sctp_id2assoc(sk, params->srs_assoc_id);
3898 if (!asoc)
3899 goto out;
3900
3901 retval = sctp_send_reset_streams(asoc, params);
3902
3903 out:
3904 kfree(params);
3905 return retval;
3906 }
3907
3908 static int sctp_setsockopt_reset_assoc(struct sock *sk,
3909 char __user *optval,
3910 unsigned int optlen)
3911 {
3912 struct sctp_association *asoc;
3913 sctp_assoc_t associd;
3914 int retval = -EINVAL;
3915
3916 if (optlen != sizeof(associd))
3917 goto out;
3918
3919 if (copy_from_user(&associd, optval, optlen)) {
3920 retval = -EFAULT;
3921 goto out;
3922 }
3923
3924 asoc = sctp_id2assoc(sk, associd);
3925 if (!asoc)
3926 goto out;
3927
3928 retval = sctp_send_reset_assoc(asoc);
3929
3930 out:
3931 return retval;
3932 }
3933
3934 static int sctp_setsockopt_add_streams(struct sock *sk,
3935 char __user *optval,
3936 unsigned int optlen)
3937 {
3938 struct sctp_association *asoc;
3939 struct sctp_add_streams params;
3940 int retval = -EINVAL;
3941
3942 if (optlen != sizeof(params))
3943 goto out;
3944
3945 if (copy_from_user(&params, optval, optlen)) {
3946 retval = -EFAULT;
3947 goto out;
3948 }
3949
3950 asoc = sctp_id2assoc(sk, params.sas_assoc_id);
3951 if (!asoc)
3952 goto out;
3953
3954 retval = sctp_send_add_streams(asoc, &params);
3955
3956 out:
3957 return retval;
3958 }
3959
3960 /* API 6.2 setsockopt(), getsockopt()
3961 *
3962 * Applications use setsockopt() and getsockopt() to set or retrieve
3963 * socket options. Socket options are used to change the default
3964 * behavior of sockets calls. They are described in Section 7.
3965 *
3966 * The syntax is:
3967 *
3968 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3969 * int __user *optlen);
3970 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3971 * int optlen);
3972 *
3973 * sd - the socket descript.
3974 * level - set to IPPROTO_SCTP for all SCTP options.
3975 * optname - the option name.
3976 * optval - the buffer to store the value of the option.
3977 * optlen - the size of the buffer.
3978 */
3979 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3980 char __user *optval, unsigned int optlen)
3981 {
3982 int retval = 0;
3983
3984 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3985
3986 /* I can hardly begin to describe how wrong this is. This is
3987 * so broken as to be worse than useless. The API draft
3988 * REALLY is NOT helpful here... I am not convinced that the
3989 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3990 * are at all well-founded.
3991 */
3992 if (level != SOL_SCTP) {
3993 struct sctp_af *af = sctp_sk(sk)->pf->af;
3994 retval = af->setsockopt(sk, level, optname, optval, optlen);
3995 goto out_nounlock;
3996 }
3997
3998 lock_sock(sk);
3999
4000 switch (optname) {
4001 case SCTP_SOCKOPT_BINDX_ADD:
4002 /* 'optlen' is the size of the addresses buffer. */
4003 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4004 optlen, SCTP_BINDX_ADD_ADDR);
4005 break;
4006
4007 case SCTP_SOCKOPT_BINDX_REM:
4008 /* 'optlen' is the size of the addresses buffer. */
4009 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4010 optlen, SCTP_BINDX_REM_ADDR);
4011 break;
4012
4013 case SCTP_SOCKOPT_CONNECTX_OLD:
4014 /* 'optlen' is the size of the addresses buffer. */
4015 retval = sctp_setsockopt_connectx_old(sk,
4016 (struct sockaddr __user *)optval,
4017 optlen);
4018 break;
4019
4020 case SCTP_SOCKOPT_CONNECTX:
4021 /* 'optlen' is the size of the addresses buffer. */
4022 retval = sctp_setsockopt_connectx(sk,
4023 (struct sockaddr __user *)optval,
4024 optlen);
4025 break;
4026
4027 case SCTP_DISABLE_FRAGMENTS:
4028 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
4029 break;
4030
4031 case SCTP_EVENTS:
4032 retval = sctp_setsockopt_events(sk, optval, optlen);
4033 break;
4034
4035 case SCTP_AUTOCLOSE:
4036 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
4037 break;
4038
4039 case SCTP_PEER_ADDR_PARAMS:
4040 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
4041 break;
4042
4043 case SCTP_DELAYED_SACK:
4044 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
4045 break;
4046 case SCTP_PARTIAL_DELIVERY_POINT:
4047 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
4048 break;
4049
4050 case SCTP_INITMSG:
4051 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
4052 break;
4053 case SCTP_DEFAULT_SEND_PARAM:
4054 retval = sctp_setsockopt_default_send_param(sk, optval,
4055 optlen);
4056 break;
4057 case SCTP_DEFAULT_SNDINFO:
4058 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
4059 break;
4060 case SCTP_PRIMARY_ADDR:
4061 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
4062 break;
4063 case SCTP_SET_PEER_PRIMARY_ADDR:
4064 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
4065 break;
4066 case SCTP_NODELAY:
4067 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
4068 break;
4069 case SCTP_RTOINFO:
4070 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
4071 break;
4072 case SCTP_ASSOCINFO:
4073 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
4074 break;
4075 case SCTP_I_WANT_MAPPED_V4_ADDR:
4076 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
4077 break;
4078 case SCTP_MAXSEG:
4079 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
4080 break;
4081 case SCTP_ADAPTATION_LAYER:
4082 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
4083 break;
4084 case SCTP_CONTEXT:
4085 retval = sctp_setsockopt_context(sk, optval, optlen);
4086 break;
4087 case SCTP_FRAGMENT_INTERLEAVE:
4088 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
4089 break;
4090 case SCTP_MAX_BURST:
4091 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
4092 break;
4093 case SCTP_AUTH_CHUNK:
4094 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
4095 break;
4096 case SCTP_HMAC_IDENT:
4097 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
4098 break;
4099 case SCTP_AUTH_KEY:
4100 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
4101 break;
4102 case SCTP_AUTH_ACTIVE_KEY:
4103 retval = sctp_setsockopt_active_key(sk, optval, optlen);
4104 break;
4105 case SCTP_AUTH_DELETE_KEY:
4106 retval = sctp_setsockopt_del_key(sk, optval, optlen);
4107 break;
4108 case SCTP_AUTO_ASCONF:
4109 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
4110 break;
4111 case SCTP_PEER_ADDR_THLDS:
4112 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
4113 break;
4114 case SCTP_RECVRCVINFO:
4115 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
4116 break;
4117 case SCTP_RECVNXTINFO:
4118 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
4119 break;
4120 case SCTP_PR_SUPPORTED:
4121 retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
4122 break;
4123 case SCTP_DEFAULT_PRINFO:
4124 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
4125 break;
4126 case SCTP_RECONFIG_SUPPORTED:
4127 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen);
4128 break;
4129 case SCTP_ENABLE_STREAM_RESET:
4130 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
4131 break;
4132 case SCTP_RESET_STREAMS:
4133 retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
4134 break;
4135 case SCTP_RESET_ASSOC:
4136 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen);
4137 break;
4138 case SCTP_ADD_STREAMS:
4139 retval = sctp_setsockopt_add_streams(sk, optval, optlen);
4140 break;
4141 default:
4142 retval = -ENOPROTOOPT;
4143 break;
4144 }
4145
4146 release_sock(sk);
4147
4148 out_nounlock:
4149 return retval;
4150 }
4151
4152 /* API 3.1.6 connect() - UDP Style Syntax
4153 *
4154 * An application may use the connect() call in the UDP model to initiate an
4155 * association without sending data.
4156 *
4157 * The syntax is:
4158 *
4159 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4160 *
4161 * sd: the socket descriptor to have a new association added to.
4162 *
4163 * nam: the address structure (either struct sockaddr_in or struct
4164 * sockaddr_in6 defined in RFC2553 [7]).
4165 *
4166 * len: the size of the address.
4167 */
4168 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4169 int addr_len, int flags)
4170 {
4171 struct inet_sock *inet = inet_sk(sk);
4172 struct sctp_af *af;
4173 int err = 0;
4174
4175 lock_sock(sk);
4176
4177 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4178 addr, addr_len);
4179
4180 /* We may need to bind the socket. */
4181 if (!inet->inet_num) {
4182 if (sk->sk_prot->get_port(sk, 0)) {
4183 release_sock(sk);
4184 return -EAGAIN;
4185 }
4186 inet->inet_sport = htons(inet->inet_num);
4187 }
4188
4189 /* Validate addr_len before calling common connect/connectx routine. */
4190 af = sctp_get_af_specific(addr->sa_family);
4191 if (!af || addr_len < af->sockaddr_len) {
4192 err = -EINVAL;
4193 } else {
4194 /* Pass correct addr len to common routine (so it knows there
4195 * is only one address being passed.
4196 */
4197 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4198 }
4199
4200 release_sock(sk);
4201 return err;
4202 }
4203
4204 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4205 int addr_len, int flags)
4206 {
4207 if (addr_len < sizeof(uaddr->sa_family))
4208 return -EINVAL;
4209
4210 if (uaddr->sa_family == AF_UNSPEC)
4211 return -EOPNOTSUPP;
4212
4213 return sctp_connect(sock->sk, uaddr, addr_len, flags);
4214 }
4215
4216 /* FIXME: Write comments. */
4217 static int sctp_disconnect(struct sock *sk, int flags)
4218 {
4219 return -EOPNOTSUPP; /* STUB */
4220 }
4221
4222 /* 4.1.4 accept() - TCP Style Syntax
4223 *
4224 * Applications use accept() call to remove an established SCTP
4225 * association from the accept queue of the endpoint. A new socket
4226 * descriptor will be returned from accept() to represent the newly
4227 * formed association.
4228 */
4229 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4230 {
4231 struct sctp_sock *sp;
4232 struct sctp_endpoint *ep;
4233 struct sock *newsk = NULL;
4234 struct sctp_association *asoc;
4235 long timeo;
4236 int error = 0;
4237
4238 lock_sock(sk);
4239
4240 sp = sctp_sk(sk);
4241 ep = sp->ep;
4242
4243 if (!sctp_style(sk, TCP)) {
4244 error = -EOPNOTSUPP;
4245 goto out;
4246 }
4247
4248 if (!sctp_sstate(sk, LISTENING)) {
4249 error = -EINVAL;
4250 goto out;
4251 }
4252
4253 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4254
4255 error = sctp_wait_for_accept(sk, timeo);
4256 if (error)
4257 goto out;
4258
4259 /* We treat the list of associations on the endpoint as the accept
4260 * queue and pick the first association on the list.
4261 */
4262 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4263
4264 newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4265 if (!newsk) {
4266 error = -ENOMEM;
4267 goto out;
4268 }
4269
4270 /* Populate the fields of the newsk from the oldsk and migrate the
4271 * asoc to the newsk.
4272 */
4273 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4274
4275 out:
4276 release_sock(sk);
4277 *err = error;
4278 return newsk;
4279 }
4280
4281 /* The SCTP ioctl handler. */
4282 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4283 {
4284 int rc = -ENOTCONN;
4285
4286 lock_sock(sk);
4287
4288 /*
4289 * SEQPACKET-style sockets in LISTENING state are valid, for
4290 * SCTP, so only discard TCP-style sockets in LISTENING state.
4291 */
4292 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4293 goto out;
4294
4295 switch (cmd) {
4296 case SIOCINQ: {
4297 struct sk_buff *skb;
4298 unsigned int amount = 0;
4299
4300 skb = skb_peek(&sk->sk_receive_queue);
4301 if (skb != NULL) {
4302 /*
4303 * We will only return the amount of this packet since
4304 * that is all that will be read.
4305 */
4306 amount = skb->len;
4307 }
4308 rc = put_user(amount, (int __user *)arg);
4309 break;
4310 }
4311 default:
4312 rc = -ENOIOCTLCMD;
4313 break;
4314 }
4315 out:
4316 release_sock(sk);
4317 return rc;
4318 }
4319
4320 /* This is the function which gets called during socket creation to
4321 * initialized the SCTP-specific portion of the sock.
4322 * The sock structure should already be zero-filled memory.
4323 */
4324 static int sctp_init_sock(struct sock *sk)
4325 {
4326 struct net *net = sock_net(sk);
4327 struct sctp_sock *sp;
4328
4329 pr_debug("%s: sk:%p\n", __func__, sk);
4330
4331 sp = sctp_sk(sk);
4332
4333 /* Initialize the SCTP per socket area. */
4334 switch (sk->sk_type) {
4335 case SOCK_SEQPACKET:
4336 sp->type = SCTP_SOCKET_UDP;
4337 break;
4338 case SOCK_STREAM:
4339 sp->type = SCTP_SOCKET_TCP;
4340 break;
4341 default:
4342 return -ESOCKTNOSUPPORT;
4343 }
4344
4345 sk->sk_gso_type = SKB_GSO_SCTP;
4346
4347 /* Initialize default send parameters. These parameters can be
4348 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4349 */
4350 sp->default_stream = 0;
4351 sp->default_ppid = 0;
4352 sp->default_flags = 0;
4353 sp->default_context = 0;
4354 sp->default_timetolive = 0;
4355
4356 sp->default_rcv_context = 0;
4357 sp->max_burst = net->sctp.max_burst;
4358
4359 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4360
4361 /* Initialize default setup parameters. These parameters
4362 * can be modified with the SCTP_INITMSG socket option or
4363 * overridden by the SCTP_INIT CMSG.
4364 */
4365 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4366 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4367 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4368 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4369
4370 /* Initialize default RTO related parameters. These parameters can
4371 * be modified for with the SCTP_RTOINFO socket option.
4372 */
4373 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4374 sp->rtoinfo.srto_max = net->sctp.rto_max;
4375 sp->rtoinfo.srto_min = net->sctp.rto_min;
4376
4377 /* Initialize default association related parameters. These parameters
4378 * can be modified with the SCTP_ASSOCINFO socket option.
4379 */
4380 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4381 sp->assocparams.sasoc_number_peer_destinations = 0;
4382 sp->assocparams.sasoc_peer_rwnd = 0;
4383 sp->assocparams.sasoc_local_rwnd = 0;
4384 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4385
4386 /* Initialize default event subscriptions. By default, all the
4387 * options are off.
4388 */
4389 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4390
4391 /* Default Peer Address Parameters. These defaults can
4392 * be modified via SCTP_PEER_ADDR_PARAMS
4393 */
4394 sp->hbinterval = net->sctp.hb_interval;
4395 sp->pathmaxrxt = net->sctp.max_retrans_path;
4396 sp->pathmtu = 0; /* allow default discovery */
4397 sp->sackdelay = net->sctp.sack_timeout;
4398 sp->sackfreq = 2;
4399 sp->param_flags = SPP_HB_ENABLE |
4400 SPP_PMTUD_ENABLE |
4401 SPP_SACKDELAY_ENABLE;
4402
4403 /* If enabled no SCTP message fragmentation will be performed.
4404 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4405 */
4406 sp->disable_fragments = 0;
4407
4408 /* Enable Nagle algorithm by default. */
4409 sp->nodelay = 0;
4410
4411 sp->recvrcvinfo = 0;
4412 sp->recvnxtinfo = 0;
4413
4414 /* Enable by default. */
4415 sp->v4mapped = 1;
4416
4417 /* Auto-close idle associations after the configured
4418 * number of seconds. A value of 0 disables this
4419 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4420 * for UDP-style sockets only.
4421 */
4422 sp->autoclose = 0;
4423
4424 /* User specified fragmentation limit. */
4425 sp->user_frag = 0;
4426
4427 sp->adaptation_ind = 0;
4428
4429 sp->pf = sctp_get_pf_specific(sk->sk_family);
4430
4431 /* Control variables for partial data delivery. */
4432 atomic_set(&sp->pd_mode, 0);
4433 skb_queue_head_init(&sp->pd_lobby);
4434 sp->frag_interleave = 0;
4435
4436 /* Create a per socket endpoint structure. Even if we
4437 * change the data structure relationships, this may still
4438 * be useful for storing pre-connect address information.
4439 */
4440 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4441 if (!sp->ep)
4442 return -ENOMEM;
4443
4444 sp->hmac = NULL;
4445
4446 sk->sk_destruct = sctp_destruct_sock;
4447
4448 SCTP_DBG_OBJCNT_INC(sock);
4449
4450 local_bh_disable();
4451 sk_sockets_allocated_inc(sk);
4452 sock_prot_inuse_add(net, sk->sk_prot, 1);
4453
4454 /* Nothing can fail after this block, otherwise
4455 * sctp_destroy_sock() will be called without addr_wq_lock held
4456 */
4457 if (net->sctp.default_auto_asconf) {
4458 spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4459 list_add_tail(&sp->auto_asconf_list,
4460 &net->sctp.auto_asconf_splist);
4461 sp->do_auto_asconf = 1;
4462 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4463 } else {
4464 sp->do_auto_asconf = 0;
4465 }
4466
4467 local_bh_enable();
4468
4469 return 0;
4470 }
4471
4472 /* Cleanup any SCTP per socket resources. Must be called with
4473 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4474 */
4475 static void sctp_destroy_sock(struct sock *sk)
4476 {
4477 struct sctp_sock *sp;
4478
4479 pr_debug("%s: sk:%p\n", __func__, sk);
4480
4481 /* Release our hold on the endpoint. */
4482 sp = sctp_sk(sk);
4483 /* This could happen during socket init, thus we bail out
4484 * early, since the rest of the below is not setup either.
4485 */
4486 if (sp->ep == NULL)
4487 return;
4488
4489 if (sp->do_auto_asconf) {
4490 sp->do_auto_asconf = 0;
4491 list_del(&sp->auto_asconf_list);
4492 }
4493 sctp_endpoint_free(sp->ep);
4494 local_bh_disable();
4495 sk_sockets_allocated_dec(sk);
4496 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4497 local_bh_enable();
4498 }
4499
4500 /* Triggered when there are no references on the socket anymore */
4501 static void sctp_destruct_sock(struct sock *sk)
4502 {
4503 struct sctp_sock *sp = sctp_sk(sk);
4504
4505 /* Free up the HMAC transform. */
4506 crypto_free_shash(sp->hmac);
4507
4508 inet_sock_destruct(sk);
4509 }
4510
4511 /* API 4.1.7 shutdown() - TCP Style Syntax
4512 * int shutdown(int socket, int how);
4513 *
4514 * sd - the socket descriptor of the association to be closed.
4515 * how - Specifies the type of shutdown. The values are
4516 * as follows:
4517 * SHUT_RD
4518 * Disables further receive operations. No SCTP
4519 * protocol action is taken.
4520 * SHUT_WR
4521 * Disables further send operations, and initiates
4522 * the SCTP shutdown sequence.
4523 * SHUT_RDWR
4524 * Disables further send and receive operations
4525 * and initiates the SCTP shutdown sequence.
4526 */
4527 static void sctp_shutdown(struct sock *sk, int how)
4528 {
4529 struct net *net = sock_net(sk);
4530 struct sctp_endpoint *ep;
4531
4532 if (!sctp_style(sk, TCP))
4533 return;
4534
4535 ep = sctp_sk(sk)->ep;
4536 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
4537 struct sctp_association *asoc;
4538
4539 sk->sk_state = SCTP_SS_CLOSING;
4540 asoc = list_entry(ep->asocs.next,
4541 struct sctp_association, asocs);
4542 sctp_primitive_SHUTDOWN(net, asoc, NULL);
4543 }
4544 }
4545
4546 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4547 struct sctp_info *info)
4548 {
4549 struct sctp_transport *prim;
4550 struct list_head *pos;
4551 int mask;
4552
4553 memset(info, 0, sizeof(*info));
4554 if (!asoc) {
4555 struct sctp_sock *sp = sctp_sk(sk);
4556
4557 info->sctpi_s_autoclose = sp->autoclose;
4558 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4559 info->sctpi_s_pd_point = sp->pd_point;
4560 info->sctpi_s_nodelay = sp->nodelay;
4561 info->sctpi_s_disable_fragments = sp->disable_fragments;
4562 info->sctpi_s_v4mapped = sp->v4mapped;
4563 info->sctpi_s_frag_interleave = sp->frag_interleave;
4564 info->sctpi_s_type = sp->type;
4565
4566 return 0;
4567 }
4568
4569 info->sctpi_tag = asoc->c.my_vtag;
4570 info->sctpi_state = asoc->state;
4571 info->sctpi_rwnd = asoc->a_rwnd;
4572 info->sctpi_unackdata = asoc->unack_data;
4573 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4574 info->sctpi_instrms = asoc->stream.incnt;
4575 info->sctpi_outstrms = asoc->stream.outcnt;
4576 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
4577 info->sctpi_inqueue++;
4578 list_for_each(pos, &asoc->outqueue.out_chunk_list)
4579 info->sctpi_outqueue++;
4580 info->sctpi_overall_error = asoc->overall_error_count;
4581 info->sctpi_max_burst = asoc->max_burst;
4582 info->sctpi_maxseg = asoc->frag_point;
4583 info->sctpi_peer_rwnd = asoc->peer.rwnd;
4584 info->sctpi_peer_tag = asoc->c.peer_vtag;
4585
4586 mask = asoc->peer.ecn_capable << 1;
4587 mask = (mask | asoc->peer.ipv4_address) << 1;
4588 mask = (mask | asoc->peer.ipv6_address) << 1;
4589 mask = (mask | asoc->peer.hostname_address) << 1;
4590 mask = (mask | asoc->peer.asconf_capable) << 1;
4591 mask = (mask | asoc->peer.prsctp_capable) << 1;
4592 mask = (mask | asoc->peer.auth_capable);
4593 info->sctpi_peer_capable = mask;
4594 mask = asoc->peer.sack_needed << 1;
4595 mask = (mask | asoc->peer.sack_generation) << 1;
4596 mask = (mask | asoc->peer.zero_window_announced);
4597 info->sctpi_peer_sack = mask;
4598
4599 info->sctpi_isacks = asoc->stats.isacks;
4600 info->sctpi_osacks = asoc->stats.osacks;
4601 info->sctpi_opackets = asoc->stats.opackets;
4602 info->sctpi_ipackets = asoc->stats.ipackets;
4603 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4604 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4605 info->sctpi_idupchunks = asoc->stats.idupchunks;
4606 info->sctpi_gapcnt = asoc->stats.gapcnt;
4607 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4608 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4609 info->sctpi_oodchunks = asoc->stats.oodchunks;
4610 info->sctpi_iodchunks = asoc->stats.iodchunks;
4611 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4612 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4613
4614 prim = asoc->peer.primary_path;
4615 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
4616 info->sctpi_p_state = prim->state;
4617 info->sctpi_p_cwnd = prim->cwnd;
4618 info->sctpi_p_srtt = prim->srtt;
4619 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
4620 info->sctpi_p_hbinterval = prim->hbinterval;
4621 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
4622 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
4623 info->sctpi_p_ssthresh = prim->ssthresh;
4624 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
4625 info->sctpi_p_flight_size = prim->flight_size;
4626 info->sctpi_p_error = prim->error_count;
4627
4628 return 0;
4629 }
4630 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
4631
4632 /* use callback to avoid exporting the core structure */
4633 int sctp_transport_walk_start(struct rhashtable_iter *iter)
4634 {
4635 int err;
4636
4637 rhltable_walk_enter(&sctp_transport_hashtable, iter);
4638
4639 err = rhashtable_walk_start(iter);
4640 if (err && err != -EAGAIN) {
4641 rhashtable_walk_stop(iter);
4642 rhashtable_walk_exit(iter);
4643 return err;
4644 }
4645
4646 return 0;
4647 }
4648
4649 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
4650 {
4651 rhashtable_walk_stop(iter);
4652 rhashtable_walk_exit(iter);
4653 }
4654
4655 struct sctp_transport *sctp_transport_get_next(struct net *net,
4656 struct rhashtable_iter *iter)
4657 {
4658 struct sctp_transport *t;
4659
4660 t = rhashtable_walk_next(iter);
4661 for (; t; t = rhashtable_walk_next(iter)) {
4662 if (IS_ERR(t)) {
4663 if (PTR_ERR(t) == -EAGAIN)
4664 continue;
4665 break;
4666 }
4667
4668 if (!sctp_transport_hold(t))
4669 continue;
4670
4671 if (net_eq(sock_net(t->asoc->base.sk), net) &&
4672 t->asoc->peer.primary_path == t)
4673 break;
4674
4675 sctp_transport_put(t);
4676 }
4677
4678 return t;
4679 }
4680
4681 struct sctp_transport *sctp_transport_get_idx(struct net *net,
4682 struct rhashtable_iter *iter,
4683 int pos)
4684 {
4685 struct sctp_transport *t;
4686
4687 if (!pos)
4688 return SEQ_START_TOKEN;
4689
4690 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
4691 if (!--pos)
4692 break;
4693 sctp_transport_put(t);
4694 }
4695
4696 return t;
4697 }
4698
4699 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
4700 void *p) {
4701 int err = 0;
4702 int hash = 0;
4703 struct sctp_ep_common *epb;
4704 struct sctp_hashbucket *head;
4705
4706 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
4707 hash++, head++) {
4708 read_lock_bh(&head->lock);
4709 sctp_for_each_hentry(epb, &head->chain) {
4710 err = cb(sctp_ep(epb), p);
4711 if (err)
4712 break;
4713 }
4714 read_unlock_bh(&head->lock);
4715 }
4716
4717 return err;
4718 }
4719 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
4720
4721 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
4722 struct net *net,
4723 const union sctp_addr *laddr,
4724 const union sctp_addr *paddr, void *p)
4725 {
4726 struct sctp_transport *transport;
4727 int err;
4728
4729 rcu_read_lock();
4730 transport = sctp_addrs_lookup_transport(net, laddr, paddr);
4731 rcu_read_unlock();
4732 if (!transport)
4733 return -ENOENT;
4734
4735 err = cb(transport, p);
4736 sctp_transport_put(transport);
4737
4738 return err;
4739 }
4740 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
4741
4742 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
4743 int (*cb_done)(struct sctp_transport *, void *),
4744 struct net *net, int *pos, void *p) {
4745 struct rhashtable_iter hti;
4746 struct sctp_transport *tsp;
4747 int ret;
4748
4749 again:
4750 ret = sctp_transport_walk_start(&hti);
4751 if (ret)
4752 return ret;
4753
4754 tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
4755 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
4756 ret = cb(tsp, p);
4757 if (ret)
4758 break;
4759 (*pos)++;
4760 sctp_transport_put(tsp);
4761 }
4762 sctp_transport_walk_stop(&hti);
4763
4764 if (ret) {
4765 if (cb_done && !cb_done(tsp, p)) {
4766 (*pos)++;
4767 sctp_transport_put(tsp);
4768 goto again;
4769 }
4770 sctp_transport_put(tsp);
4771 }
4772
4773 return ret;
4774 }
4775 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
4776
4777 /* 7.2.1 Association Status (SCTP_STATUS)
4778
4779 * Applications can retrieve current status information about an
4780 * association, including association state, peer receiver window size,
4781 * number of unacked data chunks, and number of data chunks pending
4782 * receipt. This information is read-only.
4783 */
4784 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4785 char __user *optval,
4786 int __user *optlen)
4787 {
4788 struct sctp_status status;
4789 struct sctp_association *asoc = NULL;
4790 struct sctp_transport *transport;
4791 sctp_assoc_t associd;
4792 int retval = 0;
4793
4794 if (len < sizeof(status)) {
4795 retval = -EINVAL;
4796 goto out;
4797 }
4798
4799 len = sizeof(status);
4800 if (copy_from_user(&status, optval, len)) {
4801 retval = -EFAULT;
4802 goto out;
4803 }
4804
4805 associd = status.sstat_assoc_id;
4806 asoc = sctp_id2assoc(sk, associd);
4807 if (!asoc) {
4808 retval = -EINVAL;
4809 goto out;
4810 }
4811
4812 transport = asoc->peer.primary_path;
4813
4814 status.sstat_assoc_id = sctp_assoc2id(asoc);
4815 status.sstat_state = sctp_assoc_to_state(asoc);
4816 status.sstat_rwnd = asoc->peer.rwnd;
4817 status.sstat_unackdata = asoc->unack_data;
4818
4819 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4820 status.sstat_instrms = asoc->stream.incnt;
4821 status.sstat_outstrms = asoc->stream.outcnt;
4822 status.sstat_fragmentation_point = asoc->frag_point;
4823 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4824 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4825 transport->af_specific->sockaddr_len);
4826 /* Map ipv4 address into v4-mapped-on-v6 address. */
4827 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4828 (union sctp_addr *)&status.sstat_primary.spinfo_address);
4829 status.sstat_primary.spinfo_state = transport->state;
4830 status.sstat_primary.spinfo_cwnd = transport->cwnd;
4831 status.sstat_primary.spinfo_srtt = transport->srtt;
4832 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4833 status.sstat_primary.spinfo_mtu = transport->pathmtu;
4834
4835 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4836 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4837
4838 if (put_user(len, optlen)) {
4839 retval = -EFAULT;
4840 goto out;
4841 }
4842
4843 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4844 __func__, len, status.sstat_state, status.sstat_rwnd,
4845 status.sstat_assoc_id);
4846
4847 if (copy_to_user(optval, &status, len)) {
4848 retval = -EFAULT;
4849 goto out;
4850 }
4851
4852 out:
4853 return retval;
4854 }
4855
4856
4857 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4858 *
4859 * Applications can retrieve information about a specific peer address
4860 * of an association, including its reachability state, congestion
4861 * window, and retransmission timer values. This information is
4862 * read-only.
4863 */
4864 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4865 char __user *optval,
4866 int __user *optlen)
4867 {
4868 struct sctp_paddrinfo pinfo;
4869 struct sctp_transport *transport;
4870 int retval = 0;
4871
4872 if (len < sizeof(pinfo)) {
4873 retval = -EINVAL;
4874 goto out;
4875 }
4876
4877 len = sizeof(pinfo);
4878 if (copy_from_user(&pinfo, optval, len)) {
4879 retval = -EFAULT;
4880 goto out;
4881 }
4882
4883 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4884 pinfo.spinfo_assoc_id);
4885 if (!transport)
4886 return -EINVAL;
4887
4888 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4889 pinfo.spinfo_state = transport->state;
4890 pinfo.spinfo_cwnd = transport->cwnd;
4891 pinfo.spinfo_srtt = transport->srtt;
4892 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4893 pinfo.spinfo_mtu = transport->pathmtu;
4894
4895 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4896 pinfo.spinfo_state = SCTP_ACTIVE;
4897
4898 if (put_user(len, optlen)) {
4899 retval = -EFAULT;
4900 goto out;
4901 }
4902
4903 if (copy_to_user(optval, &pinfo, len)) {
4904 retval = -EFAULT;
4905 goto out;
4906 }
4907
4908 out:
4909 return retval;
4910 }
4911
4912 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4913 *
4914 * This option is a on/off flag. If enabled no SCTP message
4915 * fragmentation will be performed. Instead if a message being sent
4916 * exceeds the current PMTU size, the message will NOT be sent and
4917 * instead a error will be indicated to the user.
4918 */
4919 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4920 char __user *optval, int __user *optlen)
4921 {
4922 int val;
4923
4924 if (len < sizeof(int))
4925 return -EINVAL;
4926
4927 len = sizeof(int);
4928 val = (sctp_sk(sk)->disable_fragments == 1);
4929 if (put_user(len, optlen))
4930 return -EFAULT;
4931 if (copy_to_user(optval, &val, len))
4932 return -EFAULT;
4933 return 0;
4934 }
4935
4936 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4937 *
4938 * This socket option is used to specify various notifications and
4939 * ancillary data the user wishes to receive.
4940 */
4941 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4942 int __user *optlen)
4943 {
4944 if (len == 0)
4945 return -EINVAL;
4946 if (len > sizeof(struct sctp_event_subscribe))
4947 len = sizeof(struct sctp_event_subscribe);
4948 if (put_user(len, optlen))
4949 return -EFAULT;
4950 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4951 return -EFAULT;
4952 return 0;
4953 }
4954
4955 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4956 *
4957 * This socket option is applicable to the UDP-style socket only. When
4958 * set it will cause associations that are idle for more than the
4959 * specified number of seconds to automatically close. An association
4960 * being idle is defined an association that has NOT sent or received
4961 * user data. The special value of '0' indicates that no automatic
4962 * close of any associations should be performed. The option expects an
4963 * integer defining the number of seconds of idle time before an
4964 * association is closed.
4965 */
4966 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4967 {
4968 /* Applicable to UDP-style socket only */
4969 if (sctp_style(sk, TCP))
4970 return -EOPNOTSUPP;
4971 if (len < sizeof(int))
4972 return -EINVAL;
4973 len = sizeof(int);
4974 if (put_user(len, optlen))
4975 return -EFAULT;
4976 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len))
4977 return -EFAULT;
4978 return 0;
4979 }
4980
4981 /* Helper routine to branch off an association to a new socket. */
4982 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4983 {
4984 struct sctp_association *asoc = sctp_id2assoc(sk, id);
4985 struct sctp_sock *sp = sctp_sk(sk);
4986 struct socket *sock;
4987 int err = 0;
4988
4989 /* Do not peel off from one netns to another one. */
4990 if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
4991 return -EINVAL;
4992
4993 if (!asoc)
4994 return -EINVAL;
4995
4996 /* An association cannot be branched off from an already peeled-off
4997 * socket, nor is this supported for tcp style sockets.
4998 */
4999 if (!sctp_style(sk, UDP))
5000 return -EINVAL;
5001
5002 /* Create a new socket. */
5003 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5004 if (err < 0)
5005 return err;
5006
5007 sctp_copy_sock(sock->sk, sk, asoc);
5008
5009 /* Make peeled-off sockets more like 1-1 accepted sockets.
5010 * Set the daddr and initialize id to something more random
5011 */
5012 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5013
5014 /* Populate the fields of the newsk from the oldsk and migrate the
5015 * asoc to the newsk.
5016 */
5017 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5018
5019 *sockp = sock;
5020
5021 return err;
5022 }
5023 EXPORT_SYMBOL(sctp_do_peeloff);
5024
5025 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5026 struct file **newfile, unsigned flags)
5027 {
5028 struct socket *newsock;
5029 int retval;
5030
5031 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5032 if (retval < 0)
5033 goto out;
5034
5035 /* Map the socket to an unused fd that can be returned to the user. */
5036 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5037 if (retval < 0) {
5038 sock_release(newsock);
5039 goto out;
5040 }
5041
5042 *newfile = sock_alloc_file(newsock, 0, NULL);
5043 if (IS_ERR(*newfile)) {
5044 put_unused_fd(retval);
5045 sock_release(newsock);
5046 retval = PTR_ERR(*newfile);
5047 *newfile = NULL;
5048 return retval;
5049 }
5050
5051 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5052 retval);
5053
5054 peeloff->sd = retval;
5055
5056 if (flags & SOCK_NONBLOCK)
5057 (*newfile)->f_flags |= O_NONBLOCK;
5058 out:
5059 return retval;
5060 }
5061
5062 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5063 {
5064 sctp_peeloff_arg_t peeloff;
5065 struct file *newfile = NULL;
5066 int retval = 0;
5067
5068 if (len < sizeof(sctp_peeloff_arg_t))
5069 return -EINVAL;
5070 len = sizeof(sctp_peeloff_arg_t);
5071 if (copy_from_user(&peeloff, optval, len))
5072 return -EFAULT;
5073
5074 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5075 if (retval < 0)
5076 goto out;
5077
5078 /* Return the fd mapped to the new socket. */
5079 if (put_user(len, optlen)) {
5080 fput(newfile);
5081 put_unused_fd(retval);
5082 return -EFAULT;
5083 }
5084
5085 if (copy_to_user(optval, &peeloff, len)) {
5086 fput(newfile);
5087 put_unused_fd(retval);
5088 return -EFAULT;
5089 }
5090 fd_install(retval, newfile);
5091 out:
5092 return retval;
5093 }
5094
5095 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5096 char __user *optval, int __user *optlen)
5097 {
5098 sctp_peeloff_flags_arg_t peeloff;
5099 struct file *newfile = NULL;
5100 int retval = 0;
5101
5102 if (len < sizeof(sctp_peeloff_flags_arg_t))
5103 return -EINVAL;
5104 len = sizeof(sctp_peeloff_flags_arg_t);
5105 if (copy_from_user(&peeloff, optval, len))
5106 return -EFAULT;
5107
5108 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5109 &newfile, peeloff.flags);
5110 if (retval < 0)
5111 goto out;
5112
5113 /* Return the fd mapped to the new socket. */
5114 if (put_user(len, optlen)) {
5115 fput(newfile);
5116 put_unused_fd(retval);
5117 return -EFAULT;
5118 }
5119
5120 if (copy_to_user(optval, &peeloff, len)) {
5121 fput(newfile);
5122 put_unused_fd(retval);
5123 return -EFAULT;
5124 }
5125 fd_install(retval, newfile);
5126 out:
5127 return retval;
5128 }
5129
5130 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5131 *
5132 * Applications can enable or disable heartbeats for any peer address of
5133 * an association, modify an address's heartbeat interval, force a
5134 * heartbeat to be sent immediately, and adjust the address's maximum
5135 * number of retransmissions sent before an address is considered
5136 * unreachable. The following structure is used to access and modify an
5137 * address's parameters:
5138 *
5139 * struct sctp_paddrparams {
5140 * sctp_assoc_t spp_assoc_id;
5141 * struct sockaddr_storage spp_address;
5142 * uint32_t spp_hbinterval;
5143 * uint16_t spp_pathmaxrxt;
5144 * uint32_t spp_pathmtu;
5145 * uint32_t spp_sackdelay;
5146 * uint32_t spp_flags;
5147 * };
5148 *
5149 * spp_assoc_id - (one-to-many style socket) This is filled in the
5150 * application, and identifies the association for
5151 * this query.
5152 * spp_address - This specifies which address is of interest.
5153 * spp_hbinterval - This contains the value of the heartbeat interval,
5154 * in milliseconds. If a value of zero
5155 * is present in this field then no changes are to
5156 * be made to this parameter.
5157 * spp_pathmaxrxt - This contains the maximum number of
5158 * retransmissions before this address shall be
5159 * considered unreachable. If a value of zero
5160 * is present in this field then no changes are to
5161 * be made to this parameter.
5162 * spp_pathmtu - When Path MTU discovery is disabled the value
5163 * specified here will be the "fixed" path mtu.
5164 * Note that if the spp_address field is empty
5165 * then all associations on this address will
5166 * have this fixed path mtu set upon them.
5167 *
5168 * spp_sackdelay - When delayed sack is enabled, this value specifies
5169 * the number of milliseconds that sacks will be delayed
5170 * for. This value will apply to all addresses of an
5171 * association if the spp_address field is empty. Note
5172 * also, that if delayed sack is enabled and this
5173 * value is set to 0, no change is made to the last
5174 * recorded delayed sack timer value.
5175 *
5176 * spp_flags - These flags are used to control various features
5177 * on an association. The flag field may contain
5178 * zero or more of the following options.
5179 *
5180 * SPP_HB_ENABLE - Enable heartbeats on the
5181 * specified address. Note that if the address
5182 * field is empty all addresses for the association
5183 * have heartbeats enabled upon them.
5184 *
5185 * SPP_HB_DISABLE - Disable heartbeats on the
5186 * speicifed address. Note that if the address
5187 * field is empty all addresses for the association
5188 * will have their heartbeats disabled. Note also
5189 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
5190 * mutually exclusive, only one of these two should
5191 * be specified. Enabling both fields will have
5192 * undetermined results.
5193 *
5194 * SPP_HB_DEMAND - Request a user initiated heartbeat
5195 * to be made immediately.
5196 *
5197 * SPP_PMTUD_ENABLE - This field will enable PMTU
5198 * discovery upon the specified address. Note that
5199 * if the address feild is empty then all addresses
5200 * on the association are effected.
5201 *
5202 * SPP_PMTUD_DISABLE - This field will disable PMTU
5203 * discovery upon the specified address. Note that
5204 * if the address feild is empty then all addresses
5205 * on the association are effected. Not also that
5206 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5207 * exclusive. Enabling both will have undetermined
5208 * results.
5209 *
5210 * SPP_SACKDELAY_ENABLE - Setting this flag turns
5211 * on delayed sack. The time specified in spp_sackdelay
5212 * is used to specify the sack delay for this address. Note
5213 * that if spp_address is empty then all addresses will
5214 * enable delayed sack and take on the sack delay
5215 * value specified in spp_sackdelay.
5216 * SPP_SACKDELAY_DISABLE - Setting this flag turns
5217 * off delayed sack. If the spp_address field is blank then
5218 * delayed sack is disabled for the entire association. Note
5219 * also that this field is mutually exclusive to
5220 * SPP_SACKDELAY_ENABLE, setting both will have undefined
5221 * results.
5222 */
5223 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5224 char __user *optval, int __user *optlen)
5225 {
5226 struct sctp_paddrparams params;
5227 struct sctp_transport *trans = NULL;
5228 struct sctp_association *asoc = NULL;
5229 struct sctp_sock *sp = sctp_sk(sk);
5230
5231 if (len < sizeof(struct sctp_paddrparams))
5232 return -EINVAL;
5233 len = sizeof(struct sctp_paddrparams);
5234 if (copy_from_user(&params, optval, len))
5235 return -EFAULT;
5236
5237 /* If an address other than INADDR_ANY is specified, and
5238 * no transport is found, then the request is invalid.
5239 */
5240 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5241 trans = sctp_addr_id2transport(sk, &params.spp_address,
5242 params.spp_assoc_id);
5243 if (!trans) {
5244 pr_debug("%s: failed no transport\n", __func__);
5245 return -EINVAL;
5246 }
5247 }
5248
5249 /* Get association, if assoc_id != 0 and the socket is a one
5250 * to many style socket, and an association was not found, then
5251 * the id was invalid.
5252 */
5253 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5254 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
5255 pr_debug("%s: failed no association\n", __func__);
5256 return -EINVAL;
5257 }
5258
5259 if (trans) {
5260 /* Fetch transport values. */
5261 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5262 params.spp_pathmtu = trans->pathmtu;
5263 params.spp_pathmaxrxt = trans->pathmaxrxt;
5264 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
5265
5266 /*draft-11 doesn't say what to return in spp_flags*/
5267 params.spp_flags = trans->param_flags;
5268 } else if (asoc) {
5269 /* Fetch association values. */
5270 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5271 params.spp_pathmtu = asoc->pathmtu;
5272 params.spp_pathmaxrxt = asoc->pathmaxrxt;
5273 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
5274
5275 /*draft-11 doesn't say what to return in spp_flags*/
5276 params.spp_flags = asoc->param_flags;
5277 } else {
5278 /* Fetch socket values. */
5279 params.spp_hbinterval = sp->hbinterval;
5280 params.spp_pathmtu = sp->pathmtu;
5281 params.spp_sackdelay = sp->sackdelay;
5282 params.spp_pathmaxrxt = sp->pathmaxrxt;
5283
5284 /*draft-11 doesn't say what to return in spp_flags*/
5285 params.spp_flags = sp->param_flags;
5286 }
5287
5288 if (copy_to_user(optval, &params, len))
5289 return -EFAULT;
5290
5291 if (put_user(len, optlen))
5292 return -EFAULT;
5293
5294 return 0;
5295 }
5296
5297 /*
5298 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
5299 *
5300 * This option will effect the way delayed acks are performed. This
5301 * option allows you to get or set the delayed ack time, in
5302 * milliseconds. It also allows changing the delayed ack frequency.
5303 * Changing the frequency to 1 disables the delayed sack algorithm. If
5304 * the assoc_id is 0, then this sets or gets the endpoints default
5305 * values. If the assoc_id field is non-zero, then the set or get
5306 * effects the specified association for the one to many model (the
5307 * assoc_id field is ignored by the one to one model). Note that if
5308 * sack_delay or sack_freq are 0 when setting this option, then the
5309 * current values will remain unchanged.
5310 *
5311 * struct sctp_sack_info {
5312 * sctp_assoc_t sack_assoc_id;
5313 * uint32_t sack_delay;
5314 * uint32_t sack_freq;
5315 * };
5316 *
5317 * sack_assoc_id - This parameter, indicates which association the user
5318 * is performing an action upon. Note that if this field's value is
5319 * zero then the endpoints default value is changed (effecting future
5320 * associations only).
5321 *
5322 * sack_delay - This parameter contains the number of milliseconds that
5323 * the user is requesting the delayed ACK timer be set to. Note that
5324 * this value is defined in the standard to be between 200 and 500
5325 * milliseconds.
5326 *
5327 * sack_freq - This parameter contains the number of packets that must
5328 * be received before a sack is sent without waiting for the delay
5329 * timer to expire. The default value for this is 2, setting this
5330 * value to 1 will disable the delayed sack algorithm.
5331 */
5332 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5333 char __user *optval,
5334 int __user *optlen)
5335 {
5336 struct sctp_sack_info params;
5337 struct sctp_association *asoc = NULL;
5338 struct sctp_sock *sp = sctp_sk(sk);
5339
5340 if (len >= sizeof(struct sctp_sack_info)) {
5341 len = sizeof(struct sctp_sack_info);
5342
5343 if (copy_from_user(&params, optval, len))
5344 return -EFAULT;
5345 } else if (len == sizeof(struct sctp_assoc_value)) {
5346 pr_warn_ratelimited(DEPRECATED
5347 "%s (pid %d) "
5348 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5349 "Use struct sctp_sack_info instead\n",
5350 current->comm, task_pid_nr(current));
5351 if (copy_from_user(&params, optval, len))
5352 return -EFAULT;
5353 } else
5354 return -EINVAL;
5355
5356 /* Get association, if sack_assoc_id != 0 and the socket is a one
5357 * to many style socket, and an association was not found, then
5358 * the id was invalid.
5359 */
5360 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5361 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
5362 return -EINVAL;
5363
5364 if (asoc) {
5365 /* Fetch association values. */
5366 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5367 params.sack_delay = jiffies_to_msecs(
5368 asoc->sackdelay);
5369 params.sack_freq = asoc->sackfreq;
5370
5371 } else {
5372 params.sack_delay = 0;
5373 params.sack_freq = 1;
5374 }
5375 } else {
5376 /* Fetch socket values. */
5377 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5378 params.sack_delay = sp->sackdelay;
5379 params.sack_freq = sp->sackfreq;
5380 } else {
5381 params.sack_delay = 0;
5382 params.sack_freq = 1;
5383 }
5384 }
5385
5386 if (copy_to_user(optval, &params, len))
5387 return -EFAULT;
5388
5389 if (put_user(len, optlen))
5390 return -EFAULT;
5391
5392 return 0;
5393 }
5394
5395 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5396 *
5397 * Applications can specify protocol parameters for the default association
5398 * initialization. The option name argument to setsockopt() and getsockopt()
5399 * is SCTP_INITMSG.
5400 *
5401 * Setting initialization parameters is effective only on an unconnected
5402 * socket (for UDP-style sockets only future associations are effected
5403 * by the change). With TCP-style sockets, this option is inherited by
5404 * sockets derived from a listener socket.
5405 */
5406 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5407 {
5408 if (len < sizeof(struct sctp_initmsg))
5409 return -EINVAL;
5410 len = sizeof(struct sctp_initmsg);
5411 if (put_user(len, optlen))
5412 return -EFAULT;
5413 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5414 return -EFAULT;
5415 return 0;
5416 }
5417
5418
5419 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5420 char __user *optval, int __user *optlen)
5421 {
5422 struct sctp_association *asoc;
5423 int cnt = 0;
5424 struct sctp_getaddrs getaddrs;
5425 struct sctp_transport *from;
5426 void __user *to;
5427 union sctp_addr temp;
5428 struct sctp_sock *sp = sctp_sk(sk);
5429 int addrlen;
5430 size_t space_left;
5431 int bytes_copied;
5432
5433 if (len < sizeof(struct sctp_getaddrs))
5434 return -EINVAL;
5435
5436 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5437 return -EFAULT;
5438
5439 /* For UDP-style sockets, id specifies the association to query. */
5440 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5441 if (!asoc)
5442 return -EINVAL;
5443
5444 to = optval + offsetof(struct sctp_getaddrs, addrs);
5445 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5446
5447 list_for_each_entry(from, &asoc->peer.transport_addr_list,
5448 transports) {
5449 memcpy(&temp, &from->ipaddr, sizeof(temp));
5450 addrlen = sctp_get_pf_specific(sk->sk_family)
5451 ->addr_to_user(sp, &temp);
5452 if (space_left < addrlen)
5453 return -ENOMEM;
5454 if (copy_to_user(to, &temp, addrlen))
5455 return -EFAULT;
5456 to += addrlen;
5457 cnt++;
5458 space_left -= addrlen;
5459 }
5460
5461 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
5462 return -EFAULT;
5463 bytes_copied = ((char __user *)to) - optval;
5464 if (put_user(bytes_copied, optlen))
5465 return -EFAULT;
5466
5467 return 0;
5468 }
5469
5470 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
5471 size_t space_left, int *bytes_copied)
5472 {
5473 struct sctp_sockaddr_entry *addr;
5474 union sctp_addr temp;
5475 int cnt = 0;
5476 int addrlen;
5477 struct net *net = sock_net(sk);
5478
5479 rcu_read_lock();
5480 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
5481 if (!addr->valid)
5482 continue;
5483
5484 if ((PF_INET == sk->sk_family) &&
5485 (AF_INET6 == addr->a.sa.sa_family))
5486 continue;
5487 if ((PF_INET6 == sk->sk_family) &&
5488 inet_v6_ipv6only(sk) &&
5489 (AF_INET == addr->a.sa.sa_family))
5490 continue;
5491 memcpy(&temp, &addr->a, sizeof(temp));
5492 if (!temp.v4.sin_port)
5493 temp.v4.sin_port = htons(port);
5494
5495 addrlen = sctp_get_pf_specific(sk->sk_family)
5496 ->addr_to_user(sctp_sk(sk), &temp);
5497
5498 if (space_left < addrlen) {
5499 cnt = -ENOMEM;
5500 break;
5501 }
5502 memcpy(to, &temp, addrlen);
5503
5504 to += addrlen;
5505 cnt++;
5506 space_left -= addrlen;
5507 *bytes_copied += addrlen;
5508 }
5509 rcu_read_unlock();
5510
5511 return cnt;
5512 }
5513
5514
5515 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
5516 char __user *optval, int __user *optlen)
5517 {
5518 struct sctp_bind_addr *bp;
5519 struct sctp_association *asoc;
5520 int cnt = 0;
5521 struct sctp_getaddrs getaddrs;
5522 struct sctp_sockaddr_entry *addr;
5523 void __user *to;
5524 union sctp_addr temp;
5525 struct sctp_sock *sp = sctp_sk(sk);
5526 int addrlen;
5527 int err = 0;
5528 size_t space_left;
5529 int bytes_copied = 0;
5530 void *addrs;
5531 void *buf;
5532
5533 if (len < sizeof(struct sctp_getaddrs))
5534 return -EINVAL;
5535
5536 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5537 return -EFAULT;
5538
5539 /*
5540 * For UDP-style sockets, id specifies the association to query.
5541 * If the id field is set to the value '0' then the locally bound
5542 * addresses are returned without regard to any particular
5543 * association.
5544 */
5545 if (0 == getaddrs.assoc_id) {
5546 bp = &sctp_sk(sk)->ep->base.bind_addr;
5547 } else {
5548 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5549 if (!asoc)
5550 return -EINVAL;
5551 bp = &asoc->base.bind_addr;
5552 }
5553
5554 to = optval + offsetof(struct sctp_getaddrs, addrs);
5555 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5556
5557 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
5558 if (!addrs)
5559 return -ENOMEM;
5560
5561 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
5562 * addresses from the global local address list.
5563 */
5564 if (sctp_list_single_entry(&bp->address_list)) {
5565 addr = list_entry(bp->address_list.next,
5566 struct sctp_sockaddr_entry, list);
5567 if (sctp_is_any(sk, &addr->a)) {
5568 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
5569 space_left, &bytes_copied);
5570 if (cnt < 0) {
5571 err = cnt;
5572 goto out;
5573 }
5574 goto copy_getaddrs;
5575 }
5576 }
5577
5578 buf = addrs;
5579 /* Protection on the bound address list is not needed since
5580 * in the socket option context we hold a socket lock and
5581 * thus the bound address list can't change.
5582 */
5583 list_for_each_entry(addr, &bp->address_list, list) {
5584 memcpy(&temp, &addr->a, sizeof(temp));
5585 addrlen = sctp_get_pf_specific(sk->sk_family)
5586 ->addr_to_user(sp, &temp);
5587 if (space_left < addrlen) {
5588 err = -ENOMEM; /*fixme: right error?*/
5589 goto out;
5590 }
5591 memcpy(buf, &temp, addrlen);
5592 buf += addrlen;
5593 bytes_copied += addrlen;
5594 cnt++;
5595 space_left -= addrlen;
5596 }
5597
5598 copy_getaddrs:
5599 if (copy_to_user(to, addrs, bytes_copied)) {
5600 err = -EFAULT;
5601 goto out;
5602 }
5603 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
5604 err = -EFAULT;
5605 goto out;
5606 }
5607 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
5608 * but we can't change it anymore.
5609 */
5610 if (put_user(bytes_copied, optlen))
5611 err = -EFAULT;
5612 out:
5613 kfree(addrs);
5614 return err;
5615 }
5616
5617 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
5618 *
5619 * Requests that the local SCTP stack use the enclosed peer address as
5620 * the association primary. The enclosed address must be one of the
5621 * association peer's addresses.
5622 */
5623 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
5624 char __user *optval, int __user *optlen)
5625 {
5626 struct sctp_prim prim;
5627 struct sctp_association *asoc;
5628 struct sctp_sock *sp = sctp_sk(sk);
5629
5630 if (len < sizeof(struct sctp_prim))
5631 return -EINVAL;
5632
5633 len = sizeof(struct sctp_prim);
5634
5635 if (copy_from_user(&prim, optval, len))
5636 return -EFAULT;
5637
5638 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5639 if (!asoc)
5640 return -EINVAL;
5641
5642 if (!asoc->peer.primary_path)
5643 return -ENOTCONN;
5644
5645 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5646 asoc->peer.primary_path->af_specific->sockaddr_len);
5647
5648 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5649 (union sctp_addr *)&prim.ssp_addr);
5650
5651 if (put_user(len, optlen))
5652 return -EFAULT;
5653 if (copy_to_user(optval, &prim, len))
5654 return -EFAULT;
5655
5656 return 0;
5657 }
5658
5659 /*
5660 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5661 *
5662 * Requests that the local endpoint set the specified Adaptation Layer
5663 * Indication parameter for all future INIT and INIT-ACK exchanges.
5664 */
5665 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5666 char __user *optval, int __user *optlen)
5667 {
5668 struct sctp_setadaptation adaptation;
5669
5670 if (len < sizeof(struct sctp_setadaptation))
5671 return -EINVAL;
5672
5673 len = sizeof(struct sctp_setadaptation);
5674
5675 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5676
5677 if (put_user(len, optlen))
5678 return -EFAULT;
5679 if (copy_to_user(optval, &adaptation, len))
5680 return -EFAULT;
5681
5682 return 0;
5683 }
5684
5685 /*
5686 *
5687 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5688 *
5689 * Applications that wish to use the sendto() system call may wish to
5690 * specify a default set of parameters that would normally be supplied
5691 * through the inclusion of ancillary data. This socket option allows
5692 * such an application to set the default sctp_sndrcvinfo structure.
5693
5694
5695 * The application that wishes to use this socket option simply passes
5696 * in to this call the sctp_sndrcvinfo structure defined in Section
5697 * 5.2.2) The input parameters accepted by this call include
5698 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5699 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
5700 * to this call if the caller is using the UDP model.
5701 *
5702 * For getsockopt, it get the default sctp_sndrcvinfo structure.
5703 */
5704 static int sctp_getsockopt_default_send_param(struct sock *sk,
5705 int len, char __user *optval,
5706 int __user *optlen)
5707 {
5708 struct sctp_sock *sp = sctp_sk(sk);
5709 struct sctp_association *asoc;
5710 struct sctp_sndrcvinfo info;
5711
5712 if (len < sizeof(info))
5713 return -EINVAL;
5714
5715 len = sizeof(info);
5716
5717 if (copy_from_user(&info, optval, len))
5718 return -EFAULT;
5719
5720 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5721 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5722 return -EINVAL;
5723 if (asoc) {
5724 info.sinfo_stream = asoc->default_stream;
5725 info.sinfo_flags = asoc->default_flags;
5726 info.sinfo_ppid = asoc->default_ppid;
5727 info.sinfo_context = asoc->default_context;
5728 info.sinfo_timetolive = asoc->default_timetolive;
5729 } else {
5730 info.sinfo_stream = sp->default_stream;
5731 info.sinfo_flags = sp->default_flags;
5732 info.sinfo_ppid = sp->default_ppid;
5733 info.sinfo_context = sp->default_context;
5734 info.sinfo_timetolive = sp->default_timetolive;
5735 }
5736
5737 if (put_user(len, optlen))
5738 return -EFAULT;
5739 if (copy_to_user(optval, &info, len))
5740 return -EFAULT;
5741
5742 return 0;
5743 }
5744
5745 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5746 * (SCTP_DEFAULT_SNDINFO)
5747 */
5748 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5749 char __user *optval,
5750 int __user *optlen)
5751 {
5752 struct sctp_sock *sp = sctp_sk(sk);
5753 struct sctp_association *asoc;
5754 struct sctp_sndinfo info;
5755
5756 if (len < sizeof(info))
5757 return -EINVAL;
5758
5759 len = sizeof(info);
5760
5761 if (copy_from_user(&info, optval, len))
5762 return -EFAULT;
5763
5764 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5765 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5766 return -EINVAL;
5767 if (asoc) {
5768 info.snd_sid = asoc->default_stream;
5769 info.snd_flags = asoc->default_flags;
5770 info.snd_ppid = asoc->default_ppid;
5771 info.snd_context = asoc->default_context;
5772 } else {
5773 info.snd_sid = sp->default_stream;
5774 info.snd_flags = sp->default_flags;
5775 info.snd_ppid = sp->default_ppid;
5776 info.snd_context = sp->default_context;
5777 }
5778
5779 if (put_user(len, optlen))
5780 return -EFAULT;
5781 if (copy_to_user(optval, &info, len))
5782 return -EFAULT;
5783
5784 return 0;
5785 }
5786
5787 /*
5788 *
5789 * 7.1.5 SCTP_NODELAY
5790 *
5791 * Turn on/off any Nagle-like algorithm. This means that packets are
5792 * generally sent as soon as possible and no unnecessary delays are
5793 * introduced, at the cost of more packets in the network. Expects an
5794 * integer boolean flag.
5795 */
5796
5797 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5798 char __user *optval, int __user *optlen)
5799 {
5800 int val;
5801
5802 if (len < sizeof(int))
5803 return -EINVAL;
5804
5805 len = sizeof(int);
5806 val = (sctp_sk(sk)->nodelay == 1);
5807 if (put_user(len, optlen))
5808 return -EFAULT;
5809 if (copy_to_user(optval, &val, len))
5810 return -EFAULT;
5811 return 0;
5812 }
5813
5814 /*
5815 *
5816 * 7.1.1 SCTP_RTOINFO
5817 *
5818 * The protocol parameters used to initialize and bound retransmission
5819 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5820 * and modify these parameters.
5821 * All parameters are time values, in milliseconds. A value of 0, when
5822 * modifying the parameters, indicates that the current value should not
5823 * be changed.
5824 *
5825 */
5826 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5827 char __user *optval,
5828 int __user *optlen) {
5829 struct sctp_rtoinfo rtoinfo;
5830 struct sctp_association *asoc;
5831
5832 if (len < sizeof (struct sctp_rtoinfo))
5833 return -EINVAL;
5834
5835 len = sizeof(struct sctp_rtoinfo);
5836
5837 if (copy_from_user(&rtoinfo, optval, len))
5838 return -EFAULT;
5839
5840 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5841
5842 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5843 return -EINVAL;
5844
5845 /* Values corresponding to the specific association. */
5846 if (asoc) {
5847 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5848 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5849 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5850 } else {
5851 /* Values corresponding to the endpoint. */
5852 struct sctp_sock *sp = sctp_sk(sk);
5853
5854 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5855 rtoinfo.srto_max = sp->rtoinfo.srto_max;
5856 rtoinfo.srto_min = sp->rtoinfo.srto_min;
5857 }
5858
5859 if (put_user(len, optlen))
5860 return -EFAULT;
5861
5862 if (copy_to_user(optval, &rtoinfo, len))
5863 return -EFAULT;
5864
5865 return 0;
5866 }
5867
5868 /*
5869 *
5870 * 7.1.2 SCTP_ASSOCINFO
5871 *
5872 * This option is used to tune the maximum retransmission attempts
5873 * of the association.
5874 * Returns an error if the new association retransmission value is
5875 * greater than the sum of the retransmission value of the peer.
5876 * See [SCTP] for more information.
5877 *
5878 */
5879 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5880 char __user *optval,
5881 int __user *optlen)
5882 {
5883
5884 struct sctp_assocparams assocparams;
5885 struct sctp_association *asoc;
5886 struct list_head *pos;
5887 int cnt = 0;
5888
5889 if (len < sizeof (struct sctp_assocparams))
5890 return -EINVAL;
5891
5892 len = sizeof(struct sctp_assocparams);
5893
5894 if (copy_from_user(&assocparams, optval, len))
5895 return -EFAULT;
5896
5897 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5898
5899 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5900 return -EINVAL;
5901
5902 /* Values correspoinding to the specific association */
5903 if (asoc) {
5904 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5905 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5906 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5907 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5908
5909 list_for_each(pos, &asoc->peer.transport_addr_list) {
5910 cnt++;
5911 }
5912
5913 assocparams.sasoc_number_peer_destinations = cnt;
5914 } else {
5915 /* Values corresponding to the endpoint */
5916 struct sctp_sock *sp = sctp_sk(sk);
5917
5918 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5919 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5920 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5921 assocparams.sasoc_cookie_life =
5922 sp->assocparams.sasoc_cookie_life;
5923 assocparams.sasoc_number_peer_destinations =
5924 sp->assocparams.
5925 sasoc_number_peer_destinations;
5926 }
5927
5928 if (put_user(len, optlen))
5929 return -EFAULT;
5930
5931 if (copy_to_user(optval, &assocparams, len))
5932 return -EFAULT;
5933
5934 return 0;
5935 }
5936
5937 /*
5938 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5939 *
5940 * This socket option is a boolean flag which turns on or off mapped V4
5941 * addresses. If this option is turned on and the socket is type
5942 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5943 * If this option is turned off, then no mapping will be done of V4
5944 * addresses and a user will receive both PF_INET6 and PF_INET type
5945 * addresses on the socket.
5946 */
5947 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5948 char __user *optval, int __user *optlen)
5949 {
5950 int val;
5951 struct sctp_sock *sp = sctp_sk(sk);
5952
5953 if (len < sizeof(int))
5954 return -EINVAL;
5955
5956 len = sizeof(int);
5957 val = sp->v4mapped;
5958 if (put_user(len, optlen))
5959 return -EFAULT;
5960 if (copy_to_user(optval, &val, len))
5961 return -EFAULT;
5962
5963 return 0;
5964 }
5965
5966 /*
5967 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5968 * (chapter and verse is quoted at sctp_setsockopt_context())
5969 */
5970 static int sctp_getsockopt_context(struct sock *sk, int len,
5971 char __user *optval, int __user *optlen)
5972 {
5973 struct sctp_assoc_value params;
5974 struct sctp_sock *sp;
5975 struct sctp_association *asoc;
5976
5977 if (len < sizeof(struct sctp_assoc_value))
5978 return -EINVAL;
5979
5980 len = sizeof(struct sctp_assoc_value);
5981
5982 if (copy_from_user(&params, optval, len))
5983 return -EFAULT;
5984
5985 sp = sctp_sk(sk);
5986
5987 if (params.assoc_id != 0) {
5988 asoc = sctp_id2assoc(sk, params.assoc_id);
5989 if (!asoc)
5990 return -EINVAL;
5991 params.assoc_value = asoc->default_rcv_context;
5992 } else {
5993 params.assoc_value = sp->default_rcv_context;
5994 }
5995
5996 if (put_user(len, optlen))
5997 return -EFAULT;
5998 if (copy_to_user(optval, &params, len))
5999 return -EFAULT;
6000
6001 return 0;
6002 }
6003
6004 /*
6005 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6006 * This option will get or set the maximum size to put in any outgoing
6007 * SCTP DATA chunk. If a message is larger than this size it will be
6008 * fragmented by SCTP into the specified size. Note that the underlying
6009 * SCTP implementation may fragment into smaller sized chunks when the
6010 * PMTU of the underlying association is smaller than the value set by
6011 * the user. The default value for this option is '0' which indicates
6012 * the user is NOT limiting fragmentation and only the PMTU will effect
6013 * SCTP's choice of DATA chunk size. Note also that values set larger
6014 * than the maximum size of an IP datagram will effectively let SCTP
6015 * control fragmentation (i.e. the same as setting this option to 0).
6016 *
6017 * The following structure is used to access and modify this parameter:
6018 *
6019 * struct sctp_assoc_value {
6020 * sctp_assoc_t assoc_id;
6021 * uint32_t assoc_value;
6022 * };
6023 *
6024 * assoc_id: This parameter is ignored for one-to-one style sockets.
6025 * For one-to-many style sockets this parameter indicates which
6026 * association the user is performing an action upon. Note that if
6027 * this field's value is zero then the endpoints default value is
6028 * changed (effecting future associations only).
6029 * assoc_value: This parameter specifies the maximum size in bytes.
6030 */
6031 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6032 char __user *optval, int __user *optlen)
6033 {
6034 struct sctp_assoc_value params;
6035 struct sctp_association *asoc;
6036
6037 if (len == sizeof(int)) {
6038 pr_warn_ratelimited(DEPRECATED
6039 "%s (pid %d) "
6040 "Use of int in maxseg socket option.\n"
6041 "Use struct sctp_assoc_value instead\n",
6042 current->comm, task_pid_nr(current));
6043 params.assoc_id = 0;
6044 } else if (len >= sizeof(struct sctp_assoc_value)) {
6045 len = sizeof(struct sctp_assoc_value);
6046 if (copy_from_user(&params, optval, len))
6047 return -EFAULT;
6048 } else
6049 return -EINVAL;
6050
6051 asoc = sctp_id2assoc(sk, params.assoc_id);
6052 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
6053 return -EINVAL;
6054
6055 if (asoc)
6056 params.assoc_value = asoc->frag_point;
6057 else
6058 params.assoc_value = sctp_sk(sk)->user_frag;
6059
6060 if (put_user(len, optlen))
6061 return -EFAULT;
6062 if (len == sizeof(int)) {
6063 if (copy_to_user(optval, &params.assoc_value, len))
6064 return -EFAULT;
6065 } else {
6066 if (copy_to_user(optval, &params, len))
6067 return -EFAULT;
6068 }
6069
6070 return 0;
6071 }
6072
6073 /*
6074 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6075 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6076 */
6077 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6078 char __user *optval, int __user *optlen)
6079 {
6080 int val;
6081
6082 if (len < sizeof(int))
6083 return -EINVAL;
6084
6085 len = sizeof(int);
6086
6087 val = sctp_sk(sk)->frag_interleave;
6088 if (put_user(len, optlen))
6089 return -EFAULT;
6090 if (copy_to_user(optval, &val, len))
6091 return -EFAULT;
6092
6093 return 0;
6094 }
6095
6096 /*
6097 * 7.1.25. Set or Get the sctp partial delivery point
6098 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6099 */
6100 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6101 char __user *optval,
6102 int __user *optlen)
6103 {
6104 u32 val;
6105
6106 if (len < sizeof(u32))
6107 return -EINVAL;
6108
6109 len = sizeof(u32);
6110
6111 val = sctp_sk(sk)->pd_point;
6112 if (put_user(len, optlen))
6113 return -EFAULT;
6114 if (copy_to_user(optval, &val, len))
6115 return -EFAULT;
6116
6117 return 0;
6118 }
6119
6120 /*
6121 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
6122 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6123 */
6124 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6125 char __user *optval,
6126 int __user *optlen)
6127 {
6128 struct sctp_assoc_value params;
6129 struct sctp_sock *sp;
6130 struct sctp_association *asoc;
6131
6132 if (len == sizeof(int)) {
6133 pr_warn_ratelimited(DEPRECATED
6134 "%s (pid %d) "
6135 "Use of int in max_burst socket option.\n"
6136 "Use struct sctp_assoc_value instead\n",
6137 current->comm, task_pid_nr(current));
6138 params.assoc_id = 0;
6139 } else if (len >= sizeof(struct sctp_assoc_value)) {
6140 len = sizeof(struct sctp_assoc_value);
6141 if (copy_from_user(&params, optval, len))
6142 return -EFAULT;
6143 } else
6144 return -EINVAL;
6145
6146 sp = sctp_sk(sk);
6147
6148 if (params.assoc_id != 0) {
6149 asoc = sctp_id2assoc(sk, params.assoc_id);
6150 if (!asoc)
6151 return -EINVAL;
6152 params.assoc_value = asoc->max_burst;
6153 } else
6154 params.assoc_value = sp->max_burst;
6155
6156 if (len == sizeof(int)) {
6157 if (copy_to_user(optval, &params.assoc_value, len))
6158 return -EFAULT;
6159 } else {
6160 if (copy_to_user(optval, &params, len))
6161 return -EFAULT;
6162 }
6163
6164 return 0;
6165
6166 }
6167
6168 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6169 char __user *optval, int __user *optlen)
6170 {
6171 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6172 struct sctp_hmacalgo __user *p = (void __user *)optval;
6173 struct sctp_hmac_algo_param *hmacs;
6174 __u16 data_len = 0;
6175 u32 num_idents;
6176 int i;
6177
6178 if (!ep->auth_enable)
6179 return -EACCES;
6180
6181 hmacs = ep->auth_hmacs_list;
6182 data_len = ntohs(hmacs->param_hdr.length) -
6183 sizeof(struct sctp_paramhdr);
6184
6185 if (len < sizeof(struct sctp_hmacalgo) + data_len)
6186 return -EINVAL;
6187
6188 len = sizeof(struct sctp_hmacalgo) + data_len;
6189 num_idents = data_len / sizeof(u16);
6190
6191 if (put_user(len, optlen))
6192 return -EFAULT;
6193 if (put_user(num_idents, &p->shmac_num_idents))
6194 return -EFAULT;
6195 for (i = 0; i < num_idents; i++) {
6196 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6197
6198 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6199 return -EFAULT;
6200 }
6201 return 0;
6202 }
6203
6204 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6205 char __user *optval, int __user *optlen)
6206 {
6207 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6208 struct sctp_authkeyid val;
6209 struct sctp_association *asoc;
6210
6211 if (!ep->auth_enable)
6212 return -EACCES;
6213
6214 if (len < sizeof(struct sctp_authkeyid))
6215 return -EINVAL;
6216
6217 len = sizeof(struct sctp_authkeyid);
6218 if (copy_from_user(&val, optval, len))
6219 return -EFAULT;
6220
6221 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6222 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6223 return -EINVAL;
6224
6225 if (asoc)
6226 val.scact_keynumber = asoc->active_key_id;
6227 else
6228 val.scact_keynumber = ep->active_key_id;
6229
6230 if (put_user(len, optlen))
6231 return -EFAULT;
6232 if (copy_to_user(optval, &val, len))
6233 return -EFAULT;
6234
6235 return 0;
6236 }
6237
6238 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6239 char __user *optval, int __user *optlen)
6240 {
6241 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6242 struct sctp_authchunks __user *p = (void __user *)optval;
6243 struct sctp_authchunks val;
6244 struct sctp_association *asoc;
6245 struct sctp_chunks_param *ch;
6246 u32 num_chunks = 0;
6247 char __user *to;
6248
6249 if (!ep->auth_enable)
6250 return -EACCES;
6251
6252 if (len < sizeof(struct sctp_authchunks))
6253 return -EINVAL;
6254
6255 if (copy_from_user(&val, optval, sizeof(val)))
6256 return -EFAULT;
6257
6258 to = p->gauth_chunks;
6259 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6260 if (!asoc)
6261 return -EINVAL;
6262
6263 ch = asoc->peer.peer_chunks;
6264 if (!ch)
6265 goto num;
6266
6267 /* See if the user provided enough room for all the data */
6268 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6269 if (len < num_chunks)
6270 return -EINVAL;
6271
6272 if (copy_to_user(to, ch->chunks, num_chunks))
6273 return -EFAULT;
6274 num:
6275 len = sizeof(struct sctp_authchunks) + num_chunks;
6276 if (put_user(len, optlen))
6277 return -EFAULT;
6278 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6279 return -EFAULT;
6280 return 0;
6281 }
6282
6283 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6284 char __user *optval, int __user *optlen)
6285 {
6286 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6287 struct sctp_authchunks __user *p = (void __user *)optval;
6288 struct sctp_authchunks val;
6289 struct sctp_association *asoc;
6290 struct sctp_chunks_param *ch;
6291 u32 num_chunks = 0;
6292 char __user *to;
6293
6294 if (!ep->auth_enable)
6295 return -EACCES;
6296
6297 if (len < sizeof(struct sctp_authchunks))
6298 return -EINVAL;
6299
6300 if (copy_from_user(&val, optval, sizeof(val)))
6301 return -EFAULT;
6302
6303 to = p->gauth_chunks;
6304 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6305 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
6306 return -EINVAL;
6307
6308 if (asoc)
6309 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6310 else
6311 ch = ep->auth_chunk_list;
6312
6313 if (!ch)
6314 goto num;
6315
6316 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6317 if (len < sizeof(struct sctp_authchunks) + num_chunks)
6318 return -EINVAL;
6319
6320 if (copy_to_user(to, ch->chunks, num_chunks))
6321 return -EFAULT;
6322 num:
6323 len = sizeof(struct sctp_authchunks) + num_chunks;
6324 if (put_user(len, optlen))
6325 return -EFAULT;
6326 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6327 return -EFAULT;
6328
6329 return 0;
6330 }
6331
6332 /*
6333 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6334 * This option gets the current number of associations that are attached
6335 * to a one-to-many style socket. The option value is an uint32_t.
6336 */
6337 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6338 char __user *optval, int __user *optlen)
6339 {
6340 struct sctp_sock *sp = sctp_sk(sk);
6341 struct sctp_association *asoc;
6342 u32 val = 0;
6343
6344 if (sctp_style(sk, TCP))
6345 return -EOPNOTSUPP;
6346
6347 if (len < sizeof(u32))
6348 return -EINVAL;
6349
6350 len = sizeof(u32);
6351
6352 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6353 val++;
6354 }
6355
6356 if (put_user(len, optlen))
6357 return -EFAULT;
6358 if (copy_to_user(optval, &val, len))
6359 return -EFAULT;
6360
6361 return 0;
6362 }
6363
6364 /*
6365 * 8.1.23 SCTP_AUTO_ASCONF
6366 * See the corresponding setsockopt entry as description
6367 */
6368 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6369 char __user *optval, int __user *optlen)
6370 {
6371 int val = 0;
6372
6373 if (len < sizeof(int))
6374 return -EINVAL;
6375
6376 len = sizeof(int);
6377 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6378 val = 1;
6379 if (put_user(len, optlen))
6380 return -EFAULT;
6381 if (copy_to_user(optval, &val, len))
6382 return -EFAULT;
6383 return 0;
6384 }
6385
6386 /*
6387 * 8.2.6. Get the Current Identifiers of Associations
6388 * (SCTP_GET_ASSOC_ID_LIST)
6389 *
6390 * This option gets the current list of SCTP association identifiers of
6391 * the SCTP associations handled by a one-to-many style socket.
6392 */
6393 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6394 char __user *optval, int __user *optlen)
6395 {
6396 struct sctp_sock *sp = sctp_sk(sk);
6397 struct sctp_association *asoc;
6398 struct sctp_assoc_ids *ids;
6399 u32 num = 0;
6400
6401 if (sctp_style(sk, TCP))
6402 return -EOPNOTSUPP;
6403
6404 if (len < sizeof(struct sctp_assoc_ids))
6405 return -EINVAL;
6406
6407 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6408 num++;
6409 }
6410
6411 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6412 return -EINVAL;
6413
6414 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6415
6416 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
6417 if (unlikely(!ids))
6418 return -ENOMEM;
6419
6420 ids->gaids_number_of_ids = num;
6421 num = 0;
6422 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6423 ids->gaids_assoc_id[num++] = asoc->assoc_id;
6424 }
6425
6426 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
6427 kfree(ids);
6428 return -EFAULT;
6429 }
6430
6431 kfree(ids);
6432 return 0;
6433 }
6434
6435 /*
6436 * SCTP_PEER_ADDR_THLDS
6437 *
6438 * This option allows us to fetch the partially failed threshold for one or all
6439 * transports in an association. See Section 6.1 of:
6440 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
6441 */
6442 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
6443 char __user *optval,
6444 int len,
6445 int __user *optlen)
6446 {
6447 struct sctp_paddrthlds val;
6448 struct sctp_transport *trans;
6449 struct sctp_association *asoc;
6450
6451 if (len < sizeof(struct sctp_paddrthlds))
6452 return -EINVAL;
6453 len = sizeof(struct sctp_paddrthlds);
6454 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
6455 return -EFAULT;
6456
6457 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
6458 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
6459 if (!asoc)
6460 return -ENOENT;
6461
6462 val.spt_pathpfthld = asoc->pf_retrans;
6463 val.spt_pathmaxrxt = asoc->pathmaxrxt;
6464 } else {
6465 trans = sctp_addr_id2transport(sk, &val.spt_address,
6466 val.spt_assoc_id);
6467 if (!trans)
6468 return -ENOENT;
6469
6470 val.spt_pathmaxrxt = trans->pathmaxrxt;
6471 val.spt_pathpfthld = trans->pf_retrans;
6472 }
6473
6474 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
6475 return -EFAULT;
6476
6477 return 0;
6478 }
6479
6480 /*
6481 * SCTP_GET_ASSOC_STATS
6482 *
6483 * This option retrieves local per endpoint statistics. It is modeled
6484 * after OpenSolaris' implementation
6485 */
6486 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
6487 char __user *optval,
6488 int __user *optlen)
6489 {
6490 struct sctp_assoc_stats sas;
6491 struct sctp_association *asoc = NULL;
6492
6493 /* User must provide at least the assoc id */
6494 if (len < sizeof(sctp_assoc_t))
6495 return -EINVAL;
6496
6497 /* Allow the struct to grow and fill in as much as possible */
6498 len = min_t(size_t, len, sizeof(sas));
6499
6500 if (copy_from_user(&sas, optval, len))
6501 return -EFAULT;
6502
6503 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
6504 if (!asoc)
6505 return -EINVAL;
6506
6507 sas.sas_rtxchunks = asoc->stats.rtxchunks;
6508 sas.sas_gapcnt = asoc->stats.gapcnt;
6509 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
6510 sas.sas_osacks = asoc->stats.osacks;
6511 sas.sas_isacks = asoc->stats.isacks;
6512 sas.sas_octrlchunks = asoc->stats.octrlchunks;
6513 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
6514 sas.sas_oodchunks = asoc->stats.oodchunks;
6515 sas.sas_iodchunks = asoc->stats.iodchunks;
6516 sas.sas_ouodchunks = asoc->stats.ouodchunks;
6517 sas.sas_iuodchunks = asoc->stats.iuodchunks;
6518 sas.sas_idupchunks = asoc->stats.idupchunks;
6519 sas.sas_opackets = asoc->stats.opackets;
6520 sas.sas_ipackets = asoc->stats.ipackets;
6521
6522 /* New high max rto observed, will return 0 if not a single
6523 * RTO update took place. obs_rto_ipaddr will be bogus
6524 * in such a case
6525 */
6526 sas.sas_maxrto = asoc->stats.max_obs_rto;
6527 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
6528 sizeof(struct sockaddr_storage));
6529
6530 /* Mark beginning of a new observation period */
6531 asoc->stats.max_obs_rto = asoc->rto_min;
6532
6533 if (put_user(len, optlen))
6534 return -EFAULT;
6535
6536 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
6537
6538 if (copy_to_user(optval, &sas, len))
6539 return -EFAULT;
6540
6541 return 0;
6542 }
6543
6544 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
6545 char __user *optval,
6546 int __user *optlen)
6547 {
6548 int val = 0;
6549
6550 if (len < sizeof(int))
6551 return -EINVAL;
6552
6553 len = sizeof(int);
6554 if (sctp_sk(sk)->recvrcvinfo)
6555 val = 1;
6556 if (put_user(len, optlen))
6557 return -EFAULT;
6558 if (copy_to_user(optval, &val, len))
6559 return -EFAULT;
6560
6561 return 0;
6562 }
6563
6564 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
6565 char __user *optval,
6566 int __user *optlen)
6567 {
6568 int val = 0;
6569
6570 if (len < sizeof(int))
6571 return -EINVAL;
6572
6573 len = sizeof(int);
6574 if (sctp_sk(sk)->recvnxtinfo)
6575 val = 1;
6576 if (put_user(len, optlen))
6577 return -EFAULT;
6578 if (copy_to_user(optval, &val, len))
6579 return -EFAULT;
6580
6581 return 0;
6582 }
6583
6584 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
6585 char __user *optval,
6586 int __user *optlen)
6587 {
6588 struct sctp_assoc_value params;
6589 struct sctp_association *asoc;
6590 int retval = -EFAULT;
6591
6592 if (len < sizeof(params)) {
6593 retval = -EINVAL;
6594 goto out;
6595 }
6596
6597 len = sizeof(params);
6598 if (copy_from_user(&params, optval, len))
6599 goto out;
6600
6601 asoc = sctp_id2assoc(sk, params.assoc_id);
6602 if (asoc) {
6603 params.assoc_value = asoc->prsctp_enable;
6604 } else if (!params.assoc_id) {
6605 struct sctp_sock *sp = sctp_sk(sk);
6606
6607 params.assoc_value = sp->ep->prsctp_enable;
6608 } else {
6609 retval = -EINVAL;
6610 goto out;
6611 }
6612
6613 if (put_user(len, optlen))
6614 goto out;
6615
6616 if (copy_to_user(optval, &params, len))
6617 goto out;
6618
6619 retval = 0;
6620
6621 out:
6622 return retval;
6623 }
6624
6625 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
6626 char __user *optval,
6627 int __user *optlen)
6628 {
6629 struct sctp_default_prinfo info;
6630 struct sctp_association *asoc;
6631 int retval = -EFAULT;
6632
6633 if (len < sizeof(info)) {
6634 retval = -EINVAL;
6635 goto out;
6636 }
6637
6638 len = sizeof(info);
6639 if (copy_from_user(&info, optval, len))
6640 goto out;
6641
6642 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
6643 if (asoc) {
6644 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
6645 info.pr_value = asoc->default_timetolive;
6646 } else if (!info.pr_assoc_id) {
6647 struct sctp_sock *sp = sctp_sk(sk);
6648
6649 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
6650 info.pr_value = sp->default_timetolive;
6651 } else {
6652 retval = -EINVAL;
6653 goto out;
6654 }
6655
6656 if (put_user(len, optlen))
6657 goto out;
6658
6659 if (copy_to_user(optval, &info, len))
6660 goto out;
6661
6662 retval = 0;
6663
6664 out:
6665 return retval;
6666 }
6667
6668 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
6669 char __user *optval,
6670 int __user *optlen)
6671 {
6672 struct sctp_prstatus params;
6673 struct sctp_association *asoc;
6674 int policy;
6675 int retval = -EINVAL;
6676
6677 if (len < sizeof(params))
6678 goto out;
6679
6680 len = sizeof(params);
6681 if (copy_from_user(&params, optval, len)) {
6682 retval = -EFAULT;
6683 goto out;
6684 }
6685
6686 policy = params.sprstat_policy;
6687 if (policy & ~SCTP_PR_SCTP_MASK)
6688 goto out;
6689
6690 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
6691 if (!asoc)
6692 goto out;
6693
6694 if (policy == SCTP_PR_SCTP_NONE) {
6695 params.sprstat_abandoned_unsent = 0;
6696 params.sprstat_abandoned_sent = 0;
6697 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
6698 params.sprstat_abandoned_unsent +=
6699 asoc->abandoned_unsent[policy];
6700 params.sprstat_abandoned_sent +=
6701 asoc->abandoned_sent[policy];
6702 }
6703 } else {
6704 params.sprstat_abandoned_unsent =
6705 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
6706 params.sprstat_abandoned_sent =
6707 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
6708 }
6709
6710 if (put_user(len, optlen)) {
6711 retval = -EFAULT;
6712 goto out;
6713 }
6714
6715 if (copy_to_user(optval, &params, len)) {
6716 retval = -EFAULT;
6717 goto out;
6718 }
6719
6720 retval = 0;
6721
6722 out:
6723 return retval;
6724 }
6725
6726 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
6727 char __user *optval,
6728 int __user *optlen)
6729 {
6730 struct sctp_stream_out *streamout;
6731 struct sctp_association *asoc;
6732 struct sctp_prstatus params;
6733 int retval = -EINVAL;
6734 int policy;
6735
6736 if (len < sizeof(params))
6737 goto out;
6738
6739 len = sizeof(params);
6740 if (copy_from_user(&params, optval, len)) {
6741 retval = -EFAULT;
6742 goto out;
6743 }
6744
6745 policy = params.sprstat_policy;
6746 if (policy & ~SCTP_PR_SCTP_MASK)
6747 goto out;
6748
6749 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
6750 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
6751 goto out;
6752
6753 streamout = &asoc->stream.out[params.sprstat_sid];
6754 if (policy == SCTP_PR_SCTP_NONE) {
6755 params.sprstat_abandoned_unsent = 0;
6756 params.sprstat_abandoned_sent = 0;
6757 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
6758 params.sprstat_abandoned_unsent +=
6759 streamout->abandoned_unsent[policy];
6760 params.sprstat_abandoned_sent +=
6761 streamout->abandoned_sent[policy];
6762 }
6763 } else {
6764 params.sprstat_abandoned_unsent =
6765 streamout->abandoned_unsent[__SCTP_PR_INDEX(policy)];
6766 params.sprstat_abandoned_sent =
6767 streamout->abandoned_sent[__SCTP_PR_INDEX(policy)];
6768 }
6769
6770 if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
6771 retval = -EFAULT;
6772 goto out;
6773 }
6774
6775 retval = 0;
6776
6777 out:
6778 return retval;
6779 }
6780
6781 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
6782 char __user *optval,
6783 int __user *optlen)
6784 {
6785 struct sctp_assoc_value params;
6786 struct sctp_association *asoc;
6787 int retval = -EFAULT;
6788
6789 if (len < sizeof(params)) {
6790 retval = -EINVAL;
6791 goto out;
6792 }
6793
6794 len = sizeof(params);
6795 if (copy_from_user(&params, optval, len))
6796 goto out;
6797
6798 asoc = sctp_id2assoc(sk, params.assoc_id);
6799 if (asoc) {
6800 params.assoc_value = asoc->reconf_enable;
6801 } else if (!params.assoc_id) {
6802 struct sctp_sock *sp = sctp_sk(sk);
6803
6804 params.assoc_value = sp->ep->reconf_enable;
6805 } else {
6806 retval = -EINVAL;
6807 goto out;
6808 }
6809
6810 if (put_user(len, optlen))
6811 goto out;
6812
6813 if (copy_to_user(optval, &params, len))
6814 goto out;
6815
6816 retval = 0;
6817
6818 out:
6819 return retval;
6820 }
6821
6822 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
6823 char __user *optval,
6824 int __user *optlen)
6825 {
6826 struct sctp_assoc_value params;
6827 struct sctp_association *asoc;
6828 int retval = -EFAULT;
6829
6830 if (len < sizeof(params)) {
6831 retval = -EINVAL;
6832 goto out;
6833 }
6834
6835 len = sizeof(params);
6836 if (copy_from_user(&params, optval, len))
6837 goto out;
6838
6839 asoc = sctp_id2assoc(sk, params.assoc_id);
6840 if (asoc) {
6841 params.assoc_value = asoc->strreset_enable;
6842 } else if (!params.assoc_id) {
6843 struct sctp_sock *sp = sctp_sk(sk);
6844
6845 params.assoc_value = sp->ep->strreset_enable;
6846 } else {
6847 retval = -EINVAL;
6848 goto out;
6849 }
6850
6851 if (put_user(len, optlen))
6852 goto out;
6853
6854 if (copy_to_user(optval, &params, len))
6855 goto out;
6856
6857 retval = 0;
6858
6859 out:
6860 return retval;
6861 }
6862
6863 static int sctp_getsockopt(struct sock *sk, int level, int optname,
6864 char __user *optval, int __user *optlen)
6865 {
6866 int retval = 0;
6867 int len;
6868
6869 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
6870
6871 /* I can hardly begin to describe how wrong this is. This is
6872 * so broken as to be worse than useless. The API draft
6873 * REALLY is NOT helpful here... I am not convinced that the
6874 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
6875 * are at all well-founded.
6876 */
6877 if (level != SOL_SCTP) {
6878 struct sctp_af *af = sctp_sk(sk)->pf->af;
6879
6880 retval = af->getsockopt(sk, level, optname, optval, optlen);
6881 return retval;
6882 }
6883
6884 if (get_user(len, optlen))
6885 return -EFAULT;
6886
6887 if (len < 0)
6888 return -EINVAL;
6889
6890 lock_sock(sk);
6891
6892 switch (optname) {
6893 case SCTP_STATUS:
6894 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
6895 break;
6896 case SCTP_DISABLE_FRAGMENTS:
6897 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
6898 optlen);
6899 break;
6900 case SCTP_EVENTS:
6901 retval = sctp_getsockopt_events(sk, len, optval, optlen);
6902 break;
6903 case SCTP_AUTOCLOSE:
6904 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
6905 break;
6906 case SCTP_SOCKOPT_PEELOFF:
6907 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
6908 break;
6909 case SCTP_SOCKOPT_PEELOFF_FLAGS:
6910 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
6911 break;
6912 case SCTP_PEER_ADDR_PARAMS:
6913 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
6914 optlen);
6915 break;
6916 case SCTP_DELAYED_SACK:
6917 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
6918 optlen);
6919 break;
6920 case SCTP_INITMSG:
6921 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6922 break;
6923 case SCTP_GET_PEER_ADDRS:
6924 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6925 optlen);
6926 break;
6927 case SCTP_GET_LOCAL_ADDRS:
6928 retval = sctp_getsockopt_local_addrs(sk, len, optval,
6929 optlen);
6930 break;
6931 case SCTP_SOCKOPT_CONNECTX3:
6932 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6933 break;
6934 case SCTP_DEFAULT_SEND_PARAM:
6935 retval = sctp_getsockopt_default_send_param(sk, len,
6936 optval, optlen);
6937 break;
6938 case SCTP_DEFAULT_SNDINFO:
6939 retval = sctp_getsockopt_default_sndinfo(sk, len,
6940 optval, optlen);
6941 break;
6942 case SCTP_PRIMARY_ADDR:
6943 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6944 break;
6945 case SCTP_NODELAY:
6946 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6947 break;
6948 case SCTP_RTOINFO:
6949 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6950 break;
6951 case SCTP_ASSOCINFO:
6952 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6953 break;
6954 case SCTP_I_WANT_MAPPED_V4_ADDR:
6955 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6956 break;
6957 case SCTP_MAXSEG:
6958 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6959 break;
6960 case SCTP_GET_PEER_ADDR_INFO:
6961 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6962 optlen);
6963 break;
6964 case SCTP_ADAPTATION_LAYER:
6965 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6966 optlen);
6967 break;
6968 case SCTP_CONTEXT:
6969 retval = sctp_getsockopt_context(sk, len, optval, optlen);
6970 break;
6971 case SCTP_FRAGMENT_INTERLEAVE:
6972 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6973 optlen);
6974 break;
6975 case SCTP_PARTIAL_DELIVERY_POINT:
6976 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6977 optlen);
6978 break;
6979 case SCTP_MAX_BURST:
6980 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6981 break;
6982 case SCTP_AUTH_KEY:
6983 case SCTP_AUTH_CHUNK:
6984 case SCTP_AUTH_DELETE_KEY:
6985 retval = -EOPNOTSUPP;
6986 break;
6987 case SCTP_HMAC_IDENT:
6988 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6989 break;
6990 case SCTP_AUTH_ACTIVE_KEY:
6991 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6992 break;
6993 case SCTP_PEER_AUTH_CHUNKS:
6994 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6995 optlen);
6996 break;
6997 case SCTP_LOCAL_AUTH_CHUNKS:
6998 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6999 optlen);
7000 break;
7001 case SCTP_GET_ASSOC_NUMBER:
7002 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
7003 break;
7004 case SCTP_GET_ASSOC_ID_LIST:
7005 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
7006 break;
7007 case SCTP_AUTO_ASCONF:
7008 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
7009 break;
7010 case SCTP_PEER_ADDR_THLDS:
7011 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
7012 break;
7013 case SCTP_GET_ASSOC_STATS:
7014 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
7015 break;
7016 case SCTP_RECVRCVINFO:
7017 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
7018 break;
7019 case SCTP_RECVNXTINFO:
7020 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
7021 break;
7022 case SCTP_PR_SUPPORTED:
7023 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
7024 break;
7025 case SCTP_DEFAULT_PRINFO:
7026 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
7027 optlen);
7028 break;
7029 case SCTP_PR_ASSOC_STATUS:
7030 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
7031 optlen);
7032 break;
7033 case SCTP_PR_STREAM_STATUS:
7034 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
7035 optlen);
7036 break;
7037 case SCTP_RECONFIG_SUPPORTED:
7038 retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
7039 optlen);
7040 break;
7041 case SCTP_ENABLE_STREAM_RESET:
7042 retval = sctp_getsockopt_enable_strreset(sk, len, optval,
7043 optlen);
7044 break;
7045 default:
7046 retval = -ENOPROTOOPT;
7047 break;
7048 }
7049
7050 release_sock(sk);
7051 return retval;
7052 }
7053
7054 static int sctp_hash(struct sock *sk)
7055 {
7056 /* STUB */
7057 return 0;
7058 }
7059
7060 static void sctp_unhash(struct sock *sk)
7061 {
7062 /* STUB */
7063 }
7064
7065 /* Check if port is acceptable. Possibly find first available port.
7066 *
7067 * The port hash table (contained in the 'global' SCTP protocol storage
7068 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
7069 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
7070 * list (the list number is the port number hashed out, so as you
7071 * would expect from a hash function, all the ports in a given list have
7072 * such a number that hashes out to the same list number; you were
7073 * expecting that, right?); so each list has a set of ports, with a
7074 * link to the socket (struct sock) that uses it, the port number and
7075 * a fastreuse flag (FIXME: NPI ipg).
7076 */
7077 static struct sctp_bind_bucket *sctp_bucket_create(
7078 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
7079
7080 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
7081 {
7082 struct sctp_bind_hashbucket *head; /* hash list */
7083 struct sctp_bind_bucket *pp;
7084 unsigned short snum;
7085 int ret;
7086
7087 snum = ntohs(addr->v4.sin_port);
7088
7089 pr_debug("%s: begins, snum:%d\n", __func__, snum);
7090
7091 local_bh_disable();
7092
7093 if (snum == 0) {
7094 /* Search for an available port. */
7095 int low, high, remaining, index;
7096 unsigned int rover;
7097 struct net *net = sock_net(sk);
7098
7099 inet_get_local_port_range(net, &low, &high);
7100 remaining = (high - low) + 1;
7101 rover = prandom_u32() % remaining + low;
7102
7103 do {
7104 rover++;
7105 if ((rover < low) || (rover > high))
7106 rover = low;
7107 if (inet_is_local_reserved_port(net, rover))
7108 continue;
7109 index = sctp_phashfn(sock_net(sk), rover);
7110 head = &sctp_port_hashtable[index];
7111 spin_lock(&head->lock);
7112 sctp_for_each_hentry(pp, &head->chain)
7113 if ((pp->port == rover) &&
7114 net_eq(sock_net(sk), pp->net))
7115 goto next;
7116 break;
7117 next:
7118 spin_unlock(&head->lock);
7119 } while (--remaining > 0);
7120
7121 /* Exhausted local port range during search? */
7122 ret = 1;
7123 if (remaining <= 0)
7124 goto fail;
7125
7126 /* OK, here is the one we will use. HEAD (the port
7127 * hash table list entry) is non-NULL and we hold it's
7128 * mutex.
7129 */
7130 snum = rover;
7131 } else {
7132 /* We are given an specific port number; we verify
7133 * that it is not being used. If it is used, we will
7134 * exahust the search in the hash list corresponding
7135 * to the port number (snum) - we detect that with the
7136 * port iterator, pp being NULL.
7137 */
7138 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
7139 spin_lock(&head->lock);
7140 sctp_for_each_hentry(pp, &head->chain) {
7141 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
7142 goto pp_found;
7143 }
7144 }
7145 pp = NULL;
7146 goto pp_not_found;
7147 pp_found:
7148 if (!hlist_empty(&pp->owner)) {
7149 /* We had a port hash table hit - there is an
7150 * available port (pp != NULL) and it is being
7151 * used by other socket (pp->owner not empty); that other
7152 * socket is going to be sk2.
7153 */
7154 int reuse = sk->sk_reuse;
7155 struct sock *sk2;
7156
7157 pr_debug("%s: found a possible match\n", __func__);
7158
7159 if (pp->fastreuse && sk->sk_reuse &&
7160 sk->sk_state != SCTP_SS_LISTENING)
7161 goto success;
7162
7163 /* Run through the list of sockets bound to the port
7164 * (pp->port) [via the pointers bind_next and
7165 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
7166 * we get the endpoint they describe and run through
7167 * the endpoint's list of IP (v4 or v6) addresses,
7168 * comparing each of the addresses with the address of
7169 * the socket sk. If we find a match, then that means
7170 * that this port/socket (sk) combination are already
7171 * in an endpoint.
7172 */
7173 sk_for_each_bound(sk2, &pp->owner) {
7174 struct sctp_endpoint *ep2;
7175 ep2 = sctp_sk(sk2)->ep;
7176
7177 if (sk == sk2 ||
7178 (reuse && sk2->sk_reuse &&
7179 sk2->sk_state != SCTP_SS_LISTENING))
7180 continue;
7181
7182 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
7183 sctp_sk(sk2), sctp_sk(sk))) {
7184 ret = (long)sk2;
7185 goto fail_unlock;
7186 }
7187 }
7188
7189 pr_debug("%s: found a match\n", __func__);
7190 }
7191 pp_not_found:
7192 /* If there was a hash table miss, create a new port. */
7193 ret = 1;
7194 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
7195 goto fail_unlock;
7196
7197 /* In either case (hit or miss), make sure fastreuse is 1 only
7198 * if sk->sk_reuse is too (that is, if the caller requested
7199 * SO_REUSEADDR on this socket -sk-).
7200 */
7201 if (hlist_empty(&pp->owner)) {
7202 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
7203 pp->fastreuse = 1;
7204 else
7205 pp->fastreuse = 0;
7206 } else if (pp->fastreuse &&
7207 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
7208 pp->fastreuse = 0;
7209
7210 /* We are set, so fill up all the data in the hash table
7211 * entry, tie the socket list information with the rest of the
7212 * sockets FIXME: Blurry, NPI (ipg).
7213 */
7214 success:
7215 if (!sctp_sk(sk)->bind_hash) {
7216 inet_sk(sk)->inet_num = snum;
7217 sk_add_bind_node(sk, &pp->owner);
7218 sctp_sk(sk)->bind_hash = pp;
7219 }
7220 ret = 0;
7221
7222 fail_unlock:
7223 spin_unlock(&head->lock);
7224
7225 fail:
7226 local_bh_enable();
7227 return ret;
7228 }
7229
7230 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
7231 * port is requested.
7232 */
7233 static int sctp_get_port(struct sock *sk, unsigned short snum)
7234 {
7235 union sctp_addr addr;
7236 struct sctp_af *af = sctp_sk(sk)->pf->af;
7237
7238 /* Set up a dummy address struct from the sk. */
7239 af->from_sk(&addr, sk);
7240 addr.v4.sin_port = htons(snum);
7241
7242 /* Note: sk->sk_num gets filled in if ephemeral port request. */
7243 return !!sctp_get_port_local(sk, &addr);
7244 }
7245
7246 /*
7247 * Move a socket to LISTENING state.
7248 */
7249 static int sctp_listen_start(struct sock *sk, int backlog)
7250 {
7251 struct sctp_sock *sp = sctp_sk(sk);
7252 struct sctp_endpoint *ep = sp->ep;
7253 struct crypto_shash *tfm = NULL;
7254 char alg[32];
7255
7256 /* Allocate HMAC for generating cookie. */
7257 if (!sp->hmac && sp->sctp_hmac_alg) {
7258 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
7259 tfm = crypto_alloc_shash(alg, 0, 0);
7260 if (IS_ERR(tfm)) {
7261 net_info_ratelimited("failed to load transform for %s: %ld\n",
7262 sp->sctp_hmac_alg, PTR_ERR(tfm));
7263 return -ENOSYS;
7264 }
7265 sctp_sk(sk)->hmac = tfm;
7266 }
7267
7268 /*
7269 * If a bind() or sctp_bindx() is not called prior to a listen()
7270 * call that allows new associations to be accepted, the system
7271 * picks an ephemeral port and will choose an address set equivalent
7272 * to binding with a wildcard address.
7273 *
7274 * This is not currently spelled out in the SCTP sockets
7275 * extensions draft, but follows the practice as seen in TCP
7276 * sockets.
7277 *
7278 */
7279 sk->sk_state = SCTP_SS_LISTENING;
7280 if (!ep->base.bind_addr.port) {
7281 if (sctp_autobind(sk))
7282 return -EAGAIN;
7283 } else {
7284 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
7285 sk->sk_state = SCTP_SS_CLOSED;
7286 return -EADDRINUSE;
7287 }
7288 }
7289
7290 sk->sk_max_ack_backlog = backlog;
7291 sctp_hash_endpoint(ep);
7292 return 0;
7293 }
7294
7295 /*
7296 * 4.1.3 / 5.1.3 listen()
7297 *
7298 * By default, new associations are not accepted for UDP style sockets.
7299 * An application uses listen() to mark a socket as being able to
7300 * accept new associations.
7301 *
7302 * On TCP style sockets, applications use listen() to ready the SCTP
7303 * endpoint for accepting inbound associations.
7304 *
7305 * On both types of endpoints a backlog of '0' disables listening.
7306 *
7307 * Move a socket to LISTENING state.
7308 */
7309 int sctp_inet_listen(struct socket *sock, int backlog)
7310 {
7311 struct sock *sk = sock->sk;
7312 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
7313 int err = -EINVAL;
7314
7315 if (unlikely(backlog < 0))
7316 return err;
7317
7318 lock_sock(sk);
7319
7320 /* Peeled-off sockets are not allowed to listen(). */
7321 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
7322 goto out;
7323
7324 if (sock->state != SS_UNCONNECTED)
7325 goto out;
7326
7327 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
7328 goto out;
7329
7330 /* If backlog is zero, disable listening. */
7331 if (!backlog) {
7332 if (sctp_sstate(sk, CLOSED))
7333 goto out;
7334
7335 err = 0;
7336 sctp_unhash_endpoint(ep);
7337 sk->sk_state = SCTP_SS_CLOSED;
7338 if (sk->sk_reuse)
7339 sctp_sk(sk)->bind_hash->fastreuse = 1;
7340 goto out;
7341 }
7342
7343 /* If we are already listening, just update the backlog */
7344 if (sctp_sstate(sk, LISTENING))
7345 sk->sk_max_ack_backlog = backlog;
7346 else {
7347 err = sctp_listen_start(sk, backlog);
7348 if (err)
7349 goto out;
7350 }
7351
7352 err = 0;
7353 out:
7354 release_sock(sk);
7355 return err;
7356 }
7357
7358 /*
7359 * This function is done by modeling the current datagram_poll() and the
7360 * tcp_poll(). Note that, based on these implementations, we don't
7361 * lock the socket in this function, even though it seems that,
7362 * ideally, locking or some other mechanisms can be used to ensure
7363 * the integrity of the counters (sndbuf and wmem_alloc) used
7364 * in this place. We assume that we don't need locks either until proven
7365 * otherwise.
7366 *
7367 * Another thing to note is that we include the Async I/O support
7368 * here, again, by modeling the current TCP/UDP code. We don't have
7369 * a good way to test with it yet.
7370 */
7371 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
7372 {
7373 struct sock *sk = sock->sk;
7374 struct sctp_sock *sp = sctp_sk(sk);
7375 unsigned int mask;
7376
7377 poll_wait(file, sk_sleep(sk), wait);
7378
7379 sock_rps_record_flow(sk);
7380
7381 /* A TCP-style listening socket becomes readable when the accept queue
7382 * is not empty.
7383 */
7384 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
7385 return (!list_empty(&sp->ep->asocs)) ?
7386 (POLLIN | POLLRDNORM) : 0;
7387
7388 mask = 0;
7389
7390 /* Is there any exceptional events? */
7391 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
7392 mask |= POLLERR |
7393 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
7394 if (sk->sk_shutdown & RCV_SHUTDOWN)
7395 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
7396 if (sk->sk_shutdown == SHUTDOWN_MASK)
7397 mask |= POLLHUP;
7398
7399 /* Is it readable? Reconsider this code with TCP-style support. */
7400 if (!skb_queue_empty(&sk->sk_receive_queue))
7401 mask |= POLLIN | POLLRDNORM;
7402
7403 /* The association is either gone or not ready. */
7404 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
7405 return mask;
7406
7407 /* Is it writable? */
7408 if (sctp_writeable(sk)) {
7409 mask |= POLLOUT | POLLWRNORM;
7410 } else {
7411 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
7412 /*
7413 * Since the socket is not locked, the buffer
7414 * might be made available after the writeable check and
7415 * before the bit is set. This could cause a lost I/O
7416 * signal. tcp_poll() has a race breaker for this race
7417 * condition. Based on their implementation, we put
7418 * in the following code to cover it as well.
7419 */
7420 if (sctp_writeable(sk))
7421 mask |= POLLOUT | POLLWRNORM;
7422 }
7423 return mask;
7424 }
7425
7426 /********************************************************************
7427 * 2nd Level Abstractions
7428 ********************************************************************/
7429
7430 static struct sctp_bind_bucket *sctp_bucket_create(
7431 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
7432 {
7433 struct sctp_bind_bucket *pp;
7434
7435 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
7436 if (pp) {
7437 SCTP_DBG_OBJCNT_INC(bind_bucket);
7438 pp->port = snum;
7439 pp->fastreuse = 0;
7440 INIT_HLIST_HEAD(&pp->owner);
7441 pp->net = net;
7442 hlist_add_head(&pp->node, &head->chain);
7443 }
7444 return pp;
7445 }
7446
7447 /* Caller must hold hashbucket lock for this tb with local BH disabled */
7448 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
7449 {
7450 if (pp && hlist_empty(&pp->owner)) {
7451 __hlist_del(&pp->node);
7452 kmem_cache_free(sctp_bucket_cachep, pp);
7453 SCTP_DBG_OBJCNT_DEC(bind_bucket);
7454 }
7455 }
7456
7457 /* Release this socket's reference to a local port. */
7458 static inline void __sctp_put_port(struct sock *sk)
7459 {
7460 struct sctp_bind_hashbucket *head =
7461 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
7462 inet_sk(sk)->inet_num)];
7463 struct sctp_bind_bucket *pp;
7464
7465 spin_lock(&head->lock);
7466 pp = sctp_sk(sk)->bind_hash;
7467 __sk_del_bind_node(sk);
7468 sctp_sk(sk)->bind_hash = NULL;
7469 inet_sk(sk)->inet_num = 0;
7470 sctp_bucket_destroy(pp);
7471 spin_unlock(&head->lock);
7472 }
7473
7474 void sctp_put_port(struct sock *sk)
7475 {
7476 local_bh_disable();
7477 __sctp_put_port(sk);
7478 local_bh_enable();
7479 }
7480
7481 /*
7482 * The system picks an ephemeral port and choose an address set equivalent
7483 * to binding with a wildcard address.
7484 * One of those addresses will be the primary address for the association.
7485 * This automatically enables the multihoming capability of SCTP.
7486 */
7487 static int sctp_autobind(struct sock *sk)
7488 {
7489 union sctp_addr autoaddr;
7490 struct sctp_af *af;
7491 __be16 port;
7492
7493 /* Initialize a local sockaddr structure to INADDR_ANY. */
7494 af = sctp_sk(sk)->pf->af;
7495
7496 port = htons(inet_sk(sk)->inet_num);
7497 af->inaddr_any(&autoaddr, port);
7498
7499 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
7500 }
7501
7502 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
7503 *
7504 * From RFC 2292
7505 * 4.2 The cmsghdr Structure *
7506 *
7507 * When ancillary data is sent or received, any number of ancillary data
7508 * objects can be specified by the msg_control and msg_controllen members of
7509 * the msghdr structure, because each object is preceded by
7510 * a cmsghdr structure defining the object's length (the cmsg_len member).
7511 * Historically Berkeley-derived implementations have passed only one object
7512 * at a time, but this API allows multiple objects to be
7513 * passed in a single call to sendmsg() or recvmsg(). The following example
7514 * shows two ancillary data objects in a control buffer.
7515 *
7516 * |<--------------------------- msg_controllen -------------------------->|
7517 * | |
7518 *
7519 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
7520 *
7521 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
7522 * | | |
7523 *
7524 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
7525 *
7526 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
7527 * | | | | |
7528 *
7529 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7530 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
7531 *
7532 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
7533 *
7534 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7535 * ^
7536 * |
7537 *
7538 * msg_control
7539 * points here
7540 */
7541 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
7542 {
7543 struct msghdr *my_msg = (struct msghdr *)msg;
7544 struct cmsghdr *cmsg;
7545
7546 for_each_cmsghdr(cmsg, my_msg) {
7547 if (!CMSG_OK(my_msg, cmsg))
7548 return -EINVAL;
7549
7550 /* Should we parse this header or ignore? */
7551 if (cmsg->cmsg_level != IPPROTO_SCTP)
7552 continue;
7553
7554 /* Strictly check lengths following example in SCM code. */
7555 switch (cmsg->cmsg_type) {
7556 case SCTP_INIT:
7557 /* SCTP Socket API Extension
7558 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
7559 *
7560 * This cmsghdr structure provides information for
7561 * initializing new SCTP associations with sendmsg().
7562 * The SCTP_INITMSG socket option uses this same data
7563 * structure. This structure is not used for
7564 * recvmsg().
7565 *
7566 * cmsg_level cmsg_type cmsg_data[]
7567 * ------------ ------------ ----------------------
7568 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
7569 */
7570 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
7571 return -EINVAL;
7572
7573 cmsgs->init = CMSG_DATA(cmsg);
7574 break;
7575
7576 case SCTP_SNDRCV:
7577 /* SCTP Socket API Extension
7578 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
7579 *
7580 * This cmsghdr structure specifies SCTP options for
7581 * sendmsg() and describes SCTP header information
7582 * about a received message through recvmsg().
7583 *
7584 * cmsg_level cmsg_type cmsg_data[]
7585 * ------------ ------------ ----------------------
7586 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
7587 */
7588 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
7589 return -EINVAL;
7590
7591 cmsgs->srinfo = CMSG_DATA(cmsg);
7592
7593 if (cmsgs->srinfo->sinfo_flags &
7594 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7595 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7596 SCTP_ABORT | SCTP_EOF))
7597 return -EINVAL;
7598 break;
7599
7600 case SCTP_SNDINFO:
7601 /* SCTP Socket API Extension
7602 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
7603 *
7604 * This cmsghdr structure specifies SCTP options for
7605 * sendmsg(). This structure and SCTP_RCVINFO replaces
7606 * SCTP_SNDRCV which has been deprecated.
7607 *
7608 * cmsg_level cmsg_type cmsg_data[]
7609 * ------------ ------------ ---------------------
7610 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
7611 */
7612 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
7613 return -EINVAL;
7614
7615 cmsgs->sinfo = CMSG_DATA(cmsg);
7616
7617 if (cmsgs->sinfo->snd_flags &
7618 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7619 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7620 SCTP_ABORT | SCTP_EOF))
7621 return -EINVAL;
7622 break;
7623 default:
7624 return -EINVAL;
7625 }
7626 }
7627
7628 return 0;
7629 }
7630
7631 /*
7632 * Wait for a packet..
7633 * Note: This function is the same function as in core/datagram.c
7634 * with a few modifications to make lksctp work.
7635 */
7636 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
7637 {
7638 int error;
7639 DEFINE_WAIT(wait);
7640
7641 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7642
7643 /* Socket errors? */
7644 error = sock_error(sk);
7645 if (error)
7646 goto out;
7647
7648 if (!skb_queue_empty(&sk->sk_receive_queue))
7649 goto ready;
7650
7651 /* Socket shut down? */
7652 if (sk->sk_shutdown & RCV_SHUTDOWN)
7653 goto out;
7654
7655 /* Sequenced packets can come disconnected. If so we report the
7656 * problem.
7657 */
7658 error = -ENOTCONN;
7659
7660 /* Is there a good reason to think that we may receive some data? */
7661 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
7662 goto out;
7663
7664 /* Handle signals. */
7665 if (signal_pending(current))
7666 goto interrupted;
7667
7668 /* Let another process have a go. Since we are going to sleep
7669 * anyway. Note: This may cause odd behaviors if the message
7670 * does not fit in the user's buffer, but this seems to be the
7671 * only way to honor MSG_DONTWAIT realistically.
7672 */
7673 release_sock(sk);
7674 *timeo_p = schedule_timeout(*timeo_p);
7675 lock_sock(sk);
7676
7677 ready:
7678 finish_wait(sk_sleep(sk), &wait);
7679 return 0;
7680
7681 interrupted:
7682 error = sock_intr_errno(*timeo_p);
7683
7684 out:
7685 finish_wait(sk_sleep(sk), &wait);
7686 *err = error;
7687 return error;
7688 }
7689
7690 /* Receive a datagram.
7691 * Note: This is pretty much the same routine as in core/datagram.c
7692 * with a few changes to make lksctp work.
7693 */
7694 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
7695 int noblock, int *err)
7696 {
7697 int error;
7698 struct sk_buff *skb;
7699 long timeo;
7700
7701 timeo = sock_rcvtimeo(sk, noblock);
7702
7703 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
7704 MAX_SCHEDULE_TIMEOUT);
7705
7706 do {
7707 /* Again only user level code calls this function,
7708 * so nothing interrupt level
7709 * will suddenly eat the receive_queue.
7710 *
7711 * Look at current nfs client by the way...
7712 * However, this function was correct in any case. 8)
7713 */
7714 if (flags & MSG_PEEK) {
7715 skb = skb_peek(&sk->sk_receive_queue);
7716 if (skb)
7717 refcount_inc(&skb->users);
7718 } else {
7719 skb = __skb_dequeue(&sk->sk_receive_queue);
7720 }
7721
7722 if (skb)
7723 return skb;
7724
7725 /* Caller is allowed not to check sk->sk_err before calling. */
7726 error = sock_error(sk);
7727 if (error)
7728 goto no_packet;
7729
7730 if (sk->sk_shutdown & RCV_SHUTDOWN)
7731 break;
7732
7733 if (sk_can_busy_loop(sk)) {
7734 sk_busy_loop(sk, noblock);
7735
7736 if (!skb_queue_empty(&sk->sk_receive_queue))
7737 continue;
7738 }
7739
7740 /* User doesn't want to wait. */
7741 error = -EAGAIN;
7742 if (!timeo)
7743 goto no_packet;
7744 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
7745
7746 return NULL;
7747
7748 no_packet:
7749 *err = error;
7750 return NULL;
7751 }
7752
7753 /* If sndbuf has changed, wake up per association sndbuf waiters. */
7754 static void __sctp_write_space(struct sctp_association *asoc)
7755 {
7756 struct sock *sk = asoc->base.sk;
7757
7758 if (sctp_wspace(asoc) <= 0)
7759 return;
7760
7761 if (waitqueue_active(&asoc->wait))
7762 wake_up_interruptible(&asoc->wait);
7763
7764 if (sctp_writeable(sk)) {
7765 struct socket_wq *wq;
7766
7767 rcu_read_lock();
7768 wq = rcu_dereference(sk->sk_wq);
7769 if (wq) {
7770 if (waitqueue_active(&wq->wait))
7771 wake_up_interruptible(&wq->wait);
7772
7773 /* Note that we try to include the Async I/O support
7774 * here by modeling from the current TCP/UDP code.
7775 * We have not tested with it yet.
7776 */
7777 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
7778 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
7779 }
7780 rcu_read_unlock();
7781 }
7782 }
7783
7784 static void sctp_wake_up_waiters(struct sock *sk,
7785 struct sctp_association *asoc)
7786 {
7787 struct sctp_association *tmp = asoc;
7788
7789 /* We do accounting for the sndbuf space per association,
7790 * so we only need to wake our own association.
7791 */
7792 if (asoc->ep->sndbuf_policy)
7793 return __sctp_write_space(asoc);
7794
7795 /* If association goes down and is just flushing its
7796 * outq, then just normally notify others.
7797 */
7798 if (asoc->base.dead)
7799 return sctp_write_space(sk);
7800
7801 /* Accounting for the sndbuf space is per socket, so we
7802 * need to wake up others, try to be fair and in case of
7803 * other associations, let them have a go first instead
7804 * of just doing a sctp_write_space() call.
7805 *
7806 * Note that we reach sctp_wake_up_waiters() only when
7807 * associations free up queued chunks, thus we are under
7808 * lock and the list of associations on a socket is
7809 * guaranteed not to change.
7810 */
7811 for (tmp = list_next_entry(tmp, asocs); 1;
7812 tmp = list_next_entry(tmp, asocs)) {
7813 /* Manually skip the head element. */
7814 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
7815 continue;
7816 /* Wake up association. */
7817 __sctp_write_space(tmp);
7818 /* We've reached the end. */
7819 if (tmp == asoc)
7820 break;
7821 }
7822 }
7823
7824 /* Do accounting for the sndbuf space.
7825 * Decrement the used sndbuf space of the corresponding association by the
7826 * data size which was just transmitted(freed).
7827 */
7828 static void sctp_wfree(struct sk_buff *skb)
7829 {
7830 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
7831 struct sctp_association *asoc = chunk->asoc;
7832 struct sock *sk = asoc->base.sk;
7833
7834 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
7835 sizeof(struct sk_buff) +
7836 sizeof(struct sctp_chunk);
7837
7838 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc));
7839
7840 /*
7841 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
7842 */
7843 sk->sk_wmem_queued -= skb->truesize;
7844 sk_mem_uncharge(sk, skb->truesize);
7845
7846 sock_wfree(skb);
7847 sctp_wake_up_waiters(sk, asoc);
7848
7849 sctp_association_put(asoc);
7850 }
7851
7852 /* Do accounting for the receive space on the socket.
7853 * Accounting for the association is done in ulpevent.c
7854 * We set this as a destructor for the cloned data skbs so that
7855 * accounting is done at the correct time.
7856 */
7857 void sctp_sock_rfree(struct sk_buff *skb)
7858 {
7859 struct sock *sk = skb->sk;
7860 struct sctp_ulpevent *event = sctp_skb2event(skb);
7861
7862 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
7863
7864 /*
7865 * Mimic the behavior of sock_rfree
7866 */
7867 sk_mem_uncharge(sk, event->rmem_len);
7868 }
7869
7870
7871 /* Helper function to wait for space in the sndbuf. */
7872 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
7873 size_t msg_len)
7874 {
7875 struct sock *sk = asoc->base.sk;
7876 long current_timeo = *timeo_p;
7877 DEFINE_WAIT(wait);
7878 int err = 0;
7879
7880 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
7881 *timeo_p, msg_len);
7882
7883 /* Increment the association's refcnt. */
7884 sctp_association_hold(asoc);
7885
7886 /* Wait on the association specific sndbuf space. */
7887 for (;;) {
7888 prepare_to_wait_exclusive(&asoc->wait, &wait,
7889 TASK_INTERRUPTIBLE);
7890 if (asoc->base.dead)
7891 goto do_dead;
7892 if (!*timeo_p)
7893 goto do_nonblock;
7894 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
7895 goto do_error;
7896 if (signal_pending(current))
7897 goto do_interrupted;
7898 if (msg_len <= sctp_wspace(asoc))
7899 break;
7900
7901 /* Let another process have a go. Since we are going
7902 * to sleep anyway.
7903 */
7904 release_sock(sk);
7905 current_timeo = schedule_timeout(current_timeo);
7906 lock_sock(sk);
7907 if (sk != asoc->base.sk)
7908 goto do_error;
7909
7910 *timeo_p = current_timeo;
7911 }
7912
7913 out:
7914 finish_wait(&asoc->wait, &wait);
7915
7916 /* Release the association's refcnt. */
7917 sctp_association_put(asoc);
7918
7919 return err;
7920
7921 do_dead:
7922 err = -ESRCH;
7923 goto out;
7924
7925 do_error:
7926 err = -EPIPE;
7927 goto out;
7928
7929 do_interrupted:
7930 err = sock_intr_errno(*timeo_p);
7931 goto out;
7932
7933 do_nonblock:
7934 err = -EAGAIN;
7935 goto out;
7936 }
7937
7938 void sctp_data_ready(struct sock *sk)
7939 {
7940 struct socket_wq *wq;
7941
7942 rcu_read_lock();
7943 wq = rcu_dereference(sk->sk_wq);
7944 if (skwq_has_sleeper(wq))
7945 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
7946 POLLRDNORM | POLLRDBAND);
7947 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
7948 rcu_read_unlock();
7949 }
7950
7951 /* If socket sndbuf has changed, wake up all per association waiters. */
7952 void sctp_write_space(struct sock *sk)
7953 {
7954 struct sctp_association *asoc;
7955
7956 /* Wake up the tasks in each wait queue. */
7957 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
7958 __sctp_write_space(asoc);
7959 }
7960 }
7961
7962 /* Is there any sndbuf space available on the socket?
7963 *
7964 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7965 * associations on the same socket. For a UDP-style socket with
7966 * multiple associations, it is possible for it to be "unwriteable"
7967 * prematurely. I assume that this is acceptable because
7968 * a premature "unwriteable" is better than an accidental "writeable" which
7969 * would cause an unwanted block under certain circumstances. For the 1-1
7970 * UDP-style sockets or TCP-style sockets, this code should work.
7971 * - Daisy
7972 */
7973 static int sctp_writeable(struct sock *sk)
7974 {
7975 int amt = 0;
7976
7977 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7978 if (amt < 0)
7979 amt = 0;
7980 return amt;
7981 }
7982
7983 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7984 * returns immediately with EINPROGRESS.
7985 */
7986 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7987 {
7988 struct sock *sk = asoc->base.sk;
7989 int err = 0;
7990 long current_timeo = *timeo_p;
7991 DEFINE_WAIT(wait);
7992
7993 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7994
7995 /* Increment the association's refcnt. */
7996 sctp_association_hold(asoc);
7997
7998 for (;;) {
7999 prepare_to_wait_exclusive(&asoc->wait, &wait,
8000 TASK_INTERRUPTIBLE);
8001 if (!*timeo_p)
8002 goto do_nonblock;
8003 if (sk->sk_shutdown & RCV_SHUTDOWN)
8004 break;
8005 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
8006 asoc->base.dead)
8007 goto do_error;
8008 if (signal_pending(current))
8009 goto do_interrupted;
8010
8011 if (sctp_state(asoc, ESTABLISHED))
8012 break;
8013
8014 /* Let another process have a go. Since we are going
8015 * to sleep anyway.
8016 */
8017 release_sock(sk);
8018 current_timeo = schedule_timeout(current_timeo);
8019 lock_sock(sk);
8020
8021 *timeo_p = current_timeo;
8022 }
8023
8024 out:
8025 finish_wait(&asoc->wait, &wait);
8026
8027 /* Release the association's refcnt. */
8028 sctp_association_put(asoc);
8029
8030 return err;
8031
8032 do_error:
8033 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
8034 err = -ETIMEDOUT;
8035 else
8036 err = -ECONNREFUSED;
8037 goto out;
8038
8039 do_interrupted:
8040 err = sock_intr_errno(*timeo_p);
8041 goto out;
8042
8043 do_nonblock:
8044 err = -EINPROGRESS;
8045 goto out;
8046 }
8047
8048 static int sctp_wait_for_accept(struct sock *sk, long timeo)
8049 {
8050 struct sctp_endpoint *ep;
8051 int err = 0;
8052 DEFINE_WAIT(wait);
8053
8054 ep = sctp_sk(sk)->ep;
8055
8056
8057 for (;;) {
8058 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
8059 TASK_INTERRUPTIBLE);
8060
8061 if (list_empty(&ep->asocs)) {
8062 release_sock(sk);
8063 timeo = schedule_timeout(timeo);
8064 lock_sock(sk);
8065 }
8066
8067 err = -EINVAL;
8068 if (!sctp_sstate(sk, LISTENING))
8069 break;
8070
8071 err = 0;
8072 if (!list_empty(&ep->asocs))
8073 break;
8074
8075 err = sock_intr_errno(timeo);
8076 if (signal_pending(current))
8077 break;
8078
8079 err = -EAGAIN;
8080 if (!timeo)
8081 break;
8082 }
8083
8084 finish_wait(sk_sleep(sk), &wait);
8085
8086 return err;
8087 }
8088
8089 static void sctp_wait_for_close(struct sock *sk, long timeout)
8090 {
8091 DEFINE_WAIT(wait);
8092
8093 do {
8094 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8095 if (list_empty(&sctp_sk(sk)->ep->asocs))
8096 break;
8097 release_sock(sk);
8098 timeout = schedule_timeout(timeout);
8099 lock_sock(sk);
8100 } while (!signal_pending(current) && timeout);
8101
8102 finish_wait(sk_sleep(sk), &wait);
8103 }
8104
8105 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
8106 {
8107 struct sk_buff *frag;
8108
8109 if (!skb->data_len)
8110 goto done;
8111
8112 /* Don't forget the fragments. */
8113 skb_walk_frags(skb, frag)
8114 sctp_skb_set_owner_r_frag(frag, sk);
8115
8116 done:
8117 sctp_skb_set_owner_r(skb, sk);
8118 }
8119
8120 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
8121 struct sctp_association *asoc)
8122 {
8123 struct inet_sock *inet = inet_sk(sk);
8124 struct inet_sock *newinet;
8125
8126 newsk->sk_type = sk->sk_type;
8127 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
8128 newsk->sk_flags = sk->sk_flags;
8129 newsk->sk_tsflags = sk->sk_tsflags;
8130 newsk->sk_no_check_tx = sk->sk_no_check_tx;
8131 newsk->sk_no_check_rx = sk->sk_no_check_rx;
8132 newsk->sk_reuse = sk->sk_reuse;
8133
8134 newsk->sk_shutdown = sk->sk_shutdown;
8135 newsk->sk_destruct = sctp_destruct_sock;
8136 newsk->sk_family = sk->sk_family;
8137 newsk->sk_protocol = IPPROTO_SCTP;
8138 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
8139 newsk->sk_sndbuf = sk->sk_sndbuf;
8140 newsk->sk_rcvbuf = sk->sk_rcvbuf;
8141 newsk->sk_lingertime = sk->sk_lingertime;
8142 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
8143 newsk->sk_sndtimeo = sk->sk_sndtimeo;
8144 newsk->sk_rxhash = sk->sk_rxhash;
8145
8146 newinet = inet_sk(newsk);
8147
8148 /* Initialize sk's sport, dport, rcv_saddr and daddr for
8149 * getsockname() and getpeername()
8150 */
8151 newinet->inet_sport = inet->inet_sport;
8152 newinet->inet_saddr = inet->inet_saddr;
8153 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
8154 newinet->inet_dport = htons(asoc->peer.port);
8155 newinet->pmtudisc = inet->pmtudisc;
8156 newinet->inet_id = asoc->next_tsn ^ jiffies;
8157
8158 newinet->uc_ttl = inet->uc_ttl;
8159 newinet->mc_loop = 1;
8160 newinet->mc_ttl = 1;
8161 newinet->mc_index = 0;
8162 newinet->mc_list = NULL;
8163
8164 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
8165 net_enable_timestamp();
8166
8167 security_sk_clone(sk, newsk);
8168 }
8169
8170 static inline void sctp_copy_descendant(struct sock *sk_to,
8171 const struct sock *sk_from)
8172 {
8173 int ancestor_size = sizeof(struct inet_sock) +
8174 sizeof(struct sctp_sock) -
8175 offsetof(struct sctp_sock, auto_asconf_list);
8176
8177 if (sk_from->sk_family == PF_INET6)
8178 ancestor_size += sizeof(struct ipv6_pinfo);
8179
8180 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
8181 }
8182
8183 /* Populate the fields of the newsk from the oldsk and migrate the assoc
8184 * and its messages to the newsk.
8185 */
8186 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
8187 struct sctp_association *assoc,
8188 enum sctp_socket_type type)
8189 {
8190 struct sctp_sock *oldsp = sctp_sk(oldsk);
8191 struct sctp_sock *newsp = sctp_sk(newsk);
8192 struct sctp_bind_bucket *pp; /* hash list port iterator */
8193 struct sctp_endpoint *newep = newsp->ep;
8194 struct sk_buff *skb, *tmp;
8195 struct sctp_ulpevent *event;
8196 struct sctp_bind_hashbucket *head;
8197
8198 /* Migrate socket buffer sizes and all the socket level options to the
8199 * new socket.
8200 */
8201 newsk->sk_sndbuf = oldsk->sk_sndbuf;
8202 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
8203 /* Brute force copy old sctp opt. */
8204 sctp_copy_descendant(newsk, oldsk);
8205
8206 /* Restore the ep value that was overwritten with the above structure
8207 * copy.
8208 */
8209 newsp->ep = newep;
8210 newsp->hmac = NULL;
8211
8212 /* Hook this new socket in to the bind_hash list. */
8213 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
8214 inet_sk(oldsk)->inet_num)];
8215 spin_lock_bh(&head->lock);
8216 pp = sctp_sk(oldsk)->bind_hash;
8217 sk_add_bind_node(newsk, &pp->owner);
8218 sctp_sk(newsk)->bind_hash = pp;
8219 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
8220 spin_unlock_bh(&head->lock);
8221
8222 /* Copy the bind_addr list from the original endpoint to the new
8223 * endpoint so that we can handle restarts properly
8224 */
8225 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
8226 &oldsp->ep->base.bind_addr, GFP_KERNEL);
8227
8228 /* Move any messages in the old socket's receive queue that are for the
8229 * peeled off association to the new socket's receive queue.
8230 */
8231 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
8232 event = sctp_skb2event(skb);
8233 if (event->asoc == assoc) {
8234 __skb_unlink(skb, &oldsk->sk_receive_queue);
8235 __skb_queue_tail(&newsk->sk_receive_queue, skb);
8236 sctp_skb_set_owner_r_frag(skb, newsk);
8237 }
8238 }
8239
8240 /* Clean up any messages pending delivery due to partial
8241 * delivery. Three cases:
8242 * 1) No partial deliver; no work.
8243 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
8244 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
8245 */
8246 skb_queue_head_init(&newsp->pd_lobby);
8247 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
8248
8249 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
8250 struct sk_buff_head *queue;
8251
8252 /* Decide which queue to move pd_lobby skbs to. */
8253 if (assoc->ulpq.pd_mode) {
8254 queue = &newsp->pd_lobby;
8255 } else
8256 queue = &newsk->sk_receive_queue;
8257
8258 /* Walk through the pd_lobby, looking for skbs that
8259 * need moved to the new socket.
8260 */
8261 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
8262 event = sctp_skb2event(skb);
8263 if (event->asoc == assoc) {
8264 __skb_unlink(skb, &oldsp->pd_lobby);
8265 __skb_queue_tail(queue, skb);
8266 sctp_skb_set_owner_r_frag(skb, newsk);
8267 }
8268 }
8269
8270 /* Clear up any skbs waiting for the partial
8271 * delivery to finish.
8272 */
8273 if (assoc->ulpq.pd_mode)
8274 sctp_clear_pd(oldsk, NULL);
8275
8276 }
8277
8278 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
8279 sctp_skb_set_owner_r_frag(skb, newsk);
8280
8281 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
8282 sctp_skb_set_owner_r_frag(skb, newsk);
8283
8284 /* Set the type of socket to indicate that it is peeled off from the
8285 * original UDP-style socket or created with the accept() call on a
8286 * TCP-style socket..
8287 */
8288 newsp->type = type;
8289
8290 /* Mark the new socket "in-use" by the user so that any packets
8291 * that may arrive on the association after we've moved it are
8292 * queued to the backlog. This prevents a potential race between
8293 * backlog processing on the old socket and new-packet processing
8294 * on the new socket.
8295 *
8296 * The caller has just allocated newsk so we can guarantee that other
8297 * paths won't try to lock it and then oldsk.
8298 */
8299 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
8300 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w);
8301 sctp_assoc_migrate(assoc, newsk);
8302 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w);
8303
8304 /* If the association on the newsk is already closed before accept()
8305 * is called, set RCV_SHUTDOWN flag.
8306 */
8307 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
8308 newsk->sk_state = SCTP_SS_CLOSED;
8309 newsk->sk_shutdown |= RCV_SHUTDOWN;
8310 } else {
8311 newsk->sk_state = SCTP_SS_ESTABLISHED;
8312 }
8313
8314 release_sock(newsk);
8315 }
8316
8317
8318 /* This proto struct describes the ULP interface for SCTP. */
8319 struct proto sctp_prot = {
8320 .name = "SCTP",
8321 .owner = THIS_MODULE,
8322 .close = sctp_close,
8323 .disconnect = sctp_disconnect,
8324 .accept = sctp_accept,
8325 .ioctl = sctp_ioctl,
8326 .init = sctp_init_sock,
8327 .destroy = sctp_destroy_sock,
8328 .shutdown = sctp_shutdown,
8329 .setsockopt = sctp_setsockopt,
8330 .getsockopt = sctp_getsockopt,
8331 .sendmsg = sctp_sendmsg,
8332 .recvmsg = sctp_recvmsg,
8333 .bind = sctp_bind,
8334 .backlog_rcv = sctp_backlog_rcv,
8335 .hash = sctp_hash,
8336 .unhash = sctp_unhash,
8337 .no_autobind = true,
8338 .obj_size = sizeof(struct sctp_sock),
8339 .sysctl_mem = sysctl_sctp_mem,
8340 .sysctl_rmem = sysctl_sctp_rmem,
8341 .sysctl_wmem = sysctl_sctp_wmem,
8342 .memory_pressure = &sctp_memory_pressure,
8343 .enter_memory_pressure = sctp_enter_memory_pressure,
8344 .memory_allocated = &sctp_memory_allocated,
8345 .sockets_allocated = &sctp_sockets_allocated,
8346 };
8347
8348 #if IS_ENABLED(CONFIG_IPV6)
8349
8350 #include <net/transp_v6.h>
8351 static void sctp_v6_destroy_sock(struct sock *sk)
8352 {
8353 sctp_destroy_sock(sk);
8354 inet6_destroy_sock(sk);
8355 }
8356
8357 struct proto sctpv6_prot = {
8358 .name = "SCTPv6",
8359 .owner = THIS_MODULE,
8360 .close = sctp_close,
8361 .disconnect = sctp_disconnect,
8362 .accept = sctp_accept,
8363 .ioctl = sctp_ioctl,
8364 .init = sctp_init_sock,
8365 .destroy = sctp_v6_destroy_sock,
8366 .shutdown = sctp_shutdown,
8367 .setsockopt = sctp_setsockopt,
8368 .getsockopt = sctp_getsockopt,
8369 .sendmsg = sctp_sendmsg,
8370 .recvmsg = sctp_recvmsg,
8371 .bind = sctp_bind,
8372 .backlog_rcv = sctp_backlog_rcv,
8373 .hash = sctp_hash,
8374 .unhash = sctp_unhash,
8375 .no_autobind = true,
8376 .obj_size = sizeof(struct sctp6_sock),
8377 .sysctl_mem = sysctl_sctp_mem,
8378 .sysctl_rmem = sysctl_sctp_rmem,
8379 .sysctl_wmem = sysctl_sctp_wmem,
8380 .memory_pressure = &sctp_memory_pressure,
8381 .enter_memory_pressure = sctp_enter_memory_pressure,
8382 .memory_allocated = &sctp_memory_allocated,
8383 .sockets_allocated = &sctp_sockets_allocated,
8384 };
8385 #endif /* IS_ENABLED(CONFIG_IPV6) */