]> git.ipfire.org Git - people/ms/linux.git/blob - net/socket.c
Merge tag 'tegra-for-5.20-arm64-defconfig' of git://git.kernel.org/pub/scm/linux...
[people/ms/linux.git] / net / socket.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/net.h>
61 #include <linux/interrupt.h>
62 #include <linux/thread_info.h>
63 #include <linux/rcupdate.h>
64 #include <linux/netdevice.h>
65 #include <linux/proc_fs.h>
66 #include <linux/seq_file.h>
67 #include <linux/mutex.h>
68 #include <linux/if_bridge.h>
69 #include <linux/if_vlan.h>
70 #include <linux/ptp_classify.h>
71 #include <linux/init.h>
72 #include <linux/poll.h>
73 #include <linux/cache.h>
74 #include <linux/module.h>
75 #include <linux/highmem.h>
76 #include <linux/mount.h>
77 #include <linux/pseudo_fs.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/compat.h>
81 #include <linux/kmod.h>
82 #include <linux/audit.h>
83 #include <linux/wireless.h>
84 #include <linux/nsproxy.h>
85 #include <linux/magic.h>
86 #include <linux/slab.h>
87 #include <linux/xattr.h>
88 #include <linux/nospec.h>
89 #include <linux/indirect_call_wrapper.h>
90
91 #include <linux/uaccess.h>
92 #include <asm/unistd.h>
93
94 #include <net/compat.h>
95 #include <net/wext.h>
96 #include <net/cls_cgroup.h>
97
98 #include <net/sock.h>
99 #include <linux/netfilter.h>
100
101 #include <linux/if_tun.h>
102 #include <linux/ipv6_route.h>
103 #include <linux/route.h>
104 #include <linux/termios.h>
105 #include <linux/sockios.h>
106 #include <net/busy_poll.h>
107 #include <linux/errqueue.h>
108 #include <linux/ptp_clock_kernel.h>
109
110 #ifdef CONFIG_NET_RX_BUSY_POLL
111 unsigned int sysctl_net_busy_read __read_mostly;
112 unsigned int sysctl_net_busy_poll __read_mostly;
113 #endif
114
115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
117 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
118
119 static int sock_close(struct inode *inode, struct file *file);
120 static __poll_t sock_poll(struct file *file,
121 struct poll_table_struct *wait);
122 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
123 #ifdef CONFIG_COMPAT
124 static long compat_sock_ioctl(struct file *file,
125 unsigned int cmd, unsigned long arg);
126 #endif
127 static int sock_fasync(int fd, struct file *filp, int on);
128 static ssize_t sock_sendpage(struct file *file, struct page *page,
129 int offset, size_t size, loff_t *ppos, int more);
130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
131 struct pipe_inode_info *pipe, size_t len,
132 unsigned int flags);
133
134 #ifdef CONFIG_PROC_FS
135 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
136 {
137 struct socket *sock = f->private_data;
138
139 if (sock->ops->show_fdinfo)
140 sock->ops->show_fdinfo(m, sock);
141 }
142 #else
143 #define sock_show_fdinfo NULL
144 #endif
145
146 /*
147 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
148 * in the operation structures but are done directly via the socketcall() multiplexor.
149 */
150
151 static const struct file_operations socket_file_ops = {
152 .owner = THIS_MODULE,
153 .llseek = no_llseek,
154 .read_iter = sock_read_iter,
155 .write_iter = sock_write_iter,
156 .poll = sock_poll,
157 .unlocked_ioctl = sock_ioctl,
158 #ifdef CONFIG_COMPAT
159 .compat_ioctl = compat_sock_ioctl,
160 #endif
161 .mmap = sock_mmap,
162 .release = sock_close,
163 .fasync = sock_fasync,
164 .sendpage = sock_sendpage,
165 .splice_write = generic_splice_sendpage,
166 .splice_read = sock_splice_read,
167 .show_fdinfo = sock_show_fdinfo,
168 };
169
170 static const char * const pf_family_names[] = {
171 [PF_UNSPEC] = "PF_UNSPEC",
172 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
173 [PF_INET] = "PF_INET",
174 [PF_AX25] = "PF_AX25",
175 [PF_IPX] = "PF_IPX",
176 [PF_APPLETALK] = "PF_APPLETALK",
177 [PF_NETROM] = "PF_NETROM",
178 [PF_BRIDGE] = "PF_BRIDGE",
179 [PF_ATMPVC] = "PF_ATMPVC",
180 [PF_X25] = "PF_X25",
181 [PF_INET6] = "PF_INET6",
182 [PF_ROSE] = "PF_ROSE",
183 [PF_DECnet] = "PF_DECnet",
184 [PF_NETBEUI] = "PF_NETBEUI",
185 [PF_SECURITY] = "PF_SECURITY",
186 [PF_KEY] = "PF_KEY",
187 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
188 [PF_PACKET] = "PF_PACKET",
189 [PF_ASH] = "PF_ASH",
190 [PF_ECONET] = "PF_ECONET",
191 [PF_ATMSVC] = "PF_ATMSVC",
192 [PF_RDS] = "PF_RDS",
193 [PF_SNA] = "PF_SNA",
194 [PF_IRDA] = "PF_IRDA",
195 [PF_PPPOX] = "PF_PPPOX",
196 [PF_WANPIPE] = "PF_WANPIPE",
197 [PF_LLC] = "PF_LLC",
198 [PF_IB] = "PF_IB",
199 [PF_MPLS] = "PF_MPLS",
200 [PF_CAN] = "PF_CAN",
201 [PF_TIPC] = "PF_TIPC",
202 [PF_BLUETOOTH] = "PF_BLUETOOTH",
203 [PF_IUCV] = "PF_IUCV",
204 [PF_RXRPC] = "PF_RXRPC",
205 [PF_ISDN] = "PF_ISDN",
206 [PF_PHONET] = "PF_PHONET",
207 [PF_IEEE802154] = "PF_IEEE802154",
208 [PF_CAIF] = "PF_CAIF",
209 [PF_ALG] = "PF_ALG",
210 [PF_NFC] = "PF_NFC",
211 [PF_VSOCK] = "PF_VSOCK",
212 [PF_KCM] = "PF_KCM",
213 [PF_QIPCRTR] = "PF_QIPCRTR",
214 [PF_SMC] = "PF_SMC",
215 [PF_XDP] = "PF_XDP",
216 [PF_MCTP] = "PF_MCTP",
217 };
218
219 /*
220 * The protocol list. Each protocol is registered in here.
221 */
222
223 static DEFINE_SPINLOCK(net_family_lock);
224 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
225
226 /*
227 * Support routines.
228 * Move socket addresses back and forth across the kernel/user
229 * divide and look after the messy bits.
230 */
231
232 /**
233 * move_addr_to_kernel - copy a socket address into kernel space
234 * @uaddr: Address in user space
235 * @kaddr: Address in kernel space
236 * @ulen: Length in user space
237 *
238 * The address is copied into kernel space. If the provided address is
239 * too long an error code of -EINVAL is returned. If the copy gives
240 * invalid addresses -EFAULT is returned. On a success 0 is returned.
241 */
242
243 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
244 {
245 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
246 return -EINVAL;
247 if (ulen == 0)
248 return 0;
249 if (copy_from_user(kaddr, uaddr, ulen))
250 return -EFAULT;
251 return audit_sockaddr(ulen, kaddr);
252 }
253
254 /**
255 * move_addr_to_user - copy an address to user space
256 * @kaddr: kernel space address
257 * @klen: length of address in kernel
258 * @uaddr: user space address
259 * @ulen: pointer to user length field
260 *
261 * The value pointed to by ulen on entry is the buffer length available.
262 * This is overwritten with the buffer space used. -EINVAL is returned
263 * if an overlong buffer is specified or a negative buffer size. -EFAULT
264 * is returned if either the buffer or the length field are not
265 * accessible.
266 * After copying the data up to the limit the user specifies, the true
267 * length of the data is written over the length limit the user
268 * specified. Zero is returned for a success.
269 */
270
271 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
272 void __user *uaddr, int __user *ulen)
273 {
274 int err;
275 int len;
276
277 BUG_ON(klen > sizeof(struct sockaddr_storage));
278 err = get_user(len, ulen);
279 if (err)
280 return err;
281 if (len > klen)
282 len = klen;
283 if (len < 0)
284 return -EINVAL;
285 if (len) {
286 if (audit_sockaddr(klen, kaddr))
287 return -ENOMEM;
288 if (copy_to_user(uaddr, kaddr, len))
289 return -EFAULT;
290 }
291 /*
292 * "fromlen shall refer to the value before truncation.."
293 * 1003.1g
294 */
295 return __put_user(klen, ulen);
296 }
297
298 static struct kmem_cache *sock_inode_cachep __ro_after_init;
299
300 static struct inode *sock_alloc_inode(struct super_block *sb)
301 {
302 struct socket_alloc *ei;
303
304 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
305 if (!ei)
306 return NULL;
307 init_waitqueue_head(&ei->socket.wq.wait);
308 ei->socket.wq.fasync_list = NULL;
309 ei->socket.wq.flags = 0;
310
311 ei->socket.state = SS_UNCONNECTED;
312 ei->socket.flags = 0;
313 ei->socket.ops = NULL;
314 ei->socket.sk = NULL;
315 ei->socket.file = NULL;
316
317 return &ei->vfs_inode;
318 }
319
320 static void sock_free_inode(struct inode *inode)
321 {
322 struct socket_alloc *ei;
323
324 ei = container_of(inode, struct socket_alloc, vfs_inode);
325 kmem_cache_free(sock_inode_cachep, ei);
326 }
327
328 static void init_once(void *foo)
329 {
330 struct socket_alloc *ei = (struct socket_alloc *)foo;
331
332 inode_init_once(&ei->vfs_inode);
333 }
334
335 static void init_inodecache(void)
336 {
337 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
338 sizeof(struct socket_alloc),
339 0,
340 (SLAB_HWCACHE_ALIGN |
341 SLAB_RECLAIM_ACCOUNT |
342 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
343 init_once);
344 BUG_ON(sock_inode_cachep == NULL);
345 }
346
347 static const struct super_operations sockfs_ops = {
348 .alloc_inode = sock_alloc_inode,
349 .free_inode = sock_free_inode,
350 .statfs = simple_statfs,
351 };
352
353 /*
354 * sockfs_dname() is called from d_path().
355 */
356 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
357 {
358 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
359 d_inode(dentry)->i_ino);
360 }
361
362 static const struct dentry_operations sockfs_dentry_operations = {
363 .d_dname = sockfs_dname,
364 };
365
366 static int sockfs_xattr_get(const struct xattr_handler *handler,
367 struct dentry *dentry, struct inode *inode,
368 const char *suffix, void *value, size_t size)
369 {
370 if (value) {
371 if (dentry->d_name.len + 1 > size)
372 return -ERANGE;
373 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
374 }
375 return dentry->d_name.len + 1;
376 }
377
378 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
379 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
380 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
381
382 static const struct xattr_handler sockfs_xattr_handler = {
383 .name = XATTR_NAME_SOCKPROTONAME,
384 .get = sockfs_xattr_get,
385 };
386
387 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
388 struct user_namespace *mnt_userns,
389 struct dentry *dentry, struct inode *inode,
390 const char *suffix, const void *value,
391 size_t size, int flags)
392 {
393 /* Handled by LSM. */
394 return -EAGAIN;
395 }
396
397 static const struct xattr_handler sockfs_security_xattr_handler = {
398 .prefix = XATTR_SECURITY_PREFIX,
399 .set = sockfs_security_xattr_set,
400 };
401
402 static const struct xattr_handler *sockfs_xattr_handlers[] = {
403 &sockfs_xattr_handler,
404 &sockfs_security_xattr_handler,
405 NULL
406 };
407
408 static int sockfs_init_fs_context(struct fs_context *fc)
409 {
410 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
411 if (!ctx)
412 return -ENOMEM;
413 ctx->ops = &sockfs_ops;
414 ctx->dops = &sockfs_dentry_operations;
415 ctx->xattr = sockfs_xattr_handlers;
416 return 0;
417 }
418
419 static struct vfsmount *sock_mnt __read_mostly;
420
421 static struct file_system_type sock_fs_type = {
422 .name = "sockfs",
423 .init_fs_context = sockfs_init_fs_context,
424 .kill_sb = kill_anon_super,
425 };
426
427 /*
428 * Obtains the first available file descriptor and sets it up for use.
429 *
430 * These functions create file structures and maps them to fd space
431 * of the current process. On success it returns file descriptor
432 * and file struct implicitly stored in sock->file.
433 * Note that another thread may close file descriptor before we return
434 * from this function. We use the fact that now we do not refer
435 * to socket after mapping. If one day we will need it, this
436 * function will increment ref. count on file by 1.
437 *
438 * In any case returned fd MAY BE not valid!
439 * This race condition is unavoidable
440 * with shared fd spaces, we cannot solve it inside kernel,
441 * but we take care of internal coherence yet.
442 */
443
444 /**
445 * sock_alloc_file - Bind a &socket to a &file
446 * @sock: socket
447 * @flags: file status flags
448 * @dname: protocol name
449 *
450 * Returns the &file bound with @sock, implicitly storing it
451 * in sock->file. If dname is %NULL, sets to "".
452 * On failure the return is a ERR pointer (see linux/err.h).
453 * This function uses GFP_KERNEL internally.
454 */
455
456 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
457 {
458 struct file *file;
459
460 if (!dname)
461 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
462
463 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
464 O_RDWR | (flags & O_NONBLOCK),
465 &socket_file_ops);
466 if (IS_ERR(file)) {
467 sock_release(sock);
468 return file;
469 }
470
471 sock->file = file;
472 file->private_data = sock;
473 stream_open(SOCK_INODE(sock), file);
474 return file;
475 }
476 EXPORT_SYMBOL(sock_alloc_file);
477
478 static int sock_map_fd(struct socket *sock, int flags)
479 {
480 struct file *newfile;
481 int fd = get_unused_fd_flags(flags);
482 if (unlikely(fd < 0)) {
483 sock_release(sock);
484 return fd;
485 }
486
487 newfile = sock_alloc_file(sock, flags, NULL);
488 if (!IS_ERR(newfile)) {
489 fd_install(fd, newfile);
490 return fd;
491 }
492
493 put_unused_fd(fd);
494 return PTR_ERR(newfile);
495 }
496
497 /**
498 * sock_from_file - Return the &socket bounded to @file.
499 * @file: file
500 *
501 * On failure returns %NULL.
502 */
503
504 struct socket *sock_from_file(struct file *file)
505 {
506 if (file->f_op == &socket_file_ops)
507 return file->private_data; /* set in sock_alloc_file */
508
509 return NULL;
510 }
511 EXPORT_SYMBOL(sock_from_file);
512
513 /**
514 * sockfd_lookup - Go from a file number to its socket slot
515 * @fd: file handle
516 * @err: pointer to an error code return
517 *
518 * The file handle passed in is locked and the socket it is bound
519 * to is returned. If an error occurs the err pointer is overwritten
520 * with a negative errno code and NULL is returned. The function checks
521 * for both invalid handles and passing a handle which is not a socket.
522 *
523 * On a success the socket object pointer is returned.
524 */
525
526 struct socket *sockfd_lookup(int fd, int *err)
527 {
528 struct file *file;
529 struct socket *sock;
530
531 file = fget(fd);
532 if (!file) {
533 *err = -EBADF;
534 return NULL;
535 }
536
537 sock = sock_from_file(file);
538 if (!sock) {
539 *err = -ENOTSOCK;
540 fput(file);
541 }
542 return sock;
543 }
544 EXPORT_SYMBOL(sockfd_lookup);
545
546 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
547 {
548 struct fd f = fdget(fd);
549 struct socket *sock;
550
551 *err = -EBADF;
552 if (f.file) {
553 sock = sock_from_file(f.file);
554 if (likely(sock)) {
555 *fput_needed = f.flags & FDPUT_FPUT;
556 return sock;
557 }
558 *err = -ENOTSOCK;
559 fdput(f);
560 }
561 return NULL;
562 }
563
564 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
565 size_t size)
566 {
567 ssize_t len;
568 ssize_t used = 0;
569
570 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
571 if (len < 0)
572 return len;
573 used += len;
574 if (buffer) {
575 if (size < used)
576 return -ERANGE;
577 buffer += len;
578 }
579
580 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
581 used += len;
582 if (buffer) {
583 if (size < used)
584 return -ERANGE;
585 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
586 buffer += len;
587 }
588
589 return used;
590 }
591
592 static int sockfs_setattr(struct user_namespace *mnt_userns,
593 struct dentry *dentry, struct iattr *iattr)
594 {
595 int err = simple_setattr(&init_user_ns, dentry, iattr);
596
597 if (!err && (iattr->ia_valid & ATTR_UID)) {
598 struct socket *sock = SOCKET_I(d_inode(dentry));
599
600 if (sock->sk)
601 sock->sk->sk_uid = iattr->ia_uid;
602 else
603 err = -ENOENT;
604 }
605
606 return err;
607 }
608
609 static const struct inode_operations sockfs_inode_ops = {
610 .listxattr = sockfs_listxattr,
611 .setattr = sockfs_setattr,
612 };
613
614 /**
615 * sock_alloc - allocate a socket
616 *
617 * Allocate a new inode and socket object. The two are bound together
618 * and initialised. The socket is then returned. If we are out of inodes
619 * NULL is returned. This functions uses GFP_KERNEL internally.
620 */
621
622 struct socket *sock_alloc(void)
623 {
624 struct inode *inode;
625 struct socket *sock;
626
627 inode = new_inode_pseudo(sock_mnt->mnt_sb);
628 if (!inode)
629 return NULL;
630
631 sock = SOCKET_I(inode);
632
633 inode->i_ino = get_next_ino();
634 inode->i_mode = S_IFSOCK | S_IRWXUGO;
635 inode->i_uid = current_fsuid();
636 inode->i_gid = current_fsgid();
637 inode->i_op = &sockfs_inode_ops;
638
639 return sock;
640 }
641 EXPORT_SYMBOL(sock_alloc);
642
643 static void __sock_release(struct socket *sock, struct inode *inode)
644 {
645 if (sock->ops) {
646 struct module *owner = sock->ops->owner;
647
648 if (inode)
649 inode_lock(inode);
650 sock->ops->release(sock);
651 sock->sk = NULL;
652 if (inode)
653 inode_unlock(inode);
654 sock->ops = NULL;
655 module_put(owner);
656 }
657
658 if (sock->wq.fasync_list)
659 pr_err("%s: fasync list not empty!\n", __func__);
660
661 if (!sock->file) {
662 iput(SOCK_INODE(sock));
663 return;
664 }
665 sock->file = NULL;
666 }
667
668 /**
669 * sock_release - close a socket
670 * @sock: socket to close
671 *
672 * The socket is released from the protocol stack if it has a release
673 * callback, and the inode is then released if the socket is bound to
674 * an inode not a file.
675 */
676 void sock_release(struct socket *sock)
677 {
678 __sock_release(sock, NULL);
679 }
680 EXPORT_SYMBOL(sock_release);
681
682 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
683 {
684 u8 flags = *tx_flags;
685
686 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
687 flags |= SKBTX_HW_TSTAMP;
688
689 /* PTP hardware clocks can provide a free running cycle counter
690 * as a time base for virtual clocks. Tell driver to use the
691 * free running cycle counter for timestamp if socket is bound
692 * to virtual clock.
693 */
694 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
695 flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
696 }
697
698 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
699 flags |= SKBTX_SW_TSTAMP;
700
701 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
702 flags |= SKBTX_SCHED_TSTAMP;
703
704 *tx_flags = flags;
705 }
706 EXPORT_SYMBOL(__sock_tx_timestamp);
707
708 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
709 size_t));
710 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
711 size_t));
712 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
713 {
714 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
715 inet_sendmsg, sock, msg,
716 msg_data_left(msg));
717 BUG_ON(ret == -EIOCBQUEUED);
718 return ret;
719 }
720
721 /**
722 * sock_sendmsg - send a message through @sock
723 * @sock: socket
724 * @msg: message to send
725 *
726 * Sends @msg through @sock, passing through LSM.
727 * Returns the number of bytes sent, or an error code.
728 */
729 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
730 {
731 int err = security_socket_sendmsg(sock, msg,
732 msg_data_left(msg));
733
734 return err ?: sock_sendmsg_nosec(sock, msg);
735 }
736 EXPORT_SYMBOL(sock_sendmsg);
737
738 /**
739 * kernel_sendmsg - send a message through @sock (kernel-space)
740 * @sock: socket
741 * @msg: message header
742 * @vec: kernel vec
743 * @num: vec array length
744 * @size: total message data size
745 *
746 * Builds the message data with @vec and sends it through @sock.
747 * Returns the number of bytes sent, or an error code.
748 */
749
750 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
751 struct kvec *vec, size_t num, size_t size)
752 {
753 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
754 return sock_sendmsg(sock, msg);
755 }
756 EXPORT_SYMBOL(kernel_sendmsg);
757
758 /**
759 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
760 * @sk: sock
761 * @msg: message header
762 * @vec: output s/g array
763 * @num: output s/g array length
764 * @size: total message data size
765 *
766 * Builds the message data with @vec and sends it through @sock.
767 * Returns the number of bytes sent, or an error code.
768 * Caller must hold @sk.
769 */
770
771 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
772 struct kvec *vec, size_t num, size_t size)
773 {
774 struct socket *sock = sk->sk_socket;
775
776 if (!sock->ops->sendmsg_locked)
777 return sock_no_sendmsg_locked(sk, msg, size);
778
779 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
780
781 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
782 }
783 EXPORT_SYMBOL(kernel_sendmsg_locked);
784
785 static bool skb_is_err_queue(const struct sk_buff *skb)
786 {
787 /* pkt_type of skbs enqueued on the error queue are set to
788 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
789 * in recvmsg, since skbs received on a local socket will never
790 * have a pkt_type of PACKET_OUTGOING.
791 */
792 return skb->pkt_type == PACKET_OUTGOING;
793 }
794
795 /* On transmit, software and hardware timestamps are returned independently.
796 * As the two skb clones share the hardware timestamp, which may be updated
797 * before the software timestamp is received, a hardware TX timestamp may be
798 * returned only if there is no software TX timestamp. Ignore false software
799 * timestamps, which may be made in the __sock_recv_timestamp() call when the
800 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
801 * hardware timestamp.
802 */
803 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
804 {
805 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
806 }
807
808 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
809 {
810 bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC;
811 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
812 struct net_device *orig_dev;
813 ktime_t hwtstamp;
814
815 rcu_read_lock();
816 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
817 if (orig_dev) {
818 *if_index = orig_dev->ifindex;
819 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
820 } else {
821 hwtstamp = shhwtstamps->hwtstamp;
822 }
823 rcu_read_unlock();
824
825 return hwtstamp;
826 }
827
828 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
829 int if_index)
830 {
831 struct scm_ts_pktinfo ts_pktinfo;
832 struct net_device *orig_dev;
833
834 if (!skb_mac_header_was_set(skb))
835 return;
836
837 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
838
839 if (!if_index) {
840 rcu_read_lock();
841 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
842 if (orig_dev)
843 if_index = orig_dev->ifindex;
844 rcu_read_unlock();
845 }
846 ts_pktinfo.if_index = if_index;
847
848 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
849 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
850 sizeof(ts_pktinfo), &ts_pktinfo);
851 }
852
853 /*
854 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
855 */
856 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
857 struct sk_buff *skb)
858 {
859 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
860 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
861 struct scm_timestamping_internal tss;
862
863 int empty = 1, false_tstamp = 0;
864 struct skb_shared_hwtstamps *shhwtstamps =
865 skb_hwtstamps(skb);
866 int if_index;
867 ktime_t hwtstamp;
868
869 /* Race occurred between timestamp enabling and packet
870 receiving. Fill in the current time for now. */
871 if (need_software_tstamp && skb->tstamp == 0) {
872 __net_timestamp(skb);
873 false_tstamp = 1;
874 }
875
876 if (need_software_tstamp) {
877 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
878 if (new_tstamp) {
879 struct __kernel_sock_timeval tv;
880
881 skb_get_new_timestamp(skb, &tv);
882 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
883 sizeof(tv), &tv);
884 } else {
885 struct __kernel_old_timeval tv;
886
887 skb_get_timestamp(skb, &tv);
888 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
889 sizeof(tv), &tv);
890 }
891 } else {
892 if (new_tstamp) {
893 struct __kernel_timespec ts;
894
895 skb_get_new_timestampns(skb, &ts);
896 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
897 sizeof(ts), &ts);
898 } else {
899 struct __kernel_old_timespec ts;
900
901 skb_get_timestampns(skb, &ts);
902 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
903 sizeof(ts), &ts);
904 }
905 }
906 }
907
908 memset(&tss, 0, sizeof(tss));
909 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
910 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
911 empty = 0;
912 if (shhwtstamps &&
913 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
914 !skb_is_swtx_tstamp(skb, false_tstamp)) {
915 if_index = 0;
916 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
917 hwtstamp = get_timestamp(sk, skb, &if_index);
918 else
919 hwtstamp = shhwtstamps->hwtstamp;
920
921 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
922 hwtstamp = ptp_convert_timestamp(&hwtstamp,
923 sk->sk_bind_phc);
924
925 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
926 empty = 0;
927
928 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
929 !skb_is_err_queue(skb))
930 put_ts_pktinfo(msg, skb, if_index);
931 }
932 }
933 if (!empty) {
934 if (sock_flag(sk, SOCK_TSTAMP_NEW))
935 put_cmsg_scm_timestamping64(msg, &tss);
936 else
937 put_cmsg_scm_timestamping(msg, &tss);
938
939 if (skb_is_err_queue(skb) && skb->len &&
940 SKB_EXT_ERR(skb)->opt_stats)
941 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
942 skb->len, skb->data);
943 }
944 }
945 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
946
947 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
948 struct sk_buff *skb)
949 {
950 int ack;
951
952 if (!sock_flag(sk, SOCK_WIFI_STATUS))
953 return;
954 if (!skb->wifi_acked_valid)
955 return;
956
957 ack = skb->wifi_acked;
958
959 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
960 }
961 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
962
963 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
964 struct sk_buff *skb)
965 {
966 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
967 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
968 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
969 }
970
971 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
972 struct sk_buff *skb)
973 {
974 if (sock_flag(sk, SOCK_RCVMARK) && skb)
975 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32),
976 &skb->mark);
977 }
978
979 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
980 struct sk_buff *skb)
981 {
982 sock_recv_timestamp(msg, sk, skb);
983 sock_recv_drops(msg, sk, skb);
984 sock_recv_mark(msg, sk, skb);
985 }
986 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
987
988 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
989 size_t, int));
990 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
991 size_t, int));
992 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
993 int flags)
994 {
995 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
996 inet_recvmsg, sock, msg, msg_data_left(msg),
997 flags);
998 }
999
1000 /**
1001 * sock_recvmsg - receive a message from @sock
1002 * @sock: socket
1003 * @msg: message to receive
1004 * @flags: message flags
1005 *
1006 * Receives @msg from @sock, passing through LSM. Returns the total number
1007 * of bytes received, or an error.
1008 */
1009 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1010 {
1011 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1012
1013 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1014 }
1015 EXPORT_SYMBOL(sock_recvmsg);
1016
1017 /**
1018 * kernel_recvmsg - Receive a message from a socket (kernel space)
1019 * @sock: The socket to receive the message from
1020 * @msg: Received message
1021 * @vec: Input s/g array for message data
1022 * @num: Size of input s/g array
1023 * @size: Number of bytes to read
1024 * @flags: Message flags (MSG_DONTWAIT, etc...)
1025 *
1026 * On return the msg structure contains the scatter/gather array passed in the
1027 * vec argument. The array is modified so that it consists of the unfilled
1028 * portion of the original array.
1029 *
1030 * The returned value is the total number of bytes received, or an error.
1031 */
1032
1033 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1034 struct kvec *vec, size_t num, size_t size, int flags)
1035 {
1036 msg->msg_control_is_user = false;
1037 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
1038 return sock_recvmsg(sock, msg, flags);
1039 }
1040 EXPORT_SYMBOL(kernel_recvmsg);
1041
1042 static ssize_t sock_sendpage(struct file *file, struct page *page,
1043 int offset, size_t size, loff_t *ppos, int more)
1044 {
1045 struct socket *sock;
1046 int flags;
1047
1048 sock = file->private_data;
1049
1050 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1051 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1052 flags |= more;
1053
1054 return kernel_sendpage(sock, page, offset, size, flags);
1055 }
1056
1057 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1058 struct pipe_inode_info *pipe, size_t len,
1059 unsigned int flags)
1060 {
1061 struct socket *sock = file->private_data;
1062
1063 if (unlikely(!sock->ops->splice_read))
1064 return generic_file_splice_read(file, ppos, pipe, len, flags);
1065
1066 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1067 }
1068
1069 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1070 {
1071 struct file *file = iocb->ki_filp;
1072 struct socket *sock = file->private_data;
1073 struct msghdr msg = {.msg_iter = *to,
1074 .msg_iocb = iocb};
1075 ssize_t res;
1076
1077 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1078 msg.msg_flags = MSG_DONTWAIT;
1079
1080 if (iocb->ki_pos != 0)
1081 return -ESPIPE;
1082
1083 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1084 return 0;
1085
1086 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1087 *to = msg.msg_iter;
1088 return res;
1089 }
1090
1091 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1092 {
1093 struct file *file = iocb->ki_filp;
1094 struct socket *sock = file->private_data;
1095 struct msghdr msg = {.msg_iter = *from,
1096 .msg_iocb = iocb};
1097 ssize_t res;
1098
1099 if (iocb->ki_pos != 0)
1100 return -ESPIPE;
1101
1102 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1103 msg.msg_flags = MSG_DONTWAIT;
1104
1105 if (sock->type == SOCK_SEQPACKET)
1106 msg.msg_flags |= MSG_EOR;
1107
1108 res = sock_sendmsg(sock, &msg);
1109 *from = msg.msg_iter;
1110 return res;
1111 }
1112
1113 /*
1114 * Atomic setting of ioctl hooks to avoid race
1115 * with module unload.
1116 */
1117
1118 static DEFINE_MUTEX(br_ioctl_mutex);
1119 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1120 unsigned int cmd, struct ifreq *ifr,
1121 void __user *uarg);
1122
1123 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1124 unsigned int cmd, struct ifreq *ifr,
1125 void __user *uarg))
1126 {
1127 mutex_lock(&br_ioctl_mutex);
1128 br_ioctl_hook = hook;
1129 mutex_unlock(&br_ioctl_mutex);
1130 }
1131 EXPORT_SYMBOL(brioctl_set);
1132
1133 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1134 struct ifreq *ifr, void __user *uarg)
1135 {
1136 int err = -ENOPKG;
1137
1138 if (!br_ioctl_hook)
1139 request_module("bridge");
1140
1141 mutex_lock(&br_ioctl_mutex);
1142 if (br_ioctl_hook)
1143 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1144 mutex_unlock(&br_ioctl_mutex);
1145
1146 return err;
1147 }
1148
1149 static DEFINE_MUTEX(vlan_ioctl_mutex);
1150 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1151
1152 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1153 {
1154 mutex_lock(&vlan_ioctl_mutex);
1155 vlan_ioctl_hook = hook;
1156 mutex_unlock(&vlan_ioctl_mutex);
1157 }
1158 EXPORT_SYMBOL(vlan_ioctl_set);
1159
1160 static long sock_do_ioctl(struct net *net, struct socket *sock,
1161 unsigned int cmd, unsigned long arg)
1162 {
1163 struct ifreq ifr;
1164 bool need_copyout;
1165 int err;
1166 void __user *argp = (void __user *)arg;
1167 void __user *data;
1168
1169 err = sock->ops->ioctl(sock, cmd, arg);
1170
1171 /*
1172 * If this ioctl is unknown try to hand it down
1173 * to the NIC driver.
1174 */
1175 if (err != -ENOIOCTLCMD)
1176 return err;
1177
1178 if (!is_socket_ioctl_cmd(cmd))
1179 return -ENOTTY;
1180
1181 if (get_user_ifreq(&ifr, &data, argp))
1182 return -EFAULT;
1183 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1184 if (!err && need_copyout)
1185 if (put_user_ifreq(&ifr, argp))
1186 return -EFAULT;
1187
1188 return err;
1189 }
1190
1191 /*
1192 * With an ioctl, arg may well be a user mode pointer, but we don't know
1193 * what to do with it - that's up to the protocol still.
1194 */
1195
1196 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1197 {
1198 struct socket *sock;
1199 struct sock *sk;
1200 void __user *argp = (void __user *)arg;
1201 int pid, err;
1202 struct net *net;
1203
1204 sock = file->private_data;
1205 sk = sock->sk;
1206 net = sock_net(sk);
1207 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1208 struct ifreq ifr;
1209 void __user *data;
1210 bool need_copyout;
1211 if (get_user_ifreq(&ifr, &data, argp))
1212 return -EFAULT;
1213 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1214 if (!err && need_copyout)
1215 if (put_user_ifreq(&ifr, argp))
1216 return -EFAULT;
1217 } else
1218 #ifdef CONFIG_WEXT_CORE
1219 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1220 err = wext_handle_ioctl(net, cmd, argp);
1221 } else
1222 #endif
1223 switch (cmd) {
1224 case FIOSETOWN:
1225 case SIOCSPGRP:
1226 err = -EFAULT;
1227 if (get_user(pid, (int __user *)argp))
1228 break;
1229 err = f_setown(sock->file, pid, 1);
1230 break;
1231 case FIOGETOWN:
1232 case SIOCGPGRP:
1233 err = put_user(f_getown(sock->file),
1234 (int __user *)argp);
1235 break;
1236 case SIOCGIFBR:
1237 case SIOCSIFBR:
1238 case SIOCBRADDBR:
1239 case SIOCBRDELBR:
1240 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1241 break;
1242 case SIOCGIFVLAN:
1243 case SIOCSIFVLAN:
1244 err = -ENOPKG;
1245 if (!vlan_ioctl_hook)
1246 request_module("8021q");
1247
1248 mutex_lock(&vlan_ioctl_mutex);
1249 if (vlan_ioctl_hook)
1250 err = vlan_ioctl_hook(net, argp);
1251 mutex_unlock(&vlan_ioctl_mutex);
1252 break;
1253 case SIOCGSKNS:
1254 err = -EPERM;
1255 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1256 break;
1257
1258 err = open_related_ns(&net->ns, get_net_ns);
1259 break;
1260 case SIOCGSTAMP_OLD:
1261 case SIOCGSTAMPNS_OLD:
1262 if (!sock->ops->gettstamp) {
1263 err = -ENOIOCTLCMD;
1264 break;
1265 }
1266 err = sock->ops->gettstamp(sock, argp,
1267 cmd == SIOCGSTAMP_OLD,
1268 !IS_ENABLED(CONFIG_64BIT));
1269 break;
1270 case SIOCGSTAMP_NEW:
1271 case SIOCGSTAMPNS_NEW:
1272 if (!sock->ops->gettstamp) {
1273 err = -ENOIOCTLCMD;
1274 break;
1275 }
1276 err = sock->ops->gettstamp(sock, argp,
1277 cmd == SIOCGSTAMP_NEW,
1278 false);
1279 break;
1280
1281 case SIOCGIFCONF:
1282 err = dev_ifconf(net, argp);
1283 break;
1284
1285 default:
1286 err = sock_do_ioctl(net, sock, cmd, arg);
1287 break;
1288 }
1289 return err;
1290 }
1291
1292 /**
1293 * sock_create_lite - creates a socket
1294 * @family: protocol family (AF_INET, ...)
1295 * @type: communication type (SOCK_STREAM, ...)
1296 * @protocol: protocol (0, ...)
1297 * @res: new socket
1298 *
1299 * Creates a new socket and assigns it to @res, passing through LSM.
1300 * The new socket initialization is not complete, see kernel_accept().
1301 * Returns 0 or an error. On failure @res is set to %NULL.
1302 * This function internally uses GFP_KERNEL.
1303 */
1304
1305 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1306 {
1307 int err;
1308 struct socket *sock = NULL;
1309
1310 err = security_socket_create(family, type, protocol, 1);
1311 if (err)
1312 goto out;
1313
1314 sock = sock_alloc();
1315 if (!sock) {
1316 err = -ENOMEM;
1317 goto out;
1318 }
1319
1320 sock->type = type;
1321 err = security_socket_post_create(sock, family, type, protocol, 1);
1322 if (err)
1323 goto out_release;
1324
1325 out:
1326 *res = sock;
1327 return err;
1328 out_release:
1329 sock_release(sock);
1330 sock = NULL;
1331 goto out;
1332 }
1333 EXPORT_SYMBOL(sock_create_lite);
1334
1335 /* No kernel lock held - perfect */
1336 static __poll_t sock_poll(struct file *file, poll_table *wait)
1337 {
1338 struct socket *sock = file->private_data;
1339 __poll_t events = poll_requested_events(wait), flag = 0;
1340
1341 if (!sock->ops->poll)
1342 return 0;
1343
1344 if (sk_can_busy_loop(sock->sk)) {
1345 /* poll once if requested by the syscall */
1346 if (events & POLL_BUSY_LOOP)
1347 sk_busy_loop(sock->sk, 1);
1348
1349 /* if this socket can poll_ll, tell the system call */
1350 flag = POLL_BUSY_LOOP;
1351 }
1352
1353 return sock->ops->poll(file, sock, wait) | flag;
1354 }
1355
1356 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1357 {
1358 struct socket *sock = file->private_data;
1359
1360 return sock->ops->mmap(file, sock, vma);
1361 }
1362
1363 static int sock_close(struct inode *inode, struct file *filp)
1364 {
1365 __sock_release(SOCKET_I(inode), inode);
1366 return 0;
1367 }
1368
1369 /*
1370 * Update the socket async list
1371 *
1372 * Fasync_list locking strategy.
1373 *
1374 * 1. fasync_list is modified only under process context socket lock
1375 * i.e. under semaphore.
1376 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1377 * or under socket lock
1378 */
1379
1380 static int sock_fasync(int fd, struct file *filp, int on)
1381 {
1382 struct socket *sock = filp->private_data;
1383 struct sock *sk = sock->sk;
1384 struct socket_wq *wq = &sock->wq;
1385
1386 if (sk == NULL)
1387 return -EINVAL;
1388
1389 lock_sock(sk);
1390 fasync_helper(fd, filp, on, &wq->fasync_list);
1391
1392 if (!wq->fasync_list)
1393 sock_reset_flag(sk, SOCK_FASYNC);
1394 else
1395 sock_set_flag(sk, SOCK_FASYNC);
1396
1397 release_sock(sk);
1398 return 0;
1399 }
1400
1401 /* This function may be called only under rcu_lock */
1402
1403 int sock_wake_async(struct socket_wq *wq, int how, int band)
1404 {
1405 if (!wq || !wq->fasync_list)
1406 return -1;
1407
1408 switch (how) {
1409 case SOCK_WAKE_WAITD:
1410 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1411 break;
1412 goto call_kill;
1413 case SOCK_WAKE_SPACE:
1414 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1415 break;
1416 fallthrough;
1417 case SOCK_WAKE_IO:
1418 call_kill:
1419 kill_fasync(&wq->fasync_list, SIGIO, band);
1420 break;
1421 case SOCK_WAKE_URG:
1422 kill_fasync(&wq->fasync_list, SIGURG, band);
1423 }
1424
1425 return 0;
1426 }
1427 EXPORT_SYMBOL(sock_wake_async);
1428
1429 /**
1430 * __sock_create - creates a socket
1431 * @net: net namespace
1432 * @family: protocol family (AF_INET, ...)
1433 * @type: communication type (SOCK_STREAM, ...)
1434 * @protocol: protocol (0, ...)
1435 * @res: new socket
1436 * @kern: boolean for kernel space sockets
1437 *
1438 * Creates a new socket and assigns it to @res, passing through LSM.
1439 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1440 * be set to true if the socket resides in kernel space.
1441 * This function internally uses GFP_KERNEL.
1442 */
1443
1444 int __sock_create(struct net *net, int family, int type, int protocol,
1445 struct socket **res, int kern)
1446 {
1447 int err;
1448 struct socket *sock;
1449 const struct net_proto_family *pf;
1450
1451 /*
1452 * Check protocol is in range
1453 */
1454 if (family < 0 || family >= NPROTO)
1455 return -EAFNOSUPPORT;
1456 if (type < 0 || type >= SOCK_MAX)
1457 return -EINVAL;
1458
1459 /* Compatibility.
1460
1461 This uglymoron is moved from INET layer to here to avoid
1462 deadlock in module load.
1463 */
1464 if (family == PF_INET && type == SOCK_PACKET) {
1465 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1466 current->comm);
1467 family = PF_PACKET;
1468 }
1469
1470 err = security_socket_create(family, type, protocol, kern);
1471 if (err)
1472 return err;
1473
1474 /*
1475 * Allocate the socket and allow the family to set things up. if
1476 * the protocol is 0, the family is instructed to select an appropriate
1477 * default.
1478 */
1479 sock = sock_alloc();
1480 if (!sock) {
1481 net_warn_ratelimited("socket: no more sockets\n");
1482 return -ENFILE; /* Not exactly a match, but its the
1483 closest posix thing */
1484 }
1485
1486 sock->type = type;
1487
1488 #ifdef CONFIG_MODULES
1489 /* Attempt to load a protocol module if the find failed.
1490 *
1491 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1492 * requested real, full-featured networking support upon configuration.
1493 * Otherwise module support will break!
1494 */
1495 if (rcu_access_pointer(net_families[family]) == NULL)
1496 request_module("net-pf-%d", family);
1497 #endif
1498
1499 rcu_read_lock();
1500 pf = rcu_dereference(net_families[family]);
1501 err = -EAFNOSUPPORT;
1502 if (!pf)
1503 goto out_release;
1504
1505 /*
1506 * We will call the ->create function, that possibly is in a loadable
1507 * module, so we have to bump that loadable module refcnt first.
1508 */
1509 if (!try_module_get(pf->owner))
1510 goto out_release;
1511
1512 /* Now protected by module ref count */
1513 rcu_read_unlock();
1514
1515 err = pf->create(net, sock, protocol, kern);
1516 if (err < 0)
1517 goto out_module_put;
1518
1519 /*
1520 * Now to bump the refcnt of the [loadable] module that owns this
1521 * socket at sock_release time we decrement its refcnt.
1522 */
1523 if (!try_module_get(sock->ops->owner))
1524 goto out_module_busy;
1525
1526 /*
1527 * Now that we're done with the ->create function, the [loadable]
1528 * module can have its refcnt decremented
1529 */
1530 module_put(pf->owner);
1531 err = security_socket_post_create(sock, family, type, protocol, kern);
1532 if (err)
1533 goto out_sock_release;
1534 *res = sock;
1535
1536 return 0;
1537
1538 out_module_busy:
1539 err = -EAFNOSUPPORT;
1540 out_module_put:
1541 sock->ops = NULL;
1542 module_put(pf->owner);
1543 out_sock_release:
1544 sock_release(sock);
1545 return err;
1546
1547 out_release:
1548 rcu_read_unlock();
1549 goto out_sock_release;
1550 }
1551 EXPORT_SYMBOL(__sock_create);
1552
1553 /**
1554 * sock_create - creates a socket
1555 * @family: protocol family (AF_INET, ...)
1556 * @type: communication type (SOCK_STREAM, ...)
1557 * @protocol: protocol (0, ...)
1558 * @res: new socket
1559 *
1560 * A wrapper around __sock_create().
1561 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1562 */
1563
1564 int sock_create(int family, int type, int protocol, struct socket **res)
1565 {
1566 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1567 }
1568 EXPORT_SYMBOL(sock_create);
1569
1570 /**
1571 * sock_create_kern - creates a socket (kernel space)
1572 * @net: net namespace
1573 * @family: protocol family (AF_INET, ...)
1574 * @type: communication type (SOCK_STREAM, ...)
1575 * @protocol: protocol (0, ...)
1576 * @res: new socket
1577 *
1578 * A wrapper around __sock_create().
1579 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1580 */
1581
1582 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1583 {
1584 return __sock_create(net, family, type, protocol, res, 1);
1585 }
1586 EXPORT_SYMBOL(sock_create_kern);
1587
1588 static struct socket *__sys_socket_create(int family, int type, int protocol)
1589 {
1590 struct socket *sock;
1591 int retval;
1592
1593 /* Check the SOCK_* constants for consistency. */
1594 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1595 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1596 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1597 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1598
1599 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1600 return ERR_PTR(-EINVAL);
1601 type &= SOCK_TYPE_MASK;
1602
1603 retval = sock_create(family, type, protocol, &sock);
1604 if (retval < 0)
1605 return ERR_PTR(retval);
1606
1607 return sock;
1608 }
1609
1610 struct file *__sys_socket_file(int family, int type, int protocol)
1611 {
1612 struct socket *sock;
1613 struct file *file;
1614 int flags;
1615
1616 sock = __sys_socket_create(family, type, protocol);
1617 if (IS_ERR(sock))
1618 return ERR_CAST(sock);
1619
1620 flags = type & ~SOCK_TYPE_MASK;
1621 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1622 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1623
1624 file = sock_alloc_file(sock, flags, NULL);
1625 if (IS_ERR(file))
1626 sock_release(sock);
1627
1628 return file;
1629 }
1630
1631 int __sys_socket(int family, int type, int protocol)
1632 {
1633 struct socket *sock;
1634 int flags;
1635
1636 sock = __sys_socket_create(family, type, protocol);
1637 if (IS_ERR(sock))
1638 return PTR_ERR(sock);
1639
1640 flags = type & ~SOCK_TYPE_MASK;
1641 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1642 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1643
1644 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1645 }
1646
1647 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1648 {
1649 return __sys_socket(family, type, protocol);
1650 }
1651
1652 /*
1653 * Create a pair of connected sockets.
1654 */
1655
1656 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1657 {
1658 struct socket *sock1, *sock2;
1659 int fd1, fd2, err;
1660 struct file *newfile1, *newfile2;
1661 int flags;
1662
1663 flags = type & ~SOCK_TYPE_MASK;
1664 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1665 return -EINVAL;
1666 type &= SOCK_TYPE_MASK;
1667
1668 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1669 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1670
1671 /*
1672 * reserve descriptors and make sure we won't fail
1673 * to return them to userland.
1674 */
1675 fd1 = get_unused_fd_flags(flags);
1676 if (unlikely(fd1 < 0))
1677 return fd1;
1678
1679 fd2 = get_unused_fd_flags(flags);
1680 if (unlikely(fd2 < 0)) {
1681 put_unused_fd(fd1);
1682 return fd2;
1683 }
1684
1685 err = put_user(fd1, &usockvec[0]);
1686 if (err)
1687 goto out;
1688
1689 err = put_user(fd2, &usockvec[1]);
1690 if (err)
1691 goto out;
1692
1693 /*
1694 * Obtain the first socket and check if the underlying protocol
1695 * supports the socketpair call.
1696 */
1697
1698 err = sock_create(family, type, protocol, &sock1);
1699 if (unlikely(err < 0))
1700 goto out;
1701
1702 err = sock_create(family, type, protocol, &sock2);
1703 if (unlikely(err < 0)) {
1704 sock_release(sock1);
1705 goto out;
1706 }
1707
1708 err = security_socket_socketpair(sock1, sock2);
1709 if (unlikely(err)) {
1710 sock_release(sock2);
1711 sock_release(sock1);
1712 goto out;
1713 }
1714
1715 err = sock1->ops->socketpair(sock1, sock2);
1716 if (unlikely(err < 0)) {
1717 sock_release(sock2);
1718 sock_release(sock1);
1719 goto out;
1720 }
1721
1722 newfile1 = sock_alloc_file(sock1, flags, NULL);
1723 if (IS_ERR(newfile1)) {
1724 err = PTR_ERR(newfile1);
1725 sock_release(sock2);
1726 goto out;
1727 }
1728
1729 newfile2 = sock_alloc_file(sock2, flags, NULL);
1730 if (IS_ERR(newfile2)) {
1731 err = PTR_ERR(newfile2);
1732 fput(newfile1);
1733 goto out;
1734 }
1735
1736 audit_fd_pair(fd1, fd2);
1737
1738 fd_install(fd1, newfile1);
1739 fd_install(fd2, newfile2);
1740 return 0;
1741
1742 out:
1743 put_unused_fd(fd2);
1744 put_unused_fd(fd1);
1745 return err;
1746 }
1747
1748 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1749 int __user *, usockvec)
1750 {
1751 return __sys_socketpair(family, type, protocol, usockvec);
1752 }
1753
1754 /*
1755 * Bind a name to a socket. Nothing much to do here since it's
1756 * the protocol's responsibility to handle the local address.
1757 *
1758 * We move the socket address to kernel space before we call
1759 * the protocol layer (having also checked the address is ok).
1760 */
1761
1762 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1763 {
1764 struct socket *sock;
1765 struct sockaddr_storage address;
1766 int err, fput_needed;
1767
1768 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1769 if (sock) {
1770 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1771 if (!err) {
1772 err = security_socket_bind(sock,
1773 (struct sockaddr *)&address,
1774 addrlen);
1775 if (!err)
1776 err = sock->ops->bind(sock,
1777 (struct sockaddr *)
1778 &address, addrlen);
1779 }
1780 fput_light(sock->file, fput_needed);
1781 }
1782 return err;
1783 }
1784
1785 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1786 {
1787 return __sys_bind(fd, umyaddr, addrlen);
1788 }
1789
1790 /*
1791 * Perform a listen. Basically, we allow the protocol to do anything
1792 * necessary for a listen, and if that works, we mark the socket as
1793 * ready for listening.
1794 */
1795
1796 int __sys_listen(int fd, int backlog)
1797 {
1798 struct socket *sock;
1799 int err, fput_needed;
1800 int somaxconn;
1801
1802 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1803 if (sock) {
1804 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1805 if ((unsigned int)backlog > somaxconn)
1806 backlog = somaxconn;
1807
1808 err = security_socket_listen(sock, backlog);
1809 if (!err)
1810 err = sock->ops->listen(sock, backlog);
1811
1812 fput_light(sock->file, fput_needed);
1813 }
1814 return err;
1815 }
1816
1817 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1818 {
1819 return __sys_listen(fd, backlog);
1820 }
1821
1822 struct file *do_accept(struct file *file, unsigned file_flags,
1823 struct sockaddr __user *upeer_sockaddr,
1824 int __user *upeer_addrlen, int flags)
1825 {
1826 struct socket *sock, *newsock;
1827 struct file *newfile;
1828 int err, len;
1829 struct sockaddr_storage address;
1830
1831 sock = sock_from_file(file);
1832 if (!sock)
1833 return ERR_PTR(-ENOTSOCK);
1834
1835 newsock = sock_alloc();
1836 if (!newsock)
1837 return ERR_PTR(-ENFILE);
1838
1839 newsock->type = sock->type;
1840 newsock->ops = sock->ops;
1841
1842 /*
1843 * We don't need try_module_get here, as the listening socket (sock)
1844 * has the protocol module (sock->ops->owner) held.
1845 */
1846 __module_get(newsock->ops->owner);
1847
1848 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1849 if (IS_ERR(newfile))
1850 return newfile;
1851
1852 err = security_socket_accept(sock, newsock);
1853 if (err)
1854 goto out_fd;
1855
1856 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1857 false);
1858 if (err < 0)
1859 goto out_fd;
1860
1861 if (upeer_sockaddr) {
1862 len = newsock->ops->getname(newsock,
1863 (struct sockaddr *)&address, 2);
1864 if (len < 0) {
1865 err = -ECONNABORTED;
1866 goto out_fd;
1867 }
1868 err = move_addr_to_user(&address,
1869 len, upeer_sockaddr, upeer_addrlen);
1870 if (err < 0)
1871 goto out_fd;
1872 }
1873
1874 /* File flags are not inherited via accept() unlike another OSes. */
1875 return newfile;
1876 out_fd:
1877 fput(newfile);
1878 return ERR_PTR(err);
1879 }
1880
1881 int __sys_accept4_file(struct file *file, unsigned file_flags,
1882 struct sockaddr __user *upeer_sockaddr,
1883 int __user *upeer_addrlen, int flags,
1884 unsigned long nofile)
1885 {
1886 struct file *newfile;
1887 int newfd;
1888
1889 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1890 return -EINVAL;
1891
1892 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1893 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1894
1895 newfd = __get_unused_fd_flags(flags, nofile);
1896 if (unlikely(newfd < 0))
1897 return newfd;
1898
1899 newfile = do_accept(file, file_flags, upeer_sockaddr, upeer_addrlen,
1900 flags);
1901 if (IS_ERR(newfile)) {
1902 put_unused_fd(newfd);
1903 return PTR_ERR(newfile);
1904 }
1905 fd_install(newfd, newfile);
1906 return newfd;
1907 }
1908
1909 /*
1910 * For accept, we attempt to create a new socket, set up the link
1911 * with the client, wake up the client, then return the new
1912 * connected fd. We collect the address of the connector in kernel
1913 * space and move it to user at the very end. This is unclean because
1914 * we open the socket then return an error.
1915 *
1916 * 1003.1g adds the ability to recvmsg() to query connection pending
1917 * status to recvmsg. We need to add that support in a way thats
1918 * clean when we restructure accept also.
1919 */
1920
1921 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1922 int __user *upeer_addrlen, int flags)
1923 {
1924 int ret = -EBADF;
1925 struct fd f;
1926
1927 f = fdget(fd);
1928 if (f.file) {
1929 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1930 upeer_addrlen, flags,
1931 rlimit(RLIMIT_NOFILE));
1932 fdput(f);
1933 }
1934
1935 return ret;
1936 }
1937
1938 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1939 int __user *, upeer_addrlen, int, flags)
1940 {
1941 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1942 }
1943
1944 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1945 int __user *, upeer_addrlen)
1946 {
1947 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1948 }
1949
1950 /*
1951 * Attempt to connect to a socket with the server address. The address
1952 * is in user space so we verify it is OK and move it to kernel space.
1953 *
1954 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1955 * break bindings
1956 *
1957 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1958 * other SEQPACKET protocols that take time to connect() as it doesn't
1959 * include the -EINPROGRESS status for such sockets.
1960 */
1961
1962 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1963 int addrlen, int file_flags)
1964 {
1965 struct socket *sock;
1966 int err;
1967
1968 sock = sock_from_file(file);
1969 if (!sock) {
1970 err = -ENOTSOCK;
1971 goto out;
1972 }
1973
1974 err =
1975 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1976 if (err)
1977 goto out;
1978
1979 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1980 sock->file->f_flags | file_flags);
1981 out:
1982 return err;
1983 }
1984
1985 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1986 {
1987 int ret = -EBADF;
1988 struct fd f;
1989
1990 f = fdget(fd);
1991 if (f.file) {
1992 struct sockaddr_storage address;
1993
1994 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1995 if (!ret)
1996 ret = __sys_connect_file(f.file, &address, addrlen, 0);
1997 fdput(f);
1998 }
1999
2000 return ret;
2001 }
2002
2003 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2004 int, addrlen)
2005 {
2006 return __sys_connect(fd, uservaddr, addrlen);
2007 }
2008
2009 /*
2010 * Get the local address ('name') of a socket object. Move the obtained
2011 * name to user space.
2012 */
2013
2014 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2015 int __user *usockaddr_len)
2016 {
2017 struct socket *sock;
2018 struct sockaddr_storage address;
2019 int err, fput_needed;
2020
2021 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2022 if (!sock)
2023 goto out;
2024
2025 err = security_socket_getsockname(sock);
2026 if (err)
2027 goto out_put;
2028
2029 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
2030 if (err < 0)
2031 goto out_put;
2032 /* "err" is actually length in this case */
2033 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2034
2035 out_put:
2036 fput_light(sock->file, fput_needed);
2037 out:
2038 return err;
2039 }
2040
2041 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2042 int __user *, usockaddr_len)
2043 {
2044 return __sys_getsockname(fd, usockaddr, usockaddr_len);
2045 }
2046
2047 /*
2048 * Get the remote address ('name') of a socket object. Move the obtained
2049 * name to user space.
2050 */
2051
2052 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2053 int __user *usockaddr_len)
2054 {
2055 struct socket *sock;
2056 struct sockaddr_storage address;
2057 int err, fput_needed;
2058
2059 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2060 if (sock != NULL) {
2061 err = security_socket_getpeername(sock);
2062 if (err) {
2063 fput_light(sock->file, fput_needed);
2064 return err;
2065 }
2066
2067 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
2068 if (err >= 0)
2069 /* "err" is actually length in this case */
2070 err = move_addr_to_user(&address, err, usockaddr,
2071 usockaddr_len);
2072 fput_light(sock->file, fput_needed);
2073 }
2074 return err;
2075 }
2076
2077 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2078 int __user *, usockaddr_len)
2079 {
2080 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2081 }
2082
2083 /*
2084 * Send a datagram to a given address. We move the address into kernel
2085 * space and check the user space data area is readable before invoking
2086 * the protocol.
2087 */
2088 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2089 struct sockaddr __user *addr, int addr_len)
2090 {
2091 struct socket *sock;
2092 struct sockaddr_storage address;
2093 int err;
2094 struct msghdr msg;
2095 struct iovec iov;
2096 int fput_needed;
2097
2098 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
2099 if (unlikely(err))
2100 return err;
2101 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2102 if (!sock)
2103 goto out;
2104
2105 msg.msg_name = NULL;
2106 msg.msg_control = NULL;
2107 msg.msg_controllen = 0;
2108 msg.msg_namelen = 0;
2109 if (addr) {
2110 err = move_addr_to_kernel(addr, addr_len, &address);
2111 if (err < 0)
2112 goto out_put;
2113 msg.msg_name = (struct sockaddr *)&address;
2114 msg.msg_namelen = addr_len;
2115 }
2116 if (sock->file->f_flags & O_NONBLOCK)
2117 flags |= MSG_DONTWAIT;
2118 msg.msg_flags = flags;
2119 err = sock_sendmsg(sock, &msg);
2120
2121 out_put:
2122 fput_light(sock->file, fput_needed);
2123 out:
2124 return err;
2125 }
2126
2127 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2128 unsigned int, flags, struct sockaddr __user *, addr,
2129 int, addr_len)
2130 {
2131 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2132 }
2133
2134 /*
2135 * Send a datagram down a socket.
2136 */
2137
2138 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2139 unsigned int, flags)
2140 {
2141 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2142 }
2143
2144 /*
2145 * Receive a frame from the socket and optionally record the address of the
2146 * sender. We verify the buffers are writable and if needed move the
2147 * sender address from kernel to user space.
2148 */
2149 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2150 struct sockaddr __user *addr, int __user *addr_len)
2151 {
2152 struct socket *sock;
2153 struct iovec iov;
2154 struct msghdr msg;
2155 struct sockaddr_storage address;
2156 int err, err2;
2157 int fput_needed;
2158
2159 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2160 if (unlikely(err))
2161 return err;
2162 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2163 if (!sock)
2164 goto out;
2165
2166 msg.msg_control = NULL;
2167 msg.msg_controllen = 0;
2168 /* Save some cycles and don't copy the address if not needed */
2169 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2170 /* We assume all kernel code knows the size of sockaddr_storage */
2171 msg.msg_namelen = 0;
2172 msg.msg_iocb = NULL;
2173 msg.msg_flags = 0;
2174 if (sock->file->f_flags & O_NONBLOCK)
2175 flags |= MSG_DONTWAIT;
2176 err = sock_recvmsg(sock, &msg, flags);
2177
2178 if (err >= 0 && addr != NULL) {
2179 err2 = move_addr_to_user(&address,
2180 msg.msg_namelen, addr, addr_len);
2181 if (err2 < 0)
2182 err = err2;
2183 }
2184
2185 fput_light(sock->file, fput_needed);
2186 out:
2187 return err;
2188 }
2189
2190 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2191 unsigned int, flags, struct sockaddr __user *, addr,
2192 int __user *, addr_len)
2193 {
2194 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2195 }
2196
2197 /*
2198 * Receive a datagram from a socket.
2199 */
2200
2201 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2202 unsigned int, flags)
2203 {
2204 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2205 }
2206
2207 static bool sock_use_custom_sol_socket(const struct socket *sock)
2208 {
2209 const struct sock *sk = sock->sk;
2210
2211 /* Use sock->ops->setsockopt() for MPTCP */
2212 return IS_ENABLED(CONFIG_MPTCP) &&
2213 sk->sk_protocol == IPPROTO_MPTCP &&
2214 sk->sk_type == SOCK_STREAM &&
2215 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2216 }
2217
2218 /*
2219 * Set a socket option. Because we don't know the option lengths we have
2220 * to pass the user mode parameter for the protocols to sort out.
2221 */
2222 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2223 int optlen)
2224 {
2225 sockptr_t optval = USER_SOCKPTR(user_optval);
2226 char *kernel_optval = NULL;
2227 int err, fput_needed;
2228 struct socket *sock;
2229
2230 if (optlen < 0)
2231 return -EINVAL;
2232
2233 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2234 if (!sock)
2235 return err;
2236
2237 err = security_socket_setsockopt(sock, level, optname);
2238 if (err)
2239 goto out_put;
2240
2241 if (!in_compat_syscall())
2242 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2243 user_optval, &optlen,
2244 &kernel_optval);
2245 if (err < 0)
2246 goto out_put;
2247 if (err > 0) {
2248 err = 0;
2249 goto out_put;
2250 }
2251
2252 if (kernel_optval)
2253 optval = KERNEL_SOCKPTR(kernel_optval);
2254 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2255 err = sock_setsockopt(sock, level, optname, optval, optlen);
2256 else if (unlikely(!sock->ops->setsockopt))
2257 err = -EOPNOTSUPP;
2258 else
2259 err = sock->ops->setsockopt(sock, level, optname, optval,
2260 optlen);
2261 kfree(kernel_optval);
2262 out_put:
2263 fput_light(sock->file, fput_needed);
2264 return err;
2265 }
2266
2267 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2268 char __user *, optval, int, optlen)
2269 {
2270 return __sys_setsockopt(fd, level, optname, optval, optlen);
2271 }
2272
2273 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2274 int optname));
2275
2276 /*
2277 * Get a socket option. Because we don't know the option lengths we have
2278 * to pass a user mode parameter for the protocols to sort out.
2279 */
2280 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2281 int __user *optlen)
2282 {
2283 int err, fput_needed;
2284 struct socket *sock;
2285 int max_optlen;
2286
2287 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2288 if (!sock)
2289 return err;
2290
2291 err = security_socket_getsockopt(sock, level, optname);
2292 if (err)
2293 goto out_put;
2294
2295 if (!in_compat_syscall())
2296 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2297
2298 if (level == SOL_SOCKET)
2299 err = sock_getsockopt(sock, level, optname, optval, optlen);
2300 else if (unlikely(!sock->ops->getsockopt))
2301 err = -EOPNOTSUPP;
2302 else
2303 err = sock->ops->getsockopt(sock, level, optname, optval,
2304 optlen);
2305
2306 if (!in_compat_syscall())
2307 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2308 optval, optlen, max_optlen,
2309 err);
2310 out_put:
2311 fput_light(sock->file, fput_needed);
2312 return err;
2313 }
2314
2315 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2316 char __user *, optval, int __user *, optlen)
2317 {
2318 return __sys_getsockopt(fd, level, optname, optval, optlen);
2319 }
2320
2321 /*
2322 * Shutdown a socket.
2323 */
2324
2325 int __sys_shutdown_sock(struct socket *sock, int how)
2326 {
2327 int err;
2328
2329 err = security_socket_shutdown(sock, how);
2330 if (!err)
2331 err = sock->ops->shutdown(sock, how);
2332
2333 return err;
2334 }
2335
2336 int __sys_shutdown(int fd, int how)
2337 {
2338 int err, fput_needed;
2339 struct socket *sock;
2340
2341 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2342 if (sock != NULL) {
2343 err = __sys_shutdown_sock(sock, how);
2344 fput_light(sock->file, fput_needed);
2345 }
2346 return err;
2347 }
2348
2349 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2350 {
2351 return __sys_shutdown(fd, how);
2352 }
2353
2354 /* A couple of helpful macros for getting the address of the 32/64 bit
2355 * fields which are the same type (int / unsigned) on our platforms.
2356 */
2357 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2358 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2359 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2360
2361 struct used_address {
2362 struct sockaddr_storage name;
2363 unsigned int name_len;
2364 };
2365
2366 int __copy_msghdr_from_user(struct msghdr *kmsg,
2367 struct user_msghdr __user *umsg,
2368 struct sockaddr __user **save_addr,
2369 struct iovec __user **uiov, size_t *nsegs)
2370 {
2371 struct user_msghdr msg;
2372 ssize_t err;
2373
2374 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2375 return -EFAULT;
2376
2377 kmsg->msg_control_is_user = true;
2378 kmsg->msg_control_user = msg.msg_control;
2379 kmsg->msg_controllen = msg.msg_controllen;
2380 kmsg->msg_flags = msg.msg_flags;
2381
2382 kmsg->msg_namelen = msg.msg_namelen;
2383 if (!msg.msg_name)
2384 kmsg->msg_namelen = 0;
2385
2386 if (kmsg->msg_namelen < 0)
2387 return -EINVAL;
2388
2389 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2390 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2391
2392 if (save_addr)
2393 *save_addr = msg.msg_name;
2394
2395 if (msg.msg_name && kmsg->msg_namelen) {
2396 if (!save_addr) {
2397 err = move_addr_to_kernel(msg.msg_name,
2398 kmsg->msg_namelen,
2399 kmsg->msg_name);
2400 if (err < 0)
2401 return err;
2402 }
2403 } else {
2404 kmsg->msg_name = NULL;
2405 kmsg->msg_namelen = 0;
2406 }
2407
2408 if (msg.msg_iovlen > UIO_MAXIOV)
2409 return -EMSGSIZE;
2410
2411 kmsg->msg_iocb = NULL;
2412 *uiov = msg.msg_iov;
2413 *nsegs = msg.msg_iovlen;
2414 return 0;
2415 }
2416
2417 static int copy_msghdr_from_user(struct msghdr *kmsg,
2418 struct user_msghdr __user *umsg,
2419 struct sockaddr __user **save_addr,
2420 struct iovec **iov)
2421 {
2422 struct user_msghdr msg;
2423 ssize_t err;
2424
2425 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2426 &msg.msg_iovlen);
2427 if (err)
2428 return err;
2429
2430 err = import_iovec(save_addr ? READ : WRITE,
2431 msg.msg_iov, msg.msg_iovlen,
2432 UIO_FASTIOV, iov, &kmsg->msg_iter);
2433 return err < 0 ? err : 0;
2434 }
2435
2436 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2437 unsigned int flags, struct used_address *used_address,
2438 unsigned int allowed_msghdr_flags)
2439 {
2440 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2441 __aligned(sizeof(__kernel_size_t));
2442 /* 20 is size of ipv6_pktinfo */
2443 unsigned char *ctl_buf = ctl;
2444 int ctl_len;
2445 ssize_t err;
2446
2447 err = -ENOBUFS;
2448
2449 if (msg_sys->msg_controllen > INT_MAX)
2450 goto out;
2451 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2452 ctl_len = msg_sys->msg_controllen;
2453 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2454 err =
2455 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2456 sizeof(ctl));
2457 if (err)
2458 goto out;
2459 ctl_buf = msg_sys->msg_control;
2460 ctl_len = msg_sys->msg_controllen;
2461 } else if (ctl_len) {
2462 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2463 CMSG_ALIGN(sizeof(struct cmsghdr)));
2464 if (ctl_len > sizeof(ctl)) {
2465 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2466 if (ctl_buf == NULL)
2467 goto out;
2468 }
2469 err = -EFAULT;
2470 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2471 goto out_freectl;
2472 msg_sys->msg_control = ctl_buf;
2473 msg_sys->msg_control_is_user = false;
2474 }
2475 msg_sys->msg_flags = flags;
2476
2477 if (sock->file->f_flags & O_NONBLOCK)
2478 msg_sys->msg_flags |= MSG_DONTWAIT;
2479 /*
2480 * If this is sendmmsg() and current destination address is same as
2481 * previously succeeded address, omit asking LSM's decision.
2482 * used_address->name_len is initialized to UINT_MAX so that the first
2483 * destination address never matches.
2484 */
2485 if (used_address && msg_sys->msg_name &&
2486 used_address->name_len == msg_sys->msg_namelen &&
2487 !memcmp(&used_address->name, msg_sys->msg_name,
2488 used_address->name_len)) {
2489 err = sock_sendmsg_nosec(sock, msg_sys);
2490 goto out_freectl;
2491 }
2492 err = sock_sendmsg(sock, msg_sys);
2493 /*
2494 * If this is sendmmsg() and sending to current destination address was
2495 * successful, remember it.
2496 */
2497 if (used_address && err >= 0) {
2498 used_address->name_len = msg_sys->msg_namelen;
2499 if (msg_sys->msg_name)
2500 memcpy(&used_address->name, msg_sys->msg_name,
2501 used_address->name_len);
2502 }
2503
2504 out_freectl:
2505 if (ctl_buf != ctl)
2506 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2507 out:
2508 return err;
2509 }
2510
2511 int sendmsg_copy_msghdr(struct msghdr *msg,
2512 struct user_msghdr __user *umsg, unsigned flags,
2513 struct iovec **iov)
2514 {
2515 int err;
2516
2517 if (flags & MSG_CMSG_COMPAT) {
2518 struct compat_msghdr __user *msg_compat;
2519
2520 msg_compat = (struct compat_msghdr __user *) umsg;
2521 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2522 } else {
2523 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2524 }
2525 if (err < 0)
2526 return err;
2527
2528 return 0;
2529 }
2530
2531 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2532 struct msghdr *msg_sys, unsigned int flags,
2533 struct used_address *used_address,
2534 unsigned int allowed_msghdr_flags)
2535 {
2536 struct sockaddr_storage address;
2537 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2538 ssize_t err;
2539
2540 msg_sys->msg_name = &address;
2541
2542 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2543 if (err < 0)
2544 return err;
2545
2546 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2547 allowed_msghdr_flags);
2548 kfree(iov);
2549 return err;
2550 }
2551
2552 /*
2553 * BSD sendmsg interface
2554 */
2555 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2556 unsigned int flags)
2557 {
2558 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2559 }
2560
2561 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2562 bool forbid_cmsg_compat)
2563 {
2564 int fput_needed, err;
2565 struct msghdr msg_sys;
2566 struct socket *sock;
2567
2568 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2569 return -EINVAL;
2570
2571 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2572 if (!sock)
2573 goto out;
2574
2575 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2576
2577 fput_light(sock->file, fput_needed);
2578 out:
2579 return err;
2580 }
2581
2582 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2583 {
2584 return __sys_sendmsg(fd, msg, flags, true);
2585 }
2586
2587 /*
2588 * Linux sendmmsg interface
2589 */
2590
2591 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2592 unsigned int flags, bool forbid_cmsg_compat)
2593 {
2594 int fput_needed, err, datagrams;
2595 struct socket *sock;
2596 struct mmsghdr __user *entry;
2597 struct compat_mmsghdr __user *compat_entry;
2598 struct msghdr msg_sys;
2599 struct used_address used_address;
2600 unsigned int oflags = flags;
2601
2602 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2603 return -EINVAL;
2604
2605 if (vlen > UIO_MAXIOV)
2606 vlen = UIO_MAXIOV;
2607
2608 datagrams = 0;
2609
2610 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2611 if (!sock)
2612 return err;
2613
2614 used_address.name_len = UINT_MAX;
2615 entry = mmsg;
2616 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2617 err = 0;
2618 flags |= MSG_BATCH;
2619
2620 while (datagrams < vlen) {
2621 if (datagrams == vlen - 1)
2622 flags = oflags;
2623
2624 if (MSG_CMSG_COMPAT & flags) {
2625 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2626 &msg_sys, flags, &used_address, MSG_EOR);
2627 if (err < 0)
2628 break;
2629 err = __put_user(err, &compat_entry->msg_len);
2630 ++compat_entry;
2631 } else {
2632 err = ___sys_sendmsg(sock,
2633 (struct user_msghdr __user *)entry,
2634 &msg_sys, flags, &used_address, MSG_EOR);
2635 if (err < 0)
2636 break;
2637 err = put_user(err, &entry->msg_len);
2638 ++entry;
2639 }
2640
2641 if (err)
2642 break;
2643 ++datagrams;
2644 if (msg_data_left(&msg_sys))
2645 break;
2646 cond_resched();
2647 }
2648
2649 fput_light(sock->file, fput_needed);
2650
2651 /* We only return an error if no datagrams were able to be sent */
2652 if (datagrams != 0)
2653 return datagrams;
2654
2655 return err;
2656 }
2657
2658 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2659 unsigned int, vlen, unsigned int, flags)
2660 {
2661 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2662 }
2663
2664 int recvmsg_copy_msghdr(struct msghdr *msg,
2665 struct user_msghdr __user *umsg, unsigned flags,
2666 struct sockaddr __user **uaddr,
2667 struct iovec **iov)
2668 {
2669 ssize_t err;
2670
2671 if (MSG_CMSG_COMPAT & flags) {
2672 struct compat_msghdr __user *msg_compat;
2673
2674 msg_compat = (struct compat_msghdr __user *) umsg;
2675 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2676 } else {
2677 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2678 }
2679 if (err < 0)
2680 return err;
2681
2682 return 0;
2683 }
2684
2685 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2686 struct user_msghdr __user *msg,
2687 struct sockaddr __user *uaddr,
2688 unsigned int flags, int nosec)
2689 {
2690 struct compat_msghdr __user *msg_compat =
2691 (struct compat_msghdr __user *) msg;
2692 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2693 struct sockaddr_storage addr;
2694 unsigned long cmsg_ptr;
2695 int len;
2696 ssize_t err;
2697
2698 msg_sys->msg_name = &addr;
2699 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2700 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2701
2702 /* We assume all kernel code knows the size of sockaddr_storage */
2703 msg_sys->msg_namelen = 0;
2704
2705 if (sock->file->f_flags & O_NONBLOCK)
2706 flags |= MSG_DONTWAIT;
2707
2708 if (unlikely(nosec))
2709 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2710 else
2711 err = sock_recvmsg(sock, msg_sys, flags);
2712
2713 if (err < 0)
2714 goto out;
2715 len = err;
2716
2717 if (uaddr != NULL) {
2718 err = move_addr_to_user(&addr,
2719 msg_sys->msg_namelen, uaddr,
2720 uaddr_len);
2721 if (err < 0)
2722 goto out;
2723 }
2724 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2725 COMPAT_FLAGS(msg));
2726 if (err)
2727 goto out;
2728 if (MSG_CMSG_COMPAT & flags)
2729 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2730 &msg_compat->msg_controllen);
2731 else
2732 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2733 &msg->msg_controllen);
2734 if (err)
2735 goto out;
2736 err = len;
2737 out:
2738 return err;
2739 }
2740
2741 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2742 struct msghdr *msg_sys, unsigned int flags, int nosec)
2743 {
2744 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2745 /* user mode address pointers */
2746 struct sockaddr __user *uaddr;
2747 ssize_t err;
2748
2749 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2750 if (err < 0)
2751 return err;
2752
2753 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2754 kfree(iov);
2755 return err;
2756 }
2757
2758 /*
2759 * BSD recvmsg interface
2760 */
2761
2762 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2763 struct user_msghdr __user *umsg,
2764 struct sockaddr __user *uaddr, unsigned int flags)
2765 {
2766 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2767 }
2768
2769 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2770 bool forbid_cmsg_compat)
2771 {
2772 int fput_needed, err;
2773 struct msghdr msg_sys;
2774 struct socket *sock;
2775
2776 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2777 return -EINVAL;
2778
2779 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2780 if (!sock)
2781 goto out;
2782
2783 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2784
2785 fput_light(sock->file, fput_needed);
2786 out:
2787 return err;
2788 }
2789
2790 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2791 unsigned int, flags)
2792 {
2793 return __sys_recvmsg(fd, msg, flags, true);
2794 }
2795
2796 /*
2797 * Linux recvmmsg interface
2798 */
2799
2800 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2801 unsigned int vlen, unsigned int flags,
2802 struct timespec64 *timeout)
2803 {
2804 int fput_needed, err, datagrams;
2805 struct socket *sock;
2806 struct mmsghdr __user *entry;
2807 struct compat_mmsghdr __user *compat_entry;
2808 struct msghdr msg_sys;
2809 struct timespec64 end_time;
2810 struct timespec64 timeout64;
2811
2812 if (timeout &&
2813 poll_select_set_timeout(&end_time, timeout->tv_sec,
2814 timeout->tv_nsec))
2815 return -EINVAL;
2816
2817 datagrams = 0;
2818
2819 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2820 if (!sock)
2821 return err;
2822
2823 if (likely(!(flags & MSG_ERRQUEUE))) {
2824 err = sock_error(sock->sk);
2825 if (err) {
2826 datagrams = err;
2827 goto out_put;
2828 }
2829 }
2830
2831 entry = mmsg;
2832 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2833
2834 while (datagrams < vlen) {
2835 /*
2836 * No need to ask LSM for more than the first datagram.
2837 */
2838 if (MSG_CMSG_COMPAT & flags) {
2839 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2840 &msg_sys, flags & ~MSG_WAITFORONE,
2841 datagrams);
2842 if (err < 0)
2843 break;
2844 err = __put_user(err, &compat_entry->msg_len);
2845 ++compat_entry;
2846 } else {
2847 err = ___sys_recvmsg(sock,
2848 (struct user_msghdr __user *)entry,
2849 &msg_sys, flags & ~MSG_WAITFORONE,
2850 datagrams);
2851 if (err < 0)
2852 break;
2853 err = put_user(err, &entry->msg_len);
2854 ++entry;
2855 }
2856
2857 if (err)
2858 break;
2859 ++datagrams;
2860
2861 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2862 if (flags & MSG_WAITFORONE)
2863 flags |= MSG_DONTWAIT;
2864
2865 if (timeout) {
2866 ktime_get_ts64(&timeout64);
2867 *timeout = timespec64_sub(end_time, timeout64);
2868 if (timeout->tv_sec < 0) {
2869 timeout->tv_sec = timeout->tv_nsec = 0;
2870 break;
2871 }
2872
2873 /* Timeout, return less than vlen datagrams */
2874 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2875 break;
2876 }
2877
2878 /* Out of band data, return right away */
2879 if (msg_sys.msg_flags & MSG_OOB)
2880 break;
2881 cond_resched();
2882 }
2883
2884 if (err == 0)
2885 goto out_put;
2886
2887 if (datagrams == 0) {
2888 datagrams = err;
2889 goto out_put;
2890 }
2891
2892 /*
2893 * We may return less entries than requested (vlen) if the
2894 * sock is non block and there aren't enough datagrams...
2895 */
2896 if (err != -EAGAIN) {
2897 /*
2898 * ... or if recvmsg returns an error after we
2899 * received some datagrams, where we record the
2900 * error to return on the next call or if the
2901 * app asks about it using getsockopt(SO_ERROR).
2902 */
2903 sock->sk->sk_err = -err;
2904 }
2905 out_put:
2906 fput_light(sock->file, fput_needed);
2907
2908 return datagrams;
2909 }
2910
2911 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2912 unsigned int vlen, unsigned int flags,
2913 struct __kernel_timespec __user *timeout,
2914 struct old_timespec32 __user *timeout32)
2915 {
2916 int datagrams;
2917 struct timespec64 timeout_sys;
2918
2919 if (timeout && get_timespec64(&timeout_sys, timeout))
2920 return -EFAULT;
2921
2922 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2923 return -EFAULT;
2924
2925 if (!timeout && !timeout32)
2926 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2927
2928 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2929
2930 if (datagrams <= 0)
2931 return datagrams;
2932
2933 if (timeout && put_timespec64(&timeout_sys, timeout))
2934 datagrams = -EFAULT;
2935
2936 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2937 datagrams = -EFAULT;
2938
2939 return datagrams;
2940 }
2941
2942 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2943 unsigned int, vlen, unsigned int, flags,
2944 struct __kernel_timespec __user *, timeout)
2945 {
2946 if (flags & MSG_CMSG_COMPAT)
2947 return -EINVAL;
2948
2949 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2950 }
2951
2952 #ifdef CONFIG_COMPAT_32BIT_TIME
2953 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2954 unsigned int, vlen, unsigned int, flags,
2955 struct old_timespec32 __user *, timeout)
2956 {
2957 if (flags & MSG_CMSG_COMPAT)
2958 return -EINVAL;
2959
2960 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2961 }
2962 #endif
2963
2964 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2965 /* Argument list sizes for sys_socketcall */
2966 #define AL(x) ((x) * sizeof(unsigned long))
2967 static const unsigned char nargs[21] = {
2968 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2969 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2970 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2971 AL(4), AL(5), AL(4)
2972 };
2973
2974 #undef AL
2975
2976 /*
2977 * System call vectors.
2978 *
2979 * Argument checking cleaned up. Saved 20% in size.
2980 * This function doesn't need to set the kernel lock because
2981 * it is set by the callees.
2982 */
2983
2984 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2985 {
2986 unsigned long a[AUDITSC_ARGS];
2987 unsigned long a0, a1;
2988 int err;
2989 unsigned int len;
2990
2991 if (call < 1 || call > SYS_SENDMMSG)
2992 return -EINVAL;
2993 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2994
2995 len = nargs[call];
2996 if (len > sizeof(a))
2997 return -EINVAL;
2998
2999 /* copy_from_user should be SMP safe. */
3000 if (copy_from_user(a, args, len))
3001 return -EFAULT;
3002
3003 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3004 if (err)
3005 return err;
3006
3007 a0 = a[0];
3008 a1 = a[1];
3009
3010 switch (call) {
3011 case SYS_SOCKET:
3012 err = __sys_socket(a0, a1, a[2]);
3013 break;
3014 case SYS_BIND:
3015 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3016 break;
3017 case SYS_CONNECT:
3018 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3019 break;
3020 case SYS_LISTEN:
3021 err = __sys_listen(a0, a1);
3022 break;
3023 case SYS_ACCEPT:
3024 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3025 (int __user *)a[2], 0);
3026 break;
3027 case SYS_GETSOCKNAME:
3028 err =
3029 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3030 (int __user *)a[2]);
3031 break;
3032 case SYS_GETPEERNAME:
3033 err =
3034 __sys_getpeername(a0, (struct sockaddr __user *)a1,
3035 (int __user *)a[2]);
3036 break;
3037 case SYS_SOCKETPAIR:
3038 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3039 break;
3040 case SYS_SEND:
3041 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3042 NULL, 0);
3043 break;
3044 case SYS_SENDTO:
3045 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3046 (struct sockaddr __user *)a[4], a[5]);
3047 break;
3048 case SYS_RECV:
3049 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3050 NULL, NULL);
3051 break;
3052 case SYS_RECVFROM:
3053 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3054 (struct sockaddr __user *)a[4],
3055 (int __user *)a[5]);
3056 break;
3057 case SYS_SHUTDOWN:
3058 err = __sys_shutdown(a0, a1);
3059 break;
3060 case SYS_SETSOCKOPT:
3061 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3062 a[4]);
3063 break;
3064 case SYS_GETSOCKOPT:
3065 err =
3066 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3067 (int __user *)a[4]);
3068 break;
3069 case SYS_SENDMSG:
3070 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3071 a[2], true);
3072 break;
3073 case SYS_SENDMMSG:
3074 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3075 a[3], true);
3076 break;
3077 case SYS_RECVMSG:
3078 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3079 a[2], true);
3080 break;
3081 case SYS_RECVMMSG:
3082 if (IS_ENABLED(CONFIG_64BIT))
3083 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3084 a[2], a[3],
3085 (struct __kernel_timespec __user *)a[4],
3086 NULL);
3087 else
3088 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3089 a[2], a[3], NULL,
3090 (struct old_timespec32 __user *)a[4]);
3091 break;
3092 case SYS_ACCEPT4:
3093 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3094 (int __user *)a[2], a[3]);
3095 break;
3096 default:
3097 err = -EINVAL;
3098 break;
3099 }
3100 return err;
3101 }
3102
3103 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3104
3105 /**
3106 * sock_register - add a socket protocol handler
3107 * @ops: description of protocol
3108 *
3109 * This function is called by a protocol handler that wants to
3110 * advertise its address family, and have it linked into the
3111 * socket interface. The value ops->family corresponds to the
3112 * socket system call protocol family.
3113 */
3114 int sock_register(const struct net_proto_family *ops)
3115 {
3116 int err;
3117
3118 if (ops->family >= NPROTO) {
3119 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3120 return -ENOBUFS;
3121 }
3122
3123 spin_lock(&net_family_lock);
3124 if (rcu_dereference_protected(net_families[ops->family],
3125 lockdep_is_held(&net_family_lock)))
3126 err = -EEXIST;
3127 else {
3128 rcu_assign_pointer(net_families[ops->family], ops);
3129 err = 0;
3130 }
3131 spin_unlock(&net_family_lock);
3132
3133 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3134 return err;
3135 }
3136 EXPORT_SYMBOL(sock_register);
3137
3138 /**
3139 * sock_unregister - remove a protocol handler
3140 * @family: protocol family to remove
3141 *
3142 * This function is called by a protocol handler that wants to
3143 * remove its address family, and have it unlinked from the
3144 * new socket creation.
3145 *
3146 * If protocol handler is a module, then it can use module reference
3147 * counts to protect against new references. If protocol handler is not
3148 * a module then it needs to provide its own protection in
3149 * the ops->create routine.
3150 */
3151 void sock_unregister(int family)
3152 {
3153 BUG_ON(family < 0 || family >= NPROTO);
3154
3155 spin_lock(&net_family_lock);
3156 RCU_INIT_POINTER(net_families[family], NULL);
3157 spin_unlock(&net_family_lock);
3158
3159 synchronize_rcu();
3160
3161 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3162 }
3163 EXPORT_SYMBOL(sock_unregister);
3164
3165 bool sock_is_registered(int family)
3166 {
3167 return family < NPROTO && rcu_access_pointer(net_families[family]);
3168 }
3169
3170 static int __init sock_init(void)
3171 {
3172 int err;
3173 /*
3174 * Initialize the network sysctl infrastructure.
3175 */
3176 err = net_sysctl_init();
3177 if (err)
3178 goto out;
3179
3180 /*
3181 * Initialize skbuff SLAB cache
3182 */
3183 skb_init();
3184
3185 /*
3186 * Initialize the protocols module.
3187 */
3188
3189 init_inodecache();
3190
3191 err = register_filesystem(&sock_fs_type);
3192 if (err)
3193 goto out;
3194 sock_mnt = kern_mount(&sock_fs_type);
3195 if (IS_ERR(sock_mnt)) {
3196 err = PTR_ERR(sock_mnt);
3197 goto out_mount;
3198 }
3199
3200 /* The real protocol initialization is performed in later initcalls.
3201 */
3202
3203 #ifdef CONFIG_NETFILTER
3204 err = netfilter_init();
3205 if (err)
3206 goto out;
3207 #endif
3208
3209 ptp_classifier_init();
3210
3211 out:
3212 return err;
3213
3214 out_mount:
3215 unregister_filesystem(&sock_fs_type);
3216 goto out;
3217 }
3218
3219 core_initcall(sock_init); /* early initcall */
3220
3221 #ifdef CONFIG_PROC_FS
3222 void socket_seq_show(struct seq_file *seq)
3223 {
3224 seq_printf(seq, "sockets: used %d\n",
3225 sock_inuse_get(seq->private));
3226 }
3227 #endif /* CONFIG_PROC_FS */
3228
3229 /* Handle the fact that while struct ifreq has the same *layout* on
3230 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3231 * which are handled elsewhere, it still has different *size* due to
3232 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3233 * resulting in struct ifreq being 32 and 40 bytes respectively).
3234 * As a result, if the struct happens to be at the end of a page and
3235 * the next page isn't readable/writable, we get a fault. To prevent
3236 * that, copy back and forth to the full size.
3237 */
3238 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3239 {
3240 if (in_compat_syscall()) {
3241 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3242
3243 memset(ifr, 0, sizeof(*ifr));
3244 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3245 return -EFAULT;
3246
3247 if (ifrdata)
3248 *ifrdata = compat_ptr(ifr32->ifr_data);
3249
3250 return 0;
3251 }
3252
3253 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3254 return -EFAULT;
3255
3256 if (ifrdata)
3257 *ifrdata = ifr->ifr_data;
3258
3259 return 0;
3260 }
3261 EXPORT_SYMBOL(get_user_ifreq);
3262
3263 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3264 {
3265 size_t size = sizeof(*ifr);
3266
3267 if (in_compat_syscall())
3268 size = sizeof(struct compat_ifreq);
3269
3270 if (copy_to_user(arg, ifr, size))
3271 return -EFAULT;
3272
3273 return 0;
3274 }
3275 EXPORT_SYMBOL(put_user_ifreq);
3276
3277 #ifdef CONFIG_COMPAT
3278 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3279 {
3280 compat_uptr_t uptr32;
3281 struct ifreq ifr;
3282 void __user *saved;
3283 int err;
3284
3285 if (get_user_ifreq(&ifr, NULL, uifr32))
3286 return -EFAULT;
3287
3288 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3289 return -EFAULT;
3290
3291 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3292 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3293
3294 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3295 if (!err) {
3296 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3297 if (put_user_ifreq(&ifr, uifr32))
3298 err = -EFAULT;
3299 }
3300 return err;
3301 }
3302
3303 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3304 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3305 struct compat_ifreq __user *u_ifreq32)
3306 {
3307 struct ifreq ifreq;
3308 void __user *data;
3309
3310 if (!is_socket_ioctl_cmd(cmd))
3311 return -ENOTTY;
3312 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3313 return -EFAULT;
3314 ifreq.ifr_data = data;
3315
3316 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3317 }
3318
3319 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3320 unsigned int cmd, unsigned long arg)
3321 {
3322 void __user *argp = compat_ptr(arg);
3323 struct sock *sk = sock->sk;
3324 struct net *net = sock_net(sk);
3325
3326 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3327 return sock_ioctl(file, cmd, (unsigned long)argp);
3328
3329 switch (cmd) {
3330 case SIOCWANDEV:
3331 return compat_siocwandev(net, argp);
3332 case SIOCGSTAMP_OLD:
3333 case SIOCGSTAMPNS_OLD:
3334 if (!sock->ops->gettstamp)
3335 return -ENOIOCTLCMD;
3336 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3337 !COMPAT_USE_64BIT_TIME);
3338
3339 case SIOCETHTOOL:
3340 case SIOCBONDSLAVEINFOQUERY:
3341 case SIOCBONDINFOQUERY:
3342 case SIOCSHWTSTAMP:
3343 case SIOCGHWTSTAMP:
3344 return compat_ifr_data_ioctl(net, cmd, argp);
3345
3346 case FIOSETOWN:
3347 case SIOCSPGRP:
3348 case FIOGETOWN:
3349 case SIOCGPGRP:
3350 case SIOCBRADDBR:
3351 case SIOCBRDELBR:
3352 case SIOCGIFVLAN:
3353 case SIOCSIFVLAN:
3354 case SIOCGSKNS:
3355 case SIOCGSTAMP_NEW:
3356 case SIOCGSTAMPNS_NEW:
3357 case SIOCGIFCONF:
3358 case SIOCSIFBR:
3359 case SIOCGIFBR:
3360 return sock_ioctl(file, cmd, arg);
3361
3362 case SIOCGIFFLAGS:
3363 case SIOCSIFFLAGS:
3364 case SIOCGIFMAP:
3365 case SIOCSIFMAP:
3366 case SIOCGIFMETRIC:
3367 case SIOCSIFMETRIC:
3368 case SIOCGIFMTU:
3369 case SIOCSIFMTU:
3370 case SIOCGIFMEM:
3371 case SIOCSIFMEM:
3372 case SIOCGIFHWADDR:
3373 case SIOCSIFHWADDR:
3374 case SIOCADDMULTI:
3375 case SIOCDELMULTI:
3376 case SIOCGIFINDEX:
3377 case SIOCGIFADDR:
3378 case SIOCSIFADDR:
3379 case SIOCSIFHWBROADCAST:
3380 case SIOCDIFADDR:
3381 case SIOCGIFBRDADDR:
3382 case SIOCSIFBRDADDR:
3383 case SIOCGIFDSTADDR:
3384 case SIOCSIFDSTADDR:
3385 case SIOCGIFNETMASK:
3386 case SIOCSIFNETMASK:
3387 case SIOCSIFPFLAGS:
3388 case SIOCGIFPFLAGS:
3389 case SIOCGIFTXQLEN:
3390 case SIOCSIFTXQLEN:
3391 case SIOCBRADDIF:
3392 case SIOCBRDELIF:
3393 case SIOCGIFNAME:
3394 case SIOCSIFNAME:
3395 case SIOCGMIIPHY:
3396 case SIOCGMIIREG:
3397 case SIOCSMIIREG:
3398 case SIOCBONDENSLAVE:
3399 case SIOCBONDRELEASE:
3400 case SIOCBONDSETHWADDR:
3401 case SIOCBONDCHANGEACTIVE:
3402 case SIOCSARP:
3403 case SIOCGARP:
3404 case SIOCDARP:
3405 case SIOCOUTQ:
3406 case SIOCOUTQNSD:
3407 case SIOCATMARK:
3408 return sock_do_ioctl(net, sock, cmd, arg);
3409 }
3410
3411 return -ENOIOCTLCMD;
3412 }
3413
3414 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3415 unsigned long arg)
3416 {
3417 struct socket *sock = file->private_data;
3418 int ret = -ENOIOCTLCMD;
3419 struct sock *sk;
3420 struct net *net;
3421
3422 sk = sock->sk;
3423 net = sock_net(sk);
3424
3425 if (sock->ops->compat_ioctl)
3426 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3427
3428 if (ret == -ENOIOCTLCMD &&
3429 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3430 ret = compat_wext_handle_ioctl(net, cmd, arg);
3431
3432 if (ret == -ENOIOCTLCMD)
3433 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3434
3435 return ret;
3436 }
3437 #endif
3438
3439 /**
3440 * kernel_bind - bind an address to a socket (kernel space)
3441 * @sock: socket
3442 * @addr: address
3443 * @addrlen: length of address
3444 *
3445 * Returns 0 or an error.
3446 */
3447
3448 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3449 {
3450 return sock->ops->bind(sock, addr, addrlen);
3451 }
3452 EXPORT_SYMBOL(kernel_bind);
3453
3454 /**
3455 * kernel_listen - move socket to listening state (kernel space)
3456 * @sock: socket
3457 * @backlog: pending connections queue size
3458 *
3459 * Returns 0 or an error.
3460 */
3461
3462 int kernel_listen(struct socket *sock, int backlog)
3463 {
3464 return sock->ops->listen(sock, backlog);
3465 }
3466 EXPORT_SYMBOL(kernel_listen);
3467
3468 /**
3469 * kernel_accept - accept a connection (kernel space)
3470 * @sock: listening socket
3471 * @newsock: new connected socket
3472 * @flags: flags
3473 *
3474 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3475 * If it fails, @newsock is guaranteed to be %NULL.
3476 * Returns 0 or an error.
3477 */
3478
3479 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3480 {
3481 struct sock *sk = sock->sk;
3482 int err;
3483
3484 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3485 newsock);
3486 if (err < 0)
3487 goto done;
3488
3489 err = sock->ops->accept(sock, *newsock, flags, true);
3490 if (err < 0) {
3491 sock_release(*newsock);
3492 *newsock = NULL;
3493 goto done;
3494 }
3495
3496 (*newsock)->ops = sock->ops;
3497 __module_get((*newsock)->ops->owner);
3498
3499 done:
3500 return err;
3501 }
3502 EXPORT_SYMBOL(kernel_accept);
3503
3504 /**
3505 * kernel_connect - connect a socket (kernel space)
3506 * @sock: socket
3507 * @addr: address
3508 * @addrlen: address length
3509 * @flags: flags (O_NONBLOCK, ...)
3510 *
3511 * For datagram sockets, @addr is the address to which datagrams are sent
3512 * by default, and the only address from which datagrams are received.
3513 * For stream sockets, attempts to connect to @addr.
3514 * Returns 0 or an error code.
3515 */
3516
3517 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3518 int flags)
3519 {
3520 return sock->ops->connect(sock, addr, addrlen, flags);
3521 }
3522 EXPORT_SYMBOL(kernel_connect);
3523
3524 /**
3525 * kernel_getsockname - get the address which the socket is bound (kernel space)
3526 * @sock: socket
3527 * @addr: address holder
3528 *
3529 * Fills the @addr pointer with the address which the socket is bound.
3530 * Returns the length of the address in bytes or an error code.
3531 */
3532
3533 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3534 {
3535 return sock->ops->getname(sock, addr, 0);
3536 }
3537 EXPORT_SYMBOL(kernel_getsockname);
3538
3539 /**
3540 * kernel_getpeername - get the address which the socket is connected (kernel space)
3541 * @sock: socket
3542 * @addr: address holder
3543 *
3544 * Fills the @addr pointer with the address which the socket is connected.
3545 * Returns the length of the address in bytes or an error code.
3546 */
3547
3548 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3549 {
3550 return sock->ops->getname(sock, addr, 1);
3551 }
3552 EXPORT_SYMBOL(kernel_getpeername);
3553
3554 /**
3555 * kernel_sendpage - send a &page through a socket (kernel space)
3556 * @sock: socket
3557 * @page: page
3558 * @offset: page offset
3559 * @size: total size in bytes
3560 * @flags: flags (MSG_DONTWAIT, ...)
3561 *
3562 * Returns the total amount sent in bytes or an error.
3563 */
3564
3565 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3566 size_t size, int flags)
3567 {
3568 if (sock->ops->sendpage) {
3569 /* Warn in case the improper page to zero-copy send */
3570 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3571 return sock->ops->sendpage(sock, page, offset, size, flags);
3572 }
3573 return sock_no_sendpage(sock, page, offset, size, flags);
3574 }
3575 EXPORT_SYMBOL(kernel_sendpage);
3576
3577 /**
3578 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3579 * @sk: sock
3580 * @page: page
3581 * @offset: page offset
3582 * @size: total size in bytes
3583 * @flags: flags (MSG_DONTWAIT, ...)
3584 *
3585 * Returns the total amount sent in bytes or an error.
3586 * Caller must hold @sk.
3587 */
3588
3589 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3590 size_t size, int flags)
3591 {
3592 struct socket *sock = sk->sk_socket;
3593
3594 if (sock->ops->sendpage_locked)
3595 return sock->ops->sendpage_locked(sk, page, offset, size,
3596 flags);
3597
3598 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3599 }
3600 EXPORT_SYMBOL(kernel_sendpage_locked);
3601
3602 /**
3603 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3604 * @sock: socket
3605 * @how: connection part
3606 *
3607 * Returns 0 or an error.
3608 */
3609
3610 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3611 {
3612 return sock->ops->shutdown(sock, how);
3613 }
3614 EXPORT_SYMBOL(kernel_sock_shutdown);
3615
3616 /**
3617 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3618 * @sk: socket
3619 *
3620 * This routine returns the IP overhead imposed by a socket i.e.
3621 * the length of the underlying IP header, depending on whether
3622 * this is an IPv4 or IPv6 socket and the length from IP options turned
3623 * on at the socket. Assumes that the caller has a lock on the socket.
3624 */
3625
3626 u32 kernel_sock_ip_overhead(struct sock *sk)
3627 {
3628 struct inet_sock *inet;
3629 struct ip_options_rcu *opt;
3630 u32 overhead = 0;
3631 #if IS_ENABLED(CONFIG_IPV6)
3632 struct ipv6_pinfo *np;
3633 struct ipv6_txoptions *optv6 = NULL;
3634 #endif /* IS_ENABLED(CONFIG_IPV6) */
3635
3636 if (!sk)
3637 return overhead;
3638
3639 switch (sk->sk_family) {
3640 case AF_INET:
3641 inet = inet_sk(sk);
3642 overhead += sizeof(struct iphdr);
3643 opt = rcu_dereference_protected(inet->inet_opt,
3644 sock_owned_by_user(sk));
3645 if (opt)
3646 overhead += opt->opt.optlen;
3647 return overhead;
3648 #if IS_ENABLED(CONFIG_IPV6)
3649 case AF_INET6:
3650 np = inet6_sk(sk);
3651 overhead += sizeof(struct ipv6hdr);
3652 if (np)
3653 optv6 = rcu_dereference_protected(np->opt,
3654 sock_owned_by_user(sk));
3655 if (optv6)
3656 overhead += (optv6->opt_flen + optv6->opt_nflen);
3657 return overhead;
3658 #endif /* IS_ENABLED(CONFIG_IPV6) */
3659 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3660 return overhead;
3661 }
3662 }
3663 EXPORT_SYMBOL(kernel_sock_ip_overhead);