]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - net/socket.c
net: bridge: fix netlink export of vlan_stats_per_port option
[thirdparty/kernel/linux.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
93
94 #include <linux/uaccess.h>
95 #include <asm/unistd.h>
96
97 #include <net/compat.h>
98 #include <net/wext.h>
99 #include <net/cls_cgroup.h>
100
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
103
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156 };
157
158 /*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165 /*
166 * Support routines.
167 * Move socket addresses back and forth across the kernel/user
168 * divide and look after the messy bits.
169 */
170
171 /**
172 * move_addr_to_kernel - copy a socket address into kernel space
173 * @uaddr: Address in user space
174 * @kaddr: Address in kernel space
175 * @ulen: Length in user space
176 *
177 * The address is copied into kernel space. If the provided address is
178 * too long an error code of -EINVAL is returned. If the copy gives
179 * invalid addresses -EFAULT is returned. On a success 0 is returned.
180 */
181
182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
183 {
184 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
185 return -EINVAL;
186 if (ulen == 0)
187 return 0;
188 if (copy_from_user(kaddr, uaddr, ulen))
189 return -EFAULT;
190 return audit_sockaddr(ulen, kaddr);
191 }
192
193 /**
194 * move_addr_to_user - copy an address to user space
195 * @kaddr: kernel space address
196 * @klen: length of address in kernel
197 * @uaddr: user space address
198 * @ulen: pointer to user length field
199 *
200 * The value pointed to by ulen on entry is the buffer length available.
201 * This is overwritten with the buffer space used. -EINVAL is returned
202 * if an overlong buffer is specified or a negative buffer size. -EFAULT
203 * is returned if either the buffer or the length field are not
204 * accessible.
205 * After copying the data up to the limit the user specifies, the true
206 * length of the data is written over the length limit the user
207 * specified. Zero is returned for a success.
208 */
209
210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
211 void __user *uaddr, int __user *ulen)
212 {
213 int err;
214 int len;
215
216 BUG_ON(klen > sizeof(struct sockaddr_storage));
217 err = get_user(len, ulen);
218 if (err)
219 return err;
220 if (len > klen)
221 len = klen;
222 if (len < 0)
223 return -EINVAL;
224 if (len) {
225 if (audit_sockaddr(klen, kaddr))
226 return -ENOMEM;
227 if (copy_to_user(uaddr, kaddr, len))
228 return -EFAULT;
229 }
230 /*
231 * "fromlen shall refer to the value before truncation.."
232 * 1003.1g
233 */
234 return __put_user(klen, ulen);
235 }
236
237 static struct kmem_cache *sock_inode_cachep __ro_after_init;
238
239 static struct inode *sock_alloc_inode(struct super_block *sb)
240 {
241 struct socket_alloc *ei;
242 struct socket_wq *wq;
243
244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 if (!ei)
246 return NULL;
247 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
248 if (!wq) {
249 kmem_cache_free(sock_inode_cachep, ei);
250 return NULL;
251 }
252 init_waitqueue_head(&wq->wait);
253 wq->fasync_list = NULL;
254 wq->flags = 0;
255 ei->socket.wq = wq;
256
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
262
263 return &ei->vfs_inode;
264 }
265
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 struct socket_alloc *ei;
269
270 ei = container_of(inode, struct socket_alloc, vfs_inode);
271 kfree_rcu(ei->socket.wq, rcu);
272 kmem_cache_free(sock_inode_cachep, ei);
273 }
274
275 static void init_once(void *foo)
276 {
277 struct socket_alloc *ei = (struct socket_alloc *)foo;
278
279 inode_init_once(&ei->vfs_inode);
280 }
281
282 static void init_inodecache(void)
283 {
284 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
285 sizeof(struct socket_alloc),
286 0,
287 (SLAB_HWCACHE_ALIGN |
288 SLAB_RECLAIM_ACCOUNT |
289 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
290 init_once);
291 BUG_ON(sock_inode_cachep == NULL);
292 }
293
294 static const struct super_operations sockfs_ops = {
295 .alloc_inode = sock_alloc_inode,
296 .destroy_inode = sock_destroy_inode,
297 .statfs = simple_statfs,
298 };
299
300 /*
301 * sockfs_dname() is called from d_path().
302 */
303 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
304 {
305 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
306 d_inode(dentry)->i_ino);
307 }
308
309 static const struct dentry_operations sockfs_dentry_operations = {
310 .d_dname = sockfs_dname,
311 };
312
313 static int sockfs_xattr_get(const struct xattr_handler *handler,
314 struct dentry *dentry, struct inode *inode,
315 const char *suffix, void *value, size_t size)
316 {
317 if (value) {
318 if (dentry->d_name.len + 1 > size)
319 return -ERANGE;
320 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
321 }
322 return dentry->d_name.len + 1;
323 }
324
325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
328
329 static const struct xattr_handler sockfs_xattr_handler = {
330 .name = XATTR_NAME_SOCKPROTONAME,
331 .get = sockfs_xattr_get,
332 };
333
334 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
335 struct dentry *dentry, struct inode *inode,
336 const char *suffix, const void *value,
337 size_t size, int flags)
338 {
339 /* Handled by LSM. */
340 return -EAGAIN;
341 }
342
343 static const struct xattr_handler sockfs_security_xattr_handler = {
344 .prefix = XATTR_SECURITY_PREFIX,
345 .set = sockfs_security_xattr_set,
346 };
347
348 static const struct xattr_handler *sockfs_xattr_handlers[] = {
349 &sockfs_xattr_handler,
350 &sockfs_security_xattr_handler,
351 NULL
352 };
353
354 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
355 int flags, const char *dev_name, void *data)
356 {
357 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
358 sockfs_xattr_handlers,
359 &sockfs_dentry_operations, SOCKFS_MAGIC);
360 }
361
362 static struct vfsmount *sock_mnt __read_mostly;
363
364 static struct file_system_type sock_fs_type = {
365 .name = "sockfs",
366 .mount = sockfs_mount,
367 .kill_sb = kill_anon_super,
368 };
369
370 /*
371 * Obtains the first available file descriptor and sets it up for use.
372 *
373 * These functions create file structures and maps them to fd space
374 * of the current process. On success it returns file descriptor
375 * and file struct implicitly stored in sock->file.
376 * Note that another thread may close file descriptor before we return
377 * from this function. We use the fact that now we do not refer
378 * to socket after mapping. If one day we will need it, this
379 * function will increment ref. count on file by 1.
380 *
381 * In any case returned fd MAY BE not valid!
382 * This race condition is unavoidable
383 * with shared fd spaces, we cannot solve it inside kernel,
384 * but we take care of internal coherence yet.
385 */
386
387 /**
388 * sock_alloc_file - Bind a &socket to a &file
389 * @sock: socket
390 * @flags: file status flags
391 * @dname: protocol name
392 *
393 * Returns the &file bound with @sock, implicitly storing it
394 * in sock->file. If dname is %NULL, sets to "".
395 * On failure the return is a ERR pointer (see linux/err.h).
396 * This function uses GFP_KERNEL internally.
397 */
398
399 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
400 {
401 struct file *file;
402
403 if (!dname)
404 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
405
406 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
407 O_RDWR | (flags & O_NONBLOCK),
408 &socket_file_ops);
409 if (IS_ERR(file)) {
410 sock_release(sock);
411 return file;
412 }
413
414 sock->file = file;
415 file->private_data = sock;
416 return file;
417 }
418 EXPORT_SYMBOL(sock_alloc_file);
419
420 static int sock_map_fd(struct socket *sock, int flags)
421 {
422 struct file *newfile;
423 int fd = get_unused_fd_flags(flags);
424 if (unlikely(fd < 0)) {
425 sock_release(sock);
426 return fd;
427 }
428
429 newfile = sock_alloc_file(sock, flags, NULL);
430 if (likely(!IS_ERR(newfile))) {
431 fd_install(fd, newfile);
432 return fd;
433 }
434
435 put_unused_fd(fd);
436 return PTR_ERR(newfile);
437 }
438
439 /**
440 * sock_from_file - Return the &socket bounded to @file.
441 * @file: file
442 * @err: pointer to an error code return
443 *
444 * On failure returns %NULL and assigns -ENOTSOCK to @err.
445 */
446
447 struct socket *sock_from_file(struct file *file, int *err)
448 {
449 if (file->f_op == &socket_file_ops)
450 return file->private_data; /* set in sock_map_fd */
451
452 *err = -ENOTSOCK;
453 return NULL;
454 }
455 EXPORT_SYMBOL(sock_from_file);
456
457 /**
458 * sockfd_lookup - Go from a file number to its socket slot
459 * @fd: file handle
460 * @err: pointer to an error code return
461 *
462 * The file handle passed in is locked and the socket it is bound
463 * to is returned. If an error occurs the err pointer is overwritten
464 * with a negative errno code and NULL is returned. The function checks
465 * for both invalid handles and passing a handle which is not a socket.
466 *
467 * On a success the socket object pointer is returned.
468 */
469
470 struct socket *sockfd_lookup(int fd, int *err)
471 {
472 struct file *file;
473 struct socket *sock;
474
475 file = fget(fd);
476 if (!file) {
477 *err = -EBADF;
478 return NULL;
479 }
480
481 sock = sock_from_file(file, err);
482 if (!sock)
483 fput(file);
484 return sock;
485 }
486 EXPORT_SYMBOL(sockfd_lookup);
487
488 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
489 {
490 struct fd f = fdget(fd);
491 struct socket *sock;
492
493 *err = -EBADF;
494 if (f.file) {
495 sock = sock_from_file(f.file, err);
496 if (likely(sock)) {
497 *fput_needed = f.flags;
498 return sock;
499 }
500 fdput(f);
501 }
502 return NULL;
503 }
504
505 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
506 size_t size)
507 {
508 ssize_t len;
509 ssize_t used = 0;
510
511 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
512 if (len < 0)
513 return len;
514 used += len;
515 if (buffer) {
516 if (size < used)
517 return -ERANGE;
518 buffer += len;
519 }
520
521 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
522 used += len;
523 if (buffer) {
524 if (size < used)
525 return -ERANGE;
526 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
527 buffer += len;
528 }
529
530 return used;
531 }
532
533 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
534 {
535 int err = simple_setattr(dentry, iattr);
536
537 if (!err && (iattr->ia_valid & ATTR_UID)) {
538 struct socket *sock = SOCKET_I(d_inode(dentry));
539
540 if (sock->sk)
541 sock->sk->sk_uid = iattr->ia_uid;
542 else
543 err = -ENOENT;
544 }
545
546 return err;
547 }
548
549 static const struct inode_operations sockfs_inode_ops = {
550 .listxattr = sockfs_listxattr,
551 .setattr = sockfs_setattr,
552 };
553
554 /**
555 * sock_alloc - allocate a socket
556 *
557 * Allocate a new inode and socket object. The two are bound together
558 * and initialised. The socket is then returned. If we are out of inodes
559 * NULL is returned. This functions uses GFP_KERNEL internally.
560 */
561
562 struct socket *sock_alloc(void)
563 {
564 struct inode *inode;
565 struct socket *sock;
566
567 inode = new_inode_pseudo(sock_mnt->mnt_sb);
568 if (!inode)
569 return NULL;
570
571 sock = SOCKET_I(inode);
572
573 inode->i_ino = get_next_ino();
574 inode->i_mode = S_IFSOCK | S_IRWXUGO;
575 inode->i_uid = current_fsuid();
576 inode->i_gid = current_fsgid();
577 inode->i_op = &sockfs_inode_ops;
578
579 return sock;
580 }
581 EXPORT_SYMBOL(sock_alloc);
582
583 /**
584 * sock_release - close a socket
585 * @sock: socket to close
586 *
587 * The socket is released from the protocol stack if it has a release
588 * callback, and the inode is then released if the socket is bound to
589 * an inode not a file.
590 */
591
592 static void __sock_release(struct socket *sock, struct inode *inode)
593 {
594 if (sock->ops) {
595 struct module *owner = sock->ops->owner;
596
597 if (inode)
598 inode_lock(inode);
599 sock->ops->release(sock);
600 sock->sk = NULL;
601 if (inode)
602 inode_unlock(inode);
603 sock->ops = NULL;
604 module_put(owner);
605 }
606
607 if (sock->wq->fasync_list)
608 pr_err("%s: fasync list not empty!\n", __func__);
609
610 if (!sock->file) {
611 iput(SOCK_INODE(sock));
612 return;
613 }
614 sock->file = NULL;
615 }
616
617 void sock_release(struct socket *sock)
618 {
619 __sock_release(sock, NULL);
620 }
621 EXPORT_SYMBOL(sock_release);
622
623 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
624 {
625 u8 flags = *tx_flags;
626
627 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
628 flags |= SKBTX_HW_TSTAMP;
629
630 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
631 flags |= SKBTX_SW_TSTAMP;
632
633 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
634 flags |= SKBTX_SCHED_TSTAMP;
635
636 *tx_flags = flags;
637 }
638 EXPORT_SYMBOL(__sock_tx_timestamp);
639
640 /**
641 * sock_sendmsg - send a message through @sock
642 * @sock: socket
643 * @msg: message to send
644 *
645 * Sends @msg through @sock, passing through LSM.
646 * Returns the number of bytes sent, or an error code.
647 */
648
649 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
650 {
651 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
652 BUG_ON(ret == -EIOCBQUEUED);
653 return ret;
654 }
655
656 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
657 {
658 int err = security_socket_sendmsg(sock, msg,
659 msg_data_left(msg));
660
661 return err ?: sock_sendmsg_nosec(sock, msg);
662 }
663 EXPORT_SYMBOL(sock_sendmsg);
664
665 /**
666 * kernel_sendmsg - send a message through @sock (kernel-space)
667 * @sock: socket
668 * @msg: message header
669 * @vec: kernel vec
670 * @num: vec array length
671 * @size: total message data size
672 *
673 * Builds the message data with @vec and sends it through @sock.
674 * Returns the number of bytes sent, or an error code.
675 */
676
677 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
678 struct kvec *vec, size_t num, size_t size)
679 {
680 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
681 return sock_sendmsg(sock, msg);
682 }
683 EXPORT_SYMBOL(kernel_sendmsg);
684
685 /**
686 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
687 * @sk: sock
688 * @msg: message header
689 * @vec: output s/g array
690 * @num: output s/g array length
691 * @size: total message data size
692 *
693 * Builds the message data with @vec and sends it through @sock.
694 * Returns the number of bytes sent, or an error code.
695 * Caller must hold @sk.
696 */
697
698 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
699 struct kvec *vec, size_t num, size_t size)
700 {
701 struct socket *sock = sk->sk_socket;
702
703 if (!sock->ops->sendmsg_locked)
704 return sock_no_sendmsg_locked(sk, msg, size);
705
706 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
707
708 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
709 }
710 EXPORT_SYMBOL(kernel_sendmsg_locked);
711
712 static bool skb_is_err_queue(const struct sk_buff *skb)
713 {
714 /* pkt_type of skbs enqueued on the error queue are set to
715 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
716 * in recvmsg, since skbs received on a local socket will never
717 * have a pkt_type of PACKET_OUTGOING.
718 */
719 return skb->pkt_type == PACKET_OUTGOING;
720 }
721
722 /* On transmit, software and hardware timestamps are returned independently.
723 * As the two skb clones share the hardware timestamp, which may be updated
724 * before the software timestamp is received, a hardware TX timestamp may be
725 * returned only if there is no software TX timestamp. Ignore false software
726 * timestamps, which may be made in the __sock_recv_timestamp() call when the
727 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
728 * hardware timestamp.
729 */
730 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
731 {
732 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
733 }
734
735 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
736 {
737 struct scm_ts_pktinfo ts_pktinfo;
738 struct net_device *orig_dev;
739
740 if (!skb_mac_header_was_set(skb))
741 return;
742
743 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
744
745 rcu_read_lock();
746 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
747 if (orig_dev)
748 ts_pktinfo.if_index = orig_dev->ifindex;
749 rcu_read_unlock();
750
751 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
752 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
753 sizeof(ts_pktinfo), &ts_pktinfo);
754 }
755
756 /*
757 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
758 */
759 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
760 struct sk_buff *skb)
761 {
762 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
763 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
764 struct scm_timestamping_internal tss;
765
766 int empty = 1, false_tstamp = 0;
767 struct skb_shared_hwtstamps *shhwtstamps =
768 skb_hwtstamps(skb);
769
770 /* Race occurred between timestamp enabling and packet
771 receiving. Fill in the current time for now. */
772 if (need_software_tstamp && skb->tstamp == 0) {
773 __net_timestamp(skb);
774 false_tstamp = 1;
775 }
776
777 if (need_software_tstamp) {
778 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
779 if (new_tstamp) {
780 struct __kernel_sock_timeval tv;
781
782 skb_get_new_timestamp(skb, &tv);
783 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
784 sizeof(tv), &tv);
785 } else {
786 struct __kernel_old_timeval tv;
787
788 skb_get_timestamp(skb, &tv);
789 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
790 sizeof(tv), &tv);
791 }
792 } else {
793 if (new_tstamp) {
794 struct __kernel_timespec ts;
795
796 skb_get_new_timestampns(skb, &ts);
797 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
798 sizeof(ts), &ts);
799 } else {
800 struct timespec ts;
801
802 skb_get_timestampns(skb, &ts);
803 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
804 sizeof(ts), &ts);
805 }
806 }
807 }
808
809 memset(&tss, 0, sizeof(tss));
810 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
811 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
812 empty = 0;
813 if (shhwtstamps &&
814 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
815 !skb_is_swtx_tstamp(skb, false_tstamp) &&
816 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
817 empty = 0;
818 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
819 !skb_is_err_queue(skb))
820 put_ts_pktinfo(msg, skb);
821 }
822 if (!empty) {
823 if (sock_flag(sk, SOCK_TSTAMP_NEW))
824 put_cmsg_scm_timestamping64(msg, &tss);
825 else
826 put_cmsg_scm_timestamping(msg, &tss);
827
828 if (skb_is_err_queue(skb) && skb->len &&
829 SKB_EXT_ERR(skb)->opt_stats)
830 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
831 skb->len, skb->data);
832 }
833 }
834 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
835
836 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
837 struct sk_buff *skb)
838 {
839 int ack;
840
841 if (!sock_flag(sk, SOCK_WIFI_STATUS))
842 return;
843 if (!skb->wifi_acked_valid)
844 return;
845
846 ack = skb->wifi_acked;
847
848 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
849 }
850 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
851
852 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
853 struct sk_buff *skb)
854 {
855 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
856 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
857 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
858 }
859
860 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
861 struct sk_buff *skb)
862 {
863 sock_recv_timestamp(msg, sk, skb);
864 sock_recv_drops(msg, sk, skb);
865 }
866 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
867
868 /**
869 * sock_recvmsg - receive a message from @sock
870 * @sock: socket
871 * @msg: message to receive
872 * @flags: message flags
873 *
874 * Receives @msg from @sock, passing through LSM. Returns the total number
875 * of bytes received, or an error.
876 */
877
878 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
879 int flags)
880 {
881 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
882 }
883
884 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
885 {
886 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
887
888 return err ?: sock_recvmsg_nosec(sock, msg, flags);
889 }
890 EXPORT_SYMBOL(sock_recvmsg);
891
892 /**
893 * kernel_recvmsg - Receive a message from a socket (kernel space)
894 * @sock: The socket to receive the message from
895 * @msg: Received message
896 * @vec: Input s/g array for message data
897 * @num: Size of input s/g array
898 * @size: Number of bytes to read
899 * @flags: Message flags (MSG_DONTWAIT, etc...)
900 *
901 * On return the msg structure contains the scatter/gather array passed in the
902 * vec argument. The array is modified so that it consists of the unfilled
903 * portion of the original array.
904 *
905 * The returned value is the total number of bytes received, or an error.
906 */
907
908 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
909 struct kvec *vec, size_t num, size_t size, int flags)
910 {
911 mm_segment_t oldfs = get_fs();
912 int result;
913
914 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
915 set_fs(KERNEL_DS);
916 result = sock_recvmsg(sock, msg, flags);
917 set_fs(oldfs);
918 return result;
919 }
920 EXPORT_SYMBOL(kernel_recvmsg);
921
922 static ssize_t sock_sendpage(struct file *file, struct page *page,
923 int offset, size_t size, loff_t *ppos, int more)
924 {
925 struct socket *sock;
926 int flags;
927
928 sock = file->private_data;
929
930 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
931 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
932 flags |= more;
933
934 return kernel_sendpage(sock, page, offset, size, flags);
935 }
936
937 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
938 struct pipe_inode_info *pipe, size_t len,
939 unsigned int flags)
940 {
941 struct socket *sock = file->private_data;
942
943 if (unlikely(!sock->ops->splice_read))
944 return generic_file_splice_read(file, ppos, pipe, len, flags);
945
946 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
947 }
948
949 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
950 {
951 struct file *file = iocb->ki_filp;
952 struct socket *sock = file->private_data;
953 struct msghdr msg = {.msg_iter = *to,
954 .msg_iocb = iocb};
955 ssize_t res;
956
957 if (file->f_flags & O_NONBLOCK)
958 msg.msg_flags = MSG_DONTWAIT;
959
960 if (iocb->ki_pos != 0)
961 return -ESPIPE;
962
963 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
964 return 0;
965
966 res = sock_recvmsg(sock, &msg, msg.msg_flags);
967 *to = msg.msg_iter;
968 return res;
969 }
970
971 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
972 {
973 struct file *file = iocb->ki_filp;
974 struct socket *sock = file->private_data;
975 struct msghdr msg = {.msg_iter = *from,
976 .msg_iocb = iocb};
977 ssize_t res;
978
979 if (iocb->ki_pos != 0)
980 return -ESPIPE;
981
982 if (file->f_flags & O_NONBLOCK)
983 msg.msg_flags = MSG_DONTWAIT;
984
985 if (sock->type == SOCK_SEQPACKET)
986 msg.msg_flags |= MSG_EOR;
987
988 res = sock_sendmsg(sock, &msg);
989 *from = msg.msg_iter;
990 return res;
991 }
992
993 /*
994 * Atomic setting of ioctl hooks to avoid race
995 * with module unload.
996 */
997
998 static DEFINE_MUTEX(br_ioctl_mutex);
999 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1000
1001 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1002 {
1003 mutex_lock(&br_ioctl_mutex);
1004 br_ioctl_hook = hook;
1005 mutex_unlock(&br_ioctl_mutex);
1006 }
1007 EXPORT_SYMBOL(brioctl_set);
1008
1009 static DEFINE_MUTEX(vlan_ioctl_mutex);
1010 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1011
1012 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1013 {
1014 mutex_lock(&vlan_ioctl_mutex);
1015 vlan_ioctl_hook = hook;
1016 mutex_unlock(&vlan_ioctl_mutex);
1017 }
1018 EXPORT_SYMBOL(vlan_ioctl_set);
1019
1020 static DEFINE_MUTEX(dlci_ioctl_mutex);
1021 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1022
1023 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1024 {
1025 mutex_lock(&dlci_ioctl_mutex);
1026 dlci_ioctl_hook = hook;
1027 mutex_unlock(&dlci_ioctl_mutex);
1028 }
1029 EXPORT_SYMBOL(dlci_ioctl_set);
1030
1031 static long sock_do_ioctl(struct net *net, struct socket *sock,
1032 unsigned int cmd, unsigned long arg)
1033 {
1034 int err;
1035 void __user *argp = (void __user *)arg;
1036
1037 err = sock->ops->ioctl(sock, cmd, arg);
1038
1039 /*
1040 * If this ioctl is unknown try to hand it down
1041 * to the NIC driver.
1042 */
1043 if (err != -ENOIOCTLCMD)
1044 return err;
1045
1046 if (cmd == SIOCGIFCONF) {
1047 struct ifconf ifc;
1048 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1049 return -EFAULT;
1050 rtnl_lock();
1051 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1052 rtnl_unlock();
1053 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1054 err = -EFAULT;
1055 } else {
1056 struct ifreq ifr;
1057 bool need_copyout;
1058 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1059 return -EFAULT;
1060 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1061 if (!err && need_copyout)
1062 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1063 return -EFAULT;
1064 }
1065 return err;
1066 }
1067
1068 /*
1069 * With an ioctl, arg may well be a user mode pointer, but we don't know
1070 * what to do with it - that's up to the protocol still.
1071 */
1072
1073 /**
1074 * get_net_ns - increment the refcount of the network namespace
1075 * @ns: common namespace (net)
1076 *
1077 * Returns the net's common namespace.
1078 */
1079
1080 struct ns_common *get_net_ns(struct ns_common *ns)
1081 {
1082 return &get_net(container_of(ns, struct net, ns))->ns;
1083 }
1084 EXPORT_SYMBOL_GPL(get_net_ns);
1085
1086 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1087 {
1088 struct socket *sock;
1089 struct sock *sk;
1090 void __user *argp = (void __user *)arg;
1091 int pid, err;
1092 struct net *net;
1093
1094 sock = file->private_data;
1095 sk = sock->sk;
1096 net = sock_net(sk);
1097 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1098 struct ifreq ifr;
1099 bool need_copyout;
1100 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1101 return -EFAULT;
1102 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1103 if (!err && need_copyout)
1104 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1105 return -EFAULT;
1106 } else
1107 #ifdef CONFIG_WEXT_CORE
1108 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1109 err = wext_handle_ioctl(net, cmd, argp);
1110 } else
1111 #endif
1112 switch (cmd) {
1113 case FIOSETOWN:
1114 case SIOCSPGRP:
1115 err = -EFAULT;
1116 if (get_user(pid, (int __user *)argp))
1117 break;
1118 err = f_setown(sock->file, pid, 1);
1119 break;
1120 case FIOGETOWN:
1121 case SIOCGPGRP:
1122 err = put_user(f_getown(sock->file),
1123 (int __user *)argp);
1124 break;
1125 case SIOCGIFBR:
1126 case SIOCSIFBR:
1127 case SIOCBRADDBR:
1128 case SIOCBRDELBR:
1129 err = -ENOPKG;
1130 if (!br_ioctl_hook)
1131 request_module("bridge");
1132
1133 mutex_lock(&br_ioctl_mutex);
1134 if (br_ioctl_hook)
1135 err = br_ioctl_hook(net, cmd, argp);
1136 mutex_unlock(&br_ioctl_mutex);
1137 break;
1138 case SIOCGIFVLAN:
1139 case SIOCSIFVLAN:
1140 err = -ENOPKG;
1141 if (!vlan_ioctl_hook)
1142 request_module("8021q");
1143
1144 mutex_lock(&vlan_ioctl_mutex);
1145 if (vlan_ioctl_hook)
1146 err = vlan_ioctl_hook(net, argp);
1147 mutex_unlock(&vlan_ioctl_mutex);
1148 break;
1149 case SIOCADDDLCI:
1150 case SIOCDELDLCI:
1151 err = -ENOPKG;
1152 if (!dlci_ioctl_hook)
1153 request_module("dlci");
1154
1155 mutex_lock(&dlci_ioctl_mutex);
1156 if (dlci_ioctl_hook)
1157 err = dlci_ioctl_hook(cmd, argp);
1158 mutex_unlock(&dlci_ioctl_mutex);
1159 break;
1160 case SIOCGSKNS:
1161 err = -EPERM;
1162 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1163 break;
1164
1165 err = open_related_ns(&net->ns, get_net_ns);
1166 break;
1167 default:
1168 err = sock_do_ioctl(net, sock, cmd, arg);
1169 break;
1170 }
1171 return err;
1172 }
1173
1174 /**
1175 * sock_create_lite - creates a socket
1176 * @family: protocol family (AF_INET, ...)
1177 * @type: communication type (SOCK_STREAM, ...)
1178 * @protocol: protocol (0, ...)
1179 * @res: new socket
1180 *
1181 * Creates a new socket and assigns it to @res, passing through LSM.
1182 * The new socket initialization is not complete, see kernel_accept().
1183 * Returns 0 or an error. On failure @res is set to %NULL.
1184 * This function internally uses GFP_KERNEL.
1185 */
1186
1187 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1188 {
1189 int err;
1190 struct socket *sock = NULL;
1191
1192 err = security_socket_create(family, type, protocol, 1);
1193 if (err)
1194 goto out;
1195
1196 sock = sock_alloc();
1197 if (!sock) {
1198 err = -ENOMEM;
1199 goto out;
1200 }
1201
1202 sock->type = type;
1203 err = security_socket_post_create(sock, family, type, protocol, 1);
1204 if (err)
1205 goto out_release;
1206
1207 out:
1208 *res = sock;
1209 return err;
1210 out_release:
1211 sock_release(sock);
1212 sock = NULL;
1213 goto out;
1214 }
1215 EXPORT_SYMBOL(sock_create_lite);
1216
1217 /* No kernel lock held - perfect */
1218 static __poll_t sock_poll(struct file *file, poll_table *wait)
1219 {
1220 struct socket *sock = file->private_data;
1221 __poll_t events = poll_requested_events(wait), flag = 0;
1222
1223 if (!sock->ops->poll)
1224 return 0;
1225
1226 if (sk_can_busy_loop(sock->sk)) {
1227 /* poll once if requested by the syscall */
1228 if (events & POLL_BUSY_LOOP)
1229 sk_busy_loop(sock->sk, 1);
1230
1231 /* if this socket can poll_ll, tell the system call */
1232 flag = POLL_BUSY_LOOP;
1233 }
1234
1235 return sock->ops->poll(file, sock, wait) | flag;
1236 }
1237
1238 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1239 {
1240 struct socket *sock = file->private_data;
1241
1242 return sock->ops->mmap(file, sock, vma);
1243 }
1244
1245 static int sock_close(struct inode *inode, struct file *filp)
1246 {
1247 __sock_release(SOCKET_I(inode), inode);
1248 return 0;
1249 }
1250
1251 /*
1252 * Update the socket async list
1253 *
1254 * Fasync_list locking strategy.
1255 *
1256 * 1. fasync_list is modified only under process context socket lock
1257 * i.e. under semaphore.
1258 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1259 * or under socket lock
1260 */
1261
1262 static int sock_fasync(int fd, struct file *filp, int on)
1263 {
1264 struct socket *sock = filp->private_data;
1265 struct sock *sk = sock->sk;
1266 struct socket_wq *wq;
1267
1268 if (sk == NULL)
1269 return -EINVAL;
1270
1271 lock_sock(sk);
1272 wq = sock->wq;
1273 fasync_helper(fd, filp, on, &wq->fasync_list);
1274
1275 if (!wq->fasync_list)
1276 sock_reset_flag(sk, SOCK_FASYNC);
1277 else
1278 sock_set_flag(sk, SOCK_FASYNC);
1279
1280 release_sock(sk);
1281 return 0;
1282 }
1283
1284 /* This function may be called only under rcu_lock */
1285
1286 int sock_wake_async(struct socket_wq *wq, int how, int band)
1287 {
1288 if (!wq || !wq->fasync_list)
1289 return -1;
1290
1291 switch (how) {
1292 case SOCK_WAKE_WAITD:
1293 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1294 break;
1295 goto call_kill;
1296 case SOCK_WAKE_SPACE:
1297 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1298 break;
1299 /* fall through */
1300 case SOCK_WAKE_IO:
1301 call_kill:
1302 kill_fasync(&wq->fasync_list, SIGIO, band);
1303 break;
1304 case SOCK_WAKE_URG:
1305 kill_fasync(&wq->fasync_list, SIGURG, band);
1306 }
1307
1308 return 0;
1309 }
1310 EXPORT_SYMBOL(sock_wake_async);
1311
1312 /**
1313 * __sock_create - creates a socket
1314 * @net: net namespace
1315 * @family: protocol family (AF_INET, ...)
1316 * @type: communication type (SOCK_STREAM, ...)
1317 * @protocol: protocol (0, ...)
1318 * @res: new socket
1319 * @kern: boolean for kernel space sockets
1320 *
1321 * Creates a new socket and assigns it to @res, passing through LSM.
1322 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1323 * be set to true if the socket resides in kernel space.
1324 * This function internally uses GFP_KERNEL.
1325 */
1326
1327 int __sock_create(struct net *net, int family, int type, int protocol,
1328 struct socket **res, int kern)
1329 {
1330 int err;
1331 struct socket *sock;
1332 const struct net_proto_family *pf;
1333
1334 /*
1335 * Check protocol is in range
1336 */
1337 if (family < 0 || family >= NPROTO)
1338 return -EAFNOSUPPORT;
1339 if (type < 0 || type >= SOCK_MAX)
1340 return -EINVAL;
1341
1342 /* Compatibility.
1343
1344 This uglymoron is moved from INET layer to here to avoid
1345 deadlock in module load.
1346 */
1347 if (family == PF_INET && type == SOCK_PACKET) {
1348 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1349 current->comm);
1350 family = PF_PACKET;
1351 }
1352
1353 err = security_socket_create(family, type, protocol, kern);
1354 if (err)
1355 return err;
1356
1357 /*
1358 * Allocate the socket and allow the family to set things up. if
1359 * the protocol is 0, the family is instructed to select an appropriate
1360 * default.
1361 */
1362 sock = sock_alloc();
1363 if (!sock) {
1364 net_warn_ratelimited("socket: no more sockets\n");
1365 return -ENFILE; /* Not exactly a match, but its the
1366 closest posix thing */
1367 }
1368
1369 sock->type = type;
1370
1371 #ifdef CONFIG_MODULES
1372 /* Attempt to load a protocol module if the find failed.
1373 *
1374 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1375 * requested real, full-featured networking support upon configuration.
1376 * Otherwise module support will break!
1377 */
1378 if (rcu_access_pointer(net_families[family]) == NULL)
1379 request_module("net-pf-%d", family);
1380 #endif
1381
1382 rcu_read_lock();
1383 pf = rcu_dereference(net_families[family]);
1384 err = -EAFNOSUPPORT;
1385 if (!pf)
1386 goto out_release;
1387
1388 /*
1389 * We will call the ->create function, that possibly is in a loadable
1390 * module, so we have to bump that loadable module refcnt first.
1391 */
1392 if (!try_module_get(pf->owner))
1393 goto out_release;
1394
1395 /* Now protected by module ref count */
1396 rcu_read_unlock();
1397
1398 err = pf->create(net, sock, protocol, kern);
1399 if (err < 0)
1400 goto out_module_put;
1401
1402 /*
1403 * Now to bump the refcnt of the [loadable] module that owns this
1404 * socket at sock_release time we decrement its refcnt.
1405 */
1406 if (!try_module_get(sock->ops->owner))
1407 goto out_module_busy;
1408
1409 /*
1410 * Now that we're done with the ->create function, the [loadable]
1411 * module can have its refcnt decremented
1412 */
1413 module_put(pf->owner);
1414 err = security_socket_post_create(sock, family, type, protocol, kern);
1415 if (err)
1416 goto out_sock_release;
1417 *res = sock;
1418
1419 return 0;
1420
1421 out_module_busy:
1422 err = -EAFNOSUPPORT;
1423 out_module_put:
1424 sock->ops = NULL;
1425 module_put(pf->owner);
1426 out_sock_release:
1427 sock_release(sock);
1428 return err;
1429
1430 out_release:
1431 rcu_read_unlock();
1432 goto out_sock_release;
1433 }
1434 EXPORT_SYMBOL(__sock_create);
1435
1436 /**
1437 * sock_create - creates a socket
1438 * @family: protocol family (AF_INET, ...)
1439 * @type: communication type (SOCK_STREAM, ...)
1440 * @protocol: protocol (0, ...)
1441 * @res: new socket
1442 *
1443 * A wrapper around __sock_create().
1444 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1445 */
1446
1447 int sock_create(int family, int type, int protocol, struct socket **res)
1448 {
1449 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1450 }
1451 EXPORT_SYMBOL(sock_create);
1452
1453 /**
1454 * sock_create_kern - creates a socket (kernel space)
1455 * @net: net namespace
1456 * @family: protocol family (AF_INET, ...)
1457 * @type: communication type (SOCK_STREAM, ...)
1458 * @protocol: protocol (0, ...)
1459 * @res: new socket
1460 *
1461 * A wrapper around __sock_create().
1462 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1463 */
1464
1465 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1466 {
1467 return __sock_create(net, family, type, protocol, res, 1);
1468 }
1469 EXPORT_SYMBOL(sock_create_kern);
1470
1471 int __sys_socket(int family, int type, int protocol)
1472 {
1473 int retval;
1474 struct socket *sock;
1475 int flags;
1476
1477 /* Check the SOCK_* constants for consistency. */
1478 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1479 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1480 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1481 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1482
1483 flags = type & ~SOCK_TYPE_MASK;
1484 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1485 return -EINVAL;
1486 type &= SOCK_TYPE_MASK;
1487
1488 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1489 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1490
1491 retval = sock_create(family, type, protocol, &sock);
1492 if (retval < 0)
1493 return retval;
1494
1495 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1496 }
1497
1498 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1499 {
1500 return __sys_socket(family, type, protocol);
1501 }
1502
1503 /*
1504 * Create a pair of connected sockets.
1505 */
1506
1507 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1508 {
1509 struct socket *sock1, *sock2;
1510 int fd1, fd2, err;
1511 struct file *newfile1, *newfile2;
1512 int flags;
1513
1514 flags = type & ~SOCK_TYPE_MASK;
1515 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1516 return -EINVAL;
1517 type &= SOCK_TYPE_MASK;
1518
1519 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1520 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1521
1522 /*
1523 * reserve descriptors and make sure we won't fail
1524 * to return them to userland.
1525 */
1526 fd1 = get_unused_fd_flags(flags);
1527 if (unlikely(fd1 < 0))
1528 return fd1;
1529
1530 fd2 = get_unused_fd_flags(flags);
1531 if (unlikely(fd2 < 0)) {
1532 put_unused_fd(fd1);
1533 return fd2;
1534 }
1535
1536 err = put_user(fd1, &usockvec[0]);
1537 if (err)
1538 goto out;
1539
1540 err = put_user(fd2, &usockvec[1]);
1541 if (err)
1542 goto out;
1543
1544 /*
1545 * Obtain the first socket and check if the underlying protocol
1546 * supports the socketpair call.
1547 */
1548
1549 err = sock_create(family, type, protocol, &sock1);
1550 if (unlikely(err < 0))
1551 goto out;
1552
1553 err = sock_create(family, type, protocol, &sock2);
1554 if (unlikely(err < 0)) {
1555 sock_release(sock1);
1556 goto out;
1557 }
1558
1559 err = security_socket_socketpair(sock1, sock2);
1560 if (unlikely(err)) {
1561 sock_release(sock2);
1562 sock_release(sock1);
1563 goto out;
1564 }
1565
1566 err = sock1->ops->socketpair(sock1, sock2);
1567 if (unlikely(err < 0)) {
1568 sock_release(sock2);
1569 sock_release(sock1);
1570 goto out;
1571 }
1572
1573 newfile1 = sock_alloc_file(sock1, flags, NULL);
1574 if (IS_ERR(newfile1)) {
1575 err = PTR_ERR(newfile1);
1576 sock_release(sock2);
1577 goto out;
1578 }
1579
1580 newfile2 = sock_alloc_file(sock2, flags, NULL);
1581 if (IS_ERR(newfile2)) {
1582 err = PTR_ERR(newfile2);
1583 fput(newfile1);
1584 goto out;
1585 }
1586
1587 audit_fd_pair(fd1, fd2);
1588
1589 fd_install(fd1, newfile1);
1590 fd_install(fd2, newfile2);
1591 return 0;
1592
1593 out:
1594 put_unused_fd(fd2);
1595 put_unused_fd(fd1);
1596 return err;
1597 }
1598
1599 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1600 int __user *, usockvec)
1601 {
1602 return __sys_socketpair(family, type, protocol, usockvec);
1603 }
1604
1605 /*
1606 * Bind a name to a socket. Nothing much to do here since it's
1607 * the protocol's responsibility to handle the local address.
1608 *
1609 * We move the socket address to kernel space before we call
1610 * the protocol layer (having also checked the address is ok).
1611 */
1612
1613 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1614 {
1615 struct socket *sock;
1616 struct sockaddr_storage address;
1617 int err, fput_needed;
1618
1619 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1620 if (sock) {
1621 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1622 if (!err) {
1623 err = security_socket_bind(sock,
1624 (struct sockaddr *)&address,
1625 addrlen);
1626 if (!err)
1627 err = sock->ops->bind(sock,
1628 (struct sockaddr *)
1629 &address, addrlen);
1630 }
1631 fput_light(sock->file, fput_needed);
1632 }
1633 return err;
1634 }
1635
1636 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1637 {
1638 return __sys_bind(fd, umyaddr, addrlen);
1639 }
1640
1641 /*
1642 * Perform a listen. Basically, we allow the protocol to do anything
1643 * necessary for a listen, and if that works, we mark the socket as
1644 * ready for listening.
1645 */
1646
1647 int __sys_listen(int fd, int backlog)
1648 {
1649 struct socket *sock;
1650 int err, fput_needed;
1651 int somaxconn;
1652
1653 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1654 if (sock) {
1655 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1656 if ((unsigned int)backlog > somaxconn)
1657 backlog = somaxconn;
1658
1659 err = security_socket_listen(sock, backlog);
1660 if (!err)
1661 err = sock->ops->listen(sock, backlog);
1662
1663 fput_light(sock->file, fput_needed);
1664 }
1665 return err;
1666 }
1667
1668 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1669 {
1670 return __sys_listen(fd, backlog);
1671 }
1672
1673 /*
1674 * For accept, we attempt to create a new socket, set up the link
1675 * with the client, wake up the client, then return the new
1676 * connected fd. We collect the address of the connector in kernel
1677 * space and move it to user at the very end. This is unclean because
1678 * we open the socket then return an error.
1679 *
1680 * 1003.1g adds the ability to recvmsg() to query connection pending
1681 * status to recvmsg. We need to add that support in a way thats
1682 * clean when we restructure accept also.
1683 */
1684
1685 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1686 int __user *upeer_addrlen, int flags)
1687 {
1688 struct socket *sock, *newsock;
1689 struct file *newfile;
1690 int err, len, newfd, fput_needed;
1691 struct sockaddr_storage address;
1692
1693 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1694 return -EINVAL;
1695
1696 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1697 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1698
1699 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1700 if (!sock)
1701 goto out;
1702
1703 err = -ENFILE;
1704 newsock = sock_alloc();
1705 if (!newsock)
1706 goto out_put;
1707
1708 newsock->type = sock->type;
1709 newsock->ops = sock->ops;
1710
1711 /*
1712 * We don't need try_module_get here, as the listening socket (sock)
1713 * has the protocol module (sock->ops->owner) held.
1714 */
1715 __module_get(newsock->ops->owner);
1716
1717 newfd = get_unused_fd_flags(flags);
1718 if (unlikely(newfd < 0)) {
1719 err = newfd;
1720 sock_release(newsock);
1721 goto out_put;
1722 }
1723 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1724 if (IS_ERR(newfile)) {
1725 err = PTR_ERR(newfile);
1726 put_unused_fd(newfd);
1727 goto out_put;
1728 }
1729
1730 err = security_socket_accept(sock, newsock);
1731 if (err)
1732 goto out_fd;
1733
1734 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1735 if (err < 0)
1736 goto out_fd;
1737
1738 if (upeer_sockaddr) {
1739 len = newsock->ops->getname(newsock,
1740 (struct sockaddr *)&address, 2);
1741 if (len < 0) {
1742 err = -ECONNABORTED;
1743 goto out_fd;
1744 }
1745 err = move_addr_to_user(&address,
1746 len, upeer_sockaddr, upeer_addrlen);
1747 if (err < 0)
1748 goto out_fd;
1749 }
1750
1751 /* File flags are not inherited via accept() unlike another OSes. */
1752
1753 fd_install(newfd, newfile);
1754 err = newfd;
1755
1756 out_put:
1757 fput_light(sock->file, fput_needed);
1758 out:
1759 return err;
1760 out_fd:
1761 fput(newfile);
1762 put_unused_fd(newfd);
1763 goto out_put;
1764 }
1765
1766 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1767 int __user *, upeer_addrlen, int, flags)
1768 {
1769 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1770 }
1771
1772 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1773 int __user *, upeer_addrlen)
1774 {
1775 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1776 }
1777
1778 /*
1779 * Attempt to connect to a socket with the server address. The address
1780 * is in user space so we verify it is OK and move it to kernel space.
1781 *
1782 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1783 * break bindings
1784 *
1785 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1786 * other SEQPACKET protocols that take time to connect() as it doesn't
1787 * include the -EINPROGRESS status for such sockets.
1788 */
1789
1790 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1791 {
1792 struct socket *sock;
1793 struct sockaddr_storage address;
1794 int err, fput_needed;
1795
1796 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1797 if (!sock)
1798 goto out;
1799 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1800 if (err < 0)
1801 goto out_put;
1802
1803 err =
1804 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1805 if (err)
1806 goto out_put;
1807
1808 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1809 sock->file->f_flags);
1810 out_put:
1811 fput_light(sock->file, fput_needed);
1812 out:
1813 return err;
1814 }
1815
1816 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1817 int, addrlen)
1818 {
1819 return __sys_connect(fd, uservaddr, addrlen);
1820 }
1821
1822 /*
1823 * Get the local address ('name') of a socket object. Move the obtained
1824 * name to user space.
1825 */
1826
1827 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1828 int __user *usockaddr_len)
1829 {
1830 struct socket *sock;
1831 struct sockaddr_storage address;
1832 int err, fput_needed;
1833
1834 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1835 if (!sock)
1836 goto out;
1837
1838 err = security_socket_getsockname(sock);
1839 if (err)
1840 goto out_put;
1841
1842 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1843 if (err < 0)
1844 goto out_put;
1845 /* "err" is actually length in this case */
1846 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1847
1848 out_put:
1849 fput_light(sock->file, fput_needed);
1850 out:
1851 return err;
1852 }
1853
1854 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1855 int __user *, usockaddr_len)
1856 {
1857 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1858 }
1859
1860 /*
1861 * Get the remote address ('name') of a socket object. Move the obtained
1862 * name to user space.
1863 */
1864
1865 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1866 int __user *usockaddr_len)
1867 {
1868 struct socket *sock;
1869 struct sockaddr_storage address;
1870 int err, fput_needed;
1871
1872 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1873 if (sock != NULL) {
1874 err = security_socket_getpeername(sock);
1875 if (err) {
1876 fput_light(sock->file, fput_needed);
1877 return err;
1878 }
1879
1880 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1881 if (err >= 0)
1882 /* "err" is actually length in this case */
1883 err = move_addr_to_user(&address, err, usockaddr,
1884 usockaddr_len);
1885 fput_light(sock->file, fput_needed);
1886 }
1887 return err;
1888 }
1889
1890 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1891 int __user *, usockaddr_len)
1892 {
1893 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1894 }
1895
1896 /*
1897 * Send a datagram to a given address. We move the address into kernel
1898 * space and check the user space data area is readable before invoking
1899 * the protocol.
1900 */
1901 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1902 struct sockaddr __user *addr, int addr_len)
1903 {
1904 struct socket *sock;
1905 struct sockaddr_storage address;
1906 int err;
1907 struct msghdr msg;
1908 struct iovec iov;
1909 int fput_needed;
1910
1911 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1912 if (unlikely(err))
1913 return err;
1914 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1915 if (!sock)
1916 goto out;
1917
1918 msg.msg_name = NULL;
1919 msg.msg_control = NULL;
1920 msg.msg_controllen = 0;
1921 msg.msg_namelen = 0;
1922 if (addr) {
1923 err = move_addr_to_kernel(addr, addr_len, &address);
1924 if (err < 0)
1925 goto out_put;
1926 msg.msg_name = (struct sockaddr *)&address;
1927 msg.msg_namelen = addr_len;
1928 }
1929 if (sock->file->f_flags & O_NONBLOCK)
1930 flags |= MSG_DONTWAIT;
1931 msg.msg_flags = flags;
1932 err = sock_sendmsg(sock, &msg);
1933
1934 out_put:
1935 fput_light(sock->file, fput_needed);
1936 out:
1937 return err;
1938 }
1939
1940 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1941 unsigned int, flags, struct sockaddr __user *, addr,
1942 int, addr_len)
1943 {
1944 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1945 }
1946
1947 /*
1948 * Send a datagram down a socket.
1949 */
1950
1951 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1952 unsigned int, flags)
1953 {
1954 return __sys_sendto(fd, buff, len, flags, NULL, 0);
1955 }
1956
1957 /*
1958 * Receive a frame from the socket and optionally record the address of the
1959 * sender. We verify the buffers are writable and if needed move the
1960 * sender address from kernel to user space.
1961 */
1962 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1963 struct sockaddr __user *addr, int __user *addr_len)
1964 {
1965 struct socket *sock;
1966 struct iovec iov;
1967 struct msghdr msg;
1968 struct sockaddr_storage address;
1969 int err, err2;
1970 int fput_needed;
1971
1972 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1973 if (unlikely(err))
1974 return err;
1975 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1976 if (!sock)
1977 goto out;
1978
1979 msg.msg_control = NULL;
1980 msg.msg_controllen = 0;
1981 /* Save some cycles and don't copy the address if not needed */
1982 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1983 /* We assume all kernel code knows the size of sockaddr_storage */
1984 msg.msg_namelen = 0;
1985 msg.msg_iocb = NULL;
1986 msg.msg_flags = 0;
1987 if (sock->file->f_flags & O_NONBLOCK)
1988 flags |= MSG_DONTWAIT;
1989 err = sock_recvmsg(sock, &msg, flags);
1990
1991 if (err >= 0 && addr != NULL) {
1992 err2 = move_addr_to_user(&address,
1993 msg.msg_namelen, addr, addr_len);
1994 if (err2 < 0)
1995 err = err2;
1996 }
1997
1998 fput_light(sock->file, fput_needed);
1999 out:
2000 return err;
2001 }
2002
2003 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2004 unsigned int, flags, struct sockaddr __user *, addr,
2005 int __user *, addr_len)
2006 {
2007 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2008 }
2009
2010 /*
2011 * Receive a datagram from a socket.
2012 */
2013
2014 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2015 unsigned int, flags)
2016 {
2017 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2018 }
2019
2020 /*
2021 * Set a socket option. Because we don't know the option lengths we have
2022 * to pass the user mode parameter for the protocols to sort out.
2023 */
2024
2025 static int __sys_setsockopt(int fd, int level, int optname,
2026 char __user *optval, int optlen)
2027 {
2028 int err, fput_needed;
2029 struct socket *sock;
2030
2031 if (optlen < 0)
2032 return -EINVAL;
2033
2034 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2035 if (sock != NULL) {
2036 err = security_socket_setsockopt(sock, level, optname);
2037 if (err)
2038 goto out_put;
2039
2040 if (level == SOL_SOCKET)
2041 err =
2042 sock_setsockopt(sock, level, optname, optval,
2043 optlen);
2044 else
2045 err =
2046 sock->ops->setsockopt(sock, level, optname, optval,
2047 optlen);
2048 out_put:
2049 fput_light(sock->file, fput_needed);
2050 }
2051 return err;
2052 }
2053
2054 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2055 char __user *, optval, int, optlen)
2056 {
2057 return __sys_setsockopt(fd, level, optname, optval, optlen);
2058 }
2059
2060 /*
2061 * Get a socket option. Because we don't know the option lengths we have
2062 * to pass a user mode parameter for the protocols to sort out.
2063 */
2064
2065 static int __sys_getsockopt(int fd, int level, int optname,
2066 char __user *optval, int __user *optlen)
2067 {
2068 int err, fput_needed;
2069 struct socket *sock;
2070
2071 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2072 if (sock != NULL) {
2073 err = security_socket_getsockopt(sock, level, optname);
2074 if (err)
2075 goto out_put;
2076
2077 if (level == SOL_SOCKET)
2078 err =
2079 sock_getsockopt(sock, level, optname, optval,
2080 optlen);
2081 else
2082 err =
2083 sock->ops->getsockopt(sock, level, optname, optval,
2084 optlen);
2085 out_put:
2086 fput_light(sock->file, fput_needed);
2087 }
2088 return err;
2089 }
2090
2091 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2092 char __user *, optval, int __user *, optlen)
2093 {
2094 return __sys_getsockopt(fd, level, optname, optval, optlen);
2095 }
2096
2097 /*
2098 * Shutdown a socket.
2099 */
2100
2101 int __sys_shutdown(int fd, int how)
2102 {
2103 int err, fput_needed;
2104 struct socket *sock;
2105
2106 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2107 if (sock != NULL) {
2108 err = security_socket_shutdown(sock, how);
2109 if (!err)
2110 err = sock->ops->shutdown(sock, how);
2111 fput_light(sock->file, fput_needed);
2112 }
2113 return err;
2114 }
2115
2116 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2117 {
2118 return __sys_shutdown(fd, how);
2119 }
2120
2121 /* A couple of helpful macros for getting the address of the 32/64 bit
2122 * fields which are the same type (int / unsigned) on our platforms.
2123 */
2124 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2125 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2126 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2127
2128 struct used_address {
2129 struct sockaddr_storage name;
2130 unsigned int name_len;
2131 };
2132
2133 static int copy_msghdr_from_user(struct msghdr *kmsg,
2134 struct user_msghdr __user *umsg,
2135 struct sockaddr __user **save_addr,
2136 struct iovec **iov)
2137 {
2138 struct user_msghdr msg;
2139 ssize_t err;
2140
2141 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2142 return -EFAULT;
2143
2144 kmsg->msg_control = (void __force *)msg.msg_control;
2145 kmsg->msg_controllen = msg.msg_controllen;
2146 kmsg->msg_flags = msg.msg_flags;
2147
2148 kmsg->msg_namelen = msg.msg_namelen;
2149 if (!msg.msg_name)
2150 kmsg->msg_namelen = 0;
2151
2152 if (kmsg->msg_namelen < 0)
2153 return -EINVAL;
2154
2155 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2156 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2157
2158 if (save_addr)
2159 *save_addr = msg.msg_name;
2160
2161 if (msg.msg_name && kmsg->msg_namelen) {
2162 if (!save_addr) {
2163 err = move_addr_to_kernel(msg.msg_name,
2164 kmsg->msg_namelen,
2165 kmsg->msg_name);
2166 if (err < 0)
2167 return err;
2168 }
2169 } else {
2170 kmsg->msg_name = NULL;
2171 kmsg->msg_namelen = 0;
2172 }
2173
2174 if (msg.msg_iovlen > UIO_MAXIOV)
2175 return -EMSGSIZE;
2176
2177 kmsg->msg_iocb = NULL;
2178
2179 return import_iovec(save_addr ? READ : WRITE,
2180 msg.msg_iov, msg.msg_iovlen,
2181 UIO_FASTIOV, iov, &kmsg->msg_iter);
2182 }
2183
2184 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2185 struct msghdr *msg_sys, unsigned int flags,
2186 struct used_address *used_address,
2187 unsigned int allowed_msghdr_flags)
2188 {
2189 struct compat_msghdr __user *msg_compat =
2190 (struct compat_msghdr __user *)msg;
2191 struct sockaddr_storage address;
2192 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2193 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2194 __aligned(sizeof(__kernel_size_t));
2195 /* 20 is size of ipv6_pktinfo */
2196 unsigned char *ctl_buf = ctl;
2197 int ctl_len;
2198 ssize_t err;
2199
2200 msg_sys->msg_name = &address;
2201
2202 if (MSG_CMSG_COMPAT & flags)
2203 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2204 else
2205 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2206 if (err < 0)
2207 return err;
2208
2209 err = -ENOBUFS;
2210
2211 if (msg_sys->msg_controllen > INT_MAX)
2212 goto out_freeiov;
2213 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2214 ctl_len = msg_sys->msg_controllen;
2215 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2216 err =
2217 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2218 sizeof(ctl));
2219 if (err)
2220 goto out_freeiov;
2221 ctl_buf = msg_sys->msg_control;
2222 ctl_len = msg_sys->msg_controllen;
2223 } else if (ctl_len) {
2224 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2225 CMSG_ALIGN(sizeof(struct cmsghdr)));
2226 if (ctl_len > sizeof(ctl)) {
2227 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2228 if (ctl_buf == NULL)
2229 goto out_freeiov;
2230 }
2231 err = -EFAULT;
2232 /*
2233 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2234 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2235 * checking falls down on this.
2236 */
2237 if (copy_from_user(ctl_buf,
2238 (void __user __force *)msg_sys->msg_control,
2239 ctl_len))
2240 goto out_freectl;
2241 msg_sys->msg_control = ctl_buf;
2242 }
2243 msg_sys->msg_flags = flags;
2244
2245 if (sock->file->f_flags & O_NONBLOCK)
2246 msg_sys->msg_flags |= MSG_DONTWAIT;
2247 /*
2248 * If this is sendmmsg() and current destination address is same as
2249 * previously succeeded address, omit asking LSM's decision.
2250 * used_address->name_len is initialized to UINT_MAX so that the first
2251 * destination address never matches.
2252 */
2253 if (used_address && msg_sys->msg_name &&
2254 used_address->name_len == msg_sys->msg_namelen &&
2255 !memcmp(&used_address->name, msg_sys->msg_name,
2256 used_address->name_len)) {
2257 err = sock_sendmsg_nosec(sock, msg_sys);
2258 goto out_freectl;
2259 }
2260 err = sock_sendmsg(sock, msg_sys);
2261 /*
2262 * If this is sendmmsg() and sending to current destination address was
2263 * successful, remember it.
2264 */
2265 if (used_address && err >= 0) {
2266 used_address->name_len = msg_sys->msg_namelen;
2267 if (msg_sys->msg_name)
2268 memcpy(&used_address->name, msg_sys->msg_name,
2269 used_address->name_len);
2270 }
2271
2272 out_freectl:
2273 if (ctl_buf != ctl)
2274 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2275 out_freeiov:
2276 kfree(iov);
2277 return err;
2278 }
2279
2280 /*
2281 * BSD sendmsg interface
2282 */
2283
2284 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2285 bool forbid_cmsg_compat)
2286 {
2287 int fput_needed, err;
2288 struct msghdr msg_sys;
2289 struct socket *sock;
2290
2291 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2292 return -EINVAL;
2293
2294 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2295 if (!sock)
2296 goto out;
2297
2298 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2299
2300 fput_light(sock->file, fput_needed);
2301 out:
2302 return err;
2303 }
2304
2305 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2306 {
2307 return __sys_sendmsg(fd, msg, flags, true);
2308 }
2309
2310 /*
2311 * Linux sendmmsg interface
2312 */
2313
2314 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2315 unsigned int flags, bool forbid_cmsg_compat)
2316 {
2317 int fput_needed, err, datagrams;
2318 struct socket *sock;
2319 struct mmsghdr __user *entry;
2320 struct compat_mmsghdr __user *compat_entry;
2321 struct msghdr msg_sys;
2322 struct used_address used_address;
2323 unsigned int oflags = flags;
2324
2325 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2326 return -EINVAL;
2327
2328 if (vlen > UIO_MAXIOV)
2329 vlen = UIO_MAXIOV;
2330
2331 datagrams = 0;
2332
2333 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2334 if (!sock)
2335 return err;
2336
2337 used_address.name_len = UINT_MAX;
2338 entry = mmsg;
2339 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2340 err = 0;
2341 flags |= MSG_BATCH;
2342
2343 while (datagrams < vlen) {
2344 if (datagrams == vlen - 1)
2345 flags = oflags;
2346
2347 if (MSG_CMSG_COMPAT & flags) {
2348 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2349 &msg_sys, flags, &used_address, MSG_EOR);
2350 if (err < 0)
2351 break;
2352 err = __put_user(err, &compat_entry->msg_len);
2353 ++compat_entry;
2354 } else {
2355 err = ___sys_sendmsg(sock,
2356 (struct user_msghdr __user *)entry,
2357 &msg_sys, flags, &used_address, MSG_EOR);
2358 if (err < 0)
2359 break;
2360 err = put_user(err, &entry->msg_len);
2361 ++entry;
2362 }
2363
2364 if (err)
2365 break;
2366 ++datagrams;
2367 if (msg_data_left(&msg_sys))
2368 break;
2369 cond_resched();
2370 }
2371
2372 fput_light(sock->file, fput_needed);
2373
2374 /* We only return an error if no datagrams were able to be sent */
2375 if (datagrams != 0)
2376 return datagrams;
2377
2378 return err;
2379 }
2380
2381 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2382 unsigned int, vlen, unsigned int, flags)
2383 {
2384 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2385 }
2386
2387 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2388 struct msghdr *msg_sys, unsigned int flags, int nosec)
2389 {
2390 struct compat_msghdr __user *msg_compat =
2391 (struct compat_msghdr __user *)msg;
2392 struct iovec iovstack[UIO_FASTIOV];
2393 struct iovec *iov = iovstack;
2394 unsigned long cmsg_ptr;
2395 int len;
2396 ssize_t err;
2397
2398 /* kernel mode address */
2399 struct sockaddr_storage addr;
2400
2401 /* user mode address pointers */
2402 struct sockaddr __user *uaddr;
2403 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2404
2405 msg_sys->msg_name = &addr;
2406
2407 if (MSG_CMSG_COMPAT & flags)
2408 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2409 else
2410 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2411 if (err < 0)
2412 return err;
2413
2414 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2415 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2416
2417 /* We assume all kernel code knows the size of sockaddr_storage */
2418 msg_sys->msg_namelen = 0;
2419
2420 if (sock->file->f_flags & O_NONBLOCK)
2421 flags |= MSG_DONTWAIT;
2422 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2423 if (err < 0)
2424 goto out_freeiov;
2425 len = err;
2426
2427 if (uaddr != NULL) {
2428 err = move_addr_to_user(&addr,
2429 msg_sys->msg_namelen, uaddr,
2430 uaddr_len);
2431 if (err < 0)
2432 goto out_freeiov;
2433 }
2434 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2435 COMPAT_FLAGS(msg));
2436 if (err)
2437 goto out_freeiov;
2438 if (MSG_CMSG_COMPAT & flags)
2439 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2440 &msg_compat->msg_controllen);
2441 else
2442 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2443 &msg->msg_controllen);
2444 if (err)
2445 goto out_freeiov;
2446 err = len;
2447
2448 out_freeiov:
2449 kfree(iov);
2450 return err;
2451 }
2452
2453 /*
2454 * BSD recvmsg interface
2455 */
2456
2457 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2458 bool forbid_cmsg_compat)
2459 {
2460 int fput_needed, err;
2461 struct msghdr msg_sys;
2462 struct socket *sock;
2463
2464 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2465 return -EINVAL;
2466
2467 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2468 if (!sock)
2469 goto out;
2470
2471 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2472
2473 fput_light(sock->file, fput_needed);
2474 out:
2475 return err;
2476 }
2477
2478 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2479 unsigned int, flags)
2480 {
2481 return __sys_recvmsg(fd, msg, flags, true);
2482 }
2483
2484 /*
2485 * Linux recvmmsg interface
2486 */
2487
2488 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2489 unsigned int vlen, unsigned int flags,
2490 struct timespec64 *timeout)
2491 {
2492 int fput_needed, err, datagrams;
2493 struct socket *sock;
2494 struct mmsghdr __user *entry;
2495 struct compat_mmsghdr __user *compat_entry;
2496 struct msghdr msg_sys;
2497 struct timespec64 end_time;
2498 struct timespec64 timeout64;
2499
2500 if (timeout &&
2501 poll_select_set_timeout(&end_time, timeout->tv_sec,
2502 timeout->tv_nsec))
2503 return -EINVAL;
2504
2505 datagrams = 0;
2506
2507 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2508 if (!sock)
2509 return err;
2510
2511 if (likely(!(flags & MSG_ERRQUEUE))) {
2512 err = sock_error(sock->sk);
2513 if (err) {
2514 datagrams = err;
2515 goto out_put;
2516 }
2517 }
2518
2519 entry = mmsg;
2520 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2521
2522 while (datagrams < vlen) {
2523 /*
2524 * No need to ask LSM for more than the first datagram.
2525 */
2526 if (MSG_CMSG_COMPAT & flags) {
2527 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2528 &msg_sys, flags & ~MSG_WAITFORONE,
2529 datagrams);
2530 if (err < 0)
2531 break;
2532 err = __put_user(err, &compat_entry->msg_len);
2533 ++compat_entry;
2534 } else {
2535 err = ___sys_recvmsg(sock,
2536 (struct user_msghdr __user *)entry,
2537 &msg_sys, flags & ~MSG_WAITFORONE,
2538 datagrams);
2539 if (err < 0)
2540 break;
2541 err = put_user(err, &entry->msg_len);
2542 ++entry;
2543 }
2544
2545 if (err)
2546 break;
2547 ++datagrams;
2548
2549 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2550 if (flags & MSG_WAITFORONE)
2551 flags |= MSG_DONTWAIT;
2552
2553 if (timeout) {
2554 ktime_get_ts64(&timeout64);
2555 *timeout = timespec64_sub(end_time, timeout64);
2556 if (timeout->tv_sec < 0) {
2557 timeout->tv_sec = timeout->tv_nsec = 0;
2558 break;
2559 }
2560
2561 /* Timeout, return less than vlen datagrams */
2562 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2563 break;
2564 }
2565
2566 /* Out of band data, return right away */
2567 if (msg_sys.msg_flags & MSG_OOB)
2568 break;
2569 cond_resched();
2570 }
2571
2572 if (err == 0)
2573 goto out_put;
2574
2575 if (datagrams == 0) {
2576 datagrams = err;
2577 goto out_put;
2578 }
2579
2580 /*
2581 * We may return less entries than requested (vlen) if the
2582 * sock is non block and there aren't enough datagrams...
2583 */
2584 if (err != -EAGAIN) {
2585 /*
2586 * ... or if recvmsg returns an error after we
2587 * received some datagrams, where we record the
2588 * error to return on the next call or if the
2589 * app asks about it using getsockopt(SO_ERROR).
2590 */
2591 sock->sk->sk_err = -err;
2592 }
2593 out_put:
2594 fput_light(sock->file, fput_needed);
2595
2596 return datagrams;
2597 }
2598
2599 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2600 unsigned int vlen, unsigned int flags,
2601 struct __kernel_timespec __user *timeout,
2602 struct old_timespec32 __user *timeout32)
2603 {
2604 int datagrams;
2605 struct timespec64 timeout_sys;
2606
2607 if (timeout && get_timespec64(&timeout_sys, timeout))
2608 return -EFAULT;
2609
2610 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2611 return -EFAULT;
2612
2613 if (!timeout && !timeout32)
2614 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2615
2616 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2617
2618 if (datagrams <= 0)
2619 return datagrams;
2620
2621 if (timeout && put_timespec64(&timeout_sys, timeout))
2622 datagrams = -EFAULT;
2623
2624 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2625 datagrams = -EFAULT;
2626
2627 return datagrams;
2628 }
2629
2630 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2631 unsigned int, vlen, unsigned int, flags,
2632 struct __kernel_timespec __user *, timeout)
2633 {
2634 if (flags & MSG_CMSG_COMPAT)
2635 return -EINVAL;
2636
2637 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2638 }
2639
2640 #ifdef CONFIG_COMPAT_32BIT_TIME
2641 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2642 unsigned int, vlen, unsigned int, flags,
2643 struct old_timespec32 __user *, timeout)
2644 {
2645 if (flags & MSG_CMSG_COMPAT)
2646 return -EINVAL;
2647
2648 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2649 }
2650 #endif
2651
2652 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2653 /* Argument list sizes for sys_socketcall */
2654 #define AL(x) ((x) * sizeof(unsigned long))
2655 static const unsigned char nargs[21] = {
2656 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2657 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2658 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2659 AL(4), AL(5), AL(4)
2660 };
2661
2662 #undef AL
2663
2664 /*
2665 * System call vectors.
2666 *
2667 * Argument checking cleaned up. Saved 20% in size.
2668 * This function doesn't need to set the kernel lock because
2669 * it is set by the callees.
2670 */
2671
2672 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2673 {
2674 unsigned long a[AUDITSC_ARGS];
2675 unsigned long a0, a1;
2676 int err;
2677 unsigned int len;
2678
2679 if (call < 1 || call > SYS_SENDMMSG)
2680 return -EINVAL;
2681 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2682
2683 len = nargs[call];
2684 if (len > sizeof(a))
2685 return -EINVAL;
2686
2687 /* copy_from_user should be SMP safe. */
2688 if (copy_from_user(a, args, len))
2689 return -EFAULT;
2690
2691 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2692 if (err)
2693 return err;
2694
2695 a0 = a[0];
2696 a1 = a[1];
2697
2698 switch (call) {
2699 case SYS_SOCKET:
2700 err = __sys_socket(a0, a1, a[2]);
2701 break;
2702 case SYS_BIND:
2703 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2704 break;
2705 case SYS_CONNECT:
2706 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2707 break;
2708 case SYS_LISTEN:
2709 err = __sys_listen(a0, a1);
2710 break;
2711 case SYS_ACCEPT:
2712 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2713 (int __user *)a[2], 0);
2714 break;
2715 case SYS_GETSOCKNAME:
2716 err =
2717 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2718 (int __user *)a[2]);
2719 break;
2720 case SYS_GETPEERNAME:
2721 err =
2722 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2723 (int __user *)a[2]);
2724 break;
2725 case SYS_SOCKETPAIR:
2726 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2727 break;
2728 case SYS_SEND:
2729 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2730 NULL, 0);
2731 break;
2732 case SYS_SENDTO:
2733 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2734 (struct sockaddr __user *)a[4], a[5]);
2735 break;
2736 case SYS_RECV:
2737 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2738 NULL, NULL);
2739 break;
2740 case SYS_RECVFROM:
2741 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2742 (struct sockaddr __user *)a[4],
2743 (int __user *)a[5]);
2744 break;
2745 case SYS_SHUTDOWN:
2746 err = __sys_shutdown(a0, a1);
2747 break;
2748 case SYS_SETSOCKOPT:
2749 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2750 a[4]);
2751 break;
2752 case SYS_GETSOCKOPT:
2753 err =
2754 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2755 (int __user *)a[4]);
2756 break;
2757 case SYS_SENDMSG:
2758 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2759 a[2], true);
2760 break;
2761 case SYS_SENDMMSG:
2762 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2763 a[3], true);
2764 break;
2765 case SYS_RECVMSG:
2766 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2767 a[2], true);
2768 break;
2769 case SYS_RECVMMSG:
2770 if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME))
2771 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2772 a[2], a[3],
2773 (struct __kernel_timespec __user *)a[4],
2774 NULL);
2775 else
2776 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2777 a[2], a[3], NULL,
2778 (struct old_timespec32 __user *)a[4]);
2779 break;
2780 case SYS_ACCEPT4:
2781 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2782 (int __user *)a[2], a[3]);
2783 break;
2784 default:
2785 err = -EINVAL;
2786 break;
2787 }
2788 return err;
2789 }
2790
2791 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2792
2793 /**
2794 * sock_register - add a socket protocol handler
2795 * @ops: description of protocol
2796 *
2797 * This function is called by a protocol handler that wants to
2798 * advertise its address family, and have it linked into the
2799 * socket interface. The value ops->family corresponds to the
2800 * socket system call protocol family.
2801 */
2802 int sock_register(const struct net_proto_family *ops)
2803 {
2804 int err;
2805
2806 if (ops->family >= NPROTO) {
2807 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2808 return -ENOBUFS;
2809 }
2810
2811 spin_lock(&net_family_lock);
2812 if (rcu_dereference_protected(net_families[ops->family],
2813 lockdep_is_held(&net_family_lock)))
2814 err = -EEXIST;
2815 else {
2816 rcu_assign_pointer(net_families[ops->family], ops);
2817 err = 0;
2818 }
2819 spin_unlock(&net_family_lock);
2820
2821 pr_info("NET: Registered protocol family %d\n", ops->family);
2822 return err;
2823 }
2824 EXPORT_SYMBOL(sock_register);
2825
2826 /**
2827 * sock_unregister - remove a protocol handler
2828 * @family: protocol family to remove
2829 *
2830 * This function is called by a protocol handler that wants to
2831 * remove its address family, and have it unlinked from the
2832 * new socket creation.
2833 *
2834 * If protocol handler is a module, then it can use module reference
2835 * counts to protect against new references. If protocol handler is not
2836 * a module then it needs to provide its own protection in
2837 * the ops->create routine.
2838 */
2839 void sock_unregister(int family)
2840 {
2841 BUG_ON(family < 0 || family >= NPROTO);
2842
2843 spin_lock(&net_family_lock);
2844 RCU_INIT_POINTER(net_families[family], NULL);
2845 spin_unlock(&net_family_lock);
2846
2847 synchronize_rcu();
2848
2849 pr_info("NET: Unregistered protocol family %d\n", family);
2850 }
2851 EXPORT_SYMBOL(sock_unregister);
2852
2853 bool sock_is_registered(int family)
2854 {
2855 return family < NPROTO && rcu_access_pointer(net_families[family]);
2856 }
2857
2858 static int __init sock_init(void)
2859 {
2860 int err;
2861 /*
2862 * Initialize the network sysctl infrastructure.
2863 */
2864 err = net_sysctl_init();
2865 if (err)
2866 goto out;
2867
2868 /*
2869 * Initialize skbuff SLAB cache
2870 */
2871 skb_init();
2872
2873 /*
2874 * Initialize the protocols module.
2875 */
2876
2877 init_inodecache();
2878
2879 err = register_filesystem(&sock_fs_type);
2880 if (err)
2881 goto out_fs;
2882 sock_mnt = kern_mount(&sock_fs_type);
2883 if (IS_ERR(sock_mnt)) {
2884 err = PTR_ERR(sock_mnt);
2885 goto out_mount;
2886 }
2887
2888 /* The real protocol initialization is performed in later initcalls.
2889 */
2890
2891 #ifdef CONFIG_NETFILTER
2892 err = netfilter_init();
2893 if (err)
2894 goto out;
2895 #endif
2896
2897 ptp_classifier_init();
2898
2899 out:
2900 return err;
2901
2902 out_mount:
2903 unregister_filesystem(&sock_fs_type);
2904 out_fs:
2905 goto out;
2906 }
2907
2908 core_initcall(sock_init); /* early initcall */
2909
2910 #ifdef CONFIG_PROC_FS
2911 void socket_seq_show(struct seq_file *seq)
2912 {
2913 seq_printf(seq, "sockets: used %d\n",
2914 sock_inuse_get(seq->private));
2915 }
2916 #endif /* CONFIG_PROC_FS */
2917
2918 #ifdef CONFIG_COMPAT
2919 static int do_siocgstamp(struct net *net, struct socket *sock,
2920 unsigned int cmd, void __user *up)
2921 {
2922 mm_segment_t old_fs = get_fs();
2923 struct timeval ktv;
2924 int err;
2925
2926 set_fs(KERNEL_DS);
2927 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2928 set_fs(old_fs);
2929 if (!err)
2930 err = compat_put_timeval(&ktv, up);
2931
2932 return err;
2933 }
2934
2935 static int do_siocgstampns(struct net *net, struct socket *sock,
2936 unsigned int cmd, void __user *up)
2937 {
2938 mm_segment_t old_fs = get_fs();
2939 struct timespec kts;
2940 int err;
2941
2942 set_fs(KERNEL_DS);
2943 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2944 set_fs(old_fs);
2945 if (!err)
2946 err = compat_put_timespec(&kts, up);
2947
2948 return err;
2949 }
2950
2951 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2952 {
2953 struct compat_ifconf ifc32;
2954 struct ifconf ifc;
2955 int err;
2956
2957 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2958 return -EFAULT;
2959
2960 ifc.ifc_len = ifc32.ifc_len;
2961 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2962
2963 rtnl_lock();
2964 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2965 rtnl_unlock();
2966 if (err)
2967 return err;
2968
2969 ifc32.ifc_len = ifc.ifc_len;
2970 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2971 return -EFAULT;
2972
2973 return 0;
2974 }
2975
2976 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2977 {
2978 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2979 bool convert_in = false, convert_out = false;
2980 size_t buf_size = 0;
2981 struct ethtool_rxnfc __user *rxnfc = NULL;
2982 struct ifreq ifr;
2983 u32 rule_cnt = 0, actual_rule_cnt;
2984 u32 ethcmd;
2985 u32 data;
2986 int ret;
2987
2988 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2989 return -EFAULT;
2990
2991 compat_rxnfc = compat_ptr(data);
2992
2993 if (get_user(ethcmd, &compat_rxnfc->cmd))
2994 return -EFAULT;
2995
2996 /* Most ethtool structures are defined without padding.
2997 * Unfortunately struct ethtool_rxnfc is an exception.
2998 */
2999 switch (ethcmd) {
3000 default:
3001 break;
3002 case ETHTOOL_GRXCLSRLALL:
3003 /* Buffer size is variable */
3004 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3005 return -EFAULT;
3006 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3007 return -ENOMEM;
3008 buf_size += rule_cnt * sizeof(u32);
3009 /* fall through */
3010 case ETHTOOL_GRXRINGS:
3011 case ETHTOOL_GRXCLSRLCNT:
3012 case ETHTOOL_GRXCLSRULE:
3013 case ETHTOOL_SRXCLSRLINS:
3014 convert_out = true;
3015 /* fall through */
3016 case ETHTOOL_SRXCLSRLDEL:
3017 buf_size += sizeof(struct ethtool_rxnfc);
3018 convert_in = true;
3019 rxnfc = compat_alloc_user_space(buf_size);
3020 break;
3021 }
3022
3023 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3024 return -EFAULT;
3025
3026 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3027
3028 if (convert_in) {
3029 /* We expect there to be holes between fs.m_ext and
3030 * fs.ring_cookie and at the end of fs, but nowhere else.
3031 */
3032 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3033 sizeof(compat_rxnfc->fs.m_ext) !=
3034 offsetof(struct ethtool_rxnfc, fs.m_ext) +
3035 sizeof(rxnfc->fs.m_ext));
3036 BUILD_BUG_ON(
3037 offsetof(struct compat_ethtool_rxnfc, fs.location) -
3038 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3039 offsetof(struct ethtool_rxnfc, fs.location) -
3040 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3041
3042 if (copy_in_user(rxnfc, compat_rxnfc,
3043 (void __user *)(&rxnfc->fs.m_ext + 1) -
3044 (void __user *)rxnfc) ||
3045 copy_in_user(&rxnfc->fs.ring_cookie,
3046 &compat_rxnfc->fs.ring_cookie,
3047 (void __user *)(&rxnfc->fs.location + 1) -
3048 (void __user *)&rxnfc->fs.ring_cookie))
3049 return -EFAULT;
3050 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3051 if (put_user(rule_cnt, &rxnfc->rule_cnt))
3052 return -EFAULT;
3053 } else if (copy_in_user(&rxnfc->rule_cnt,
3054 &compat_rxnfc->rule_cnt,
3055 sizeof(rxnfc->rule_cnt)))
3056 return -EFAULT;
3057 }
3058
3059 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3060 if (ret)
3061 return ret;
3062
3063 if (convert_out) {
3064 if (copy_in_user(compat_rxnfc, rxnfc,
3065 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3066 (const void __user *)rxnfc) ||
3067 copy_in_user(&compat_rxnfc->fs.ring_cookie,
3068 &rxnfc->fs.ring_cookie,
3069 (const void __user *)(&rxnfc->fs.location + 1) -
3070 (const void __user *)&rxnfc->fs.ring_cookie) ||
3071 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3072 sizeof(rxnfc->rule_cnt)))
3073 return -EFAULT;
3074
3075 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3076 /* As an optimisation, we only copy the actual
3077 * number of rules that the underlying
3078 * function returned. Since Mallory might
3079 * change the rule count in user memory, we
3080 * check that it is less than the rule count
3081 * originally given (as the user buffer size),
3082 * which has been range-checked.
3083 */
3084 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3085 return -EFAULT;
3086 if (actual_rule_cnt < rule_cnt)
3087 rule_cnt = actual_rule_cnt;
3088 if (copy_in_user(&compat_rxnfc->rule_locs[0],
3089 &rxnfc->rule_locs[0],
3090 rule_cnt * sizeof(u32)))
3091 return -EFAULT;
3092 }
3093 }
3094
3095 return 0;
3096 }
3097
3098 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3099 {
3100 compat_uptr_t uptr32;
3101 struct ifreq ifr;
3102 void __user *saved;
3103 int err;
3104
3105 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3106 return -EFAULT;
3107
3108 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3109 return -EFAULT;
3110
3111 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3112 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3113
3114 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3115 if (!err) {
3116 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3117 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3118 err = -EFAULT;
3119 }
3120 return err;
3121 }
3122
3123 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3124 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3125 struct compat_ifreq __user *u_ifreq32)
3126 {
3127 struct ifreq ifreq;
3128 u32 data32;
3129
3130 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3131 return -EFAULT;
3132 if (get_user(data32, &u_ifreq32->ifr_data))
3133 return -EFAULT;
3134 ifreq.ifr_data = compat_ptr(data32);
3135
3136 return dev_ioctl(net, cmd, &ifreq, NULL);
3137 }
3138
3139 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3140 unsigned int cmd,
3141 struct compat_ifreq __user *uifr32)
3142 {
3143 struct ifreq __user *uifr;
3144 int err;
3145
3146 /* Handle the fact that while struct ifreq has the same *layout* on
3147 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3148 * which are handled elsewhere, it still has different *size* due to
3149 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3150 * resulting in struct ifreq being 32 and 40 bytes respectively).
3151 * As a result, if the struct happens to be at the end of a page and
3152 * the next page isn't readable/writable, we get a fault. To prevent
3153 * that, copy back and forth to the full size.
3154 */
3155
3156 uifr = compat_alloc_user_space(sizeof(*uifr));
3157 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3158 return -EFAULT;
3159
3160 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3161
3162 if (!err) {
3163 switch (cmd) {
3164 case SIOCGIFFLAGS:
3165 case SIOCGIFMETRIC:
3166 case SIOCGIFMTU:
3167 case SIOCGIFMEM:
3168 case SIOCGIFHWADDR:
3169 case SIOCGIFINDEX:
3170 case SIOCGIFADDR:
3171 case SIOCGIFBRDADDR:
3172 case SIOCGIFDSTADDR:
3173 case SIOCGIFNETMASK:
3174 case SIOCGIFPFLAGS:
3175 case SIOCGIFTXQLEN:
3176 case SIOCGMIIPHY:
3177 case SIOCGMIIREG:
3178 case SIOCGIFNAME:
3179 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3180 err = -EFAULT;
3181 break;
3182 }
3183 }
3184 return err;
3185 }
3186
3187 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3188 struct compat_ifreq __user *uifr32)
3189 {
3190 struct ifreq ifr;
3191 struct compat_ifmap __user *uifmap32;
3192 int err;
3193
3194 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3195 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3196 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3197 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3198 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3199 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3200 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3201 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3202 if (err)
3203 return -EFAULT;
3204
3205 err = dev_ioctl(net, cmd, &ifr, NULL);
3206
3207 if (cmd == SIOCGIFMAP && !err) {
3208 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3209 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3210 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3211 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3212 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3213 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3214 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3215 if (err)
3216 err = -EFAULT;
3217 }
3218 return err;
3219 }
3220
3221 struct rtentry32 {
3222 u32 rt_pad1;
3223 struct sockaddr rt_dst; /* target address */
3224 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3225 struct sockaddr rt_genmask; /* target network mask (IP) */
3226 unsigned short rt_flags;
3227 short rt_pad2;
3228 u32 rt_pad3;
3229 unsigned char rt_tos;
3230 unsigned char rt_class;
3231 short rt_pad4;
3232 short rt_metric; /* +1 for binary compatibility! */
3233 /* char * */ u32 rt_dev; /* forcing the device at add */
3234 u32 rt_mtu; /* per route MTU/Window */
3235 u32 rt_window; /* Window clamping */
3236 unsigned short rt_irtt; /* Initial RTT */
3237 };
3238
3239 struct in6_rtmsg32 {
3240 struct in6_addr rtmsg_dst;
3241 struct in6_addr rtmsg_src;
3242 struct in6_addr rtmsg_gateway;
3243 u32 rtmsg_type;
3244 u16 rtmsg_dst_len;
3245 u16 rtmsg_src_len;
3246 u32 rtmsg_metric;
3247 u32 rtmsg_info;
3248 u32 rtmsg_flags;
3249 s32 rtmsg_ifindex;
3250 };
3251
3252 static int routing_ioctl(struct net *net, struct socket *sock,
3253 unsigned int cmd, void __user *argp)
3254 {
3255 int ret;
3256 void *r = NULL;
3257 struct in6_rtmsg r6;
3258 struct rtentry r4;
3259 char devname[16];
3260 u32 rtdev;
3261 mm_segment_t old_fs = get_fs();
3262
3263 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3264 struct in6_rtmsg32 __user *ur6 = argp;
3265 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3266 3 * sizeof(struct in6_addr));
3267 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3268 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3269 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3270 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3271 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3272 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3273 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3274
3275 r = (void *) &r6;
3276 } else { /* ipv4 */
3277 struct rtentry32 __user *ur4 = argp;
3278 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3279 3 * sizeof(struct sockaddr));
3280 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3281 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3282 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3283 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3284 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3285 ret |= get_user(rtdev, &(ur4->rt_dev));
3286 if (rtdev) {
3287 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3288 r4.rt_dev = (char __user __force *)devname;
3289 devname[15] = 0;
3290 } else
3291 r4.rt_dev = NULL;
3292
3293 r = (void *) &r4;
3294 }
3295
3296 if (ret) {
3297 ret = -EFAULT;
3298 goto out;
3299 }
3300
3301 set_fs(KERNEL_DS);
3302 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3303 set_fs(old_fs);
3304
3305 out:
3306 return ret;
3307 }
3308
3309 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3310 * for some operations; this forces use of the newer bridge-utils that
3311 * use compatible ioctls
3312 */
3313 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3314 {
3315 compat_ulong_t tmp;
3316
3317 if (get_user(tmp, argp))
3318 return -EFAULT;
3319 if (tmp == BRCTL_GET_VERSION)
3320 return BRCTL_VERSION + 1;
3321 return -EINVAL;
3322 }
3323
3324 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3325 unsigned int cmd, unsigned long arg)
3326 {
3327 void __user *argp = compat_ptr(arg);
3328 struct sock *sk = sock->sk;
3329 struct net *net = sock_net(sk);
3330
3331 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3332 return compat_ifr_data_ioctl(net, cmd, argp);
3333
3334 switch (cmd) {
3335 case SIOCSIFBR:
3336 case SIOCGIFBR:
3337 return old_bridge_ioctl(argp);
3338 case SIOCGIFCONF:
3339 return compat_dev_ifconf(net, argp);
3340 case SIOCETHTOOL:
3341 return ethtool_ioctl(net, argp);
3342 case SIOCWANDEV:
3343 return compat_siocwandev(net, argp);
3344 case SIOCGIFMAP:
3345 case SIOCSIFMAP:
3346 return compat_sioc_ifmap(net, cmd, argp);
3347 case SIOCADDRT:
3348 case SIOCDELRT:
3349 return routing_ioctl(net, sock, cmd, argp);
3350 case SIOCGSTAMP:
3351 return do_siocgstamp(net, sock, cmd, argp);
3352 case SIOCGSTAMPNS:
3353 return do_siocgstampns(net, sock, cmd, argp);
3354 case SIOCBONDSLAVEINFOQUERY:
3355 case SIOCBONDINFOQUERY:
3356 case SIOCSHWTSTAMP:
3357 case SIOCGHWTSTAMP:
3358 return compat_ifr_data_ioctl(net, cmd, argp);
3359
3360 case FIOSETOWN:
3361 case SIOCSPGRP:
3362 case FIOGETOWN:
3363 case SIOCGPGRP:
3364 case SIOCBRADDBR:
3365 case SIOCBRDELBR:
3366 case SIOCGIFVLAN:
3367 case SIOCSIFVLAN:
3368 case SIOCADDDLCI:
3369 case SIOCDELDLCI:
3370 case SIOCGSKNS:
3371 return sock_ioctl(file, cmd, arg);
3372
3373 case SIOCGIFFLAGS:
3374 case SIOCSIFFLAGS:
3375 case SIOCGIFMETRIC:
3376 case SIOCSIFMETRIC:
3377 case SIOCGIFMTU:
3378 case SIOCSIFMTU:
3379 case SIOCGIFMEM:
3380 case SIOCSIFMEM:
3381 case SIOCGIFHWADDR:
3382 case SIOCSIFHWADDR:
3383 case SIOCADDMULTI:
3384 case SIOCDELMULTI:
3385 case SIOCGIFINDEX:
3386 case SIOCGIFADDR:
3387 case SIOCSIFADDR:
3388 case SIOCSIFHWBROADCAST:
3389 case SIOCDIFADDR:
3390 case SIOCGIFBRDADDR:
3391 case SIOCSIFBRDADDR:
3392 case SIOCGIFDSTADDR:
3393 case SIOCSIFDSTADDR:
3394 case SIOCGIFNETMASK:
3395 case SIOCSIFNETMASK:
3396 case SIOCSIFPFLAGS:
3397 case SIOCGIFPFLAGS:
3398 case SIOCGIFTXQLEN:
3399 case SIOCSIFTXQLEN:
3400 case SIOCBRADDIF:
3401 case SIOCBRDELIF:
3402 case SIOCGIFNAME:
3403 case SIOCSIFNAME:
3404 case SIOCGMIIPHY:
3405 case SIOCGMIIREG:
3406 case SIOCSMIIREG:
3407 case SIOCBONDENSLAVE:
3408 case SIOCBONDRELEASE:
3409 case SIOCBONDSETHWADDR:
3410 case SIOCBONDCHANGEACTIVE:
3411 return compat_ifreq_ioctl(net, sock, cmd, argp);
3412
3413 case SIOCSARP:
3414 case SIOCGARP:
3415 case SIOCDARP:
3416 case SIOCATMARK:
3417 return sock_do_ioctl(net, sock, cmd, arg);
3418 }
3419
3420 return -ENOIOCTLCMD;
3421 }
3422
3423 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3424 unsigned long arg)
3425 {
3426 struct socket *sock = file->private_data;
3427 int ret = -ENOIOCTLCMD;
3428 struct sock *sk;
3429 struct net *net;
3430
3431 sk = sock->sk;
3432 net = sock_net(sk);
3433
3434 if (sock->ops->compat_ioctl)
3435 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3436
3437 if (ret == -ENOIOCTLCMD &&
3438 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3439 ret = compat_wext_handle_ioctl(net, cmd, arg);
3440
3441 if (ret == -ENOIOCTLCMD)
3442 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3443
3444 return ret;
3445 }
3446 #endif
3447
3448 /**
3449 * kernel_bind - bind an address to a socket (kernel space)
3450 * @sock: socket
3451 * @addr: address
3452 * @addrlen: length of address
3453 *
3454 * Returns 0 or an error.
3455 */
3456
3457 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3458 {
3459 return sock->ops->bind(sock, addr, addrlen);
3460 }
3461 EXPORT_SYMBOL(kernel_bind);
3462
3463 /**
3464 * kernel_listen - move socket to listening state (kernel space)
3465 * @sock: socket
3466 * @backlog: pending connections queue size
3467 *
3468 * Returns 0 or an error.
3469 */
3470
3471 int kernel_listen(struct socket *sock, int backlog)
3472 {
3473 return sock->ops->listen(sock, backlog);
3474 }
3475 EXPORT_SYMBOL(kernel_listen);
3476
3477 /**
3478 * kernel_accept - accept a connection (kernel space)
3479 * @sock: listening socket
3480 * @newsock: new connected socket
3481 * @flags: flags
3482 *
3483 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3484 * If it fails, @newsock is guaranteed to be %NULL.
3485 * Returns 0 or an error.
3486 */
3487
3488 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3489 {
3490 struct sock *sk = sock->sk;
3491 int err;
3492
3493 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3494 newsock);
3495 if (err < 0)
3496 goto done;
3497
3498 err = sock->ops->accept(sock, *newsock, flags, true);
3499 if (err < 0) {
3500 sock_release(*newsock);
3501 *newsock = NULL;
3502 goto done;
3503 }
3504
3505 (*newsock)->ops = sock->ops;
3506 __module_get((*newsock)->ops->owner);
3507
3508 done:
3509 return err;
3510 }
3511 EXPORT_SYMBOL(kernel_accept);
3512
3513 /**
3514 * kernel_connect - connect a socket (kernel space)
3515 * @sock: socket
3516 * @addr: address
3517 * @addrlen: address length
3518 * @flags: flags (O_NONBLOCK, ...)
3519 *
3520 * For datagram sockets, @addr is the addres to which datagrams are sent
3521 * by default, and the only address from which datagrams are received.
3522 * For stream sockets, attempts to connect to @addr.
3523 * Returns 0 or an error code.
3524 */
3525
3526 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3527 int flags)
3528 {
3529 return sock->ops->connect(sock, addr, addrlen, flags);
3530 }
3531 EXPORT_SYMBOL(kernel_connect);
3532
3533 /**
3534 * kernel_getsockname - get the address which the socket is bound (kernel space)
3535 * @sock: socket
3536 * @addr: address holder
3537 *
3538 * Fills the @addr pointer with the address which the socket is bound.
3539 * Returns 0 or an error code.
3540 */
3541
3542 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3543 {
3544 return sock->ops->getname(sock, addr, 0);
3545 }
3546 EXPORT_SYMBOL(kernel_getsockname);
3547
3548 /**
3549 * kernel_peername - get the address which the socket is connected (kernel space)
3550 * @sock: socket
3551 * @addr: address holder
3552 *
3553 * Fills the @addr pointer with the address which the socket is connected.
3554 * Returns 0 or an error code.
3555 */
3556
3557 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3558 {
3559 return sock->ops->getname(sock, addr, 1);
3560 }
3561 EXPORT_SYMBOL(kernel_getpeername);
3562
3563 /**
3564 * kernel_getsockopt - get a socket option (kernel space)
3565 * @sock: socket
3566 * @level: API level (SOL_SOCKET, ...)
3567 * @optname: option tag
3568 * @optval: option value
3569 * @optlen: option length
3570 *
3571 * Assigns the option length to @optlen.
3572 * Returns 0 or an error.
3573 */
3574
3575 int kernel_getsockopt(struct socket *sock, int level, int optname,
3576 char *optval, int *optlen)
3577 {
3578 mm_segment_t oldfs = get_fs();
3579 char __user *uoptval;
3580 int __user *uoptlen;
3581 int err;
3582
3583 uoptval = (char __user __force *) optval;
3584 uoptlen = (int __user __force *) optlen;
3585
3586 set_fs(KERNEL_DS);
3587 if (level == SOL_SOCKET)
3588 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3589 else
3590 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3591 uoptlen);
3592 set_fs(oldfs);
3593 return err;
3594 }
3595 EXPORT_SYMBOL(kernel_getsockopt);
3596
3597 /**
3598 * kernel_setsockopt - set a socket option (kernel space)
3599 * @sock: socket
3600 * @level: API level (SOL_SOCKET, ...)
3601 * @optname: option tag
3602 * @optval: option value
3603 * @optlen: option length
3604 *
3605 * Returns 0 or an error.
3606 */
3607
3608 int kernel_setsockopt(struct socket *sock, int level, int optname,
3609 char *optval, unsigned int optlen)
3610 {
3611 mm_segment_t oldfs = get_fs();
3612 char __user *uoptval;
3613 int err;
3614
3615 uoptval = (char __user __force *) optval;
3616
3617 set_fs(KERNEL_DS);
3618 if (level == SOL_SOCKET)
3619 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3620 else
3621 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3622 optlen);
3623 set_fs(oldfs);
3624 return err;
3625 }
3626 EXPORT_SYMBOL(kernel_setsockopt);
3627
3628 /**
3629 * kernel_sendpage - send a &page through a socket (kernel space)
3630 * @sock: socket
3631 * @page: page
3632 * @offset: page offset
3633 * @size: total size in bytes
3634 * @flags: flags (MSG_DONTWAIT, ...)
3635 *
3636 * Returns the total amount sent in bytes or an error.
3637 */
3638
3639 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3640 size_t size, int flags)
3641 {
3642 if (sock->ops->sendpage)
3643 return sock->ops->sendpage(sock, page, offset, size, flags);
3644
3645 return sock_no_sendpage(sock, page, offset, size, flags);
3646 }
3647 EXPORT_SYMBOL(kernel_sendpage);
3648
3649 /**
3650 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3651 * @sk: sock
3652 * @page: page
3653 * @offset: page offset
3654 * @size: total size in bytes
3655 * @flags: flags (MSG_DONTWAIT, ...)
3656 *
3657 * Returns the total amount sent in bytes or an error.
3658 * Caller must hold @sk.
3659 */
3660
3661 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3662 size_t size, int flags)
3663 {
3664 struct socket *sock = sk->sk_socket;
3665
3666 if (sock->ops->sendpage_locked)
3667 return sock->ops->sendpage_locked(sk, page, offset, size,
3668 flags);
3669
3670 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3671 }
3672 EXPORT_SYMBOL(kernel_sendpage_locked);
3673
3674 /**
3675 * kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3676 * @sock: socket
3677 * @how: connection part
3678 *
3679 * Returns 0 or an error.
3680 */
3681
3682 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3683 {
3684 return sock->ops->shutdown(sock, how);
3685 }
3686 EXPORT_SYMBOL(kernel_sock_shutdown);
3687
3688 /**
3689 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3690 * @sk: socket
3691 *
3692 * This routine returns the IP overhead imposed by a socket i.e.
3693 * the length of the underlying IP header, depending on whether
3694 * this is an IPv4 or IPv6 socket and the length from IP options turned
3695 * on at the socket. Assumes that the caller has a lock on the socket.
3696 */
3697
3698 u32 kernel_sock_ip_overhead(struct sock *sk)
3699 {
3700 struct inet_sock *inet;
3701 struct ip_options_rcu *opt;
3702 u32 overhead = 0;
3703 #if IS_ENABLED(CONFIG_IPV6)
3704 struct ipv6_pinfo *np;
3705 struct ipv6_txoptions *optv6 = NULL;
3706 #endif /* IS_ENABLED(CONFIG_IPV6) */
3707
3708 if (!sk)
3709 return overhead;
3710
3711 switch (sk->sk_family) {
3712 case AF_INET:
3713 inet = inet_sk(sk);
3714 overhead += sizeof(struct iphdr);
3715 opt = rcu_dereference_protected(inet->inet_opt,
3716 sock_owned_by_user(sk));
3717 if (opt)
3718 overhead += opt->opt.optlen;
3719 return overhead;
3720 #if IS_ENABLED(CONFIG_IPV6)
3721 case AF_INET6:
3722 np = inet6_sk(sk);
3723 overhead += sizeof(struct ipv6hdr);
3724 if (np)
3725 optv6 = rcu_dereference_protected(np->opt,
3726 sock_owned_by_user(sk));
3727 if (optv6)
3728 overhead += (optv6->opt_flen + optv6->opt_nflen);
3729 return overhead;
3730 #endif /* IS_ENABLED(CONFIG_IPV6) */
3731 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3732 return overhead;
3733 }
3734 }
3735 EXPORT_SYMBOL(kernel_sock_ip_overhead);