]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - net/socket.c
ASoC: Intel: bytcr_rt5640: Add quirk for the Chuwi Vi10 tablet
[thirdparty/kernel/stable.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <net/busy_poll.h>
108 #include <linux/errqueue.h>
109
110 #ifdef CONFIG_NET_RX_BUSY_POLL
111 unsigned int sysctl_net_busy_read __read_mostly;
112 unsigned int sysctl_net_busy_poll __read_mostly;
113 #endif
114
115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
117 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
118
119 static int sock_close(struct inode *inode, struct file *file);
120 static struct wait_queue_head *sock_get_poll_head(struct file *file,
121 __poll_t events);
122 static __poll_t sock_poll_mask(struct file *file, __poll_t);
123 static __poll_t sock_poll(struct file *file, struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_sendpage(struct file *file, struct page *page,
131 int offset, size_t size, loff_t *ppos, int more);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 struct pipe_inode_info *pipe, size_t len,
134 unsigned int flags);
135
136 /*
137 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138 * in the operation structures but are done directly via the socketcall() multiplexor.
139 */
140
141 static const struct file_operations socket_file_ops = {
142 .owner = THIS_MODULE,
143 .llseek = no_llseek,
144 .read_iter = sock_read_iter,
145 .write_iter = sock_write_iter,
146 .get_poll_head = sock_get_poll_head,
147 .poll_mask = sock_poll_mask,
148 .poll = sock_poll,
149 .unlocked_ioctl = sock_ioctl,
150 #ifdef CONFIG_COMPAT
151 .compat_ioctl = compat_sock_ioctl,
152 #endif
153 .mmap = sock_mmap,
154 .release = sock_close,
155 .fasync = sock_fasync,
156 .sendpage = sock_sendpage,
157 .splice_write = generic_splice_sendpage,
158 .splice_read = sock_splice_read,
159 };
160
161 /*
162 * The protocol list. Each protocol is registered in here.
163 */
164
165 static DEFINE_SPINLOCK(net_family_lock);
166 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
167
168 /*
169 * Support routines.
170 * Move socket addresses back and forth across the kernel/user
171 * divide and look after the messy bits.
172 */
173
174 /**
175 * move_addr_to_kernel - copy a socket address into kernel space
176 * @uaddr: Address in user space
177 * @kaddr: Address in kernel space
178 * @ulen: Length in user space
179 *
180 * The address is copied into kernel space. If the provided address is
181 * too long an error code of -EINVAL is returned. If the copy gives
182 * invalid addresses -EFAULT is returned. On a success 0 is returned.
183 */
184
185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
186 {
187 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
188 return -EINVAL;
189 if (ulen == 0)
190 return 0;
191 if (copy_from_user(kaddr, uaddr, ulen))
192 return -EFAULT;
193 return audit_sockaddr(ulen, kaddr);
194 }
195
196 /**
197 * move_addr_to_user - copy an address to user space
198 * @kaddr: kernel space address
199 * @klen: length of address in kernel
200 * @uaddr: user space address
201 * @ulen: pointer to user length field
202 *
203 * The value pointed to by ulen on entry is the buffer length available.
204 * This is overwritten with the buffer space used. -EINVAL is returned
205 * if an overlong buffer is specified or a negative buffer size. -EFAULT
206 * is returned if either the buffer or the length field are not
207 * accessible.
208 * After copying the data up to the limit the user specifies, the true
209 * length of the data is written over the length limit the user
210 * specified. Zero is returned for a success.
211 */
212
213 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
214 void __user *uaddr, int __user *ulen)
215 {
216 int err;
217 int len;
218
219 BUG_ON(klen > sizeof(struct sockaddr_storage));
220 err = get_user(len, ulen);
221 if (err)
222 return err;
223 if (len > klen)
224 len = klen;
225 if (len < 0)
226 return -EINVAL;
227 if (len) {
228 if (audit_sockaddr(klen, kaddr))
229 return -ENOMEM;
230 if (copy_to_user(uaddr, kaddr, len))
231 return -EFAULT;
232 }
233 /*
234 * "fromlen shall refer to the value before truncation.."
235 * 1003.1g
236 */
237 return __put_user(klen, ulen);
238 }
239
240 static struct kmem_cache *sock_inode_cachep __ro_after_init;
241
242 static struct inode *sock_alloc_inode(struct super_block *sb)
243 {
244 struct socket_alloc *ei;
245 struct socket_wq *wq;
246
247 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
248 if (!ei)
249 return NULL;
250 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
251 if (!wq) {
252 kmem_cache_free(sock_inode_cachep, ei);
253 return NULL;
254 }
255 init_waitqueue_head(&wq->wait);
256 wq->fasync_list = NULL;
257 wq->flags = 0;
258 RCU_INIT_POINTER(ei->socket.wq, wq);
259
260 ei->socket.state = SS_UNCONNECTED;
261 ei->socket.flags = 0;
262 ei->socket.ops = NULL;
263 ei->socket.sk = NULL;
264 ei->socket.file = NULL;
265
266 return &ei->vfs_inode;
267 }
268
269 static void sock_destroy_inode(struct inode *inode)
270 {
271 struct socket_alloc *ei;
272 struct socket_wq *wq;
273
274 ei = container_of(inode, struct socket_alloc, vfs_inode);
275 wq = rcu_dereference_protected(ei->socket.wq, 1);
276 kfree_rcu(wq, rcu);
277 kmem_cache_free(sock_inode_cachep, ei);
278 }
279
280 static void init_once(void *foo)
281 {
282 struct socket_alloc *ei = (struct socket_alloc *)foo;
283
284 inode_init_once(&ei->vfs_inode);
285 }
286
287 static void init_inodecache(void)
288 {
289 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
290 sizeof(struct socket_alloc),
291 0,
292 (SLAB_HWCACHE_ALIGN |
293 SLAB_RECLAIM_ACCOUNT |
294 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
295 init_once);
296 BUG_ON(sock_inode_cachep == NULL);
297 }
298
299 static const struct super_operations sockfs_ops = {
300 .alloc_inode = sock_alloc_inode,
301 .destroy_inode = sock_destroy_inode,
302 .statfs = simple_statfs,
303 };
304
305 /*
306 * sockfs_dname() is called from d_path().
307 */
308 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
309 {
310 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
311 d_inode(dentry)->i_ino);
312 }
313
314 static const struct dentry_operations sockfs_dentry_operations = {
315 .d_dname = sockfs_dname,
316 };
317
318 static int sockfs_xattr_get(const struct xattr_handler *handler,
319 struct dentry *dentry, struct inode *inode,
320 const char *suffix, void *value, size_t size)
321 {
322 if (value) {
323 if (dentry->d_name.len + 1 > size)
324 return -ERANGE;
325 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
326 }
327 return dentry->d_name.len + 1;
328 }
329
330 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
331 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
332 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
333
334 static const struct xattr_handler sockfs_xattr_handler = {
335 .name = XATTR_NAME_SOCKPROTONAME,
336 .get = sockfs_xattr_get,
337 };
338
339 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
340 struct dentry *dentry, struct inode *inode,
341 const char *suffix, const void *value,
342 size_t size, int flags)
343 {
344 /* Handled by LSM. */
345 return -EAGAIN;
346 }
347
348 static const struct xattr_handler sockfs_security_xattr_handler = {
349 .prefix = XATTR_SECURITY_PREFIX,
350 .set = sockfs_security_xattr_set,
351 };
352
353 static const struct xattr_handler *sockfs_xattr_handlers[] = {
354 &sockfs_xattr_handler,
355 &sockfs_security_xattr_handler,
356 NULL
357 };
358
359 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
360 int flags, const char *dev_name, void *data)
361 {
362 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
363 sockfs_xattr_handlers,
364 &sockfs_dentry_operations, SOCKFS_MAGIC);
365 }
366
367 static struct vfsmount *sock_mnt __read_mostly;
368
369 static struct file_system_type sock_fs_type = {
370 .name = "sockfs",
371 .mount = sockfs_mount,
372 .kill_sb = kill_anon_super,
373 };
374
375 /*
376 * Obtains the first available file descriptor and sets it up for use.
377 *
378 * These functions create file structures and maps them to fd space
379 * of the current process. On success it returns file descriptor
380 * and file struct implicitly stored in sock->file.
381 * Note that another thread may close file descriptor before we return
382 * from this function. We use the fact that now we do not refer
383 * to socket after mapping. If one day we will need it, this
384 * function will increment ref. count on file by 1.
385 *
386 * In any case returned fd MAY BE not valid!
387 * This race condition is unavoidable
388 * with shared fd spaces, we cannot solve it inside kernel,
389 * but we take care of internal coherence yet.
390 */
391
392 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
393 {
394 struct qstr name = { .name = "" };
395 struct path path;
396 struct file *file;
397
398 if (dname) {
399 name.name = dname;
400 name.len = strlen(name.name);
401 } else if (sock->sk) {
402 name.name = sock->sk->sk_prot_creator->name;
403 name.len = strlen(name.name);
404 }
405 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
406 if (unlikely(!path.dentry)) {
407 sock_release(sock);
408 return ERR_PTR(-ENOMEM);
409 }
410 path.mnt = mntget(sock_mnt);
411
412 d_instantiate(path.dentry, SOCK_INODE(sock));
413
414 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
415 &socket_file_ops);
416 if (IS_ERR(file)) {
417 /* drop dentry, keep inode for a bit */
418 ihold(d_inode(path.dentry));
419 path_put(&path);
420 /* ... and now kill it properly */
421 sock_release(sock);
422 return file;
423 }
424
425 sock->file = file;
426 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
427 file->private_data = sock;
428 return file;
429 }
430 EXPORT_SYMBOL(sock_alloc_file);
431
432 static int sock_map_fd(struct socket *sock, int flags)
433 {
434 struct file *newfile;
435 int fd = get_unused_fd_flags(flags);
436 if (unlikely(fd < 0)) {
437 sock_release(sock);
438 return fd;
439 }
440
441 newfile = sock_alloc_file(sock, flags, NULL);
442 if (likely(!IS_ERR(newfile))) {
443 fd_install(fd, newfile);
444 return fd;
445 }
446
447 put_unused_fd(fd);
448 return PTR_ERR(newfile);
449 }
450
451 struct socket *sock_from_file(struct file *file, int *err)
452 {
453 if (file->f_op == &socket_file_ops)
454 return file->private_data; /* set in sock_map_fd */
455
456 *err = -ENOTSOCK;
457 return NULL;
458 }
459 EXPORT_SYMBOL(sock_from_file);
460
461 /**
462 * sockfd_lookup - Go from a file number to its socket slot
463 * @fd: file handle
464 * @err: pointer to an error code return
465 *
466 * The file handle passed in is locked and the socket it is bound
467 * to is returned. If an error occurs the err pointer is overwritten
468 * with a negative errno code and NULL is returned. The function checks
469 * for both invalid handles and passing a handle which is not a socket.
470 *
471 * On a success the socket object pointer is returned.
472 */
473
474 struct socket *sockfd_lookup(int fd, int *err)
475 {
476 struct file *file;
477 struct socket *sock;
478
479 file = fget(fd);
480 if (!file) {
481 *err = -EBADF;
482 return NULL;
483 }
484
485 sock = sock_from_file(file, err);
486 if (!sock)
487 fput(file);
488 return sock;
489 }
490 EXPORT_SYMBOL(sockfd_lookup);
491
492 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
493 {
494 struct fd f = fdget(fd);
495 struct socket *sock;
496
497 *err = -EBADF;
498 if (f.file) {
499 sock = sock_from_file(f.file, err);
500 if (likely(sock)) {
501 *fput_needed = f.flags;
502 return sock;
503 }
504 fdput(f);
505 }
506 return NULL;
507 }
508
509 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
510 size_t size)
511 {
512 ssize_t len;
513 ssize_t used = 0;
514
515 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
516 if (len < 0)
517 return len;
518 used += len;
519 if (buffer) {
520 if (size < used)
521 return -ERANGE;
522 buffer += len;
523 }
524
525 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
526 used += len;
527 if (buffer) {
528 if (size < used)
529 return -ERANGE;
530 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
531 buffer += len;
532 }
533
534 return used;
535 }
536
537 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
538 {
539 int err = simple_setattr(dentry, iattr);
540
541 if (!err && (iattr->ia_valid & ATTR_UID)) {
542 struct socket *sock = SOCKET_I(d_inode(dentry));
543
544 if (sock->sk)
545 sock->sk->sk_uid = iattr->ia_uid;
546 else
547 err = -ENOENT;
548 }
549
550 return err;
551 }
552
553 static const struct inode_operations sockfs_inode_ops = {
554 .listxattr = sockfs_listxattr,
555 .setattr = sockfs_setattr,
556 };
557
558 /**
559 * sock_alloc - allocate a socket
560 *
561 * Allocate a new inode and socket object. The two are bound together
562 * and initialised. The socket is then returned. If we are out of inodes
563 * NULL is returned.
564 */
565
566 struct socket *sock_alloc(void)
567 {
568 struct inode *inode;
569 struct socket *sock;
570
571 inode = new_inode_pseudo(sock_mnt->mnt_sb);
572 if (!inode)
573 return NULL;
574
575 sock = SOCKET_I(inode);
576
577 inode->i_ino = get_next_ino();
578 inode->i_mode = S_IFSOCK | S_IRWXUGO;
579 inode->i_uid = current_fsuid();
580 inode->i_gid = current_fsgid();
581 inode->i_op = &sockfs_inode_ops;
582
583 return sock;
584 }
585 EXPORT_SYMBOL(sock_alloc);
586
587 /**
588 * sock_release - close a socket
589 * @sock: socket to close
590 *
591 * The socket is released from the protocol stack if it has a release
592 * callback, and the inode is then released if the socket is bound to
593 * an inode not a file.
594 */
595
596 static void __sock_release(struct socket *sock, struct inode *inode)
597 {
598 if (sock->ops) {
599 struct module *owner = sock->ops->owner;
600
601 if (inode)
602 inode_lock(inode);
603 sock->ops->release(sock);
604 if (inode)
605 inode_unlock(inode);
606 sock->ops = NULL;
607 module_put(owner);
608 }
609
610 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
611 pr_err("%s: fasync list not empty!\n", __func__);
612
613 if (!sock->file) {
614 iput(SOCK_INODE(sock));
615 return;
616 }
617 sock->file = NULL;
618 }
619
620 void sock_release(struct socket *sock)
621 {
622 __sock_release(sock, NULL);
623 }
624 EXPORT_SYMBOL(sock_release);
625
626 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
627 {
628 u8 flags = *tx_flags;
629
630 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
631 flags |= SKBTX_HW_TSTAMP;
632
633 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
634 flags |= SKBTX_SW_TSTAMP;
635
636 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
637 flags |= SKBTX_SCHED_TSTAMP;
638
639 *tx_flags = flags;
640 }
641 EXPORT_SYMBOL(__sock_tx_timestamp);
642
643 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
644 {
645 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
646 BUG_ON(ret == -EIOCBQUEUED);
647 return ret;
648 }
649
650 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
651 {
652 int err = security_socket_sendmsg(sock, msg,
653 msg_data_left(msg));
654
655 return err ?: sock_sendmsg_nosec(sock, msg);
656 }
657 EXPORT_SYMBOL(sock_sendmsg);
658
659 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
660 struct kvec *vec, size_t num, size_t size)
661 {
662 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
663 return sock_sendmsg(sock, msg);
664 }
665 EXPORT_SYMBOL(kernel_sendmsg);
666
667 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
668 struct kvec *vec, size_t num, size_t size)
669 {
670 struct socket *sock = sk->sk_socket;
671
672 if (!sock->ops->sendmsg_locked)
673 return sock_no_sendmsg_locked(sk, msg, size);
674
675 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
676
677 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
678 }
679 EXPORT_SYMBOL(kernel_sendmsg_locked);
680
681 static bool skb_is_err_queue(const struct sk_buff *skb)
682 {
683 /* pkt_type of skbs enqueued on the error queue are set to
684 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
685 * in recvmsg, since skbs received on a local socket will never
686 * have a pkt_type of PACKET_OUTGOING.
687 */
688 return skb->pkt_type == PACKET_OUTGOING;
689 }
690
691 /* On transmit, software and hardware timestamps are returned independently.
692 * As the two skb clones share the hardware timestamp, which may be updated
693 * before the software timestamp is received, a hardware TX timestamp may be
694 * returned only if there is no software TX timestamp. Ignore false software
695 * timestamps, which may be made in the __sock_recv_timestamp() call when the
696 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
697 * hardware timestamp.
698 */
699 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
700 {
701 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
702 }
703
704 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
705 {
706 struct scm_ts_pktinfo ts_pktinfo;
707 struct net_device *orig_dev;
708
709 if (!skb_mac_header_was_set(skb))
710 return;
711
712 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
713
714 rcu_read_lock();
715 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
716 if (orig_dev)
717 ts_pktinfo.if_index = orig_dev->ifindex;
718 rcu_read_unlock();
719
720 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
721 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
722 sizeof(ts_pktinfo), &ts_pktinfo);
723 }
724
725 /*
726 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
727 */
728 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
729 struct sk_buff *skb)
730 {
731 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
732 struct scm_timestamping tss;
733 int empty = 1, false_tstamp = 0;
734 struct skb_shared_hwtstamps *shhwtstamps =
735 skb_hwtstamps(skb);
736
737 /* Race occurred between timestamp enabling and packet
738 receiving. Fill in the current time for now. */
739 if (need_software_tstamp && skb->tstamp == 0) {
740 __net_timestamp(skb);
741 false_tstamp = 1;
742 }
743
744 if (need_software_tstamp) {
745 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
746 struct timeval tv;
747 skb_get_timestamp(skb, &tv);
748 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
749 sizeof(tv), &tv);
750 } else {
751 struct timespec ts;
752 skb_get_timestampns(skb, &ts);
753 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
754 sizeof(ts), &ts);
755 }
756 }
757
758 memset(&tss, 0, sizeof(tss));
759 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
760 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
761 empty = 0;
762 if (shhwtstamps &&
763 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
764 !skb_is_swtx_tstamp(skb, false_tstamp) &&
765 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
766 empty = 0;
767 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
768 !skb_is_err_queue(skb))
769 put_ts_pktinfo(msg, skb);
770 }
771 if (!empty) {
772 put_cmsg(msg, SOL_SOCKET,
773 SCM_TIMESTAMPING, sizeof(tss), &tss);
774
775 if (skb_is_err_queue(skb) && skb->len &&
776 SKB_EXT_ERR(skb)->opt_stats)
777 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
778 skb->len, skb->data);
779 }
780 }
781 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
782
783 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
784 struct sk_buff *skb)
785 {
786 int ack;
787
788 if (!sock_flag(sk, SOCK_WIFI_STATUS))
789 return;
790 if (!skb->wifi_acked_valid)
791 return;
792
793 ack = skb->wifi_acked;
794
795 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
796 }
797 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
798
799 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
800 struct sk_buff *skb)
801 {
802 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
803 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
804 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
805 }
806
807 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
808 struct sk_buff *skb)
809 {
810 sock_recv_timestamp(msg, sk, skb);
811 sock_recv_drops(msg, sk, skb);
812 }
813 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
814
815 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
816 int flags)
817 {
818 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
819 }
820
821 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
822 {
823 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
824
825 return err ?: sock_recvmsg_nosec(sock, msg, flags);
826 }
827 EXPORT_SYMBOL(sock_recvmsg);
828
829 /**
830 * kernel_recvmsg - Receive a message from a socket (kernel space)
831 * @sock: The socket to receive the message from
832 * @msg: Received message
833 * @vec: Input s/g array for message data
834 * @num: Size of input s/g array
835 * @size: Number of bytes to read
836 * @flags: Message flags (MSG_DONTWAIT, etc...)
837 *
838 * On return the msg structure contains the scatter/gather array passed in the
839 * vec argument. The array is modified so that it consists of the unfilled
840 * portion of the original array.
841 *
842 * The returned value is the total number of bytes received, or an error.
843 */
844 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
845 struct kvec *vec, size_t num, size_t size, int flags)
846 {
847 mm_segment_t oldfs = get_fs();
848 int result;
849
850 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
851 set_fs(KERNEL_DS);
852 result = sock_recvmsg(sock, msg, flags);
853 set_fs(oldfs);
854 return result;
855 }
856 EXPORT_SYMBOL(kernel_recvmsg);
857
858 static ssize_t sock_sendpage(struct file *file, struct page *page,
859 int offset, size_t size, loff_t *ppos, int more)
860 {
861 struct socket *sock;
862 int flags;
863
864 sock = file->private_data;
865
866 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
867 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
868 flags |= more;
869
870 return kernel_sendpage(sock, page, offset, size, flags);
871 }
872
873 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
874 struct pipe_inode_info *pipe, size_t len,
875 unsigned int flags)
876 {
877 struct socket *sock = file->private_data;
878
879 if (unlikely(!sock->ops->splice_read))
880 return -EINVAL;
881
882 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
883 }
884
885 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
886 {
887 struct file *file = iocb->ki_filp;
888 struct socket *sock = file->private_data;
889 struct msghdr msg = {.msg_iter = *to,
890 .msg_iocb = iocb};
891 ssize_t res;
892
893 if (file->f_flags & O_NONBLOCK)
894 msg.msg_flags = MSG_DONTWAIT;
895
896 if (iocb->ki_pos != 0)
897 return -ESPIPE;
898
899 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
900 return 0;
901
902 res = sock_recvmsg(sock, &msg, msg.msg_flags);
903 *to = msg.msg_iter;
904 return res;
905 }
906
907 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
908 {
909 struct file *file = iocb->ki_filp;
910 struct socket *sock = file->private_data;
911 struct msghdr msg = {.msg_iter = *from,
912 .msg_iocb = iocb};
913 ssize_t res;
914
915 if (iocb->ki_pos != 0)
916 return -ESPIPE;
917
918 if (file->f_flags & O_NONBLOCK)
919 msg.msg_flags = MSG_DONTWAIT;
920
921 if (sock->type == SOCK_SEQPACKET)
922 msg.msg_flags |= MSG_EOR;
923
924 res = sock_sendmsg(sock, &msg);
925 *from = msg.msg_iter;
926 return res;
927 }
928
929 /*
930 * Atomic setting of ioctl hooks to avoid race
931 * with module unload.
932 */
933
934 static DEFINE_MUTEX(br_ioctl_mutex);
935 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
936
937 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
938 {
939 mutex_lock(&br_ioctl_mutex);
940 br_ioctl_hook = hook;
941 mutex_unlock(&br_ioctl_mutex);
942 }
943 EXPORT_SYMBOL(brioctl_set);
944
945 static DEFINE_MUTEX(vlan_ioctl_mutex);
946 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
947
948 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
949 {
950 mutex_lock(&vlan_ioctl_mutex);
951 vlan_ioctl_hook = hook;
952 mutex_unlock(&vlan_ioctl_mutex);
953 }
954 EXPORT_SYMBOL(vlan_ioctl_set);
955
956 static DEFINE_MUTEX(dlci_ioctl_mutex);
957 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
958
959 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
960 {
961 mutex_lock(&dlci_ioctl_mutex);
962 dlci_ioctl_hook = hook;
963 mutex_unlock(&dlci_ioctl_mutex);
964 }
965 EXPORT_SYMBOL(dlci_ioctl_set);
966
967 static long sock_do_ioctl(struct net *net, struct socket *sock,
968 unsigned int cmd, unsigned long arg)
969 {
970 int err;
971 void __user *argp = (void __user *)arg;
972
973 err = sock->ops->ioctl(sock, cmd, arg);
974
975 /*
976 * If this ioctl is unknown try to hand it down
977 * to the NIC driver.
978 */
979 if (err != -ENOIOCTLCMD)
980 return err;
981
982 if (cmd == SIOCGIFCONF) {
983 struct ifconf ifc;
984 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
985 return -EFAULT;
986 rtnl_lock();
987 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
988 rtnl_unlock();
989 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
990 err = -EFAULT;
991 } else {
992 struct ifreq ifr;
993 bool need_copyout;
994 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
995 return -EFAULT;
996 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
997 if (!err && need_copyout)
998 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
999 return -EFAULT;
1000 }
1001 return err;
1002 }
1003
1004 /*
1005 * With an ioctl, arg may well be a user mode pointer, but we don't know
1006 * what to do with it - that's up to the protocol still.
1007 */
1008
1009 struct ns_common *get_net_ns(struct ns_common *ns)
1010 {
1011 return &get_net(container_of(ns, struct net, ns))->ns;
1012 }
1013 EXPORT_SYMBOL_GPL(get_net_ns);
1014
1015 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1016 {
1017 struct socket *sock;
1018 struct sock *sk;
1019 void __user *argp = (void __user *)arg;
1020 int pid, err;
1021 struct net *net;
1022
1023 sock = file->private_data;
1024 sk = sock->sk;
1025 net = sock_net(sk);
1026 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1027 struct ifreq ifr;
1028 bool need_copyout;
1029 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1030 return -EFAULT;
1031 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1032 if (!err && need_copyout)
1033 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1034 return -EFAULT;
1035 } else
1036 #ifdef CONFIG_WEXT_CORE
1037 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1038 err = wext_handle_ioctl(net, cmd, argp);
1039 } else
1040 #endif
1041 switch (cmd) {
1042 case FIOSETOWN:
1043 case SIOCSPGRP:
1044 err = -EFAULT;
1045 if (get_user(pid, (int __user *)argp))
1046 break;
1047 err = f_setown(sock->file, pid, 1);
1048 break;
1049 case FIOGETOWN:
1050 case SIOCGPGRP:
1051 err = put_user(f_getown(sock->file),
1052 (int __user *)argp);
1053 break;
1054 case SIOCGIFBR:
1055 case SIOCSIFBR:
1056 case SIOCBRADDBR:
1057 case SIOCBRDELBR:
1058 err = -ENOPKG;
1059 if (!br_ioctl_hook)
1060 request_module("bridge");
1061
1062 mutex_lock(&br_ioctl_mutex);
1063 if (br_ioctl_hook)
1064 err = br_ioctl_hook(net, cmd, argp);
1065 mutex_unlock(&br_ioctl_mutex);
1066 break;
1067 case SIOCGIFVLAN:
1068 case SIOCSIFVLAN:
1069 err = -ENOPKG;
1070 if (!vlan_ioctl_hook)
1071 request_module("8021q");
1072
1073 mutex_lock(&vlan_ioctl_mutex);
1074 if (vlan_ioctl_hook)
1075 err = vlan_ioctl_hook(net, argp);
1076 mutex_unlock(&vlan_ioctl_mutex);
1077 break;
1078 case SIOCADDDLCI:
1079 case SIOCDELDLCI:
1080 err = -ENOPKG;
1081 if (!dlci_ioctl_hook)
1082 request_module("dlci");
1083
1084 mutex_lock(&dlci_ioctl_mutex);
1085 if (dlci_ioctl_hook)
1086 err = dlci_ioctl_hook(cmd, argp);
1087 mutex_unlock(&dlci_ioctl_mutex);
1088 break;
1089 case SIOCGSKNS:
1090 err = -EPERM;
1091 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1092 break;
1093
1094 err = open_related_ns(&net->ns, get_net_ns);
1095 break;
1096 default:
1097 err = sock_do_ioctl(net, sock, cmd, arg);
1098 break;
1099 }
1100 return err;
1101 }
1102
1103 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1104 {
1105 int err;
1106 struct socket *sock = NULL;
1107
1108 err = security_socket_create(family, type, protocol, 1);
1109 if (err)
1110 goto out;
1111
1112 sock = sock_alloc();
1113 if (!sock) {
1114 err = -ENOMEM;
1115 goto out;
1116 }
1117
1118 sock->type = type;
1119 err = security_socket_post_create(sock, family, type, protocol, 1);
1120 if (err)
1121 goto out_release;
1122
1123 out:
1124 *res = sock;
1125 return err;
1126 out_release:
1127 sock_release(sock);
1128 sock = NULL;
1129 goto out;
1130 }
1131 EXPORT_SYMBOL(sock_create_lite);
1132
1133 static struct wait_queue_head *sock_get_poll_head(struct file *file,
1134 __poll_t events)
1135 {
1136 struct socket *sock = file->private_data;
1137
1138 if (!sock->ops->poll_mask)
1139 return NULL;
1140 sock_poll_busy_loop(sock, events);
1141 return sk_sleep(sock->sk);
1142 }
1143
1144 static __poll_t sock_poll_mask(struct file *file, __poll_t events)
1145 {
1146 struct socket *sock = file->private_data;
1147
1148 /*
1149 * We need to be sure we are in sync with the socket flags modification.
1150 *
1151 * This memory barrier is paired in the wq_has_sleeper.
1152 */
1153 smp_mb();
1154
1155 /* this socket can poll_ll so tell the system call */
1156 return sock->ops->poll_mask(sock, events) |
1157 (sk_can_busy_loop(sock->sk) ? POLL_BUSY_LOOP : 0);
1158 }
1159
1160 /* No kernel lock held - perfect */
1161 static __poll_t sock_poll(struct file *file, poll_table *wait)
1162 {
1163 struct socket *sock = file->private_data;
1164 __poll_t events = poll_requested_events(wait), mask = 0;
1165
1166 if (sock->ops->poll) {
1167 sock_poll_busy_loop(sock, events);
1168 mask = sock->ops->poll(file, sock, wait);
1169 } else if (sock->ops->poll_mask) {
1170 sock_poll_wait(file, sock_get_poll_head(file, events), wait);
1171 mask = sock->ops->poll_mask(sock, events);
1172 }
1173
1174 return mask | sock_poll_busy_flag(sock);
1175 }
1176
1177 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1178 {
1179 struct socket *sock = file->private_data;
1180
1181 return sock->ops->mmap(file, sock, vma);
1182 }
1183
1184 static int sock_close(struct inode *inode, struct file *filp)
1185 {
1186 __sock_release(SOCKET_I(inode), inode);
1187 return 0;
1188 }
1189
1190 /*
1191 * Update the socket async list
1192 *
1193 * Fasync_list locking strategy.
1194 *
1195 * 1. fasync_list is modified only under process context socket lock
1196 * i.e. under semaphore.
1197 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1198 * or under socket lock
1199 */
1200
1201 static int sock_fasync(int fd, struct file *filp, int on)
1202 {
1203 struct socket *sock = filp->private_data;
1204 struct sock *sk = sock->sk;
1205 struct socket_wq *wq;
1206
1207 if (sk == NULL)
1208 return -EINVAL;
1209
1210 lock_sock(sk);
1211 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1212 fasync_helper(fd, filp, on, &wq->fasync_list);
1213
1214 if (!wq->fasync_list)
1215 sock_reset_flag(sk, SOCK_FASYNC);
1216 else
1217 sock_set_flag(sk, SOCK_FASYNC);
1218
1219 release_sock(sk);
1220 return 0;
1221 }
1222
1223 /* This function may be called only under rcu_lock */
1224
1225 int sock_wake_async(struct socket_wq *wq, int how, int band)
1226 {
1227 if (!wq || !wq->fasync_list)
1228 return -1;
1229
1230 switch (how) {
1231 case SOCK_WAKE_WAITD:
1232 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1233 break;
1234 goto call_kill;
1235 case SOCK_WAKE_SPACE:
1236 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1237 break;
1238 /* fall through */
1239 case SOCK_WAKE_IO:
1240 call_kill:
1241 kill_fasync(&wq->fasync_list, SIGIO, band);
1242 break;
1243 case SOCK_WAKE_URG:
1244 kill_fasync(&wq->fasync_list, SIGURG, band);
1245 }
1246
1247 return 0;
1248 }
1249 EXPORT_SYMBOL(sock_wake_async);
1250
1251 int __sock_create(struct net *net, int family, int type, int protocol,
1252 struct socket **res, int kern)
1253 {
1254 int err;
1255 struct socket *sock;
1256 const struct net_proto_family *pf;
1257
1258 /*
1259 * Check protocol is in range
1260 */
1261 if (family < 0 || family >= NPROTO)
1262 return -EAFNOSUPPORT;
1263 if (type < 0 || type >= SOCK_MAX)
1264 return -EINVAL;
1265
1266 /* Compatibility.
1267
1268 This uglymoron is moved from INET layer to here to avoid
1269 deadlock in module load.
1270 */
1271 if (family == PF_INET && type == SOCK_PACKET) {
1272 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1273 current->comm);
1274 family = PF_PACKET;
1275 }
1276
1277 err = security_socket_create(family, type, protocol, kern);
1278 if (err)
1279 return err;
1280
1281 /*
1282 * Allocate the socket and allow the family to set things up. if
1283 * the protocol is 0, the family is instructed to select an appropriate
1284 * default.
1285 */
1286 sock = sock_alloc();
1287 if (!sock) {
1288 net_warn_ratelimited("socket: no more sockets\n");
1289 return -ENFILE; /* Not exactly a match, but its the
1290 closest posix thing */
1291 }
1292
1293 sock->type = type;
1294
1295 #ifdef CONFIG_MODULES
1296 /* Attempt to load a protocol module if the find failed.
1297 *
1298 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1299 * requested real, full-featured networking support upon configuration.
1300 * Otherwise module support will break!
1301 */
1302 if (rcu_access_pointer(net_families[family]) == NULL)
1303 request_module("net-pf-%d", family);
1304 #endif
1305
1306 rcu_read_lock();
1307 pf = rcu_dereference(net_families[family]);
1308 err = -EAFNOSUPPORT;
1309 if (!pf)
1310 goto out_release;
1311
1312 /*
1313 * We will call the ->create function, that possibly is in a loadable
1314 * module, so we have to bump that loadable module refcnt first.
1315 */
1316 if (!try_module_get(pf->owner))
1317 goto out_release;
1318
1319 /* Now protected by module ref count */
1320 rcu_read_unlock();
1321
1322 err = pf->create(net, sock, protocol, kern);
1323 if (err < 0)
1324 goto out_module_put;
1325
1326 /*
1327 * Now to bump the refcnt of the [loadable] module that owns this
1328 * socket at sock_release time we decrement its refcnt.
1329 */
1330 if (!try_module_get(sock->ops->owner))
1331 goto out_module_busy;
1332
1333 /*
1334 * Now that we're done with the ->create function, the [loadable]
1335 * module can have its refcnt decremented
1336 */
1337 module_put(pf->owner);
1338 err = security_socket_post_create(sock, family, type, protocol, kern);
1339 if (err)
1340 goto out_sock_release;
1341 *res = sock;
1342
1343 return 0;
1344
1345 out_module_busy:
1346 err = -EAFNOSUPPORT;
1347 out_module_put:
1348 sock->ops = NULL;
1349 module_put(pf->owner);
1350 out_sock_release:
1351 sock_release(sock);
1352 return err;
1353
1354 out_release:
1355 rcu_read_unlock();
1356 goto out_sock_release;
1357 }
1358 EXPORT_SYMBOL(__sock_create);
1359
1360 int sock_create(int family, int type, int protocol, struct socket **res)
1361 {
1362 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1363 }
1364 EXPORT_SYMBOL(sock_create);
1365
1366 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1367 {
1368 return __sock_create(net, family, type, protocol, res, 1);
1369 }
1370 EXPORT_SYMBOL(sock_create_kern);
1371
1372 int __sys_socket(int family, int type, int protocol)
1373 {
1374 int retval;
1375 struct socket *sock;
1376 int flags;
1377
1378 /* Check the SOCK_* constants for consistency. */
1379 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1380 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1381 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1382 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1383
1384 flags = type & ~SOCK_TYPE_MASK;
1385 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1386 return -EINVAL;
1387 type &= SOCK_TYPE_MASK;
1388
1389 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1390 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1391
1392 retval = sock_create(family, type, protocol, &sock);
1393 if (retval < 0)
1394 return retval;
1395
1396 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1397 }
1398
1399 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1400 {
1401 return __sys_socket(family, type, protocol);
1402 }
1403
1404 /*
1405 * Create a pair of connected sockets.
1406 */
1407
1408 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1409 {
1410 struct socket *sock1, *sock2;
1411 int fd1, fd2, err;
1412 struct file *newfile1, *newfile2;
1413 int flags;
1414
1415 flags = type & ~SOCK_TYPE_MASK;
1416 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1417 return -EINVAL;
1418 type &= SOCK_TYPE_MASK;
1419
1420 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1421 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1422
1423 /*
1424 * reserve descriptors and make sure we won't fail
1425 * to return them to userland.
1426 */
1427 fd1 = get_unused_fd_flags(flags);
1428 if (unlikely(fd1 < 0))
1429 return fd1;
1430
1431 fd2 = get_unused_fd_flags(flags);
1432 if (unlikely(fd2 < 0)) {
1433 put_unused_fd(fd1);
1434 return fd2;
1435 }
1436
1437 err = put_user(fd1, &usockvec[0]);
1438 if (err)
1439 goto out;
1440
1441 err = put_user(fd2, &usockvec[1]);
1442 if (err)
1443 goto out;
1444
1445 /*
1446 * Obtain the first socket and check if the underlying protocol
1447 * supports the socketpair call.
1448 */
1449
1450 err = sock_create(family, type, protocol, &sock1);
1451 if (unlikely(err < 0))
1452 goto out;
1453
1454 err = sock_create(family, type, protocol, &sock2);
1455 if (unlikely(err < 0)) {
1456 sock_release(sock1);
1457 goto out;
1458 }
1459
1460 err = security_socket_socketpair(sock1, sock2);
1461 if (unlikely(err)) {
1462 sock_release(sock2);
1463 sock_release(sock1);
1464 goto out;
1465 }
1466
1467 err = sock1->ops->socketpair(sock1, sock2);
1468 if (unlikely(err < 0)) {
1469 sock_release(sock2);
1470 sock_release(sock1);
1471 goto out;
1472 }
1473
1474 newfile1 = sock_alloc_file(sock1, flags, NULL);
1475 if (IS_ERR(newfile1)) {
1476 err = PTR_ERR(newfile1);
1477 sock_release(sock2);
1478 goto out;
1479 }
1480
1481 newfile2 = sock_alloc_file(sock2, flags, NULL);
1482 if (IS_ERR(newfile2)) {
1483 err = PTR_ERR(newfile2);
1484 fput(newfile1);
1485 goto out;
1486 }
1487
1488 audit_fd_pair(fd1, fd2);
1489
1490 fd_install(fd1, newfile1);
1491 fd_install(fd2, newfile2);
1492 return 0;
1493
1494 out:
1495 put_unused_fd(fd2);
1496 put_unused_fd(fd1);
1497 return err;
1498 }
1499
1500 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1501 int __user *, usockvec)
1502 {
1503 return __sys_socketpair(family, type, protocol, usockvec);
1504 }
1505
1506 /*
1507 * Bind a name to a socket. Nothing much to do here since it's
1508 * the protocol's responsibility to handle the local address.
1509 *
1510 * We move the socket address to kernel space before we call
1511 * the protocol layer (having also checked the address is ok).
1512 */
1513
1514 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1515 {
1516 struct socket *sock;
1517 struct sockaddr_storage address;
1518 int err, fput_needed;
1519
1520 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1521 if (sock) {
1522 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1523 if (err >= 0) {
1524 err = security_socket_bind(sock,
1525 (struct sockaddr *)&address,
1526 addrlen);
1527 if (!err)
1528 err = sock->ops->bind(sock,
1529 (struct sockaddr *)
1530 &address, addrlen);
1531 }
1532 fput_light(sock->file, fput_needed);
1533 }
1534 return err;
1535 }
1536
1537 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1538 {
1539 return __sys_bind(fd, umyaddr, addrlen);
1540 }
1541
1542 /*
1543 * Perform a listen. Basically, we allow the protocol to do anything
1544 * necessary for a listen, and if that works, we mark the socket as
1545 * ready for listening.
1546 */
1547
1548 int __sys_listen(int fd, int backlog)
1549 {
1550 struct socket *sock;
1551 int err, fput_needed;
1552 int somaxconn;
1553
1554 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1555 if (sock) {
1556 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1557 if ((unsigned int)backlog > somaxconn)
1558 backlog = somaxconn;
1559
1560 err = security_socket_listen(sock, backlog);
1561 if (!err)
1562 err = sock->ops->listen(sock, backlog);
1563
1564 fput_light(sock->file, fput_needed);
1565 }
1566 return err;
1567 }
1568
1569 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1570 {
1571 return __sys_listen(fd, backlog);
1572 }
1573
1574 /*
1575 * For accept, we attempt to create a new socket, set up the link
1576 * with the client, wake up the client, then return the new
1577 * connected fd. We collect the address of the connector in kernel
1578 * space and move it to user at the very end. This is unclean because
1579 * we open the socket then return an error.
1580 *
1581 * 1003.1g adds the ability to recvmsg() to query connection pending
1582 * status to recvmsg. We need to add that support in a way thats
1583 * clean when we restructure accept also.
1584 */
1585
1586 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1587 int __user *upeer_addrlen, int flags)
1588 {
1589 struct socket *sock, *newsock;
1590 struct file *newfile;
1591 int err, len, newfd, fput_needed;
1592 struct sockaddr_storage address;
1593
1594 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1595 return -EINVAL;
1596
1597 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1598 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1599
1600 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1601 if (!sock)
1602 goto out;
1603
1604 err = -ENFILE;
1605 newsock = sock_alloc();
1606 if (!newsock)
1607 goto out_put;
1608
1609 newsock->type = sock->type;
1610 newsock->ops = sock->ops;
1611
1612 /*
1613 * We don't need try_module_get here, as the listening socket (sock)
1614 * has the protocol module (sock->ops->owner) held.
1615 */
1616 __module_get(newsock->ops->owner);
1617
1618 newfd = get_unused_fd_flags(flags);
1619 if (unlikely(newfd < 0)) {
1620 err = newfd;
1621 sock_release(newsock);
1622 goto out_put;
1623 }
1624 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1625 if (IS_ERR(newfile)) {
1626 err = PTR_ERR(newfile);
1627 put_unused_fd(newfd);
1628 goto out_put;
1629 }
1630
1631 err = security_socket_accept(sock, newsock);
1632 if (err)
1633 goto out_fd;
1634
1635 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1636 if (err < 0)
1637 goto out_fd;
1638
1639 if (upeer_sockaddr) {
1640 len = newsock->ops->getname(newsock,
1641 (struct sockaddr *)&address, 2);
1642 if (len < 0) {
1643 err = -ECONNABORTED;
1644 goto out_fd;
1645 }
1646 err = move_addr_to_user(&address,
1647 len, upeer_sockaddr, upeer_addrlen);
1648 if (err < 0)
1649 goto out_fd;
1650 }
1651
1652 /* File flags are not inherited via accept() unlike another OSes. */
1653
1654 fd_install(newfd, newfile);
1655 err = newfd;
1656
1657 out_put:
1658 fput_light(sock->file, fput_needed);
1659 out:
1660 return err;
1661 out_fd:
1662 fput(newfile);
1663 put_unused_fd(newfd);
1664 goto out_put;
1665 }
1666
1667 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1668 int __user *, upeer_addrlen, int, flags)
1669 {
1670 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1671 }
1672
1673 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1674 int __user *, upeer_addrlen)
1675 {
1676 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1677 }
1678
1679 /*
1680 * Attempt to connect to a socket with the server address. The address
1681 * is in user space so we verify it is OK and move it to kernel space.
1682 *
1683 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1684 * break bindings
1685 *
1686 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1687 * other SEQPACKET protocols that take time to connect() as it doesn't
1688 * include the -EINPROGRESS status for such sockets.
1689 */
1690
1691 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1692 {
1693 struct socket *sock;
1694 struct sockaddr_storage address;
1695 int err, fput_needed;
1696
1697 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1698 if (!sock)
1699 goto out;
1700 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1701 if (err < 0)
1702 goto out_put;
1703
1704 err =
1705 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1706 if (err)
1707 goto out_put;
1708
1709 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1710 sock->file->f_flags);
1711 out_put:
1712 fput_light(sock->file, fput_needed);
1713 out:
1714 return err;
1715 }
1716
1717 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1718 int, addrlen)
1719 {
1720 return __sys_connect(fd, uservaddr, addrlen);
1721 }
1722
1723 /*
1724 * Get the local address ('name') of a socket object. Move the obtained
1725 * name to user space.
1726 */
1727
1728 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1729 int __user *usockaddr_len)
1730 {
1731 struct socket *sock;
1732 struct sockaddr_storage address;
1733 int err, fput_needed;
1734
1735 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1736 if (!sock)
1737 goto out;
1738
1739 err = security_socket_getsockname(sock);
1740 if (err)
1741 goto out_put;
1742
1743 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1744 if (err < 0)
1745 goto out_put;
1746 /* "err" is actually length in this case */
1747 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1748
1749 out_put:
1750 fput_light(sock->file, fput_needed);
1751 out:
1752 return err;
1753 }
1754
1755 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1756 int __user *, usockaddr_len)
1757 {
1758 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1759 }
1760
1761 /*
1762 * Get the remote address ('name') of a socket object. Move the obtained
1763 * name to user space.
1764 */
1765
1766 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1767 int __user *usockaddr_len)
1768 {
1769 struct socket *sock;
1770 struct sockaddr_storage address;
1771 int err, fput_needed;
1772
1773 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1774 if (sock != NULL) {
1775 err = security_socket_getpeername(sock);
1776 if (err) {
1777 fput_light(sock->file, fput_needed);
1778 return err;
1779 }
1780
1781 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1782 if (err >= 0)
1783 /* "err" is actually length in this case */
1784 err = move_addr_to_user(&address, err, usockaddr,
1785 usockaddr_len);
1786 fput_light(sock->file, fput_needed);
1787 }
1788 return err;
1789 }
1790
1791 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1792 int __user *, usockaddr_len)
1793 {
1794 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1795 }
1796
1797 /*
1798 * Send a datagram to a given address. We move the address into kernel
1799 * space and check the user space data area is readable before invoking
1800 * the protocol.
1801 */
1802 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1803 struct sockaddr __user *addr, int addr_len)
1804 {
1805 struct socket *sock;
1806 struct sockaddr_storage address;
1807 int err;
1808 struct msghdr msg;
1809 struct iovec iov;
1810 int fput_needed;
1811
1812 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1813 if (unlikely(err))
1814 return err;
1815 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1816 if (!sock)
1817 goto out;
1818
1819 msg.msg_name = NULL;
1820 msg.msg_control = NULL;
1821 msg.msg_controllen = 0;
1822 msg.msg_namelen = 0;
1823 if (addr) {
1824 err = move_addr_to_kernel(addr, addr_len, &address);
1825 if (err < 0)
1826 goto out_put;
1827 msg.msg_name = (struct sockaddr *)&address;
1828 msg.msg_namelen = addr_len;
1829 }
1830 if (sock->file->f_flags & O_NONBLOCK)
1831 flags |= MSG_DONTWAIT;
1832 msg.msg_flags = flags;
1833 err = sock_sendmsg(sock, &msg);
1834
1835 out_put:
1836 fput_light(sock->file, fput_needed);
1837 out:
1838 return err;
1839 }
1840
1841 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1842 unsigned int, flags, struct sockaddr __user *, addr,
1843 int, addr_len)
1844 {
1845 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1846 }
1847
1848 /*
1849 * Send a datagram down a socket.
1850 */
1851
1852 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1853 unsigned int, flags)
1854 {
1855 return __sys_sendto(fd, buff, len, flags, NULL, 0);
1856 }
1857
1858 /*
1859 * Receive a frame from the socket and optionally record the address of the
1860 * sender. We verify the buffers are writable and if needed move the
1861 * sender address from kernel to user space.
1862 */
1863 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1864 struct sockaddr __user *addr, int __user *addr_len)
1865 {
1866 struct socket *sock;
1867 struct iovec iov;
1868 struct msghdr msg;
1869 struct sockaddr_storage address;
1870 int err, err2;
1871 int fput_needed;
1872
1873 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1874 if (unlikely(err))
1875 return err;
1876 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1877 if (!sock)
1878 goto out;
1879
1880 msg.msg_control = NULL;
1881 msg.msg_controllen = 0;
1882 /* Save some cycles and don't copy the address if not needed */
1883 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1884 /* We assume all kernel code knows the size of sockaddr_storage */
1885 msg.msg_namelen = 0;
1886 msg.msg_iocb = NULL;
1887 msg.msg_flags = 0;
1888 if (sock->file->f_flags & O_NONBLOCK)
1889 flags |= MSG_DONTWAIT;
1890 err = sock_recvmsg(sock, &msg, flags);
1891
1892 if (err >= 0 && addr != NULL) {
1893 err2 = move_addr_to_user(&address,
1894 msg.msg_namelen, addr, addr_len);
1895 if (err2 < 0)
1896 err = err2;
1897 }
1898
1899 fput_light(sock->file, fput_needed);
1900 out:
1901 return err;
1902 }
1903
1904 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1905 unsigned int, flags, struct sockaddr __user *, addr,
1906 int __user *, addr_len)
1907 {
1908 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1909 }
1910
1911 /*
1912 * Receive a datagram from a socket.
1913 */
1914
1915 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1916 unsigned int, flags)
1917 {
1918 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1919 }
1920
1921 /*
1922 * Set a socket option. Because we don't know the option lengths we have
1923 * to pass the user mode parameter for the protocols to sort out.
1924 */
1925
1926 static int __sys_setsockopt(int fd, int level, int optname,
1927 char __user *optval, int optlen)
1928 {
1929 int err, fput_needed;
1930 struct socket *sock;
1931
1932 if (optlen < 0)
1933 return -EINVAL;
1934
1935 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1936 if (sock != NULL) {
1937 err = security_socket_setsockopt(sock, level, optname);
1938 if (err)
1939 goto out_put;
1940
1941 if (level == SOL_SOCKET)
1942 err =
1943 sock_setsockopt(sock, level, optname, optval,
1944 optlen);
1945 else
1946 err =
1947 sock->ops->setsockopt(sock, level, optname, optval,
1948 optlen);
1949 out_put:
1950 fput_light(sock->file, fput_needed);
1951 }
1952 return err;
1953 }
1954
1955 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1956 char __user *, optval, int, optlen)
1957 {
1958 return __sys_setsockopt(fd, level, optname, optval, optlen);
1959 }
1960
1961 /*
1962 * Get a socket option. Because we don't know the option lengths we have
1963 * to pass a user mode parameter for the protocols to sort out.
1964 */
1965
1966 static int __sys_getsockopt(int fd, int level, int optname,
1967 char __user *optval, int __user *optlen)
1968 {
1969 int err, fput_needed;
1970 struct socket *sock;
1971
1972 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1973 if (sock != NULL) {
1974 err = security_socket_getsockopt(sock, level, optname);
1975 if (err)
1976 goto out_put;
1977
1978 if (level == SOL_SOCKET)
1979 err =
1980 sock_getsockopt(sock, level, optname, optval,
1981 optlen);
1982 else
1983 err =
1984 sock->ops->getsockopt(sock, level, optname, optval,
1985 optlen);
1986 out_put:
1987 fput_light(sock->file, fput_needed);
1988 }
1989 return err;
1990 }
1991
1992 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1993 char __user *, optval, int __user *, optlen)
1994 {
1995 return __sys_getsockopt(fd, level, optname, optval, optlen);
1996 }
1997
1998 /*
1999 * Shutdown a socket.
2000 */
2001
2002 int __sys_shutdown(int fd, int how)
2003 {
2004 int err, fput_needed;
2005 struct socket *sock;
2006
2007 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2008 if (sock != NULL) {
2009 err = security_socket_shutdown(sock, how);
2010 if (!err)
2011 err = sock->ops->shutdown(sock, how);
2012 fput_light(sock->file, fput_needed);
2013 }
2014 return err;
2015 }
2016
2017 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2018 {
2019 return __sys_shutdown(fd, how);
2020 }
2021
2022 /* A couple of helpful macros for getting the address of the 32/64 bit
2023 * fields which are the same type (int / unsigned) on our platforms.
2024 */
2025 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2026 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2027 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2028
2029 struct used_address {
2030 struct sockaddr_storage name;
2031 unsigned int name_len;
2032 };
2033
2034 static int copy_msghdr_from_user(struct msghdr *kmsg,
2035 struct user_msghdr __user *umsg,
2036 struct sockaddr __user **save_addr,
2037 struct iovec **iov)
2038 {
2039 struct user_msghdr msg;
2040 ssize_t err;
2041
2042 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2043 return -EFAULT;
2044
2045 kmsg->msg_control = (void __force *)msg.msg_control;
2046 kmsg->msg_controllen = msg.msg_controllen;
2047 kmsg->msg_flags = msg.msg_flags;
2048
2049 kmsg->msg_namelen = msg.msg_namelen;
2050 if (!msg.msg_name)
2051 kmsg->msg_namelen = 0;
2052
2053 if (kmsg->msg_namelen < 0)
2054 return -EINVAL;
2055
2056 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2057 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2058
2059 if (save_addr)
2060 *save_addr = msg.msg_name;
2061
2062 if (msg.msg_name && kmsg->msg_namelen) {
2063 if (!save_addr) {
2064 err = move_addr_to_kernel(msg.msg_name,
2065 kmsg->msg_namelen,
2066 kmsg->msg_name);
2067 if (err < 0)
2068 return err;
2069 }
2070 } else {
2071 kmsg->msg_name = NULL;
2072 kmsg->msg_namelen = 0;
2073 }
2074
2075 if (msg.msg_iovlen > UIO_MAXIOV)
2076 return -EMSGSIZE;
2077
2078 kmsg->msg_iocb = NULL;
2079
2080 return import_iovec(save_addr ? READ : WRITE,
2081 msg.msg_iov, msg.msg_iovlen,
2082 UIO_FASTIOV, iov, &kmsg->msg_iter);
2083 }
2084
2085 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2086 struct msghdr *msg_sys, unsigned int flags,
2087 struct used_address *used_address,
2088 unsigned int allowed_msghdr_flags)
2089 {
2090 struct compat_msghdr __user *msg_compat =
2091 (struct compat_msghdr __user *)msg;
2092 struct sockaddr_storage address;
2093 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2094 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2095 __aligned(sizeof(__kernel_size_t));
2096 /* 20 is size of ipv6_pktinfo */
2097 unsigned char *ctl_buf = ctl;
2098 int ctl_len;
2099 ssize_t err;
2100
2101 msg_sys->msg_name = &address;
2102
2103 if (MSG_CMSG_COMPAT & flags)
2104 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2105 else
2106 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2107 if (err < 0)
2108 return err;
2109
2110 err = -ENOBUFS;
2111
2112 if (msg_sys->msg_controllen > INT_MAX)
2113 goto out_freeiov;
2114 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2115 ctl_len = msg_sys->msg_controllen;
2116 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2117 err =
2118 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2119 sizeof(ctl));
2120 if (err)
2121 goto out_freeiov;
2122 ctl_buf = msg_sys->msg_control;
2123 ctl_len = msg_sys->msg_controllen;
2124 } else if (ctl_len) {
2125 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2126 CMSG_ALIGN(sizeof(struct cmsghdr)));
2127 if (ctl_len > sizeof(ctl)) {
2128 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2129 if (ctl_buf == NULL)
2130 goto out_freeiov;
2131 }
2132 err = -EFAULT;
2133 /*
2134 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2135 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2136 * checking falls down on this.
2137 */
2138 if (copy_from_user(ctl_buf,
2139 (void __user __force *)msg_sys->msg_control,
2140 ctl_len))
2141 goto out_freectl;
2142 msg_sys->msg_control = ctl_buf;
2143 }
2144 msg_sys->msg_flags = flags;
2145
2146 if (sock->file->f_flags & O_NONBLOCK)
2147 msg_sys->msg_flags |= MSG_DONTWAIT;
2148 /*
2149 * If this is sendmmsg() and current destination address is same as
2150 * previously succeeded address, omit asking LSM's decision.
2151 * used_address->name_len is initialized to UINT_MAX so that the first
2152 * destination address never matches.
2153 */
2154 if (used_address && msg_sys->msg_name &&
2155 used_address->name_len == msg_sys->msg_namelen &&
2156 !memcmp(&used_address->name, msg_sys->msg_name,
2157 used_address->name_len)) {
2158 err = sock_sendmsg_nosec(sock, msg_sys);
2159 goto out_freectl;
2160 }
2161 err = sock_sendmsg(sock, msg_sys);
2162 /*
2163 * If this is sendmmsg() and sending to current destination address was
2164 * successful, remember it.
2165 */
2166 if (used_address && err >= 0) {
2167 used_address->name_len = msg_sys->msg_namelen;
2168 if (msg_sys->msg_name)
2169 memcpy(&used_address->name, msg_sys->msg_name,
2170 used_address->name_len);
2171 }
2172
2173 out_freectl:
2174 if (ctl_buf != ctl)
2175 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2176 out_freeiov:
2177 kfree(iov);
2178 return err;
2179 }
2180
2181 /*
2182 * BSD sendmsg interface
2183 */
2184
2185 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2186 bool forbid_cmsg_compat)
2187 {
2188 int fput_needed, err;
2189 struct msghdr msg_sys;
2190 struct socket *sock;
2191
2192 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2193 return -EINVAL;
2194
2195 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2196 if (!sock)
2197 goto out;
2198
2199 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2200
2201 fput_light(sock->file, fput_needed);
2202 out:
2203 return err;
2204 }
2205
2206 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2207 {
2208 return __sys_sendmsg(fd, msg, flags, true);
2209 }
2210
2211 /*
2212 * Linux sendmmsg interface
2213 */
2214
2215 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2216 unsigned int flags, bool forbid_cmsg_compat)
2217 {
2218 int fput_needed, err, datagrams;
2219 struct socket *sock;
2220 struct mmsghdr __user *entry;
2221 struct compat_mmsghdr __user *compat_entry;
2222 struct msghdr msg_sys;
2223 struct used_address used_address;
2224 unsigned int oflags = flags;
2225
2226 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2227 return -EINVAL;
2228
2229 if (vlen > UIO_MAXIOV)
2230 vlen = UIO_MAXIOV;
2231
2232 datagrams = 0;
2233
2234 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2235 if (!sock)
2236 return err;
2237
2238 used_address.name_len = UINT_MAX;
2239 entry = mmsg;
2240 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2241 err = 0;
2242 flags |= MSG_BATCH;
2243
2244 while (datagrams < vlen) {
2245 if (datagrams == vlen - 1)
2246 flags = oflags;
2247
2248 if (MSG_CMSG_COMPAT & flags) {
2249 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2250 &msg_sys, flags, &used_address, MSG_EOR);
2251 if (err < 0)
2252 break;
2253 err = __put_user(err, &compat_entry->msg_len);
2254 ++compat_entry;
2255 } else {
2256 err = ___sys_sendmsg(sock,
2257 (struct user_msghdr __user *)entry,
2258 &msg_sys, flags, &used_address, MSG_EOR);
2259 if (err < 0)
2260 break;
2261 err = put_user(err, &entry->msg_len);
2262 ++entry;
2263 }
2264
2265 if (err)
2266 break;
2267 ++datagrams;
2268 if (msg_data_left(&msg_sys))
2269 break;
2270 cond_resched();
2271 }
2272
2273 fput_light(sock->file, fput_needed);
2274
2275 /* We only return an error if no datagrams were able to be sent */
2276 if (datagrams != 0)
2277 return datagrams;
2278
2279 return err;
2280 }
2281
2282 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2283 unsigned int, vlen, unsigned int, flags)
2284 {
2285 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2286 }
2287
2288 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2289 struct msghdr *msg_sys, unsigned int flags, int nosec)
2290 {
2291 struct compat_msghdr __user *msg_compat =
2292 (struct compat_msghdr __user *)msg;
2293 struct iovec iovstack[UIO_FASTIOV];
2294 struct iovec *iov = iovstack;
2295 unsigned long cmsg_ptr;
2296 int len;
2297 ssize_t err;
2298
2299 /* kernel mode address */
2300 struct sockaddr_storage addr;
2301
2302 /* user mode address pointers */
2303 struct sockaddr __user *uaddr;
2304 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2305
2306 msg_sys->msg_name = &addr;
2307
2308 if (MSG_CMSG_COMPAT & flags)
2309 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2310 else
2311 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2312 if (err < 0)
2313 return err;
2314
2315 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2316 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2317
2318 /* We assume all kernel code knows the size of sockaddr_storage */
2319 msg_sys->msg_namelen = 0;
2320
2321 if (sock->file->f_flags & O_NONBLOCK)
2322 flags |= MSG_DONTWAIT;
2323 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2324 if (err < 0)
2325 goto out_freeiov;
2326 len = err;
2327
2328 if (uaddr != NULL) {
2329 err = move_addr_to_user(&addr,
2330 msg_sys->msg_namelen, uaddr,
2331 uaddr_len);
2332 if (err < 0)
2333 goto out_freeiov;
2334 }
2335 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2336 COMPAT_FLAGS(msg));
2337 if (err)
2338 goto out_freeiov;
2339 if (MSG_CMSG_COMPAT & flags)
2340 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2341 &msg_compat->msg_controllen);
2342 else
2343 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2344 &msg->msg_controllen);
2345 if (err)
2346 goto out_freeiov;
2347 err = len;
2348
2349 out_freeiov:
2350 kfree(iov);
2351 return err;
2352 }
2353
2354 /*
2355 * BSD recvmsg interface
2356 */
2357
2358 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2359 bool forbid_cmsg_compat)
2360 {
2361 int fput_needed, err;
2362 struct msghdr msg_sys;
2363 struct socket *sock;
2364
2365 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2366 return -EINVAL;
2367
2368 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2369 if (!sock)
2370 goto out;
2371
2372 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2373
2374 fput_light(sock->file, fput_needed);
2375 out:
2376 return err;
2377 }
2378
2379 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2380 unsigned int, flags)
2381 {
2382 return __sys_recvmsg(fd, msg, flags, true);
2383 }
2384
2385 /*
2386 * Linux recvmmsg interface
2387 */
2388
2389 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2390 unsigned int flags, struct timespec *timeout)
2391 {
2392 int fput_needed, err, datagrams;
2393 struct socket *sock;
2394 struct mmsghdr __user *entry;
2395 struct compat_mmsghdr __user *compat_entry;
2396 struct msghdr msg_sys;
2397 struct timespec64 end_time;
2398 struct timespec64 timeout64;
2399
2400 if (timeout &&
2401 poll_select_set_timeout(&end_time, timeout->tv_sec,
2402 timeout->tv_nsec))
2403 return -EINVAL;
2404
2405 datagrams = 0;
2406
2407 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2408 if (!sock)
2409 return err;
2410
2411 if (likely(!(flags & MSG_ERRQUEUE))) {
2412 err = sock_error(sock->sk);
2413 if (err) {
2414 datagrams = err;
2415 goto out_put;
2416 }
2417 }
2418
2419 entry = mmsg;
2420 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2421
2422 while (datagrams < vlen) {
2423 /*
2424 * No need to ask LSM for more than the first datagram.
2425 */
2426 if (MSG_CMSG_COMPAT & flags) {
2427 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2428 &msg_sys, flags & ~MSG_WAITFORONE,
2429 datagrams);
2430 if (err < 0)
2431 break;
2432 err = __put_user(err, &compat_entry->msg_len);
2433 ++compat_entry;
2434 } else {
2435 err = ___sys_recvmsg(sock,
2436 (struct user_msghdr __user *)entry,
2437 &msg_sys, flags & ~MSG_WAITFORONE,
2438 datagrams);
2439 if (err < 0)
2440 break;
2441 err = put_user(err, &entry->msg_len);
2442 ++entry;
2443 }
2444
2445 if (err)
2446 break;
2447 ++datagrams;
2448
2449 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2450 if (flags & MSG_WAITFORONE)
2451 flags |= MSG_DONTWAIT;
2452
2453 if (timeout) {
2454 ktime_get_ts64(&timeout64);
2455 *timeout = timespec64_to_timespec(
2456 timespec64_sub(end_time, timeout64));
2457 if (timeout->tv_sec < 0) {
2458 timeout->tv_sec = timeout->tv_nsec = 0;
2459 break;
2460 }
2461
2462 /* Timeout, return less than vlen datagrams */
2463 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2464 break;
2465 }
2466
2467 /* Out of band data, return right away */
2468 if (msg_sys.msg_flags & MSG_OOB)
2469 break;
2470 cond_resched();
2471 }
2472
2473 if (err == 0)
2474 goto out_put;
2475
2476 if (datagrams == 0) {
2477 datagrams = err;
2478 goto out_put;
2479 }
2480
2481 /*
2482 * We may return less entries than requested (vlen) if the
2483 * sock is non block and there aren't enough datagrams...
2484 */
2485 if (err != -EAGAIN) {
2486 /*
2487 * ... or if recvmsg returns an error after we
2488 * received some datagrams, where we record the
2489 * error to return on the next call or if the
2490 * app asks about it using getsockopt(SO_ERROR).
2491 */
2492 sock->sk->sk_err = -err;
2493 }
2494 out_put:
2495 fput_light(sock->file, fput_needed);
2496
2497 return datagrams;
2498 }
2499
2500 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2501 unsigned int vlen, unsigned int flags,
2502 struct timespec __user *timeout)
2503 {
2504 int datagrams;
2505 struct timespec timeout_sys;
2506
2507 if (flags & MSG_CMSG_COMPAT)
2508 return -EINVAL;
2509
2510 if (!timeout)
2511 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2512
2513 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2514 return -EFAULT;
2515
2516 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2517
2518 if (datagrams > 0 &&
2519 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2520 datagrams = -EFAULT;
2521
2522 return datagrams;
2523 }
2524
2525 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2526 unsigned int, vlen, unsigned int, flags,
2527 struct timespec __user *, timeout)
2528 {
2529 return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout);
2530 }
2531
2532 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2533 /* Argument list sizes for sys_socketcall */
2534 #define AL(x) ((x) * sizeof(unsigned long))
2535 static const unsigned char nargs[21] = {
2536 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2537 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2538 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2539 AL(4), AL(5), AL(4)
2540 };
2541
2542 #undef AL
2543
2544 /*
2545 * System call vectors.
2546 *
2547 * Argument checking cleaned up. Saved 20% in size.
2548 * This function doesn't need to set the kernel lock because
2549 * it is set by the callees.
2550 */
2551
2552 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2553 {
2554 unsigned long a[AUDITSC_ARGS];
2555 unsigned long a0, a1;
2556 int err;
2557 unsigned int len;
2558
2559 if (call < 1 || call > SYS_SENDMMSG)
2560 return -EINVAL;
2561
2562 len = nargs[call];
2563 if (len > sizeof(a))
2564 return -EINVAL;
2565
2566 /* copy_from_user should be SMP safe. */
2567 if (copy_from_user(a, args, len))
2568 return -EFAULT;
2569
2570 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2571 if (err)
2572 return err;
2573
2574 a0 = a[0];
2575 a1 = a[1];
2576
2577 switch (call) {
2578 case SYS_SOCKET:
2579 err = __sys_socket(a0, a1, a[2]);
2580 break;
2581 case SYS_BIND:
2582 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2583 break;
2584 case SYS_CONNECT:
2585 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2586 break;
2587 case SYS_LISTEN:
2588 err = __sys_listen(a0, a1);
2589 break;
2590 case SYS_ACCEPT:
2591 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2592 (int __user *)a[2], 0);
2593 break;
2594 case SYS_GETSOCKNAME:
2595 err =
2596 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2597 (int __user *)a[2]);
2598 break;
2599 case SYS_GETPEERNAME:
2600 err =
2601 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2602 (int __user *)a[2]);
2603 break;
2604 case SYS_SOCKETPAIR:
2605 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2606 break;
2607 case SYS_SEND:
2608 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2609 NULL, 0);
2610 break;
2611 case SYS_SENDTO:
2612 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2613 (struct sockaddr __user *)a[4], a[5]);
2614 break;
2615 case SYS_RECV:
2616 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2617 NULL, NULL);
2618 break;
2619 case SYS_RECVFROM:
2620 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2621 (struct sockaddr __user *)a[4],
2622 (int __user *)a[5]);
2623 break;
2624 case SYS_SHUTDOWN:
2625 err = __sys_shutdown(a0, a1);
2626 break;
2627 case SYS_SETSOCKOPT:
2628 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2629 a[4]);
2630 break;
2631 case SYS_GETSOCKOPT:
2632 err =
2633 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2634 (int __user *)a[4]);
2635 break;
2636 case SYS_SENDMSG:
2637 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2638 a[2], true);
2639 break;
2640 case SYS_SENDMMSG:
2641 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2642 a[3], true);
2643 break;
2644 case SYS_RECVMSG:
2645 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2646 a[2], true);
2647 break;
2648 case SYS_RECVMMSG:
2649 err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2650 a[3], (struct timespec __user *)a[4]);
2651 break;
2652 case SYS_ACCEPT4:
2653 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2654 (int __user *)a[2], a[3]);
2655 break;
2656 default:
2657 err = -EINVAL;
2658 break;
2659 }
2660 return err;
2661 }
2662
2663 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2664
2665 /**
2666 * sock_register - add a socket protocol handler
2667 * @ops: description of protocol
2668 *
2669 * This function is called by a protocol handler that wants to
2670 * advertise its address family, and have it linked into the
2671 * socket interface. The value ops->family corresponds to the
2672 * socket system call protocol family.
2673 */
2674 int sock_register(const struct net_proto_family *ops)
2675 {
2676 int err;
2677
2678 if (ops->family >= NPROTO) {
2679 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2680 return -ENOBUFS;
2681 }
2682
2683 spin_lock(&net_family_lock);
2684 if (rcu_dereference_protected(net_families[ops->family],
2685 lockdep_is_held(&net_family_lock)))
2686 err = -EEXIST;
2687 else {
2688 rcu_assign_pointer(net_families[ops->family], ops);
2689 err = 0;
2690 }
2691 spin_unlock(&net_family_lock);
2692
2693 pr_info("NET: Registered protocol family %d\n", ops->family);
2694 return err;
2695 }
2696 EXPORT_SYMBOL(sock_register);
2697
2698 /**
2699 * sock_unregister - remove a protocol handler
2700 * @family: protocol family to remove
2701 *
2702 * This function is called by a protocol handler that wants to
2703 * remove its address family, and have it unlinked from the
2704 * new socket creation.
2705 *
2706 * If protocol handler is a module, then it can use module reference
2707 * counts to protect against new references. If protocol handler is not
2708 * a module then it needs to provide its own protection in
2709 * the ops->create routine.
2710 */
2711 void sock_unregister(int family)
2712 {
2713 BUG_ON(family < 0 || family >= NPROTO);
2714
2715 spin_lock(&net_family_lock);
2716 RCU_INIT_POINTER(net_families[family], NULL);
2717 spin_unlock(&net_family_lock);
2718
2719 synchronize_rcu();
2720
2721 pr_info("NET: Unregistered protocol family %d\n", family);
2722 }
2723 EXPORT_SYMBOL(sock_unregister);
2724
2725 bool sock_is_registered(int family)
2726 {
2727 return family < NPROTO && rcu_access_pointer(net_families[family]);
2728 }
2729
2730 static int __init sock_init(void)
2731 {
2732 int err;
2733 /*
2734 * Initialize the network sysctl infrastructure.
2735 */
2736 err = net_sysctl_init();
2737 if (err)
2738 goto out;
2739
2740 /*
2741 * Initialize skbuff SLAB cache
2742 */
2743 skb_init();
2744
2745 /*
2746 * Initialize the protocols module.
2747 */
2748
2749 init_inodecache();
2750
2751 err = register_filesystem(&sock_fs_type);
2752 if (err)
2753 goto out_fs;
2754 sock_mnt = kern_mount(&sock_fs_type);
2755 if (IS_ERR(sock_mnt)) {
2756 err = PTR_ERR(sock_mnt);
2757 goto out_mount;
2758 }
2759
2760 /* The real protocol initialization is performed in later initcalls.
2761 */
2762
2763 #ifdef CONFIG_NETFILTER
2764 err = netfilter_init();
2765 if (err)
2766 goto out;
2767 #endif
2768
2769 ptp_classifier_init();
2770
2771 out:
2772 return err;
2773
2774 out_mount:
2775 unregister_filesystem(&sock_fs_type);
2776 out_fs:
2777 goto out;
2778 }
2779
2780 core_initcall(sock_init); /* early initcall */
2781
2782 #ifdef CONFIG_PROC_FS
2783 void socket_seq_show(struct seq_file *seq)
2784 {
2785 seq_printf(seq, "sockets: used %d\n",
2786 sock_inuse_get(seq->private));
2787 }
2788 #endif /* CONFIG_PROC_FS */
2789
2790 #ifdef CONFIG_COMPAT
2791 static int do_siocgstamp(struct net *net, struct socket *sock,
2792 unsigned int cmd, void __user *up)
2793 {
2794 mm_segment_t old_fs = get_fs();
2795 struct timeval ktv;
2796 int err;
2797
2798 set_fs(KERNEL_DS);
2799 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2800 set_fs(old_fs);
2801 if (!err)
2802 err = compat_put_timeval(&ktv, up);
2803
2804 return err;
2805 }
2806
2807 static int do_siocgstampns(struct net *net, struct socket *sock,
2808 unsigned int cmd, void __user *up)
2809 {
2810 mm_segment_t old_fs = get_fs();
2811 struct timespec kts;
2812 int err;
2813
2814 set_fs(KERNEL_DS);
2815 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2816 set_fs(old_fs);
2817 if (!err)
2818 err = compat_put_timespec(&kts, up);
2819
2820 return err;
2821 }
2822
2823 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2824 {
2825 struct compat_ifconf ifc32;
2826 struct ifconf ifc;
2827 int err;
2828
2829 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2830 return -EFAULT;
2831
2832 ifc.ifc_len = ifc32.ifc_len;
2833 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2834
2835 rtnl_lock();
2836 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2837 rtnl_unlock();
2838 if (err)
2839 return err;
2840
2841 ifc32.ifc_len = ifc.ifc_len;
2842 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2843 return -EFAULT;
2844
2845 return 0;
2846 }
2847
2848 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2849 {
2850 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2851 bool convert_in = false, convert_out = false;
2852 size_t buf_size = 0;
2853 struct ethtool_rxnfc __user *rxnfc = NULL;
2854 struct ifreq ifr;
2855 u32 rule_cnt = 0, actual_rule_cnt;
2856 u32 ethcmd;
2857 u32 data;
2858 int ret;
2859
2860 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2861 return -EFAULT;
2862
2863 compat_rxnfc = compat_ptr(data);
2864
2865 if (get_user(ethcmd, &compat_rxnfc->cmd))
2866 return -EFAULT;
2867
2868 /* Most ethtool structures are defined without padding.
2869 * Unfortunately struct ethtool_rxnfc is an exception.
2870 */
2871 switch (ethcmd) {
2872 default:
2873 break;
2874 case ETHTOOL_GRXCLSRLALL:
2875 /* Buffer size is variable */
2876 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2877 return -EFAULT;
2878 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2879 return -ENOMEM;
2880 buf_size += rule_cnt * sizeof(u32);
2881 /* fall through */
2882 case ETHTOOL_GRXRINGS:
2883 case ETHTOOL_GRXCLSRLCNT:
2884 case ETHTOOL_GRXCLSRULE:
2885 case ETHTOOL_SRXCLSRLINS:
2886 convert_out = true;
2887 /* fall through */
2888 case ETHTOOL_SRXCLSRLDEL:
2889 buf_size += sizeof(struct ethtool_rxnfc);
2890 convert_in = true;
2891 rxnfc = compat_alloc_user_space(buf_size);
2892 break;
2893 }
2894
2895 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2896 return -EFAULT;
2897
2898 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2899
2900 if (convert_in) {
2901 /* We expect there to be holes between fs.m_ext and
2902 * fs.ring_cookie and at the end of fs, but nowhere else.
2903 */
2904 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2905 sizeof(compat_rxnfc->fs.m_ext) !=
2906 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2907 sizeof(rxnfc->fs.m_ext));
2908 BUILD_BUG_ON(
2909 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2910 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2911 offsetof(struct ethtool_rxnfc, fs.location) -
2912 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2913
2914 if (copy_in_user(rxnfc, compat_rxnfc,
2915 (void __user *)(&rxnfc->fs.m_ext + 1) -
2916 (void __user *)rxnfc) ||
2917 copy_in_user(&rxnfc->fs.ring_cookie,
2918 &compat_rxnfc->fs.ring_cookie,
2919 (void __user *)(&rxnfc->fs.location + 1) -
2920 (void __user *)&rxnfc->fs.ring_cookie) ||
2921 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2922 sizeof(rxnfc->rule_cnt)))
2923 return -EFAULT;
2924 }
2925
2926 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2927 if (ret)
2928 return ret;
2929
2930 if (convert_out) {
2931 if (copy_in_user(compat_rxnfc, rxnfc,
2932 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2933 (const void __user *)rxnfc) ||
2934 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2935 &rxnfc->fs.ring_cookie,
2936 (const void __user *)(&rxnfc->fs.location + 1) -
2937 (const void __user *)&rxnfc->fs.ring_cookie) ||
2938 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2939 sizeof(rxnfc->rule_cnt)))
2940 return -EFAULT;
2941
2942 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2943 /* As an optimisation, we only copy the actual
2944 * number of rules that the underlying
2945 * function returned. Since Mallory might
2946 * change the rule count in user memory, we
2947 * check that it is less than the rule count
2948 * originally given (as the user buffer size),
2949 * which has been range-checked.
2950 */
2951 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2952 return -EFAULT;
2953 if (actual_rule_cnt < rule_cnt)
2954 rule_cnt = actual_rule_cnt;
2955 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2956 &rxnfc->rule_locs[0],
2957 rule_cnt * sizeof(u32)))
2958 return -EFAULT;
2959 }
2960 }
2961
2962 return 0;
2963 }
2964
2965 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2966 {
2967 compat_uptr_t uptr32;
2968 struct ifreq ifr;
2969 void __user *saved;
2970 int err;
2971
2972 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2973 return -EFAULT;
2974
2975 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2976 return -EFAULT;
2977
2978 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2979 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2980
2981 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2982 if (!err) {
2983 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2984 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2985 err = -EFAULT;
2986 }
2987 return err;
2988 }
2989
2990 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2991 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2992 struct compat_ifreq __user *u_ifreq32)
2993 {
2994 struct ifreq ifreq;
2995 u32 data32;
2996
2997 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2998 return -EFAULT;
2999 if (get_user(data32, &u_ifreq32->ifr_data))
3000 return -EFAULT;
3001 ifreq.ifr_data = compat_ptr(data32);
3002
3003 return dev_ioctl(net, cmd, &ifreq, NULL);
3004 }
3005
3006 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3007 struct compat_ifreq __user *uifr32)
3008 {
3009 struct ifreq ifr;
3010 struct compat_ifmap __user *uifmap32;
3011 int err;
3012
3013 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3014 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3015 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3016 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3017 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3018 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3019 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3020 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3021 if (err)
3022 return -EFAULT;
3023
3024 err = dev_ioctl(net, cmd, &ifr, NULL);
3025
3026 if (cmd == SIOCGIFMAP && !err) {
3027 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3028 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3029 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3030 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3031 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3032 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3033 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3034 if (err)
3035 err = -EFAULT;
3036 }
3037 return err;
3038 }
3039
3040 struct rtentry32 {
3041 u32 rt_pad1;
3042 struct sockaddr rt_dst; /* target address */
3043 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3044 struct sockaddr rt_genmask; /* target network mask (IP) */
3045 unsigned short rt_flags;
3046 short rt_pad2;
3047 u32 rt_pad3;
3048 unsigned char rt_tos;
3049 unsigned char rt_class;
3050 short rt_pad4;
3051 short rt_metric; /* +1 for binary compatibility! */
3052 /* char * */ u32 rt_dev; /* forcing the device at add */
3053 u32 rt_mtu; /* per route MTU/Window */
3054 u32 rt_window; /* Window clamping */
3055 unsigned short rt_irtt; /* Initial RTT */
3056 };
3057
3058 struct in6_rtmsg32 {
3059 struct in6_addr rtmsg_dst;
3060 struct in6_addr rtmsg_src;
3061 struct in6_addr rtmsg_gateway;
3062 u32 rtmsg_type;
3063 u16 rtmsg_dst_len;
3064 u16 rtmsg_src_len;
3065 u32 rtmsg_metric;
3066 u32 rtmsg_info;
3067 u32 rtmsg_flags;
3068 s32 rtmsg_ifindex;
3069 };
3070
3071 static int routing_ioctl(struct net *net, struct socket *sock,
3072 unsigned int cmd, void __user *argp)
3073 {
3074 int ret;
3075 void *r = NULL;
3076 struct in6_rtmsg r6;
3077 struct rtentry r4;
3078 char devname[16];
3079 u32 rtdev;
3080 mm_segment_t old_fs = get_fs();
3081
3082 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3083 struct in6_rtmsg32 __user *ur6 = argp;
3084 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3085 3 * sizeof(struct in6_addr));
3086 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3087 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3088 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3089 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3090 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3091 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3092 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3093
3094 r = (void *) &r6;
3095 } else { /* ipv4 */
3096 struct rtentry32 __user *ur4 = argp;
3097 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3098 3 * sizeof(struct sockaddr));
3099 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3100 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3101 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3102 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3103 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3104 ret |= get_user(rtdev, &(ur4->rt_dev));
3105 if (rtdev) {
3106 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3107 r4.rt_dev = (char __user __force *)devname;
3108 devname[15] = 0;
3109 } else
3110 r4.rt_dev = NULL;
3111
3112 r = (void *) &r4;
3113 }
3114
3115 if (ret) {
3116 ret = -EFAULT;
3117 goto out;
3118 }
3119
3120 set_fs(KERNEL_DS);
3121 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3122 set_fs(old_fs);
3123
3124 out:
3125 return ret;
3126 }
3127
3128 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3129 * for some operations; this forces use of the newer bridge-utils that
3130 * use compatible ioctls
3131 */
3132 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3133 {
3134 compat_ulong_t tmp;
3135
3136 if (get_user(tmp, argp))
3137 return -EFAULT;
3138 if (tmp == BRCTL_GET_VERSION)
3139 return BRCTL_VERSION + 1;
3140 return -EINVAL;
3141 }
3142
3143 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3144 unsigned int cmd, unsigned long arg)
3145 {
3146 void __user *argp = compat_ptr(arg);
3147 struct sock *sk = sock->sk;
3148 struct net *net = sock_net(sk);
3149
3150 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3151 return compat_ifr_data_ioctl(net, cmd, argp);
3152
3153 switch (cmd) {
3154 case SIOCSIFBR:
3155 case SIOCGIFBR:
3156 return old_bridge_ioctl(argp);
3157 case SIOCGIFCONF:
3158 return compat_dev_ifconf(net, argp);
3159 case SIOCETHTOOL:
3160 return ethtool_ioctl(net, argp);
3161 case SIOCWANDEV:
3162 return compat_siocwandev(net, argp);
3163 case SIOCGIFMAP:
3164 case SIOCSIFMAP:
3165 return compat_sioc_ifmap(net, cmd, argp);
3166 case SIOCADDRT:
3167 case SIOCDELRT:
3168 return routing_ioctl(net, sock, cmd, argp);
3169 case SIOCGSTAMP:
3170 return do_siocgstamp(net, sock, cmd, argp);
3171 case SIOCGSTAMPNS:
3172 return do_siocgstampns(net, sock, cmd, argp);
3173 case SIOCBONDSLAVEINFOQUERY:
3174 case SIOCBONDINFOQUERY:
3175 case SIOCSHWTSTAMP:
3176 case SIOCGHWTSTAMP:
3177 return compat_ifr_data_ioctl(net, cmd, argp);
3178
3179 case FIOSETOWN:
3180 case SIOCSPGRP:
3181 case FIOGETOWN:
3182 case SIOCGPGRP:
3183 case SIOCBRADDBR:
3184 case SIOCBRDELBR:
3185 case SIOCGIFVLAN:
3186 case SIOCSIFVLAN:
3187 case SIOCADDDLCI:
3188 case SIOCDELDLCI:
3189 case SIOCGSKNS:
3190 return sock_ioctl(file, cmd, arg);
3191
3192 case SIOCGIFFLAGS:
3193 case SIOCSIFFLAGS:
3194 case SIOCGIFMETRIC:
3195 case SIOCSIFMETRIC:
3196 case SIOCGIFMTU:
3197 case SIOCSIFMTU:
3198 case SIOCGIFMEM:
3199 case SIOCSIFMEM:
3200 case SIOCGIFHWADDR:
3201 case SIOCSIFHWADDR:
3202 case SIOCADDMULTI:
3203 case SIOCDELMULTI:
3204 case SIOCGIFINDEX:
3205 case SIOCGIFADDR:
3206 case SIOCSIFADDR:
3207 case SIOCSIFHWBROADCAST:
3208 case SIOCDIFADDR:
3209 case SIOCGIFBRDADDR:
3210 case SIOCSIFBRDADDR:
3211 case SIOCGIFDSTADDR:
3212 case SIOCSIFDSTADDR:
3213 case SIOCGIFNETMASK:
3214 case SIOCSIFNETMASK:
3215 case SIOCSIFPFLAGS:
3216 case SIOCGIFPFLAGS:
3217 case SIOCGIFTXQLEN:
3218 case SIOCSIFTXQLEN:
3219 case SIOCBRADDIF:
3220 case SIOCBRDELIF:
3221 case SIOCSIFNAME:
3222 case SIOCGMIIPHY:
3223 case SIOCGMIIREG:
3224 case SIOCSMIIREG:
3225 case SIOCSARP:
3226 case SIOCGARP:
3227 case SIOCDARP:
3228 case SIOCATMARK:
3229 case SIOCBONDENSLAVE:
3230 case SIOCBONDRELEASE:
3231 case SIOCBONDSETHWADDR:
3232 case SIOCBONDCHANGEACTIVE:
3233 case SIOCGIFNAME:
3234 return sock_do_ioctl(net, sock, cmd, arg);
3235 }
3236
3237 return -ENOIOCTLCMD;
3238 }
3239
3240 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3241 unsigned long arg)
3242 {
3243 struct socket *sock = file->private_data;
3244 int ret = -ENOIOCTLCMD;
3245 struct sock *sk;
3246 struct net *net;
3247
3248 sk = sock->sk;
3249 net = sock_net(sk);
3250
3251 if (sock->ops->compat_ioctl)
3252 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3253
3254 if (ret == -ENOIOCTLCMD &&
3255 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3256 ret = compat_wext_handle_ioctl(net, cmd, arg);
3257
3258 if (ret == -ENOIOCTLCMD)
3259 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3260
3261 return ret;
3262 }
3263 #endif
3264
3265 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3266 {
3267 return sock->ops->bind(sock, addr, addrlen);
3268 }
3269 EXPORT_SYMBOL(kernel_bind);
3270
3271 int kernel_listen(struct socket *sock, int backlog)
3272 {
3273 return sock->ops->listen(sock, backlog);
3274 }
3275 EXPORT_SYMBOL(kernel_listen);
3276
3277 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3278 {
3279 struct sock *sk = sock->sk;
3280 int err;
3281
3282 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3283 newsock);
3284 if (err < 0)
3285 goto done;
3286
3287 err = sock->ops->accept(sock, *newsock, flags, true);
3288 if (err < 0) {
3289 sock_release(*newsock);
3290 *newsock = NULL;
3291 goto done;
3292 }
3293
3294 (*newsock)->ops = sock->ops;
3295 __module_get((*newsock)->ops->owner);
3296
3297 done:
3298 return err;
3299 }
3300 EXPORT_SYMBOL(kernel_accept);
3301
3302 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3303 int flags)
3304 {
3305 return sock->ops->connect(sock, addr, addrlen, flags);
3306 }
3307 EXPORT_SYMBOL(kernel_connect);
3308
3309 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3310 {
3311 return sock->ops->getname(sock, addr, 0);
3312 }
3313 EXPORT_SYMBOL(kernel_getsockname);
3314
3315 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3316 {
3317 return sock->ops->getname(sock, addr, 1);
3318 }
3319 EXPORT_SYMBOL(kernel_getpeername);
3320
3321 int kernel_getsockopt(struct socket *sock, int level, int optname,
3322 char *optval, int *optlen)
3323 {
3324 mm_segment_t oldfs = get_fs();
3325 char __user *uoptval;
3326 int __user *uoptlen;
3327 int err;
3328
3329 uoptval = (char __user __force *) optval;
3330 uoptlen = (int __user __force *) optlen;
3331
3332 set_fs(KERNEL_DS);
3333 if (level == SOL_SOCKET)
3334 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3335 else
3336 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3337 uoptlen);
3338 set_fs(oldfs);
3339 return err;
3340 }
3341 EXPORT_SYMBOL(kernel_getsockopt);
3342
3343 int kernel_setsockopt(struct socket *sock, int level, int optname,
3344 char *optval, unsigned int optlen)
3345 {
3346 mm_segment_t oldfs = get_fs();
3347 char __user *uoptval;
3348 int err;
3349
3350 uoptval = (char __user __force *) optval;
3351
3352 set_fs(KERNEL_DS);
3353 if (level == SOL_SOCKET)
3354 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3355 else
3356 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3357 optlen);
3358 set_fs(oldfs);
3359 return err;
3360 }
3361 EXPORT_SYMBOL(kernel_setsockopt);
3362
3363 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3364 size_t size, int flags)
3365 {
3366 if (sock->ops->sendpage)
3367 return sock->ops->sendpage(sock, page, offset, size, flags);
3368
3369 return sock_no_sendpage(sock, page, offset, size, flags);
3370 }
3371 EXPORT_SYMBOL(kernel_sendpage);
3372
3373 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3374 size_t size, int flags)
3375 {
3376 struct socket *sock = sk->sk_socket;
3377
3378 if (sock->ops->sendpage_locked)
3379 return sock->ops->sendpage_locked(sk, page, offset, size,
3380 flags);
3381
3382 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3383 }
3384 EXPORT_SYMBOL(kernel_sendpage_locked);
3385
3386 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3387 {
3388 return sock->ops->shutdown(sock, how);
3389 }
3390 EXPORT_SYMBOL(kernel_sock_shutdown);
3391
3392 /* This routine returns the IP overhead imposed by a socket i.e.
3393 * the length of the underlying IP header, depending on whether
3394 * this is an IPv4 or IPv6 socket and the length from IP options turned
3395 * on at the socket. Assumes that the caller has a lock on the socket.
3396 */
3397 u32 kernel_sock_ip_overhead(struct sock *sk)
3398 {
3399 struct inet_sock *inet;
3400 struct ip_options_rcu *opt;
3401 u32 overhead = 0;
3402 #if IS_ENABLED(CONFIG_IPV6)
3403 struct ipv6_pinfo *np;
3404 struct ipv6_txoptions *optv6 = NULL;
3405 #endif /* IS_ENABLED(CONFIG_IPV6) */
3406
3407 if (!sk)
3408 return overhead;
3409
3410 switch (sk->sk_family) {
3411 case AF_INET:
3412 inet = inet_sk(sk);
3413 overhead += sizeof(struct iphdr);
3414 opt = rcu_dereference_protected(inet->inet_opt,
3415 sock_owned_by_user(sk));
3416 if (opt)
3417 overhead += opt->opt.optlen;
3418 return overhead;
3419 #if IS_ENABLED(CONFIG_IPV6)
3420 case AF_INET6:
3421 np = inet6_sk(sk);
3422 overhead += sizeof(struct ipv6hdr);
3423 if (np)
3424 optv6 = rcu_dereference_protected(np->opt,
3425 sock_owned_by_user(sk));
3426 if (optv6)
3427 overhead += (optv6->opt_flen + optv6->opt_nflen);
3428 return overhead;
3429 #endif /* IS_ENABLED(CONFIG_IPV6) */
3430 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3431 return overhead;
3432 }
3433 }
3434 EXPORT_SYMBOL(kernel_sock_ip_overhead);