]> git.ipfire.org Git - thirdparty/linux.git/blob - net/socket.c
Merge tag 'clk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux
[thirdparty/linux.git] / net / socket.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/net.h>
61 #include <linux/interrupt.h>
62 #include <linux/thread_info.h>
63 #include <linux/rcupdate.h>
64 #include <linux/netdevice.h>
65 #include <linux/proc_fs.h>
66 #include <linux/seq_file.h>
67 #include <linux/mutex.h>
68 #include <linux/if_bridge.h>
69 #include <linux/if_vlan.h>
70 #include <linux/ptp_classify.h>
71 #include <linux/init.h>
72 #include <linux/poll.h>
73 #include <linux/cache.h>
74 #include <linux/module.h>
75 #include <linux/highmem.h>
76 #include <linux/mount.h>
77 #include <linux/pseudo_fs.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/compat.h>
81 #include <linux/kmod.h>
82 #include <linux/audit.h>
83 #include <linux/wireless.h>
84 #include <linux/nsproxy.h>
85 #include <linux/magic.h>
86 #include <linux/slab.h>
87 #include <linux/xattr.h>
88 #include <linux/nospec.h>
89 #include <linux/indirect_call_wrapper.h>
90
91 #include <linux/uaccess.h>
92 #include <asm/unistd.h>
93
94 #include <net/compat.h>
95 #include <net/wext.h>
96 #include <net/cls_cgroup.h>
97
98 #include <net/sock.h>
99 #include <linux/netfilter.h>
100
101 #include <linux/if_tun.h>
102 #include <linux/ipv6_route.h>
103 #include <linux/route.h>
104 #include <linux/termios.h>
105 #include <linux/sockios.h>
106 #include <net/busy_poll.h>
107 #include <linux/errqueue.h>
108 #include <linux/ptp_clock_kernel.h>
109 #include <trace/events/sock.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 #ifdef CONFIG_PROC_FS
136 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
137 {
138 struct socket *sock = f->private_data;
139
140 if (sock->ops->show_fdinfo)
141 sock->ops->show_fdinfo(m, sock);
142 }
143 #else
144 #define sock_show_fdinfo NULL
145 #endif
146
147 /*
148 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
149 * in the operation structures but are done directly via the socketcall() multiplexor.
150 */
151
152 static const struct file_operations socket_file_ops = {
153 .owner = THIS_MODULE,
154 .llseek = no_llseek,
155 .read_iter = sock_read_iter,
156 .write_iter = sock_write_iter,
157 .poll = sock_poll,
158 .unlocked_ioctl = sock_ioctl,
159 #ifdef CONFIG_COMPAT
160 .compat_ioctl = compat_sock_ioctl,
161 #endif
162 .mmap = sock_mmap,
163 .release = sock_close,
164 .fasync = sock_fasync,
165 .sendpage = sock_sendpage,
166 .splice_write = generic_splice_sendpage,
167 .splice_read = sock_splice_read,
168 .show_fdinfo = sock_show_fdinfo,
169 };
170
171 static const char * const pf_family_names[] = {
172 [PF_UNSPEC] = "PF_UNSPEC",
173 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
174 [PF_INET] = "PF_INET",
175 [PF_AX25] = "PF_AX25",
176 [PF_IPX] = "PF_IPX",
177 [PF_APPLETALK] = "PF_APPLETALK",
178 [PF_NETROM] = "PF_NETROM",
179 [PF_BRIDGE] = "PF_BRIDGE",
180 [PF_ATMPVC] = "PF_ATMPVC",
181 [PF_X25] = "PF_X25",
182 [PF_INET6] = "PF_INET6",
183 [PF_ROSE] = "PF_ROSE",
184 [PF_DECnet] = "PF_DECnet",
185 [PF_NETBEUI] = "PF_NETBEUI",
186 [PF_SECURITY] = "PF_SECURITY",
187 [PF_KEY] = "PF_KEY",
188 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
189 [PF_PACKET] = "PF_PACKET",
190 [PF_ASH] = "PF_ASH",
191 [PF_ECONET] = "PF_ECONET",
192 [PF_ATMSVC] = "PF_ATMSVC",
193 [PF_RDS] = "PF_RDS",
194 [PF_SNA] = "PF_SNA",
195 [PF_IRDA] = "PF_IRDA",
196 [PF_PPPOX] = "PF_PPPOX",
197 [PF_WANPIPE] = "PF_WANPIPE",
198 [PF_LLC] = "PF_LLC",
199 [PF_IB] = "PF_IB",
200 [PF_MPLS] = "PF_MPLS",
201 [PF_CAN] = "PF_CAN",
202 [PF_TIPC] = "PF_TIPC",
203 [PF_BLUETOOTH] = "PF_BLUETOOTH",
204 [PF_IUCV] = "PF_IUCV",
205 [PF_RXRPC] = "PF_RXRPC",
206 [PF_ISDN] = "PF_ISDN",
207 [PF_PHONET] = "PF_PHONET",
208 [PF_IEEE802154] = "PF_IEEE802154",
209 [PF_CAIF] = "PF_CAIF",
210 [PF_ALG] = "PF_ALG",
211 [PF_NFC] = "PF_NFC",
212 [PF_VSOCK] = "PF_VSOCK",
213 [PF_KCM] = "PF_KCM",
214 [PF_QIPCRTR] = "PF_QIPCRTR",
215 [PF_SMC] = "PF_SMC",
216 [PF_XDP] = "PF_XDP",
217 [PF_MCTP] = "PF_MCTP",
218 };
219
220 /*
221 * The protocol list. Each protocol is registered in here.
222 */
223
224 static DEFINE_SPINLOCK(net_family_lock);
225 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
226
227 /*
228 * Support routines.
229 * Move socket addresses back and forth across the kernel/user
230 * divide and look after the messy bits.
231 */
232
233 /**
234 * move_addr_to_kernel - copy a socket address into kernel space
235 * @uaddr: Address in user space
236 * @kaddr: Address in kernel space
237 * @ulen: Length in user space
238 *
239 * The address is copied into kernel space. If the provided address is
240 * too long an error code of -EINVAL is returned. If the copy gives
241 * invalid addresses -EFAULT is returned. On a success 0 is returned.
242 */
243
244 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
245 {
246 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
247 return -EINVAL;
248 if (ulen == 0)
249 return 0;
250 if (copy_from_user(kaddr, uaddr, ulen))
251 return -EFAULT;
252 return audit_sockaddr(ulen, kaddr);
253 }
254
255 /**
256 * move_addr_to_user - copy an address to user space
257 * @kaddr: kernel space address
258 * @klen: length of address in kernel
259 * @uaddr: user space address
260 * @ulen: pointer to user length field
261 *
262 * The value pointed to by ulen on entry is the buffer length available.
263 * This is overwritten with the buffer space used. -EINVAL is returned
264 * if an overlong buffer is specified or a negative buffer size. -EFAULT
265 * is returned if either the buffer or the length field are not
266 * accessible.
267 * After copying the data up to the limit the user specifies, the true
268 * length of the data is written over the length limit the user
269 * specified. Zero is returned for a success.
270 */
271
272 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
273 void __user *uaddr, int __user *ulen)
274 {
275 int err;
276 int len;
277
278 BUG_ON(klen > sizeof(struct sockaddr_storage));
279 err = get_user(len, ulen);
280 if (err)
281 return err;
282 if (len > klen)
283 len = klen;
284 if (len < 0)
285 return -EINVAL;
286 if (len) {
287 if (audit_sockaddr(klen, kaddr))
288 return -ENOMEM;
289 if (copy_to_user(uaddr, kaddr, len))
290 return -EFAULT;
291 }
292 /*
293 * "fromlen shall refer to the value before truncation.."
294 * 1003.1g
295 */
296 return __put_user(klen, ulen);
297 }
298
299 static struct kmem_cache *sock_inode_cachep __ro_after_init;
300
301 static struct inode *sock_alloc_inode(struct super_block *sb)
302 {
303 struct socket_alloc *ei;
304
305 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
306 if (!ei)
307 return NULL;
308 init_waitqueue_head(&ei->socket.wq.wait);
309 ei->socket.wq.fasync_list = NULL;
310 ei->socket.wq.flags = 0;
311
312 ei->socket.state = SS_UNCONNECTED;
313 ei->socket.flags = 0;
314 ei->socket.ops = NULL;
315 ei->socket.sk = NULL;
316 ei->socket.file = NULL;
317
318 return &ei->vfs_inode;
319 }
320
321 static void sock_free_inode(struct inode *inode)
322 {
323 struct socket_alloc *ei;
324
325 ei = container_of(inode, struct socket_alloc, vfs_inode);
326 kmem_cache_free(sock_inode_cachep, ei);
327 }
328
329 static void init_once(void *foo)
330 {
331 struct socket_alloc *ei = (struct socket_alloc *)foo;
332
333 inode_init_once(&ei->vfs_inode);
334 }
335
336 static void init_inodecache(void)
337 {
338 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
339 sizeof(struct socket_alloc),
340 0,
341 (SLAB_HWCACHE_ALIGN |
342 SLAB_RECLAIM_ACCOUNT |
343 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
344 init_once);
345 BUG_ON(sock_inode_cachep == NULL);
346 }
347
348 static const struct super_operations sockfs_ops = {
349 .alloc_inode = sock_alloc_inode,
350 .free_inode = sock_free_inode,
351 .statfs = simple_statfs,
352 };
353
354 /*
355 * sockfs_dname() is called from d_path().
356 */
357 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
358 {
359 return dynamic_dname(buffer, buflen, "socket:[%lu]",
360 d_inode(dentry)->i_ino);
361 }
362
363 static const struct dentry_operations sockfs_dentry_operations = {
364 .d_dname = sockfs_dname,
365 };
366
367 static int sockfs_xattr_get(const struct xattr_handler *handler,
368 struct dentry *dentry, struct inode *inode,
369 const char *suffix, void *value, size_t size)
370 {
371 if (value) {
372 if (dentry->d_name.len + 1 > size)
373 return -ERANGE;
374 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
375 }
376 return dentry->d_name.len + 1;
377 }
378
379 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
380 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
381 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
382
383 static const struct xattr_handler sockfs_xattr_handler = {
384 .name = XATTR_NAME_SOCKPROTONAME,
385 .get = sockfs_xattr_get,
386 };
387
388 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
389 struct mnt_idmap *idmap,
390 struct dentry *dentry, struct inode *inode,
391 const char *suffix, const void *value,
392 size_t size, int flags)
393 {
394 /* Handled by LSM. */
395 return -EAGAIN;
396 }
397
398 static const struct xattr_handler sockfs_security_xattr_handler = {
399 .prefix = XATTR_SECURITY_PREFIX,
400 .set = sockfs_security_xattr_set,
401 };
402
403 static const struct xattr_handler *sockfs_xattr_handlers[] = {
404 &sockfs_xattr_handler,
405 &sockfs_security_xattr_handler,
406 NULL
407 };
408
409 static int sockfs_init_fs_context(struct fs_context *fc)
410 {
411 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
412 if (!ctx)
413 return -ENOMEM;
414 ctx->ops = &sockfs_ops;
415 ctx->dops = &sockfs_dentry_operations;
416 ctx->xattr = sockfs_xattr_handlers;
417 return 0;
418 }
419
420 static struct vfsmount *sock_mnt __read_mostly;
421
422 static struct file_system_type sock_fs_type = {
423 .name = "sockfs",
424 .init_fs_context = sockfs_init_fs_context,
425 .kill_sb = kill_anon_super,
426 };
427
428 /*
429 * Obtains the first available file descriptor and sets it up for use.
430 *
431 * These functions create file structures and maps them to fd space
432 * of the current process. On success it returns file descriptor
433 * and file struct implicitly stored in sock->file.
434 * Note that another thread may close file descriptor before we return
435 * from this function. We use the fact that now we do not refer
436 * to socket after mapping. If one day we will need it, this
437 * function will increment ref. count on file by 1.
438 *
439 * In any case returned fd MAY BE not valid!
440 * This race condition is unavoidable
441 * with shared fd spaces, we cannot solve it inside kernel,
442 * but we take care of internal coherence yet.
443 */
444
445 /**
446 * sock_alloc_file - Bind a &socket to a &file
447 * @sock: socket
448 * @flags: file status flags
449 * @dname: protocol name
450 *
451 * Returns the &file bound with @sock, implicitly storing it
452 * in sock->file. If dname is %NULL, sets to "".
453 *
454 * On failure @sock is released, and an ERR pointer is returned.
455 *
456 * This function uses GFP_KERNEL internally.
457 */
458
459 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
460 {
461 struct file *file;
462
463 if (!dname)
464 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
465
466 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
467 O_RDWR | (flags & O_NONBLOCK),
468 &socket_file_ops);
469 if (IS_ERR(file)) {
470 sock_release(sock);
471 return file;
472 }
473
474 sock->file = file;
475 file->private_data = sock;
476 stream_open(SOCK_INODE(sock), file);
477 return file;
478 }
479 EXPORT_SYMBOL(sock_alloc_file);
480
481 static int sock_map_fd(struct socket *sock, int flags)
482 {
483 struct file *newfile;
484 int fd = get_unused_fd_flags(flags);
485 if (unlikely(fd < 0)) {
486 sock_release(sock);
487 return fd;
488 }
489
490 newfile = sock_alloc_file(sock, flags, NULL);
491 if (!IS_ERR(newfile)) {
492 fd_install(fd, newfile);
493 return fd;
494 }
495
496 put_unused_fd(fd);
497 return PTR_ERR(newfile);
498 }
499
500 /**
501 * sock_from_file - Return the &socket bounded to @file.
502 * @file: file
503 *
504 * On failure returns %NULL.
505 */
506
507 struct socket *sock_from_file(struct file *file)
508 {
509 if (file->f_op == &socket_file_ops)
510 return file->private_data; /* set in sock_alloc_file */
511
512 return NULL;
513 }
514 EXPORT_SYMBOL(sock_from_file);
515
516 /**
517 * sockfd_lookup - Go from a file number to its socket slot
518 * @fd: file handle
519 * @err: pointer to an error code return
520 *
521 * The file handle passed in is locked and the socket it is bound
522 * to is returned. If an error occurs the err pointer is overwritten
523 * with a negative errno code and NULL is returned. The function checks
524 * for both invalid handles and passing a handle which is not a socket.
525 *
526 * On a success the socket object pointer is returned.
527 */
528
529 struct socket *sockfd_lookup(int fd, int *err)
530 {
531 struct file *file;
532 struct socket *sock;
533
534 file = fget(fd);
535 if (!file) {
536 *err = -EBADF;
537 return NULL;
538 }
539
540 sock = sock_from_file(file);
541 if (!sock) {
542 *err = -ENOTSOCK;
543 fput(file);
544 }
545 return sock;
546 }
547 EXPORT_SYMBOL(sockfd_lookup);
548
549 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
550 {
551 struct fd f = fdget(fd);
552 struct socket *sock;
553
554 *err = -EBADF;
555 if (f.file) {
556 sock = sock_from_file(f.file);
557 if (likely(sock)) {
558 *fput_needed = f.flags & FDPUT_FPUT;
559 return sock;
560 }
561 *err = -ENOTSOCK;
562 fdput(f);
563 }
564 return NULL;
565 }
566
567 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
568 size_t size)
569 {
570 ssize_t len;
571 ssize_t used = 0;
572
573 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
574 if (len < 0)
575 return len;
576 used += len;
577 if (buffer) {
578 if (size < used)
579 return -ERANGE;
580 buffer += len;
581 }
582
583 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
584 used += len;
585 if (buffer) {
586 if (size < used)
587 return -ERANGE;
588 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
589 buffer += len;
590 }
591
592 return used;
593 }
594
595 static int sockfs_setattr(struct mnt_idmap *idmap,
596 struct dentry *dentry, struct iattr *iattr)
597 {
598 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
599
600 if (!err && (iattr->ia_valid & ATTR_UID)) {
601 struct socket *sock = SOCKET_I(d_inode(dentry));
602
603 if (sock->sk)
604 sock->sk->sk_uid = iattr->ia_uid;
605 else
606 err = -ENOENT;
607 }
608
609 return err;
610 }
611
612 static const struct inode_operations sockfs_inode_ops = {
613 .listxattr = sockfs_listxattr,
614 .setattr = sockfs_setattr,
615 };
616
617 /**
618 * sock_alloc - allocate a socket
619 *
620 * Allocate a new inode and socket object. The two are bound together
621 * and initialised. The socket is then returned. If we are out of inodes
622 * NULL is returned. This functions uses GFP_KERNEL internally.
623 */
624
625 struct socket *sock_alloc(void)
626 {
627 struct inode *inode;
628 struct socket *sock;
629
630 inode = new_inode_pseudo(sock_mnt->mnt_sb);
631 if (!inode)
632 return NULL;
633
634 sock = SOCKET_I(inode);
635
636 inode->i_ino = get_next_ino();
637 inode->i_mode = S_IFSOCK | S_IRWXUGO;
638 inode->i_uid = current_fsuid();
639 inode->i_gid = current_fsgid();
640 inode->i_op = &sockfs_inode_ops;
641
642 return sock;
643 }
644 EXPORT_SYMBOL(sock_alloc);
645
646 static void __sock_release(struct socket *sock, struct inode *inode)
647 {
648 if (sock->ops) {
649 struct module *owner = sock->ops->owner;
650
651 if (inode)
652 inode_lock(inode);
653 sock->ops->release(sock);
654 sock->sk = NULL;
655 if (inode)
656 inode_unlock(inode);
657 sock->ops = NULL;
658 module_put(owner);
659 }
660
661 if (sock->wq.fasync_list)
662 pr_err("%s: fasync list not empty!\n", __func__);
663
664 if (!sock->file) {
665 iput(SOCK_INODE(sock));
666 return;
667 }
668 sock->file = NULL;
669 }
670
671 /**
672 * sock_release - close a socket
673 * @sock: socket to close
674 *
675 * The socket is released from the protocol stack if it has a release
676 * callback, and the inode is then released if the socket is bound to
677 * an inode not a file.
678 */
679 void sock_release(struct socket *sock)
680 {
681 __sock_release(sock, NULL);
682 }
683 EXPORT_SYMBOL(sock_release);
684
685 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
686 {
687 u8 flags = *tx_flags;
688
689 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
690 flags |= SKBTX_HW_TSTAMP;
691
692 /* PTP hardware clocks can provide a free running cycle counter
693 * as a time base for virtual clocks. Tell driver to use the
694 * free running cycle counter for timestamp if socket is bound
695 * to virtual clock.
696 */
697 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
698 flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
699 }
700
701 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
702 flags |= SKBTX_SW_TSTAMP;
703
704 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
705 flags |= SKBTX_SCHED_TSTAMP;
706
707 *tx_flags = flags;
708 }
709 EXPORT_SYMBOL(__sock_tx_timestamp);
710
711 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
712 size_t));
713 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
714 size_t));
715
716 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
717 int flags)
718 {
719 trace_sock_send_length(sk, ret, 0);
720 }
721
722 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
723 {
724 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
725 inet_sendmsg, sock, msg,
726 msg_data_left(msg));
727 BUG_ON(ret == -EIOCBQUEUED);
728
729 if (trace_sock_send_length_enabled())
730 call_trace_sock_send_length(sock->sk, ret, 0);
731 return ret;
732 }
733
734 /**
735 * sock_sendmsg - send a message through @sock
736 * @sock: socket
737 * @msg: message to send
738 *
739 * Sends @msg through @sock, passing through LSM.
740 * Returns the number of bytes sent, or an error code.
741 */
742 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
743 {
744 int err = security_socket_sendmsg(sock, msg,
745 msg_data_left(msg));
746
747 return err ?: sock_sendmsg_nosec(sock, msg);
748 }
749 EXPORT_SYMBOL(sock_sendmsg);
750
751 /**
752 * kernel_sendmsg - send a message through @sock (kernel-space)
753 * @sock: socket
754 * @msg: message header
755 * @vec: kernel vec
756 * @num: vec array length
757 * @size: total message data size
758 *
759 * Builds the message data with @vec and sends it through @sock.
760 * Returns the number of bytes sent, or an error code.
761 */
762
763 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
764 struct kvec *vec, size_t num, size_t size)
765 {
766 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
767 return sock_sendmsg(sock, msg);
768 }
769 EXPORT_SYMBOL(kernel_sendmsg);
770
771 /**
772 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
773 * @sk: sock
774 * @msg: message header
775 * @vec: output s/g array
776 * @num: output s/g array length
777 * @size: total message data size
778 *
779 * Builds the message data with @vec and sends it through @sock.
780 * Returns the number of bytes sent, or an error code.
781 * Caller must hold @sk.
782 */
783
784 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
785 struct kvec *vec, size_t num, size_t size)
786 {
787 struct socket *sock = sk->sk_socket;
788
789 if (!sock->ops->sendmsg_locked)
790 return sock_no_sendmsg_locked(sk, msg, size);
791
792 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
793
794 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
795 }
796 EXPORT_SYMBOL(kernel_sendmsg_locked);
797
798 static bool skb_is_err_queue(const struct sk_buff *skb)
799 {
800 /* pkt_type of skbs enqueued on the error queue are set to
801 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
802 * in recvmsg, since skbs received on a local socket will never
803 * have a pkt_type of PACKET_OUTGOING.
804 */
805 return skb->pkt_type == PACKET_OUTGOING;
806 }
807
808 /* On transmit, software and hardware timestamps are returned independently.
809 * As the two skb clones share the hardware timestamp, which may be updated
810 * before the software timestamp is received, a hardware TX timestamp may be
811 * returned only if there is no software TX timestamp. Ignore false software
812 * timestamps, which may be made in the __sock_recv_timestamp() call when the
813 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
814 * hardware timestamp.
815 */
816 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
817 {
818 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
819 }
820
821 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
822 {
823 bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC;
824 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
825 struct net_device *orig_dev;
826 ktime_t hwtstamp;
827
828 rcu_read_lock();
829 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
830 if (orig_dev) {
831 *if_index = orig_dev->ifindex;
832 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
833 } else {
834 hwtstamp = shhwtstamps->hwtstamp;
835 }
836 rcu_read_unlock();
837
838 return hwtstamp;
839 }
840
841 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
842 int if_index)
843 {
844 struct scm_ts_pktinfo ts_pktinfo;
845 struct net_device *orig_dev;
846
847 if (!skb_mac_header_was_set(skb))
848 return;
849
850 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
851
852 if (!if_index) {
853 rcu_read_lock();
854 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
855 if (orig_dev)
856 if_index = orig_dev->ifindex;
857 rcu_read_unlock();
858 }
859 ts_pktinfo.if_index = if_index;
860
861 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
862 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
863 sizeof(ts_pktinfo), &ts_pktinfo);
864 }
865
866 /*
867 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
868 */
869 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
870 struct sk_buff *skb)
871 {
872 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
873 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
874 struct scm_timestamping_internal tss;
875
876 int empty = 1, false_tstamp = 0;
877 struct skb_shared_hwtstamps *shhwtstamps =
878 skb_hwtstamps(skb);
879 int if_index;
880 ktime_t hwtstamp;
881
882 /* Race occurred between timestamp enabling and packet
883 receiving. Fill in the current time for now. */
884 if (need_software_tstamp && skb->tstamp == 0) {
885 __net_timestamp(skb);
886 false_tstamp = 1;
887 }
888
889 if (need_software_tstamp) {
890 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
891 if (new_tstamp) {
892 struct __kernel_sock_timeval tv;
893
894 skb_get_new_timestamp(skb, &tv);
895 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
896 sizeof(tv), &tv);
897 } else {
898 struct __kernel_old_timeval tv;
899
900 skb_get_timestamp(skb, &tv);
901 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
902 sizeof(tv), &tv);
903 }
904 } else {
905 if (new_tstamp) {
906 struct __kernel_timespec ts;
907
908 skb_get_new_timestampns(skb, &ts);
909 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
910 sizeof(ts), &ts);
911 } else {
912 struct __kernel_old_timespec ts;
913
914 skb_get_timestampns(skb, &ts);
915 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
916 sizeof(ts), &ts);
917 }
918 }
919 }
920
921 memset(&tss, 0, sizeof(tss));
922 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
923 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
924 empty = 0;
925 if (shhwtstamps &&
926 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
927 !skb_is_swtx_tstamp(skb, false_tstamp)) {
928 if_index = 0;
929 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
930 hwtstamp = get_timestamp(sk, skb, &if_index);
931 else
932 hwtstamp = shhwtstamps->hwtstamp;
933
934 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
935 hwtstamp = ptp_convert_timestamp(&hwtstamp,
936 sk->sk_bind_phc);
937
938 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
939 empty = 0;
940
941 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
942 !skb_is_err_queue(skb))
943 put_ts_pktinfo(msg, skb, if_index);
944 }
945 }
946 if (!empty) {
947 if (sock_flag(sk, SOCK_TSTAMP_NEW))
948 put_cmsg_scm_timestamping64(msg, &tss);
949 else
950 put_cmsg_scm_timestamping(msg, &tss);
951
952 if (skb_is_err_queue(skb) && skb->len &&
953 SKB_EXT_ERR(skb)->opt_stats)
954 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
955 skb->len, skb->data);
956 }
957 }
958 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
959
960 #ifdef CONFIG_WIRELESS
961 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
962 struct sk_buff *skb)
963 {
964 int ack;
965
966 if (!sock_flag(sk, SOCK_WIFI_STATUS))
967 return;
968 if (!skb->wifi_acked_valid)
969 return;
970
971 ack = skb->wifi_acked;
972
973 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
974 }
975 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
976 #endif
977
978 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
979 struct sk_buff *skb)
980 {
981 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
982 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
983 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
984 }
985
986 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
987 struct sk_buff *skb)
988 {
989 if (sock_flag(sk, SOCK_RCVMARK) && skb) {
990 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
991 __u32 mark = skb->mark;
992
993 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
994 }
995 }
996
997 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
998 struct sk_buff *skb)
999 {
1000 sock_recv_timestamp(msg, sk, skb);
1001 sock_recv_drops(msg, sk, skb);
1002 sock_recv_mark(msg, sk, skb);
1003 }
1004 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1005
1006 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1007 size_t, int));
1008 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1009 size_t, int));
1010
1011 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1012 {
1013 trace_sock_recv_length(sk, ret, flags);
1014 }
1015
1016 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1017 int flags)
1018 {
1019 int ret = INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
1020 inet_recvmsg, sock, msg,
1021 msg_data_left(msg), flags);
1022 if (trace_sock_recv_length_enabled())
1023 call_trace_sock_recv_length(sock->sk, ret, flags);
1024 return ret;
1025 }
1026
1027 /**
1028 * sock_recvmsg - receive a message from @sock
1029 * @sock: socket
1030 * @msg: message to receive
1031 * @flags: message flags
1032 *
1033 * Receives @msg from @sock, passing through LSM. Returns the total number
1034 * of bytes received, or an error.
1035 */
1036 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1037 {
1038 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1039
1040 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1041 }
1042 EXPORT_SYMBOL(sock_recvmsg);
1043
1044 /**
1045 * kernel_recvmsg - Receive a message from a socket (kernel space)
1046 * @sock: The socket to receive the message from
1047 * @msg: Received message
1048 * @vec: Input s/g array for message data
1049 * @num: Size of input s/g array
1050 * @size: Number of bytes to read
1051 * @flags: Message flags (MSG_DONTWAIT, etc...)
1052 *
1053 * On return the msg structure contains the scatter/gather array passed in the
1054 * vec argument. The array is modified so that it consists of the unfilled
1055 * portion of the original array.
1056 *
1057 * The returned value is the total number of bytes received, or an error.
1058 */
1059
1060 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1061 struct kvec *vec, size_t num, size_t size, int flags)
1062 {
1063 msg->msg_control_is_user = false;
1064 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1065 return sock_recvmsg(sock, msg, flags);
1066 }
1067 EXPORT_SYMBOL(kernel_recvmsg);
1068
1069 static ssize_t sock_sendpage(struct file *file, struct page *page,
1070 int offset, size_t size, loff_t *ppos, int more)
1071 {
1072 struct socket *sock;
1073 int flags;
1074 int ret;
1075
1076 sock = file->private_data;
1077
1078 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1079 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1080 flags |= more;
1081
1082 ret = kernel_sendpage(sock, page, offset, size, flags);
1083
1084 if (trace_sock_send_length_enabled())
1085 call_trace_sock_send_length(sock->sk, ret, 0);
1086 return ret;
1087 }
1088
1089 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1090 struct pipe_inode_info *pipe, size_t len,
1091 unsigned int flags)
1092 {
1093 struct socket *sock = file->private_data;
1094
1095 if (unlikely(!sock->ops->splice_read))
1096 return generic_file_splice_read(file, ppos, pipe, len, flags);
1097
1098 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1099 }
1100
1101 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1102 {
1103 struct file *file = iocb->ki_filp;
1104 struct socket *sock = file->private_data;
1105 struct msghdr msg = {.msg_iter = *to,
1106 .msg_iocb = iocb};
1107 ssize_t res;
1108
1109 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1110 msg.msg_flags = MSG_DONTWAIT;
1111
1112 if (iocb->ki_pos != 0)
1113 return -ESPIPE;
1114
1115 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1116 return 0;
1117
1118 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1119 *to = msg.msg_iter;
1120 return res;
1121 }
1122
1123 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1124 {
1125 struct file *file = iocb->ki_filp;
1126 struct socket *sock = file->private_data;
1127 struct msghdr msg = {.msg_iter = *from,
1128 .msg_iocb = iocb};
1129 ssize_t res;
1130
1131 if (iocb->ki_pos != 0)
1132 return -ESPIPE;
1133
1134 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1135 msg.msg_flags = MSG_DONTWAIT;
1136
1137 if (sock->type == SOCK_SEQPACKET)
1138 msg.msg_flags |= MSG_EOR;
1139
1140 res = sock_sendmsg(sock, &msg);
1141 *from = msg.msg_iter;
1142 return res;
1143 }
1144
1145 /*
1146 * Atomic setting of ioctl hooks to avoid race
1147 * with module unload.
1148 */
1149
1150 static DEFINE_MUTEX(br_ioctl_mutex);
1151 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1152 unsigned int cmd, struct ifreq *ifr,
1153 void __user *uarg);
1154
1155 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1156 unsigned int cmd, struct ifreq *ifr,
1157 void __user *uarg))
1158 {
1159 mutex_lock(&br_ioctl_mutex);
1160 br_ioctl_hook = hook;
1161 mutex_unlock(&br_ioctl_mutex);
1162 }
1163 EXPORT_SYMBOL(brioctl_set);
1164
1165 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1166 struct ifreq *ifr, void __user *uarg)
1167 {
1168 int err = -ENOPKG;
1169
1170 if (!br_ioctl_hook)
1171 request_module("bridge");
1172
1173 mutex_lock(&br_ioctl_mutex);
1174 if (br_ioctl_hook)
1175 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1176 mutex_unlock(&br_ioctl_mutex);
1177
1178 return err;
1179 }
1180
1181 static DEFINE_MUTEX(vlan_ioctl_mutex);
1182 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1183
1184 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1185 {
1186 mutex_lock(&vlan_ioctl_mutex);
1187 vlan_ioctl_hook = hook;
1188 mutex_unlock(&vlan_ioctl_mutex);
1189 }
1190 EXPORT_SYMBOL(vlan_ioctl_set);
1191
1192 static long sock_do_ioctl(struct net *net, struct socket *sock,
1193 unsigned int cmd, unsigned long arg)
1194 {
1195 struct ifreq ifr;
1196 bool need_copyout;
1197 int err;
1198 void __user *argp = (void __user *)arg;
1199 void __user *data;
1200
1201 err = sock->ops->ioctl(sock, cmd, arg);
1202
1203 /*
1204 * If this ioctl is unknown try to hand it down
1205 * to the NIC driver.
1206 */
1207 if (err != -ENOIOCTLCMD)
1208 return err;
1209
1210 if (!is_socket_ioctl_cmd(cmd))
1211 return -ENOTTY;
1212
1213 if (get_user_ifreq(&ifr, &data, argp))
1214 return -EFAULT;
1215 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1216 if (!err && need_copyout)
1217 if (put_user_ifreq(&ifr, argp))
1218 return -EFAULT;
1219
1220 return err;
1221 }
1222
1223 /*
1224 * With an ioctl, arg may well be a user mode pointer, but we don't know
1225 * what to do with it - that's up to the protocol still.
1226 */
1227
1228 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1229 {
1230 struct socket *sock;
1231 struct sock *sk;
1232 void __user *argp = (void __user *)arg;
1233 int pid, err;
1234 struct net *net;
1235
1236 sock = file->private_data;
1237 sk = sock->sk;
1238 net = sock_net(sk);
1239 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1240 struct ifreq ifr;
1241 void __user *data;
1242 bool need_copyout;
1243 if (get_user_ifreq(&ifr, &data, argp))
1244 return -EFAULT;
1245 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1246 if (!err && need_copyout)
1247 if (put_user_ifreq(&ifr, argp))
1248 return -EFAULT;
1249 } else
1250 #ifdef CONFIG_WEXT_CORE
1251 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1252 err = wext_handle_ioctl(net, cmd, argp);
1253 } else
1254 #endif
1255 switch (cmd) {
1256 case FIOSETOWN:
1257 case SIOCSPGRP:
1258 err = -EFAULT;
1259 if (get_user(pid, (int __user *)argp))
1260 break;
1261 err = f_setown(sock->file, pid, 1);
1262 break;
1263 case FIOGETOWN:
1264 case SIOCGPGRP:
1265 err = put_user(f_getown(sock->file),
1266 (int __user *)argp);
1267 break;
1268 case SIOCGIFBR:
1269 case SIOCSIFBR:
1270 case SIOCBRADDBR:
1271 case SIOCBRDELBR:
1272 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1273 break;
1274 case SIOCGIFVLAN:
1275 case SIOCSIFVLAN:
1276 err = -ENOPKG;
1277 if (!vlan_ioctl_hook)
1278 request_module("8021q");
1279
1280 mutex_lock(&vlan_ioctl_mutex);
1281 if (vlan_ioctl_hook)
1282 err = vlan_ioctl_hook(net, argp);
1283 mutex_unlock(&vlan_ioctl_mutex);
1284 break;
1285 case SIOCGSKNS:
1286 err = -EPERM;
1287 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1288 break;
1289
1290 err = open_related_ns(&net->ns, get_net_ns);
1291 break;
1292 case SIOCGSTAMP_OLD:
1293 case SIOCGSTAMPNS_OLD:
1294 if (!sock->ops->gettstamp) {
1295 err = -ENOIOCTLCMD;
1296 break;
1297 }
1298 err = sock->ops->gettstamp(sock, argp,
1299 cmd == SIOCGSTAMP_OLD,
1300 !IS_ENABLED(CONFIG_64BIT));
1301 break;
1302 case SIOCGSTAMP_NEW:
1303 case SIOCGSTAMPNS_NEW:
1304 if (!sock->ops->gettstamp) {
1305 err = -ENOIOCTLCMD;
1306 break;
1307 }
1308 err = sock->ops->gettstamp(sock, argp,
1309 cmd == SIOCGSTAMP_NEW,
1310 false);
1311 break;
1312
1313 case SIOCGIFCONF:
1314 err = dev_ifconf(net, argp);
1315 break;
1316
1317 default:
1318 err = sock_do_ioctl(net, sock, cmd, arg);
1319 break;
1320 }
1321 return err;
1322 }
1323
1324 /**
1325 * sock_create_lite - creates a socket
1326 * @family: protocol family (AF_INET, ...)
1327 * @type: communication type (SOCK_STREAM, ...)
1328 * @protocol: protocol (0, ...)
1329 * @res: new socket
1330 *
1331 * Creates a new socket and assigns it to @res, passing through LSM.
1332 * The new socket initialization is not complete, see kernel_accept().
1333 * Returns 0 or an error. On failure @res is set to %NULL.
1334 * This function internally uses GFP_KERNEL.
1335 */
1336
1337 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1338 {
1339 int err;
1340 struct socket *sock = NULL;
1341
1342 err = security_socket_create(family, type, protocol, 1);
1343 if (err)
1344 goto out;
1345
1346 sock = sock_alloc();
1347 if (!sock) {
1348 err = -ENOMEM;
1349 goto out;
1350 }
1351
1352 sock->type = type;
1353 err = security_socket_post_create(sock, family, type, protocol, 1);
1354 if (err)
1355 goto out_release;
1356
1357 out:
1358 *res = sock;
1359 return err;
1360 out_release:
1361 sock_release(sock);
1362 sock = NULL;
1363 goto out;
1364 }
1365 EXPORT_SYMBOL(sock_create_lite);
1366
1367 /* No kernel lock held - perfect */
1368 static __poll_t sock_poll(struct file *file, poll_table *wait)
1369 {
1370 struct socket *sock = file->private_data;
1371 __poll_t events = poll_requested_events(wait), flag = 0;
1372
1373 if (!sock->ops->poll)
1374 return 0;
1375
1376 if (sk_can_busy_loop(sock->sk)) {
1377 /* poll once if requested by the syscall */
1378 if (events & POLL_BUSY_LOOP)
1379 sk_busy_loop(sock->sk, 1);
1380
1381 /* if this socket can poll_ll, tell the system call */
1382 flag = POLL_BUSY_LOOP;
1383 }
1384
1385 return sock->ops->poll(file, sock, wait) | flag;
1386 }
1387
1388 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1389 {
1390 struct socket *sock = file->private_data;
1391
1392 return sock->ops->mmap(file, sock, vma);
1393 }
1394
1395 static int sock_close(struct inode *inode, struct file *filp)
1396 {
1397 __sock_release(SOCKET_I(inode), inode);
1398 return 0;
1399 }
1400
1401 /*
1402 * Update the socket async list
1403 *
1404 * Fasync_list locking strategy.
1405 *
1406 * 1. fasync_list is modified only under process context socket lock
1407 * i.e. under semaphore.
1408 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1409 * or under socket lock
1410 */
1411
1412 static int sock_fasync(int fd, struct file *filp, int on)
1413 {
1414 struct socket *sock = filp->private_data;
1415 struct sock *sk = sock->sk;
1416 struct socket_wq *wq = &sock->wq;
1417
1418 if (sk == NULL)
1419 return -EINVAL;
1420
1421 lock_sock(sk);
1422 fasync_helper(fd, filp, on, &wq->fasync_list);
1423
1424 if (!wq->fasync_list)
1425 sock_reset_flag(sk, SOCK_FASYNC);
1426 else
1427 sock_set_flag(sk, SOCK_FASYNC);
1428
1429 release_sock(sk);
1430 return 0;
1431 }
1432
1433 /* This function may be called only under rcu_lock */
1434
1435 int sock_wake_async(struct socket_wq *wq, int how, int band)
1436 {
1437 if (!wq || !wq->fasync_list)
1438 return -1;
1439
1440 switch (how) {
1441 case SOCK_WAKE_WAITD:
1442 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1443 break;
1444 goto call_kill;
1445 case SOCK_WAKE_SPACE:
1446 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1447 break;
1448 fallthrough;
1449 case SOCK_WAKE_IO:
1450 call_kill:
1451 kill_fasync(&wq->fasync_list, SIGIO, band);
1452 break;
1453 case SOCK_WAKE_URG:
1454 kill_fasync(&wq->fasync_list, SIGURG, band);
1455 }
1456
1457 return 0;
1458 }
1459 EXPORT_SYMBOL(sock_wake_async);
1460
1461 /**
1462 * __sock_create - creates a socket
1463 * @net: net namespace
1464 * @family: protocol family (AF_INET, ...)
1465 * @type: communication type (SOCK_STREAM, ...)
1466 * @protocol: protocol (0, ...)
1467 * @res: new socket
1468 * @kern: boolean for kernel space sockets
1469 *
1470 * Creates a new socket and assigns it to @res, passing through LSM.
1471 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1472 * be set to true if the socket resides in kernel space.
1473 * This function internally uses GFP_KERNEL.
1474 */
1475
1476 int __sock_create(struct net *net, int family, int type, int protocol,
1477 struct socket **res, int kern)
1478 {
1479 int err;
1480 struct socket *sock;
1481 const struct net_proto_family *pf;
1482
1483 /*
1484 * Check protocol is in range
1485 */
1486 if (family < 0 || family >= NPROTO)
1487 return -EAFNOSUPPORT;
1488 if (type < 0 || type >= SOCK_MAX)
1489 return -EINVAL;
1490
1491 /* Compatibility.
1492
1493 This uglymoron is moved from INET layer to here to avoid
1494 deadlock in module load.
1495 */
1496 if (family == PF_INET && type == SOCK_PACKET) {
1497 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1498 current->comm);
1499 family = PF_PACKET;
1500 }
1501
1502 err = security_socket_create(family, type, protocol, kern);
1503 if (err)
1504 return err;
1505
1506 /*
1507 * Allocate the socket and allow the family to set things up. if
1508 * the protocol is 0, the family is instructed to select an appropriate
1509 * default.
1510 */
1511 sock = sock_alloc();
1512 if (!sock) {
1513 net_warn_ratelimited("socket: no more sockets\n");
1514 return -ENFILE; /* Not exactly a match, but its the
1515 closest posix thing */
1516 }
1517
1518 sock->type = type;
1519
1520 #ifdef CONFIG_MODULES
1521 /* Attempt to load a protocol module if the find failed.
1522 *
1523 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1524 * requested real, full-featured networking support upon configuration.
1525 * Otherwise module support will break!
1526 */
1527 if (rcu_access_pointer(net_families[family]) == NULL)
1528 request_module("net-pf-%d", family);
1529 #endif
1530
1531 rcu_read_lock();
1532 pf = rcu_dereference(net_families[family]);
1533 err = -EAFNOSUPPORT;
1534 if (!pf)
1535 goto out_release;
1536
1537 /*
1538 * We will call the ->create function, that possibly is in a loadable
1539 * module, so we have to bump that loadable module refcnt first.
1540 */
1541 if (!try_module_get(pf->owner))
1542 goto out_release;
1543
1544 /* Now protected by module ref count */
1545 rcu_read_unlock();
1546
1547 err = pf->create(net, sock, protocol, kern);
1548 if (err < 0)
1549 goto out_module_put;
1550
1551 /*
1552 * Now to bump the refcnt of the [loadable] module that owns this
1553 * socket at sock_release time we decrement its refcnt.
1554 */
1555 if (!try_module_get(sock->ops->owner))
1556 goto out_module_busy;
1557
1558 /*
1559 * Now that we're done with the ->create function, the [loadable]
1560 * module can have its refcnt decremented
1561 */
1562 module_put(pf->owner);
1563 err = security_socket_post_create(sock, family, type, protocol, kern);
1564 if (err)
1565 goto out_sock_release;
1566 *res = sock;
1567
1568 return 0;
1569
1570 out_module_busy:
1571 err = -EAFNOSUPPORT;
1572 out_module_put:
1573 sock->ops = NULL;
1574 module_put(pf->owner);
1575 out_sock_release:
1576 sock_release(sock);
1577 return err;
1578
1579 out_release:
1580 rcu_read_unlock();
1581 goto out_sock_release;
1582 }
1583 EXPORT_SYMBOL(__sock_create);
1584
1585 /**
1586 * sock_create - creates a socket
1587 * @family: protocol family (AF_INET, ...)
1588 * @type: communication type (SOCK_STREAM, ...)
1589 * @protocol: protocol (0, ...)
1590 * @res: new socket
1591 *
1592 * A wrapper around __sock_create().
1593 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1594 */
1595
1596 int sock_create(int family, int type, int protocol, struct socket **res)
1597 {
1598 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1599 }
1600 EXPORT_SYMBOL(sock_create);
1601
1602 /**
1603 * sock_create_kern - creates a socket (kernel space)
1604 * @net: net namespace
1605 * @family: protocol family (AF_INET, ...)
1606 * @type: communication type (SOCK_STREAM, ...)
1607 * @protocol: protocol (0, ...)
1608 * @res: new socket
1609 *
1610 * A wrapper around __sock_create().
1611 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1612 */
1613
1614 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1615 {
1616 return __sock_create(net, family, type, protocol, res, 1);
1617 }
1618 EXPORT_SYMBOL(sock_create_kern);
1619
1620 static struct socket *__sys_socket_create(int family, int type, int protocol)
1621 {
1622 struct socket *sock;
1623 int retval;
1624
1625 /* Check the SOCK_* constants for consistency. */
1626 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1627 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1628 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1629 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1630
1631 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1632 return ERR_PTR(-EINVAL);
1633 type &= SOCK_TYPE_MASK;
1634
1635 retval = sock_create(family, type, protocol, &sock);
1636 if (retval < 0)
1637 return ERR_PTR(retval);
1638
1639 return sock;
1640 }
1641
1642 struct file *__sys_socket_file(int family, int type, int protocol)
1643 {
1644 struct socket *sock;
1645 int flags;
1646
1647 sock = __sys_socket_create(family, type, protocol);
1648 if (IS_ERR(sock))
1649 return ERR_CAST(sock);
1650
1651 flags = type & ~SOCK_TYPE_MASK;
1652 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1653 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1654
1655 return sock_alloc_file(sock, flags, NULL);
1656 }
1657
1658 int __sys_socket(int family, int type, int protocol)
1659 {
1660 struct socket *sock;
1661 int flags;
1662
1663 sock = __sys_socket_create(family, type, protocol);
1664 if (IS_ERR(sock))
1665 return PTR_ERR(sock);
1666
1667 flags = type & ~SOCK_TYPE_MASK;
1668 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1669 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1670
1671 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1672 }
1673
1674 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1675 {
1676 return __sys_socket(family, type, protocol);
1677 }
1678
1679 /*
1680 * Create a pair of connected sockets.
1681 */
1682
1683 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1684 {
1685 struct socket *sock1, *sock2;
1686 int fd1, fd2, err;
1687 struct file *newfile1, *newfile2;
1688 int flags;
1689
1690 flags = type & ~SOCK_TYPE_MASK;
1691 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1692 return -EINVAL;
1693 type &= SOCK_TYPE_MASK;
1694
1695 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1696 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1697
1698 /*
1699 * reserve descriptors and make sure we won't fail
1700 * to return them to userland.
1701 */
1702 fd1 = get_unused_fd_flags(flags);
1703 if (unlikely(fd1 < 0))
1704 return fd1;
1705
1706 fd2 = get_unused_fd_flags(flags);
1707 if (unlikely(fd2 < 0)) {
1708 put_unused_fd(fd1);
1709 return fd2;
1710 }
1711
1712 err = put_user(fd1, &usockvec[0]);
1713 if (err)
1714 goto out;
1715
1716 err = put_user(fd2, &usockvec[1]);
1717 if (err)
1718 goto out;
1719
1720 /*
1721 * Obtain the first socket and check if the underlying protocol
1722 * supports the socketpair call.
1723 */
1724
1725 err = sock_create(family, type, protocol, &sock1);
1726 if (unlikely(err < 0))
1727 goto out;
1728
1729 err = sock_create(family, type, protocol, &sock2);
1730 if (unlikely(err < 0)) {
1731 sock_release(sock1);
1732 goto out;
1733 }
1734
1735 err = security_socket_socketpair(sock1, sock2);
1736 if (unlikely(err)) {
1737 sock_release(sock2);
1738 sock_release(sock1);
1739 goto out;
1740 }
1741
1742 err = sock1->ops->socketpair(sock1, sock2);
1743 if (unlikely(err < 0)) {
1744 sock_release(sock2);
1745 sock_release(sock1);
1746 goto out;
1747 }
1748
1749 newfile1 = sock_alloc_file(sock1, flags, NULL);
1750 if (IS_ERR(newfile1)) {
1751 err = PTR_ERR(newfile1);
1752 sock_release(sock2);
1753 goto out;
1754 }
1755
1756 newfile2 = sock_alloc_file(sock2, flags, NULL);
1757 if (IS_ERR(newfile2)) {
1758 err = PTR_ERR(newfile2);
1759 fput(newfile1);
1760 goto out;
1761 }
1762
1763 audit_fd_pair(fd1, fd2);
1764
1765 fd_install(fd1, newfile1);
1766 fd_install(fd2, newfile2);
1767 return 0;
1768
1769 out:
1770 put_unused_fd(fd2);
1771 put_unused_fd(fd1);
1772 return err;
1773 }
1774
1775 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1776 int __user *, usockvec)
1777 {
1778 return __sys_socketpair(family, type, protocol, usockvec);
1779 }
1780
1781 /*
1782 * Bind a name to a socket. Nothing much to do here since it's
1783 * the protocol's responsibility to handle the local address.
1784 *
1785 * We move the socket address to kernel space before we call
1786 * the protocol layer (having also checked the address is ok).
1787 */
1788
1789 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1790 {
1791 struct socket *sock;
1792 struct sockaddr_storage address;
1793 int err, fput_needed;
1794
1795 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1796 if (sock) {
1797 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1798 if (!err) {
1799 err = security_socket_bind(sock,
1800 (struct sockaddr *)&address,
1801 addrlen);
1802 if (!err)
1803 err = sock->ops->bind(sock,
1804 (struct sockaddr *)
1805 &address, addrlen);
1806 }
1807 fput_light(sock->file, fput_needed);
1808 }
1809 return err;
1810 }
1811
1812 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1813 {
1814 return __sys_bind(fd, umyaddr, addrlen);
1815 }
1816
1817 /*
1818 * Perform a listen. Basically, we allow the protocol to do anything
1819 * necessary for a listen, and if that works, we mark the socket as
1820 * ready for listening.
1821 */
1822
1823 int __sys_listen(int fd, int backlog)
1824 {
1825 struct socket *sock;
1826 int err, fput_needed;
1827 int somaxconn;
1828
1829 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1830 if (sock) {
1831 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1832 if ((unsigned int)backlog > somaxconn)
1833 backlog = somaxconn;
1834
1835 err = security_socket_listen(sock, backlog);
1836 if (!err)
1837 err = sock->ops->listen(sock, backlog);
1838
1839 fput_light(sock->file, fput_needed);
1840 }
1841 return err;
1842 }
1843
1844 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1845 {
1846 return __sys_listen(fd, backlog);
1847 }
1848
1849 struct file *do_accept(struct file *file, unsigned file_flags,
1850 struct sockaddr __user *upeer_sockaddr,
1851 int __user *upeer_addrlen, int flags)
1852 {
1853 struct socket *sock, *newsock;
1854 struct file *newfile;
1855 int err, len;
1856 struct sockaddr_storage address;
1857
1858 sock = sock_from_file(file);
1859 if (!sock)
1860 return ERR_PTR(-ENOTSOCK);
1861
1862 newsock = sock_alloc();
1863 if (!newsock)
1864 return ERR_PTR(-ENFILE);
1865
1866 newsock->type = sock->type;
1867 newsock->ops = sock->ops;
1868
1869 /*
1870 * We don't need try_module_get here, as the listening socket (sock)
1871 * has the protocol module (sock->ops->owner) held.
1872 */
1873 __module_get(newsock->ops->owner);
1874
1875 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1876 if (IS_ERR(newfile))
1877 return newfile;
1878
1879 err = security_socket_accept(sock, newsock);
1880 if (err)
1881 goto out_fd;
1882
1883 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1884 false);
1885 if (err < 0)
1886 goto out_fd;
1887
1888 if (upeer_sockaddr) {
1889 len = newsock->ops->getname(newsock,
1890 (struct sockaddr *)&address, 2);
1891 if (len < 0) {
1892 err = -ECONNABORTED;
1893 goto out_fd;
1894 }
1895 err = move_addr_to_user(&address,
1896 len, upeer_sockaddr, upeer_addrlen);
1897 if (err < 0)
1898 goto out_fd;
1899 }
1900
1901 /* File flags are not inherited via accept() unlike another OSes. */
1902 return newfile;
1903 out_fd:
1904 fput(newfile);
1905 return ERR_PTR(err);
1906 }
1907
1908 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1909 int __user *upeer_addrlen, int flags)
1910 {
1911 struct file *newfile;
1912 int newfd;
1913
1914 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1915 return -EINVAL;
1916
1917 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1918 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1919
1920 newfd = get_unused_fd_flags(flags);
1921 if (unlikely(newfd < 0))
1922 return newfd;
1923
1924 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1925 flags);
1926 if (IS_ERR(newfile)) {
1927 put_unused_fd(newfd);
1928 return PTR_ERR(newfile);
1929 }
1930 fd_install(newfd, newfile);
1931 return newfd;
1932 }
1933
1934 /*
1935 * For accept, we attempt to create a new socket, set up the link
1936 * with the client, wake up the client, then return the new
1937 * connected fd. We collect the address of the connector in kernel
1938 * space and move it to user at the very end. This is unclean because
1939 * we open the socket then return an error.
1940 *
1941 * 1003.1g adds the ability to recvmsg() to query connection pending
1942 * status to recvmsg. We need to add that support in a way thats
1943 * clean when we restructure accept also.
1944 */
1945
1946 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1947 int __user *upeer_addrlen, int flags)
1948 {
1949 int ret = -EBADF;
1950 struct fd f;
1951
1952 f = fdget(fd);
1953 if (f.file) {
1954 ret = __sys_accept4_file(f.file, upeer_sockaddr,
1955 upeer_addrlen, flags);
1956 fdput(f);
1957 }
1958
1959 return ret;
1960 }
1961
1962 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1963 int __user *, upeer_addrlen, int, flags)
1964 {
1965 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1966 }
1967
1968 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1969 int __user *, upeer_addrlen)
1970 {
1971 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1972 }
1973
1974 /*
1975 * Attempt to connect to a socket with the server address. The address
1976 * is in user space so we verify it is OK and move it to kernel space.
1977 *
1978 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1979 * break bindings
1980 *
1981 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1982 * other SEQPACKET protocols that take time to connect() as it doesn't
1983 * include the -EINPROGRESS status for such sockets.
1984 */
1985
1986 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1987 int addrlen, int file_flags)
1988 {
1989 struct socket *sock;
1990 int err;
1991
1992 sock = sock_from_file(file);
1993 if (!sock) {
1994 err = -ENOTSOCK;
1995 goto out;
1996 }
1997
1998 err =
1999 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2000 if (err)
2001 goto out;
2002
2003 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
2004 sock->file->f_flags | file_flags);
2005 out:
2006 return err;
2007 }
2008
2009 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2010 {
2011 int ret = -EBADF;
2012 struct fd f;
2013
2014 f = fdget(fd);
2015 if (f.file) {
2016 struct sockaddr_storage address;
2017
2018 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2019 if (!ret)
2020 ret = __sys_connect_file(f.file, &address, addrlen, 0);
2021 fdput(f);
2022 }
2023
2024 return ret;
2025 }
2026
2027 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2028 int, addrlen)
2029 {
2030 return __sys_connect(fd, uservaddr, addrlen);
2031 }
2032
2033 /*
2034 * Get the local address ('name') of a socket object. Move the obtained
2035 * name to user space.
2036 */
2037
2038 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2039 int __user *usockaddr_len)
2040 {
2041 struct socket *sock;
2042 struct sockaddr_storage address;
2043 int err, fput_needed;
2044
2045 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2046 if (!sock)
2047 goto out;
2048
2049 err = security_socket_getsockname(sock);
2050 if (err)
2051 goto out_put;
2052
2053 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
2054 if (err < 0)
2055 goto out_put;
2056 /* "err" is actually length in this case */
2057 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2058
2059 out_put:
2060 fput_light(sock->file, fput_needed);
2061 out:
2062 return err;
2063 }
2064
2065 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2066 int __user *, usockaddr_len)
2067 {
2068 return __sys_getsockname(fd, usockaddr, usockaddr_len);
2069 }
2070
2071 /*
2072 * Get the remote address ('name') of a socket object. Move the obtained
2073 * name to user space.
2074 */
2075
2076 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2077 int __user *usockaddr_len)
2078 {
2079 struct socket *sock;
2080 struct sockaddr_storage address;
2081 int err, fput_needed;
2082
2083 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2084 if (sock != NULL) {
2085 err = security_socket_getpeername(sock);
2086 if (err) {
2087 fput_light(sock->file, fput_needed);
2088 return err;
2089 }
2090
2091 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
2092 if (err >= 0)
2093 /* "err" is actually length in this case */
2094 err = move_addr_to_user(&address, err, usockaddr,
2095 usockaddr_len);
2096 fput_light(sock->file, fput_needed);
2097 }
2098 return err;
2099 }
2100
2101 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2102 int __user *, usockaddr_len)
2103 {
2104 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2105 }
2106
2107 /*
2108 * Send a datagram to a given address. We move the address into kernel
2109 * space and check the user space data area is readable before invoking
2110 * the protocol.
2111 */
2112 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2113 struct sockaddr __user *addr, int addr_len)
2114 {
2115 struct socket *sock;
2116 struct sockaddr_storage address;
2117 int err;
2118 struct msghdr msg;
2119 struct iovec iov;
2120 int fput_needed;
2121
2122 err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2123 if (unlikely(err))
2124 return err;
2125 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2126 if (!sock)
2127 goto out;
2128
2129 msg.msg_name = NULL;
2130 msg.msg_control = NULL;
2131 msg.msg_controllen = 0;
2132 msg.msg_namelen = 0;
2133 msg.msg_ubuf = NULL;
2134 if (addr) {
2135 err = move_addr_to_kernel(addr, addr_len, &address);
2136 if (err < 0)
2137 goto out_put;
2138 msg.msg_name = (struct sockaddr *)&address;
2139 msg.msg_namelen = addr_len;
2140 }
2141 if (sock->file->f_flags & O_NONBLOCK)
2142 flags |= MSG_DONTWAIT;
2143 msg.msg_flags = flags;
2144 err = sock_sendmsg(sock, &msg);
2145
2146 out_put:
2147 fput_light(sock->file, fput_needed);
2148 out:
2149 return err;
2150 }
2151
2152 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2153 unsigned int, flags, struct sockaddr __user *, addr,
2154 int, addr_len)
2155 {
2156 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2157 }
2158
2159 /*
2160 * Send a datagram down a socket.
2161 */
2162
2163 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2164 unsigned int, flags)
2165 {
2166 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2167 }
2168
2169 /*
2170 * Receive a frame from the socket and optionally record the address of the
2171 * sender. We verify the buffers are writable and if needed move the
2172 * sender address from kernel to user space.
2173 */
2174 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2175 struct sockaddr __user *addr, int __user *addr_len)
2176 {
2177 struct sockaddr_storage address;
2178 struct msghdr msg = {
2179 /* Save some cycles and don't copy the address if not needed */
2180 .msg_name = addr ? (struct sockaddr *)&address : NULL,
2181 };
2182 struct socket *sock;
2183 struct iovec iov;
2184 int err, err2;
2185 int fput_needed;
2186
2187 err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2188 if (unlikely(err))
2189 return err;
2190 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2191 if (!sock)
2192 goto out;
2193
2194 if (sock->file->f_flags & O_NONBLOCK)
2195 flags |= MSG_DONTWAIT;
2196 err = sock_recvmsg(sock, &msg, flags);
2197
2198 if (err >= 0 && addr != NULL) {
2199 err2 = move_addr_to_user(&address,
2200 msg.msg_namelen, addr, addr_len);
2201 if (err2 < 0)
2202 err = err2;
2203 }
2204
2205 fput_light(sock->file, fput_needed);
2206 out:
2207 return err;
2208 }
2209
2210 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2211 unsigned int, flags, struct sockaddr __user *, addr,
2212 int __user *, addr_len)
2213 {
2214 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2215 }
2216
2217 /*
2218 * Receive a datagram from a socket.
2219 */
2220
2221 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2222 unsigned int, flags)
2223 {
2224 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2225 }
2226
2227 static bool sock_use_custom_sol_socket(const struct socket *sock)
2228 {
2229 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2230 }
2231
2232 /*
2233 * Set a socket option. Because we don't know the option lengths we have
2234 * to pass the user mode parameter for the protocols to sort out.
2235 */
2236 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2237 int optlen)
2238 {
2239 sockptr_t optval = USER_SOCKPTR(user_optval);
2240 char *kernel_optval = NULL;
2241 int err, fput_needed;
2242 struct socket *sock;
2243
2244 if (optlen < 0)
2245 return -EINVAL;
2246
2247 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2248 if (!sock)
2249 return err;
2250
2251 err = security_socket_setsockopt(sock, level, optname);
2252 if (err)
2253 goto out_put;
2254
2255 if (!in_compat_syscall())
2256 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2257 user_optval, &optlen,
2258 &kernel_optval);
2259 if (err < 0)
2260 goto out_put;
2261 if (err > 0) {
2262 err = 0;
2263 goto out_put;
2264 }
2265
2266 if (kernel_optval)
2267 optval = KERNEL_SOCKPTR(kernel_optval);
2268 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2269 err = sock_setsockopt(sock, level, optname, optval, optlen);
2270 else if (unlikely(!sock->ops->setsockopt))
2271 err = -EOPNOTSUPP;
2272 else
2273 err = sock->ops->setsockopt(sock, level, optname, optval,
2274 optlen);
2275 kfree(kernel_optval);
2276 out_put:
2277 fput_light(sock->file, fput_needed);
2278 return err;
2279 }
2280
2281 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2282 char __user *, optval, int, optlen)
2283 {
2284 return __sys_setsockopt(fd, level, optname, optval, optlen);
2285 }
2286
2287 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2288 int optname));
2289
2290 /*
2291 * Get a socket option. Because we don't know the option lengths we have
2292 * to pass a user mode parameter for the protocols to sort out.
2293 */
2294 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2295 int __user *optlen)
2296 {
2297 int max_optlen __maybe_unused;
2298 int err, fput_needed;
2299 struct socket *sock;
2300
2301 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2302 if (!sock)
2303 return err;
2304
2305 err = security_socket_getsockopt(sock, level, optname);
2306 if (err)
2307 goto out_put;
2308
2309 if (!in_compat_syscall())
2310 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2311
2312 if (level == SOL_SOCKET)
2313 err = sock_getsockopt(sock, level, optname, optval, optlen);
2314 else if (unlikely(!sock->ops->getsockopt))
2315 err = -EOPNOTSUPP;
2316 else
2317 err = sock->ops->getsockopt(sock, level, optname, optval,
2318 optlen);
2319
2320 if (!in_compat_syscall())
2321 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2322 optval, optlen, max_optlen,
2323 err);
2324 out_put:
2325 fput_light(sock->file, fput_needed);
2326 return err;
2327 }
2328
2329 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2330 char __user *, optval, int __user *, optlen)
2331 {
2332 return __sys_getsockopt(fd, level, optname, optval, optlen);
2333 }
2334
2335 /*
2336 * Shutdown a socket.
2337 */
2338
2339 int __sys_shutdown_sock(struct socket *sock, int how)
2340 {
2341 int err;
2342
2343 err = security_socket_shutdown(sock, how);
2344 if (!err)
2345 err = sock->ops->shutdown(sock, how);
2346
2347 return err;
2348 }
2349
2350 int __sys_shutdown(int fd, int how)
2351 {
2352 int err, fput_needed;
2353 struct socket *sock;
2354
2355 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2356 if (sock != NULL) {
2357 err = __sys_shutdown_sock(sock, how);
2358 fput_light(sock->file, fput_needed);
2359 }
2360 return err;
2361 }
2362
2363 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2364 {
2365 return __sys_shutdown(fd, how);
2366 }
2367
2368 /* A couple of helpful macros for getting the address of the 32/64 bit
2369 * fields which are the same type (int / unsigned) on our platforms.
2370 */
2371 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2372 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2373 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2374
2375 struct used_address {
2376 struct sockaddr_storage name;
2377 unsigned int name_len;
2378 };
2379
2380 int __copy_msghdr(struct msghdr *kmsg,
2381 struct user_msghdr *msg,
2382 struct sockaddr __user **save_addr)
2383 {
2384 ssize_t err;
2385
2386 kmsg->msg_control_is_user = true;
2387 kmsg->msg_get_inq = 0;
2388 kmsg->msg_control_user = msg->msg_control;
2389 kmsg->msg_controllen = msg->msg_controllen;
2390 kmsg->msg_flags = msg->msg_flags;
2391
2392 kmsg->msg_namelen = msg->msg_namelen;
2393 if (!msg->msg_name)
2394 kmsg->msg_namelen = 0;
2395
2396 if (kmsg->msg_namelen < 0)
2397 return -EINVAL;
2398
2399 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2400 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2401
2402 if (save_addr)
2403 *save_addr = msg->msg_name;
2404
2405 if (msg->msg_name && kmsg->msg_namelen) {
2406 if (!save_addr) {
2407 err = move_addr_to_kernel(msg->msg_name,
2408 kmsg->msg_namelen,
2409 kmsg->msg_name);
2410 if (err < 0)
2411 return err;
2412 }
2413 } else {
2414 kmsg->msg_name = NULL;
2415 kmsg->msg_namelen = 0;
2416 }
2417
2418 if (msg->msg_iovlen > UIO_MAXIOV)
2419 return -EMSGSIZE;
2420
2421 kmsg->msg_iocb = NULL;
2422 kmsg->msg_ubuf = NULL;
2423 return 0;
2424 }
2425
2426 static int copy_msghdr_from_user(struct msghdr *kmsg,
2427 struct user_msghdr __user *umsg,
2428 struct sockaddr __user **save_addr,
2429 struct iovec **iov)
2430 {
2431 struct user_msghdr msg;
2432 ssize_t err;
2433
2434 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2435 return -EFAULT;
2436
2437 err = __copy_msghdr(kmsg, &msg, save_addr);
2438 if (err)
2439 return err;
2440
2441 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2442 msg.msg_iov, msg.msg_iovlen,
2443 UIO_FASTIOV, iov, &kmsg->msg_iter);
2444 return err < 0 ? err : 0;
2445 }
2446
2447 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2448 unsigned int flags, struct used_address *used_address,
2449 unsigned int allowed_msghdr_flags)
2450 {
2451 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2452 __aligned(sizeof(__kernel_size_t));
2453 /* 20 is size of ipv6_pktinfo */
2454 unsigned char *ctl_buf = ctl;
2455 int ctl_len;
2456 ssize_t err;
2457
2458 err = -ENOBUFS;
2459
2460 if (msg_sys->msg_controllen > INT_MAX)
2461 goto out;
2462 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2463 ctl_len = msg_sys->msg_controllen;
2464 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2465 err =
2466 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2467 sizeof(ctl));
2468 if (err)
2469 goto out;
2470 ctl_buf = msg_sys->msg_control;
2471 ctl_len = msg_sys->msg_controllen;
2472 } else if (ctl_len) {
2473 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2474 CMSG_ALIGN(sizeof(struct cmsghdr)));
2475 if (ctl_len > sizeof(ctl)) {
2476 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2477 if (ctl_buf == NULL)
2478 goto out;
2479 }
2480 err = -EFAULT;
2481 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2482 goto out_freectl;
2483 msg_sys->msg_control = ctl_buf;
2484 msg_sys->msg_control_is_user = false;
2485 }
2486 msg_sys->msg_flags = flags;
2487
2488 if (sock->file->f_flags & O_NONBLOCK)
2489 msg_sys->msg_flags |= MSG_DONTWAIT;
2490 /*
2491 * If this is sendmmsg() and current destination address is same as
2492 * previously succeeded address, omit asking LSM's decision.
2493 * used_address->name_len is initialized to UINT_MAX so that the first
2494 * destination address never matches.
2495 */
2496 if (used_address && msg_sys->msg_name &&
2497 used_address->name_len == msg_sys->msg_namelen &&
2498 !memcmp(&used_address->name, msg_sys->msg_name,
2499 used_address->name_len)) {
2500 err = sock_sendmsg_nosec(sock, msg_sys);
2501 goto out_freectl;
2502 }
2503 err = sock_sendmsg(sock, msg_sys);
2504 /*
2505 * If this is sendmmsg() and sending to current destination address was
2506 * successful, remember it.
2507 */
2508 if (used_address && err >= 0) {
2509 used_address->name_len = msg_sys->msg_namelen;
2510 if (msg_sys->msg_name)
2511 memcpy(&used_address->name, msg_sys->msg_name,
2512 used_address->name_len);
2513 }
2514
2515 out_freectl:
2516 if (ctl_buf != ctl)
2517 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2518 out:
2519 return err;
2520 }
2521
2522 int sendmsg_copy_msghdr(struct msghdr *msg,
2523 struct user_msghdr __user *umsg, unsigned flags,
2524 struct iovec **iov)
2525 {
2526 int err;
2527
2528 if (flags & MSG_CMSG_COMPAT) {
2529 struct compat_msghdr __user *msg_compat;
2530
2531 msg_compat = (struct compat_msghdr __user *) umsg;
2532 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2533 } else {
2534 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2535 }
2536 if (err < 0)
2537 return err;
2538
2539 return 0;
2540 }
2541
2542 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2543 struct msghdr *msg_sys, unsigned int flags,
2544 struct used_address *used_address,
2545 unsigned int allowed_msghdr_flags)
2546 {
2547 struct sockaddr_storage address;
2548 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2549 ssize_t err;
2550
2551 msg_sys->msg_name = &address;
2552
2553 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2554 if (err < 0)
2555 return err;
2556
2557 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2558 allowed_msghdr_flags);
2559 kfree(iov);
2560 return err;
2561 }
2562
2563 /*
2564 * BSD sendmsg interface
2565 */
2566 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2567 unsigned int flags)
2568 {
2569 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2570 }
2571
2572 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2573 bool forbid_cmsg_compat)
2574 {
2575 int fput_needed, err;
2576 struct msghdr msg_sys;
2577 struct socket *sock;
2578
2579 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2580 return -EINVAL;
2581
2582 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2583 if (!sock)
2584 goto out;
2585
2586 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2587
2588 fput_light(sock->file, fput_needed);
2589 out:
2590 return err;
2591 }
2592
2593 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2594 {
2595 return __sys_sendmsg(fd, msg, flags, true);
2596 }
2597
2598 /*
2599 * Linux sendmmsg interface
2600 */
2601
2602 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2603 unsigned int flags, bool forbid_cmsg_compat)
2604 {
2605 int fput_needed, err, datagrams;
2606 struct socket *sock;
2607 struct mmsghdr __user *entry;
2608 struct compat_mmsghdr __user *compat_entry;
2609 struct msghdr msg_sys;
2610 struct used_address used_address;
2611 unsigned int oflags = flags;
2612
2613 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2614 return -EINVAL;
2615
2616 if (vlen > UIO_MAXIOV)
2617 vlen = UIO_MAXIOV;
2618
2619 datagrams = 0;
2620
2621 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2622 if (!sock)
2623 return err;
2624
2625 used_address.name_len = UINT_MAX;
2626 entry = mmsg;
2627 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2628 err = 0;
2629 flags |= MSG_BATCH;
2630
2631 while (datagrams < vlen) {
2632 if (datagrams == vlen - 1)
2633 flags = oflags;
2634
2635 if (MSG_CMSG_COMPAT & flags) {
2636 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2637 &msg_sys, flags, &used_address, MSG_EOR);
2638 if (err < 0)
2639 break;
2640 err = __put_user(err, &compat_entry->msg_len);
2641 ++compat_entry;
2642 } else {
2643 err = ___sys_sendmsg(sock,
2644 (struct user_msghdr __user *)entry,
2645 &msg_sys, flags, &used_address, MSG_EOR);
2646 if (err < 0)
2647 break;
2648 err = put_user(err, &entry->msg_len);
2649 ++entry;
2650 }
2651
2652 if (err)
2653 break;
2654 ++datagrams;
2655 if (msg_data_left(&msg_sys))
2656 break;
2657 cond_resched();
2658 }
2659
2660 fput_light(sock->file, fput_needed);
2661
2662 /* We only return an error if no datagrams were able to be sent */
2663 if (datagrams != 0)
2664 return datagrams;
2665
2666 return err;
2667 }
2668
2669 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2670 unsigned int, vlen, unsigned int, flags)
2671 {
2672 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2673 }
2674
2675 int recvmsg_copy_msghdr(struct msghdr *msg,
2676 struct user_msghdr __user *umsg, unsigned flags,
2677 struct sockaddr __user **uaddr,
2678 struct iovec **iov)
2679 {
2680 ssize_t err;
2681
2682 if (MSG_CMSG_COMPAT & flags) {
2683 struct compat_msghdr __user *msg_compat;
2684
2685 msg_compat = (struct compat_msghdr __user *) umsg;
2686 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2687 } else {
2688 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2689 }
2690 if (err < 0)
2691 return err;
2692
2693 return 0;
2694 }
2695
2696 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2697 struct user_msghdr __user *msg,
2698 struct sockaddr __user *uaddr,
2699 unsigned int flags, int nosec)
2700 {
2701 struct compat_msghdr __user *msg_compat =
2702 (struct compat_msghdr __user *) msg;
2703 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2704 struct sockaddr_storage addr;
2705 unsigned long cmsg_ptr;
2706 int len;
2707 ssize_t err;
2708
2709 msg_sys->msg_name = &addr;
2710 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2711 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2712
2713 /* We assume all kernel code knows the size of sockaddr_storage */
2714 msg_sys->msg_namelen = 0;
2715
2716 if (sock->file->f_flags & O_NONBLOCK)
2717 flags |= MSG_DONTWAIT;
2718
2719 if (unlikely(nosec))
2720 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2721 else
2722 err = sock_recvmsg(sock, msg_sys, flags);
2723
2724 if (err < 0)
2725 goto out;
2726 len = err;
2727
2728 if (uaddr != NULL) {
2729 err = move_addr_to_user(&addr,
2730 msg_sys->msg_namelen, uaddr,
2731 uaddr_len);
2732 if (err < 0)
2733 goto out;
2734 }
2735 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2736 COMPAT_FLAGS(msg));
2737 if (err)
2738 goto out;
2739 if (MSG_CMSG_COMPAT & flags)
2740 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2741 &msg_compat->msg_controllen);
2742 else
2743 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2744 &msg->msg_controllen);
2745 if (err)
2746 goto out;
2747 err = len;
2748 out:
2749 return err;
2750 }
2751
2752 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2753 struct msghdr *msg_sys, unsigned int flags, int nosec)
2754 {
2755 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2756 /* user mode address pointers */
2757 struct sockaddr __user *uaddr;
2758 ssize_t err;
2759
2760 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2761 if (err < 0)
2762 return err;
2763
2764 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2765 kfree(iov);
2766 return err;
2767 }
2768
2769 /*
2770 * BSD recvmsg interface
2771 */
2772
2773 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2774 struct user_msghdr __user *umsg,
2775 struct sockaddr __user *uaddr, unsigned int flags)
2776 {
2777 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2778 }
2779
2780 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2781 bool forbid_cmsg_compat)
2782 {
2783 int fput_needed, err;
2784 struct msghdr msg_sys;
2785 struct socket *sock;
2786
2787 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2788 return -EINVAL;
2789
2790 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2791 if (!sock)
2792 goto out;
2793
2794 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2795
2796 fput_light(sock->file, fput_needed);
2797 out:
2798 return err;
2799 }
2800
2801 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2802 unsigned int, flags)
2803 {
2804 return __sys_recvmsg(fd, msg, flags, true);
2805 }
2806
2807 /*
2808 * Linux recvmmsg interface
2809 */
2810
2811 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2812 unsigned int vlen, unsigned int flags,
2813 struct timespec64 *timeout)
2814 {
2815 int fput_needed, err, datagrams;
2816 struct socket *sock;
2817 struct mmsghdr __user *entry;
2818 struct compat_mmsghdr __user *compat_entry;
2819 struct msghdr msg_sys;
2820 struct timespec64 end_time;
2821 struct timespec64 timeout64;
2822
2823 if (timeout &&
2824 poll_select_set_timeout(&end_time, timeout->tv_sec,
2825 timeout->tv_nsec))
2826 return -EINVAL;
2827
2828 datagrams = 0;
2829
2830 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2831 if (!sock)
2832 return err;
2833
2834 if (likely(!(flags & MSG_ERRQUEUE))) {
2835 err = sock_error(sock->sk);
2836 if (err) {
2837 datagrams = err;
2838 goto out_put;
2839 }
2840 }
2841
2842 entry = mmsg;
2843 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2844
2845 while (datagrams < vlen) {
2846 /*
2847 * No need to ask LSM for more than the first datagram.
2848 */
2849 if (MSG_CMSG_COMPAT & flags) {
2850 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2851 &msg_sys, flags & ~MSG_WAITFORONE,
2852 datagrams);
2853 if (err < 0)
2854 break;
2855 err = __put_user(err, &compat_entry->msg_len);
2856 ++compat_entry;
2857 } else {
2858 err = ___sys_recvmsg(sock,
2859 (struct user_msghdr __user *)entry,
2860 &msg_sys, flags & ~MSG_WAITFORONE,
2861 datagrams);
2862 if (err < 0)
2863 break;
2864 err = put_user(err, &entry->msg_len);
2865 ++entry;
2866 }
2867
2868 if (err)
2869 break;
2870 ++datagrams;
2871
2872 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2873 if (flags & MSG_WAITFORONE)
2874 flags |= MSG_DONTWAIT;
2875
2876 if (timeout) {
2877 ktime_get_ts64(&timeout64);
2878 *timeout = timespec64_sub(end_time, timeout64);
2879 if (timeout->tv_sec < 0) {
2880 timeout->tv_sec = timeout->tv_nsec = 0;
2881 break;
2882 }
2883
2884 /* Timeout, return less than vlen datagrams */
2885 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2886 break;
2887 }
2888
2889 /* Out of band data, return right away */
2890 if (msg_sys.msg_flags & MSG_OOB)
2891 break;
2892 cond_resched();
2893 }
2894
2895 if (err == 0)
2896 goto out_put;
2897
2898 if (datagrams == 0) {
2899 datagrams = err;
2900 goto out_put;
2901 }
2902
2903 /*
2904 * We may return less entries than requested (vlen) if the
2905 * sock is non block and there aren't enough datagrams...
2906 */
2907 if (err != -EAGAIN) {
2908 /*
2909 * ... or if recvmsg returns an error after we
2910 * received some datagrams, where we record the
2911 * error to return on the next call or if the
2912 * app asks about it using getsockopt(SO_ERROR).
2913 */
2914 sock->sk->sk_err = -err;
2915 }
2916 out_put:
2917 fput_light(sock->file, fput_needed);
2918
2919 return datagrams;
2920 }
2921
2922 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2923 unsigned int vlen, unsigned int flags,
2924 struct __kernel_timespec __user *timeout,
2925 struct old_timespec32 __user *timeout32)
2926 {
2927 int datagrams;
2928 struct timespec64 timeout_sys;
2929
2930 if (timeout && get_timespec64(&timeout_sys, timeout))
2931 return -EFAULT;
2932
2933 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2934 return -EFAULT;
2935
2936 if (!timeout && !timeout32)
2937 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2938
2939 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2940
2941 if (datagrams <= 0)
2942 return datagrams;
2943
2944 if (timeout && put_timespec64(&timeout_sys, timeout))
2945 datagrams = -EFAULT;
2946
2947 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2948 datagrams = -EFAULT;
2949
2950 return datagrams;
2951 }
2952
2953 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2954 unsigned int, vlen, unsigned int, flags,
2955 struct __kernel_timespec __user *, timeout)
2956 {
2957 if (flags & MSG_CMSG_COMPAT)
2958 return -EINVAL;
2959
2960 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2961 }
2962
2963 #ifdef CONFIG_COMPAT_32BIT_TIME
2964 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2965 unsigned int, vlen, unsigned int, flags,
2966 struct old_timespec32 __user *, timeout)
2967 {
2968 if (flags & MSG_CMSG_COMPAT)
2969 return -EINVAL;
2970
2971 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2972 }
2973 #endif
2974
2975 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2976 /* Argument list sizes for sys_socketcall */
2977 #define AL(x) ((x) * sizeof(unsigned long))
2978 static const unsigned char nargs[21] = {
2979 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2980 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2981 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2982 AL(4), AL(5), AL(4)
2983 };
2984
2985 #undef AL
2986
2987 /*
2988 * System call vectors.
2989 *
2990 * Argument checking cleaned up. Saved 20% in size.
2991 * This function doesn't need to set the kernel lock because
2992 * it is set by the callees.
2993 */
2994
2995 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2996 {
2997 unsigned long a[AUDITSC_ARGS];
2998 unsigned long a0, a1;
2999 int err;
3000 unsigned int len;
3001
3002 if (call < 1 || call > SYS_SENDMMSG)
3003 return -EINVAL;
3004 call = array_index_nospec(call, SYS_SENDMMSG + 1);
3005
3006 len = nargs[call];
3007 if (len > sizeof(a))
3008 return -EINVAL;
3009
3010 /* copy_from_user should be SMP safe. */
3011 if (copy_from_user(a, args, len))
3012 return -EFAULT;
3013
3014 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3015 if (err)
3016 return err;
3017
3018 a0 = a[0];
3019 a1 = a[1];
3020
3021 switch (call) {
3022 case SYS_SOCKET:
3023 err = __sys_socket(a0, a1, a[2]);
3024 break;
3025 case SYS_BIND:
3026 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3027 break;
3028 case SYS_CONNECT:
3029 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3030 break;
3031 case SYS_LISTEN:
3032 err = __sys_listen(a0, a1);
3033 break;
3034 case SYS_ACCEPT:
3035 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3036 (int __user *)a[2], 0);
3037 break;
3038 case SYS_GETSOCKNAME:
3039 err =
3040 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3041 (int __user *)a[2]);
3042 break;
3043 case SYS_GETPEERNAME:
3044 err =
3045 __sys_getpeername(a0, (struct sockaddr __user *)a1,
3046 (int __user *)a[2]);
3047 break;
3048 case SYS_SOCKETPAIR:
3049 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3050 break;
3051 case SYS_SEND:
3052 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3053 NULL, 0);
3054 break;
3055 case SYS_SENDTO:
3056 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3057 (struct sockaddr __user *)a[4], a[5]);
3058 break;
3059 case SYS_RECV:
3060 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3061 NULL, NULL);
3062 break;
3063 case SYS_RECVFROM:
3064 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3065 (struct sockaddr __user *)a[4],
3066 (int __user *)a[5]);
3067 break;
3068 case SYS_SHUTDOWN:
3069 err = __sys_shutdown(a0, a1);
3070 break;
3071 case SYS_SETSOCKOPT:
3072 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3073 a[4]);
3074 break;
3075 case SYS_GETSOCKOPT:
3076 err =
3077 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3078 (int __user *)a[4]);
3079 break;
3080 case SYS_SENDMSG:
3081 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3082 a[2], true);
3083 break;
3084 case SYS_SENDMMSG:
3085 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3086 a[3], true);
3087 break;
3088 case SYS_RECVMSG:
3089 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3090 a[2], true);
3091 break;
3092 case SYS_RECVMMSG:
3093 if (IS_ENABLED(CONFIG_64BIT))
3094 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3095 a[2], a[3],
3096 (struct __kernel_timespec __user *)a[4],
3097 NULL);
3098 else
3099 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3100 a[2], a[3], NULL,
3101 (struct old_timespec32 __user *)a[4]);
3102 break;
3103 case SYS_ACCEPT4:
3104 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3105 (int __user *)a[2], a[3]);
3106 break;
3107 default:
3108 err = -EINVAL;
3109 break;
3110 }
3111 return err;
3112 }
3113
3114 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3115
3116 /**
3117 * sock_register - add a socket protocol handler
3118 * @ops: description of protocol
3119 *
3120 * This function is called by a protocol handler that wants to
3121 * advertise its address family, and have it linked into the
3122 * socket interface. The value ops->family corresponds to the
3123 * socket system call protocol family.
3124 */
3125 int sock_register(const struct net_proto_family *ops)
3126 {
3127 int err;
3128
3129 if (ops->family >= NPROTO) {
3130 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3131 return -ENOBUFS;
3132 }
3133
3134 spin_lock(&net_family_lock);
3135 if (rcu_dereference_protected(net_families[ops->family],
3136 lockdep_is_held(&net_family_lock)))
3137 err = -EEXIST;
3138 else {
3139 rcu_assign_pointer(net_families[ops->family], ops);
3140 err = 0;
3141 }
3142 spin_unlock(&net_family_lock);
3143
3144 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3145 return err;
3146 }
3147 EXPORT_SYMBOL(sock_register);
3148
3149 /**
3150 * sock_unregister - remove a protocol handler
3151 * @family: protocol family to remove
3152 *
3153 * This function is called by a protocol handler that wants to
3154 * remove its address family, and have it unlinked from the
3155 * new socket creation.
3156 *
3157 * If protocol handler is a module, then it can use module reference
3158 * counts to protect against new references. If protocol handler is not
3159 * a module then it needs to provide its own protection in
3160 * the ops->create routine.
3161 */
3162 void sock_unregister(int family)
3163 {
3164 BUG_ON(family < 0 || family >= NPROTO);
3165
3166 spin_lock(&net_family_lock);
3167 RCU_INIT_POINTER(net_families[family], NULL);
3168 spin_unlock(&net_family_lock);
3169
3170 synchronize_rcu();
3171
3172 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3173 }
3174 EXPORT_SYMBOL(sock_unregister);
3175
3176 bool sock_is_registered(int family)
3177 {
3178 return family < NPROTO && rcu_access_pointer(net_families[family]);
3179 }
3180
3181 static int __init sock_init(void)
3182 {
3183 int err;
3184 /*
3185 * Initialize the network sysctl infrastructure.
3186 */
3187 err = net_sysctl_init();
3188 if (err)
3189 goto out;
3190
3191 /*
3192 * Initialize skbuff SLAB cache
3193 */
3194 skb_init();
3195
3196 /*
3197 * Initialize the protocols module.
3198 */
3199
3200 init_inodecache();
3201
3202 err = register_filesystem(&sock_fs_type);
3203 if (err)
3204 goto out;
3205 sock_mnt = kern_mount(&sock_fs_type);
3206 if (IS_ERR(sock_mnt)) {
3207 err = PTR_ERR(sock_mnt);
3208 goto out_mount;
3209 }
3210
3211 /* The real protocol initialization is performed in later initcalls.
3212 */
3213
3214 #ifdef CONFIG_NETFILTER
3215 err = netfilter_init();
3216 if (err)
3217 goto out;
3218 #endif
3219
3220 ptp_classifier_init();
3221
3222 out:
3223 return err;
3224
3225 out_mount:
3226 unregister_filesystem(&sock_fs_type);
3227 goto out;
3228 }
3229
3230 core_initcall(sock_init); /* early initcall */
3231
3232 #ifdef CONFIG_PROC_FS
3233 void socket_seq_show(struct seq_file *seq)
3234 {
3235 seq_printf(seq, "sockets: used %d\n",
3236 sock_inuse_get(seq->private));
3237 }
3238 #endif /* CONFIG_PROC_FS */
3239
3240 /* Handle the fact that while struct ifreq has the same *layout* on
3241 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3242 * which are handled elsewhere, it still has different *size* due to
3243 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3244 * resulting in struct ifreq being 32 and 40 bytes respectively).
3245 * As a result, if the struct happens to be at the end of a page and
3246 * the next page isn't readable/writable, we get a fault. To prevent
3247 * that, copy back and forth to the full size.
3248 */
3249 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3250 {
3251 if (in_compat_syscall()) {
3252 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3253
3254 memset(ifr, 0, sizeof(*ifr));
3255 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3256 return -EFAULT;
3257
3258 if (ifrdata)
3259 *ifrdata = compat_ptr(ifr32->ifr_data);
3260
3261 return 0;
3262 }
3263
3264 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3265 return -EFAULT;
3266
3267 if (ifrdata)
3268 *ifrdata = ifr->ifr_data;
3269
3270 return 0;
3271 }
3272 EXPORT_SYMBOL(get_user_ifreq);
3273
3274 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3275 {
3276 size_t size = sizeof(*ifr);
3277
3278 if (in_compat_syscall())
3279 size = sizeof(struct compat_ifreq);
3280
3281 if (copy_to_user(arg, ifr, size))
3282 return -EFAULT;
3283
3284 return 0;
3285 }
3286 EXPORT_SYMBOL(put_user_ifreq);
3287
3288 #ifdef CONFIG_COMPAT
3289 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3290 {
3291 compat_uptr_t uptr32;
3292 struct ifreq ifr;
3293 void __user *saved;
3294 int err;
3295
3296 if (get_user_ifreq(&ifr, NULL, uifr32))
3297 return -EFAULT;
3298
3299 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3300 return -EFAULT;
3301
3302 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3303 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3304
3305 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3306 if (!err) {
3307 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3308 if (put_user_ifreq(&ifr, uifr32))
3309 err = -EFAULT;
3310 }
3311 return err;
3312 }
3313
3314 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3315 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3316 struct compat_ifreq __user *u_ifreq32)
3317 {
3318 struct ifreq ifreq;
3319 void __user *data;
3320
3321 if (!is_socket_ioctl_cmd(cmd))
3322 return -ENOTTY;
3323 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3324 return -EFAULT;
3325 ifreq.ifr_data = data;
3326
3327 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3328 }
3329
3330 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3331 unsigned int cmd, unsigned long arg)
3332 {
3333 void __user *argp = compat_ptr(arg);
3334 struct sock *sk = sock->sk;
3335 struct net *net = sock_net(sk);
3336
3337 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3338 return sock_ioctl(file, cmd, (unsigned long)argp);
3339
3340 switch (cmd) {
3341 case SIOCWANDEV:
3342 return compat_siocwandev(net, argp);
3343 case SIOCGSTAMP_OLD:
3344 case SIOCGSTAMPNS_OLD:
3345 if (!sock->ops->gettstamp)
3346 return -ENOIOCTLCMD;
3347 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3348 !COMPAT_USE_64BIT_TIME);
3349
3350 case SIOCETHTOOL:
3351 case SIOCBONDSLAVEINFOQUERY:
3352 case SIOCBONDINFOQUERY:
3353 case SIOCSHWTSTAMP:
3354 case SIOCGHWTSTAMP:
3355 return compat_ifr_data_ioctl(net, cmd, argp);
3356
3357 case FIOSETOWN:
3358 case SIOCSPGRP:
3359 case FIOGETOWN:
3360 case SIOCGPGRP:
3361 case SIOCBRADDBR:
3362 case SIOCBRDELBR:
3363 case SIOCGIFVLAN:
3364 case SIOCSIFVLAN:
3365 case SIOCGSKNS:
3366 case SIOCGSTAMP_NEW:
3367 case SIOCGSTAMPNS_NEW:
3368 case SIOCGIFCONF:
3369 case SIOCSIFBR:
3370 case SIOCGIFBR:
3371 return sock_ioctl(file, cmd, arg);
3372
3373 case SIOCGIFFLAGS:
3374 case SIOCSIFFLAGS:
3375 case SIOCGIFMAP:
3376 case SIOCSIFMAP:
3377 case SIOCGIFMETRIC:
3378 case SIOCSIFMETRIC:
3379 case SIOCGIFMTU:
3380 case SIOCSIFMTU:
3381 case SIOCGIFMEM:
3382 case SIOCSIFMEM:
3383 case SIOCGIFHWADDR:
3384 case SIOCSIFHWADDR:
3385 case SIOCADDMULTI:
3386 case SIOCDELMULTI:
3387 case SIOCGIFINDEX:
3388 case SIOCGIFADDR:
3389 case SIOCSIFADDR:
3390 case SIOCSIFHWBROADCAST:
3391 case SIOCDIFADDR:
3392 case SIOCGIFBRDADDR:
3393 case SIOCSIFBRDADDR:
3394 case SIOCGIFDSTADDR:
3395 case SIOCSIFDSTADDR:
3396 case SIOCGIFNETMASK:
3397 case SIOCSIFNETMASK:
3398 case SIOCSIFPFLAGS:
3399 case SIOCGIFPFLAGS:
3400 case SIOCGIFTXQLEN:
3401 case SIOCSIFTXQLEN:
3402 case SIOCBRADDIF:
3403 case SIOCBRDELIF:
3404 case SIOCGIFNAME:
3405 case SIOCSIFNAME:
3406 case SIOCGMIIPHY:
3407 case SIOCGMIIREG:
3408 case SIOCSMIIREG:
3409 case SIOCBONDENSLAVE:
3410 case SIOCBONDRELEASE:
3411 case SIOCBONDSETHWADDR:
3412 case SIOCBONDCHANGEACTIVE:
3413 case SIOCSARP:
3414 case SIOCGARP:
3415 case SIOCDARP:
3416 case SIOCOUTQ:
3417 case SIOCOUTQNSD:
3418 case SIOCATMARK:
3419 return sock_do_ioctl(net, sock, cmd, arg);
3420 }
3421
3422 return -ENOIOCTLCMD;
3423 }
3424
3425 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3426 unsigned long arg)
3427 {
3428 struct socket *sock = file->private_data;
3429 int ret = -ENOIOCTLCMD;
3430 struct sock *sk;
3431 struct net *net;
3432
3433 sk = sock->sk;
3434 net = sock_net(sk);
3435
3436 if (sock->ops->compat_ioctl)
3437 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3438
3439 if (ret == -ENOIOCTLCMD &&
3440 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3441 ret = compat_wext_handle_ioctl(net, cmd, arg);
3442
3443 if (ret == -ENOIOCTLCMD)
3444 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3445
3446 return ret;
3447 }
3448 #endif
3449
3450 /**
3451 * kernel_bind - bind an address to a socket (kernel space)
3452 * @sock: socket
3453 * @addr: address
3454 * @addrlen: length of address
3455 *
3456 * Returns 0 or an error.
3457 */
3458
3459 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3460 {
3461 return sock->ops->bind(sock, addr, addrlen);
3462 }
3463 EXPORT_SYMBOL(kernel_bind);
3464
3465 /**
3466 * kernel_listen - move socket to listening state (kernel space)
3467 * @sock: socket
3468 * @backlog: pending connections queue size
3469 *
3470 * Returns 0 or an error.
3471 */
3472
3473 int kernel_listen(struct socket *sock, int backlog)
3474 {
3475 return sock->ops->listen(sock, backlog);
3476 }
3477 EXPORT_SYMBOL(kernel_listen);
3478
3479 /**
3480 * kernel_accept - accept a connection (kernel space)
3481 * @sock: listening socket
3482 * @newsock: new connected socket
3483 * @flags: flags
3484 *
3485 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3486 * If it fails, @newsock is guaranteed to be %NULL.
3487 * Returns 0 or an error.
3488 */
3489
3490 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3491 {
3492 struct sock *sk = sock->sk;
3493 int err;
3494
3495 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3496 newsock);
3497 if (err < 0)
3498 goto done;
3499
3500 err = sock->ops->accept(sock, *newsock, flags, true);
3501 if (err < 0) {
3502 sock_release(*newsock);
3503 *newsock = NULL;
3504 goto done;
3505 }
3506
3507 (*newsock)->ops = sock->ops;
3508 __module_get((*newsock)->ops->owner);
3509
3510 done:
3511 return err;
3512 }
3513 EXPORT_SYMBOL(kernel_accept);
3514
3515 /**
3516 * kernel_connect - connect a socket (kernel space)
3517 * @sock: socket
3518 * @addr: address
3519 * @addrlen: address length
3520 * @flags: flags (O_NONBLOCK, ...)
3521 *
3522 * For datagram sockets, @addr is the address to which datagrams are sent
3523 * by default, and the only address from which datagrams are received.
3524 * For stream sockets, attempts to connect to @addr.
3525 * Returns 0 or an error code.
3526 */
3527
3528 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3529 int flags)
3530 {
3531 return sock->ops->connect(sock, addr, addrlen, flags);
3532 }
3533 EXPORT_SYMBOL(kernel_connect);
3534
3535 /**
3536 * kernel_getsockname - get the address which the socket is bound (kernel space)
3537 * @sock: socket
3538 * @addr: address holder
3539 *
3540 * Fills the @addr pointer with the address which the socket is bound.
3541 * Returns the length of the address in bytes or an error code.
3542 */
3543
3544 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3545 {
3546 return sock->ops->getname(sock, addr, 0);
3547 }
3548 EXPORT_SYMBOL(kernel_getsockname);
3549
3550 /**
3551 * kernel_getpeername - get the address which the socket is connected (kernel space)
3552 * @sock: socket
3553 * @addr: address holder
3554 *
3555 * Fills the @addr pointer with the address which the socket is connected.
3556 * Returns the length of the address in bytes or an error code.
3557 */
3558
3559 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3560 {
3561 return sock->ops->getname(sock, addr, 1);
3562 }
3563 EXPORT_SYMBOL(kernel_getpeername);
3564
3565 /**
3566 * kernel_sendpage - send a &page through a socket (kernel space)
3567 * @sock: socket
3568 * @page: page
3569 * @offset: page offset
3570 * @size: total size in bytes
3571 * @flags: flags (MSG_DONTWAIT, ...)
3572 *
3573 * Returns the total amount sent in bytes or an error.
3574 */
3575
3576 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3577 size_t size, int flags)
3578 {
3579 if (sock->ops->sendpage) {
3580 /* Warn in case the improper page to zero-copy send */
3581 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3582 return sock->ops->sendpage(sock, page, offset, size, flags);
3583 }
3584 return sock_no_sendpage(sock, page, offset, size, flags);
3585 }
3586 EXPORT_SYMBOL(kernel_sendpage);
3587
3588 /**
3589 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3590 * @sk: sock
3591 * @page: page
3592 * @offset: page offset
3593 * @size: total size in bytes
3594 * @flags: flags (MSG_DONTWAIT, ...)
3595 *
3596 * Returns the total amount sent in bytes or an error.
3597 * Caller must hold @sk.
3598 */
3599
3600 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3601 size_t size, int flags)
3602 {
3603 struct socket *sock = sk->sk_socket;
3604
3605 if (sock->ops->sendpage_locked)
3606 return sock->ops->sendpage_locked(sk, page, offset, size,
3607 flags);
3608
3609 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3610 }
3611 EXPORT_SYMBOL(kernel_sendpage_locked);
3612
3613 /**
3614 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3615 * @sock: socket
3616 * @how: connection part
3617 *
3618 * Returns 0 or an error.
3619 */
3620
3621 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3622 {
3623 return sock->ops->shutdown(sock, how);
3624 }
3625 EXPORT_SYMBOL(kernel_sock_shutdown);
3626
3627 /**
3628 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3629 * @sk: socket
3630 *
3631 * This routine returns the IP overhead imposed by a socket i.e.
3632 * the length of the underlying IP header, depending on whether
3633 * this is an IPv4 or IPv6 socket and the length from IP options turned
3634 * on at the socket. Assumes that the caller has a lock on the socket.
3635 */
3636
3637 u32 kernel_sock_ip_overhead(struct sock *sk)
3638 {
3639 struct inet_sock *inet;
3640 struct ip_options_rcu *opt;
3641 u32 overhead = 0;
3642 #if IS_ENABLED(CONFIG_IPV6)
3643 struct ipv6_pinfo *np;
3644 struct ipv6_txoptions *optv6 = NULL;
3645 #endif /* IS_ENABLED(CONFIG_IPV6) */
3646
3647 if (!sk)
3648 return overhead;
3649
3650 switch (sk->sk_family) {
3651 case AF_INET:
3652 inet = inet_sk(sk);
3653 overhead += sizeof(struct iphdr);
3654 opt = rcu_dereference_protected(inet->inet_opt,
3655 sock_owned_by_user(sk));
3656 if (opt)
3657 overhead += opt->opt.optlen;
3658 return overhead;
3659 #if IS_ENABLED(CONFIG_IPV6)
3660 case AF_INET6:
3661 np = inet6_sk(sk);
3662 overhead += sizeof(struct ipv6hdr);
3663 if (np)
3664 optv6 = rcu_dereference_protected(np->opt,
3665 sock_owned_by_user(sk));
3666 if (optv6)
3667 overhead += (optv6->opt_flen + optv6->opt_nflen);
3668 return overhead;
3669 #endif /* IS_ENABLED(CONFIG_IPV6) */
3670 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3671 return overhead;
3672 }
3673 }
3674 EXPORT_SYMBOL(kernel_sock_ip_overhead);