]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - net/socket.c
Merge tag 'for-5.2-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[thirdparty/kernel/stable.git] / net / socket.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/security.h>
77 #include <linux/syscalls.h>
78 #include <linux/compat.h>
79 #include <linux/kmod.h>
80 #include <linux/audit.h>
81 #include <linux/wireless.h>
82 #include <linux/nsproxy.h>
83 #include <linux/magic.h>
84 #include <linux/slab.h>
85 #include <linux/xattr.h>
86 #include <linux/nospec.h>
87 #include <linux/indirect_call_wrapper.h>
88
89 #include <linux/uaccess.h>
90 #include <asm/unistd.h>
91
92 #include <net/compat.h>
93 #include <net/wext.h>
94 #include <net/cls_cgroup.h>
95
96 #include <net/sock.h>
97 #include <linux/netfilter.h>
98
99 #include <linux/if_tun.h>
100 #include <linux/ipv6_route.h>
101 #include <linux/route.h>
102 #include <linux/sockios.h>
103 #include <net/busy_poll.h>
104 #include <linux/errqueue.h>
105
106 /* proto_ops for ipv4 and ipv6 use the same {recv,send}msg function */
107 #if IS_ENABLED(CONFIG_INET)
108 #define INDIRECT_CALL_INET4(f, f1, ...) INDIRECT_CALL_1(f, f1, __VA_ARGS__)
109 #else
110 #define INDIRECT_CALL_INET4(f, f1, ...) f(__VA_ARGS__)
111 #endif
112
113 #ifdef CONFIG_NET_RX_BUSY_POLL
114 unsigned int sysctl_net_busy_read __read_mostly;
115 unsigned int sysctl_net_busy_poll __read_mostly;
116 #endif
117
118 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
120 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121
122 static int sock_close(struct inode *inode, struct file *file);
123 static __poll_t sock_poll(struct file *file,
124 struct poll_table_struct *wait);
125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126 #ifdef CONFIG_COMPAT
127 static long compat_sock_ioctl(struct file *file,
128 unsigned int cmd, unsigned long arg);
129 #endif
130 static int sock_fasync(int fd, struct file *filp, int on);
131 static ssize_t sock_sendpage(struct file *file, struct page *page,
132 int offset, size_t size, loff_t *ppos, int more);
133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134 struct pipe_inode_info *pipe, size_t len,
135 unsigned int flags);
136
137 /*
138 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
139 * in the operation structures but are done directly via the socketcall() multiplexor.
140 */
141
142 static const struct file_operations socket_file_ops = {
143 .owner = THIS_MODULE,
144 .llseek = no_llseek,
145 .read_iter = sock_read_iter,
146 .write_iter = sock_write_iter,
147 .poll = sock_poll,
148 .unlocked_ioctl = sock_ioctl,
149 #ifdef CONFIG_COMPAT
150 .compat_ioctl = compat_sock_ioctl,
151 #endif
152 .mmap = sock_mmap,
153 .release = sock_close,
154 .fasync = sock_fasync,
155 .sendpage = sock_sendpage,
156 .splice_write = generic_splice_sendpage,
157 .splice_read = sock_splice_read,
158 };
159
160 /*
161 * The protocol list. Each protocol is registered in here.
162 */
163
164 static DEFINE_SPINLOCK(net_family_lock);
165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166
167 /*
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
171 */
172
173 /**
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
178 *
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 */
183
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
185 {
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
193 }
194
195 /**
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
201 *
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
210 */
211
212 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
213 void __user *uaddr, int __user *ulen)
214 {
215 int err;
216 int len;
217
218 BUG_ON(klen > sizeof(struct sockaddr_storage));
219 err = get_user(len, ulen);
220 if (err)
221 return err;
222 if (len > klen)
223 len = klen;
224 if (len < 0)
225 return -EINVAL;
226 if (len) {
227 if (audit_sockaddr(klen, kaddr))
228 return -ENOMEM;
229 if (copy_to_user(uaddr, kaddr, len))
230 return -EFAULT;
231 }
232 /*
233 * "fromlen shall refer to the value before truncation.."
234 * 1003.1g
235 */
236 return __put_user(klen, ulen);
237 }
238
239 static struct kmem_cache *sock_inode_cachep __ro_after_init;
240
241 static struct inode *sock_alloc_inode(struct super_block *sb)
242 {
243 struct socket_alloc *ei;
244 struct socket_wq *wq;
245
246 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
247 if (!ei)
248 return NULL;
249 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
250 if (!wq) {
251 kmem_cache_free(sock_inode_cachep, ei);
252 return NULL;
253 }
254 init_waitqueue_head(&wq->wait);
255 wq->fasync_list = NULL;
256 wq->flags = 0;
257 ei->socket.wq = wq;
258
259 ei->socket.state = SS_UNCONNECTED;
260 ei->socket.flags = 0;
261 ei->socket.ops = NULL;
262 ei->socket.sk = NULL;
263 ei->socket.file = NULL;
264
265 return &ei->vfs_inode;
266 }
267
268 static void sock_destroy_inode(struct inode *inode)
269 {
270 struct socket_alloc *ei;
271
272 ei = container_of(inode, struct socket_alloc, vfs_inode);
273 kfree_rcu(ei->socket.wq, rcu);
274 kmem_cache_free(sock_inode_cachep, ei);
275 }
276
277 static void init_once(void *foo)
278 {
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
280
281 inode_init_once(&ei->vfs_inode);
282 }
283
284 static void init_inodecache(void)
285 {
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
288 0,
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 init_once);
293 BUG_ON(sock_inode_cachep == NULL);
294 }
295
296 static const struct super_operations sockfs_ops = {
297 .alloc_inode = sock_alloc_inode,
298 .destroy_inode = sock_destroy_inode,
299 .statfs = simple_statfs,
300 };
301
302 /*
303 * sockfs_dname() is called from d_path().
304 */
305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 {
307 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 d_inode(dentry)->i_ino);
309 }
310
311 static const struct dentry_operations sockfs_dentry_operations = {
312 .d_dname = sockfs_dname,
313 };
314
315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 struct dentry *dentry, struct inode *inode,
317 const char *suffix, void *value, size_t size)
318 {
319 if (value) {
320 if (dentry->d_name.len + 1 > size)
321 return -ERANGE;
322 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
323 }
324 return dentry->d_name.len + 1;
325 }
326
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
330
331 static const struct xattr_handler sockfs_xattr_handler = {
332 .name = XATTR_NAME_SOCKPROTONAME,
333 .get = sockfs_xattr_get,
334 };
335
336 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
337 struct dentry *dentry, struct inode *inode,
338 const char *suffix, const void *value,
339 size_t size, int flags)
340 {
341 /* Handled by LSM. */
342 return -EAGAIN;
343 }
344
345 static const struct xattr_handler sockfs_security_xattr_handler = {
346 .prefix = XATTR_SECURITY_PREFIX,
347 .set = sockfs_security_xattr_set,
348 };
349
350 static const struct xattr_handler *sockfs_xattr_handlers[] = {
351 &sockfs_xattr_handler,
352 &sockfs_security_xattr_handler,
353 NULL
354 };
355
356 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
357 int flags, const char *dev_name, void *data)
358 {
359 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
360 sockfs_xattr_handlers,
361 &sockfs_dentry_operations, SOCKFS_MAGIC);
362 }
363
364 static struct vfsmount *sock_mnt __read_mostly;
365
366 static struct file_system_type sock_fs_type = {
367 .name = "sockfs",
368 .mount = sockfs_mount,
369 .kill_sb = kill_anon_super,
370 };
371
372 /*
373 * Obtains the first available file descriptor and sets it up for use.
374 *
375 * These functions create file structures and maps them to fd space
376 * of the current process. On success it returns file descriptor
377 * and file struct implicitly stored in sock->file.
378 * Note that another thread may close file descriptor before we return
379 * from this function. We use the fact that now we do not refer
380 * to socket after mapping. If one day we will need it, this
381 * function will increment ref. count on file by 1.
382 *
383 * In any case returned fd MAY BE not valid!
384 * This race condition is unavoidable
385 * with shared fd spaces, we cannot solve it inside kernel,
386 * but we take care of internal coherence yet.
387 */
388
389 /**
390 * sock_alloc_file - Bind a &socket to a &file
391 * @sock: socket
392 * @flags: file status flags
393 * @dname: protocol name
394 *
395 * Returns the &file bound with @sock, implicitly storing it
396 * in sock->file. If dname is %NULL, sets to "".
397 * On failure the return is a ERR pointer (see linux/err.h).
398 * This function uses GFP_KERNEL internally.
399 */
400
401 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
402 {
403 struct file *file;
404
405 if (!dname)
406 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
407
408 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
409 O_RDWR | (flags & O_NONBLOCK),
410 &socket_file_ops);
411 if (IS_ERR(file)) {
412 sock_release(sock);
413 return file;
414 }
415
416 sock->file = file;
417 file->private_data = sock;
418 return file;
419 }
420 EXPORT_SYMBOL(sock_alloc_file);
421
422 static int sock_map_fd(struct socket *sock, int flags)
423 {
424 struct file *newfile;
425 int fd = get_unused_fd_flags(flags);
426 if (unlikely(fd < 0)) {
427 sock_release(sock);
428 return fd;
429 }
430
431 newfile = sock_alloc_file(sock, flags, NULL);
432 if (likely(!IS_ERR(newfile))) {
433 fd_install(fd, newfile);
434 return fd;
435 }
436
437 put_unused_fd(fd);
438 return PTR_ERR(newfile);
439 }
440
441 /**
442 * sock_from_file - Return the &socket bounded to @file.
443 * @file: file
444 * @err: pointer to an error code return
445 *
446 * On failure returns %NULL and assigns -ENOTSOCK to @err.
447 */
448
449 struct socket *sock_from_file(struct file *file, int *err)
450 {
451 if (file->f_op == &socket_file_ops)
452 return file->private_data; /* set in sock_map_fd */
453
454 *err = -ENOTSOCK;
455 return NULL;
456 }
457 EXPORT_SYMBOL(sock_from_file);
458
459 /**
460 * sockfd_lookup - Go from a file number to its socket slot
461 * @fd: file handle
462 * @err: pointer to an error code return
463 *
464 * The file handle passed in is locked and the socket it is bound
465 * to is returned. If an error occurs the err pointer is overwritten
466 * with a negative errno code and NULL is returned. The function checks
467 * for both invalid handles and passing a handle which is not a socket.
468 *
469 * On a success the socket object pointer is returned.
470 */
471
472 struct socket *sockfd_lookup(int fd, int *err)
473 {
474 struct file *file;
475 struct socket *sock;
476
477 file = fget(fd);
478 if (!file) {
479 *err = -EBADF;
480 return NULL;
481 }
482
483 sock = sock_from_file(file, err);
484 if (!sock)
485 fput(file);
486 return sock;
487 }
488 EXPORT_SYMBOL(sockfd_lookup);
489
490 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
491 {
492 struct fd f = fdget(fd);
493 struct socket *sock;
494
495 *err = -EBADF;
496 if (f.file) {
497 sock = sock_from_file(f.file, err);
498 if (likely(sock)) {
499 *fput_needed = f.flags;
500 return sock;
501 }
502 fdput(f);
503 }
504 return NULL;
505 }
506
507 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
508 size_t size)
509 {
510 ssize_t len;
511 ssize_t used = 0;
512
513 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
514 if (len < 0)
515 return len;
516 used += len;
517 if (buffer) {
518 if (size < used)
519 return -ERANGE;
520 buffer += len;
521 }
522
523 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
524 used += len;
525 if (buffer) {
526 if (size < used)
527 return -ERANGE;
528 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
529 buffer += len;
530 }
531
532 return used;
533 }
534
535 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
536 {
537 int err = simple_setattr(dentry, iattr);
538
539 if (!err && (iattr->ia_valid & ATTR_UID)) {
540 struct socket *sock = SOCKET_I(d_inode(dentry));
541
542 if (sock->sk)
543 sock->sk->sk_uid = iattr->ia_uid;
544 else
545 err = -ENOENT;
546 }
547
548 return err;
549 }
550
551 static const struct inode_operations sockfs_inode_ops = {
552 .listxattr = sockfs_listxattr,
553 .setattr = sockfs_setattr,
554 };
555
556 /**
557 * sock_alloc - allocate a socket
558 *
559 * Allocate a new inode and socket object. The two are bound together
560 * and initialised. The socket is then returned. If we are out of inodes
561 * NULL is returned. This functions uses GFP_KERNEL internally.
562 */
563
564 struct socket *sock_alloc(void)
565 {
566 struct inode *inode;
567 struct socket *sock;
568
569 inode = new_inode_pseudo(sock_mnt->mnt_sb);
570 if (!inode)
571 return NULL;
572
573 sock = SOCKET_I(inode);
574
575 inode->i_ino = get_next_ino();
576 inode->i_mode = S_IFSOCK | S_IRWXUGO;
577 inode->i_uid = current_fsuid();
578 inode->i_gid = current_fsgid();
579 inode->i_op = &sockfs_inode_ops;
580
581 return sock;
582 }
583 EXPORT_SYMBOL(sock_alloc);
584
585 /**
586 * sock_release - close a socket
587 * @sock: socket to close
588 *
589 * The socket is released from the protocol stack if it has a release
590 * callback, and the inode is then released if the socket is bound to
591 * an inode not a file.
592 */
593
594 static void __sock_release(struct socket *sock, struct inode *inode)
595 {
596 if (sock->ops) {
597 struct module *owner = sock->ops->owner;
598
599 if (inode)
600 inode_lock(inode);
601 sock->ops->release(sock);
602 sock->sk = NULL;
603 if (inode)
604 inode_unlock(inode);
605 sock->ops = NULL;
606 module_put(owner);
607 }
608
609 if (sock->wq->fasync_list)
610 pr_err("%s: fasync list not empty!\n", __func__);
611
612 if (!sock->file) {
613 iput(SOCK_INODE(sock));
614 return;
615 }
616 sock->file = NULL;
617 }
618
619 void sock_release(struct socket *sock)
620 {
621 __sock_release(sock, NULL);
622 }
623 EXPORT_SYMBOL(sock_release);
624
625 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
626 {
627 u8 flags = *tx_flags;
628
629 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
630 flags |= SKBTX_HW_TSTAMP;
631
632 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
633 flags |= SKBTX_SW_TSTAMP;
634
635 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
636 flags |= SKBTX_SCHED_TSTAMP;
637
638 *tx_flags = flags;
639 }
640 EXPORT_SYMBOL(__sock_tx_timestamp);
641
642 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
643 size_t));
644 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
645 {
646 int ret = INDIRECT_CALL_INET4(sock->ops->sendmsg, inet_sendmsg, sock,
647 msg, msg_data_left(msg));
648 BUG_ON(ret == -EIOCBQUEUED);
649 return ret;
650 }
651
652 /**
653 * sock_sendmsg - send a message through @sock
654 * @sock: socket
655 * @msg: message to send
656 *
657 * Sends @msg through @sock, passing through LSM.
658 * Returns the number of bytes sent, or an error code.
659 */
660 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
661 {
662 int err = security_socket_sendmsg(sock, msg,
663 msg_data_left(msg));
664
665 return err ?: sock_sendmsg_nosec(sock, msg);
666 }
667 EXPORT_SYMBOL(sock_sendmsg);
668
669 /**
670 * kernel_sendmsg - send a message through @sock (kernel-space)
671 * @sock: socket
672 * @msg: message header
673 * @vec: kernel vec
674 * @num: vec array length
675 * @size: total message data size
676 *
677 * Builds the message data with @vec and sends it through @sock.
678 * Returns the number of bytes sent, or an error code.
679 */
680
681 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
682 struct kvec *vec, size_t num, size_t size)
683 {
684 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
685 return sock_sendmsg(sock, msg);
686 }
687 EXPORT_SYMBOL(kernel_sendmsg);
688
689 /**
690 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
691 * @sk: sock
692 * @msg: message header
693 * @vec: output s/g array
694 * @num: output s/g array length
695 * @size: total message data size
696 *
697 * Builds the message data with @vec and sends it through @sock.
698 * Returns the number of bytes sent, or an error code.
699 * Caller must hold @sk.
700 */
701
702 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
703 struct kvec *vec, size_t num, size_t size)
704 {
705 struct socket *sock = sk->sk_socket;
706
707 if (!sock->ops->sendmsg_locked)
708 return sock_no_sendmsg_locked(sk, msg, size);
709
710 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
711
712 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
713 }
714 EXPORT_SYMBOL(kernel_sendmsg_locked);
715
716 static bool skb_is_err_queue(const struct sk_buff *skb)
717 {
718 /* pkt_type of skbs enqueued on the error queue are set to
719 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
720 * in recvmsg, since skbs received on a local socket will never
721 * have a pkt_type of PACKET_OUTGOING.
722 */
723 return skb->pkt_type == PACKET_OUTGOING;
724 }
725
726 /* On transmit, software and hardware timestamps are returned independently.
727 * As the two skb clones share the hardware timestamp, which may be updated
728 * before the software timestamp is received, a hardware TX timestamp may be
729 * returned only if there is no software TX timestamp. Ignore false software
730 * timestamps, which may be made in the __sock_recv_timestamp() call when the
731 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
732 * hardware timestamp.
733 */
734 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
735 {
736 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
737 }
738
739 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
740 {
741 struct scm_ts_pktinfo ts_pktinfo;
742 struct net_device *orig_dev;
743
744 if (!skb_mac_header_was_set(skb))
745 return;
746
747 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
748
749 rcu_read_lock();
750 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
751 if (orig_dev)
752 ts_pktinfo.if_index = orig_dev->ifindex;
753 rcu_read_unlock();
754
755 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
756 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
757 sizeof(ts_pktinfo), &ts_pktinfo);
758 }
759
760 /*
761 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
762 */
763 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
764 struct sk_buff *skb)
765 {
766 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
767 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
768 struct scm_timestamping_internal tss;
769
770 int empty = 1, false_tstamp = 0;
771 struct skb_shared_hwtstamps *shhwtstamps =
772 skb_hwtstamps(skb);
773
774 /* Race occurred between timestamp enabling and packet
775 receiving. Fill in the current time for now. */
776 if (need_software_tstamp && skb->tstamp == 0) {
777 __net_timestamp(skb);
778 false_tstamp = 1;
779 }
780
781 if (need_software_tstamp) {
782 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
783 if (new_tstamp) {
784 struct __kernel_sock_timeval tv;
785
786 skb_get_new_timestamp(skb, &tv);
787 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
788 sizeof(tv), &tv);
789 } else {
790 struct __kernel_old_timeval tv;
791
792 skb_get_timestamp(skb, &tv);
793 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
794 sizeof(tv), &tv);
795 }
796 } else {
797 if (new_tstamp) {
798 struct __kernel_timespec ts;
799
800 skb_get_new_timestampns(skb, &ts);
801 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
802 sizeof(ts), &ts);
803 } else {
804 struct timespec ts;
805
806 skb_get_timestampns(skb, &ts);
807 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
808 sizeof(ts), &ts);
809 }
810 }
811 }
812
813 memset(&tss, 0, sizeof(tss));
814 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
815 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
816 empty = 0;
817 if (shhwtstamps &&
818 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
819 !skb_is_swtx_tstamp(skb, false_tstamp) &&
820 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
821 empty = 0;
822 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
823 !skb_is_err_queue(skb))
824 put_ts_pktinfo(msg, skb);
825 }
826 if (!empty) {
827 if (sock_flag(sk, SOCK_TSTAMP_NEW))
828 put_cmsg_scm_timestamping64(msg, &tss);
829 else
830 put_cmsg_scm_timestamping(msg, &tss);
831
832 if (skb_is_err_queue(skb) && skb->len &&
833 SKB_EXT_ERR(skb)->opt_stats)
834 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
835 skb->len, skb->data);
836 }
837 }
838 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
839
840 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
841 struct sk_buff *skb)
842 {
843 int ack;
844
845 if (!sock_flag(sk, SOCK_WIFI_STATUS))
846 return;
847 if (!skb->wifi_acked_valid)
848 return;
849
850 ack = skb->wifi_acked;
851
852 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
853 }
854 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
855
856 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
857 struct sk_buff *skb)
858 {
859 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
860 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
861 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
862 }
863
864 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
865 struct sk_buff *skb)
866 {
867 sock_recv_timestamp(msg, sk, skb);
868 sock_recv_drops(msg, sk, skb);
869 }
870 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
871
872 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
873 size_t , int ));
874 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
875 int flags)
876 {
877 return INDIRECT_CALL_INET4(sock->ops->recvmsg, inet_recvmsg, sock, msg,
878 msg_data_left(msg), flags);
879 }
880
881 /**
882 * sock_recvmsg - receive a message from @sock
883 * @sock: socket
884 * @msg: message to receive
885 * @flags: message flags
886 *
887 * Receives @msg from @sock, passing through LSM. Returns the total number
888 * of bytes received, or an error.
889 */
890 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
891 {
892 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
893
894 return err ?: sock_recvmsg_nosec(sock, msg, flags);
895 }
896 EXPORT_SYMBOL(sock_recvmsg);
897
898 /**
899 * kernel_recvmsg - Receive a message from a socket (kernel space)
900 * @sock: The socket to receive the message from
901 * @msg: Received message
902 * @vec: Input s/g array for message data
903 * @num: Size of input s/g array
904 * @size: Number of bytes to read
905 * @flags: Message flags (MSG_DONTWAIT, etc...)
906 *
907 * On return the msg structure contains the scatter/gather array passed in the
908 * vec argument. The array is modified so that it consists of the unfilled
909 * portion of the original array.
910 *
911 * The returned value is the total number of bytes received, or an error.
912 */
913
914 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
915 struct kvec *vec, size_t num, size_t size, int flags)
916 {
917 mm_segment_t oldfs = get_fs();
918 int result;
919
920 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
921 set_fs(KERNEL_DS);
922 result = sock_recvmsg(sock, msg, flags);
923 set_fs(oldfs);
924 return result;
925 }
926 EXPORT_SYMBOL(kernel_recvmsg);
927
928 static ssize_t sock_sendpage(struct file *file, struct page *page,
929 int offset, size_t size, loff_t *ppos, int more)
930 {
931 struct socket *sock;
932 int flags;
933
934 sock = file->private_data;
935
936 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
937 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
938 flags |= more;
939
940 return kernel_sendpage(sock, page, offset, size, flags);
941 }
942
943 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
944 struct pipe_inode_info *pipe, size_t len,
945 unsigned int flags)
946 {
947 struct socket *sock = file->private_data;
948
949 if (unlikely(!sock->ops->splice_read))
950 return generic_file_splice_read(file, ppos, pipe, len, flags);
951
952 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
953 }
954
955 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
956 {
957 struct file *file = iocb->ki_filp;
958 struct socket *sock = file->private_data;
959 struct msghdr msg = {.msg_iter = *to,
960 .msg_iocb = iocb};
961 ssize_t res;
962
963 if (file->f_flags & O_NONBLOCK)
964 msg.msg_flags = MSG_DONTWAIT;
965
966 if (iocb->ki_pos != 0)
967 return -ESPIPE;
968
969 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
970 return 0;
971
972 res = sock_recvmsg(sock, &msg, msg.msg_flags);
973 *to = msg.msg_iter;
974 return res;
975 }
976
977 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
978 {
979 struct file *file = iocb->ki_filp;
980 struct socket *sock = file->private_data;
981 struct msghdr msg = {.msg_iter = *from,
982 .msg_iocb = iocb};
983 ssize_t res;
984
985 if (iocb->ki_pos != 0)
986 return -ESPIPE;
987
988 if (file->f_flags & O_NONBLOCK)
989 msg.msg_flags = MSG_DONTWAIT;
990
991 if (sock->type == SOCK_SEQPACKET)
992 msg.msg_flags |= MSG_EOR;
993
994 res = sock_sendmsg(sock, &msg);
995 *from = msg.msg_iter;
996 return res;
997 }
998
999 /*
1000 * Atomic setting of ioctl hooks to avoid race
1001 * with module unload.
1002 */
1003
1004 static DEFINE_MUTEX(br_ioctl_mutex);
1005 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1006
1007 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1008 {
1009 mutex_lock(&br_ioctl_mutex);
1010 br_ioctl_hook = hook;
1011 mutex_unlock(&br_ioctl_mutex);
1012 }
1013 EXPORT_SYMBOL(brioctl_set);
1014
1015 static DEFINE_MUTEX(vlan_ioctl_mutex);
1016 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1017
1018 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1019 {
1020 mutex_lock(&vlan_ioctl_mutex);
1021 vlan_ioctl_hook = hook;
1022 mutex_unlock(&vlan_ioctl_mutex);
1023 }
1024 EXPORT_SYMBOL(vlan_ioctl_set);
1025
1026 static DEFINE_MUTEX(dlci_ioctl_mutex);
1027 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1028
1029 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1030 {
1031 mutex_lock(&dlci_ioctl_mutex);
1032 dlci_ioctl_hook = hook;
1033 mutex_unlock(&dlci_ioctl_mutex);
1034 }
1035 EXPORT_SYMBOL(dlci_ioctl_set);
1036
1037 static long sock_do_ioctl(struct net *net, struct socket *sock,
1038 unsigned int cmd, unsigned long arg)
1039 {
1040 int err;
1041 void __user *argp = (void __user *)arg;
1042
1043 err = sock->ops->ioctl(sock, cmd, arg);
1044
1045 /*
1046 * If this ioctl is unknown try to hand it down
1047 * to the NIC driver.
1048 */
1049 if (err != -ENOIOCTLCMD)
1050 return err;
1051
1052 if (cmd == SIOCGIFCONF) {
1053 struct ifconf ifc;
1054 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1055 return -EFAULT;
1056 rtnl_lock();
1057 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1058 rtnl_unlock();
1059 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1060 err = -EFAULT;
1061 } else {
1062 struct ifreq ifr;
1063 bool need_copyout;
1064 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1065 return -EFAULT;
1066 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1067 if (!err && need_copyout)
1068 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1069 return -EFAULT;
1070 }
1071 return err;
1072 }
1073
1074 /*
1075 * With an ioctl, arg may well be a user mode pointer, but we don't know
1076 * what to do with it - that's up to the protocol still.
1077 */
1078
1079 /**
1080 * get_net_ns - increment the refcount of the network namespace
1081 * @ns: common namespace (net)
1082 *
1083 * Returns the net's common namespace.
1084 */
1085
1086 struct ns_common *get_net_ns(struct ns_common *ns)
1087 {
1088 return &get_net(container_of(ns, struct net, ns))->ns;
1089 }
1090 EXPORT_SYMBOL_GPL(get_net_ns);
1091
1092 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1093 {
1094 struct socket *sock;
1095 struct sock *sk;
1096 void __user *argp = (void __user *)arg;
1097 int pid, err;
1098 struct net *net;
1099
1100 sock = file->private_data;
1101 sk = sock->sk;
1102 net = sock_net(sk);
1103 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1104 struct ifreq ifr;
1105 bool need_copyout;
1106 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1107 return -EFAULT;
1108 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1109 if (!err && need_copyout)
1110 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1111 return -EFAULT;
1112 } else
1113 #ifdef CONFIG_WEXT_CORE
1114 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1115 err = wext_handle_ioctl(net, cmd, argp);
1116 } else
1117 #endif
1118 switch (cmd) {
1119 case FIOSETOWN:
1120 case SIOCSPGRP:
1121 err = -EFAULT;
1122 if (get_user(pid, (int __user *)argp))
1123 break;
1124 err = f_setown(sock->file, pid, 1);
1125 break;
1126 case FIOGETOWN:
1127 case SIOCGPGRP:
1128 err = put_user(f_getown(sock->file),
1129 (int __user *)argp);
1130 break;
1131 case SIOCGIFBR:
1132 case SIOCSIFBR:
1133 case SIOCBRADDBR:
1134 case SIOCBRDELBR:
1135 err = -ENOPKG;
1136 if (!br_ioctl_hook)
1137 request_module("bridge");
1138
1139 mutex_lock(&br_ioctl_mutex);
1140 if (br_ioctl_hook)
1141 err = br_ioctl_hook(net, cmd, argp);
1142 mutex_unlock(&br_ioctl_mutex);
1143 break;
1144 case SIOCGIFVLAN:
1145 case SIOCSIFVLAN:
1146 err = -ENOPKG;
1147 if (!vlan_ioctl_hook)
1148 request_module("8021q");
1149
1150 mutex_lock(&vlan_ioctl_mutex);
1151 if (vlan_ioctl_hook)
1152 err = vlan_ioctl_hook(net, argp);
1153 mutex_unlock(&vlan_ioctl_mutex);
1154 break;
1155 case SIOCADDDLCI:
1156 case SIOCDELDLCI:
1157 err = -ENOPKG;
1158 if (!dlci_ioctl_hook)
1159 request_module("dlci");
1160
1161 mutex_lock(&dlci_ioctl_mutex);
1162 if (dlci_ioctl_hook)
1163 err = dlci_ioctl_hook(cmd, argp);
1164 mutex_unlock(&dlci_ioctl_mutex);
1165 break;
1166 case SIOCGSKNS:
1167 err = -EPERM;
1168 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1169 break;
1170
1171 err = open_related_ns(&net->ns, get_net_ns);
1172 break;
1173 case SIOCGSTAMP_OLD:
1174 case SIOCGSTAMPNS_OLD:
1175 if (!sock->ops->gettstamp) {
1176 err = -ENOIOCTLCMD;
1177 break;
1178 }
1179 err = sock->ops->gettstamp(sock, argp,
1180 cmd == SIOCGSTAMP_OLD,
1181 !IS_ENABLED(CONFIG_64BIT));
1182 break;
1183 case SIOCGSTAMP_NEW:
1184 case SIOCGSTAMPNS_NEW:
1185 if (!sock->ops->gettstamp) {
1186 err = -ENOIOCTLCMD;
1187 break;
1188 }
1189 err = sock->ops->gettstamp(sock, argp,
1190 cmd == SIOCGSTAMP_NEW,
1191 false);
1192 break;
1193 default:
1194 err = sock_do_ioctl(net, sock, cmd, arg);
1195 break;
1196 }
1197 return err;
1198 }
1199
1200 /**
1201 * sock_create_lite - creates a socket
1202 * @family: protocol family (AF_INET, ...)
1203 * @type: communication type (SOCK_STREAM, ...)
1204 * @protocol: protocol (0, ...)
1205 * @res: new socket
1206 *
1207 * Creates a new socket and assigns it to @res, passing through LSM.
1208 * The new socket initialization is not complete, see kernel_accept().
1209 * Returns 0 or an error. On failure @res is set to %NULL.
1210 * This function internally uses GFP_KERNEL.
1211 */
1212
1213 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1214 {
1215 int err;
1216 struct socket *sock = NULL;
1217
1218 err = security_socket_create(family, type, protocol, 1);
1219 if (err)
1220 goto out;
1221
1222 sock = sock_alloc();
1223 if (!sock) {
1224 err = -ENOMEM;
1225 goto out;
1226 }
1227
1228 sock->type = type;
1229 err = security_socket_post_create(sock, family, type, protocol, 1);
1230 if (err)
1231 goto out_release;
1232
1233 out:
1234 *res = sock;
1235 return err;
1236 out_release:
1237 sock_release(sock);
1238 sock = NULL;
1239 goto out;
1240 }
1241 EXPORT_SYMBOL(sock_create_lite);
1242
1243 /* No kernel lock held - perfect */
1244 static __poll_t sock_poll(struct file *file, poll_table *wait)
1245 {
1246 struct socket *sock = file->private_data;
1247 __poll_t events = poll_requested_events(wait), flag = 0;
1248
1249 if (!sock->ops->poll)
1250 return 0;
1251
1252 if (sk_can_busy_loop(sock->sk)) {
1253 /* poll once if requested by the syscall */
1254 if (events & POLL_BUSY_LOOP)
1255 sk_busy_loop(sock->sk, 1);
1256
1257 /* if this socket can poll_ll, tell the system call */
1258 flag = POLL_BUSY_LOOP;
1259 }
1260
1261 return sock->ops->poll(file, sock, wait) | flag;
1262 }
1263
1264 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1265 {
1266 struct socket *sock = file->private_data;
1267
1268 return sock->ops->mmap(file, sock, vma);
1269 }
1270
1271 static int sock_close(struct inode *inode, struct file *filp)
1272 {
1273 __sock_release(SOCKET_I(inode), inode);
1274 return 0;
1275 }
1276
1277 /*
1278 * Update the socket async list
1279 *
1280 * Fasync_list locking strategy.
1281 *
1282 * 1. fasync_list is modified only under process context socket lock
1283 * i.e. under semaphore.
1284 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1285 * or under socket lock
1286 */
1287
1288 static int sock_fasync(int fd, struct file *filp, int on)
1289 {
1290 struct socket *sock = filp->private_data;
1291 struct sock *sk = sock->sk;
1292 struct socket_wq *wq;
1293
1294 if (sk == NULL)
1295 return -EINVAL;
1296
1297 lock_sock(sk);
1298 wq = sock->wq;
1299 fasync_helper(fd, filp, on, &wq->fasync_list);
1300
1301 if (!wq->fasync_list)
1302 sock_reset_flag(sk, SOCK_FASYNC);
1303 else
1304 sock_set_flag(sk, SOCK_FASYNC);
1305
1306 release_sock(sk);
1307 return 0;
1308 }
1309
1310 /* This function may be called only under rcu_lock */
1311
1312 int sock_wake_async(struct socket_wq *wq, int how, int band)
1313 {
1314 if (!wq || !wq->fasync_list)
1315 return -1;
1316
1317 switch (how) {
1318 case SOCK_WAKE_WAITD:
1319 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1320 break;
1321 goto call_kill;
1322 case SOCK_WAKE_SPACE:
1323 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1324 break;
1325 /* fall through */
1326 case SOCK_WAKE_IO:
1327 call_kill:
1328 kill_fasync(&wq->fasync_list, SIGIO, band);
1329 break;
1330 case SOCK_WAKE_URG:
1331 kill_fasync(&wq->fasync_list, SIGURG, band);
1332 }
1333
1334 return 0;
1335 }
1336 EXPORT_SYMBOL(sock_wake_async);
1337
1338 /**
1339 * __sock_create - creates a socket
1340 * @net: net namespace
1341 * @family: protocol family (AF_INET, ...)
1342 * @type: communication type (SOCK_STREAM, ...)
1343 * @protocol: protocol (0, ...)
1344 * @res: new socket
1345 * @kern: boolean for kernel space sockets
1346 *
1347 * Creates a new socket and assigns it to @res, passing through LSM.
1348 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1349 * be set to true if the socket resides in kernel space.
1350 * This function internally uses GFP_KERNEL.
1351 */
1352
1353 int __sock_create(struct net *net, int family, int type, int protocol,
1354 struct socket **res, int kern)
1355 {
1356 int err;
1357 struct socket *sock;
1358 const struct net_proto_family *pf;
1359
1360 /*
1361 * Check protocol is in range
1362 */
1363 if (family < 0 || family >= NPROTO)
1364 return -EAFNOSUPPORT;
1365 if (type < 0 || type >= SOCK_MAX)
1366 return -EINVAL;
1367
1368 /* Compatibility.
1369
1370 This uglymoron is moved from INET layer to here to avoid
1371 deadlock in module load.
1372 */
1373 if (family == PF_INET && type == SOCK_PACKET) {
1374 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1375 current->comm);
1376 family = PF_PACKET;
1377 }
1378
1379 err = security_socket_create(family, type, protocol, kern);
1380 if (err)
1381 return err;
1382
1383 /*
1384 * Allocate the socket and allow the family to set things up. if
1385 * the protocol is 0, the family is instructed to select an appropriate
1386 * default.
1387 */
1388 sock = sock_alloc();
1389 if (!sock) {
1390 net_warn_ratelimited("socket: no more sockets\n");
1391 return -ENFILE; /* Not exactly a match, but its the
1392 closest posix thing */
1393 }
1394
1395 sock->type = type;
1396
1397 #ifdef CONFIG_MODULES
1398 /* Attempt to load a protocol module if the find failed.
1399 *
1400 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1401 * requested real, full-featured networking support upon configuration.
1402 * Otherwise module support will break!
1403 */
1404 if (rcu_access_pointer(net_families[family]) == NULL)
1405 request_module("net-pf-%d", family);
1406 #endif
1407
1408 rcu_read_lock();
1409 pf = rcu_dereference(net_families[family]);
1410 err = -EAFNOSUPPORT;
1411 if (!pf)
1412 goto out_release;
1413
1414 /*
1415 * We will call the ->create function, that possibly is in a loadable
1416 * module, so we have to bump that loadable module refcnt first.
1417 */
1418 if (!try_module_get(pf->owner))
1419 goto out_release;
1420
1421 /* Now protected by module ref count */
1422 rcu_read_unlock();
1423
1424 err = pf->create(net, sock, protocol, kern);
1425 if (err < 0)
1426 goto out_module_put;
1427
1428 /*
1429 * Now to bump the refcnt of the [loadable] module that owns this
1430 * socket at sock_release time we decrement its refcnt.
1431 */
1432 if (!try_module_get(sock->ops->owner))
1433 goto out_module_busy;
1434
1435 /*
1436 * Now that we're done with the ->create function, the [loadable]
1437 * module can have its refcnt decremented
1438 */
1439 module_put(pf->owner);
1440 err = security_socket_post_create(sock, family, type, protocol, kern);
1441 if (err)
1442 goto out_sock_release;
1443 *res = sock;
1444
1445 return 0;
1446
1447 out_module_busy:
1448 err = -EAFNOSUPPORT;
1449 out_module_put:
1450 sock->ops = NULL;
1451 module_put(pf->owner);
1452 out_sock_release:
1453 sock_release(sock);
1454 return err;
1455
1456 out_release:
1457 rcu_read_unlock();
1458 goto out_sock_release;
1459 }
1460 EXPORT_SYMBOL(__sock_create);
1461
1462 /**
1463 * sock_create - creates a socket
1464 * @family: protocol family (AF_INET, ...)
1465 * @type: communication type (SOCK_STREAM, ...)
1466 * @protocol: protocol (0, ...)
1467 * @res: new socket
1468 *
1469 * A wrapper around __sock_create().
1470 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1471 */
1472
1473 int sock_create(int family, int type, int protocol, struct socket **res)
1474 {
1475 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1476 }
1477 EXPORT_SYMBOL(sock_create);
1478
1479 /**
1480 * sock_create_kern - creates a socket (kernel space)
1481 * @net: net namespace
1482 * @family: protocol family (AF_INET, ...)
1483 * @type: communication type (SOCK_STREAM, ...)
1484 * @protocol: protocol (0, ...)
1485 * @res: new socket
1486 *
1487 * A wrapper around __sock_create().
1488 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1489 */
1490
1491 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1492 {
1493 return __sock_create(net, family, type, protocol, res, 1);
1494 }
1495 EXPORT_SYMBOL(sock_create_kern);
1496
1497 int __sys_socket(int family, int type, int protocol)
1498 {
1499 int retval;
1500 struct socket *sock;
1501 int flags;
1502
1503 /* Check the SOCK_* constants for consistency. */
1504 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1505 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1506 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1507 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1508
1509 flags = type & ~SOCK_TYPE_MASK;
1510 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1511 return -EINVAL;
1512 type &= SOCK_TYPE_MASK;
1513
1514 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1515 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1516
1517 retval = sock_create(family, type, protocol, &sock);
1518 if (retval < 0)
1519 return retval;
1520
1521 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1522 }
1523
1524 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1525 {
1526 return __sys_socket(family, type, protocol);
1527 }
1528
1529 /*
1530 * Create a pair of connected sockets.
1531 */
1532
1533 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1534 {
1535 struct socket *sock1, *sock2;
1536 int fd1, fd2, err;
1537 struct file *newfile1, *newfile2;
1538 int flags;
1539
1540 flags = type & ~SOCK_TYPE_MASK;
1541 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1542 return -EINVAL;
1543 type &= SOCK_TYPE_MASK;
1544
1545 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1546 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1547
1548 /*
1549 * reserve descriptors and make sure we won't fail
1550 * to return them to userland.
1551 */
1552 fd1 = get_unused_fd_flags(flags);
1553 if (unlikely(fd1 < 0))
1554 return fd1;
1555
1556 fd2 = get_unused_fd_flags(flags);
1557 if (unlikely(fd2 < 0)) {
1558 put_unused_fd(fd1);
1559 return fd2;
1560 }
1561
1562 err = put_user(fd1, &usockvec[0]);
1563 if (err)
1564 goto out;
1565
1566 err = put_user(fd2, &usockvec[1]);
1567 if (err)
1568 goto out;
1569
1570 /*
1571 * Obtain the first socket and check if the underlying protocol
1572 * supports the socketpair call.
1573 */
1574
1575 err = sock_create(family, type, protocol, &sock1);
1576 if (unlikely(err < 0))
1577 goto out;
1578
1579 err = sock_create(family, type, protocol, &sock2);
1580 if (unlikely(err < 0)) {
1581 sock_release(sock1);
1582 goto out;
1583 }
1584
1585 err = security_socket_socketpair(sock1, sock2);
1586 if (unlikely(err)) {
1587 sock_release(sock2);
1588 sock_release(sock1);
1589 goto out;
1590 }
1591
1592 err = sock1->ops->socketpair(sock1, sock2);
1593 if (unlikely(err < 0)) {
1594 sock_release(sock2);
1595 sock_release(sock1);
1596 goto out;
1597 }
1598
1599 newfile1 = sock_alloc_file(sock1, flags, NULL);
1600 if (IS_ERR(newfile1)) {
1601 err = PTR_ERR(newfile1);
1602 sock_release(sock2);
1603 goto out;
1604 }
1605
1606 newfile2 = sock_alloc_file(sock2, flags, NULL);
1607 if (IS_ERR(newfile2)) {
1608 err = PTR_ERR(newfile2);
1609 fput(newfile1);
1610 goto out;
1611 }
1612
1613 audit_fd_pair(fd1, fd2);
1614
1615 fd_install(fd1, newfile1);
1616 fd_install(fd2, newfile2);
1617 return 0;
1618
1619 out:
1620 put_unused_fd(fd2);
1621 put_unused_fd(fd1);
1622 return err;
1623 }
1624
1625 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1626 int __user *, usockvec)
1627 {
1628 return __sys_socketpair(family, type, protocol, usockvec);
1629 }
1630
1631 /*
1632 * Bind a name to a socket. Nothing much to do here since it's
1633 * the protocol's responsibility to handle the local address.
1634 *
1635 * We move the socket address to kernel space before we call
1636 * the protocol layer (having also checked the address is ok).
1637 */
1638
1639 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1640 {
1641 struct socket *sock;
1642 struct sockaddr_storage address;
1643 int err, fput_needed;
1644
1645 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1646 if (sock) {
1647 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1648 if (!err) {
1649 err = security_socket_bind(sock,
1650 (struct sockaddr *)&address,
1651 addrlen);
1652 if (!err)
1653 err = sock->ops->bind(sock,
1654 (struct sockaddr *)
1655 &address, addrlen);
1656 }
1657 fput_light(sock->file, fput_needed);
1658 }
1659 return err;
1660 }
1661
1662 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1663 {
1664 return __sys_bind(fd, umyaddr, addrlen);
1665 }
1666
1667 /*
1668 * Perform a listen. Basically, we allow the protocol to do anything
1669 * necessary for a listen, and if that works, we mark the socket as
1670 * ready for listening.
1671 */
1672
1673 int __sys_listen(int fd, int backlog)
1674 {
1675 struct socket *sock;
1676 int err, fput_needed;
1677 int somaxconn;
1678
1679 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1680 if (sock) {
1681 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1682 if ((unsigned int)backlog > somaxconn)
1683 backlog = somaxconn;
1684
1685 err = security_socket_listen(sock, backlog);
1686 if (!err)
1687 err = sock->ops->listen(sock, backlog);
1688
1689 fput_light(sock->file, fput_needed);
1690 }
1691 return err;
1692 }
1693
1694 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1695 {
1696 return __sys_listen(fd, backlog);
1697 }
1698
1699 /*
1700 * For accept, we attempt to create a new socket, set up the link
1701 * with the client, wake up the client, then return the new
1702 * connected fd. We collect the address of the connector in kernel
1703 * space and move it to user at the very end. This is unclean because
1704 * we open the socket then return an error.
1705 *
1706 * 1003.1g adds the ability to recvmsg() to query connection pending
1707 * status to recvmsg. We need to add that support in a way thats
1708 * clean when we restructure accept also.
1709 */
1710
1711 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1712 int __user *upeer_addrlen, int flags)
1713 {
1714 struct socket *sock, *newsock;
1715 struct file *newfile;
1716 int err, len, newfd, fput_needed;
1717 struct sockaddr_storage address;
1718
1719 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1720 return -EINVAL;
1721
1722 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1723 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1724
1725 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1726 if (!sock)
1727 goto out;
1728
1729 err = -ENFILE;
1730 newsock = sock_alloc();
1731 if (!newsock)
1732 goto out_put;
1733
1734 newsock->type = sock->type;
1735 newsock->ops = sock->ops;
1736
1737 /*
1738 * We don't need try_module_get here, as the listening socket (sock)
1739 * has the protocol module (sock->ops->owner) held.
1740 */
1741 __module_get(newsock->ops->owner);
1742
1743 newfd = get_unused_fd_flags(flags);
1744 if (unlikely(newfd < 0)) {
1745 err = newfd;
1746 sock_release(newsock);
1747 goto out_put;
1748 }
1749 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1750 if (IS_ERR(newfile)) {
1751 err = PTR_ERR(newfile);
1752 put_unused_fd(newfd);
1753 goto out_put;
1754 }
1755
1756 err = security_socket_accept(sock, newsock);
1757 if (err)
1758 goto out_fd;
1759
1760 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1761 if (err < 0)
1762 goto out_fd;
1763
1764 if (upeer_sockaddr) {
1765 len = newsock->ops->getname(newsock,
1766 (struct sockaddr *)&address, 2);
1767 if (len < 0) {
1768 err = -ECONNABORTED;
1769 goto out_fd;
1770 }
1771 err = move_addr_to_user(&address,
1772 len, upeer_sockaddr, upeer_addrlen);
1773 if (err < 0)
1774 goto out_fd;
1775 }
1776
1777 /* File flags are not inherited via accept() unlike another OSes. */
1778
1779 fd_install(newfd, newfile);
1780 err = newfd;
1781
1782 out_put:
1783 fput_light(sock->file, fput_needed);
1784 out:
1785 return err;
1786 out_fd:
1787 fput(newfile);
1788 put_unused_fd(newfd);
1789 goto out_put;
1790 }
1791
1792 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1793 int __user *, upeer_addrlen, int, flags)
1794 {
1795 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1796 }
1797
1798 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1799 int __user *, upeer_addrlen)
1800 {
1801 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1802 }
1803
1804 /*
1805 * Attempt to connect to a socket with the server address. The address
1806 * is in user space so we verify it is OK and move it to kernel space.
1807 *
1808 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1809 * break bindings
1810 *
1811 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1812 * other SEQPACKET protocols that take time to connect() as it doesn't
1813 * include the -EINPROGRESS status for such sockets.
1814 */
1815
1816 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1817 {
1818 struct socket *sock;
1819 struct sockaddr_storage address;
1820 int err, fput_needed;
1821
1822 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1823 if (!sock)
1824 goto out;
1825 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1826 if (err < 0)
1827 goto out_put;
1828
1829 err =
1830 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1831 if (err)
1832 goto out_put;
1833
1834 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1835 sock->file->f_flags);
1836 out_put:
1837 fput_light(sock->file, fput_needed);
1838 out:
1839 return err;
1840 }
1841
1842 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1843 int, addrlen)
1844 {
1845 return __sys_connect(fd, uservaddr, addrlen);
1846 }
1847
1848 /*
1849 * Get the local address ('name') of a socket object. Move the obtained
1850 * name to user space.
1851 */
1852
1853 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1854 int __user *usockaddr_len)
1855 {
1856 struct socket *sock;
1857 struct sockaddr_storage address;
1858 int err, fput_needed;
1859
1860 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1861 if (!sock)
1862 goto out;
1863
1864 err = security_socket_getsockname(sock);
1865 if (err)
1866 goto out_put;
1867
1868 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1869 if (err < 0)
1870 goto out_put;
1871 /* "err" is actually length in this case */
1872 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1873
1874 out_put:
1875 fput_light(sock->file, fput_needed);
1876 out:
1877 return err;
1878 }
1879
1880 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1881 int __user *, usockaddr_len)
1882 {
1883 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1884 }
1885
1886 /*
1887 * Get the remote address ('name') of a socket object. Move the obtained
1888 * name to user space.
1889 */
1890
1891 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1892 int __user *usockaddr_len)
1893 {
1894 struct socket *sock;
1895 struct sockaddr_storage address;
1896 int err, fput_needed;
1897
1898 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1899 if (sock != NULL) {
1900 err = security_socket_getpeername(sock);
1901 if (err) {
1902 fput_light(sock->file, fput_needed);
1903 return err;
1904 }
1905
1906 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1907 if (err >= 0)
1908 /* "err" is actually length in this case */
1909 err = move_addr_to_user(&address, err, usockaddr,
1910 usockaddr_len);
1911 fput_light(sock->file, fput_needed);
1912 }
1913 return err;
1914 }
1915
1916 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1917 int __user *, usockaddr_len)
1918 {
1919 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1920 }
1921
1922 /*
1923 * Send a datagram to a given address. We move the address into kernel
1924 * space and check the user space data area is readable before invoking
1925 * the protocol.
1926 */
1927 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1928 struct sockaddr __user *addr, int addr_len)
1929 {
1930 struct socket *sock;
1931 struct sockaddr_storage address;
1932 int err;
1933 struct msghdr msg;
1934 struct iovec iov;
1935 int fput_needed;
1936
1937 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1938 if (unlikely(err))
1939 return err;
1940 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1941 if (!sock)
1942 goto out;
1943
1944 msg.msg_name = NULL;
1945 msg.msg_control = NULL;
1946 msg.msg_controllen = 0;
1947 msg.msg_namelen = 0;
1948 if (addr) {
1949 err = move_addr_to_kernel(addr, addr_len, &address);
1950 if (err < 0)
1951 goto out_put;
1952 msg.msg_name = (struct sockaddr *)&address;
1953 msg.msg_namelen = addr_len;
1954 }
1955 if (sock->file->f_flags & O_NONBLOCK)
1956 flags |= MSG_DONTWAIT;
1957 msg.msg_flags = flags;
1958 err = sock_sendmsg(sock, &msg);
1959
1960 out_put:
1961 fput_light(sock->file, fput_needed);
1962 out:
1963 return err;
1964 }
1965
1966 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1967 unsigned int, flags, struct sockaddr __user *, addr,
1968 int, addr_len)
1969 {
1970 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1971 }
1972
1973 /*
1974 * Send a datagram down a socket.
1975 */
1976
1977 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1978 unsigned int, flags)
1979 {
1980 return __sys_sendto(fd, buff, len, flags, NULL, 0);
1981 }
1982
1983 /*
1984 * Receive a frame from the socket and optionally record the address of the
1985 * sender. We verify the buffers are writable and if needed move the
1986 * sender address from kernel to user space.
1987 */
1988 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1989 struct sockaddr __user *addr, int __user *addr_len)
1990 {
1991 struct socket *sock;
1992 struct iovec iov;
1993 struct msghdr msg;
1994 struct sockaddr_storage address;
1995 int err, err2;
1996 int fput_needed;
1997
1998 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1999 if (unlikely(err))
2000 return err;
2001 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2002 if (!sock)
2003 goto out;
2004
2005 msg.msg_control = NULL;
2006 msg.msg_controllen = 0;
2007 /* Save some cycles and don't copy the address if not needed */
2008 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2009 /* We assume all kernel code knows the size of sockaddr_storage */
2010 msg.msg_namelen = 0;
2011 msg.msg_iocb = NULL;
2012 msg.msg_flags = 0;
2013 if (sock->file->f_flags & O_NONBLOCK)
2014 flags |= MSG_DONTWAIT;
2015 err = sock_recvmsg(sock, &msg, flags);
2016
2017 if (err >= 0 && addr != NULL) {
2018 err2 = move_addr_to_user(&address,
2019 msg.msg_namelen, addr, addr_len);
2020 if (err2 < 0)
2021 err = err2;
2022 }
2023
2024 fput_light(sock->file, fput_needed);
2025 out:
2026 return err;
2027 }
2028
2029 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2030 unsigned int, flags, struct sockaddr __user *, addr,
2031 int __user *, addr_len)
2032 {
2033 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2034 }
2035
2036 /*
2037 * Receive a datagram from a socket.
2038 */
2039
2040 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2041 unsigned int, flags)
2042 {
2043 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2044 }
2045
2046 /*
2047 * Set a socket option. Because we don't know the option lengths we have
2048 * to pass the user mode parameter for the protocols to sort out.
2049 */
2050
2051 static int __sys_setsockopt(int fd, int level, int optname,
2052 char __user *optval, int optlen)
2053 {
2054 int err, fput_needed;
2055 struct socket *sock;
2056
2057 if (optlen < 0)
2058 return -EINVAL;
2059
2060 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2061 if (sock != NULL) {
2062 err = security_socket_setsockopt(sock, level, optname);
2063 if (err)
2064 goto out_put;
2065
2066 if (level == SOL_SOCKET)
2067 err =
2068 sock_setsockopt(sock, level, optname, optval,
2069 optlen);
2070 else
2071 err =
2072 sock->ops->setsockopt(sock, level, optname, optval,
2073 optlen);
2074 out_put:
2075 fput_light(sock->file, fput_needed);
2076 }
2077 return err;
2078 }
2079
2080 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2081 char __user *, optval, int, optlen)
2082 {
2083 return __sys_setsockopt(fd, level, optname, optval, optlen);
2084 }
2085
2086 /*
2087 * Get a socket option. Because we don't know the option lengths we have
2088 * to pass a user mode parameter for the protocols to sort out.
2089 */
2090
2091 static int __sys_getsockopt(int fd, int level, int optname,
2092 char __user *optval, int __user *optlen)
2093 {
2094 int err, fput_needed;
2095 struct socket *sock;
2096
2097 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2098 if (sock != NULL) {
2099 err = security_socket_getsockopt(sock, level, optname);
2100 if (err)
2101 goto out_put;
2102
2103 if (level == SOL_SOCKET)
2104 err =
2105 sock_getsockopt(sock, level, optname, optval,
2106 optlen);
2107 else
2108 err =
2109 sock->ops->getsockopt(sock, level, optname, optval,
2110 optlen);
2111 out_put:
2112 fput_light(sock->file, fput_needed);
2113 }
2114 return err;
2115 }
2116
2117 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2118 char __user *, optval, int __user *, optlen)
2119 {
2120 return __sys_getsockopt(fd, level, optname, optval, optlen);
2121 }
2122
2123 /*
2124 * Shutdown a socket.
2125 */
2126
2127 int __sys_shutdown(int fd, int how)
2128 {
2129 int err, fput_needed;
2130 struct socket *sock;
2131
2132 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2133 if (sock != NULL) {
2134 err = security_socket_shutdown(sock, how);
2135 if (!err)
2136 err = sock->ops->shutdown(sock, how);
2137 fput_light(sock->file, fput_needed);
2138 }
2139 return err;
2140 }
2141
2142 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2143 {
2144 return __sys_shutdown(fd, how);
2145 }
2146
2147 /* A couple of helpful macros for getting the address of the 32/64 bit
2148 * fields which are the same type (int / unsigned) on our platforms.
2149 */
2150 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2151 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2152 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2153
2154 struct used_address {
2155 struct sockaddr_storage name;
2156 unsigned int name_len;
2157 };
2158
2159 static int copy_msghdr_from_user(struct msghdr *kmsg,
2160 struct user_msghdr __user *umsg,
2161 struct sockaddr __user **save_addr,
2162 struct iovec **iov)
2163 {
2164 struct user_msghdr msg;
2165 ssize_t err;
2166
2167 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2168 return -EFAULT;
2169
2170 kmsg->msg_control = (void __force *)msg.msg_control;
2171 kmsg->msg_controllen = msg.msg_controllen;
2172 kmsg->msg_flags = msg.msg_flags;
2173
2174 kmsg->msg_namelen = msg.msg_namelen;
2175 if (!msg.msg_name)
2176 kmsg->msg_namelen = 0;
2177
2178 if (kmsg->msg_namelen < 0)
2179 return -EINVAL;
2180
2181 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2182 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2183
2184 if (save_addr)
2185 *save_addr = msg.msg_name;
2186
2187 if (msg.msg_name && kmsg->msg_namelen) {
2188 if (!save_addr) {
2189 err = move_addr_to_kernel(msg.msg_name,
2190 kmsg->msg_namelen,
2191 kmsg->msg_name);
2192 if (err < 0)
2193 return err;
2194 }
2195 } else {
2196 kmsg->msg_name = NULL;
2197 kmsg->msg_namelen = 0;
2198 }
2199
2200 if (msg.msg_iovlen > UIO_MAXIOV)
2201 return -EMSGSIZE;
2202
2203 kmsg->msg_iocb = NULL;
2204
2205 return import_iovec(save_addr ? READ : WRITE,
2206 msg.msg_iov, msg.msg_iovlen,
2207 UIO_FASTIOV, iov, &kmsg->msg_iter);
2208 }
2209
2210 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2211 struct msghdr *msg_sys, unsigned int flags,
2212 struct used_address *used_address,
2213 unsigned int allowed_msghdr_flags)
2214 {
2215 struct compat_msghdr __user *msg_compat =
2216 (struct compat_msghdr __user *)msg;
2217 struct sockaddr_storage address;
2218 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2219 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2220 __aligned(sizeof(__kernel_size_t));
2221 /* 20 is size of ipv6_pktinfo */
2222 unsigned char *ctl_buf = ctl;
2223 int ctl_len;
2224 ssize_t err;
2225
2226 msg_sys->msg_name = &address;
2227
2228 if (MSG_CMSG_COMPAT & flags)
2229 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2230 else
2231 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2232 if (err < 0)
2233 return err;
2234
2235 err = -ENOBUFS;
2236
2237 if (msg_sys->msg_controllen > INT_MAX)
2238 goto out_freeiov;
2239 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2240 ctl_len = msg_sys->msg_controllen;
2241 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2242 err =
2243 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2244 sizeof(ctl));
2245 if (err)
2246 goto out_freeiov;
2247 ctl_buf = msg_sys->msg_control;
2248 ctl_len = msg_sys->msg_controllen;
2249 } else if (ctl_len) {
2250 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2251 CMSG_ALIGN(sizeof(struct cmsghdr)));
2252 if (ctl_len > sizeof(ctl)) {
2253 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2254 if (ctl_buf == NULL)
2255 goto out_freeiov;
2256 }
2257 err = -EFAULT;
2258 /*
2259 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2260 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2261 * checking falls down on this.
2262 */
2263 if (copy_from_user(ctl_buf,
2264 (void __user __force *)msg_sys->msg_control,
2265 ctl_len))
2266 goto out_freectl;
2267 msg_sys->msg_control = ctl_buf;
2268 }
2269 msg_sys->msg_flags = flags;
2270
2271 if (sock->file->f_flags & O_NONBLOCK)
2272 msg_sys->msg_flags |= MSG_DONTWAIT;
2273 /*
2274 * If this is sendmmsg() and current destination address is same as
2275 * previously succeeded address, omit asking LSM's decision.
2276 * used_address->name_len is initialized to UINT_MAX so that the first
2277 * destination address never matches.
2278 */
2279 if (used_address && msg_sys->msg_name &&
2280 used_address->name_len == msg_sys->msg_namelen &&
2281 !memcmp(&used_address->name, msg_sys->msg_name,
2282 used_address->name_len)) {
2283 err = sock_sendmsg_nosec(sock, msg_sys);
2284 goto out_freectl;
2285 }
2286 err = sock_sendmsg(sock, msg_sys);
2287 /*
2288 * If this is sendmmsg() and sending to current destination address was
2289 * successful, remember it.
2290 */
2291 if (used_address && err >= 0) {
2292 used_address->name_len = msg_sys->msg_namelen;
2293 if (msg_sys->msg_name)
2294 memcpy(&used_address->name, msg_sys->msg_name,
2295 used_address->name_len);
2296 }
2297
2298 out_freectl:
2299 if (ctl_buf != ctl)
2300 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2301 out_freeiov:
2302 kfree(iov);
2303 return err;
2304 }
2305
2306 /*
2307 * BSD sendmsg interface
2308 */
2309
2310 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2311 bool forbid_cmsg_compat)
2312 {
2313 int fput_needed, err;
2314 struct msghdr msg_sys;
2315 struct socket *sock;
2316
2317 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2318 return -EINVAL;
2319
2320 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2321 if (!sock)
2322 goto out;
2323
2324 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2325
2326 fput_light(sock->file, fput_needed);
2327 out:
2328 return err;
2329 }
2330
2331 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2332 {
2333 return __sys_sendmsg(fd, msg, flags, true);
2334 }
2335
2336 /*
2337 * Linux sendmmsg interface
2338 */
2339
2340 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2341 unsigned int flags, bool forbid_cmsg_compat)
2342 {
2343 int fput_needed, err, datagrams;
2344 struct socket *sock;
2345 struct mmsghdr __user *entry;
2346 struct compat_mmsghdr __user *compat_entry;
2347 struct msghdr msg_sys;
2348 struct used_address used_address;
2349 unsigned int oflags = flags;
2350
2351 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2352 return -EINVAL;
2353
2354 if (vlen > UIO_MAXIOV)
2355 vlen = UIO_MAXIOV;
2356
2357 datagrams = 0;
2358
2359 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2360 if (!sock)
2361 return err;
2362
2363 used_address.name_len = UINT_MAX;
2364 entry = mmsg;
2365 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2366 err = 0;
2367 flags |= MSG_BATCH;
2368
2369 while (datagrams < vlen) {
2370 if (datagrams == vlen - 1)
2371 flags = oflags;
2372
2373 if (MSG_CMSG_COMPAT & flags) {
2374 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2375 &msg_sys, flags, &used_address, MSG_EOR);
2376 if (err < 0)
2377 break;
2378 err = __put_user(err, &compat_entry->msg_len);
2379 ++compat_entry;
2380 } else {
2381 err = ___sys_sendmsg(sock,
2382 (struct user_msghdr __user *)entry,
2383 &msg_sys, flags, &used_address, MSG_EOR);
2384 if (err < 0)
2385 break;
2386 err = put_user(err, &entry->msg_len);
2387 ++entry;
2388 }
2389
2390 if (err)
2391 break;
2392 ++datagrams;
2393 if (msg_data_left(&msg_sys))
2394 break;
2395 cond_resched();
2396 }
2397
2398 fput_light(sock->file, fput_needed);
2399
2400 /* We only return an error if no datagrams were able to be sent */
2401 if (datagrams != 0)
2402 return datagrams;
2403
2404 return err;
2405 }
2406
2407 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2408 unsigned int, vlen, unsigned int, flags)
2409 {
2410 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2411 }
2412
2413 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2414 struct msghdr *msg_sys, unsigned int flags, int nosec)
2415 {
2416 struct compat_msghdr __user *msg_compat =
2417 (struct compat_msghdr __user *)msg;
2418 struct iovec iovstack[UIO_FASTIOV];
2419 struct iovec *iov = iovstack;
2420 unsigned long cmsg_ptr;
2421 int len;
2422 ssize_t err;
2423
2424 /* kernel mode address */
2425 struct sockaddr_storage addr;
2426
2427 /* user mode address pointers */
2428 struct sockaddr __user *uaddr;
2429 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2430
2431 msg_sys->msg_name = &addr;
2432
2433 if (MSG_CMSG_COMPAT & flags)
2434 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2435 else
2436 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2437 if (err < 0)
2438 return err;
2439
2440 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2441 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2442
2443 /* We assume all kernel code knows the size of sockaddr_storage */
2444 msg_sys->msg_namelen = 0;
2445
2446 if (sock->file->f_flags & O_NONBLOCK)
2447 flags |= MSG_DONTWAIT;
2448 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2449 if (err < 0)
2450 goto out_freeiov;
2451 len = err;
2452
2453 if (uaddr != NULL) {
2454 err = move_addr_to_user(&addr,
2455 msg_sys->msg_namelen, uaddr,
2456 uaddr_len);
2457 if (err < 0)
2458 goto out_freeiov;
2459 }
2460 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2461 COMPAT_FLAGS(msg));
2462 if (err)
2463 goto out_freeiov;
2464 if (MSG_CMSG_COMPAT & flags)
2465 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2466 &msg_compat->msg_controllen);
2467 else
2468 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2469 &msg->msg_controllen);
2470 if (err)
2471 goto out_freeiov;
2472 err = len;
2473
2474 out_freeiov:
2475 kfree(iov);
2476 return err;
2477 }
2478
2479 /*
2480 * BSD recvmsg interface
2481 */
2482
2483 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2484 bool forbid_cmsg_compat)
2485 {
2486 int fput_needed, err;
2487 struct msghdr msg_sys;
2488 struct socket *sock;
2489
2490 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2491 return -EINVAL;
2492
2493 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2494 if (!sock)
2495 goto out;
2496
2497 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2498
2499 fput_light(sock->file, fput_needed);
2500 out:
2501 return err;
2502 }
2503
2504 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2505 unsigned int, flags)
2506 {
2507 return __sys_recvmsg(fd, msg, flags, true);
2508 }
2509
2510 /*
2511 * Linux recvmmsg interface
2512 */
2513
2514 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2515 unsigned int vlen, unsigned int flags,
2516 struct timespec64 *timeout)
2517 {
2518 int fput_needed, err, datagrams;
2519 struct socket *sock;
2520 struct mmsghdr __user *entry;
2521 struct compat_mmsghdr __user *compat_entry;
2522 struct msghdr msg_sys;
2523 struct timespec64 end_time;
2524 struct timespec64 timeout64;
2525
2526 if (timeout &&
2527 poll_select_set_timeout(&end_time, timeout->tv_sec,
2528 timeout->tv_nsec))
2529 return -EINVAL;
2530
2531 datagrams = 0;
2532
2533 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2534 if (!sock)
2535 return err;
2536
2537 if (likely(!(flags & MSG_ERRQUEUE))) {
2538 err = sock_error(sock->sk);
2539 if (err) {
2540 datagrams = err;
2541 goto out_put;
2542 }
2543 }
2544
2545 entry = mmsg;
2546 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2547
2548 while (datagrams < vlen) {
2549 /*
2550 * No need to ask LSM for more than the first datagram.
2551 */
2552 if (MSG_CMSG_COMPAT & flags) {
2553 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2554 &msg_sys, flags & ~MSG_WAITFORONE,
2555 datagrams);
2556 if (err < 0)
2557 break;
2558 err = __put_user(err, &compat_entry->msg_len);
2559 ++compat_entry;
2560 } else {
2561 err = ___sys_recvmsg(sock,
2562 (struct user_msghdr __user *)entry,
2563 &msg_sys, flags & ~MSG_WAITFORONE,
2564 datagrams);
2565 if (err < 0)
2566 break;
2567 err = put_user(err, &entry->msg_len);
2568 ++entry;
2569 }
2570
2571 if (err)
2572 break;
2573 ++datagrams;
2574
2575 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2576 if (flags & MSG_WAITFORONE)
2577 flags |= MSG_DONTWAIT;
2578
2579 if (timeout) {
2580 ktime_get_ts64(&timeout64);
2581 *timeout = timespec64_sub(end_time, timeout64);
2582 if (timeout->tv_sec < 0) {
2583 timeout->tv_sec = timeout->tv_nsec = 0;
2584 break;
2585 }
2586
2587 /* Timeout, return less than vlen datagrams */
2588 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2589 break;
2590 }
2591
2592 /* Out of band data, return right away */
2593 if (msg_sys.msg_flags & MSG_OOB)
2594 break;
2595 cond_resched();
2596 }
2597
2598 if (err == 0)
2599 goto out_put;
2600
2601 if (datagrams == 0) {
2602 datagrams = err;
2603 goto out_put;
2604 }
2605
2606 /*
2607 * We may return less entries than requested (vlen) if the
2608 * sock is non block and there aren't enough datagrams...
2609 */
2610 if (err != -EAGAIN) {
2611 /*
2612 * ... or if recvmsg returns an error after we
2613 * received some datagrams, where we record the
2614 * error to return on the next call or if the
2615 * app asks about it using getsockopt(SO_ERROR).
2616 */
2617 sock->sk->sk_err = -err;
2618 }
2619 out_put:
2620 fput_light(sock->file, fput_needed);
2621
2622 return datagrams;
2623 }
2624
2625 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2626 unsigned int vlen, unsigned int flags,
2627 struct __kernel_timespec __user *timeout,
2628 struct old_timespec32 __user *timeout32)
2629 {
2630 int datagrams;
2631 struct timespec64 timeout_sys;
2632
2633 if (timeout && get_timespec64(&timeout_sys, timeout))
2634 return -EFAULT;
2635
2636 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2637 return -EFAULT;
2638
2639 if (!timeout && !timeout32)
2640 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2641
2642 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2643
2644 if (datagrams <= 0)
2645 return datagrams;
2646
2647 if (timeout && put_timespec64(&timeout_sys, timeout))
2648 datagrams = -EFAULT;
2649
2650 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2651 datagrams = -EFAULT;
2652
2653 return datagrams;
2654 }
2655
2656 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2657 unsigned int, vlen, unsigned int, flags,
2658 struct __kernel_timespec __user *, timeout)
2659 {
2660 if (flags & MSG_CMSG_COMPAT)
2661 return -EINVAL;
2662
2663 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2664 }
2665
2666 #ifdef CONFIG_COMPAT_32BIT_TIME
2667 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2668 unsigned int, vlen, unsigned int, flags,
2669 struct old_timespec32 __user *, timeout)
2670 {
2671 if (flags & MSG_CMSG_COMPAT)
2672 return -EINVAL;
2673
2674 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2675 }
2676 #endif
2677
2678 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2679 /* Argument list sizes for sys_socketcall */
2680 #define AL(x) ((x) * sizeof(unsigned long))
2681 static const unsigned char nargs[21] = {
2682 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2683 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2684 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2685 AL(4), AL(5), AL(4)
2686 };
2687
2688 #undef AL
2689
2690 /*
2691 * System call vectors.
2692 *
2693 * Argument checking cleaned up. Saved 20% in size.
2694 * This function doesn't need to set the kernel lock because
2695 * it is set by the callees.
2696 */
2697
2698 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2699 {
2700 unsigned long a[AUDITSC_ARGS];
2701 unsigned long a0, a1;
2702 int err;
2703 unsigned int len;
2704
2705 if (call < 1 || call > SYS_SENDMMSG)
2706 return -EINVAL;
2707 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2708
2709 len = nargs[call];
2710 if (len > sizeof(a))
2711 return -EINVAL;
2712
2713 /* copy_from_user should be SMP safe. */
2714 if (copy_from_user(a, args, len))
2715 return -EFAULT;
2716
2717 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2718 if (err)
2719 return err;
2720
2721 a0 = a[0];
2722 a1 = a[1];
2723
2724 switch (call) {
2725 case SYS_SOCKET:
2726 err = __sys_socket(a0, a1, a[2]);
2727 break;
2728 case SYS_BIND:
2729 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2730 break;
2731 case SYS_CONNECT:
2732 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2733 break;
2734 case SYS_LISTEN:
2735 err = __sys_listen(a0, a1);
2736 break;
2737 case SYS_ACCEPT:
2738 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2739 (int __user *)a[2], 0);
2740 break;
2741 case SYS_GETSOCKNAME:
2742 err =
2743 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2744 (int __user *)a[2]);
2745 break;
2746 case SYS_GETPEERNAME:
2747 err =
2748 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2749 (int __user *)a[2]);
2750 break;
2751 case SYS_SOCKETPAIR:
2752 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2753 break;
2754 case SYS_SEND:
2755 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2756 NULL, 0);
2757 break;
2758 case SYS_SENDTO:
2759 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2760 (struct sockaddr __user *)a[4], a[5]);
2761 break;
2762 case SYS_RECV:
2763 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2764 NULL, NULL);
2765 break;
2766 case SYS_RECVFROM:
2767 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2768 (struct sockaddr __user *)a[4],
2769 (int __user *)a[5]);
2770 break;
2771 case SYS_SHUTDOWN:
2772 err = __sys_shutdown(a0, a1);
2773 break;
2774 case SYS_SETSOCKOPT:
2775 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2776 a[4]);
2777 break;
2778 case SYS_GETSOCKOPT:
2779 err =
2780 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2781 (int __user *)a[4]);
2782 break;
2783 case SYS_SENDMSG:
2784 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2785 a[2], true);
2786 break;
2787 case SYS_SENDMMSG:
2788 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2789 a[3], true);
2790 break;
2791 case SYS_RECVMSG:
2792 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2793 a[2], true);
2794 break;
2795 case SYS_RECVMMSG:
2796 if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME))
2797 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2798 a[2], a[3],
2799 (struct __kernel_timespec __user *)a[4],
2800 NULL);
2801 else
2802 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2803 a[2], a[3], NULL,
2804 (struct old_timespec32 __user *)a[4]);
2805 break;
2806 case SYS_ACCEPT4:
2807 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2808 (int __user *)a[2], a[3]);
2809 break;
2810 default:
2811 err = -EINVAL;
2812 break;
2813 }
2814 return err;
2815 }
2816
2817 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2818
2819 /**
2820 * sock_register - add a socket protocol handler
2821 * @ops: description of protocol
2822 *
2823 * This function is called by a protocol handler that wants to
2824 * advertise its address family, and have it linked into the
2825 * socket interface. The value ops->family corresponds to the
2826 * socket system call protocol family.
2827 */
2828 int sock_register(const struct net_proto_family *ops)
2829 {
2830 int err;
2831
2832 if (ops->family >= NPROTO) {
2833 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2834 return -ENOBUFS;
2835 }
2836
2837 spin_lock(&net_family_lock);
2838 if (rcu_dereference_protected(net_families[ops->family],
2839 lockdep_is_held(&net_family_lock)))
2840 err = -EEXIST;
2841 else {
2842 rcu_assign_pointer(net_families[ops->family], ops);
2843 err = 0;
2844 }
2845 spin_unlock(&net_family_lock);
2846
2847 pr_info("NET: Registered protocol family %d\n", ops->family);
2848 return err;
2849 }
2850 EXPORT_SYMBOL(sock_register);
2851
2852 /**
2853 * sock_unregister - remove a protocol handler
2854 * @family: protocol family to remove
2855 *
2856 * This function is called by a protocol handler that wants to
2857 * remove its address family, and have it unlinked from the
2858 * new socket creation.
2859 *
2860 * If protocol handler is a module, then it can use module reference
2861 * counts to protect against new references. If protocol handler is not
2862 * a module then it needs to provide its own protection in
2863 * the ops->create routine.
2864 */
2865 void sock_unregister(int family)
2866 {
2867 BUG_ON(family < 0 || family >= NPROTO);
2868
2869 spin_lock(&net_family_lock);
2870 RCU_INIT_POINTER(net_families[family], NULL);
2871 spin_unlock(&net_family_lock);
2872
2873 synchronize_rcu();
2874
2875 pr_info("NET: Unregistered protocol family %d\n", family);
2876 }
2877 EXPORT_SYMBOL(sock_unregister);
2878
2879 bool sock_is_registered(int family)
2880 {
2881 return family < NPROTO && rcu_access_pointer(net_families[family]);
2882 }
2883
2884 static int __init sock_init(void)
2885 {
2886 int err;
2887 /*
2888 * Initialize the network sysctl infrastructure.
2889 */
2890 err = net_sysctl_init();
2891 if (err)
2892 goto out;
2893
2894 /*
2895 * Initialize skbuff SLAB cache
2896 */
2897 skb_init();
2898
2899 /*
2900 * Initialize the protocols module.
2901 */
2902
2903 init_inodecache();
2904
2905 err = register_filesystem(&sock_fs_type);
2906 if (err)
2907 goto out_fs;
2908 sock_mnt = kern_mount(&sock_fs_type);
2909 if (IS_ERR(sock_mnt)) {
2910 err = PTR_ERR(sock_mnt);
2911 goto out_mount;
2912 }
2913
2914 /* The real protocol initialization is performed in later initcalls.
2915 */
2916
2917 #ifdef CONFIG_NETFILTER
2918 err = netfilter_init();
2919 if (err)
2920 goto out;
2921 #endif
2922
2923 ptp_classifier_init();
2924
2925 out:
2926 return err;
2927
2928 out_mount:
2929 unregister_filesystem(&sock_fs_type);
2930 out_fs:
2931 goto out;
2932 }
2933
2934 core_initcall(sock_init); /* early initcall */
2935
2936 #ifdef CONFIG_PROC_FS
2937 void socket_seq_show(struct seq_file *seq)
2938 {
2939 seq_printf(seq, "sockets: used %d\n",
2940 sock_inuse_get(seq->private));
2941 }
2942 #endif /* CONFIG_PROC_FS */
2943
2944 #ifdef CONFIG_COMPAT
2945 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2946 {
2947 struct compat_ifconf ifc32;
2948 struct ifconf ifc;
2949 int err;
2950
2951 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2952 return -EFAULT;
2953
2954 ifc.ifc_len = ifc32.ifc_len;
2955 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2956
2957 rtnl_lock();
2958 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2959 rtnl_unlock();
2960 if (err)
2961 return err;
2962
2963 ifc32.ifc_len = ifc.ifc_len;
2964 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2965 return -EFAULT;
2966
2967 return 0;
2968 }
2969
2970 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2971 {
2972 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2973 bool convert_in = false, convert_out = false;
2974 size_t buf_size = 0;
2975 struct ethtool_rxnfc __user *rxnfc = NULL;
2976 struct ifreq ifr;
2977 u32 rule_cnt = 0, actual_rule_cnt;
2978 u32 ethcmd;
2979 u32 data;
2980 int ret;
2981
2982 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2983 return -EFAULT;
2984
2985 compat_rxnfc = compat_ptr(data);
2986
2987 if (get_user(ethcmd, &compat_rxnfc->cmd))
2988 return -EFAULT;
2989
2990 /* Most ethtool structures are defined without padding.
2991 * Unfortunately struct ethtool_rxnfc is an exception.
2992 */
2993 switch (ethcmd) {
2994 default:
2995 break;
2996 case ETHTOOL_GRXCLSRLALL:
2997 /* Buffer size is variable */
2998 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2999 return -EFAULT;
3000 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3001 return -ENOMEM;
3002 buf_size += rule_cnt * sizeof(u32);
3003 /* fall through */
3004 case ETHTOOL_GRXRINGS:
3005 case ETHTOOL_GRXCLSRLCNT:
3006 case ETHTOOL_GRXCLSRULE:
3007 case ETHTOOL_SRXCLSRLINS:
3008 convert_out = true;
3009 /* fall through */
3010 case ETHTOOL_SRXCLSRLDEL:
3011 buf_size += sizeof(struct ethtool_rxnfc);
3012 convert_in = true;
3013 rxnfc = compat_alloc_user_space(buf_size);
3014 break;
3015 }
3016
3017 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3018 return -EFAULT;
3019
3020 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3021
3022 if (convert_in) {
3023 /* We expect there to be holes between fs.m_ext and
3024 * fs.ring_cookie and at the end of fs, but nowhere else.
3025 */
3026 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3027 sizeof(compat_rxnfc->fs.m_ext) !=
3028 offsetof(struct ethtool_rxnfc, fs.m_ext) +
3029 sizeof(rxnfc->fs.m_ext));
3030 BUILD_BUG_ON(
3031 offsetof(struct compat_ethtool_rxnfc, fs.location) -
3032 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3033 offsetof(struct ethtool_rxnfc, fs.location) -
3034 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3035
3036 if (copy_in_user(rxnfc, compat_rxnfc,
3037 (void __user *)(&rxnfc->fs.m_ext + 1) -
3038 (void __user *)rxnfc) ||
3039 copy_in_user(&rxnfc->fs.ring_cookie,
3040 &compat_rxnfc->fs.ring_cookie,
3041 (void __user *)(&rxnfc->fs.location + 1) -
3042 (void __user *)&rxnfc->fs.ring_cookie))
3043 return -EFAULT;
3044 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3045 if (put_user(rule_cnt, &rxnfc->rule_cnt))
3046 return -EFAULT;
3047 } else if (copy_in_user(&rxnfc->rule_cnt,
3048 &compat_rxnfc->rule_cnt,
3049 sizeof(rxnfc->rule_cnt)))
3050 return -EFAULT;
3051 }
3052
3053 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3054 if (ret)
3055 return ret;
3056
3057 if (convert_out) {
3058 if (copy_in_user(compat_rxnfc, rxnfc,
3059 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3060 (const void __user *)rxnfc) ||
3061 copy_in_user(&compat_rxnfc->fs.ring_cookie,
3062 &rxnfc->fs.ring_cookie,
3063 (const void __user *)(&rxnfc->fs.location + 1) -
3064 (const void __user *)&rxnfc->fs.ring_cookie) ||
3065 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3066 sizeof(rxnfc->rule_cnt)))
3067 return -EFAULT;
3068
3069 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3070 /* As an optimisation, we only copy the actual
3071 * number of rules that the underlying
3072 * function returned. Since Mallory might
3073 * change the rule count in user memory, we
3074 * check that it is less than the rule count
3075 * originally given (as the user buffer size),
3076 * which has been range-checked.
3077 */
3078 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3079 return -EFAULT;
3080 if (actual_rule_cnt < rule_cnt)
3081 rule_cnt = actual_rule_cnt;
3082 if (copy_in_user(&compat_rxnfc->rule_locs[0],
3083 &rxnfc->rule_locs[0],
3084 rule_cnt * sizeof(u32)))
3085 return -EFAULT;
3086 }
3087 }
3088
3089 return 0;
3090 }
3091
3092 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3093 {
3094 compat_uptr_t uptr32;
3095 struct ifreq ifr;
3096 void __user *saved;
3097 int err;
3098
3099 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3100 return -EFAULT;
3101
3102 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3103 return -EFAULT;
3104
3105 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3106 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3107
3108 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3109 if (!err) {
3110 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3111 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3112 err = -EFAULT;
3113 }
3114 return err;
3115 }
3116
3117 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3118 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3119 struct compat_ifreq __user *u_ifreq32)
3120 {
3121 struct ifreq ifreq;
3122 u32 data32;
3123
3124 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3125 return -EFAULT;
3126 if (get_user(data32, &u_ifreq32->ifr_data))
3127 return -EFAULT;
3128 ifreq.ifr_data = compat_ptr(data32);
3129
3130 return dev_ioctl(net, cmd, &ifreq, NULL);
3131 }
3132
3133 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3134 unsigned int cmd,
3135 struct compat_ifreq __user *uifr32)
3136 {
3137 struct ifreq __user *uifr;
3138 int err;
3139
3140 /* Handle the fact that while struct ifreq has the same *layout* on
3141 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3142 * which are handled elsewhere, it still has different *size* due to
3143 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3144 * resulting in struct ifreq being 32 and 40 bytes respectively).
3145 * As a result, if the struct happens to be at the end of a page and
3146 * the next page isn't readable/writable, we get a fault. To prevent
3147 * that, copy back and forth to the full size.
3148 */
3149
3150 uifr = compat_alloc_user_space(sizeof(*uifr));
3151 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3152 return -EFAULT;
3153
3154 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3155
3156 if (!err) {
3157 switch (cmd) {
3158 case SIOCGIFFLAGS:
3159 case SIOCGIFMETRIC:
3160 case SIOCGIFMTU:
3161 case SIOCGIFMEM:
3162 case SIOCGIFHWADDR:
3163 case SIOCGIFINDEX:
3164 case SIOCGIFADDR:
3165 case SIOCGIFBRDADDR:
3166 case SIOCGIFDSTADDR:
3167 case SIOCGIFNETMASK:
3168 case SIOCGIFPFLAGS:
3169 case SIOCGIFTXQLEN:
3170 case SIOCGMIIPHY:
3171 case SIOCGMIIREG:
3172 case SIOCGIFNAME:
3173 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3174 err = -EFAULT;
3175 break;
3176 }
3177 }
3178 return err;
3179 }
3180
3181 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3182 struct compat_ifreq __user *uifr32)
3183 {
3184 struct ifreq ifr;
3185 struct compat_ifmap __user *uifmap32;
3186 int err;
3187
3188 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3189 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3190 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3191 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3192 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3193 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3194 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3195 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3196 if (err)
3197 return -EFAULT;
3198
3199 err = dev_ioctl(net, cmd, &ifr, NULL);
3200
3201 if (cmd == SIOCGIFMAP && !err) {
3202 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3203 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3204 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3205 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3206 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3207 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3208 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3209 if (err)
3210 err = -EFAULT;
3211 }
3212 return err;
3213 }
3214
3215 struct rtentry32 {
3216 u32 rt_pad1;
3217 struct sockaddr rt_dst; /* target address */
3218 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3219 struct sockaddr rt_genmask; /* target network mask (IP) */
3220 unsigned short rt_flags;
3221 short rt_pad2;
3222 u32 rt_pad3;
3223 unsigned char rt_tos;
3224 unsigned char rt_class;
3225 short rt_pad4;
3226 short rt_metric; /* +1 for binary compatibility! */
3227 /* char * */ u32 rt_dev; /* forcing the device at add */
3228 u32 rt_mtu; /* per route MTU/Window */
3229 u32 rt_window; /* Window clamping */
3230 unsigned short rt_irtt; /* Initial RTT */
3231 };
3232
3233 struct in6_rtmsg32 {
3234 struct in6_addr rtmsg_dst;
3235 struct in6_addr rtmsg_src;
3236 struct in6_addr rtmsg_gateway;
3237 u32 rtmsg_type;
3238 u16 rtmsg_dst_len;
3239 u16 rtmsg_src_len;
3240 u32 rtmsg_metric;
3241 u32 rtmsg_info;
3242 u32 rtmsg_flags;
3243 s32 rtmsg_ifindex;
3244 };
3245
3246 static int routing_ioctl(struct net *net, struct socket *sock,
3247 unsigned int cmd, void __user *argp)
3248 {
3249 int ret;
3250 void *r = NULL;
3251 struct in6_rtmsg r6;
3252 struct rtentry r4;
3253 char devname[16];
3254 u32 rtdev;
3255 mm_segment_t old_fs = get_fs();
3256
3257 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3258 struct in6_rtmsg32 __user *ur6 = argp;
3259 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3260 3 * sizeof(struct in6_addr));
3261 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3262 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3263 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3264 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3265 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3266 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3267 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3268
3269 r = (void *) &r6;
3270 } else { /* ipv4 */
3271 struct rtentry32 __user *ur4 = argp;
3272 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3273 3 * sizeof(struct sockaddr));
3274 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3275 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3276 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3277 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3278 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3279 ret |= get_user(rtdev, &(ur4->rt_dev));
3280 if (rtdev) {
3281 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3282 r4.rt_dev = (char __user __force *)devname;
3283 devname[15] = 0;
3284 } else
3285 r4.rt_dev = NULL;
3286
3287 r = (void *) &r4;
3288 }
3289
3290 if (ret) {
3291 ret = -EFAULT;
3292 goto out;
3293 }
3294
3295 set_fs(KERNEL_DS);
3296 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3297 set_fs(old_fs);
3298
3299 out:
3300 return ret;
3301 }
3302
3303 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3304 * for some operations; this forces use of the newer bridge-utils that
3305 * use compatible ioctls
3306 */
3307 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3308 {
3309 compat_ulong_t tmp;
3310
3311 if (get_user(tmp, argp))
3312 return -EFAULT;
3313 if (tmp == BRCTL_GET_VERSION)
3314 return BRCTL_VERSION + 1;
3315 return -EINVAL;
3316 }
3317
3318 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3319 unsigned int cmd, unsigned long arg)
3320 {
3321 void __user *argp = compat_ptr(arg);
3322 struct sock *sk = sock->sk;
3323 struct net *net = sock_net(sk);
3324
3325 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3326 return compat_ifr_data_ioctl(net, cmd, argp);
3327
3328 switch (cmd) {
3329 case SIOCSIFBR:
3330 case SIOCGIFBR:
3331 return old_bridge_ioctl(argp);
3332 case SIOCGIFCONF:
3333 return compat_dev_ifconf(net, argp);
3334 case SIOCETHTOOL:
3335 return ethtool_ioctl(net, argp);
3336 case SIOCWANDEV:
3337 return compat_siocwandev(net, argp);
3338 case SIOCGIFMAP:
3339 case SIOCSIFMAP:
3340 return compat_sioc_ifmap(net, cmd, argp);
3341 case SIOCADDRT:
3342 case SIOCDELRT:
3343 return routing_ioctl(net, sock, cmd, argp);
3344 case SIOCGSTAMP_OLD:
3345 case SIOCGSTAMPNS_OLD:
3346 if (!sock->ops->gettstamp)
3347 return -ENOIOCTLCMD;
3348 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3349 !COMPAT_USE_64BIT_TIME);
3350
3351 case SIOCBONDSLAVEINFOQUERY:
3352 case SIOCBONDINFOQUERY:
3353 case SIOCSHWTSTAMP:
3354 case SIOCGHWTSTAMP:
3355 return compat_ifr_data_ioctl(net, cmd, argp);
3356
3357 case FIOSETOWN:
3358 case SIOCSPGRP:
3359 case FIOGETOWN:
3360 case SIOCGPGRP:
3361 case SIOCBRADDBR:
3362 case SIOCBRDELBR:
3363 case SIOCGIFVLAN:
3364 case SIOCSIFVLAN:
3365 case SIOCADDDLCI:
3366 case SIOCDELDLCI:
3367 case SIOCGSKNS:
3368 case SIOCGSTAMP_NEW:
3369 case SIOCGSTAMPNS_NEW:
3370 return sock_ioctl(file, cmd, arg);
3371
3372 case SIOCGIFFLAGS:
3373 case SIOCSIFFLAGS:
3374 case SIOCGIFMETRIC:
3375 case SIOCSIFMETRIC:
3376 case SIOCGIFMTU:
3377 case SIOCSIFMTU:
3378 case SIOCGIFMEM:
3379 case SIOCSIFMEM:
3380 case SIOCGIFHWADDR:
3381 case SIOCSIFHWADDR:
3382 case SIOCADDMULTI:
3383 case SIOCDELMULTI:
3384 case SIOCGIFINDEX:
3385 case SIOCGIFADDR:
3386 case SIOCSIFADDR:
3387 case SIOCSIFHWBROADCAST:
3388 case SIOCDIFADDR:
3389 case SIOCGIFBRDADDR:
3390 case SIOCSIFBRDADDR:
3391 case SIOCGIFDSTADDR:
3392 case SIOCSIFDSTADDR:
3393 case SIOCGIFNETMASK:
3394 case SIOCSIFNETMASK:
3395 case SIOCSIFPFLAGS:
3396 case SIOCGIFPFLAGS:
3397 case SIOCGIFTXQLEN:
3398 case SIOCSIFTXQLEN:
3399 case SIOCBRADDIF:
3400 case SIOCBRDELIF:
3401 case SIOCGIFNAME:
3402 case SIOCSIFNAME:
3403 case SIOCGMIIPHY:
3404 case SIOCGMIIREG:
3405 case SIOCSMIIREG:
3406 case SIOCBONDENSLAVE:
3407 case SIOCBONDRELEASE:
3408 case SIOCBONDSETHWADDR:
3409 case SIOCBONDCHANGEACTIVE:
3410 return compat_ifreq_ioctl(net, sock, cmd, argp);
3411
3412 case SIOCSARP:
3413 case SIOCGARP:
3414 case SIOCDARP:
3415 case SIOCATMARK:
3416 return sock_do_ioctl(net, sock, cmd, arg);
3417 }
3418
3419 return -ENOIOCTLCMD;
3420 }
3421
3422 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3423 unsigned long arg)
3424 {
3425 struct socket *sock = file->private_data;
3426 int ret = -ENOIOCTLCMD;
3427 struct sock *sk;
3428 struct net *net;
3429
3430 sk = sock->sk;
3431 net = sock_net(sk);
3432
3433 if (sock->ops->compat_ioctl)
3434 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3435
3436 if (ret == -ENOIOCTLCMD &&
3437 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3438 ret = compat_wext_handle_ioctl(net, cmd, arg);
3439
3440 if (ret == -ENOIOCTLCMD)
3441 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3442
3443 return ret;
3444 }
3445 #endif
3446
3447 /**
3448 * kernel_bind - bind an address to a socket (kernel space)
3449 * @sock: socket
3450 * @addr: address
3451 * @addrlen: length of address
3452 *
3453 * Returns 0 or an error.
3454 */
3455
3456 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3457 {
3458 return sock->ops->bind(sock, addr, addrlen);
3459 }
3460 EXPORT_SYMBOL(kernel_bind);
3461
3462 /**
3463 * kernel_listen - move socket to listening state (kernel space)
3464 * @sock: socket
3465 * @backlog: pending connections queue size
3466 *
3467 * Returns 0 or an error.
3468 */
3469
3470 int kernel_listen(struct socket *sock, int backlog)
3471 {
3472 return sock->ops->listen(sock, backlog);
3473 }
3474 EXPORT_SYMBOL(kernel_listen);
3475
3476 /**
3477 * kernel_accept - accept a connection (kernel space)
3478 * @sock: listening socket
3479 * @newsock: new connected socket
3480 * @flags: flags
3481 *
3482 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3483 * If it fails, @newsock is guaranteed to be %NULL.
3484 * Returns 0 or an error.
3485 */
3486
3487 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3488 {
3489 struct sock *sk = sock->sk;
3490 int err;
3491
3492 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3493 newsock);
3494 if (err < 0)
3495 goto done;
3496
3497 err = sock->ops->accept(sock, *newsock, flags, true);
3498 if (err < 0) {
3499 sock_release(*newsock);
3500 *newsock = NULL;
3501 goto done;
3502 }
3503
3504 (*newsock)->ops = sock->ops;
3505 __module_get((*newsock)->ops->owner);
3506
3507 done:
3508 return err;
3509 }
3510 EXPORT_SYMBOL(kernel_accept);
3511
3512 /**
3513 * kernel_connect - connect a socket (kernel space)
3514 * @sock: socket
3515 * @addr: address
3516 * @addrlen: address length
3517 * @flags: flags (O_NONBLOCK, ...)
3518 *
3519 * For datagram sockets, @addr is the addres to which datagrams are sent
3520 * by default, and the only address from which datagrams are received.
3521 * For stream sockets, attempts to connect to @addr.
3522 * Returns 0 or an error code.
3523 */
3524
3525 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3526 int flags)
3527 {
3528 return sock->ops->connect(sock, addr, addrlen, flags);
3529 }
3530 EXPORT_SYMBOL(kernel_connect);
3531
3532 /**
3533 * kernel_getsockname - get the address which the socket is bound (kernel space)
3534 * @sock: socket
3535 * @addr: address holder
3536 *
3537 * Fills the @addr pointer with the address which the socket is bound.
3538 * Returns 0 or an error code.
3539 */
3540
3541 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3542 {
3543 return sock->ops->getname(sock, addr, 0);
3544 }
3545 EXPORT_SYMBOL(kernel_getsockname);
3546
3547 /**
3548 * kernel_peername - get the address which the socket is connected (kernel space)
3549 * @sock: socket
3550 * @addr: address holder
3551 *
3552 * Fills the @addr pointer with the address which the socket is connected.
3553 * Returns 0 or an error code.
3554 */
3555
3556 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3557 {
3558 return sock->ops->getname(sock, addr, 1);
3559 }
3560 EXPORT_SYMBOL(kernel_getpeername);
3561
3562 /**
3563 * kernel_getsockopt - get a socket option (kernel space)
3564 * @sock: socket
3565 * @level: API level (SOL_SOCKET, ...)
3566 * @optname: option tag
3567 * @optval: option value
3568 * @optlen: option length
3569 *
3570 * Assigns the option length to @optlen.
3571 * Returns 0 or an error.
3572 */
3573
3574 int kernel_getsockopt(struct socket *sock, int level, int optname,
3575 char *optval, int *optlen)
3576 {
3577 mm_segment_t oldfs = get_fs();
3578 char __user *uoptval;
3579 int __user *uoptlen;
3580 int err;
3581
3582 uoptval = (char __user __force *) optval;
3583 uoptlen = (int __user __force *) optlen;
3584
3585 set_fs(KERNEL_DS);
3586 if (level == SOL_SOCKET)
3587 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3588 else
3589 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3590 uoptlen);
3591 set_fs(oldfs);
3592 return err;
3593 }
3594 EXPORT_SYMBOL(kernel_getsockopt);
3595
3596 /**
3597 * kernel_setsockopt - set a socket option (kernel space)
3598 * @sock: socket
3599 * @level: API level (SOL_SOCKET, ...)
3600 * @optname: option tag
3601 * @optval: option value
3602 * @optlen: option length
3603 *
3604 * Returns 0 or an error.
3605 */
3606
3607 int kernel_setsockopt(struct socket *sock, int level, int optname,
3608 char *optval, unsigned int optlen)
3609 {
3610 mm_segment_t oldfs = get_fs();
3611 char __user *uoptval;
3612 int err;
3613
3614 uoptval = (char __user __force *) optval;
3615
3616 set_fs(KERNEL_DS);
3617 if (level == SOL_SOCKET)
3618 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3619 else
3620 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3621 optlen);
3622 set_fs(oldfs);
3623 return err;
3624 }
3625 EXPORT_SYMBOL(kernel_setsockopt);
3626
3627 /**
3628 * kernel_sendpage - send a &page through a socket (kernel space)
3629 * @sock: socket
3630 * @page: page
3631 * @offset: page offset
3632 * @size: total size in bytes
3633 * @flags: flags (MSG_DONTWAIT, ...)
3634 *
3635 * Returns the total amount sent in bytes or an error.
3636 */
3637
3638 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3639 size_t size, int flags)
3640 {
3641 if (sock->ops->sendpage)
3642 return sock->ops->sendpage(sock, page, offset, size, flags);
3643
3644 return sock_no_sendpage(sock, page, offset, size, flags);
3645 }
3646 EXPORT_SYMBOL(kernel_sendpage);
3647
3648 /**
3649 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3650 * @sk: sock
3651 * @page: page
3652 * @offset: page offset
3653 * @size: total size in bytes
3654 * @flags: flags (MSG_DONTWAIT, ...)
3655 *
3656 * Returns the total amount sent in bytes or an error.
3657 * Caller must hold @sk.
3658 */
3659
3660 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3661 size_t size, int flags)
3662 {
3663 struct socket *sock = sk->sk_socket;
3664
3665 if (sock->ops->sendpage_locked)
3666 return sock->ops->sendpage_locked(sk, page, offset, size,
3667 flags);
3668
3669 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3670 }
3671 EXPORT_SYMBOL(kernel_sendpage_locked);
3672
3673 /**
3674 * kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3675 * @sock: socket
3676 * @how: connection part
3677 *
3678 * Returns 0 or an error.
3679 */
3680
3681 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3682 {
3683 return sock->ops->shutdown(sock, how);
3684 }
3685 EXPORT_SYMBOL(kernel_sock_shutdown);
3686
3687 /**
3688 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3689 * @sk: socket
3690 *
3691 * This routine returns the IP overhead imposed by a socket i.e.
3692 * the length of the underlying IP header, depending on whether
3693 * this is an IPv4 or IPv6 socket and the length from IP options turned
3694 * on at the socket. Assumes that the caller has a lock on the socket.
3695 */
3696
3697 u32 kernel_sock_ip_overhead(struct sock *sk)
3698 {
3699 struct inet_sock *inet;
3700 struct ip_options_rcu *opt;
3701 u32 overhead = 0;
3702 #if IS_ENABLED(CONFIG_IPV6)
3703 struct ipv6_pinfo *np;
3704 struct ipv6_txoptions *optv6 = NULL;
3705 #endif /* IS_ENABLED(CONFIG_IPV6) */
3706
3707 if (!sk)
3708 return overhead;
3709
3710 switch (sk->sk_family) {
3711 case AF_INET:
3712 inet = inet_sk(sk);
3713 overhead += sizeof(struct iphdr);
3714 opt = rcu_dereference_protected(inet->inet_opt,
3715 sock_owned_by_user(sk));
3716 if (opt)
3717 overhead += opt->opt.optlen;
3718 return overhead;
3719 #if IS_ENABLED(CONFIG_IPV6)
3720 case AF_INET6:
3721 np = inet6_sk(sk);
3722 overhead += sizeof(struct ipv6hdr);
3723 if (np)
3724 optv6 = rcu_dereference_protected(np->opt,
3725 sock_owned_by_user(sk));
3726 if (optv6)
3727 overhead += (optv6->opt_flen + optv6->opt_nflen);
3728 return overhead;
3729 #endif /* IS_ENABLED(CONFIG_IPV6) */
3730 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3731 return overhead;
3732 }
3733 }
3734 EXPORT_SYMBOL(kernel_sock_ip_overhead);