]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - net/socket.c
Merge tag 'pinctrl-v5.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[thirdparty/kernel/stable.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
93 #include <linux/indirect_call_wrapper.h>
94
95 #include <linux/uaccess.h>
96 #include <asm/unistd.h>
97
98 #include <net/compat.h>
99 #include <net/wext.h>
100 #include <net/cls_cgroup.h>
101
102 #include <net/sock.h>
103 #include <linux/netfilter.h>
104
105 #include <linux/if_tun.h>
106 #include <linux/ipv6_route.h>
107 #include <linux/route.h>
108 #include <linux/sockios.h>
109 #include <net/busy_poll.h>
110 #include <linux/errqueue.h>
111
112 /* proto_ops for ipv4 and ipv6 use the same {recv,send}msg function */
113 #if IS_ENABLED(CONFIG_INET)
114 #define INDIRECT_CALL_INET4(f, f1, ...) INDIRECT_CALL_1(f, f1, __VA_ARGS__)
115 #else
116 #define INDIRECT_CALL_INET4(f, f1, ...) f(__VA_ARGS__)
117 #endif
118
119 #ifdef CONFIG_NET_RX_BUSY_POLL
120 unsigned int sysctl_net_busy_read __read_mostly;
121 unsigned int sysctl_net_busy_poll __read_mostly;
122 #endif
123
124 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
125 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
126 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
127
128 static int sock_close(struct inode *inode, struct file *file);
129 static __poll_t sock_poll(struct file *file,
130 struct poll_table_struct *wait);
131 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
132 #ifdef CONFIG_COMPAT
133 static long compat_sock_ioctl(struct file *file,
134 unsigned int cmd, unsigned long arg);
135 #endif
136 static int sock_fasync(int fd, struct file *filp, int on);
137 static ssize_t sock_sendpage(struct file *file, struct page *page,
138 int offset, size_t size, loff_t *ppos, int more);
139 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
140 struct pipe_inode_info *pipe, size_t len,
141 unsigned int flags);
142
143 /*
144 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
145 * in the operation structures but are done directly via the socketcall() multiplexor.
146 */
147
148 static const struct file_operations socket_file_ops = {
149 .owner = THIS_MODULE,
150 .llseek = no_llseek,
151 .read_iter = sock_read_iter,
152 .write_iter = sock_write_iter,
153 .poll = sock_poll,
154 .unlocked_ioctl = sock_ioctl,
155 #ifdef CONFIG_COMPAT
156 .compat_ioctl = compat_sock_ioctl,
157 #endif
158 .mmap = sock_mmap,
159 .release = sock_close,
160 .fasync = sock_fasync,
161 .sendpage = sock_sendpage,
162 .splice_write = generic_splice_sendpage,
163 .splice_read = sock_splice_read,
164 };
165
166 /*
167 * The protocol list. Each protocol is registered in here.
168 */
169
170 static DEFINE_SPINLOCK(net_family_lock);
171 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
172
173 /*
174 * Support routines.
175 * Move socket addresses back and forth across the kernel/user
176 * divide and look after the messy bits.
177 */
178
179 /**
180 * move_addr_to_kernel - copy a socket address into kernel space
181 * @uaddr: Address in user space
182 * @kaddr: Address in kernel space
183 * @ulen: Length in user space
184 *
185 * The address is copied into kernel space. If the provided address is
186 * too long an error code of -EINVAL is returned. If the copy gives
187 * invalid addresses -EFAULT is returned. On a success 0 is returned.
188 */
189
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
191 {
192 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 return -EINVAL;
194 if (ulen == 0)
195 return 0;
196 if (copy_from_user(kaddr, uaddr, ulen))
197 return -EFAULT;
198 return audit_sockaddr(ulen, kaddr);
199 }
200
201 /**
202 * move_addr_to_user - copy an address to user space
203 * @kaddr: kernel space address
204 * @klen: length of address in kernel
205 * @uaddr: user space address
206 * @ulen: pointer to user length field
207 *
208 * The value pointed to by ulen on entry is the buffer length available.
209 * This is overwritten with the buffer space used. -EINVAL is returned
210 * if an overlong buffer is specified or a negative buffer size. -EFAULT
211 * is returned if either the buffer or the length field are not
212 * accessible.
213 * After copying the data up to the limit the user specifies, the true
214 * length of the data is written over the length limit the user
215 * specified. Zero is returned for a success.
216 */
217
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 void __user *uaddr, int __user *ulen)
220 {
221 int err;
222 int len;
223
224 BUG_ON(klen > sizeof(struct sockaddr_storage));
225 err = get_user(len, ulen);
226 if (err)
227 return err;
228 if (len > klen)
229 len = klen;
230 if (len < 0)
231 return -EINVAL;
232 if (len) {
233 if (audit_sockaddr(klen, kaddr))
234 return -ENOMEM;
235 if (copy_to_user(uaddr, kaddr, len))
236 return -EFAULT;
237 }
238 /*
239 * "fromlen shall refer to the value before truncation.."
240 * 1003.1g
241 */
242 return __put_user(klen, ulen);
243 }
244
245 static struct kmem_cache *sock_inode_cachep __ro_after_init;
246
247 static struct inode *sock_alloc_inode(struct super_block *sb)
248 {
249 struct socket_alloc *ei;
250 struct socket_wq *wq;
251
252 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 if (!ei)
254 return NULL;
255 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
256 if (!wq) {
257 kmem_cache_free(sock_inode_cachep, ei);
258 return NULL;
259 }
260 init_waitqueue_head(&wq->wait);
261 wq->fasync_list = NULL;
262 wq->flags = 0;
263 ei->socket.wq = wq;
264
265 ei->socket.state = SS_UNCONNECTED;
266 ei->socket.flags = 0;
267 ei->socket.ops = NULL;
268 ei->socket.sk = NULL;
269 ei->socket.file = NULL;
270
271 return &ei->vfs_inode;
272 }
273
274 static void sock_destroy_inode(struct inode *inode)
275 {
276 struct socket_alloc *ei;
277
278 ei = container_of(inode, struct socket_alloc, vfs_inode);
279 kfree_rcu(ei->socket.wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
281 }
282
283 static void init_once(void *foo)
284 {
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
286
287 inode_init_once(&ei->vfs_inode);
288 }
289
290 static void init_inodecache(void)
291 {
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
294 0,
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 init_once);
299 BUG_ON(sock_inode_cachep == NULL);
300 }
301
302 static const struct super_operations sockfs_ops = {
303 .alloc_inode = sock_alloc_inode,
304 .destroy_inode = sock_destroy_inode,
305 .statfs = simple_statfs,
306 };
307
308 /*
309 * sockfs_dname() is called from d_path().
310 */
311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
312 {
313 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
314 d_inode(dentry)->i_ino);
315 }
316
317 static const struct dentry_operations sockfs_dentry_operations = {
318 .d_dname = sockfs_dname,
319 };
320
321 static int sockfs_xattr_get(const struct xattr_handler *handler,
322 struct dentry *dentry, struct inode *inode,
323 const char *suffix, void *value, size_t size)
324 {
325 if (value) {
326 if (dentry->d_name.len + 1 > size)
327 return -ERANGE;
328 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
329 }
330 return dentry->d_name.len + 1;
331 }
332
333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
336
337 static const struct xattr_handler sockfs_xattr_handler = {
338 .name = XATTR_NAME_SOCKPROTONAME,
339 .get = sockfs_xattr_get,
340 };
341
342 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
343 struct dentry *dentry, struct inode *inode,
344 const char *suffix, const void *value,
345 size_t size, int flags)
346 {
347 /* Handled by LSM. */
348 return -EAGAIN;
349 }
350
351 static const struct xattr_handler sockfs_security_xattr_handler = {
352 .prefix = XATTR_SECURITY_PREFIX,
353 .set = sockfs_security_xattr_set,
354 };
355
356 static const struct xattr_handler *sockfs_xattr_handlers[] = {
357 &sockfs_xattr_handler,
358 &sockfs_security_xattr_handler,
359 NULL
360 };
361
362 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
363 int flags, const char *dev_name, void *data)
364 {
365 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
366 sockfs_xattr_handlers,
367 &sockfs_dentry_operations, SOCKFS_MAGIC);
368 }
369
370 static struct vfsmount *sock_mnt __read_mostly;
371
372 static struct file_system_type sock_fs_type = {
373 .name = "sockfs",
374 .mount = sockfs_mount,
375 .kill_sb = kill_anon_super,
376 };
377
378 /*
379 * Obtains the first available file descriptor and sets it up for use.
380 *
381 * These functions create file structures and maps them to fd space
382 * of the current process. On success it returns file descriptor
383 * and file struct implicitly stored in sock->file.
384 * Note that another thread may close file descriptor before we return
385 * from this function. We use the fact that now we do not refer
386 * to socket after mapping. If one day we will need it, this
387 * function will increment ref. count on file by 1.
388 *
389 * In any case returned fd MAY BE not valid!
390 * This race condition is unavoidable
391 * with shared fd spaces, we cannot solve it inside kernel,
392 * but we take care of internal coherence yet.
393 */
394
395 /**
396 * sock_alloc_file - Bind a &socket to a &file
397 * @sock: socket
398 * @flags: file status flags
399 * @dname: protocol name
400 *
401 * Returns the &file bound with @sock, implicitly storing it
402 * in sock->file. If dname is %NULL, sets to "".
403 * On failure the return is a ERR pointer (see linux/err.h).
404 * This function uses GFP_KERNEL internally.
405 */
406
407 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
408 {
409 struct file *file;
410
411 if (!dname)
412 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
413
414 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
415 O_RDWR | (flags & O_NONBLOCK),
416 &socket_file_ops);
417 if (IS_ERR(file)) {
418 sock_release(sock);
419 return file;
420 }
421
422 sock->file = file;
423 file->private_data = sock;
424 return file;
425 }
426 EXPORT_SYMBOL(sock_alloc_file);
427
428 static int sock_map_fd(struct socket *sock, int flags)
429 {
430 struct file *newfile;
431 int fd = get_unused_fd_flags(flags);
432 if (unlikely(fd < 0)) {
433 sock_release(sock);
434 return fd;
435 }
436
437 newfile = sock_alloc_file(sock, flags, NULL);
438 if (likely(!IS_ERR(newfile))) {
439 fd_install(fd, newfile);
440 return fd;
441 }
442
443 put_unused_fd(fd);
444 return PTR_ERR(newfile);
445 }
446
447 /**
448 * sock_from_file - Return the &socket bounded to @file.
449 * @file: file
450 * @err: pointer to an error code return
451 *
452 * On failure returns %NULL and assigns -ENOTSOCK to @err.
453 */
454
455 struct socket *sock_from_file(struct file *file, int *err)
456 {
457 if (file->f_op == &socket_file_ops)
458 return file->private_data; /* set in sock_map_fd */
459
460 *err = -ENOTSOCK;
461 return NULL;
462 }
463 EXPORT_SYMBOL(sock_from_file);
464
465 /**
466 * sockfd_lookup - Go from a file number to its socket slot
467 * @fd: file handle
468 * @err: pointer to an error code return
469 *
470 * The file handle passed in is locked and the socket it is bound
471 * to is returned. If an error occurs the err pointer is overwritten
472 * with a negative errno code and NULL is returned. The function checks
473 * for both invalid handles and passing a handle which is not a socket.
474 *
475 * On a success the socket object pointer is returned.
476 */
477
478 struct socket *sockfd_lookup(int fd, int *err)
479 {
480 struct file *file;
481 struct socket *sock;
482
483 file = fget(fd);
484 if (!file) {
485 *err = -EBADF;
486 return NULL;
487 }
488
489 sock = sock_from_file(file, err);
490 if (!sock)
491 fput(file);
492 return sock;
493 }
494 EXPORT_SYMBOL(sockfd_lookup);
495
496 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
497 {
498 struct fd f = fdget(fd);
499 struct socket *sock;
500
501 *err = -EBADF;
502 if (f.file) {
503 sock = sock_from_file(f.file, err);
504 if (likely(sock)) {
505 *fput_needed = f.flags;
506 return sock;
507 }
508 fdput(f);
509 }
510 return NULL;
511 }
512
513 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
514 size_t size)
515 {
516 ssize_t len;
517 ssize_t used = 0;
518
519 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
520 if (len < 0)
521 return len;
522 used += len;
523 if (buffer) {
524 if (size < used)
525 return -ERANGE;
526 buffer += len;
527 }
528
529 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
530 used += len;
531 if (buffer) {
532 if (size < used)
533 return -ERANGE;
534 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
535 buffer += len;
536 }
537
538 return used;
539 }
540
541 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
542 {
543 int err = simple_setattr(dentry, iattr);
544
545 if (!err && (iattr->ia_valid & ATTR_UID)) {
546 struct socket *sock = SOCKET_I(d_inode(dentry));
547
548 if (sock->sk)
549 sock->sk->sk_uid = iattr->ia_uid;
550 else
551 err = -ENOENT;
552 }
553
554 return err;
555 }
556
557 static const struct inode_operations sockfs_inode_ops = {
558 .listxattr = sockfs_listxattr,
559 .setattr = sockfs_setattr,
560 };
561
562 /**
563 * sock_alloc - allocate a socket
564 *
565 * Allocate a new inode and socket object. The two are bound together
566 * and initialised. The socket is then returned. If we are out of inodes
567 * NULL is returned. This functions uses GFP_KERNEL internally.
568 */
569
570 struct socket *sock_alloc(void)
571 {
572 struct inode *inode;
573 struct socket *sock;
574
575 inode = new_inode_pseudo(sock_mnt->mnt_sb);
576 if (!inode)
577 return NULL;
578
579 sock = SOCKET_I(inode);
580
581 inode->i_ino = get_next_ino();
582 inode->i_mode = S_IFSOCK | S_IRWXUGO;
583 inode->i_uid = current_fsuid();
584 inode->i_gid = current_fsgid();
585 inode->i_op = &sockfs_inode_ops;
586
587 return sock;
588 }
589 EXPORT_SYMBOL(sock_alloc);
590
591 /**
592 * sock_release - close a socket
593 * @sock: socket to close
594 *
595 * The socket is released from the protocol stack if it has a release
596 * callback, and the inode is then released if the socket is bound to
597 * an inode not a file.
598 */
599
600 static void __sock_release(struct socket *sock, struct inode *inode)
601 {
602 if (sock->ops) {
603 struct module *owner = sock->ops->owner;
604
605 if (inode)
606 inode_lock(inode);
607 sock->ops->release(sock);
608 sock->sk = NULL;
609 if (inode)
610 inode_unlock(inode);
611 sock->ops = NULL;
612 module_put(owner);
613 }
614
615 if (sock->wq->fasync_list)
616 pr_err("%s: fasync list not empty!\n", __func__);
617
618 if (!sock->file) {
619 iput(SOCK_INODE(sock));
620 return;
621 }
622 sock->file = NULL;
623 }
624
625 void sock_release(struct socket *sock)
626 {
627 __sock_release(sock, NULL);
628 }
629 EXPORT_SYMBOL(sock_release);
630
631 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
632 {
633 u8 flags = *tx_flags;
634
635 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
636 flags |= SKBTX_HW_TSTAMP;
637
638 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
639 flags |= SKBTX_SW_TSTAMP;
640
641 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
642 flags |= SKBTX_SCHED_TSTAMP;
643
644 *tx_flags = flags;
645 }
646 EXPORT_SYMBOL(__sock_tx_timestamp);
647
648 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
649 size_t));
650 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
651 {
652 int ret = INDIRECT_CALL_INET4(sock->ops->sendmsg, inet_sendmsg, sock,
653 msg, msg_data_left(msg));
654 BUG_ON(ret == -EIOCBQUEUED);
655 return ret;
656 }
657
658 /**
659 * sock_sendmsg - send a message through @sock
660 * @sock: socket
661 * @msg: message to send
662 *
663 * Sends @msg through @sock, passing through LSM.
664 * Returns the number of bytes sent, or an error code.
665 */
666 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
667 {
668 int err = security_socket_sendmsg(sock, msg,
669 msg_data_left(msg));
670
671 return err ?: sock_sendmsg_nosec(sock, msg);
672 }
673 EXPORT_SYMBOL(sock_sendmsg);
674
675 /**
676 * kernel_sendmsg - send a message through @sock (kernel-space)
677 * @sock: socket
678 * @msg: message header
679 * @vec: kernel vec
680 * @num: vec array length
681 * @size: total message data size
682 *
683 * Builds the message data with @vec and sends it through @sock.
684 * Returns the number of bytes sent, or an error code.
685 */
686
687 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
688 struct kvec *vec, size_t num, size_t size)
689 {
690 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
691 return sock_sendmsg(sock, msg);
692 }
693 EXPORT_SYMBOL(kernel_sendmsg);
694
695 /**
696 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
697 * @sk: sock
698 * @msg: message header
699 * @vec: output s/g array
700 * @num: output s/g array length
701 * @size: total message data size
702 *
703 * Builds the message data with @vec and sends it through @sock.
704 * Returns the number of bytes sent, or an error code.
705 * Caller must hold @sk.
706 */
707
708 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
709 struct kvec *vec, size_t num, size_t size)
710 {
711 struct socket *sock = sk->sk_socket;
712
713 if (!sock->ops->sendmsg_locked)
714 return sock_no_sendmsg_locked(sk, msg, size);
715
716 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
717
718 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
719 }
720 EXPORT_SYMBOL(kernel_sendmsg_locked);
721
722 static bool skb_is_err_queue(const struct sk_buff *skb)
723 {
724 /* pkt_type of skbs enqueued on the error queue are set to
725 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
726 * in recvmsg, since skbs received on a local socket will never
727 * have a pkt_type of PACKET_OUTGOING.
728 */
729 return skb->pkt_type == PACKET_OUTGOING;
730 }
731
732 /* On transmit, software and hardware timestamps are returned independently.
733 * As the two skb clones share the hardware timestamp, which may be updated
734 * before the software timestamp is received, a hardware TX timestamp may be
735 * returned only if there is no software TX timestamp. Ignore false software
736 * timestamps, which may be made in the __sock_recv_timestamp() call when the
737 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
738 * hardware timestamp.
739 */
740 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
741 {
742 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
743 }
744
745 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
746 {
747 struct scm_ts_pktinfo ts_pktinfo;
748 struct net_device *orig_dev;
749
750 if (!skb_mac_header_was_set(skb))
751 return;
752
753 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
754
755 rcu_read_lock();
756 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
757 if (orig_dev)
758 ts_pktinfo.if_index = orig_dev->ifindex;
759 rcu_read_unlock();
760
761 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
762 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
763 sizeof(ts_pktinfo), &ts_pktinfo);
764 }
765
766 /*
767 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
768 */
769 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
770 struct sk_buff *skb)
771 {
772 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
773 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
774 struct scm_timestamping_internal tss;
775
776 int empty = 1, false_tstamp = 0;
777 struct skb_shared_hwtstamps *shhwtstamps =
778 skb_hwtstamps(skb);
779
780 /* Race occurred between timestamp enabling and packet
781 receiving. Fill in the current time for now. */
782 if (need_software_tstamp && skb->tstamp == 0) {
783 __net_timestamp(skb);
784 false_tstamp = 1;
785 }
786
787 if (need_software_tstamp) {
788 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
789 if (new_tstamp) {
790 struct __kernel_sock_timeval tv;
791
792 skb_get_new_timestamp(skb, &tv);
793 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
794 sizeof(tv), &tv);
795 } else {
796 struct __kernel_old_timeval tv;
797
798 skb_get_timestamp(skb, &tv);
799 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
800 sizeof(tv), &tv);
801 }
802 } else {
803 if (new_tstamp) {
804 struct __kernel_timespec ts;
805
806 skb_get_new_timestampns(skb, &ts);
807 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
808 sizeof(ts), &ts);
809 } else {
810 struct timespec ts;
811
812 skb_get_timestampns(skb, &ts);
813 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
814 sizeof(ts), &ts);
815 }
816 }
817 }
818
819 memset(&tss, 0, sizeof(tss));
820 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
821 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
822 empty = 0;
823 if (shhwtstamps &&
824 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
825 !skb_is_swtx_tstamp(skb, false_tstamp) &&
826 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
827 empty = 0;
828 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
829 !skb_is_err_queue(skb))
830 put_ts_pktinfo(msg, skb);
831 }
832 if (!empty) {
833 if (sock_flag(sk, SOCK_TSTAMP_NEW))
834 put_cmsg_scm_timestamping64(msg, &tss);
835 else
836 put_cmsg_scm_timestamping(msg, &tss);
837
838 if (skb_is_err_queue(skb) && skb->len &&
839 SKB_EXT_ERR(skb)->opt_stats)
840 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
841 skb->len, skb->data);
842 }
843 }
844 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
845
846 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
847 struct sk_buff *skb)
848 {
849 int ack;
850
851 if (!sock_flag(sk, SOCK_WIFI_STATUS))
852 return;
853 if (!skb->wifi_acked_valid)
854 return;
855
856 ack = skb->wifi_acked;
857
858 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
859 }
860 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
861
862 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
863 struct sk_buff *skb)
864 {
865 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
866 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
867 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
868 }
869
870 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
871 struct sk_buff *skb)
872 {
873 sock_recv_timestamp(msg, sk, skb);
874 sock_recv_drops(msg, sk, skb);
875 }
876 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
877
878 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
879 size_t , int ));
880 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
881 int flags)
882 {
883 return INDIRECT_CALL_INET4(sock->ops->recvmsg, inet_recvmsg, sock, msg,
884 msg_data_left(msg), flags);
885 }
886
887 /**
888 * sock_recvmsg - receive a message from @sock
889 * @sock: socket
890 * @msg: message to receive
891 * @flags: message flags
892 *
893 * Receives @msg from @sock, passing through LSM. Returns the total number
894 * of bytes received, or an error.
895 */
896 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
897 {
898 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
899
900 return err ?: sock_recvmsg_nosec(sock, msg, flags);
901 }
902 EXPORT_SYMBOL(sock_recvmsg);
903
904 /**
905 * kernel_recvmsg - Receive a message from a socket (kernel space)
906 * @sock: The socket to receive the message from
907 * @msg: Received message
908 * @vec: Input s/g array for message data
909 * @num: Size of input s/g array
910 * @size: Number of bytes to read
911 * @flags: Message flags (MSG_DONTWAIT, etc...)
912 *
913 * On return the msg structure contains the scatter/gather array passed in the
914 * vec argument. The array is modified so that it consists of the unfilled
915 * portion of the original array.
916 *
917 * The returned value is the total number of bytes received, or an error.
918 */
919
920 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
921 struct kvec *vec, size_t num, size_t size, int flags)
922 {
923 mm_segment_t oldfs = get_fs();
924 int result;
925
926 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
927 set_fs(KERNEL_DS);
928 result = sock_recvmsg(sock, msg, flags);
929 set_fs(oldfs);
930 return result;
931 }
932 EXPORT_SYMBOL(kernel_recvmsg);
933
934 static ssize_t sock_sendpage(struct file *file, struct page *page,
935 int offset, size_t size, loff_t *ppos, int more)
936 {
937 struct socket *sock;
938 int flags;
939
940 sock = file->private_data;
941
942 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
943 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
944 flags |= more;
945
946 return kernel_sendpage(sock, page, offset, size, flags);
947 }
948
949 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
950 struct pipe_inode_info *pipe, size_t len,
951 unsigned int flags)
952 {
953 struct socket *sock = file->private_data;
954
955 if (unlikely(!sock->ops->splice_read))
956 return generic_file_splice_read(file, ppos, pipe, len, flags);
957
958 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
959 }
960
961 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
962 {
963 struct file *file = iocb->ki_filp;
964 struct socket *sock = file->private_data;
965 struct msghdr msg = {.msg_iter = *to,
966 .msg_iocb = iocb};
967 ssize_t res;
968
969 if (file->f_flags & O_NONBLOCK)
970 msg.msg_flags = MSG_DONTWAIT;
971
972 if (iocb->ki_pos != 0)
973 return -ESPIPE;
974
975 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
976 return 0;
977
978 res = sock_recvmsg(sock, &msg, msg.msg_flags);
979 *to = msg.msg_iter;
980 return res;
981 }
982
983 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
984 {
985 struct file *file = iocb->ki_filp;
986 struct socket *sock = file->private_data;
987 struct msghdr msg = {.msg_iter = *from,
988 .msg_iocb = iocb};
989 ssize_t res;
990
991 if (iocb->ki_pos != 0)
992 return -ESPIPE;
993
994 if (file->f_flags & O_NONBLOCK)
995 msg.msg_flags = MSG_DONTWAIT;
996
997 if (sock->type == SOCK_SEQPACKET)
998 msg.msg_flags |= MSG_EOR;
999
1000 res = sock_sendmsg(sock, &msg);
1001 *from = msg.msg_iter;
1002 return res;
1003 }
1004
1005 /*
1006 * Atomic setting of ioctl hooks to avoid race
1007 * with module unload.
1008 */
1009
1010 static DEFINE_MUTEX(br_ioctl_mutex);
1011 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1012
1013 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1014 {
1015 mutex_lock(&br_ioctl_mutex);
1016 br_ioctl_hook = hook;
1017 mutex_unlock(&br_ioctl_mutex);
1018 }
1019 EXPORT_SYMBOL(brioctl_set);
1020
1021 static DEFINE_MUTEX(vlan_ioctl_mutex);
1022 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1023
1024 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1025 {
1026 mutex_lock(&vlan_ioctl_mutex);
1027 vlan_ioctl_hook = hook;
1028 mutex_unlock(&vlan_ioctl_mutex);
1029 }
1030 EXPORT_SYMBOL(vlan_ioctl_set);
1031
1032 static DEFINE_MUTEX(dlci_ioctl_mutex);
1033 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1034
1035 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1036 {
1037 mutex_lock(&dlci_ioctl_mutex);
1038 dlci_ioctl_hook = hook;
1039 mutex_unlock(&dlci_ioctl_mutex);
1040 }
1041 EXPORT_SYMBOL(dlci_ioctl_set);
1042
1043 static long sock_do_ioctl(struct net *net, struct socket *sock,
1044 unsigned int cmd, unsigned long arg)
1045 {
1046 int err;
1047 void __user *argp = (void __user *)arg;
1048
1049 err = sock->ops->ioctl(sock, cmd, arg);
1050
1051 /*
1052 * If this ioctl is unknown try to hand it down
1053 * to the NIC driver.
1054 */
1055 if (err != -ENOIOCTLCMD)
1056 return err;
1057
1058 if (cmd == SIOCGIFCONF) {
1059 struct ifconf ifc;
1060 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1061 return -EFAULT;
1062 rtnl_lock();
1063 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1064 rtnl_unlock();
1065 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1066 err = -EFAULT;
1067 } else {
1068 struct ifreq ifr;
1069 bool need_copyout;
1070 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1071 return -EFAULT;
1072 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1073 if (!err && need_copyout)
1074 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1075 return -EFAULT;
1076 }
1077 return err;
1078 }
1079
1080 /*
1081 * With an ioctl, arg may well be a user mode pointer, but we don't know
1082 * what to do with it - that's up to the protocol still.
1083 */
1084
1085 /**
1086 * get_net_ns - increment the refcount of the network namespace
1087 * @ns: common namespace (net)
1088 *
1089 * Returns the net's common namespace.
1090 */
1091
1092 struct ns_common *get_net_ns(struct ns_common *ns)
1093 {
1094 return &get_net(container_of(ns, struct net, ns))->ns;
1095 }
1096 EXPORT_SYMBOL_GPL(get_net_ns);
1097
1098 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1099 {
1100 struct socket *sock;
1101 struct sock *sk;
1102 void __user *argp = (void __user *)arg;
1103 int pid, err;
1104 struct net *net;
1105
1106 sock = file->private_data;
1107 sk = sock->sk;
1108 net = sock_net(sk);
1109 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1110 struct ifreq ifr;
1111 bool need_copyout;
1112 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1113 return -EFAULT;
1114 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1115 if (!err && need_copyout)
1116 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1117 return -EFAULT;
1118 } else
1119 #ifdef CONFIG_WEXT_CORE
1120 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1121 err = wext_handle_ioctl(net, cmd, argp);
1122 } else
1123 #endif
1124 switch (cmd) {
1125 case FIOSETOWN:
1126 case SIOCSPGRP:
1127 err = -EFAULT;
1128 if (get_user(pid, (int __user *)argp))
1129 break;
1130 err = f_setown(sock->file, pid, 1);
1131 break;
1132 case FIOGETOWN:
1133 case SIOCGPGRP:
1134 err = put_user(f_getown(sock->file),
1135 (int __user *)argp);
1136 break;
1137 case SIOCGIFBR:
1138 case SIOCSIFBR:
1139 case SIOCBRADDBR:
1140 case SIOCBRDELBR:
1141 err = -ENOPKG;
1142 if (!br_ioctl_hook)
1143 request_module("bridge");
1144
1145 mutex_lock(&br_ioctl_mutex);
1146 if (br_ioctl_hook)
1147 err = br_ioctl_hook(net, cmd, argp);
1148 mutex_unlock(&br_ioctl_mutex);
1149 break;
1150 case SIOCGIFVLAN:
1151 case SIOCSIFVLAN:
1152 err = -ENOPKG;
1153 if (!vlan_ioctl_hook)
1154 request_module("8021q");
1155
1156 mutex_lock(&vlan_ioctl_mutex);
1157 if (vlan_ioctl_hook)
1158 err = vlan_ioctl_hook(net, argp);
1159 mutex_unlock(&vlan_ioctl_mutex);
1160 break;
1161 case SIOCADDDLCI:
1162 case SIOCDELDLCI:
1163 err = -ENOPKG;
1164 if (!dlci_ioctl_hook)
1165 request_module("dlci");
1166
1167 mutex_lock(&dlci_ioctl_mutex);
1168 if (dlci_ioctl_hook)
1169 err = dlci_ioctl_hook(cmd, argp);
1170 mutex_unlock(&dlci_ioctl_mutex);
1171 break;
1172 case SIOCGSKNS:
1173 err = -EPERM;
1174 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1175 break;
1176
1177 err = open_related_ns(&net->ns, get_net_ns);
1178 break;
1179 case SIOCGSTAMP_OLD:
1180 case SIOCGSTAMPNS_OLD:
1181 if (!sock->ops->gettstamp) {
1182 err = -ENOIOCTLCMD;
1183 break;
1184 }
1185 err = sock->ops->gettstamp(sock, argp,
1186 cmd == SIOCGSTAMP_OLD,
1187 !IS_ENABLED(CONFIG_64BIT));
1188 break;
1189 case SIOCGSTAMP_NEW:
1190 case SIOCGSTAMPNS_NEW:
1191 if (!sock->ops->gettstamp) {
1192 err = -ENOIOCTLCMD;
1193 break;
1194 }
1195 err = sock->ops->gettstamp(sock, argp,
1196 cmd == SIOCGSTAMP_NEW,
1197 false);
1198 break;
1199 default:
1200 err = sock_do_ioctl(net, sock, cmd, arg);
1201 break;
1202 }
1203 return err;
1204 }
1205
1206 /**
1207 * sock_create_lite - creates a socket
1208 * @family: protocol family (AF_INET, ...)
1209 * @type: communication type (SOCK_STREAM, ...)
1210 * @protocol: protocol (0, ...)
1211 * @res: new socket
1212 *
1213 * Creates a new socket and assigns it to @res, passing through LSM.
1214 * The new socket initialization is not complete, see kernel_accept().
1215 * Returns 0 or an error. On failure @res is set to %NULL.
1216 * This function internally uses GFP_KERNEL.
1217 */
1218
1219 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1220 {
1221 int err;
1222 struct socket *sock = NULL;
1223
1224 err = security_socket_create(family, type, protocol, 1);
1225 if (err)
1226 goto out;
1227
1228 sock = sock_alloc();
1229 if (!sock) {
1230 err = -ENOMEM;
1231 goto out;
1232 }
1233
1234 sock->type = type;
1235 err = security_socket_post_create(sock, family, type, protocol, 1);
1236 if (err)
1237 goto out_release;
1238
1239 out:
1240 *res = sock;
1241 return err;
1242 out_release:
1243 sock_release(sock);
1244 sock = NULL;
1245 goto out;
1246 }
1247 EXPORT_SYMBOL(sock_create_lite);
1248
1249 /* No kernel lock held - perfect */
1250 static __poll_t sock_poll(struct file *file, poll_table *wait)
1251 {
1252 struct socket *sock = file->private_data;
1253 __poll_t events = poll_requested_events(wait), flag = 0;
1254
1255 if (!sock->ops->poll)
1256 return 0;
1257
1258 if (sk_can_busy_loop(sock->sk)) {
1259 /* poll once if requested by the syscall */
1260 if (events & POLL_BUSY_LOOP)
1261 sk_busy_loop(sock->sk, 1);
1262
1263 /* if this socket can poll_ll, tell the system call */
1264 flag = POLL_BUSY_LOOP;
1265 }
1266
1267 return sock->ops->poll(file, sock, wait) | flag;
1268 }
1269
1270 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1271 {
1272 struct socket *sock = file->private_data;
1273
1274 return sock->ops->mmap(file, sock, vma);
1275 }
1276
1277 static int sock_close(struct inode *inode, struct file *filp)
1278 {
1279 __sock_release(SOCKET_I(inode), inode);
1280 return 0;
1281 }
1282
1283 /*
1284 * Update the socket async list
1285 *
1286 * Fasync_list locking strategy.
1287 *
1288 * 1. fasync_list is modified only under process context socket lock
1289 * i.e. under semaphore.
1290 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1291 * or under socket lock
1292 */
1293
1294 static int sock_fasync(int fd, struct file *filp, int on)
1295 {
1296 struct socket *sock = filp->private_data;
1297 struct sock *sk = sock->sk;
1298 struct socket_wq *wq;
1299
1300 if (sk == NULL)
1301 return -EINVAL;
1302
1303 lock_sock(sk);
1304 wq = sock->wq;
1305 fasync_helper(fd, filp, on, &wq->fasync_list);
1306
1307 if (!wq->fasync_list)
1308 sock_reset_flag(sk, SOCK_FASYNC);
1309 else
1310 sock_set_flag(sk, SOCK_FASYNC);
1311
1312 release_sock(sk);
1313 return 0;
1314 }
1315
1316 /* This function may be called only under rcu_lock */
1317
1318 int sock_wake_async(struct socket_wq *wq, int how, int band)
1319 {
1320 if (!wq || !wq->fasync_list)
1321 return -1;
1322
1323 switch (how) {
1324 case SOCK_WAKE_WAITD:
1325 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1326 break;
1327 goto call_kill;
1328 case SOCK_WAKE_SPACE:
1329 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1330 break;
1331 /* fall through */
1332 case SOCK_WAKE_IO:
1333 call_kill:
1334 kill_fasync(&wq->fasync_list, SIGIO, band);
1335 break;
1336 case SOCK_WAKE_URG:
1337 kill_fasync(&wq->fasync_list, SIGURG, band);
1338 }
1339
1340 return 0;
1341 }
1342 EXPORT_SYMBOL(sock_wake_async);
1343
1344 /**
1345 * __sock_create - creates a socket
1346 * @net: net namespace
1347 * @family: protocol family (AF_INET, ...)
1348 * @type: communication type (SOCK_STREAM, ...)
1349 * @protocol: protocol (0, ...)
1350 * @res: new socket
1351 * @kern: boolean for kernel space sockets
1352 *
1353 * Creates a new socket and assigns it to @res, passing through LSM.
1354 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1355 * be set to true if the socket resides in kernel space.
1356 * This function internally uses GFP_KERNEL.
1357 */
1358
1359 int __sock_create(struct net *net, int family, int type, int protocol,
1360 struct socket **res, int kern)
1361 {
1362 int err;
1363 struct socket *sock;
1364 const struct net_proto_family *pf;
1365
1366 /*
1367 * Check protocol is in range
1368 */
1369 if (family < 0 || family >= NPROTO)
1370 return -EAFNOSUPPORT;
1371 if (type < 0 || type >= SOCK_MAX)
1372 return -EINVAL;
1373
1374 /* Compatibility.
1375
1376 This uglymoron is moved from INET layer to here to avoid
1377 deadlock in module load.
1378 */
1379 if (family == PF_INET && type == SOCK_PACKET) {
1380 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1381 current->comm);
1382 family = PF_PACKET;
1383 }
1384
1385 err = security_socket_create(family, type, protocol, kern);
1386 if (err)
1387 return err;
1388
1389 /*
1390 * Allocate the socket and allow the family to set things up. if
1391 * the protocol is 0, the family is instructed to select an appropriate
1392 * default.
1393 */
1394 sock = sock_alloc();
1395 if (!sock) {
1396 net_warn_ratelimited("socket: no more sockets\n");
1397 return -ENFILE; /* Not exactly a match, but its the
1398 closest posix thing */
1399 }
1400
1401 sock->type = type;
1402
1403 #ifdef CONFIG_MODULES
1404 /* Attempt to load a protocol module if the find failed.
1405 *
1406 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1407 * requested real, full-featured networking support upon configuration.
1408 * Otherwise module support will break!
1409 */
1410 if (rcu_access_pointer(net_families[family]) == NULL)
1411 request_module("net-pf-%d", family);
1412 #endif
1413
1414 rcu_read_lock();
1415 pf = rcu_dereference(net_families[family]);
1416 err = -EAFNOSUPPORT;
1417 if (!pf)
1418 goto out_release;
1419
1420 /*
1421 * We will call the ->create function, that possibly is in a loadable
1422 * module, so we have to bump that loadable module refcnt first.
1423 */
1424 if (!try_module_get(pf->owner))
1425 goto out_release;
1426
1427 /* Now protected by module ref count */
1428 rcu_read_unlock();
1429
1430 err = pf->create(net, sock, protocol, kern);
1431 if (err < 0)
1432 goto out_module_put;
1433
1434 /*
1435 * Now to bump the refcnt of the [loadable] module that owns this
1436 * socket at sock_release time we decrement its refcnt.
1437 */
1438 if (!try_module_get(sock->ops->owner))
1439 goto out_module_busy;
1440
1441 /*
1442 * Now that we're done with the ->create function, the [loadable]
1443 * module can have its refcnt decremented
1444 */
1445 module_put(pf->owner);
1446 err = security_socket_post_create(sock, family, type, protocol, kern);
1447 if (err)
1448 goto out_sock_release;
1449 *res = sock;
1450
1451 return 0;
1452
1453 out_module_busy:
1454 err = -EAFNOSUPPORT;
1455 out_module_put:
1456 sock->ops = NULL;
1457 module_put(pf->owner);
1458 out_sock_release:
1459 sock_release(sock);
1460 return err;
1461
1462 out_release:
1463 rcu_read_unlock();
1464 goto out_sock_release;
1465 }
1466 EXPORT_SYMBOL(__sock_create);
1467
1468 /**
1469 * sock_create - creates a socket
1470 * @family: protocol family (AF_INET, ...)
1471 * @type: communication type (SOCK_STREAM, ...)
1472 * @protocol: protocol (0, ...)
1473 * @res: new socket
1474 *
1475 * A wrapper around __sock_create().
1476 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1477 */
1478
1479 int sock_create(int family, int type, int protocol, struct socket **res)
1480 {
1481 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1482 }
1483 EXPORT_SYMBOL(sock_create);
1484
1485 /**
1486 * sock_create_kern - creates a socket (kernel space)
1487 * @net: net namespace
1488 * @family: protocol family (AF_INET, ...)
1489 * @type: communication type (SOCK_STREAM, ...)
1490 * @protocol: protocol (0, ...)
1491 * @res: new socket
1492 *
1493 * A wrapper around __sock_create().
1494 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1495 */
1496
1497 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1498 {
1499 return __sock_create(net, family, type, protocol, res, 1);
1500 }
1501 EXPORT_SYMBOL(sock_create_kern);
1502
1503 int __sys_socket(int family, int type, int protocol)
1504 {
1505 int retval;
1506 struct socket *sock;
1507 int flags;
1508
1509 /* Check the SOCK_* constants for consistency. */
1510 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1511 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1512 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1513 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1514
1515 flags = type & ~SOCK_TYPE_MASK;
1516 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1517 return -EINVAL;
1518 type &= SOCK_TYPE_MASK;
1519
1520 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1521 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1522
1523 retval = sock_create(family, type, protocol, &sock);
1524 if (retval < 0)
1525 return retval;
1526
1527 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1528 }
1529
1530 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1531 {
1532 return __sys_socket(family, type, protocol);
1533 }
1534
1535 /*
1536 * Create a pair of connected sockets.
1537 */
1538
1539 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1540 {
1541 struct socket *sock1, *sock2;
1542 int fd1, fd2, err;
1543 struct file *newfile1, *newfile2;
1544 int flags;
1545
1546 flags = type & ~SOCK_TYPE_MASK;
1547 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1548 return -EINVAL;
1549 type &= SOCK_TYPE_MASK;
1550
1551 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1552 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1553
1554 /*
1555 * reserve descriptors and make sure we won't fail
1556 * to return them to userland.
1557 */
1558 fd1 = get_unused_fd_flags(flags);
1559 if (unlikely(fd1 < 0))
1560 return fd1;
1561
1562 fd2 = get_unused_fd_flags(flags);
1563 if (unlikely(fd2 < 0)) {
1564 put_unused_fd(fd1);
1565 return fd2;
1566 }
1567
1568 err = put_user(fd1, &usockvec[0]);
1569 if (err)
1570 goto out;
1571
1572 err = put_user(fd2, &usockvec[1]);
1573 if (err)
1574 goto out;
1575
1576 /*
1577 * Obtain the first socket and check if the underlying protocol
1578 * supports the socketpair call.
1579 */
1580
1581 err = sock_create(family, type, protocol, &sock1);
1582 if (unlikely(err < 0))
1583 goto out;
1584
1585 err = sock_create(family, type, protocol, &sock2);
1586 if (unlikely(err < 0)) {
1587 sock_release(sock1);
1588 goto out;
1589 }
1590
1591 err = security_socket_socketpair(sock1, sock2);
1592 if (unlikely(err)) {
1593 sock_release(sock2);
1594 sock_release(sock1);
1595 goto out;
1596 }
1597
1598 err = sock1->ops->socketpair(sock1, sock2);
1599 if (unlikely(err < 0)) {
1600 sock_release(sock2);
1601 sock_release(sock1);
1602 goto out;
1603 }
1604
1605 newfile1 = sock_alloc_file(sock1, flags, NULL);
1606 if (IS_ERR(newfile1)) {
1607 err = PTR_ERR(newfile1);
1608 sock_release(sock2);
1609 goto out;
1610 }
1611
1612 newfile2 = sock_alloc_file(sock2, flags, NULL);
1613 if (IS_ERR(newfile2)) {
1614 err = PTR_ERR(newfile2);
1615 fput(newfile1);
1616 goto out;
1617 }
1618
1619 audit_fd_pair(fd1, fd2);
1620
1621 fd_install(fd1, newfile1);
1622 fd_install(fd2, newfile2);
1623 return 0;
1624
1625 out:
1626 put_unused_fd(fd2);
1627 put_unused_fd(fd1);
1628 return err;
1629 }
1630
1631 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1632 int __user *, usockvec)
1633 {
1634 return __sys_socketpair(family, type, protocol, usockvec);
1635 }
1636
1637 /*
1638 * Bind a name to a socket. Nothing much to do here since it's
1639 * the protocol's responsibility to handle the local address.
1640 *
1641 * We move the socket address to kernel space before we call
1642 * the protocol layer (having also checked the address is ok).
1643 */
1644
1645 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1646 {
1647 struct socket *sock;
1648 struct sockaddr_storage address;
1649 int err, fput_needed;
1650
1651 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1652 if (sock) {
1653 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1654 if (!err) {
1655 err = security_socket_bind(sock,
1656 (struct sockaddr *)&address,
1657 addrlen);
1658 if (!err)
1659 err = sock->ops->bind(sock,
1660 (struct sockaddr *)
1661 &address, addrlen);
1662 }
1663 fput_light(sock->file, fput_needed);
1664 }
1665 return err;
1666 }
1667
1668 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1669 {
1670 return __sys_bind(fd, umyaddr, addrlen);
1671 }
1672
1673 /*
1674 * Perform a listen. Basically, we allow the protocol to do anything
1675 * necessary for a listen, and if that works, we mark the socket as
1676 * ready for listening.
1677 */
1678
1679 int __sys_listen(int fd, int backlog)
1680 {
1681 struct socket *sock;
1682 int err, fput_needed;
1683 int somaxconn;
1684
1685 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1686 if (sock) {
1687 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1688 if ((unsigned int)backlog > somaxconn)
1689 backlog = somaxconn;
1690
1691 err = security_socket_listen(sock, backlog);
1692 if (!err)
1693 err = sock->ops->listen(sock, backlog);
1694
1695 fput_light(sock->file, fput_needed);
1696 }
1697 return err;
1698 }
1699
1700 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1701 {
1702 return __sys_listen(fd, backlog);
1703 }
1704
1705 /*
1706 * For accept, we attempt to create a new socket, set up the link
1707 * with the client, wake up the client, then return the new
1708 * connected fd. We collect the address of the connector in kernel
1709 * space and move it to user at the very end. This is unclean because
1710 * we open the socket then return an error.
1711 *
1712 * 1003.1g adds the ability to recvmsg() to query connection pending
1713 * status to recvmsg. We need to add that support in a way thats
1714 * clean when we restructure accept also.
1715 */
1716
1717 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1718 int __user *upeer_addrlen, int flags)
1719 {
1720 struct socket *sock, *newsock;
1721 struct file *newfile;
1722 int err, len, newfd, fput_needed;
1723 struct sockaddr_storage address;
1724
1725 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1726 return -EINVAL;
1727
1728 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1729 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1730
1731 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1732 if (!sock)
1733 goto out;
1734
1735 err = -ENFILE;
1736 newsock = sock_alloc();
1737 if (!newsock)
1738 goto out_put;
1739
1740 newsock->type = sock->type;
1741 newsock->ops = sock->ops;
1742
1743 /*
1744 * We don't need try_module_get here, as the listening socket (sock)
1745 * has the protocol module (sock->ops->owner) held.
1746 */
1747 __module_get(newsock->ops->owner);
1748
1749 newfd = get_unused_fd_flags(flags);
1750 if (unlikely(newfd < 0)) {
1751 err = newfd;
1752 sock_release(newsock);
1753 goto out_put;
1754 }
1755 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1756 if (IS_ERR(newfile)) {
1757 err = PTR_ERR(newfile);
1758 put_unused_fd(newfd);
1759 goto out_put;
1760 }
1761
1762 err = security_socket_accept(sock, newsock);
1763 if (err)
1764 goto out_fd;
1765
1766 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1767 if (err < 0)
1768 goto out_fd;
1769
1770 if (upeer_sockaddr) {
1771 len = newsock->ops->getname(newsock,
1772 (struct sockaddr *)&address, 2);
1773 if (len < 0) {
1774 err = -ECONNABORTED;
1775 goto out_fd;
1776 }
1777 err = move_addr_to_user(&address,
1778 len, upeer_sockaddr, upeer_addrlen);
1779 if (err < 0)
1780 goto out_fd;
1781 }
1782
1783 /* File flags are not inherited via accept() unlike another OSes. */
1784
1785 fd_install(newfd, newfile);
1786 err = newfd;
1787
1788 out_put:
1789 fput_light(sock->file, fput_needed);
1790 out:
1791 return err;
1792 out_fd:
1793 fput(newfile);
1794 put_unused_fd(newfd);
1795 goto out_put;
1796 }
1797
1798 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1799 int __user *, upeer_addrlen, int, flags)
1800 {
1801 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1802 }
1803
1804 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1805 int __user *, upeer_addrlen)
1806 {
1807 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1808 }
1809
1810 /*
1811 * Attempt to connect to a socket with the server address. The address
1812 * is in user space so we verify it is OK and move it to kernel space.
1813 *
1814 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1815 * break bindings
1816 *
1817 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1818 * other SEQPACKET protocols that take time to connect() as it doesn't
1819 * include the -EINPROGRESS status for such sockets.
1820 */
1821
1822 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1823 {
1824 struct socket *sock;
1825 struct sockaddr_storage address;
1826 int err, fput_needed;
1827
1828 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1829 if (!sock)
1830 goto out;
1831 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1832 if (err < 0)
1833 goto out_put;
1834
1835 err =
1836 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1837 if (err)
1838 goto out_put;
1839
1840 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1841 sock->file->f_flags);
1842 out_put:
1843 fput_light(sock->file, fput_needed);
1844 out:
1845 return err;
1846 }
1847
1848 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1849 int, addrlen)
1850 {
1851 return __sys_connect(fd, uservaddr, addrlen);
1852 }
1853
1854 /*
1855 * Get the local address ('name') of a socket object. Move the obtained
1856 * name to user space.
1857 */
1858
1859 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1860 int __user *usockaddr_len)
1861 {
1862 struct socket *sock;
1863 struct sockaddr_storage address;
1864 int err, fput_needed;
1865
1866 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1867 if (!sock)
1868 goto out;
1869
1870 err = security_socket_getsockname(sock);
1871 if (err)
1872 goto out_put;
1873
1874 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1875 if (err < 0)
1876 goto out_put;
1877 /* "err" is actually length in this case */
1878 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1879
1880 out_put:
1881 fput_light(sock->file, fput_needed);
1882 out:
1883 return err;
1884 }
1885
1886 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1887 int __user *, usockaddr_len)
1888 {
1889 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1890 }
1891
1892 /*
1893 * Get the remote address ('name') of a socket object. Move the obtained
1894 * name to user space.
1895 */
1896
1897 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1898 int __user *usockaddr_len)
1899 {
1900 struct socket *sock;
1901 struct sockaddr_storage address;
1902 int err, fput_needed;
1903
1904 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1905 if (sock != NULL) {
1906 err = security_socket_getpeername(sock);
1907 if (err) {
1908 fput_light(sock->file, fput_needed);
1909 return err;
1910 }
1911
1912 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1913 if (err >= 0)
1914 /* "err" is actually length in this case */
1915 err = move_addr_to_user(&address, err, usockaddr,
1916 usockaddr_len);
1917 fput_light(sock->file, fput_needed);
1918 }
1919 return err;
1920 }
1921
1922 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1923 int __user *, usockaddr_len)
1924 {
1925 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1926 }
1927
1928 /*
1929 * Send a datagram to a given address. We move the address into kernel
1930 * space and check the user space data area is readable before invoking
1931 * the protocol.
1932 */
1933 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1934 struct sockaddr __user *addr, int addr_len)
1935 {
1936 struct socket *sock;
1937 struct sockaddr_storage address;
1938 int err;
1939 struct msghdr msg;
1940 struct iovec iov;
1941 int fput_needed;
1942
1943 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1944 if (unlikely(err))
1945 return err;
1946 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1947 if (!sock)
1948 goto out;
1949
1950 msg.msg_name = NULL;
1951 msg.msg_control = NULL;
1952 msg.msg_controllen = 0;
1953 msg.msg_namelen = 0;
1954 if (addr) {
1955 err = move_addr_to_kernel(addr, addr_len, &address);
1956 if (err < 0)
1957 goto out_put;
1958 msg.msg_name = (struct sockaddr *)&address;
1959 msg.msg_namelen = addr_len;
1960 }
1961 if (sock->file->f_flags & O_NONBLOCK)
1962 flags |= MSG_DONTWAIT;
1963 msg.msg_flags = flags;
1964 err = sock_sendmsg(sock, &msg);
1965
1966 out_put:
1967 fput_light(sock->file, fput_needed);
1968 out:
1969 return err;
1970 }
1971
1972 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1973 unsigned int, flags, struct sockaddr __user *, addr,
1974 int, addr_len)
1975 {
1976 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1977 }
1978
1979 /*
1980 * Send a datagram down a socket.
1981 */
1982
1983 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1984 unsigned int, flags)
1985 {
1986 return __sys_sendto(fd, buff, len, flags, NULL, 0);
1987 }
1988
1989 /*
1990 * Receive a frame from the socket and optionally record the address of the
1991 * sender. We verify the buffers are writable and if needed move the
1992 * sender address from kernel to user space.
1993 */
1994 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1995 struct sockaddr __user *addr, int __user *addr_len)
1996 {
1997 struct socket *sock;
1998 struct iovec iov;
1999 struct msghdr msg;
2000 struct sockaddr_storage address;
2001 int err, err2;
2002 int fput_needed;
2003
2004 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2005 if (unlikely(err))
2006 return err;
2007 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2008 if (!sock)
2009 goto out;
2010
2011 msg.msg_control = NULL;
2012 msg.msg_controllen = 0;
2013 /* Save some cycles and don't copy the address if not needed */
2014 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2015 /* We assume all kernel code knows the size of sockaddr_storage */
2016 msg.msg_namelen = 0;
2017 msg.msg_iocb = NULL;
2018 msg.msg_flags = 0;
2019 if (sock->file->f_flags & O_NONBLOCK)
2020 flags |= MSG_DONTWAIT;
2021 err = sock_recvmsg(sock, &msg, flags);
2022
2023 if (err >= 0 && addr != NULL) {
2024 err2 = move_addr_to_user(&address,
2025 msg.msg_namelen, addr, addr_len);
2026 if (err2 < 0)
2027 err = err2;
2028 }
2029
2030 fput_light(sock->file, fput_needed);
2031 out:
2032 return err;
2033 }
2034
2035 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2036 unsigned int, flags, struct sockaddr __user *, addr,
2037 int __user *, addr_len)
2038 {
2039 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2040 }
2041
2042 /*
2043 * Receive a datagram from a socket.
2044 */
2045
2046 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2047 unsigned int, flags)
2048 {
2049 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2050 }
2051
2052 /*
2053 * Set a socket option. Because we don't know the option lengths we have
2054 * to pass the user mode parameter for the protocols to sort out.
2055 */
2056
2057 static int __sys_setsockopt(int fd, int level, int optname,
2058 char __user *optval, int optlen)
2059 {
2060 int err, fput_needed;
2061 struct socket *sock;
2062
2063 if (optlen < 0)
2064 return -EINVAL;
2065
2066 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2067 if (sock != NULL) {
2068 err = security_socket_setsockopt(sock, level, optname);
2069 if (err)
2070 goto out_put;
2071
2072 if (level == SOL_SOCKET)
2073 err =
2074 sock_setsockopt(sock, level, optname, optval,
2075 optlen);
2076 else
2077 err =
2078 sock->ops->setsockopt(sock, level, optname, optval,
2079 optlen);
2080 out_put:
2081 fput_light(sock->file, fput_needed);
2082 }
2083 return err;
2084 }
2085
2086 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2087 char __user *, optval, int, optlen)
2088 {
2089 return __sys_setsockopt(fd, level, optname, optval, optlen);
2090 }
2091
2092 /*
2093 * Get a socket option. Because we don't know the option lengths we have
2094 * to pass a user mode parameter for the protocols to sort out.
2095 */
2096
2097 static int __sys_getsockopt(int fd, int level, int optname,
2098 char __user *optval, int __user *optlen)
2099 {
2100 int err, fput_needed;
2101 struct socket *sock;
2102
2103 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2104 if (sock != NULL) {
2105 err = security_socket_getsockopt(sock, level, optname);
2106 if (err)
2107 goto out_put;
2108
2109 if (level == SOL_SOCKET)
2110 err =
2111 sock_getsockopt(sock, level, optname, optval,
2112 optlen);
2113 else
2114 err =
2115 sock->ops->getsockopt(sock, level, optname, optval,
2116 optlen);
2117 out_put:
2118 fput_light(sock->file, fput_needed);
2119 }
2120 return err;
2121 }
2122
2123 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2124 char __user *, optval, int __user *, optlen)
2125 {
2126 return __sys_getsockopt(fd, level, optname, optval, optlen);
2127 }
2128
2129 /*
2130 * Shutdown a socket.
2131 */
2132
2133 int __sys_shutdown(int fd, int how)
2134 {
2135 int err, fput_needed;
2136 struct socket *sock;
2137
2138 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2139 if (sock != NULL) {
2140 err = security_socket_shutdown(sock, how);
2141 if (!err)
2142 err = sock->ops->shutdown(sock, how);
2143 fput_light(sock->file, fput_needed);
2144 }
2145 return err;
2146 }
2147
2148 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2149 {
2150 return __sys_shutdown(fd, how);
2151 }
2152
2153 /* A couple of helpful macros for getting the address of the 32/64 bit
2154 * fields which are the same type (int / unsigned) on our platforms.
2155 */
2156 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2157 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2158 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2159
2160 struct used_address {
2161 struct sockaddr_storage name;
2162 unsigned int name_len;
2163 };
2164
2165 static int copy_msghdr_from_user(struct msghdr *kmsg,
2166 struct user_msghdr __user *umsg,
2167 struct sockaddr __user **save_addr,
2168 struct iovec **iov)
2169 {
2170 struct user_msghdr msg;
2171 ssize_t err;
2172
2173 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2174 return -EFAULT;
2175
2176 kmsg->msg_control = (void __force *)msg.msg_control;
2177 kmsg->msg_controllen = msg.msg_controllen;
2178 kmsg->msg_flags = msg.msg_flags;
2179
2180 kmsg->msg_namelen = msg.msg_namelen;
2181 if (!msg.msg_name)
2182 kmsg->msg_namelen = 0;
2183
2184 if (kmsg->msg_namelen < 0)
2185 return -EINVAL;
2186
2187 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2188 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2189
2190 if (save_addr)
2191 *save_addr = msg.msg_name;
2192
2193 if (msg.msg_name && kmsg->msg_namelen) {
2194 if (!save_addr) {
2195 err = move_addr_to_kernel(msg.msg_name,
2196 kmsg->msg_namelen,
2197 kmsg->msg_name);
2198 if (err < 0)
2199 return err;
2200 }
2201 } else {
2202 kmsg->msg_name = NULL;
2203 kmsg->msg_namelen = 0;
2204 }
2205
2206 if (msg.msg_iovlen > UIO_MAXIOV)
2207 return -EMSGSIZE;
2208
2209 kmsg->msg_iocb = NULL;
2210
2211 return import_iovec(save_addr ? READ : WRITE,
2212 msg.msg_iov, msg.msg_iovlen,
2213 UIO_FASTIOV, iov, &kmsg->msg_iter);
2214 }
2215
2216 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2217 struct msghdr *msg_sys, unsigned int flags,
2218 struct used_address *used_address,
2219 unsigned int allowed_msghdr_flags)
2220 {
2221 struct compat_msghdr __user *msg_compat =
2222 (struct compat_msghdr __user *)msg;
2223 struct sockaddr_storage address;
2224 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2225 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2226 __aligned(sizeof(__kernel_size_t));
2227 /* 20 is size of ipv6_pktinfo */
2228 unsigned char *ctl_buf = ctl;
2229 int ctl_len;
2230 ssize_t err;
2231
2232 msg_sys->msg_name = &address;
2233
2234 if (MSG_CMSG_COMPAT & flags)
2235 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2236 else
2237 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2238 if (err < 0)
2239 return err;
2240
2241 err = -ENOBUFS;
2242
2243 if (msg_sys->msg_controllen > INT_MAX)
2244 goto out_freeiov;
2245 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2246 ctl_len = msg_sys->msg_controllen;
2247 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2248 err =
2249 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2250 sizeof(ctl));
2251 if (err)
2252 goto out_freeiov;
2253 ctl_buf = msg_sys->msg_control;
2254 ctl_len = msg_sys->msg_controllen;
2255 } else if (ctl_len) {
2256 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2257 CMSG_ALIGN(sizeof(struct cmsghdr)));
2258 if (ctl_len > sizeof(ctl)) {
2259 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2260 if (ctl_buf == NULL)
2261 goto out_freeiov;
2262 }
2263 err = -EFAULT;
2264 /*
2265 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2266 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2267 * checking falls down on this.
2268 */
2269 if (copy_from_user(ctl_buf,
2270 (void __user __force *)msg_sys->msg_control,
2271 ctl_len))
2272 goto out_freectl;
2273 msg_sys->msg_control = ctl_buf;
2274 }
2275 msg_sys->msg_flags = flags;
2276
2277 if (sock->file->f_flags & O_NONBLOCK)
2278 msg_sys->msg_flags |= MSG_DONTWAIT;
2279 /*
2280 * If this is sendmmsg() and current destination address is same as
2281 * previously succeeded address, omit asking LSM's decision.
2282 * used_address->name_len is initialized to UINT_MAX so that the first
2283 * destination address never matches.
2284 */
2285 if (used_address && msg_sys->msg_name &&
2286 used_address->name_len == msg_sys->msg_namelen &&
2287 !memcmp(&used_address->name, msg_sys->msg_name,
2288 used_address->name_len)) {
2289 err = sock_sendmsg_nosec(sock, msg_sys);
2290 goto out_freectl;
2291 }
2292 err = sock_sendmsg(sock, msg_sys);
2293 /*
2294 * If this is sendmmsg() and sending to current destination address was
2295 * successful, remember it.
2296 */
2297 if (used_address && err >= 0) {
2298 used_address->name_len = msg_sys->msg_namelen;
2299 if (msg_sys->msg_name)
2300 memcpy(&used_address->name, msg_sys->msg_name,
2301 used_address->name_len);
2302 }
2303
2304 out_freectl:
2305 if (ctl_buf != ctl)
2306 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2307 out_freeiov:
2308 kfree(iov);
2309 return err;
2310 }
2311
2312 /*
2313 * BSD sendmsg interface
2314 */
2315
2316 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2317 bool forbid_cmsg_compat)
2318 {
2319 int fput_needed, err;
2320 struct msghdr msg_sys;
2321 struct socket *sock;
2322
2323 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2324 return -EINVAL;
2325
2326 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2327 if (!sock)
2328 goto out;
2329
2330 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2331
2332 fput_light(sock->file, fput_needed);
2333 out:
2334 return err;
2335 }
2336
2337 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2338 {
2339 return __sys_sendmsg(fd, msg, flags, true);
2340 }
2341
2342 /*
2343 * Linux sendmmsg interface
2344 */
2345
2346 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2347 unsigned int flags, bool forbid_cmsg_compat)
2348 {
2349 int fput_needed, err, datagrams;
2350 struct socket *sock;
2351 struct mmsghdr __user *entry;
2352 struct compat_mmsghdr __user *compat_entry;
2353 struct msghdr msg_sys;
2354 struct used_address used_address;
2355 unsigned int oflags = flags;
2356
2357 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2358 return -EINVAL;
2359
2360 if (vlen > UIO_MAXIOV)
2361 vlen = UIO_MAXIOV;
2362
2363 datagrams = 0;
2364
2365 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2366 if (!sock)
2367 return err;
2368
2369 used_address.name_len = UINT_MAX;
2370 entry = mmsg;
2371 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2372 err = 0;
2373 flags |= MSG_BATCH;
2374
2375 while (datagrams < vlen) {
2376 if (datagrams == vlen - 1)
2377 flags = oflags;
2378
2379 if (MSG_CMSG_COMPAT & flags) {
2380 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2381 &msg_sys, flags, &used_address, MSG_EOR);
2382 if (err < 0)
2383 break;
2384 err = __put_user(err, &compat_entry->msg_len);
2385 ++compat_entry;
2386 } else {
2387 err = ___sys_sendmsg(sock,
2388 (struct user_msghdr __user *)entry,
2389 &msg_sys, flags, &used_address, MSG_EOR);
2390 if (err < 0)
2391 break;
2392 err = put_user(err, &entry->msg_len);
2393 ++entry;
2394 }
2395
2396 if (err)
2397 break;
2398 ++datagrams;
2399 if (msg_data_left(&msg_sys))
2400 break;
2401 cond_resched();
2402 }
2403
2404 fput_light(sock->file, fput_needed);
2405
2406 /* We only return an error if no datagrams were able to be sent */
2407 if (datagrams != 0)
2408 return datagrams;
2409
2410 return err;
2411 }
2412
2413 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2414 unsigned int, vlen, unsigned int, flags)
2415 {
2416 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2417 }
2418
2419 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2420 struct msghdr *msg_sys, unsigned int flags, int nosec)
2421 {
2422 struct compat_msghdr __user *msg_compat =
2423 (struct compat_msghdr __user *)msg;
2424 struct iovec iovstack[UIO_FASTIOV];
2425 struct iovec *iov = iovstack;
2426 unsigned long cmsg_ptr;
2427 int len;
2428 ssize_t err;
2429
2430 /* kernel mode address */
2431 struct sockaddr_storage addr;
2432
2433 /* user mode address pointers */
2434 struct sockaddr __user *uaddr;
2435 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2436
2437 msg_sys->msg_name = &addr;
2438
2439 if (MSG_CMSG_COMPAT & flags)
2440 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2441 else
2442 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2443 if (err < 0)
2444 return err;
2445
2446 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2447 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2448
2449 /* We assume all kernel code knows the size of sockaddr_storage */
2450 msg_sys->msg_namelen = 0;
2451
2452 if (sock->file->f_flags & O_NONBLOCK)
2453 flags |= MSG_DONTWAIT;
2454 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2455 if (err < 0)
2456 goto out_freeiov;
2457 len = err;
2458
2459 if (uaddr != NULL) {
2460 err = move_addr_to_user(&addr,
2461 msg_sys->msg_namelen, uaddr,
2462 uaddr_len);
2463 if (err < 0)
2464 goto out_freeiov;
2465 }
2466 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2467 COMPAT_FLAGS(msg));
2468 if (err)
2469 goto out_freeiov;
2470 if (MSG_CMSG_COMPAT & flags)
2471 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2472 &msg_compat->msg_controllen);
2473 else
2474 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2475 &msg->msg_controllen);
2476 if (err)
2477 goto out_freeiov;
2478 err = len;
2479
2480 out_freeiov:
2481 kfree(iov);
2482 return err;
2483 }
2484
2485 /*
2486 * BSD recvmsg interface
2487 */
2488
2489 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2490 bool forbid_cmsg_compat)
2491 {
2492 int fput_needed, err;
2493 struct msghdr msg_sys;
2494 struct socket *sock;
2495
2496 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2497 return -EINVAL;
2498
2499 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2500 if (!sock)
2501 goto out;
2502
2503 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2504
2505 fput_light(sock->file, fput_needed);
2506 out:
2507 return err;
2508 }
2509
2510 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2511 unsigned int, flags)
2512 {
2513 return __sys_recvmsg(fd, msg, flags, true);
2514 }
2515
2516 /*
2517 * Linux recvmmsg interface
2518 */
2519
2520 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2521 unsigned int vlen, unsigned int flags,
2522 struct timespec64 *timeout)
2523 {
2524 int fput_needed, err, datagrams;
2525 struct socket *sock;
2526 struct mmsghdr __user *entry;
2527 struct compat_mmsghdr __user *compat_entry;
2528 struct msghdr msg_sys;
2529 struct timespec64 end_time;
2530 struct timespec64 timeout64;
2531
2532 if (timeout &&
2533 poll_select_set_timeout(&end_time, timeout->tv_sec,
2534 timeout->tv_nsec))
2535 return -EINVAL;
2536
2537 datagrams = 0;
2538
2539 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2540 if (!sock)
2541 return err;
2542
2543 if (likely(!(flags & MSG_ERRQUEUE))) {
2544 err = sock_error(sock->sk);
2545 if (err) {
2546 datagrams = err;
2547 goto out_put;
2548 }
2549 }
2550
2551 entry = mmsg;
2552 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2553
2554 while (datagrams < vlen) {
2555 /*
2556 * No need to ask LSM for more than the first datagram.
2557 */
2558 if (MSG_CMSG_COMPAT & flags) {
2559 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2560 &msg_sys, flags & ~MSG_WAITFORONE,
2561 datagrams);
2562 if (err < 0)
2563 break;
2564 err = __put_user(err, &compat_entry->msg_len);
2565 ++compat_entry;
2566 } else {
2567 err = ___sys_recvmsg(sock,
2568 (struct user_msghdr __user *)entry,
2569 &msg_sys, flags & ~MSG_WAITFORONE,
2570 datagrams);
2571 if (err < 0)
2572 break;
2573 err = put_user(err, &entry->msg_len);
2574 ++entry;
2575 }
2576
2577 if (err)
2578 break;
2579 ++datagrams;
2580
2581 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2582 if (flags & MSG_WAITFORONE)
2583 flags |= MSG_DONTWAIT;
2584
2585 if (timeout) {
2586 ktime_get_ts64(&timeout64);
2587 *timeout = timespec64_sub(end_time, timeout64);
2588 if (timeout->tv_sec < 0) {
2589 timeout->tv_sec = timeout->tv_nsec = 0;
2590 break;
2591 }
2592
2593 /* Timeout, return less than vlen datagrams */
2594 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2595 break;
2596 }
2597
2598 /* Out of band data, return right away */
2599 if (msg_sys.msg_flags & MSG_OOB)
2600 break;
2601 cond_resched();
2602 }
2603
2604 if (err == 0)
2605 goto out_put;
2606
2607 if (datagrams == 0) {
2608 datagrams = err;
2609 goto out_put;
2610 }
2611
2612 /*
2613 * We may return less entries than requested (vlen) if the
2614 * sock is non block and there aren't enough datagrams...
2615 */
2616 if (err != -EAGAIN) {
2617 /*
2618 * ... or if recvmsg returns an error after we
2619 * received some datagrams, where we record the
2620 * error to return on the next call or if the
2621 * app asks about it using getsockopt(SO_ERROR).
2622 */
2623 sock->sk->sk_err = -err;
2624 }
2625 out_put:
2626 fput_light(sock->file, fput_needed);
2627
2628 return datagrams;
2629 }
2630
2631 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2632 unsigned int vlen, unsigned int flags,
2633 struct __kernel_timespec __user *timeout,
2634 struct old_timespec32 __user *timeout32)
2635 {
2636 int datagrams;
2637 struct timespec64 timeout_sys;
2638
2639 if (timeout && get_timespec64(&timeout_sys, timeout))
2640 return -EFAULT;
2641
2642 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2643 return -EFAULT;
2644
2645 if (!timeout && !timeout32)
2646 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2647
2648 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2649
2650 if (datagrams <= 0)
2651 return datagrams;
2652
2653 if (timeout && put_timespec64(&timeout_sys, timeout))
2654 datagrams = -EFAULT;
2655
2656 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2657 datagrams = -EFAULT;
2658
2659 return datagrams;
2660 }
2661
2662 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2663 unsigned int, vlen, unsigned int, flags,
2664 struct __kernel_timespec __user *, timeout)
2665 {
2666 if (flags & MSG_CMSG_COMPAT)
2667 return -EINVAL;
2668
2669 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2670 }
2671
2672 #ifdef CONFIG_COMPAT_32BIT_TIME
2673 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2674 unsigned int, vlen, unsigned int, flags,
2675 struct old_timespec32 __user *, timeout)
2676 {
2677 if (flags & MSG_CMSG_COMPAT)
2678 return -EINVAL;
2679
2680 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2681 }
2682 #endif
2683
2684 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2685 /* Argument list sizes for sys_socketcall */
2686 #define AL(x) ((x) * sizeof(unsigned long))
2687 static const unsigned char nargs[21] = {
2688 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2689 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2690 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2691 AL(4), AL(5), AL(4)
2692 };
2693
2694 #undef AL
2695
2696 /*
2697 * System call vectors.
2698 *
2699 * Argument checking cleaned up. Saved 20% in size.
2700 * This function doesn't need to set the kernel lock because
2701 * it is set by the callees.
2702 */
2703
2704 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2705 {
2706 unsigned long a[AUDITSC_ARGS];
2707 unsigned long a0, a1;
2708 int err;
2709 unsigned int len;
2710
2711 if (call < 1 || call > SYS_SENDMMSG)
2712 return -EINVAL;
2713 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2714
2715 len = nargs[call];
2716 if (len > sizeof(a))
2717 return -EINVAL;
2718
2719 /* copy_from_user should be SMP safe. */
2720 if (copy_from_user(a, args, len))
2721 return -EFAULT;
2722
2723 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2724 if (err)
2725 return err;
2726
2727 a0 = a[0];
2728 a1 = a[1];
2729
2730 switch (call) {
2731 case SYS_SOCKET:
2732 err = __sys_socket(a0, a1, a[2]);
2733 break;
2734 case SYS_BIND:
2735 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2736 break;
2737 case SYS_CONNECT:
2738 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2739 break;
2740 case SYS_LISTEN:
2741 err = __sys_listen(a0, a1);
2742 break;
2743 case SYS_ACCEPT:
2744 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2745 (int __user *)a[2], 0);
2746 break;
2747 case SYS_GETSOCKNAME:
2748 err =
2749 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2750 (int __user *)a[2]);
2751 break;
2752 case SYS_GETPEERNAME:
2753 err =
2754 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2755 (int __user *)a[2]);
2756 break;
2757 case SYS_SOCKETPAIR:
2758 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2759 break;
2760 case SYS_SEND:
2761 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2762 NULL, 0);
2763 break;
2764 case SYS_SENDTO:
2765 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2766 (struct sockaddr __user *)a[4], a[5]);
2767 break;
2768 case SYS_RECV:
2769 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2770 NULL, NULL);
2771 break;
2772 case SYS_RECVFROM:
2773 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2774 (struct sockaddr __user *)a[4],
2775 (int __user *)a[5]);
2776 break;
2777 case SYS_SHUTDOWN:
2778 err = __sys_shutdown(a0, a1);
2779 break;
2780 case SYS_SETSOCKOPT:
2781 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2782 a[4]);
2783 break;
2784 case SYS_GETSOCKOPT:
2785 err =
2786 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2787 (int __user *)a[4]);
2788 break;
2789 case SYS_SENDMSG:
2790 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2791 a[2], true);
2792 break;
2793 case SYS_SENDMMSG:
2794 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2795 a[3], true);
2796 break;
2797 case SYS_RECVMSG:
2798 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2799 a[2], true);
2800 break;
2801 case SYS_RECVMMSG:
2802 if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME))
2803 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2804 a[2], a[3],
2805 (struct __kernel_timespec __user *)a[4],
2806 NULL);
2807 else
2808 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2809 a[2], a[3], NULL,
2810 (struct old_timespec32 __user *)a[4]);
2811 break;
2812 case SYS_ACCEPT4:
2813 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2814 (int __user *)a[2], a[3]);
2815 break;
2816 default:
2817 err = -EINVAL;
2818 break;
2819 }
2820 return err;
2821 }
2822
2823 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2824
2825 /**
2826 * sock_register - add a socket protocol handler
2827 * @ops: description of protocol
2828 *
2829 * This function is called by a protocol handler that wants to
2830 * advertise its address family, and have it linked into the
2831 * socket interface. The value ops->family corresponds to the
2832 * socket system call protocol family.
2833 */
2834 int sock_register(const struct net_proto_family *ops)
2835 {
2836 int err;
2837
2838 if (ops->family >= NPROTO) {
2839 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2840 return -ENOBUFS;
2841 }
2842
2843 spin_lock(&net_family_lock);
2844 if (rcu_dereference_protected(net_families[ops->family],
2845 lockdep_is_held(&net_family_lock)))
2846 err = -EEXIST;
2847 else {
2848 rcu_assign_pointer(net_families[ops->family], ops);
2849 err = 0;
2850 }
2851 spin_unlock(&net_family_lock);
2852
2853 pr_info("NET: Registered protocol family %d\n", ops->family);
2854 return err;
2855 }
2856 EXPORT_SYMBOL(sock_register);
2857
2858 /**
2859 * sock_unregister - remove a protocol handler
2860 * @family: protocol family to remove
2861 *
2862 * This function is called by a protocol handler that wants to
2863 * remove its address family, and have it unlinked from the
2864 * new socket creation.
2865 *
2866 * If protocol handler is a module, then it can use module reference
2867 * counts to protect against new references. If protocol handler is not
2868 * a module then it needs to provide its own protection in
2869 * the ops->create routine.
2870 */
2871 void sock_unregister(int family)
2872 {
2873 BUG_ON(family < 0 || family >= NPROTO);
2874
2875 spin_lock(&net_family_lock);
2876 RCU_INIT_POINTER(net_families[family], NULL);
2877 spin_unlock(&net_family_lock);
2878
2879 synchronize_rcu();
2880
2881 pr_info("NET: Unregistered protocol family %d\n", family);
2882 }
2883 EXPORT_SYMBOL(sock_unregister);
2884
2885 bool sock_is_registered(int family)
2886 {
2887 return family < NPROTO && rcu_access_pointer(net_families[family]);
2888 }
2889
2890 static int __init sock_init(void)
2891 {
2892 int err;
2893 /*
2894 * Initialize the network sysctl infrastructure.
2895 */
2896 err = net_sysctl_init();
2897 if (err)
2898 goto out;
2899
2900 /*
2901 * Initialize skbuff SLAB cache
2902 */
2903 skb_init();
2904
2905 /*
2906 * Initialize the protocols module.
2907 */
2908
2909 init_inodecache();
2910
2911 err = register_filesystem(&sock_fs_type);
2912 if (err)
2913 goto out_fs;
2914 sock_mnt = kern_mount(&sock_fs_type);
2915 if (IS_ERR(sock_mnt)) {
2916 err = PTR_ERR(sock_mnt);
2917 goto out_mount;
2918 }
2919
2920 /* The real protocol initialization is performed in later initcalls.
2921 */
2922
2923 #ifdef CONFIG_NETFILTER
2924 err = netfilter_init();
2925 if (err)
2926 goto out;
2927 #endif
2928
2929 ptp_classifier_init();
2930
2931 out:
2932 return err;
2933
2934 out_mount:
2935 unregister_filesystem(&sock_fs_type);
2936 out_fs:
2937 goto out;
2938 }
2939
2940 core_initcall(sock_init); /* early initcall */
2941
2942 #ifdef CONFIG_PROC_FS
2943 void socket_seq_show(struct seq_file *seq)
2944 {
2945 seq_printf(seq, "sockets: used %d\n",
2946 sock_inuse_get(seq->private));
2947 }
2948 #endif /* CONFIG_PROC_FS */
2949
2950 #ifdef CONFIG_COMPAT
2951 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2952 {
2953 struct compat_ifconf ifc32;
2954 struct ifconf ifc;
2955 int err;
2956
2957 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2958 return -EFAULT;
2959
2960 ifc.ifc_len = ifc32.ifc_len;
2961 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2962
2963 rtnl_lock();
2964 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2965 rtnl_unlock();
2966 if (err)
2967 return err;
2968
2969 ifc32.ifc_len = ifc.ifc_len;
2970 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2971 return -EFAULT;
2972
2973 return 0;
2974 }
2975
2976 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2977 {
2978 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2979 bool convert_in = false, convert_out = false;
2980 size_t buf_size = 0;
2981 struct ethtool_rxnfc __user *rxnfc = NULL;
2982 struct ifreq ifr;
2983 u32 rule_cnt = 0, actual_rule_cnt;
2984 u32 ethcmd;
2985 u32 data;
2986 int ret;
2987
2988 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2989 return -EFAULT;
2990
2991 compat_rxnfc = compat_ptr(data);
2992
2993 if (get_user(ethcmd, &compat_rxnfc->cmd))
2994 return -EFAULT;
2995
2996 /* Most ethtool structures are defined without padding.
2997 * Unfortunately struct ethtool_rxnfc is an exception.
2998 */
2999 switch (ethcmd) {
3000 default:
3001 break;
3002 case ETHTOOL_GRXCLSRLALL:
3003 /* Buffer size is variable */
3004 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3005 return -EFAULT;
3006 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3007 return -ENOMEM;
3008 buf_size += rule_cnt * sizeof(u32);
3009 /* fall through */
3010 case ETHTOOL_GRXRINGS:
3011 case ETHTOOL_GRXCLSRLCNT:
3012 case ETHTOOL_GRXCLSRULE:
3013 case ETHTOOL_SRXCLSRLINS:
3014 convert_out = true;
3015 /* fall through */
3016 case ETHTOOL_SRXCLSRLDEL:
3017 buf_size += sizeof(struct ethtool_rxnfc);
3018 convert_in = true;
3019 rxnfc = compat_alloc_user_space(buf_size);
3020 break;
3021 }
3022
3023 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3024 return -EFAULT;
3025
3026 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3027
3028 if (convert_in) {
3029 /* We expect there to be holes between fs.m_ext and
3030 * fs.ring_cookie and at the end of fs, but nowhere else.
3031 */
3032 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3033 sizeof(compat_rxnfc->fs.m_ext) !=
3034 offsetof(struct ethtool_rxnfc, fs.m_ext) +
3035 sizeof(rxnfc->fs.m_ext));
3036 BUILD_BUG_ON(
3037 offsetof(struct compat_ethtool_rxnfc, fs.location) -
3038 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3039 offsetof(struct ethtool_rxnfc, fs.location) -
3040 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3041
3042 if (copy_in_user(rxnfc, compat_rxnfc,
3043 (void __user *)(&rxnfc->fs.m_ext + 1) -
3044 (void __user *)rxnfc) ||
3045 copy_in_user(&rxnfc->fs.ring_cookie,
3046 &compat_rxnfc->fs.ring_cookie,
3047 (void __user *)(&rxnfc->fs.location + 1) -
3048 (void __user *)&rxnfc->fs.ring_cookie))
3049 return -EFAULT;
3050 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3051 if (put_user(rule_cnt, &rxnfc->rule_cnt))
3052 return -EFAULT;
3053 } else if (copy_in_user(&rxnfc->rule_cnt,
3054 &compat_rxnfc->rule_cnt,
3055 sizeof(rxnfc->rule_cnt)))
3056 return -EFAULT;
3057 }
3058
3059 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3060 if (ret)
3061 return ret;
3062
3063 if (convert_out) {
3064 if (copy_in_user(compat_rxnfc, rxnfc,
3065 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3066 (const void __user *)rxnfc) ||
3067 copy_in_user(&compat_rxnfc->fs.ring_cookie,
3068 &rxnfc->fs.ring_cookie,
3069 (const void __user *)(&rxnfc->fs.location + 1) -
3070 (const void __user *)&rxnfc->fs.ring_cookie) ||
3071 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3072 sizeof(rxnfc->rule_cnt)))
3073 return -EFAULT;
3074
3075 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3076 /* As an optimisation, we only copy the actual
3077 * number of rules that the underlying
3078 * function returned. Since Mallory might
3079 * change the rule count in user memory, we
3080 * check that it is less than the rule count
3081 * originally given (as the user buffer size),
3082 * which has been range-checked.
3083 */
3084 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3085 return -EFAULT;
3086 if (actual_rule_cnt < rule_cnt)
3087 rule_cnt = actual_rule_cnt;
3088 if (copy_in_user(&compat_rxnfc->rule_locs[0],
3089 &rxnfc->rule_locs[0],
3090 rule_cnt * sizeof(u32)))
3091 return -EFAULT;
3092 }
3093 }
3094
3095 return 0;
3096 }
3097
3098 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3099 {
3100 compat_uptr_t uptr32;
3101 struct ifreq ifr;
3102 void __user *saved;
3103 int err;
3104
3105 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3106 return -EFAULT;
3107
3108 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3109 return -EFAULT;
3110
3111 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3112 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3113
3114 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3115 if (!err) {
3116 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3117 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3118 err = -EFAULT;
3119 }
3120 return err;
3121 }
3122
3123 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3124 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3125 struct compat_ifreq __user *u_ifreq32)
3126 {
3127 struct ifreq ifreq;
3128 u32 data32;
3129
3130 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3131 return -EFAULT;
3132 if (get_user(data32, &u_ifreq32->ifr_data))
3133 return -EFAULT;
3134 ifreq.ifr_data = compat_ptr(data32);
3135
3136 return dev_ioctl(net, cmd, &ifreq, NULL);
3137 }
3138
3139 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3140 unsigned int cmd,
3141 struct compat_ifreq __user *uifr32)
3142 {
3143 struct ifreq __user *uifr;
3144 int err;
3145
3146 /* Handle the fact that while struct ifreq has the same *layout* on
3147 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3148 * which are handled elsewhere, it still has different *size* due to
3149 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3150 * resulting in struct ifreq being 32 and 40 bytes respectively).
3151 * As a result, if the struct happens to be at the end of a page and
3152 * the next page isn't readable/writable, we get a fault. To prevent
3153 * that, copy back and forth to the full size.
3154 */
3155
3156 uifr = compat_alloc_user_space(sizeof(*uifr));
3157 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3158 return -EFAULT;
3159
3160 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3161
3162 if (!err) {
3163 switch (cmd) {
3164 case SIOCGIFFLAGS:
3165 case SIOCGIFMETRIC:
3166 case SIOCGIFMTU:
3167 case SIOCGIFMEM:
3168 case SIOCGIFHWADDR:
3169 case SIOCGIFINDEX:
3170 case SIOCGIFADDR:
3171 case SIOCGIFBRDADDR:
3172 case SIOCGIFDSTADDR:
3173 case SIOCGIFNETMASK:
3174 case SIOCGIFPFLAGS:
3175 case SIOCGIFTXQLEN:
3176 case SIOCGMIIPHY:
3177 case SIOCGMIIREG:
3178 case SIOCGIFNAME:
3179 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3180 err = -EFAULT;
3181 break;
3182 }
3183 }
3184 return err;
3185 }
3186
3187 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3188 struct compat_ifreq __user *uifr32)
3189 {
3190 struct ifreq ifr;
3191 struct compat_ifmap __user *uifmap32;
3192 int err;
3193
3194 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3195 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3196 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3197 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3198 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3199 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3200 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3201 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3202 if (err)
3203 return -EFAULT;
3204
3205 err = dev_ioctl(net, cmd, &ifr, NULL);
3206
3207 if (cmd == SIOCGIFMAP && !err) {
3208 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3209 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3210 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3211 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3212 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3213 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3214 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3215 if (err)
3216 err = -EFAULT;
3217 }
3218 return err;
3219 }
3220
3221 struct rtentry32 {
3222 u32 rt_pad1;
3223 struct sockaddr rt_dst; /* target address */
3224 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3225 struct sockaddr rt_genmask; /* target network mask (IP) */
3226 unsigned short rt_flags;
3227 short rt_pad2;
3228 u32 rt_pad3;
3229 unsigned char rt_tos;
3230 unsigned char rt_class;
3231 short rt_pad4;
3232 short rt_metric; /* +1 for binary compatibility! */
3233 /* char * */ u32 rt_dev; /* forcing the device at add */
3234 u32 rt_mtu; /* per route MTU/Window */
3235 u32 rt_window; /* Window clamping */
3236 unsigned short rt_irtt; /* Initial RTT */
3237 };
3238
3239 struct in6_rtmsg32 {
3240 struct in6_addr rtmsg_dst;
3241 struct in6_addr rtmsg_src;
3242 struct in6_addr rtmsg_gateway;
3243 u32 rtmsg_type;
3244 u16 rtmsg_dst_len;
3245 u16 rtmsg_src_len;
3246 u32 rtmsg_metric;
3247 u32 rtmsg_info;
3248 u32 rtmsg_flags;
3249 s32 rtmsg_ifindex;
3250 };
3251
3252 static int routing_ioctl(struct net *net, struct socket *sock,
3253 unsigned int cmd, void __user *argp)
3254 {
3255 int ret;
3256 void *r = NULL;
3257 struct in6_rtmsg r6;
3258 struct rtentry r4;
3259 char devname[16];
3260 u32 rtdev;
3261 mm_segment_t old_fs = get_fs();
3262
3263 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3264 struct in6_rtmsg32 __user *ur6 = argp;
3265 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3266 3 * sizeof(struct in6_addr));
3267 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3268 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3269 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3270 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3271 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3272 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3273 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3274
3275 r = (void *) &r6;
3276 } else { /* ipv4 */
3277 struct rtentry32 __user *ur4 = argp;
3278 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3279 3 * sizeof(struct sockaddr));
3280 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3281 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3282 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3283 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3284 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3285 ret |= get_user(rtdev, &(ur4->rt_dev));
3286 if (rtdev) {
3287 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3288 r4.rt_dev = (char __user __force *)devname;
3289 devname[15] = 0;
3290 } else
3291 r4.rt_dev = NULL;
3292
3293 r = (void *) &r4;
3294 }
3295
3296 if (ret) {
3297 ret = -EFAULT;
3298 goto out;
3299 }
3300
3301 set_fs(KERNEL_DS);
3302 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3303 set_fs(old_fs);
3304
3305 out:
3306 return ret;
3307 }
3308
3309 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3310 * for some operations; this forces use of the newer bridge-utils that
3311 * use compatible ioctls
3312 */
3313 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3314 {
3315 compat_ulong_t tmp;
3316
3317 if (get_user(tmp, argp))
3318 return -EFAULT;
3319 if (tmp == BRCTL_GET_VERSION)
3320 return BRCTL_VERSION + 1;
3321 return -EINVAL;
3322 }
3323
3324 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3325 unsigned int cmd, unsigned long arg)
3326 {
3327 void __user *argp = compat_ptr(arg);
3328 struct sock *sk = sock->sk;
3329 struct net *net = sock_net(sk);
3330
3331 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3332 return compat_ifr_data_ioctl(net, cmd, argp);
3333
3334 switch (cmd) {
3335 case SIOCSIFBR:
3336 case SIOCGIFBR:
3337 return old_bridge_ioctl(argp);
3338 case SIOCGIFCONF:
3339 return compat_dev_ifconf(net, argp);
3340 case SIOCETHTOOL:
3341 return ethtool_ioctl(net, argp);
3342 case SIOCWANDEV:
3343 return compat_siocwandev(net, argp);
3344 case SIOCGIFMAP:
3345 case SIOCSIFMAP:
3346 return compat_sioc_ifmap(net, cmd, argp);
3347 case SIOCADDRT:
3348 case SIOCDELRT:
3349 return routing_ioctl(net, sock, cmd, argp);
3350 case SIOCGSTAMP_OLD:
3351 case SIOCGSTAMPNS_OLD:
3352 if (!sock->ops->gettstamp)
3353 return -ENOIOCTLCMD;
3354 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3355 !COMPAT_USE_64BIT_TIME);
3356
3357 case SIOCBONDSLAVEINFOQUERY:
3358 case SIOCBONDINFOQUERY:
3359 case SIOCSHWTSTAMP:
3360 case SIOCGHWTSTAMP:
3361 return compat_ifr_data_ioctl(net, cmd, argp);
3362
3363 case FIOSETOWN:
3364 case SIOCSPGRP:
3365 case FIOGETOWN:
3366 case SIOCGPGRP:
3367 case SIOCBRADDBR:
3368 case SIOCBRDELBR:
3369 case SIOCGIFVLAN:
3370 case SIOCSIFVLAN:
3371 case SIOCADDDLCI:
3372 case SIOCDELDLCI:
3373 case SIOCGSKNS:
3374 case SIOCGSTAMP_NEW:
3375 case SIOCGSTAMPNS_NEW:
3376 return sock_ioctl(file, cmd, arg);
3377
3378 case SIOCGIFFLAGS:
3379 case SIOCSIFFLAGS:
3380 case SIOCGIFMETRIC:
3381 case SIOCSIFMETRIC:
3382 case SIOCGIFMTU:
3383 case SIOCSIFMTU:
3384 case SIOCGIFMEM:
3385 case SIOCSIFMEM:
3386 case SIOCGIFHWADDR:
3387 case SIOCSIFHWADDR:
3388 case SIOCADDMULTI:
3389 case SIOCDELMULTI:
3390 case SIOCGIFINDEX:
3391 case SIOCGIFADDR:
3392 case SIOCSIFADDR:
3393 case SIOCSIFHWBROADCAST:
3394 case SIOCDIFADDR:
3395 case SIOCGIFBRDADDR:
3396 case SIOCSIFBRDADDR:
3397 case SIOCGIFDSTADDR:
3398 case SIOCSIFDSTADDR:
3399 case SIOCGIFNETMASK:
3400 case SIOCSIFNETMASK:
3401 case SIOCSIFPFLAGS:
3402 case SIOCGIFPFLAGS:
3403 case SIOCGIFTXQLEN:
3404 case SIOCSIFTXQLEN:
3405 case SIOCBRADDIF:
3406 case SIOCBRDELIF:
3407 case SIOCGIFNAME:
3408 case SIOCSIFNAME:
3409 case SIOCGMIIPHY:
3410 case SIOCGMIIREG:
3411 case SIOCSMIIREG:
3412 case SIOCBONDENSLAVE:
3413 case SIOCBONDRELEASE:
3414 case SIOCBONDSETHWADDR:
3415 case SIOCBONDCHANGEACTIVE:
3416 return compat_ifreq_ioctl(net, sock, cmd, argp);
3417
3418 case SIOCSARP:
3419 case SIOCGARP:
3420 case SIOCDARP:
3421 case SIOCATMARK:
3422 return sock_do_ioctl(net, sock, cmd, arg);
3423 }
3424
3425 return -ENOIOCTLCMD;
3426 }
3427
3428 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3429 unsigned long arg)
3430 {
3431 struct socket *sock = file->private_data;
3432 int ret = -ENOIOCTLCMD;
3433 struct sock *sk;
3434 struct net *net;
3435
3436 sk = sock->sk;
3437 net = sock_net(sk);
3438
3439 if (sock->ops->compat_ioctl)
3440 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3441
3442 if (ret == -ENOIOCTLCMD &&
3443 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3444 ret = compat_wext_handle_ioctl(net, cmd, arg);
3445
3446 if (ret == -ENOIOCTLCMD)
3447 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3448
3449 return ret;
3450 }
3451 #endif
3452
3453 /**
3454 * kernel_bind - bind an address to a socket (kernel space)
3455 * @sock: socket
3456 * @addr: address
3457 * @addrlen: length of address
3458 *
3459 * Returns 0 or an error.
3460 */
3461
3462 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3463 {
3464 return sock->ops->bind(sock, addr, addrlen);
3465 }
3466 EXPORT_SYMBOL(kernel_bind);
3467
3468 /**
3469 * kernel_listen - move socket to listening state (kernel space)
3470 * @sock: socket
3471 * @backlog: pending connections queue size
3472 *
3473 * Returns 0 or an error.
3474 */
3475
3476 int kernel_listen(struct socket *sock, int backlog)
3477 {
3478 return sock->ops->listen(sock, backlog);
3479 }
3480 EXPORT_SYMBOL(kernel_listen);
3481
3482 /**
3483 * kernel_accept - accept a connection (kernel space)
3484 * @sock: listening socket
3485 * @newsock: new connected socket
3486 * @flags: flags
3487 *
3488 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3489 * If it fails, @newsock is guaranteed to be %NULL.
3490 * Returns 0 or an error.
3491 */
3492
3493 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3494 {
3495 struct sock *sk = sock->sk;
3496 int err;
3497
3498 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3499 newsock);
3500 if (err < 0)
3501 goto done;
3502
3503 err = sock->ops->accept(sock, *newsock, flags, true);
3504 if (err < 0) {
3505 sock_release(*newsock);
3506 *newsock = NULL;
3507 goto done;
3508 }
3509
3510 (*newsock)->ops = sock->ops;
3511 __module_get((*newsock)->ops->owner);
3512
3513 done:
3514 return err;
3515 }
3516 EXPORT_SYMBOL(kernel_accept);
3517
3518 /**
3519 * kernel_connect - connect a socket (kernel space)
3520 * @sock: socket
3521 * @addr: address
3522 * @addrlen: address length
3523 * @flags: flags (O_NONBLOCK, ...)
3524 *
3525 * For datagram sockets, @addr is the addres to which datagrams are sent
3526 * by default, and the only address from which datagrams are received.
3527 * For stream sockets, attempts to connect to @addr.
3528 * Returns 0 or an error code.
3529 */
3530
3531 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3532 int flags)
3533 {
3534 return sock->ops->connect(sock, addr, addrlen, flags);
3535 }
3536 EXPORT_SYMBOL(kernel_connect);
3537
3538 /**
3539 * kernel_getsockname - get the address which the socket is bound (kernel space)
3540 * @sock: socket
3541 * @addr: address holder
3542 *
3543 * Fills the @addr pointer with the address which the socket is bound.
3544 * Returns 0 or an error code.
3545 */
3546
3547 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3548 {
3549 return sock->ops->getname(sock, addr, 0);
3550 }
3551 EXPORT_SYMBOL(kernel_getsockname);
3552
3553 /**
3554 * kernel_peername - get the address which the socket is connected (kernel space)
3555 * @sock: socket
3556 * @addr: address holder
3557 *
3558 * Fills the @addr pointer with the address which the socket is connected.
3559 * Returns 0 or an error code.
3560 */
3561
3562 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3563 {
3564 return sock->ops->getname(sock, addr, 1);
3565 }
3566 EXPORT_SYMBOL(kernel_getpeername);
3567
3568 /**
3569 * kernel_getsockopt - get a socket option (kernel space)
3570 * @sock: socket
3571 * @level: API level (SOL_SOCKET, ...)
3572 * @optname: option tag
3573 * @optval: option value
3574 * @optlen: option length
3575 *
3576 * Assigns the option length to @optlen.
3577 * Returns 0 or an error.
3578 */
3579
3580 int kernel_getsockopt(struct socket *sock, int level, int optname,
3581 char *optval, int *optlen)
3582 {
3583 mm_segment_t oldfs = get_fs();
3584 char __user *uoptval;
3585 int __user *uoptlen;
3586 int err;
3587
3588 uoptval = (char __user __force *) optval;
3589 uoptlen = (int __user __force *) optlen;
3590
3591 set_fs(KERNEL_DS);
3592 if (level == SOL_SOCKET)
3593 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3594 else
3595 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3596 uoptlen);
3597 set_fs(oldfs);
3598 return err;
3599 }
3600 EXPORT_SYMBOL(kernel_getsockopt);
3601
3602 /**
3603 * kernel_setsockopt - set a socket option (kernel space)
3604 * @sock: socket
3605 * @level: API level (SOL_SOCKET, ...)
3606 * @optname: option tag
3607 * @optval: option value
3608 * @optlen: option length
3609 *
3610 * Returns 0 or an error.
3611 */
3612
3613 int kernel_setsockopt(struct socket *sock, int level, int optname,
3614 char *optval, unsigned int optlen)
3615 {
3616 mm_segment_t oldfs = get_fs();
3617 char __user *uoptval;
3618 int err;
3619
3620 uoptval = (char __user __force *) optval;
3621
3622 set_fs(KERNEL_DS);
3623 if (level == SOL_SOCKET)
3624 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3625 else
3626 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3627 optlen);
3628 set_fs(oldfs);
3629 return err;
3630 }
3631 EXPORT_SYMBOL(kernel_setsockopt);
3632
3633 /**
3634 * kernel_sendpage - send a &page through a socket (kernel space)
3635 * @sock: socket
3636 * @page: page
3637 * @offset: page offset
3638 * @size: total size in bytes
3639 * @flags: flags (MSG_DONTWAIT, ...)
3640 *
3641 * Returns the total amount sent in bytes or an error.
3642 */
3643
3644 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3645 size_t size, int flags)
3646 {
3647 if (sock->ops->sendpage)
3648 return sock->ops->sendpage(sock, page, offset, size, flags);
3649
3650 return sock_no_sendpage(sock, page, offset, size, flags);
3651 }
3652 EXPORT_SYMBOL(kernel_sendpage);
3653
3654 /**
3655 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3656 * @sk: sock
3657 * @page: page
3658 * @offset: page offset
3659 * @size: total size in bytes
3660 * @flags: flags (MSG_DONTWAIT, ...)
3661 *
3662 * Returns the total amount sent in bytes or an error.
3663 * Caller must hold @sk.
3664 */
3665
3666 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3667 size_t size, int flags)
3668 {
3669 struct socket *sock = sk->sk_socket;
3670
3671 if (sock->ops->sendpage_locked)
3672 return sock->ops->sendpage_locked(sk, page, offset, size,
3673 flags);
3674
3675 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3676 }
3677 EXPORT_SYMBOL(kernel_sendpage_locked);
3678
3679 /**
3680 * kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3681 * @sock: socket
3682 * @how: connection part
3683 *
3684 * Returns 0 or an error.
3685 */
3686
3687 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3688 {
3689 return sock->ops->shutdown(sock, how);
3690 }
3691 EXPORT_SYMBOL(kernel_sock_shutdown);
3692
3693 /**
3694 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3695 * @sk: socket
3696 *
3697 * This routine returns the IP overhead imposed by a socket i.e.
3698 * the length of the underlying IP header, depending on whether
3699 * this is an IPv4 or IPv6 socket and the length from IP options turned
3700 * on at the socket. Assumes that the caller has a lock on the socket.
3701 */
3702
3703 u32 kernel_sock_ip_overhead(struct sock *sk)
3704 {
3705 struct inet_sock *inet;
3706 struct ip_options_rcu *opt;
3707 u32 overhead = 0;
3708 #if IS_ENABLED(CONFIG_IPV6)
3709 struct ipv6_pinfo *np;
3710 struct ipv6_txoptions *optv6 = NULL;
3711 #endif /* IS_ENABLED(CONFIG_IPV6) */
3712
3713 if (!sk)
3714 return overhead;
3715
3716 switch (sk->sk_family) {
3717 case AF_INET:
3718 inet = inet_sk(sk);
3719 overhead += sizeof(struct iphdr);
3720 opt = rcu_dereference_protected(inet->inet_opt,
3721 sock_owned_by_user(sk));
3722 if (opt)
3723 overhead += opt->opt.optlen;
3724 return overhead;
3725 #if IS_ENABLED(CONFIG_IPV6)
3726 case AF_INET6:
3727 np = inet6_sk(sk);
3728 overhead += sizeof(struct ipv6hdr);
3729 if (np)
3730 optv6 = rcu_dereference_protected(np->opt,
3731 sock_owned_by_user(sk));
3732 if (optv6)
3733 overhead += (optv6->opt_flen + optv6->opt_nflen);
3734 return overhead;
3735 #endif /* IS_ENABLED(CONFIG_IPV6) */
3736 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3737 return overhead;
3738 }
3739 }
3740 EXPORT_SYMBOL(kernel_sock_ip_overhead);